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Chapter 1

Introduction

The subject of the present work is the study of geometric evolution laws for evolving hyper-
surfaces with boundary contact and triple lines. The considered hypersurfaces lie inside a fixed
bounded region and are in contact with its boundary through a 90◦ angle. In case of triple lines
they also meet each other with some prescribed angle conditions, see Figure 1.1 for a sketch of
the arising situations for curves in the plane.

ΩΓ

(a) one hypersurface

Ω

Γ1

Γ2

Γ3

(b) three hypersurfaces

Figure 1.1: A sketch of the arising situations.

The geometric evolution laws that we want to consider are the mean curvature flow

V = H , (1.1)

the surface diffusion flow

V = −∆H (1.2)

and the volume preserving mean curvature flow

V = H −H . (1.3)

Here V is the normal velocity of the evolving hypersurface, H is the mean curvature, ∆ is the
Laplace-Beltrami operator and H is the average mean curvature. Our sign convention is that
H is negative for spheres provided with outer unit normal. For a review concerning geometric
evolution equations, in particular for the mean curvature flow, we want to refer the reader to
the work of Deckelnick, Dziuk and Elliott [DDE05].

1



CHAPTER 1. INTRODUCTION

Mean curvature flow (1.1) was first studied by Brakke [Bra78] from a point of view of geometric
measure theory. Gage and Hamilton [GH86] showed that convex curves in the plane under
this flow shrink to round points and Grayson [Gray87] generalized this result to embedded
plane curves. Huisken [Hui84] generalized the result of [GH86] to show that convex, compact
hypersurfaces retain their convexity and become asymptotically round. Finally we mention that
this flow is the L2-gradient flow of the area functional, it is area decreasing and for curves in
the plane it is therefore also called curve shortening flow.
Surface diffusion flow (1.2) was first proposed by Mullins [Mu57] to model motion of inter-

faces where this motion is governed purely by mass diffusion within the interfaces. Davi and
Gurtin [DG90] derived the above law within rational thermodynamics and Cahn, Elliott and
Novick-Cohen [CEN96] identified it as the sharp interface limit of a Cahn-Hilliard equation with
degenerate mobility. An existence result for curves in the plane and stability of circles has been
shown by Elliott and Garcke [EG97] and this result was generalized to the higher dimensional
case by Escher, Mayer and Simonett [EMS98]. Cahn and Taylor [CT94] showed that (1.2) is
the H−1-gradient flow of the area functional and we finally mention that for closed embedded
hypersurfaces the enclosed volume is preserved and the surface area decreases in time as can be
seen for example in [EG97] or [EMS98].
The volume preserving mean curvature flow (1.3) was considered for example in the work of

Huisken [Hui87] and in Escher and Simonett [ES98]. The idea behind this flow is to overcome
the lack of volume conservation in the mean curvature flow by enforcing it with the help of a
nonlocal term.
We will examine the above evolution laws with boundary conditions by considering evolving

hypersurfaces Γ that meet the boundary of a fixed bounded region Ω or even intersect each
other at triple lines inside of this region. In the case of the surface diffusion flow these boundary
conditions were derived by Garcke and Novick-Cohen [GN00] as the asymptotic limit of a Cahn-
Hilliard system with a degenerate mobility matrix. At the outer boundary this yields natural
boundary conditions given by a 90◦ angle condition and a no-flux condition, i.e. we require at
Γ ∩ ∂Ω

Γ ⊥ ∂Ω , (1.4)

n∂Γ · ∇H = 0 . (1.5)

Here ∇ is the surface gradient and n∂Γ is the outer unit conormal of Γ at boundary points. The
conditions (1.4) and (1.5) are the natural boundary conditions when viewing surface diffusion
(1.2) with outer boundary contact as the H−1-gradient flow of the area functional.
For the evolution law (1.2) for one evolving curve in the plane with boundary conditions (1.4)

and (1.5) Garcke, Ito and Kohsaka gave in [GIK05] a linearized stability criterion for spherical
arcs resp. lines, which are the stationary states in this case. In [GIK08] the same authors showed
nonlinear stability results for the above situation.
For the mean curvature flow (1.1), one can also consider situations where an evolving hyper-

surface is attached to an outer fixed boundary. In this case, instead of the two conditions (1.4)
and (1.5), only an angle condition has to be fulfilled. This is due to the fact that surface diffu-
sion is a fourth order and mean curvature flow is a second order geometric evolution law. For
the stability analysis for mean curvature flow (1.1) with boundary condition (1.4) we refer to
[EY93, ESY96], where the results heavily depend on maximum principles.
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When we now draw our attention to the appearance of triple lines, we want to change the
considered evolution laws slightly by including some constants that allow different contact angles
between the hypersurfaces. We assume that three evolving hypersurfaces Γi either fulfill the
weighted mean curvature flow

Vi = γiHi , (1.6)

or the weighted surface diffusion flow

Vi = −mi γi ∆Hi , (1.7)

each for i = 1, 2, 3. Here the constants γi,mi > 0 are the surface energy density and the mobility
of the evolving hypersurface Γi. If the three evolving hypersurfaces meet at a triple line L(t),
we require that there the following conditions hold.

∠(Γ1(t),Γ2(t)) = θ3 , ∠(Γ2(t),Γ3(t)) = θ1 , ∠(Γ3(t),Γ1(t)) = θ2 , (1.8)

γ1H1 + γ2H2 + γ3H3 = 0 , (1.9)

m1 γ1 ∇H1 · n∂Γ1 = m2 γ2 ∇H2 · n∂Γ2 = m3 γ3 ∇H3 · n∂Γ3 , (1.10)

where the quantity ∠(Γi(t),Γj(t)) denotes the angle between Γi(t) and Γj(t) and the angles
θ1, θ2, θ3 with 0 < θi < π are related through the identity θ1 + θ2 + θ3 = 2π and Young’s law,
which is

sin θ1
γ1

=
sin θ2
γ2

=
sin θ3
γ3

. (1.11)

We can show that Young’s law (1.11) is equivalent to

γ1 n∂Γ1 + γ2 n∂Γ2 + γ3 n∂Γ3 = 0 , (1.12)

which is the force balance at the triple line.
For the derivation of the conditions (1.8)-(1.10) at the triple line, we refer to Garcke and

Novick-Cohen [GN00]. The angle condition (1.8) follows from the balance of forces (1.12) at the
triple line, the second condition (1.9) follows from the continuity of chemical potentials and the
conditions (1.10) are the flux balance at the triple line L(t).
We remark that for three hypersurfaces evolving due to the weighted mean curvature flow (1.6),

only the angle condition (1.8) has to be fulfilled. In this case together with outer boundary
contact for the three evolving hypersurfaces, linearized stability was considered in Ikota and
Yanagida [IY03]. Nonlinear stability for the weighted curvature flow for curves in the plane with
triple junction and boundary contact was shown by Garcke, Kohsaka and Ševčovič [GKS09].
In the following situations there are some results on stability for surface diffusion. Let three

plane curves lie in the fixed region Ω, where ∂Ω is a rectangle, and evolve due to the weighted
surface diffusion flow (1.7) such that the outer boundary conditions (1.4) and (1.5) are fulfilled
for each curve. The three plane curves shall also have a triple junction where the conditions
(1.8)-(1.10) are fulfilled. In this case Ito and Kohsaka [IK01a] and also Escher, Garcke and
Ito [EGI03] showed global existence results when the initial curve is a small perturbation of a
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CHAPTER 1. INTRODUCTION

certain stationary curve. The same is true if ∂Ω is a triangle and was shown in [IK01b] from
Ito and Kohsaka. In these cases also nonlinear stability of the stationary curve can be shown.
The above described curve situation was also considered without the special geometry of Ω in
the work of Garcke, Ito and Kohsaka [GIK10], where the authors formulate a linearized stability
criterion for stationary curves.
For numerical results we want to refer to the work of Deckelnick and Elliott [DE98], where the

authors considered the curve shortening flow with outer boundary contact and to Bronsard and
Wetten [BW95], where curvature flow for a network of curves is the subject. We also want to
refer to a series of papers by Barrett, Garcke and Nürnberg. For example they considered in
[BGN07] surface diffusion with triple lines and outer boundary contact for curves in the plane
and extended this work to the case of hypersurfaces in [BGN09]. In all cases the authors derive
numerical schemes and give also a lot of examples which indicate the stability behaviour.
The main goal in this work is the extension of the linearized stability analysis in [GIK05] and

[GIK10] from curves to hypersurfaces. In detail this means that we will consider the surface
diffusion (1.2) for one evolving hypersurface Γ lying in a bounded region Ω such that Γ fulfills
the boundary conditions (1.4) and (1.5). The second important part will consist in regarding
three evolving hypersurfaces Γi lying in a bounded region Ω, such that each of the Γi fulfills
(1.4) and (1.5) and such that the Γi meet at a triple line inside of Ω, where the conditions
(1.8)-(1.10) hold. In both cases we generalize the necessary steps of [GIK05] and [GIK10] to the
higher dimensional setting.
The first main difference to the curve case considered in these papers is the parametrization of

the hypersurfaces, which is needed to derive partial differential equations for unknown functions
from the geometric evolution laws. In contrast to the very explicit given parametrization in
the curve case, we set up for the situation of one evolving hypersurface as described above an
abstract curvilinear coordinate system from Vogel [Vog00], that takes into account a possibly
curved outer boundary ∂Ω. In short, we fix a stationary solution Γ∗ and consider a mapping
Ψ : Γ∗ × (−d, d) → Ω with the properties Ψ(q, 0) = q and Ψ(q, w) ∈ ∂Ω for q ∈ ∂Γ∗. In
the case of three evolving hypersurfaces as described above we also fix a stationary solution
Γ∗ =

⋃3
i=1 Γ∗

i and use an explicit parametrization with two parameters w and s near the triple
line L∗ = ∂Γ∗

1 = ∂Γ∗
2 = ∂Γ∗

3 given by q 7→ q + wn∗i (q) + s t∗i (q), where n∗i is a unit normal of Γ∗
i

and t∗i is a tangent vector field on Γ∗
i with support in a neighbourhood of L∗, that equals the

outer unit conormal of Γ∗
i at ∂Γ∗

i . By introducing functions on Γ∗, whose values take the place
of the parameters w and s, we will denote the considered evolving hypersurfaces as graphs over
Γ∗, although in the literature, for example in [DDE05], also the term parametric approach is
used.
Another difference compared to the curve case is the linearization of the arising partial differ-

ential equations. Instead of the explicit calculations in [GIK05] we use the concept of normal
time derivative to get the linearization of mean curvature in Lemma 3.5. The treatment of the
angle conditions in Lemmata 3.7 and 4.11 is considerably harder than in the curve case. Here
we write the arising normals with the help of the cross product and use a local parametrization
for the hypersurfaces with well chosen properties at a fixed point.
It is very important that we can describe the linearized problem as in the curve case as an H−1-

gradient flow, because this is the main reason that the linearized operator is self-adjoint. Also
in the situation with triple lines we find an energy such that the system of partial differential

4



equations on different hypersurfaces can be viewed as an H−1-gradient flow with respect to
this energy. Then we are in a good position to apply results from spectral theory. We can
relate the asymptotic stability of the zero solution of the linearized problem to the fact that the
eigenvalues of the linearized operator are negative. Since we can describe the largest eigenvalue
with the help of a bilinear form arising due to the gradient flow structure, we can finally give a
criterion for linearized stability of the original geometric problems. The main results from this
work appear in the Theorems 3.17, 3.42, 4.21 and 4.43 and will be summarized further down in
the description of each chapter in bordered frames.
Since the above method works very fine without use of any maximum principle, we also apply

it to the case of mean curvature flow with and without triple lines and, as a corollary, to volume
preserving mean curvature flow.
The remaining part of this introduction will be a summary of the contents from the following

chapters. The second Chapter contains an overview of the used concepts from differential geo-
metry for hypersurfaces such as curvature terms, differential operators and the theorem of Gauß
on hypersurfaces with boundary. We also introduce with great care the notion of an evolving
hypersurface. Thereby we explain the term normal velocity, give a representation of the tangent
space and consider the normal time derivative for functions resp. vector fields defined on an
evolving hypersurface. We also describe evolving hypersurfaces that arise as a graph over a
fixed reference hypersurface. Then we continue this part with the presentation of the transport
equation that gives a formula for the time derivative of a spatial integral

∫
Γ(t) f in geometric

terms. Finally we use the transport equation to calculate the evolution of area and volume in an
abstract setting that is adapted to the geometry of the evolution equations that are considered
in later parts of this work. We will apply these formulas in Chapter 3 and extend them for the
evolution equations for three evolving hypersurfaces in Chapter 4.
In the third Chapter we consider the situation in which one evolving hypersurface Γ stays inside

a fixed bounded region Ω, fulfills the boundary conditions (1.4) and (1.5) at the outer boundary
and evolves due to different area decreasing evolution laws. We give the used parametrization
that will lead to partial differential equations for functions defined on a fixed stationary reference
hypersurface Γ∗. Then we consider the mean curvature flow with boundary condition (1.4) and
linearize the resulting equations, which in particular involves the linearization of mean curvature
and the 90◦ angle condition at the outer boundary. This will lead to the following equations

{
∂tρ = ∆Γ∗ρ+ |σ∗|2ρ in Γ∗ ,

0 = ∂µρ− S(n∗, n∗)ρ on ∂Γ∗ ∩ ∂Ω .
(1.13)

Here ∆Γ∗ is the Laplace-Beltrami operator on Γ∗, σ∗ is the second fundamental form on Γ∗

with respect to a chosen normal n∗, |σ∗|2 is the sum of the squared principal curvatures of Γ∗,
µ is the outer unit normal of Ω, ∂µρ is the directional derivative of ρ in direction of µ and S
is the second fundamental form on ∂Ω with respect to (−µ). We remark that the right side
of these equations is also derived and examined with respect to stability in a time independent
formulation in the papers of Barbosa and doCarmo [BdoC84], Ros and Souam [RS97] and Vogel
[Vog00] by considering the second variation of the area functional. The reason that we regard
these equations is the desire to adapt the notion of the later Section 3.4, which is a generalization
of the work of Garcke, Ito and Kohsaka [GIK05], also to this case of mean curvature flow and
to have therefore a common description and derivation for linearized stability of a larger class
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CHAPTER 1. INTRODUCTION

of evolution equations. The approach to get an asymptotic stability criterion for the linearized
equation (1.13) was summarized above. We also consider results for the volume preserving mean
curvature flow, which we obtain by similar methods. The arising linear equations for surface
diffusion flow with boundary conditions (1.4) and (1.5) are given by





∂tρ = −∆Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
in Γ∗ ,

0 = ∂µρ− S(n∗, n∗)ρ on ∂Γ∗ ∩ ∂Ω ,
0 = ∇Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
· µ on ∂Γ∗ ∩ ∂Ω .

(1.14)

By using the approach as described above we get the following stability result.

The zero solution of (1.14) is asymptotically stable

⇐⇒
{
I(ρ, ρ) :=

∫
Γ∗

(
|∇Γ∗ρ|2 − |σ∗|2ρ2

)
−
∫
∂Γ∗ S(n∗, n∗)ρ2

is positive for all ρ ∈ H1,2(Γ∗)\{0} with
∫
Γ∗ ρ = 0 .

The last two parts of this chapter consist of some remarks concerning the nonlinear stability of
the considered surface diffusion problem and examples for explicit situations where we examine
the linearized stability.

