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We present an exact solution to the problem of the spin edge states in the presence of equal Bychkov-

Rashba and Dresselhaus spin-orbit fields in a two-dimensional electron system, restricted by a hard-wall

confining potential and exposed to a perpendicular magnetic field. We find that the spectrum of the spin

edge states depends critically on the orientation of the sample edges with respect to the crystallographic

axes. Such a strikingly different spectral behavior generates new modes of the persistent spin helix–spin

edge helices with novel properties, which can be tuned by the applied electric and magnetic fields.
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Introduction.—Edge states are a defining factor in many
prominent transport phenomena in condensed matter phys-
ics. They emerge and are protected against scattering in the
quantum Hall systems by applying a perpendicular mag-
netic field to a two-dimensional conductor, or are formed at
the interfaces of topological insulators [1] by deforming
the bulk band structure in the presence of strong spin-orbit
coupling. The interplay of the three effects, the magnetic
field quantization, the spin-orbit coupling, and the confine-
ment by sample edges, is yet largely unexplored.

Spin-orbit coupling is an important tool to manipulate
electron spins in solids by purely electric means [2–4]. In
particular, the spin Hall effect [5] or the spin Hall drag [6]
allows us to create spin accumulation across the transport
channels. The Bychkov-Rashba (BR) spin-orbit coupling
[7], due to the structure inversion asymmetry, and the
Dresselhaus (D) coupling [8], due to the confinement
quantization of the bulk spin-orbit interaction (SOI), domi-
nate in many semiconductor heterostructures. Both BR and
D couplings can be tuned by electric gates, asymmetric
doping, or strain, allowing for efficient spin control [9–12].
If the strengths of the BR and D couplings are equal, there
can be long-lived, persistent spin helices (PSH) formed and
protected against spin relaxation [13]. This exciting phe-
nomenon was recently observed [14,15].

Here we study the complex interplay of the SOI, cyclo-
tron effects of an external magnetic field, and the hard-wall
confinement in a generic zinc blende two-dimensional
electron system (2DES) grown along [001]. We present
an exact solution to the problem of the spin edge states for
the equal BR and D SOI strengths. The spectrum of the
edge states is strikingly different if the edges run along
[110] or ½1�10� directions. Depending on the relative sign of
the BR and D couplings, in those two symmetry directions
either (a) the spectrum is spin degenerate or (b) the spin
splitting of the edge channels becomes maximal; i.e., either
spin polarized channels and spin current oscillations [16]
are possible or they are not. We find that in (a) the non-
Abelian gauge field via the built-in spin-dependent phase

factor generates spin edge helices (SEH) with a precession
angle that depends on the transverse distance from the
edge. In (b) the shifting property of the spectrum allows
the existence of SEH with a precession angle that depends
on the distance along the propagation direction. In strong
magnetic fields the precession angle of the SEH is quan-
tized in case (a), while a periodic helical structure, ex-
tended along the edge, is produced in case (b). In weak
magnetic fields we find interesting new spin resonances
when the cyclotron motion is commensurate with the spin
precession [17]. Experimentally, a strong reduction of
spin scattering rate towards the sample edges should be
observed.
As an important application of our theory we propose

extending the experimental setup in Ref. [14] by exposing
the 2DES additionally to a perpendicular magnetic field B.
According to the experimental findings from Ref. [14],
the enhancement of the PSH by about two orders of
magnitude occurs only at intermediate temperatures about
T � 100 K. Its rapid drop with lowering of T shows that
the spin Coulomb drag [18–20] via a strong increase of the
diffusion coefficient destroys the PSH enhancement, for
which a finite momentumQ is needed in B ¼ 0. In the case
of finite B we find that in order to excite SEH in the
(b) configuration a finite momentum shift is still needed
between the spin components, but in the (a) configuration,
where the energy is degenerate, the SEH exists for Q ¼ 0,
i.e., without momentum difference along its propagation
direction. This should reduce the role of spin Coulomb
drag in suppressing the enhancement of SEH, which can be
useful for spintronic applications. Notice that in three
dimensions a nonequivalence in ð1�10Þ and ð�110Þ has al-
ready been observed by means of the electron paramag-
netic resonance and the electron-dipole spin resonance
[17,21].
Theoretical concept.—We consider electrons in a 2DES