In the fourth Chapter we consider the situation in which three evolving hypersurfaces Γi stay
inside a fixed bounded region Ω, meet each other at a triple line inside of Ω and fulfill the
boundary conditions (1.4) and (1.5) at the outer boundary and (1.8)-(1.10) at the triple line.
In Section 4.1 we consider the mean curvature flow with outer boundary contact. In detail
we regard three evolving hypersurfaces that meet each other at a triple line, evolve due to the
weighted mean curvature flow (1.6) and fulfill the angle condition (1.8) at the triple line and the
right angle condition (1.4) at the three outer boundary parts. Here we use a parametrization
that is more explicit near the triple line than in the previous chapter. More precisely, near the
triple line we use a mapping depending on two parameters where one is responsible for a normal
direction and the other one for a tangential movement. This gives us eventually the possibility
to rewrite the geometric evolution law as a system of partial differential equations for functions
ρi and µi defined on fixed stationary reference hypersurfaces Γ∗

i , that meet each other at a triple
line L∗ and touch the outer boundary at a right angle at S∗

i . The linearization of these equations
leads to the following linear problem.





∂tρi = γi

(
∆Γ∗

i
ρi + |σ∗i |2ρi

)
in Γ∗

i ,

0 = (∂µ − S(n∗i , n
∗
i )) ρi on S∗

i ,
0 = γ1ρ1 + γ2ρ2 + γ3ρ3 on L∗ ,(
∇Γ∗

i
ρi · n∂Γ∗

i

)
+ aiρi =

(
∇Γ∗

j
ρj · n∂Γ∗

j

)
+ ajρj on L∗ ,

(1.15)

where i = 1, 2, 3 in the first and second line, (i, j) = (1, 2), (2, 3) in the third line and where the
ai are defined in (4.35)-(4.37). Stability analysis with the help of spectral theory gives here the
condition
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The zero solution of (1.15) is asymptotically stable

⇐⇒





I(ρ, ρ) :=
∑3

i=1 γi

∫
Γ∗

i

(
|∇Γ∗

i
ρi|2 − |σ∗i |2ρ2

i

)
−∑3

i=1 γi

∫
S∗

i
S(n∗i , n

∗
i ) ρ

2
i

+
∑3

i=1 γi

∫
L∗ ai ρ

2
i

is positive for all 0 6= ρ = (ρ1, ρ2, ρ3) with ρi ∈ H1(Γ∗
i )

and γ1ρ1 + γ2ρ2 + γ3ρ3 = 0 at L∗ .

In Section 4.2 we consider finally the weighted surface diffusion flow (1.7) with outer boundary
contact. We use the same parametrization as in Section 4.1 and get thereby equations for
functions ρi and µi whose linearization lead to the following linear problem in Γ∗

i

∂tρi = −miγi∆Γ∗
i

(
∆Γ∗

i
ρi + |σ∗i |2ρi

)
(1.16)

for i = 1, 2, 3 with the following boundary conditions at the outer boundary Γ∗
i ∩ ∂Ω

{
0 = ∂µρi − S(n∗i , n

∗
i )ρi ,

0 = ∇Γ∗
i

(
∆Γ∗

i
ρi + |σ∗i |2ρi

)
· µ , (1.17)

for i = 1, 2, 3 and the following boundary conditions at the triple line L∗





0 = γ1ρ1 + γ2ρ2 + γ3ρ3 ,(
∇Γ∗

i
ρi · n∂Γ∗

i

)
+ aiρi =

(
∇Γ∗

j
ρj · n∂Γ∗

j

)
+ ajρj ,

0 =
∑3

i=1 γi

(
∆Γ∗

i
ρi + |σ∗i |2ρi

)
,

miγi

(
∇Γ∗

i

(
∆Γ∗

i
ρi + |σ∗i |2ρi

)
· n∂Γ∗

i

)
= mjγj

(
∇Γ∗

j

(
∆Γ∗

j
ρj + |σ∗j |2ρj

)
· n∂Γ∗

j

)
,

(1.18)

where (i, j) = (1, 2) and (2, 3) in the second and fourth line. We proceed with stability analysis
as prescribed above and get the following result, which is a direct generalization of [GIK10] to
the higher dimensional case, as expected.

The zero solution of (1.16)-(1.18) is asymptotically stable

⇐⇒





I(ρ, ρ) :=
∑3

i=1 γi

∫
Γ∗

i

(
|∇Γ∗

i
ρi|2 − |σ∗i |2ρ2

i

)
−∑3

i=1 γi

∫
S∗

i
S(n∗i , n

∗
i ) ρ

2
i

+
∑3

i=1 γi

∫
L∗ ai ρ

2
i

is positive for all 0 6= ρ = (ρ1, ρ2, ρ3) with ρi ∈ H1(Γ∗
i ) such that

∫
Γ∗

i
ρi =

∫
Γ∗

j
ρj for (i, j) = (1, 2), (2, 3) and γ1ρ1 + γ2ρ2 + γ3ρ3 = 0 on L∗ .

We remark that the corresponding bilinear form without the integrals over the outer boundary
parts S∗

i also arises in the proof of the double bubble conjecture from Hutchings, Morgan, Ritoré
and Ros [HMRR02].
At last we give in the appendix detailed proofs for the normal time derivative of mean curvature

and the unit normal and mention some facts about the vector product in Rn+1, which is used
in the text to describe the arising unit normals for the linearization.
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Chapter 2

Facts about Hypersurfaces

In this chapter we will introduce our notation for hypersurfaces Γ, the geometric curvature
quantities on Γ and the relevant differential operators up to the Gauß’ theorem on hypersurfaces.
This means we gather together facts from textbooks as for example Amann and Escher [AE09],
Bröcker [Broe92], Jänich [Jae01] and Spivak [Spi65]. For the differential geometry we refer
to Kühnel [Kue06] and Eschenburg and Jost [EJ07], although there are lots of other excellent
written books on this subject.

We will also explain carefully the concept of evolving hypersurfaces, which are, roughly speak-
ing, hypersurfaces that move in time. In this case, special attention has to be given to the time
derivative, which we introduce as normal time derivative in the sense of Gurtin [Gur93]. We also
consider evolving hypersurfaces as a graph over some fixed reference hypersurface Γ∗. Later on,
these will be the solutions of the geometric evolution equations that we consider, and Γ∗ will be
a stationary solution.

Finally we formulate the Transport theorem which is a formula for the time derivative of some
integrated function d

dt

∫
Γ(t) f(t, p). With the help of this formula we give equations for the

evolution of area and volume for evolving hypersurfaces that lie inside a fixed bounded region
Ω ⊂ Rn+1 and meet the boundary ∂Ω with a right angle. These evolutions will lead to a better
understanding of some geometric properties of the considered evolution equations.

2.1 Differential operators and curvature terms

For the convenience of the reader we want to introduce in this first section basic terms concern-
ing hypersurfaces in Rn+1. These include our definition of hypersurfaces with boundary, the
differential operators surface gradient, surface divergence and Laplace-Beltrami operator and
the first and second fundamental form. We also introduce important curvature terms as normal
curvature and mean curvature for later use. Finally we give a version of Gauß’ theorem on
hypersurfaces with nonempty boundary involving a curvature term.

Definition 2.1 (Regular submanifold). Let M be a subset of Rn. M is called a regular sub-

manifold of dimension m with 1 ≤ m ≤ n, iff for every p ∈ M there is an open neighbourhood

9
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V of p in Rn, an open subset U ⊂ Rm and a smooth mapping

γ : U −→ R
n

such that

(i) γ(U) = M ∩ V and γ : U → γ(U) is a homeomorphism and

(ii) the Jacobian matrix Dγ(u) : Rm → Rn has rank m (i.e. full rank) for all u ∈ U .

(U, γ, V ) is called a local representation of M around p.

We give a remark about other possibilities to describe a submanifold locally.

Remark 2.2. Additionally to the local parametrization there are equivalent formulations for the
local description of a submanifold as a graph, as a zero-level set or with the help of diffeomor-
phisms from subsets in Rn+1 to subsets in Rm × {0}. In most of the following explanations the
characterization with a local parametrization will suffice, but we use also the other possibilities
whenever necessary. In particular, it will be convenient to use diffeomorphisms to show the
correctness of the Definitions 2.3 and 2.7 of differentiability and the differential, the zero-level
set description in the Definition 2.32 of normal velocity and the graph representation in the
calculation 5.1 of normal time derivative of mean curvature in the appendix.

Differentiability properties of mappings having their domain of definition respectively their
range on hypersurfaces will always be defined on the euclidian space with the help of a local
parametrization.

Definition 2.3 (Differentiability).

(i) A mapping
f : M1 −→M2 ,

where M1 ⊂ Rn1,M2 ⊂ Rn2 are regular submanifolds, is called smooth, iff for every local
parametrization (U, γ, V ) of M1 the composition

f ◦ γ : U −→ R
n2

is smooth.

(ii) The same definition as in (i) applies to mappings with range in an euclidian space

f : M −→ R
l ,

where M ⊂ Rn is a regular submanifold.

In the next definition we formulate exactly our use of the term hypersurface, which in particular
includes the possibility of a nonempty boundary.

10



2.1. DIFFERENTIAL OPERATORS AND CURVATURE TERMS

Definition 2.4 (Regular hypersurface). In this work, Γ ⊂ Rn+1 with n ≥ 2 is called a regular

hypersurface, if Γ is a regular submanifold of dimension n, connected and closed as a subset of
Rn+1, orientable and the boundary ∂Γ of Γ is either empty, ∂Γ = ∅, or is a regular submanifold
of dimension n− 1, such that Γ lies on one side of the boundary.
Analytically, this means that around every point p ∈ ∂Γ there exists an open neighbourhood
U ⊂ Rn+1, an open set V ⊂ Rn+1 and a diffeomorphism ϕ : U → V such that

ϕ(U ∩ Γ) = V ∩
(
R

n
+ × {0}

)
with (ϕ(p))n = 0 ,

where (ϕ(p))n is the n-th coordinate of ϕ(p). In particular we want to remark the fact that here
the boundary of Γ belongs to Γ, i.e. ∂Γ ⊂ Γ.
From now on, we will call such a Γ simply hypersurface.

As an important concept we define the linearization of a hypersurface, called the tangent space.

Definition 2.5 (Tangent space). Let Γ be a hypersurface and fix p ∈ Γ. The tangent space

TpΓ of Γ at p is then defined as

TpΓ = {v ∈ R
n+1 | There exists a smooth curve c : I → Γ with c(0) = p, c′(0) = v,

where I = (−ε, ε), I = [0, ε) or I = (−ε, 0]} .

The halfopen intervals I in the above definition make sure that even for points on the boundary
p ∈ ∂Γ the tangent space is a subspace, which is summarized in the next remark. Although we
skip the details here, we want to note that for v ∈ TpΓ with p ∈ ∂Γ the following construction
also yields −v ∈ TpΓ. Indeed, let c : [0, ε) → Γ be a curve with c(0) = p and c′(0) = v. Then
the curve α : (−ε, 0] → Γ, α(τ) := c(−τ) fulfills α(0) = c(0) = p and α′(0) = −c′(0) = −v and
therefore −v ∈ TpΓ. That’s the reason why both intervals [0, ε) and (−ε, 0] appear in the above
definition of the tangent space.

Remark 2.6. If (U, γ, V ) is a local parametrization of Γ around p with u = γ−1(p), then one
can show that

TpΓ = Dγ(u) (Rn) ,

or in another notation with (e1, . . . , en) the standard basis of Rn

TpΓ = span (Dγ(u)(e1), . . . ,Dγ(u)(en))

= span

(
∂γ

∂u1
(u), . . . ,

∂γ

∂un
(u)

)

= span (∂1γ(u), . . . , ∂nγ(u)) .

This means in particular that TpΓ is an n-dimensional subspace of Rn+1. Here appears a slight
abuse of notation, since for points p ∈ ∂Γ the parametrization γ is not yet defined. In this case
we consider the inverse of a diffeomorphism ϕ from Definition 2.4 and restrict it to the first n
variables to get a natural parametrization at the boundary through γ = ϕ−1

∣∣
Rn .
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Now we can introduce the differential of a mapping between hypersurfaces.

Definition 2.7 (Differential). Let f : Γ1 → Γ2 be a smooth mapping between hypersurfaces.
The differential of f at p ∈ Γ1 is defined as the mapping

dpf : TpΓ1 −→ Tf(p)Γ2

through the following rule:
To v ∈ TpΓ1 choose a smooth curve c : (−ε, ε) → Γ1 with c(0) = p, c′(0) = v and define

dpf(v) :=
d

dτ
(f ◦ c)(τ)

∣∣∣∣
τ=0

∈ Tf(p)Γ2 .

Analogously we define the differential of f at p in Γ for a mapping f : Γ → Rl. Then we have

dpf : TpΓ −→ R
l .

We summarize some important properties of the differential in the next remark.

Remark 2.8. One can show that the differential is independent of the curve, is a linear mapping
between the tangent spaces and that there is a chain rule. More precisely, for mappings between
hypersurfaces f : Γ1 → Γ2 and g : Γ2 → Γ3 it holds that

dp(g ◦ f) = df(p)g ◦ dpf .

A proof of these basic statements is best done with the help of a local description of the hy-
persurfaces with diffeomorphisms and will be skipped here. �

In the next definition we introduce the directional derivative for arbitrary mappings and not
just for tangent vector fields as is done in lots of textbooks.

Definition 2.9 (Directional derivative). For a mapping f : Γ → Rl we define the directional

derivative of f in direction of v ∈ TpΓ through

∂vf := dpf(v) ∈ Tf(p)R
l = R

l .

For a tangent vector field v(p), that is a mapping v : Γ → Rn+1 with v(p) ∈ TpΓ, we call the
mapping

∂vf : Γ −→ R
l , ∂vf(p) := ∂v(p)f

also the directional derivative of f in direction of v.

To do some geometry on a hypersurface Γ, for example measuring the length of curves or the
angle between curves respectively tangent vectors, the concept of a Riemannian metric is crucial.
Since we have to consider pullback metrics in Lemma 3.26 and in Lemma 3.27, we introduce
this notion arbitrarily and not just as a restriction of the euclidian inner product on Rn+1.

12
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Definition 2.10 (Riemannian metric, first fundamental form).

(i) Let p 7→ gp be a mapping, where

gp : TpΓ × TpΓ −→ R (2.1)

is an inner product on TpΓ, i.e. gp is a symmetric, positive definite bilinear form on TpΓ.
If additionally gp depends smoothly on its basis point p, we call g a Riemannian metric.
Here the smooth dependence of gp on p means that the representation gij given below is
smooth with respect to every parametrization. For a local parametrization (U, γ, V ) of Γ
around p ∈ Γ with γ(u) = p we say that

gij(u) := gp(
∂γ

∂ui
(u),

∂γ

∂uj
(u))

for i, j = 1, . . . , n is the representation or matrix representation of gp.

(ii) If the Riemannian metric g is simply the restriction of the euclidian inner product (. , .)
on Rn+1 to TpΓ, i.e.

gp := (. , .)|TpΓ×TpΓ , (2.2)

we call g also the first fundamental form of Γ. In this case the representation with
respect to a local parametrization as above is given through

gij(u) =

(
∂γ

∂ui
(u),

∂γ

∂uj
(u)

)
=

∂γ

∂ui
(u) · ∂γ

∂uj
(u) ,

where we often replace the brackets by a dot between the vectors.

Remark 2.11. Actually, the mapping gp from point (ii) of the above Definition 2.10 can be
defined more generally for arbitrary smooth manifolds M without the surrounding space Rn+1.
g is then also called Riemannian metric and the pair (M,g) is a Riemannian manifold.
But we will always use hypersurfaces lying in Rn+1 and therefore our Definition 2.10 is justified.
The case of an inner product different than the euclidian one is important for the concept of
compatibility of mappings with the metric, which will be defined below. These mappings have nice
properties concerning the transformation of differential operators, which will become important
later.

Definition 2.12 ((local) isometry). A smooth mapping f : Γ → Γ̃ between hypersurfaces (Γ, g)
and (Γ̃, g̃) is called a local isometry, if for all p ∈ Γ, v,w ∈ TpΓ

g̃f(p) (dpf(v), dpf(w)) = gp(v,w) .

If f is additionally a diffeomorphism, that is f is bijective and the inverse f−1 is smooth, we
call it an isometry.

With the help of the above new scalar product on the tangent spaces we define some geometric
quantities as promised.
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Definition 2.13 (Length, angle, orthonormal moving frame). For a tangent vector v ∈ TpΓ we
set its length through

‖v‖2 := gp(v, v)

and the angle between two tangent vectors v,w ∈ TpΓ through

ϑ := arccos

(
gp(v,w)

‖v‖‖w‖

)
∈ [0, π] .

We will often use an orthonormal basis v1, . . . , vn of the tangent space TpΓ. This means that
v1, . . . , vn is a basis of the n-dimensional subspace TpΓ ⊂ Rn+1, and that gp(vi, vj) = δij for
i, j = 1, . . . , n, where δij denotes the Kronecker-symbol.
Tangent vector fields vi : Γ → Rn+1, vi(p) ∈ TpΓ for all p ∈ Γ, such that for every p ∈ Γ
the vectors v1(p), . . . , vn(p) form an orthonormal basis of TpΓ, will be called an orthonormal

moving frame of Γ.

Guided by experience from curves, one expects that curvature of hypersurfaces results from a
change of the tangent space, respectively its one-dimensional orthogonal complement. This leads
to the following definitions of the Gauß mapping and its differential, the so-called shape operator.

Definition 2.14 (Gauß mapping). Since we assumed that our hypersurfaces Γ are oriented,
there exists a smooth normal n on Γ, called the Gauß mapping

n : Γ −→ Sn ,

where Sn is the n-dimensional sphere in Rn+1, such that gp(n(p), v) = 0 for all v ∈ TpΓ and

‖n(p)‖ = 1 for all p ∈ Γ. We call NpΓ = (TpΓ)⊥ = {w ∈ Rn+1 | gp(w, v) = 0} the normal

space of Γ.

Note that Tn(p)S
n = n(p)⊥ = TpΓ, therefore we can regard the differential of the Gauß map-

ping n as an endomorphism.

Definition 2.15 (Shape operator). The shape operator Wp, also called the Weingarten

map, is defined with the help of the differential of the Gauß mapping through

Wp : TpΓ −→ TpΓ , Wp(v) := −dpn(v) .

With the help of a local parametrization one can see that Wp is a self-adjoint endomorphism
with respect to the first fundamental form, which means

gp(v,Wp(w)) = gp(Wp(v), w) for all v,w ∈ TpΓ .

Before we proceed with our differential geometric notations, we want to mention an important
distinction between inner geometry and outer geometry on the hypersurface.

14



2.1. DIFFERENTIAL OPERATORS AND CURVATURE TERMS

The first one means terms that can be derived just with knowledge of the hypersurface as for ex-
ample the Riemannian metric, the differential and the tangent space. The second one describes
expressions, for which the knowledge of the surrounding space, Rn+1 in our case, is essential.
In this class we have the Gauß mapping and the so-called second fundamental form, which
describes the change of the tangent space TpΓ in dependence of p and therefore contains some
curvature information.

Definition 2.16 (Second fundamental form). The second fundamental form σp of the hy-
persurface Γ at p ∈ Γ is defined as the related bilinear form with respect to gp of the shape
operator Wp, that is

σp : TpΓ × TpΓ −→ R , σp(v,w) := gp(Wp(v), w) = −gp(dpn(v), w) .

The representation or matrix representation of the second fundamental form σp with respect

to the basis ∂γ
∂u1

(u), . . . , ∂γ
∂un

(u), where (U, γ, V ) is a local representation of Γ around p ∈ Γ with
γ(u) = p, is given by

hij(u) := σp

(
∂γ

∂ui
(u),

∂γ

∂uj
(u)

)

= gp

(
Wp(

∂γ

∂ui
(u)),

∂γ

∂uj
(u)

)
.

In case of gp being the restriction of the euclidian scalar product this representation equals

hij(u) = Wp(
∂γ

∂ui
(u)) · ∂γ

∂uj
(u) = −dpn(

∂γ

∂ui
(u)) · ∂γ

∂uj
(u)

= − ∂

∂ui
(n ◦ γ)(u) · ∂γ

∂uj
(u) =

∂

∂ui

(
(n ◦ γ)(u) · ∂γ

∂uj
(u)

)

︸ ︷︷ ︸
=0

+n(γ(u)) · ∂2γ

∂uj∂ui
(u)

= n(γ(u)) · ∂2γ

∂uj∂ui
(u) .

The next step is to introduce the basic curvature terms that will be needed.

Definition 2.17 (Normal curvature). For a tangent vector v ∈ TpΓ with length ‖v‖2 = gp(v, v) =
1 we define the normal curvature κv of Γ in direction v at p through

κv(p) = σp(v, v) .

Remark 2.18. If gp is the restriction of the euclidian scalar product, then one can show that the
normal curvature of Γ in direction of a unit tangent vector v ∈ TpΓ at p is the curvature of the
arclength-parametrized curve c, which arises from the intersection of Γ and the plane spanned
by v and n(p), so that the name is justified.
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Proof. Let c be this arclength-parametrized curve, which lies in the plane E spanned by v and
n(p) with c(0) = p and c′(0) = v. Then of course c′′(0) also lies in the plane E and due to the
arclength-parametrization c′′(0) · c′(0) = d

dt
1
2 (c′(t) · c′(t))

∣∣
t=0

= 0. This means that c′′(0) has no

tangential part and can be given as c′′(0) = (c′′(0))⊥ = (c′′(0) · n(p)) n(p). A further calculation
shows then

c′′(t) · n(c(t)) = −c′(t) · d
dt
n(c(t)) = −c′(t) · dc(t)n(c′(t)) = c′(t) ·Wc(t)(c

′(t)) = σc(t)(c
′(t), c′(t))

and therefore for t = 0

(
c′′(0) · n(p)

)
= σp(v, v) .

Since c′′(0) · n(p) is the curvature of the plain curve, we get the claim. �

Because we know that the shape operator Wp is self-adjoint, there exists an orthonormal basis
of eigenvectors, so that we can give the following definition.

Definition 2.19 (Principal curvatures, Gauß curvature, mean curvature). Let v1, . . . , vn be
an orthonormal basis of TpΓ consisting of eigenvectors of Wp. The normal curvatures of Γ in
direction of vi at p are called the principal curvatures κi of Γ at p, that is

κi(p) = σp(vi, vi) .

So the principal curvatures are defined as the eigenvalues of the shape operator Wp.
The Gauß curvature K of Γ at p is then introduced as the determinant of Wp,

K(p) = det(Wp) = κ1 · . . . · κn .

Another important quantity is the mean curvature H of Γ at p as the trace of Wp,

H(p) = trace(Wp) = κ1 + . . . + κn .

We will also need the mean curvature vector ~H defined as

~H(p) = H(p)n(p) ,

so that ~H is a normal field.

Example 2.20. To illustrate our sign convention for the mean curvature, which is different
from book to book, we calculate H for the sphere Sn = {p ∈ Rn+1 | ‖p‖ = 1} with unit outer
normal n(p) = p. Since this is the restriction of the identity, we can derive dpn = Id for the
differential to get

Wp(v) = −dpn(v) = −v .

This means that Wp equals −Id and has n eigenvalues −1. So we get H(p) ≡ −n for the sphere
with unit normal pointing outside the unit ball.
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Next we want to introduce some differential operators on hypersurfaces. In generalization to
the usual gradient of a function we define the surface gradient.

Definition 2.21 (Surface gradient). For a smooth function f : Γ → R the surface gradient

∇Γf at a point p ∈ Γ is defined through

∇Γf(p) :=

n∑

i=1

(∂vi
f) vi ∈ TpΓ ,

where v1, . . . , vn is an orthonormal basis of TpΓ. In particular this means gp(vi, vj) = δij and
the dependence of the surface gradient on the metric becomes apparent.

In the next remark we give some useful descriptions of the surface gradient.

Remark 2.22. Equivalent to the above definition one could also define the surface gradient
∇Γf(p) as the unique vector v(p) ∈ TpΓ, such that

dpf(w) = gp(v(p), w) for all w ∈ TpΓ .

With Definition 2.9 of the directional derivative we also have

gp(∇Γf(p), w) = ∂wf for all w ∈ TpΓ .

In a local parametrization (U, γ, V ) with γ(u) = p of Γ around p there is the following represen-
tation

∇Γf(p) =

n∑

i,j=1

gij(u) ∂i(f ◦ γ)(u) ∂jγ(u) ,

where
(
gij(u)

)
ij

is the inverse of the matrix (gij(u))ij.

If we can extend f : Γ → R to an open neighbourhood of Γ and gp is the restriction of the
euclidian scalar product, then the following formula involving the usual gradient ∇ on Rn+1

∇Γf(p) = (∇f(p))T = ∇f(p) − (∇f(p) · n(p)) n(p) ,

is true. Here, ()T is the orthogonal projection onto TpΓ. One could also use the above formula
with an arbitrary extension of f as definition for the surface gradient and observe that it depends
only on values of f on the hypersurface.

Next we define the surface divergence. For hypersurfaces (Γ, g) equipped with an arbitrary
Riemannian metric we need therefor the notion of covariant derivative ∇wv of a tangent vector
field in direction of w ∈ TpΓ. If gp is the restriction of the euclidian scalar product, the covariant
derivative reduces to orthogonal projection of the directional derivative onto the tangent space,
that is ∇wv = (∂wv)

T ∈ TpΓ.

17



CHAPTER 2. FACTS ABOUT HYPERSURFACES

Definition 2.23 (Surface divergence). For a smooth tangent vector field f : Γ → Rn+1 (which
means f(p) ∈ TpΓ) on an arbitrary Riemannian hypersurface (Γg) we define the surface diver-

gence of f on Γ through

divΓ f(p) := ∇Γ · f(p) :=
n∑

i=1
gp (∇vi

f(p), vi) ,

where v1, . . . , vn is an orthonormal basis of TpΓ. If gp is the restriction of the euclidian scalar
product, this definition reduces to

divΓ f(p) =
n∑

i=1

(∂vi
f)T · vi =

n∑

i=1

∂vi
f · vi .

The last line makes sense also for nontangent vector fields, i.e. arbitrary smooth mappings
f : Γ → Rn+1. This notion will be used in Theorem 2.29, the so-called Gauß’ theorem on
hypersurfaces. We remark that even if we consider tangent vector fields, the tangential part
(∂vi

f)T from the definition does not equal the directional derivative ∂vi
f , in general.

As we did for the surface gradient we give some useful descriptions.

Remark 2.24. If gp is the restriction of the euclidian scalar product and (U, γ, V ) is a local
parametrization of Γ around p with γ(u) = p, it holds

∇Γ · f(p) =

n∑

i,j=1

gij(u) (∂i(f ◦ γ)(u) · ∂jγ(u)) .

If we can additionally extend f : Γ → Rn+1 to an open neighbourhood of Γ, we have the formula
as above for the surface gradient of the components f = (f1, . . . , fn+1) given by

∇Γfi(p) = ∇fi(p) − (∇fi(p), n(p)) n(p)

=:
(
D1fi(p), . . . ,Dn+1fi(p)

)
.

With this notation we can write

∇Γ · f(p) =

n+1∑

i=1

Difi(p) ,

so there is a similar appearance as for the usual divergence ∇ · f =
∑

i ∂ifi in euclidian space.
As in the case of the surface gradient, one could also use the above formula with an arbitrary
extension of f as definition for the surface divergence and observe that it depends only on values
of f on the hypersurface.

Now we want to define the Laplace-Beltrami operator, which is an extension of the usual Laplace
operator

∑
i ∂ii to hypersurfaces and will be needed for surface diffusion in later sections.
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Definition 2.25 (Laplace-Beltrami operator). For a smooth function f : Γ → R we define the
Laplace-Beltrami operator on Γ through

∆Γf(p) := ∇Γ · ∇Γf(p) .

Also for this differential operator we give some descriptions which are useful for calculations
and for a better understanding.

Remark 2.26. In a local parametrization (U, γ, V ) of Γ around p with γ(u) = p we have

∆Γf(p) =
1√
g(u)

n∑

i,j=1

∂i

(√
g(u) gij(u) ∂j(f ◦ γ)(u)

)

=

n∑

i,j=1

gij(u)

(
∂ij(f ◦ γ)(u) −

n∑

k=1

Γk
ij(u)∂k(f ◦ γ)(u)

)
,

where g(u) := det
(
(gij(u))ij

)
and Γk

ij are the Christoffel symbols given by

Γk
ij(u) :=

n∑

l=1

1

2
gkl(u)

(
∂igjl(u) + ∂jgil(u) − ∂lgij(u)

)
.

If gp is the restriction of the euclidian scalar product, we get with the help of an orthonormal
moving frame v1, . . . , vn of Γ the following representation

∆Γf(p) = divΓ

(
n∑

i=1

∂vi
f vi

)
=

n∑

j=1

∂vj

(
n∑

i=1

∂vi
f vi

)
· vj

=

n∑

i,j=1

(
∂vj

∂vi
f (vi · vj) + ∂vi

f
(
∂vj

vi · vj

))

=

n∑

i=1

∂vi
∂vi
f +

n∑

i=1

∂vi
f

n∑

j=1

∂vj
vi · vj .

If additionally f admits an extension to an open neighbourhood of Γ, we see with the above
notations:

∆Γf(p) =

n∑

i=1

Di

(
Dif(p)

)
.

In the next lemma we want to describe the mean curvature with the help of the introduced
differential operators and give a local representation.

Lemma 2.27. If gp is the restriction of the euclidian scalar product, the following formulas for
the mean curvature and mean curvature vector hold true.
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(i) H(p) = −∇Γ · n(p),

(ii) ~H(p) = ∆Γid(p), in particular H(p) = ∆Γid(p) · n(p),
where id : Γ → Γ is the identity map on Γ and ∆Γid(p) is defined component wise through
∆Γf(p) := (∆Γfi(p))i=1,...,n for mappings f : Γ → Rn+1.

(iii) With a local parametrization (U, γ, V ) of Γ around p ∈ Γ with γ(u) = p it holds that

~H(p) =
1√
g(u)

n∑

i,j=1

∂i

(√
g(u)gij(u)∂jγ(u)

)
.