exposed to a perpendicular magnetic field B along [001].
The electrons are additionally confined by an infinite po-
tential VðxÞ ¼ 1 for x < 0. Then in the presence of the
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BR and D SOI the Hamiltonian isH ¼ H0 þHSOI þ VðxÞ,
where H0 ¼ ~�2=2m� describes a free particle in a quantiz-
ing magnetic field, m� denotes the electron effective mass,

and ~� ¼ ~p� ðe=cÞ ~A the kinetic momentum with ~p ¼
�i@ ~r; the electron charge is �e. There are two preferen-
tial directions in the ðx; yÞ plane of 2DES: (i) the direction
of the sample boundary along which edge states propagate
and (ii) the direction of the electron spin in the presence of
BR and D SOI of equal strength, determined by the crys-
tallographic axes. The relative orientation of these two
directions determines two distinct configurations, shown
in Fig. 1. In these configurations we choose the ðx; yÞ
coordinate system such that the sample boundary is always
along y. Then in the configuration (a) in Fig. 1, in which the
axes x and y are along [110] and ½�110�, we have

HSOI ¼ ð�R � �DÞ�y�̂x � ð�R þ �DÞ�x�̂y: (1)

In the configuration (b), the axes x and y are along ½�110�
and ½1 1 0� and the Hamiltonian is

HSOI ¼ ð�R þ �DÞ�y�̂x � ð�R � �DÞ�x�̂y: (2)

Here �R and �D are, respectively, BR and D spin-orbit
coupling constants and �̂x, �̂y are the Pauli matrices. We

consider magnetic fields which are strong enough to quan-
tize the electron spectrum but weak enough to cause much
smaller Zeeman splitting than the SOI induced energy
splitting [16,22].

We choose the Landau gauge with ~AðxÞ ¼ ð0; xB; 0Þ and,
making use of the ansatz

c ð ~rÞ ¼ eikyy�kyðxÞ; ~r ¼ ðx; yÞ; (3)

reduce the two-dimensional Schrödinger equation to the
effective one-dimensional problem in the x direction. The
transformed Hamiltonian UyHU, generated by the global
unitary transformations

Ua ¼ 1
ffiffiffi

2
p i �i

1 1

� �

and Ub ¼ 1
ffiffiffi

2
p �1 1

1 1

� �

; (4)

becomes diagonal in the (a) and (b) configurations so that
in the case of �R ¼ �D ¼ � the wave functions �kyðxÞ
satisfy the following equation:

��

d

dx
þ i�a�̂z

�

2þ�þ 1

2
�ðx�XðkyÞ��b�̂zÞ2

4

�

�kyðxÞ
¼ 0: (5)

Here the coefficients a and b are given by

a ¼ 1; b ¼ 0; for the ðaÞ configuration; (6)

a ¼ 0; b ¼ 2; for the ðbÞ configuration: (7)

In Eq. (5), � ¼ �þ �2, and we express the total electron

energy E ! ð�þ 1=2Þ@!B and the length x ! xlB=
ffiffiffi

2
p

in
units of the cyclotron energy, @!B ¼ @eB=m�c, and the

magnetic length, lB � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@c=eB
p

. The dimensionless SOI

coupling constant � ¼ ffiffiffi

2
p

�=vB, where the cyclotron ve-
locity vB ¼ @=m�lB, while the dimensionless coordinate of

the center of orbital rotation XðkyÞ ¼
ffiffiffi

2
p

kylB.

In the (a) configuration the SOI with equal BR and D
strengths induces a finite non-Abelian gauge field that
depends on the spin orientation, keeping the cyclotron
rotation center unshifted. In contrast, in the (b) configura-
tion the SOI induces only a spin-dependent shift of the
cyclotron rotation center.
With the unitary transformation

�kyðxÞ ¼ expð�i�ax�̂zÞ�kyðxÞ; (8)

we can eliminate the non-Abelian gauge field and map the
SOI problem of the equal BR and D strengths to the SOI
free, shifted edge state problem as follows:

h�ðx� s�bÞ�s
ky
ðxÞ ¼ 0: (9)

Here we introduce the operator

h�ðxÞ ¼
�

d2

dx2
þ �þ 1

2
� ½x� XðkyÞ�2

4

�

; (10)

and s ¼ �1 labels the spin " and # states in the new spin
basis, created by (4). The general solution of Eq. (9) is
given in terms of the parabolic cylindric functions D�ðxÞ
so that the spin edge states are given by

c s
ky
ð ~rÞ ¼ expð�is�axþ ikyyÞD�½x� XðkyÞ � s�b�:

(11)