Proof. ad (i): With the help of an orthonormal basis v1, . . . , vn of the tangent space TpΓ we
see from our definition of the mean curvature H:

H(p) = trace(Wp) =

n∑

i=1

(Wp(vi) · vi) =

n∑

i=1

− (dpn(vi) · vi) = −
n∑

i=1

(∂vi
n · vi) = −∇Γ · n(p) .

ad (ii): We use the first two of the following product rules (the third one is given for complete-
ness). Let f, h : Γ → R, v : Γ → Rn+1 (not necessary tangential) be smooth mappings. Then it
holds

(a) ∇Γ(f h) = f ∇Γh+ h∇Γf ,
(b) divΓ(f v) = ∇Γf · v + f divΓ v ,
(c) ∆Γ(f h) = f ∆Γh+ 2∇Γf · ∇Γh+ h∆Γf .

ad (a): For fixed p ∈ Γ let w ∈ TpΓ and a curve c on Γ with c(0) = p and c′(0) = w as in the
definition of the differential be given. Then it holds that

(∇Γ(f h)(p), w) = dp(f h)(w) =
d

dτ
(f h)(c(τ))

∣∣∣∣
τ=0

=
d

dτ
f(c(τ))

∣∣∣∣
τ=0

h(c(0)) + f(c(0))
d

dτ
h(c(τ))

∣∣∣∣
τ=0

= dpf(w)h(p) + f(p) dph(w)

= (h(p)∇Γf(p) + f(p)∇Γh(p), w) ,

and since w was arbitrary the claim holds.
ad (b): For fixed p ∈ Γ let v1, . . . , vn be an orthonormal basis of TpΓ and ci curves on Γ with
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ci(0) = p and c′i(0) = vi. Then it holds that

divΓ(f v) =

n∑

i=1

∂vi
(f v) · vi =

n∑

i=1

dp(f v)(vi) · vi =

n∑

i=1

d

dτ
(f v)(ci(τ))

∣∣∣∣
τ=0

· vi

=
n∑

i=1

d

dτ
f(ci(τ))

∣∣∣∣
τ=0

(v(p) · vi) +
n∑

i=1

f(p)

(
d

dτ
v(ci(τ))

∣∣∣∣
τ=0

· vi

)

=

n∑

i=1

∂vi
f (v(p) · vi) +

n∑

i=1

f(p) (∂vi
v · vi)

= v(p) ·
n∑

i=1

∂vi
f vi + f(p)

n∑

i=1

∂vi
v · vi

= v(p) · ∇Γf(p) + f(p) divΓ v(p) .

ad (c): With the help of (a) and (b) we have

∆Γ(f h) = divΓ(∇Γ(f h))

(a)
= divΓ(h∇Γf) + divΓ(f · ∇Γh)

(b)
= ∇Γh · ∇Γf + h divΓ(∇Γf) + ∇Γf · ∇Γh+ f divΓ(∇Γh)

= h∆Γf + 2∇Γf · ∇Γh+ f ∆Γh .

To show finally (ii), we use the obvious extension of id : Γ → Rn+1 to all of Rn+1, set
fi(p) = (id(p))i = pi for i = 1, . . . , n+ 1 and proceed with the euclidian gradient ∇fi(p) ≡ ei as
follows.

∆Γfi(p) = divΓ(∇Γfi(p))

= divΓ (∇fi(p) − (∇fi(p), n(p)) n(p))

= divΓ (ei − (ei, n(p)) n(p))

= − divΓ ((ei, n(p)) n(p))

= −∇Γ (ei, n(p)) · n(p) − (ei, n(p)) divΓ n(p)︸ ︷︷ ︸
=−H(p)

= H(p) · (n(p))i ,

where we used (i) and the fact that the term −∇Γ (ei, n(p)) · n(p) vanishes, since ∇Γ (ei, n(p))
lies in TpΓ and n(p) ∈ NpΓ. So we get ∆Γid(p) = H(p) · n(p) = ~H(p) and by taking the scalar
product with n(p) we arrive at H(p) = ∆Γid(p) · n(p).
ad (iii): With the help of (ii) and the local representation of ∆Γid(p) from Remark 2.26 we see
the last point of the lemma. �

From now on gp is always the restriction of the euclidian scalar product, unless otherwise noted.
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Definition 2.28 (Outer unit conormal). With our notation of a hypersurface Γ it holds that
for p ∈ ∂Γ the tangent space Tp∂Γ is (n− 1)-dimensional and TpΓ is n-dimensional. Since also
Tp∂Γ ⊂ TpΓ, there exists an one-dimensional subspace L such that

TpΓ = Tp∂Γ ∪ L .

We can therefore choose the unique vector n∂Γ(p) in L with the following three properties.

(i) |n∂Γ(p)| = 1,

(ii) n∂Γ(p) · v = 0 for all v ∈ Tp∂Γ and

(iii) there exists a curve c : (−ε, 0] → Γ with c(0) = p and c′(0) = n∂Γ(p).

n∂Γ(p) is then called the outer unit conormal of Γ at p ∈ ∂Γ.

With the above notation we can state the Gauß’ theorem for hypersurfaces Γ with possibly
nonempty boundary ∂Γ. This is an extension of the Gauß’ theorem for regions in euclidian space
to the setting of manifolds and it contains an additional term involving the mean curvature vec-
tor. This theorem will be used in the calculation of the evolution of volume in Lemmata 2.46
and 4.22.

Theorem 2.29 (Gauß’ theorem on hypersurfaces). Let Γ be a bounded hypersurface and f :
Γ → Rn+1 a smooth mapping. Then we have

∫

Γ

(
divΓ f + f · ~H

)
dHn =

∫

∂Γ

f · n∂Γ dHn−1 .

Remark 2.30. The assumption that Γ is bounded can be skipped, if one assures the existence
of the arising integrals in another way.

We also want to give the following useful expressions that are derived directly from the above
Theorem 2.29. For a tangent vector field, that is f : Γ → Rn+1 with f(p) ∈ TpΓ and functions
h1, h2 : Γ → R it holds

(i)
∫
Γ

divΓ f dHn =
∫
∂Γ

f · n∂Γ dHn−1 ,

(ii)
∫
Γ

∆Γh1 dHn =
∫
∂Γ

∇Γh1 · n∂Γ dHn−1 ,

(iii)
∫
Γ

(∇Γh1 · f + divΓ f h1) dHn =
∫
∂Γ

h1 (f · n∂Γ) dHn−1 and

(iv)
∫
Γ

(∇Γh1 · ∇Γh2 + h1 ∆Γh2) dHn =
∫
∂Γ

h1 (∇Γh2 · n∂Γ) dHn−1 ,

where the last equation is Greens formula and will be used frequently in this work for integration
by parts.
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2.2 Evolving hypersurfaces

In this section we will explain the concept of evolving hypersurfaces, i.e. hypersurfaces that
move in time. We also introduce the normal velocity and show a representation of the tangent
space. Furthermore we give our use of time derivative in this setting, the so-called normal time
derivative. The idea here is to follow the evolution of a fixed point in a specified direction
and differentiate along the arising curve, see Definition 2.36 for the details. Then we compare
the normal time derivative with a related expression and give formulas for mean curvature and
normal, which are proven in the appendix.
Finally we consider evolving hypersurfaces that arise as a graph over some fixed reference

hypersurface Γ∗, which is the situation that will be considered in later chapters of this work.
In this situation we give a formula for the normal velocity and write down transformation rules
from Γ(t) to Γ∗ for some differential operators.
For more information we refer the reader to Gurtin [Gur93], but we also used lecture notes

from Alt [Alt04].

Definition 2.31 (Evolving hypersurface). Γ is called a (smooth) evolving hypersurface of
Rn+1, if there exists a T > 0 or T = ∞, such that

(i) Γ is a hypersurface of R × Rn+1,

(ii) there exist hypersurfaces Γ(t) = Γt of Rn+1, such that

Γ = {(t, p) | t ∈ [0, T ) , p ∈ Γ(t)} , and

(iii) the tangent spaces T(t,p)Γ of Γ are nowhere spacelike, that is

T(t,p)Γ 6= {0} × R
n+1 for all (t, p) ∈ Γ .

Note that from now on Γ is an evolving hypersurface and Γ(t) = Γt are hypersurfaces in Rn+1

in contrast to the previous Section 2.1, where Γ was a hypersurface in Rn+1.
To define the normal velocity, we choose smooth unit normal fields n(t, ·) : Γ(t) → Rn+1 such
that n(t, p) is a unit normal to Γ(t) at p ∈ Γ(t) in a way that they fit together to give a smooth
vector field n : Γ → Rn+1.

Definition 2.32 (Normal velocity). For a fixed point (t, p) ∈ Γ, we choose a curve

c : (t− ε, t+ ε) −→ R
n+1

with c(τ) ∈ Γ(τ) and c(t) = p. Then we set

V (t, p) := n(t, p) · d

dτ
c(τ)

∣∣∣∣
τ=t

and call V the normal velocity of the evolving hypersurface Γ at (t, p).
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Of course we have to show independence of the curve in the previous definition.

Lemma 2.33. The normal velocity V from the above definition is independent of the chosen
curve.

Proof. Because of point (ii) of the definition of an evolving hypersurface we can describe Γ
locally around (t, p) ∈ Γ as the zero level set of a function h : I ×D → R, (s, x) 7→ h(s, x) where
I×D ⊂ R×Rn+1 is an open set. That is, for some open neighbourhood W ⊂ R×Rn+1 of (t, p)
it holds that

Γ ∩W = {(s, x) ∈ I ×D | h(s, x) = 0}
and the function ht : D → R defined through ht(x) = h(t, x) is the zero level function of Γ(t),

that is there exists an open neighbourhood W̃ ⊂ Rn+1 of p ∈ Γ(t), such that

Γ(t) ∩ W̃ = {x ∈ D | ht(x) = 0} .
Also the condition ∇ht(x) 6= 0 for x ∈ D with ht(x) = 0 is fulfilled. With a sign convention on
h the normal n(t, p) to Γ(t) at p can be written as

n(t, p) =
∇xh(t, p)

|∇xh(t, p)|
.

This can be seen with the help of a local parametrization (U, γ, V ) of Γ(t) for fixed t with
γ(u) = p. We observe that h(t, γ(u)) = 0 and therefore by differentiating with respect to ui we
get

∇xh(t, p) ·
∂

∂ui
γ(u) = 0 .

Since ∂
∂ui
γ(u) for i = 1, . . . , n is a basis for TpΓ(t) we see that ∇xh(t, p) ∈ NpΓ(t). Normalizing

gives the above formula.
Now we choose a curve c as in the Definition 2.32 of normal velocity and observe that h(τ, c(τ)) =

0. Differentiating with respect to τ yields

0 =
d

dτ
h(τ, c(τ))

∣∣∣∣
τ=t

= ∂th(t, p) + ∇xh(t, p) ·
d

dτ
c(τ)

∣∣∣∣
τ=t

.

Multiplying this equation with |∇xh(t, p)|−1 gives

∇xh(t, p)

|∇xh(t, p)|
· d

dτ
c(τ)

∣∣∣∣
τ=t

= − ∂th(t, p)

|∇xh(t, p)|
,

where the left side equals the definition of the normal velocity V (t, p). To summarize, we
achieved with the above construction a different representation of V independent of the curve
and therefore showed the lemma. �

For a better understanding of evolving hypersurfaces we want to describe the tangent space
T(t,p)Γ with the help of tangent vectors from TpΓ(t) and one other quantity.
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Lemma 2.34. For a point (t, p) ∈ Γ, there holds a splitting of the tangent space T(t,p)Γ of Γ.
More explicitly, there exists a function vΓ : Γ → Rn+1, such that

T(t,p)Γ = {r (1, vΓ(t, p)) + (0, τ) | r ∈ R , τ ∈ TpΓ(t)} .

Here vΓ(t, p) is the uniquely determined mapping with the properties:

(i) (1, vΓ(t, p)) ∈ T(t,p)Γ and

(ii) vΓ(t, p) ∈ (TpΓ(t))⊥ = NpΓ(t) .

In particular, we see a representation of the normal space of Γ as

N(t,p)Γ = {s (−vΓ · n, n)(t, p) | s ∈ R} .

Proof. Fix (t, p) ∈ Γ. Because of point (iii) of the Definition 2.31 of an evolving hypersurface,
there exists a tangent vector (r, v) ∈ T(t,p)Γ with r ∈ R, v ∈ Rn+1 and r 6= 0. Without loss of
generality we assume r = 1.
Now we can extend (1, v) to a basis of T(t,p)Γ, that is there exist linearly independent vectors

(1, v), (ε1 , w1), . . . (εn, wn)

in T(t,p)Γ. Then it holds that the definition

(εi, wi) − εi (1, v) = (0, wi − εiv) =: (0, τi)

yields vectors (0, τi) with τi 6= 0, because (1, v) and (εi, wi) are linearly independent. With this
small trick, we have a new basis of T(t,p)Γ given through

(1, v), (0, τ1), . . . , (0, τn) .

Since (0, τ1), . . . , (0, τn) are linearly independent, the subspace W := span{τ1, . . . , τn} is an n-
dimensional subspace of Rn+1.
Until now, we have the representation

T(t,p)Γ = {r · (1, v) + (0, τ) | r ∈ R , τ ∈W} .

With the help of the orthogonal projection P of Rn+1 to W we define

vΓ(t, p) := v − Pv ∈W⊥

and we see that (1, vΓ) = (1, v) − (0, Pv) ∈ T(t,p)Γ because of the above representation. So we
can write

T(t,p)Γ = {r · (1, vΓ(t, p)) + (0, τ) | r ∈ R , τ ∈W} .

If we now show that

W = TpΓ(t)
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then vΓ is well defined and unique and fulfils point (ii).
The uniqueness can be seen as follows. If we take ṽ instead of v with (1, v) and (1, ṽ) in T(t,p)Γ
at the beginning of the proof, we see from

(0, v − ṽ) = (1, v) − (1, ṽ) ∈ T(t,p)Γ

that v − ṽ ∈ W and therefore v − Pv = ṽ − P ṽ. This uniqueness is the reason why we work
with vΓ = v − Pv instead of the arbitrary v.
By using the decomposition

R × R
n+1 = {(s, v + w) | s ∈ R , v ∈W , w ∈W⊥}

we write Γ locally around (t, p) with a parametrization over R ×W such that

Γ ∩ U =
{
(s, v + w) ∈ R × R

n+1 | w = h(v)
}

for a mapping h : W →W⊥ and an open neighbourhood U ⊂ R × Rn+1 of (t, p).
This representation gives us the possibility to denote a basis for T(s,v+h(s,v))Γ with the help of
an orthonormal basis v1, . . . , vn of W through

∂s(s, v + h(s, v)) , ∂v1(s, v + h(s, v)) , . . . , ∂vn(s, v + h(s, v)) .

Calculating the derivatives gives

(1, ∂sh(s, v)) , (0, v1 + ∂v1h(s, v)) , . . . , (0, vn + ∂vnh(s, v)) .

Due to the above representation of the tangent space at the point (t, p) = (t, w+h(t, w)) ∈ T(t,p)Γ

for some w ∈W , and due to the fact that ∂vi
h(s,w) ∈W⊥, we see that

∂vi
h(t, w) = 0 .

The above parametrization of Γ leads to a parametrization of Γ(t) through

Γ(t) ∩ Ũ =
{
v + w ∈ R

n+1 | w = h(t, v)
}
,

where Ũ ⊂ Rn+1 is an open neighbourhood of p ∈ Γ(t). A basis of tangent vectors of TpΓ(t) is
then given by

(v1 + ∂v1h(s, v)) , . . . , (vn + ∂vnh(s, v)) ,

where we used the above notation and get therefore that this basis equals v1, . . . , vn.
This shows that an orthonormal basis of W is also an orthonormal basis of TpΓ(t) and since
they are both n-dimensional subspaces of R × Rn+1, we have

TpΓ(t) = W .

Since this was the only missing part, we proved the lemma. �

The vector vΓ from the above Lemma 2.34 can be given more explicitly and gets a name, the
velocity vector.
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Lemma 2.35. The vector vΓ from the above Lemma 2.34 is related to the normal velocity of
Definition 2.32 by

vΓ(t, p) = V (t, p)n(t, p) for (t, p) ∈ Γ .

That’s the reason why vΓ is also called velocity vector.

Proof. The term V (t, p)n(t, p) can be described with the help of a curve c : (t−ε, t+ε) → Rn+1

with c(τ) ∈ Γ(τ) and c(t) = p as:

V (t, p)n(t, p) =

(
d

dτ
c(τ)

∣∣∣∣
τ=t

· n(t, p)

)
n(t, p)

= P⊥

(
d

dτ
c(τ)

∣∣∣∣
τ=t

)
,

where P⊥ : Rn+1 → NpΓ(t) is the orthonormal projection onto the normal space.
On the other hand, we have vΓ(t, p) = P⊥(v), where v ∈ Rn+1 such that (1, v) ∈ T(t,p)Γ and
where we have seen in the previous proof that vΓ is independent of the choice of v.
So we have to show that d

dτ c(τ)
∣∣
τ=t

= c′(t) is such a v from above, which means (1, c′(t)) ∈
T(t,p)Γ. To this end, we just have to give a curve on Γ whose derivative equals (1, c′(t)). One
possible choice is

c̃ : (t− ε, t+ ε) −→ R
n+1 , c̃(τ) = (τ, c(τ)) .

For this curve c̃, it holds that c̃(τ) ∈ Γ, c̃(t) = (t, p) and c̃′(t) = (1, c′(t)). �

When we consider a function on an evolving hypersurface Γ through

f : Γ −→ R , (t, p) 7→ f(t, p) ,

we describe values of f just at points (t, p) with p ∈ Γ(t), which means in particular that the
second variable depends on the first one. Since Γ itself is a hypersurface in R × Rn+1, we have
the possibilities of derivatives from the previous section 2.1 as for example directional derivatives
with respect to a tangent vector in T(t,p)Γ. But if we want to differentiate separately in time
and space, we have to think about the right derivatives of such functions.
Of course, we can differentiate in space for fixed t, because then the function

ft := f(t, ·) : Γ(t) −→ R

is defined on a fixed hypersurface Γ(t) and we have all concepts from 2.1 as the differential dpft,
the directional derivative ∂vft for a tangent vector v ∈ TpΓ(t), the surface gradient ∇Γ(t)ft, the
divergence divΓ(t) ft and the Laplace-Beltrami operator ∆Γ(t)ft each on Γ(t).
But what is the right kind of derivative in time at a point (t, p) ∈ Γ ? Of course, one can not

fix p and look at small variations of t, because the function f is just defined for p ∈ Γ(t). So
if we vary t, we also have to vary p. The essential concept is the normal time derivative in the
sense of Gurtin [Gur93]. Therefore we consider for fixed (t, p) ∈ Γ a curve

η : (t− ε, t+ ε) −→ R
n+1
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with η(t) = p such that (τ, η(τ)) ∈ Γ, i.e. η(τ) ∈ Γ(τ). Furthermore, η shall point in normal
direction scaled with normal velocity at every point η(τ) ∈ Γ(τ), which means

η′(τ) = V (τ, η(τ))n(τ, η(τ)) .

Then we can define the above mentioned time derivative.

Definition 2.36 (Normal time derivative). We define the normal time derivative ∂◦f(t, p)
at a point (t, p) ∈ Γ with the help of a curve η as above through

∂◦f(t, p) :=
d

dτ
f(τ, η(τ))

∣∣∣∣
τ=t

.

With the same curve and notation this definition can be extended to vector fields.

To see the existence of such a curve η as above, the independence of Definition 2.36 from this
curve and to obtain another useful representation of the normal time derivative we observe the
following lemma.

Lemma 2.37. The normal time derivative can be written with the help of a directional derivative
as follows.

∂◦f = ∂(1,V n)f ,

where we use the fact (1, V (t, p)n(t, p)) ∈ T(t,p)Γ from Lemmata 2.34 and 2.35. In particular
this means that the definition of ∂◦f is independent of the chosen curve.

Proof. Consider the directional derivative of f in direction (1, V (t, p)n(t, p)) ∈ T(t,p)Γ at a fixed
point (t, p) ∈ Γ, which is given by

∂(1,V n)f =
d

dε
f(ζ(ε))

∣∣∣∣
ε=0

,

where ζ : (−ε0, ε0) → Γ, ζ(0) = (t, p) and ζ ′(0) = (1, V (t, p)n(t, p)). Because we know from
Lemma 2.33 that this definition is independent of the curve, we specify ζ more detailed as
solution to the following ordinary differential equation.
Find ζ : (−ε0, ε0) → R × Rn+1 such that with an arbitrary extension of V n

{
ζ ′(ε) = (1, (V n)(ζ(ε))) ,
ζ(0) = (t, p) .

Because we know that (1, (V n)(t, p)) lies in the tangent space T(t,p)Γ, we can deduce that a
solution fulfills ζ(ε) ∈ Γ (compare for example Hildebrandt [Hil03]) and in fact we don’t need
the above mentioned arbitrary extension of V n. For small ε0 such a ζ is uniquely determined
and we use this to calculate the above directional derivative.
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With point (ii) of the Definition of an evolving hypersurface 2.31 we can divide ζ(ε) ∈ Γ into

ζ(ε) = (α(ε), η(ε)) ,

where α : (−ε0, ε0) → (0, T ) and η : (−ε0, ε0) → Rn+1 with η(ε) ∈ Γ(α(ε)).

Because of the starting point ζ(0) = (t, p) we can conclude

α(0) = t and η(0) = p

and with the expression ζ ′(ε) = (1, (V n)(ζ(ε))) we arrive at

α′(ε) = 1 and η′(ε) = (V n)(α(ε), η(ε)) .

Then it has to hold that α(ε) = ε+ t and therefore η′(ε) = (V n)(ε+ t, η(ε)). With the help of
the reparametrized curve η̃ : (t− ε0, t+ ε0) → Rn+1, η̃(τ) := η(τ − t), we see that

η̃(τ) = η(τ − t) ∈ Γ(α(τ − t)) = Γ(τ) ,

η̃(t) = η(0) = p and

η̃′(τ) = η′(ε)
∣∣
ε=τ−t

= (1, (V n)(ε+ t, η(ε)))|ε=τ−t = (1, (V n)(τ, η̃(τ))) .

So we constructed a curve η̃ as in Definition 2.36 of the normal time derivative ∂◦f and since
(τ, η̃(τ)) is just a shift in time for ζ(ε) we observe at the fixed point (t, p) ∈ Γ finally

∂◦f(t, p) = d
dτ f(τ, η̃(τ))

∣∣
τ=t

= d
dεf(ζ(ε))

∣∣
ε=0

= ∂(1,(V n))f(t, p) .

Hence the proof is complete. �

We want to calculate the normal time derivative in an instructive special case.

Lemma 2.38. Let f : Rn+1 → R be smooth and consider the restriction f̃ of f to an evolving
hypersurface Γ through

f̃ : Γ → R , (t, p) 7→ f(p) .

Then the following formula for the normal time derivative of f̃ holds

∂◦f̃(t, p) = V (t, p) (∇f(p) · n(t, p)) .

For smooth vector fields g : Rn+1 → Rn+1 and an analogue definition for g̃ as for f̃ we observe
the identity

∂◦g̃(t, p) = V (t, p) (Dg(p) · n(t, p)) ,

where Dg(p) is the Jacobian matrix of g. In particular for the identity map g = id it holds
∂◦id = V n.
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Proof. This is seen immediately with the formula from Lemma 2.37 through

∂◦f̃(t, p) = ∂(1,(V n)(t,p))f̃ = ∂((V n)(t,p)f =
(
∇f(p) · (V n)(t, p)

)
= V (t, p)

(
∇f(p) · n(t, p)

)
,

and the proof is done. �

We will need the following lemma for the linearization of mean curvature in later chapters.
In this lemma, we compare the normal time derivative ∂◦f(t, p) with a term d

dτ f(τ, ϑ(τ))
∣∣
τ=t

,
where ϑ has the same properties as η from Definition 2.36 of the normal time derivative, but
points not necessarily in normal direction.

Lemma 2.39. For a fixed point (t, p) ∈ Γ let ϑ : (t − ε, t + ε) → Rn+1 with ϑ(τ) ∈ Γ(τ) and
ϑ(t) = p. In this case it holds

d

dτ
f(τ, ϑ(τ))

∣∣∣∣
τ=t

= ∂◦f(t, p) + ∇Γ(t)f(t, p) ·
(
ϑ′(t)

)T
,

where the tangential projection ()T on TpΓ(t) can also be skipped due to the fact that ∇Γ(t)f(t, p)
lies in tangential direction. Therefore we get

d

dτ
f(τ, ϑ(τ))

∣∣∣∣
τ=t

= ∂◦f(t, p) + ∇Γ(t)f(t, p) · ϑ′(t) .

Proof. With the help of the tangential projection on TpΓ(t), we write the derivative ϑ′(t) of
the curve ϑ as

ϑ′(t) =
(
ϑ′(t) · n(t, p)

)
n(t, p) +

(
ϑ′(t)

)T

= V (t, p)n(t, p) +
(
ϑ′(t)

)T
,

where the normal velocity appears by its definition.
With similar calculations as in Lemma 2.37 we write the term d

dτ f(τ, ϑ(τ))
∣∣
τ=t

as a directional
derivative and use linearity of the directional derivative to get

d

dτ
f(τ, ϑ(τ))

∣∣∣∣
τ=t

= ∂(1,ϑ′(t))f = ∂(0,(ϑ′(t))T )f + ∂(1,V n)(t,p)f = ∂(0,(ϑ′(t))T )f + ∂◦f(t, p) .

It remains to show the identity

∂(0,(ϑ′(t))T )f = ∇Γ(t)f(t, p) ·
(
ϑ′(t)

)T
.

To this end, we consider a curve α : (t − ε, t + ε) → Γ given through α(τ) = (t, β(τ)), where
β : (t− ε, t+ ε) → Γ(t) lies completely in Γ(t) and fulfills β(t) = p and β′(t) = (ϑ′(t))T . Such a
curve β can be found because (ϑ′(t))T ) ∈ TpΓ(t).
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Since the definition of the directional derivative is independent of the chosen curve, we can
finally conclude

∂(0,(ϑ′(t))T )f =
d

dτ
f(α(τ))

∣∣∣∣
τ=t

=
d

dτ
f(t, β(τ))

∣∣∣∣
τ=t

= ∇Γ(t)f(t, p) · β′(τ)

= ∇Γ(t)f(t, p) ·
(
ϑ′(t)

)T
,

which proves the lemma. �

We proceed by giving the normal time derivatives of mean curvature and the normal. We
denote by H the function on an evolving hypersurface

H : Γ −→ R ,

where H(t, p) is the mean curvature of the hypersurface Γ(t) at the point p ∈ Γ(t). We will need
the following identity

∂◦H(t, p) = ∆Γ(t)V (t, p) + |σ|2(t, p)V (t, p) , (2.3)

where |σ|2(t, p) is the square of the second fundamental form of Γ(t) at p ∈ Γ(t). In terms of
principal curvatures κi of Γ(t) this is given by

|σ|2(t, p) =
n∑

i=1

κ2
i (t, p) ,

where κi(t, p) is the i-th principal curvature of Γ(t) at p ∈ Γ(t). A proof of equation (2.3) is
given in the appendix.
For vector fields

g : Γ −→ R
l

we also defined the normal time derivative with the help of the same curve as for functions.
Therefore we can ask for the normal time derivative of

n : Γ −→ R
n+1 ,

where n(t, p) is the normal of Γ(t) at p ∈ Γ(t). There is the following result

∂◦n(t, p) = −∇Γ(t)V (t, p) , (2.4)

which is proven in the appendix.

In later chapters we will often describe evolving hypersurfaces Γ = ∪t∈[0,T ){t}×Γ(t) as graphs
over some fixed reference hypersurface Γ∗ with additional properties. Here we want to introduce
this description, calculate the normal velocity and give some formulas for the transformation of
differential operators to Γ∗.
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Consider a smooth mapping

Φ : [0, T ) × Γ∗ −→ R
n+1 , (t, q) 7→ Φ(t, q) , (2.5)

where for fixed t the mapping

Φt : Γ∗ −→ R
n+1 , (t, q) 7→ Φt(q) := Φ(t, q) (2.6)

is a diffeomorphism onto its image. Then we define

Γ(t) := {Φt(q) | q ∈ Γ∗} (2.7)

for t ∈ [0, T ) and in this way we get an evolving hypersurface

Γ := ∪t∈[0,T ){t} × Γ(t) = ∪t∈[0,T ){t} × Φt(Γ
∗) . (2.8)

In this case the normal velocity can be calculated with the help of the time derivative of Φ in
the following way.

Lemma 2.40. For an evolving hypersurface given by (2.8) the normal velocity at a point (t, p) ∈
Γ with p = Φt(q) for some q ∈ Γ∗ reads as

V (t, p) = n(t, p) · ∂tΦ(t, q) .

Proof. The normal velocity for such a Γ at a point (t, p) with Φ(t, q) = (t, p) can be calculated
in the following way. With the help of a curve on the fixed hypersurface Γ∗

c̃ : (t− ε, t+ ε) −→ Γ∗

with c̃(t) = q we define a curve on Γ(τ) through

c : (t− ε, t+ ε) −→ R
n+1 , τ 7→ Φ(τ, c̃(τ)) ,

so that we have c(τ) ∈ Γ(τ), c(t) = p and

c′(τ) = ∂tΦ(τ, c̃(τ)) + (dc̃(τ)Φt)(c̃
′(τ)) .

At time t, this gives

c′(t) = ∂tΦ(t, q) + (dqΦt)(c̃
′(t)) ,

where the second term in the above sum lies in TpΓ(t). To compute the normal velocity V (t, p),
we use the normal n(t, p) of Γ(t) at p ∈ Γ(t) and derive

V (t, p) = n(t, p) · d

dτ
c(τ)

∣∣∣∣
τ=t

= n(t, p) · ∂tΦ(t, q) + n(t, p) · (dqΦt)(c̃
′(t))

= n(t, p) · ∂tΦ(t, q) ,
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because the second term vanishes. �

With the help of the above description of an evolving hypersurface Γ as a graph over the
reference hypersurface Γ∗ we can formulate quantities on Γ also on the fixed hypersurface Γ∗

using an induced diffeomorphism. This will be helpful in later chapters about evolution equations
on Γ, which we rewrite as equations on a fixed hypersurface Γ∗ with additional properties. To
be precise with our notation, we consider the following diffeomorphism

Φ̂ : [0, T ) × Γ∗ −→ Γ , (t, q) 7→ Φ̂(t, q) := (t,Φ(t, q)) . (2.9)

The fact that Φ̂ is a diffeomorphism follows from (2.5) to (2.8).
For a function

f : Γ −→ R , (t, p) 7→ f(t, p) (2.10)

we define the according expression on [0, T ) × Γ∗ as

f̃ : [0, T ) × Γ∗ −→ R , (t, q) 7→ f̃(t, q) :=
(
f ◦ Φ̂

)
(t, q) , (2.11)

which gives f̃(t, q) = f(Φ̂(t, q)) = f(t,Φt(q)).
In the literature, the hat on Φ̂ is often omitted and the expressions

(
f ◦ Φ̂

)
(t, q) and (f ◦ Φ) (t, q) (2.12)

are identified by a slight abuse of notation. Analog transformations also hold for vector fields
g : Γ → Rl.
In the last remark of this section we want to give transformation rules for some differential

operators, which will be needed in the Lemmata 3.26 and 3.27 about the linearization of surface
diffusion and the natural boundary condition. Here we equip Γ∗ for fixed t with the pull-back
metric g = (Φt)

∗ η, where η is just a symbol for the euclidian scalar product in Rn+1, restricted
to Γ(t). This means for tangent vectors v,w ∈ TqΓ

∗

g(v,w) := η (dqΦt(v), dqΦt(w)) = dqΦt(v) · dqΦt(w) . (2.13)

In this way the diffeomorphism Φt from (2.6) gets an isometry

Φt : (Γ∗, g) −→ (Γ(t), η) (2.14)

as in Definition 2.12.