For sufficiently large positive XðkyÞ the solution (11) re-

covers the exact spectrum of the dispersionless bulk
Landau levels, Eslð�Þ ¼ ðlþ 1

2 � �2Þ@!B with the index

l ¼ 0; 1; 2; . . . [23]; this is valid in both configurations
since the index � is the same. The shift of all bulk
Landau levels due to SOI is independent of spin, so they
remain spin degenerate.
Energy spectrum.—The energy spectrum of the spin

edge states is obtained by letting the wave functions (11)
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FIG. 1 (color online). Two physically different configurations
of the 2DES, restricted with a hard-wall confining potential at
x ¼ 0 (filled areas). The spin edge states propagate in the
skipping orbits along ½1�10� and [110] axes, respectively, parallel
and perpendicular to the direction of electron spins. The Fermi
contours in the absence of the magnetic field are shown in the
momentum plane with arrows indicating the directions of spin.
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vanish at the sample boundary: D�ð�;�Þ½x� XðkyÞ �
s�b�jx¼0 ¼ 0. The calculated energy branches, Eslðky; �Þ,
are shown in Fig. 2. As seen in the (a) configuration the
energy spectrum remains spin degenerate for all values of
ky so that the spin edge states at the Fermi energy EF are

not separated in space. The wave functions (11) contain
finite spin-dependent phase factors (a ¼ 1), which de-
scribe the precession of spins with the opposite rotations
along the electron propagation axis y.

In contrast, the energy spectrum in (b) develops, for a
given principal quantum number l, two spin branches. The
degeneracy is lifted already for positiveXðkyÞ � 2; the spin

splitting increases strongly with jXðkyÞj for negative XðkyÞ.
The spin-dependent phase factor in (11) vanishes identi-
cally (a ¼ 0), and the effect of equal BR and D SOI on the
spin edge states is reduced to the spin-dependent shift of
the energy branches in the momentum space. At certain
values of EF there exist two spatially separated current
carrying states with opposite spins, whose directions are
locked globally by the geometry of the configuration (b).

Thus, the spectrum in Fig. 2 shows that the external
magnetic field creates edge states along the ½1�10� and
[110]. The linear motion of the edge states via the BR
and D SOI of equal strengths induces an effective magnetic
field along [110] and ½1�10�, respectively, that is either
perpendicular or parallel to the direction of the spins,
thereby keeping the spin degeneracy or resulting in the
maximal spin splitting, respectively, in (a) or (b).

Spin edge helices.—The energy bands of the spin edge
states possess a shifting property along y,

E#lðky; �Þ ¼ E"lðky �Q;�Þ; (12)

where the shifting wave number Q ¼ ffiffiffi

2
p

�b=lB is finite in
(b) and zero in (a). As in the zero field [13], we introduce
the following operators in the transformed spin basis

S�Qð~rÞ ¼ c #
ky
ð ~rÞyc "

ky�Qð~rÞ;
SþQð~rÞ ¼ c "

ky�Qð ~rÞyc #
ky
ð~rÞ;

Sz0ð~rÞ ¼ c "
ky
ð ~rÞyc "

ky
ð~rÞ � c #

ky
ð~rÞyc #

ky
ð ~rÞ;

(13)

which commute with the system Hamiltonian owing to the
shifting property (12) and the SU(2) symmetry of the
system [13]. The nondiagonal operators

S�Qð ~rÞ¼ expð�2ia�x� ib�yÞD�½x�XðkyÞþb��2 (14)

represent long-lived spin edge helices of 2DES in the
presence of a perpendicular magnetic field. Here the coor-

dinate y is also dimensionless, y ! ylB=
ffiffiffi

2
p

. As seen from
Eq. (14), in contrast to the spin edge states, the helical edge
modes have finite spin-dependent phase factors in both
configurations. Going back to the initial spin basis we
see that in the (a) configuration (a ¼ 1 and b ¼ 0) the
factor expð�2i�xÞ, existing also for the edge states,
describes the spin precession in the ðx; zÞ plane with the
precession angle #ðxÞ ¼ 4�x, depending on the transverse
x coordinate, along which the helices are confined by
the magnetic field via the factor D�½x� XðkyÞ þ b��2.
On the contrary, in the (b) configuration (a ¼ 0 and
b ¼ 2) the factor expð�2i�yÞ is inherent only to the SEH.
This factor arises from the plane wave functions in
Eq. (3) due to the shifting property (12) and describes the
spin precession in the ðy; zÞ plane with the precession angle
#ðyÞ ¼ 4�y, depending on the y coordinate along the free
propagation direction of the SEH. Thus the combined
effect of the perpendicular magnetic field and the confining
potential on the SEH critically depends on the orientation
of the edges of 2DES relative to the crystallographic axes;
as we will see, it depends also on the strength of the
magnetic field.
In quantizing magnetic fields the spin helices are