Remark 2.41. With the above notation the following transformation rules for the surface gra-
dient and for the Laplace-Beltrami operator hold.

(i) ∇Γ(t)f(t, p) = dqΦt

(
∇Γ∗ f̃(t, q)

)
and

(ii) ∆Γ(t)f(t, p) = ∆Γ∗ f̃(t, q),

where (t, p) = Φ̂(t, q) ∈ Γ for some q ∈ Γ∗.
To make sure that we do not confuse the reader, we remark again that in these formulas Γ∗ has
a different metric than the euclidian one.
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2.3 Transport equation

In the last two sections of this chapter we focus our attention again on arbitrary evolving
hypersurfaces Γ not necessarily given as a graph over some fixed reference hypersurface. In this
section we formulate the Transport theorem, which specifies the rate of change of the spatial
integral

∫
Γ(t) f of a function defined on Γ.

Therefore we need an additional expression, called the normal boundary velocity v∂Γ, which
is a term that describes the local decrease or increase of the surface area of Γ(t) due to the
tangential velocity of the boundary ∂Γ(t). The definition is formally the same as Definition 2.32
for the normal velocity but instead of the unit normal of Γ(t) we need the outer unit conormal
of Γ(t) at the boundary ∂Γ(t).

Definition 2.42 (Normal boundary velocity). For a fixed point (t, p) ∈ ∂Γ, i.e. p ∈ ∂Γ(t), let
c : (t− ε, t+ ε) → Rn+1 be a curve with c(t) = p and c(τ) ∈ ∂Γ(τ). Then we define the normal

boundary velocity v∂Γ as

v∂Γ(t, p) := n∂Γ(t, p) · d

dτ
c(τ)

∣∣∣∣
τ=t

,

where n∂Γ(t, p) is the outer unit conormal of Γ(t) at p ∈ ∂Γ(t).

Remark 2.43. We must not confuse the normal boundary velocity v∂Γ with the velocity vector
vΓ from Lemma 2.35. We think of v∂Γ as an extension of the normal velocity V to the boundary,
as the definition indicates. One could also call this term V∂Γ, but we stick to the literature. As
in Lemma 2.33 one can show independence of the curve in Definition 2.42.

Finally we are able to present the promised Transport theorem.

Theorem 2.44 (Transport theorem). For a smooth function f : Γ → R there holds the following
formula for the time-derivative of the spatial integral of f :

d

dt

∫

Γ(t)

f(t, p) dHn(p) =

∫

Γ(t)

(
∂◦f(t, p) − f(t, p)V (t, p)H(t, p)

)
dHn(p)

+

∫

∂Γ(t)

f(t, p) v∂Γ(t, p) dHn−1(p) .

For a proof we refer to the paper [GW06] of Garcke and Wieland, where the above formula is
shown for surfaces in R3 and can be extended directly to arbitrary dimensions.

2.4 Evolution of area and volume

In this last section of the chapter we consider evolving hypersurfaces Γ = ∪t∈[0,T ){t} × Γ(t),
which lie inside a fixed bounded region Ω ⊂ Rn+1 and meet the boundary ∂Ω with a right angle.
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2.4. EVOLUTION OF AREA AND VOLUME

In formulas, this reads as

Γ(t) ⊂ Ω , ∂Γ(t) ⊂ ∂Ω and n(t, p) · µ(p) = 0

for all t ∈ [0, T ] and p ∈ ∂Γ(t), where n(t, p) is a unit normal of Γ(t) at p ∈ ∂Γ(t) and µ(p) is
the outer unit normal of Ω at p ∈ ∂Ω.
Evolving hypersurfaces of this kind will appear in the next two chapters as solutions to geo-

metric evolution equations. For a better understanding we want to know the evolution of area
and volume of these solutions and in this section we give the corresponding abstract formulas
involving the normal velocity V and the mean curvature H. In later parts the normal velocity
is prescribed by some evolution law and we will get more explicit formulas.
We let R(t) ⊂ Rn+1 with outer unit normal ν(t) be the region surrounded by Γ(t) and ∂Ω, so

that

∂R(t) = Γ(t) ∪ Λ(t) ,

where Λ(t) is the corresponding part of ∂Ω. Note that we always consider embedded hyper-
surfaces, therefore no intersections of Γ(t) with itself are allowed. We illustrate our notation in
Figure 2.1.

ΩΓ(t)

R(t)

Λ(t)

n = ν

µ = ν

Figure 2.1: Choice of R(t).

At points p ∈ Γ(t) ⊂ ∂R(t) the outer unit normal of R(t) shall equal the unit normal of Γ(t),
which means in the above notations ν(t, p) = n(t, p).
Then we can show evolution equations for the surface area A(t) of Γ(t) given through

A(t) :=

∫

Γ(t)

1 dHn (2.15)

and for the volume of R(t), also called the volume of Γ(t), given by

V ol(t) :=

∫

R(t)

1 dx . (2.16)

Remark 2.45. In the literature, for example in Grosse-Brauckmann [Gro96] one often finds a
different definition of the volume of Γ(t) through

V ol(t) =
1

n+ 1

∫

∂Γ(t)
p · n(t, p) dHn−1 .
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We just want to remark that we have to take care of the fixed region Ω, where the evolving
hypersurface lies in. Therefore the definition of this remark would not make sense in our case,
since this would neglect terms appearing due to the right angle at Γ(t)∩∂Ω, which can be observed
in the proof of the following lemma.

For the convenience of the reader we present the formulas for the evolution of area and volume
with proof in our notation.

Lemma 2.46. With the above notations the following formulas for the time derivative of area
and volume hold true.

(i) d
dtA(t) = −

∫
Γ(t) V H dHn and

(ii) d
dtV ol(t) =

∫
Γ(t) V dHn.

Proof. ad (i): Due to the Transport theorem 2.44 with f ≡ 1 we can conclude

d

dt
A(t) =

d

dt

∫

Γ(t)

1 dHn = −
∫

Γ(t)
V H dHn +

∫

∂Γ(t)
v∂Γ︸︷︷︸
=0

dHn−1

= −
∫

Γ(t)
V H dHn ,

where the normal boundary velocity vanishes due to the right angle condition. In fact it holds
for (t, p) ∈ Γ with p ∈ ∂Γ(t)

v∂Γ(t, p) = n∂Γ(t, p) · d

dτ
c(τ)

∣∣∣∣
τ=t

for a curve c : (t− ε, t+ ε) → Rn+1 with c(t) = p and c(τ) ∈ ∂Γ(τ). Since ∂Γ(τ) ⊂ ∂Ω it holds
that c′(t) ∈ Tp∂Ω and the facts n∂Γ(t, p) ∈ TpΓ(t) and TpΓ(t) ⊥ Tp∂Ω then imply v∂Γ(t, p) = 0.

ad (ii): For the identity on Rn+1, id : Rn+1 → Rn+1, we get div id = n+ 1 and therefore with
the help of Gauß’ theorem for regions with Lipschitz boundary

(n+ 1)V ol(t) = (n+ 1)

∫

R(t)

1 dx =

∫

R(t)
div id(x) dx

=

∫

∂R(t)
p · ν(t, p) dHn(p)

=

∫

Λ(t)
p · µ(p) dHn(p)

︸ ︷︷ ︸
(1)

+

∫

Γ(t)
p · n(t, p) dHn(p)

︸ ︷︷ ︸
(2)

.
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We consider the above terms separately and get for the first one due to the Transport theorem
2.44 with f(p) = (p · µ(p)) the following identity

d

dt

∫

Λ(t)
p · µ(p) dHn(p) =

∫

Λ(t)
(∂◦Λ(p · µ(p)) − (p · µ(p))VΛHΛ) dHn(p)

+

∫

∂Λ(t)
(p · µ(p))v∂Λ dHn−1 ,

where VΛ, Hλ and v∂Λ are the normal velocity, the mean curvature and the normal boundary
velocity of the evolving hypersurface Λ = ∪t∈[0,T ]{t} × Λ(t). Here we have extended f(p) =
(p · µ(p)) as in Lemma 2.38 to Λ through f(t, p) = f(p).
Since the hypersurfaces Λ(t) do not move in normal direction, we get

VΛ ≡ 0 .

In fact, for p ∈ Λ(t), we have

VΛ(t, p) = nΛ(t, p) · d

dτ
c(τ)

∣∣∣∣
τ=t

,

where nΛ is a normal of Λ(t) chosen such that nΛ(t, p) = µ(p) ∈ Np∂Ω and c : (t−ε, t+ε) → Rn+1

is a curve with c(t) = p and c(τ) ∈ Λ(τ). Since Λ(τ) ⊂ ∂Ω, we conclude c′(t) ∈ Tp∂Ω and
therefore the above scalar product nΛ(t, p) · c′(t) vanishes.
The normal time derivative ∂◦Λf for f(t, p) = p · µ(p) is derived with the help of Lemma 2.38.

So we get

∂◦Λ (p · µ(p)) = VΛ(t, p)nΛ(t, p) = 0 .

Altogether this means for the first term (1) in the above formula for the volume

d

dt

∫

Λ(t)
p · µ(p) dHn(p) =

∫

∂Λ(t)
(p · µ(p))v∂Λ dHn−1 .

For the second term (2), we observe again with the help of the Transport theorem 2.44 the
following identity

d

dt

∫

Γ(t)
(p · n(t, p)) dHn(p) =

∫

Γ(t)
(∂◦(p · n(t, p)) − (p · n(t, p))V H) dHn(p)

+

∫

∂Γ(t)
(p · n(t, p)) v∂Γ dHn−1 .

As in (i) we get v∂Γ = 0. For the normal time derivative of (p · n(t, p), we observe with the help
of Lemma 2.38 and the formula (2.4) for the normal time derivative of the normal

∂◦
(
p · n(t, p)

)
= ∂◦id(p) · n(t, p) + p · ∂◦n(t, p)

= V (t, p)n(t, p) · n(t, p) − p · ∇Γ(t)V (t, p)

= V (t, p) − p · ∇Γ(t)V (t, p) .
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Therefore we conclude for the second term (2) in the formula for the volume

d

dt

∫

Γ(t)
(p · n(t, p)) dHn(p) =

∫

Γ(t)

(
V − p · ∇Γ(t)V − (p · n(t, p))V H

)
dHn(p) .

The term in the middle can be integrated by parts with the help of Gauß’ theorem on hyper-
surfaces 2.29 with f(p) = p V (t, p) for fixed t to get

−
∫

Γ(t)
p · ∇Γ(t)V dHn =

∫

Γ(t)


divΓ(t) id︸ ︷︷ ︸

= n

V + (p · n(t, p))V H


 dHn

−
∫

∂Γ(t)
V p · n∂Γ(t, p)dHn−1 .

The identity divΓ(t) id = n can be seen with a local parametrization (U, γ, V ) of Γ(t) with
γ(u) = p through

divΓ(t) id(p) =

n∑

i,j=1

gij(u)


∂i(id ◦ γ)(u)︸ ︷︷ ︸

= ∂iγ(u)

·∂jγ(u)




=

n∑

i,j=1

gij(u)gij(u) = trace(G−1 ·G) = n .

For the second term (2) in the formula for the volume we get therefore

d

dt

∫

Γ(t)
(p · n(t, p)) dHn(p) = (n+ 1)

∫

Γ(t)
V dHn −

∫

∂Γ(t)
(p · n∂Γ(t, p)) V dHn−1 .

Altogether for the derivative of volume we observe

d

dt
(n+ 1)V ol(t) = (n + 1)

∫

Γ(t)
V dHn

+

∫

∂Λ(t)
(p · µ(p))v∂Λ dHn−1 −

∫

∂Γ(t)
(p · n∂Γ(t, p)) V dHn−1 .

To proceed with the proof we remark that ∂Λ(t) = ∂Γ(t) and that µ(p) = n∂Γ(t, p) for p ∈ Γ(t)
due to the right angle condition. Furthermore we have for p ∈ ∂Γ(t)

v∂Λ(t, p) = µ∂Λ(t, p) · c′(t) and

V (t, p) = n(t, p) · a′(t) ,

where µ∂Λ is the unit outer conormal of Λ at ∂Λ, c is a curve with c(τ) ∈ ∂Λ(τ) = ∂Γ(τ) and a
is a curve with a(τ) ∈ Γ(τ). Since the normal velocity is independent of the chosen curve from
Lemma 2.33, we can also use c instead of a. Again due to the right angle condition we observe

38



2.4. EVOLUTION OF AREA AND VOLUME

that µ∂Λ(t, p) = n(t, p) and so we arrive at v∂Λ(t, p) = V (t, p) for p ∈ ∂Γ(t). This leads us to
the desired derivative

d

dt
V ol(t) =

∫

Γ(t)
V dHn

and we finished the proof. �
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Chapter 3

Evolution Equations with Boundary
Contact

In this chapter we consider evolution laws for evolving hypersurfaces which lie inside a fixed
region and meet the boundary at a right angle. These laws are the mean curvature flow, the
volume preserving mean curvature flow and the surface diffusion flow. The main goal is to
extend the linearized stability analysis of Garcke, Ito and Kohsaka [GIK05] for surface diffusion
with boundary contact for curves in R2 to the case of hypersurfaces in Rn+1.

To this end, we first have to introduce a setting that allows us to formulate the geometric evolu-
tion laws as partial differential equations for functions defined on a fixed reference hypersurface,
which will be a stationary solution. As the parametrization for the curve situation in [GIK05]
does not extend to the higher dimensional case, we use a curvilinear coordinate system from the
work of Vogel [Vog00] that takes into account a possible curved boundary.

Then we linearize the resulting partial differential equations and with the help of abstract
spectral theory we give a criterion for the stability of these linear equations using the positiv-
ity of some explicitly given bilinear form. An important ingredient will be to recognize the
linearizations as gradient flows, since only then we can show self-adjointness of the linearized
operator.

In the first Section 3.1 we give the representation of the evolving hypersurfaces in detail without
demanding an explicit evolution law. Therefore we can refer to this representation in later
sections.

The mean curvature flow is considered in Section 3.2, but we have to mention that a lot of
work is already done in this case. For example we refer to Ei, Sato and Yanagida [ESY96] and
to Stahl [Sta95, Sta96], whose work is based on results of Huisken [Hui84, Hui86] and others.
Our aim in this section is to do linearized stability analysis in the spirit of [GIK05], which does
not use a maximum principle and therefore can be extended to the later sections.

In the third Section 3.3 of this chapter we consider the volume preserving mean curvature flow,
for which the linearized stability analysis is a straightforward extension of the previous one.

Then in Section 3.4 we treat the surface diffusion flow for which some additional considerations
in the stability analysis have to be done. In particular we introduce the H−1-inner product
and identify the linearization as an H−1-gradient flow. We also give some remarks concerning
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nonlinear stability, although we don’t formulate precise results in this case.

In the final Section 3.5 we consider specific situations where the linearized stability can be
determined.

3.1 Parametrization

In this first section of the chapter we want to introduce the setting for the considered hypersur-
faces. With the notation of Chapter 2 we want to describe evolving hypersurfaces

Γ =
⋃

t∈[0,T )

{t} × Γ(t) with Γ(t) ⊂ R
n+1

as in Definition 2.31, which evolve due to some evolution law. As in the remark after Definition
2.31 we choose a smooth unit field n : Γ → Sn ⊂ Rn+1, such that n(t, .) : Γ(t) → Sn are unit
normal fields of Γ(t). We remark that due to our basic assumptions for hypersurfaces from
Definition 2.4 these normals can be extended smoothly up to the boundary.

The hypersurfaces Γ(t) shall lie inside a fixed bounded region Ω ⊂ Rn+1, i.e. Γ(t) ⊂ Ω, and the
boundary ∂Γ(t) of each of the hypersurfaces shall intersect the boundary ∂Ω of the fixed region
at a right angle, i.e. ∂Γ(t) ⊂ ∂Ω and Γ(t) ⊥ ∂Ω. This angle condition will be described with
the help of the unit normal n(t) of Γ(t) and the unit outer normal µ of ∂Ω through

n(t) · µ = 0 on ∂Γ(t) ∩ ∂Ω

for all t ∈ [0, T ). Imposing also a smooth starting configuration Γ0, which lies in Ω and fulfills
the angle condition, we will consider motions of the following type





some evolution law in Γ(t) for all t > 0 ,
corresponding boundary conditions on ∂Γ(t) for all t > 0 ,
Γ(t) ⊂ Ω for all t > 0 ,
∂Γ(t) ⊂ ∂Ω for all t > 0 ,
n(t) · µ = 0 on ∂Γ(t) for all t > 0 ,
Γ(0) = Γ0 .

(3.1)

A basic assumption to formulate (3.1) as a partial differential equation for some unknown func-
tion ρ concerns the appearance of the hypersurfaces Γ(t), that we want to consider. We suppose
that these can be written as a graph over a fixed reference hypersurface Γ∗ with the help of a
function

ρ : [0, T ) × Γ∗ −→ R .

The reference hypersurface Γ∗ has to fulfill the same geometric properties as Γ(t), i.e. Γ∗ ⊂ Ω,
∂Γ∗ ⊂ ∂Ω and Γ∗ ⊥ ∂Ω. In later sections, Γ∗ will be a stationary solution of (3.1), i.e. it will
also fulfill the stationary evolution law and corresponding boundary conditions.

As a first step to describe the regarded hypersurfaces Γ(t), we set up a specific curvilinear
coordinate system as in the work of Vogel [Vog00], that takes into account a possible curved
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boundary ∂Ω and the fact, that the considered hypersurfaces have to stay inside Ω and their
boundary has to lie on ∂Ω. Therefore, we postulate for small d > 0 the existence of a smooth
mapping

Ψ : Γ∗ × (−d, d) −→ Ω , (q, w) 7−→ Ψ(q, w) , (3.2)

such that

Ψ(q, 0) = q for all q ∈ Γ∗ (3.3)

and

Ψ(q, w) ∈ ∂Ω for all q ∈ ∂Γ∗ . (3.4)

We also assume that for every (local) parametrization q : D → Γ∗ with D ⊂ Rn open, the
mapping

(y,w) 7→ Ψ(q(y), w)

is a locally invertible map from Rn+1 to Rn+1. At last, we choose a normal n∗ of Γ∗ and impose
the condition that

∂wΨ(q, 0) · n∗(q) 6= 0 for q ∈ Γ∗ ,

which means that there is some movement in normal direction. With a rescaling in the w-
coordinate we can then even assume that

∂wΨ(q, 0) · n∗(q) = 1 for q ∈ Γ∗ . (3.5)

In [Vog00] there are some examples for situations when such a curvilinear coordinate system
exists. Due to the angle condition at the boundary of Γ∗, we can conclude even more than (3.5)
at the boundary ∂Γ∗.

Lemma 3.1. For q ∈ ∂Γ∗, it holds that ∂wΨ(q, 0) = n∗(q).

Proof. We see that for fixed q ∈ ∂Γ∗ the curve c(w) := Ψ(q, w) lies on the boundary ∂Ω,
and with c(0) = Ψ(q, 0) = q it therefore holds ∂wΨ(q, 0) ∈ Tq(∂Ω). With the help of the angle
condition we get TqΓ

∗ ⊥ Tq(∂Ω) and so we observe that ∂wΨ(q, 0) · v = 0 for all v ∈ TqΓ
∗.

So ∂wΨ(q, 0) has just a normal part, that is ∂wΨ(q, 0) = (∂wΨ(q, 0) · n∗(q))n∗(q). With the
rescaling condition of the normal (3.5) the claim follows. �

With the help of the mapping Ψ from (3.2) we are in a position to define the hypersurfaces,
that we want to consider. For a given smooth function

ρ : [0, T ) × Γ∗ −→ (−d, d) (3.6)

we introduce the mapping

Φρ : [0, T ) × Γ∗ −→ Ω , Φρ(t, q) := Ψ(q, ρ(t, q)) . (3.7)
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Then we observe that for fixed t due to the assumptions on Ψ, the function

Φρ
t : Γ∗ −→ Ω , Φρ

t (q) := Φρ(t, q) (3.8)

is a diffeomorphism onto its image. We denote this image by Γρ(t), that is

Γρ(t) := {Φρ
t (q) | q ∈ Γ∗} . (3.9)

In such a way we get an evolving hypersurface

Γ =
⋃

t∈[0,T )

{t} × Γρ(t)

and we made sure that the hypersurfaces Γρ(t) always fulfill the conditions

Γρ(t) ⊂ Ω and ∂Γρ(t) ⊂ ∂Ω .

We also observe that for ρ ≡ 0 it holds

Γρ≡0(t) = Γ∗ for all ∈ [0, T ) . (3.10)

Remark 3.2. If the hypersurfaces would be closed without boundary, it would make sense to
prescribe graphs over Γ∗ with the help of a variation in normal direction. This is done for
example in the work of Escher, Mayer and Simonett [EMS98]. With the above notations they
use a mapping Ψ of the special form

Ψ : Γ∗ × (−d, d) −→ R
n+1 , Ψ(q, w) := q +wn∗(q) ,

where n∗ is one chosen normal of Γ∗. For small d > 0, this mapping is a diffeomorphism onto
its image and one could set hypersurfaces Γ(t) defined through

Γ(t) := im(q 7→ Ψ(q, ρ(q, t)) ,

where ρ is a function as in (3.6). With the help of this setting the authors of [EMS98] use
center manifold theory to get a stability criterion. Due to the highly nonlinear structure of the
corresponding boundary conditions for the evolution laws, that are considered in this work, it
seems to be very difficult to generalize their approach to the setting with boundary.

The last assumption concerns the starting hypersurface Γ0. We impose that it is given with
the help of a smooth function ρ0 : Γ∗ → R through

Γ0 = {Ψ(q, ρ0(q)) | q ∈ Γ∗} . (3.11)

With the help of the diffeomorphisms Φρ
t , we can finally formulate (3.1) over the fixed stationary

hypersurface Γ∗ as follows. Find ρ as in (3.6) as a solution to the problem of the type




some evolution law in Γ∗ for all t > 0 ,
corresponding boundary conditions on ∂Γ∗ for all t > 0 ,
(n · µ) (Φρ(t, q)) = 0 on ∂Γ∗ for all t > 0 ,
ρ(0, q) = ρ0(q) in Γ∗ .

(3.12)

Here we used the common abbreviation n(Φρ(t, q)) = n(Φ̂ρ(t, q)) = n(t,Φρ(t, q)) with Φ̂ρ(t, q) =
(t,Φρ(t, q)) ∈ Γ a point on the evolving hypersurface, as explained in (2.12). Note that with the
definition Γρ(t) = Φρ

t (Γ
∗) for a solution ρ of problem (3.12) the geometric properties of (3.1) are

automatically fulfilled.
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3.2 Mean curvature flow

In this section we consider the mean curvature flow V = H with the boundary conditions
described in the previous Section 3.1. We postulate the special representation of the evolving
hypersurface as a graph and formulate the geometric equation as a partial differential equation
for an unknown function ρ. Then we linearize this equation around a stationary state given by
ρ ≡ 0 and describe the stability with the help of a bilinear form.
First we want to specify the problem in detail. In words, we want to find an evolving hyper-

surface

Γ =
⋃

t∈[0,T )

{t} × Γ(t) with Γ(t) ⊂ R
n+1 , (3.13)

as in Definition 2.31, evolving due to the mean curvature flow, such that Γ(t) lies in a fixed
bounded region Ω ⊂ Rn+1 and the boundary ∂Γ(t) of each of the hypersurfaces intersects the
boundary ∂Ω of the fixed region at a right angle.
In formulas, the problem reads as follows. Find Γ as in (3.13), such that





V = H in Γ(t) for all t > 0 ,
Γ(t) ⊂ Ω for all t > 0 ,
∂Γ(t) ⊂ ∂Ω for all t > 0 ,

n(t) · µ = 0 on ∂Γ(t) for all t > 0 ,
Γ(0) = Γ0 .

(3.14)

Here V and H are the normal velocity and the mean curvature of the evolving hypersurface Γ,
which means that H(t) is the mean curvature of Γ(t). We denote by n a vector field on Γ such
that n(t, p) is a unit normal vector of Γ(t) at p ∈ Γ(t) and µ is the outer unit normal of Ω. Γ0 is
a starting hypersurface which fulfills the geometric properties Γ0 ⊂ Ω, ∂Γ0 ⊂ ∂Ω and Γ0 ⊥ ∂Ω.
Note that the line “corresponding boundary conditions on ∂Γ(t)” from (3.1) reduces to the

angle condition, since no additional boundary conditions are needed.
We want to determine criteria for linearized stability around a stationary solution Γ∗ of (3.14).

This means that Γ∗ fulfills a time-independent version of (3.14), i.e. for the mean curvature H∗

of Γ∗ it holds H∗ ≡ 0 and furthermore Γ∗ has the geometric properties Γ∗ ⊂ Ω, ∂Γ∗ ⊂ ∂Ω and
fulfills the right angle condition, i.e. n∗ · µ = 0 on ∂Γ∗, where n∗ is a unit normal of Γ∗.
The condition H∗ ≡ 0 is the characterization of a minimal hypersurface. Although there

is a large amount of literature concerning the theory and examples of minimal hypersurfaces,
mostly for the case of surfaces in R3, we will not use anything aside from the vanishing of mean
curvature.

3.2.1 Resulting partial differential equation

To rewrite the geometric evolution law (3.14) as a partial differential equation for an unknown
function, we consider special solutions Γ of (3.14). Therefore we fix a stationary solution Γ∗ as
above and consider hypersurfaces Γρ(t) given as in Section 3.1 with the help of a function

ρ : [0, T ) × Γ∗ −→ (−d, d)
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through a diffeomorphism onto its image

Φρ
t : Γ∗ −→ Ω

by

Γρ(t) = Φρ(t,Γ∗) .

The details of this construction were given in Section 3.1.
The corresponding equation for ρ on the fixed stationary hypersurface Γ∗ as in (3.12) reads

here




V (Φρ(t, q)) = H(Φρ(t, q)) in Γ∗ for all t > 0 ,
(n · µ)(Φρ(t, q)) = 0 on ∂Γ∗ for all t > 0 ,

ρ(0, q) = ρ0(q) in Γ∗ .
(3.15)

As explained in (2.12), we use the common abbreviation V (Φ(t, q)) = V (t,Φ(t, q)) and analo-
gously for H and n.
We also give equation (3.15) in terms of the mapping Ψ





V (Ψ(q, ρ(t, q))) = H(Ψ(q, ρ(t, q))) in Γ∗ for all t > 0 ,
(n · µ)(Ψ(q, ρ(t, q))) = 0 on ∂Γ∗ for all t > 0 ,

ρ(0, q) = ρ0(q) in Γ∗ ,
(3.16)

where the dependence on ρ can be seen directly.

3.2.2 Linearization around a stationary state

The idea of linearized stability is the following. For a starting hypersurface Γ0 close to the
stationary solution Γ∗ we consider a solution Γ(t) of a linearized version of (3.14) and try to
find criteria for the convergence of Γ(t) to Γ∗ in some sense for t→ ∞. By a linearized version
around Γ∗ of some geometric evolution equation, here (3.14), we always mean the linearization
of the corresponding equation for the unknown function ρ, here (3.16). Since Γ∗ corresponds to
ρ ≡ 0 this means more precisely the linearization of (3.16) around ρ ≡ 0. The criterion that we
will give in Theorem 3.17 yields asymptotic stability of the linearized equation by the positivity
of some bilinear form.
To get the linearization of (3.16) around ρ ≡ 0, we write ερ instead of ρ in (3.16), differentiate

with respect to ε and set ε = 0. This gives a linear partial differential equation for ρ, which will
be examined further.

Remark 3.3. Although the above explanation is exactly the usual approach to build a lineariza-
tion, we give a formally correct description with the help of the first variation. Therefore we
consider each term in the first line of (3.16) as operator

F : C∞(Γ∗) → C∞(Γ∗) , ρ 7→ F (ρ) ,

(omit the t-variable) and define the first variation of F at ρ ≡ 0 in direction ρ as

δF (ρ) :=
∂F

∂ρ
(0)(ρ) =

d

dε
F (ερ)

∣∣∣∣
ε=0

.
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An analogous description is done for the boundary equation in the second line of (3.16). This
is the formulation that we always have in mind when building the linearization of (3.16) around
ρ ≡ 0.

The next steps consist in building the linearization of each term in (3.16). For the normal
velocity, we have the following formula.

Lemma 3.4. The linearization of normal velocity in (3.16) is given through the following ex-
pression for q ∈ Γ∗ and t > 0

d

dε
V (t,Ψ(q, ερ(t, q)))

∣∣∣∣
ε=0

= ∂tρ(t, q) . (3.17)

Proof. From Lemma 2.40 of Chapter 2 we have the following representation of normal velocity

V (t,Ψ(q, ρ(t, q))) = n(t,Ψ(q, ρ(t, q))) · d
dt

Ψ(q, ρ(t, q))

=
(
n(t,Ψ(q, ρ(t, q))) · ∂wΨ(q, ρ(t, q))

)
∂tρ(t, q) .