strongly localized along the transverse direction x around
its average position �xlðkyÞ. In the limit of large negative

ky, �xlðkyÞ is approximately independent of ky and takes

discrete values �xl in the different channels l [16,24].
Therefore, in the (a) configuration the precession angle is
quantized around #l ¼ 4� �xl for the spatially separated
edge channels l [see bottom of Fig. 3(a)]. Meanwhile in
the 3(b) configuration the precession of spin by an angle
#l ¼ 4�y develops a spatially periodic structure along the
y direction [see bottom of Fig. 3(b)], similarly to the usual
PSH in an infinite 2DES in the magnetic field free case
[13,25–27]. Thus, by switching between the (a) and (b)
configurations, i.e., by tuning the BR and D coupling
strengths either to the �R ¼ �D or the �R ¼ ��D case,
one can realize a selection mechanism between the two
alternatives of the quantized spin edge helices and of the
free spin edge helices.
In the limit of large positive ky, the electrons are local-

ized in quasibulk Landau states around their rotation center
XðkyÞ � 1, which increases linearly with ky [16,24].

FIG. 2. The energy spectrum of spin edge states in the pres-
ence of Bychkov-Rashba and Dresselhaus SOI of equal
strengths. The dashed and solid curves correspond to the (a)
and (b) configurations in Fig. 1.
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However, for a given ky one can neglect weak oscillations

of the spin precession angle #l since in strong fields lB is
much smaller than the spin-orbit length, 	SO ¼ 1=2m�,
and the variation of #l during the period of the cyclotron
rotation is of the order of � ¼ 2m�lB � 1. Thus, the
precession angle in the configuration (a), #l 	 4�XðkyÞ,
is independent of y and varies only along x with ky [see top

of Fig. 3(a)], while in the 3(b) configuration, #l 	 4�y is
independent of x but varies along y [see top of Fig. 3(b)].

In weak fields and for l � 1, the quasiclassical descrip-

tion is valid and the x coordinate oscillates in time as x ¼
XðkyÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�þ 1
p

cos!Bt. For the edge states XðkyÞ can be
negative, �1< XsðkyÞ 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�þ 1
p

so that in the (a) con-

figuration the spin precesses along x by an angle 0 
 # 

2#0, where #0 ¼ 4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�þ 1
p

. Meanwhile for the bulk

Landau states XðkyÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�þ 1
p

, and the precession

angle in the (a) configuration varies within the
range #s � #0 
 # 
 #s þ #0. Therefore, in the mag-
netic fields and electron concentrations such that
4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�F þ 1
p ¼ �=2 with 2�F þ 1 ¼ EF=@!B, the spin

resonance effect takes place as shown in the top of
Fig. 3(c): the spin makes one full precession each time
when the electron makes a full cyclotron rotation.
Recently, the spin resonance phenomenon, driven by the
SOI and perpendicular magnetic fields, has been experi-
mentally demonstrated in Ref. [28] by observing a strong
suppression of spin relaxation. As seen in the top of
Figs. 3(c) and 3(d), the spin resonance for the Landau
states in the (b) configuration differs from that in the (a)
configuration by a simple rotation of the cyclotron orbit
because in (a) # ¼ 4�y depends only on y while in (b)
# ¼ 4�x depends only on x.

For large negative ky the physical picture of the spin

resonance in the (a) and (b) configurations differs essen-
tially [cf. the bottom of Figs. 3(c) and 3(d)]. In (a) # ¼ 4�x
depends only on the x, along which the electron motion
oscillates within a finite range. Therefore, the precession
angle is independent of the electron motion along the edge.
In contrast, in (b) # ¼ 4�y depends on the y coordinate,

along which the electron propagates freely. Therefore,
in (b) the spin precession generates a spatially periodic
structure of the SEH along y, and as seen in the bottom of
Fig. 3(d) in the resonance case the spin changes its sign each
time the electron makes a half circle in its skipping orbit.
In conclusion, we present a theory of persistent spin

edge helices, which exhibit novel features, tunable by
electric and magnetic fields. We show that either a periodic
structure of spin edge helices along the sample edges or a
helical structure with a quantized precession angle along
the transverse direction is realized.
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