Therefore we can calculate

d

dε
V (t,Ψ(q, ερ(t, q)))

∣∣∣∣
ε=0

=
d

dε

(
n(t,Ψ(q, ερ(t, q))) · ∂wΨ(q, ερ(t, q))

)∣∣∣∣
ε=0

(∂tερ(t, q))|ε=0︸ ︷︷ ︸
=0

+
(
n(t,Ψ(q, ερ(t, q))) · ∂wΨ(q, ερ(t, q))

)∣∣∣
ε=0

∂tρ(t, q)

=
(
n(t,Ψ(q, 0)) · ∂wΨ(q, 0)

)
∂tρ(t, q)

(3.3)
=

(
n∗(q) · ∂wΨ(q, 0)

)
∂tρ(t, q)

= ∂tρ(t, q) ,

where we used (3.5) in the last line. To see n(t,Ψ(q, 0)) = n∗(q) in the line before, we observe
the fact that n(t,Ψ(q, ερ(t, q))) is the normal of Γερ(t) at Ψ(q, ερ(t, q)) ∈ Γερ(t), so that for ε = 0
the term n(t,Ψ(q, 0)) is the normal of Γρ≡0(t) at Ψ(q, 0) ∈ Γρ≡0. With (3.3) and Γρ≡0(t) = Γ∗

for all t we find that n(t,Ψ(q, 0)) = n(t, q) = n∗(q) is the normal of Γ∗ at q ∈ Γ∗. �

In the next note, we show a formula for the linearization of mean curvature, which is well-known
in the literature, but we give a basic proof with the help of the abstract results from Chapter 2.

Lemma 3.5. The linearization of mean curvature in (3.16) for q ∈ Γ∗ and t > 0 is given by

d

dε
H(t,Ψ(q, ερ(t, q)))

∣∣∣∣
ε=0

= ∆Γ∗ρ(t, q) + |σ∗|2(q) ρ(t, q) , (3.18)

where ∆Γ∗ is the Laplace-Beltrami operator on Γ∗ and |σ∗|2 is the square of the norm of the
second fundamental form of Γ∗, given through |σ∗|2 =

∑n
i=1(κ

∗
i )

2 with the principal curvatures
κ∗i of Γ∗.
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Proof. We prove this formula by using the concept of the normal time derivative from Definition
2.36 and in particular formula (2.3) for the normal time derivative of mean curvature. We will
also need the relationship between different types of derivatives from Lemma 2.39. To use these
facts from Chapter 2 we have to change our notation slightly, since we consider derivatives with
respect to ε instead of t as in Chapter 2. Therefore we will introduce an evolving hypersurface

Γ̃ =
⋃

ε∈(−ε0,ε0)

{ε} × Γ̃(ε)

parametrized by ε instead of t in the following way. We fix t and consider for small ε0 > 0 and
ε ∈ (−ε0, ε0) the mapping

Φερ
t : Γ∗ −→ Ω , Φερ

t (q) := Ψ(q, ερ(t, q)) ,

which is a diffeomorphism onto its image and set

Γ̃(ε) := im (Φερ
t ) .

There is a one-to-one relation between Γ̃ and Γ given by

Γ̃(ε) = Γερ(t) ,

so that we see that the hypersurfaces Γ̃(ε) are just a renaming of the previous ones. In particular
it holds Γ̃(0) = Γρ≡0(t) = Γ∗.

To calculate the normal-velocity of Γ̃ at (ε, p), we let p = Φερ
t (q) for some q ∈ Γ∗ and proceed

Ṽ (ε, p) = Ṽ (ε,Φερ
t (q)) = ñ(ε,Φερ

t (q)) · d
dε

Φερ
t (q)

=
(
ñ(ε,Φερ

t (q)) · ∂wΨ(q, ερ(t, q))
)
ρ(t, q) ,

where ñ(ε, p) is the normal of Γ̃(ε) at p ∈ Γ̃(ε). With the fact ñ(0, q) = n∗(q), which is justified
with the same lines as n(t, q) = n∗(q) in the proof of the linearization of normal velocity in
Lemma 3.4, we get for ε = 0

Ṽ (0, q) =
(
ñ(0, q) · ∂wΨ(q, 0)

)
ρ(t, q) = ρ(t, q) ,

where we used (3.5).
The next point is to observe that the mean curvature of Γ̃(ε) at p ∈ Γ̃(ε), denoted by H̃(ε, p),

is due to the fact Γ̃(ε) = Γερ(t) also the mean curvature of Γερ(t) at p ∈ Γερ(t), denoted by
H(t, p). With p = Φερ

t (q) for some q ∈ Γ∗ (note that t is always fixed at the moment) this gives

H̃(ε,Φερ
t (q)) = H(t,Φερ

t (q)) ,

where H̃ is defined on Γ̃ and H on Γ.
So we get for the linearization of mean curvature, which we wanted to calculate,

d

dε
H(t,Φερ(t, q)) =

d

dε
H̃(ε,Φερ(t, q)) .
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The right side can be expressed with the help of ∂̃
◦
, the normal time derivative on Γ̃ and another

term as follows from Lemma 2.39 with Γ̃ and ε instead of Γ and t through

d

dε
H̃(ε,Φερ

t (q)) = ∂̃
◦
H̃(ε,Φερ

t (q)) + ∇eΓ(ε)
H̃(ε,Φερ

t (q) ·
(
d

dε
Ψ(q, ερ(t, q))

)T

= ∆eΓ(ε)
Ṽ (ε,Φερ

t (q)) + |σ̃|2(ε,Φερ
t (q)) Ṽ (ε,Φερ

t (q))

+∇eΓ(ε)
H̃(ε,Φερ

t (q) ·
(
∂wΨ(q, ερ(t, q))

)T
ρ(t, q) .

In the last equation we used formula (2.3) for the normal time derivative of mean curvature
from Chapter 2. For ε = 0, this gives

d

dε
H̃(ε,Φερ

t (q))

∣∣∣∣
ε=0

= ∆Γ∗ Ṽ (0, q) + |σ̃|2(0, q)Ṽ (0, q)

+∇Γ∗H̃(0, q) ·
(
∂wΨ(q, 0)

)T
ρ(t, q)

= ∆Γ∗ρ(t, q) + |σ∗|2(q)ρ(t, q) + ∇Γ∗H∗(q) ·
(
∂wΨ(q, 0)

)T
ρ(t, q)

= ∆Γ∗ρ(t, q) + |σ∗|2(q)ρ(t, q) ,

where we used Ṽ (0, q) = ρ(t, q), the same relation of σ̃ and σ as for H̃ and H and the fact that
H∗ ≡ 0 on Γ∗. For later use in Section 3.4 of surface diffusion we remark that we just need
H∗ ≡ const. This yields formula (3.18). �

We proceed with the linearization of the boundary condition

n(t,Ψ(q, ρ(t, q))) · µ(Ψ(q, ρ(t, q))) = 0 on ∂Γ∗ (3.19)

for t > 0 around ρ ≡ 0, that is around the stationary state Γ∗.
To calculate this linearization at q0 ∈ ∂Γ∗ and t0 > 0, we choose a local parametrization of Γ∗

around q0 with nice properties. More precisely, let U ⊂ Rn+1 be an open neighbourhood of q0,
V ⊂ Rn+1 open and ϕ : U → V a diffeomorphism from Definition 2.4, such that

ϕ(U ∩ Γ∗) = V ∩
(
R

n
+ × {0}

)
with (ϕ(q0))n = 0 .

We set D × {0} := V ∩
(
Rn

+ × {0}
)

and let F =
(
ϕ−1

)∣∣
D

, i.e.

F : D −→ Γ∗ ⊂ R
n+1 , x 7→ F (x) . (3.20)

This is a local parametrization extended up to the boundary around q0 with F (x0) = q0 for
some x0 ∈ ∂D. At the fixed point x0, we can demand the following properties.

(A) ∂1F (x0), . . . , ∂nF (x0) is an orthonormal basis of Tq0Γ
∗,

(B) ∂1F (x0) = n∂Γ∗(q0), where n∂Γ∗ is the outer unit conormal of Γ∗ at ∂Γ∗ and

(C) (∂1F × . . .× ∂nF ) (x0) = n∗(F (x0)), where we just fix the sign.
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The third assumption (C) uses the cross product for n vectors in Rn+1, which in this case due
to the orthonormality of ∂1F (x0), . . . , ∂nF (x0) lies by definition in normal direction and we just
want to fix the sign. Note that with our Definition 2.5 of the tangent space even for points
q0 ∈ ∂Γ∗ on the boundary the tangent space Tq0Γ

∗ is an n-dimensional subspace in contrary to
an halfspace, as considered in some literature.

With the parametrization F of Γ∗ we also get a parametrization of Γρ(t) using the diffeomor-
phism Φρ

t : Γ∗ → Γρ(t) with Φρ
t0(q0) = p0 for p0 ∈ Γρ(t), which we denote by

Gt : D −→ Γρ(t) , Gt(x) := Φρ
t (F (x)) = Ψ(F (x), ρ(t, F (x))) .

Locally around (t0, p0), the normal

n(t, p) = n(t,Φρ
t (q)) = n(t,Φρ

t (F (x)))

of Γρ(t) is given with the help of the cross product of n vectors in Rn+1 through

n(t,Φρ
t (F (x))) =

∂1Gt × . . .× ∂nGt

|∂1Gt × . . .× ∂nGt|
(x) =

∂1Φ
ρ
t × . . .× ∂nΦρ

t

|∂1Φ
ρ
t × . . .× ∂nΦρ

t |
(F (x)) ,

where ∂i is the partial derivative with respect to xi. For the convenience of the reader, we
summarize the used properties of the cross product in the appendix.

To calculate the linearization of the boundary condition (3.19), we need the following properties
of Ψ at w = 0.

Lemma 3.6. With the help of the parametrization F it holds for F (x) = q ∈ Γ∗

(i) Ψ(F (x), 0) = F (x), ∂iΨ(F (x), 0) = ∂iF (x),

and for F (x) = q ∈ ∂Γ∗ we have

(ii) ∂wΨ(F (x), 0) = n∗(F (x)), ∂i∂wΨ(F (x), 0) · n∗(F (x)) = 0.

Additionally, for the fixed F (x0) = q0 ∈ ∂Γ∗ it holds

(iii) (∂1Ψ × . . .× ∂nΨ) (F (x0), 0) = n∗(F (x0)),

(iv)

(
∂1Ψ × . . .×

i-th pos.

∂̂wΨ × . . .× ∂nΨ

)
(F (x0), 0) = (−1)∂iF (x0) and

(v)

(
∂1Ψ × . . .×

i-th pos.

∂̂i∂wΨ × . . .× ∂nΨ

)
(F (x0), 0) =

(
∂i∂wΨ(F (x0), 0) · ∂iF (x0)

)
n∗(F (x0)),

where i = 1, . . . , n in each case.

Proof. (i) follows directly from (3.3).
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The first part in (ii) is just Lemma 3.1 and the second part can be derived by the first part
and by differentiating (3.5). In fact, it holds

0 = ∂i

(
∂wΨ(F (x), 0) · n∗(F (x))

)

= ∂i∂wΨ(F (x), 0) · n∗(F (x)) + ∂wΨ(F (x), 0) · ∂in
∗(F (x))

= ∂i∂wΨ(F (x), 0) · n∗(F (x)) + n∗(F (x)) · ∂in
∗(F (x))︸ ︷︷ ︸

=0

= ∂i∂wΨ(F (x), 0) · n∗(F (x)) ,

where we used 2 (n∗ · ∂in
∗) = ∂i

(
|n∗|2

)
= 0.

(iii) is achieved due to

(∂1Ψ × . . .× ∂nΨ) (F (x0), 0)
(i)
= (∂1F × . . . × ∂nF ) (x0)

and the above sign convention (C) for the parametrization F at x0.

(iv) follows from

(∂1Ψ × . . .× ∂wΨ × . . .× ∂nΨ) (F (x0), 0)
(ii)
= (∂1F × . . . × (n∗ ◦ F ) × . . . × ∂nF ) (x0)

and Lemma 5.6 in the appendix.

(v) can be shown in the following way. Due to the second part of (ii) at x = x0, we can write

∂i∂wΨ(F (x0), 0) =
n∑

l=1

(
∂i∂wΨ(F (x0), 0) · ∂lF (x0)

)
∂lF (x0)

because
(
∂1F (x0), . . . , ∂nF (x0), n

∗(F (x0))
)

is an orthonormal basis of Rn+1. This gives

(
∂1Ψ × . . .×

i-th pos.

∂̂i∂wΨ × . . .× ∂nΨ

)
(F (x0), 0)

=


∂1Ψ(F (x0), 0) × . . .×

i-th pos.

̂n∑

l=1

(
∂i∂wΨ(F (x0), 0) · ∂lF (x0)

)
∂lF (x0) × . . .× ∂nΨ(F (x0), 0)




=
n∑

l=1

(
∂1F × . . .×

i-th pos.

̂∂lF (x0) × . . .× ∂nF

)
(x0)

︸ ︷︷ ︸
=δil n∗(F (x0))

(
∂i∂wΨ(F (x0), 0) · ∂lF (x0)

)

=
(
∂i∂wΨ(F (x0), 0) · ∂iF (x0)

)
n∗(F (x0)) .

�
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With the help of the above notation for the normal in terms of a parametrization, we can write
the boundary condition (3.19) locally around (t0, x0) through

((
∂1Φ

ρ
t × . . . × ∂nΦρ

t

)
·
(
µ ◦ Φρ

t

))
(F (x)) = 0 . (3.21)

For the linearization of (3.19) we can therefore consider (3.21) and linearize this equation. To
proceed with a precise result, we introduce some notation that will be convenient to shorten the
calculations. We write

∂iΨ(q, ρ(t, q)) := ∂iΨ(F (x), w)|w=ρ(t,F (x)) ,

that is, the derivative acts only on the first variable of Ψ ,

∂wΨ(q, ρ(t, q)) := ∂wΨ (F (x), ρ(t, F (x))) and

∂iρ(t, q) := ∂iρ(t, F (x)) ,

or even briefer

∂iΨ := ∂iΨ(q, ρ(t, q)) , ∂wΨ := ∂wΨ(q, ρ(t, q)) and ∂iρ := ∂iρ(t, q) .

Now we can show the following linearization of (3.19).

Lemma 3.7. The linearization of the angle condition (3.19) for t > 0 and q ∈ ∂Γ∗ is given by

d

dε

(
n(t,Ψ(q, ερ(t, q))) · µ(Ψ(q, ερ(t, q)))

)∣∣∣∣
ε=0

= −∇Γ∗ρ(t, q) · µ(q) + Sq(n
∗(q), n∗(q))ρ(t, q) , (3.22)

where S is the second fundamental form of ∂Ω with respect to −µ. Note that n∗(q) ∈ Tq∂Ω
because due to the angle condition for the stationary state Γ∗ the relation n∗(q) · µ(q) = 0 for
q ∈ ∂Γ∗ holds true.

Proof. We calculate the linearization at a fixed point q0 ∈ ∂Γ∗ and t0 > 0. Using the above
notation for the parametrization F we are led to the linearization of (3.21), i.e. we have to
calculate

d

dε

[(
∂1Φ

ερ
t × . . . × ∂nΦερ

t

)
·
(
µ ◦ Φερ

t

)
(F (x))

]∣∣∣∣
ε=0

(3.23)

at the fixed point (t0, x0).

For the vector product in the above formula we do firstly some calculations without ε to get

∂iΦ
ρ
t (F (x)) = ∂i

(
Ψ(F (x), ρ(t, F (x)))

)
= ∂iΨ + ∂wΨ ∂iρ , (3.24)
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where we used the above short notation. Furthermore we observe

(
∂1Φ

ρ
t × . . .× ∂nΦρ

t

)

=
(
(∂1Ψ + ∂iρ ∂wΨ) × . . . × (∂nΨ + ∂iρ ∂wΨ)

)

=
(
∂1Ψ × . . . × ∂nΨ

)

+

n∑

i=1

∂iρ

(
∂1Ψ × . . .×

i-th pos.

∂̂wΨ × . . .× ∂nΨ

)

+

n∑

i,j=1

i6=j

∂iρ ∂jρ

(
∂1Ψ × . . .×

i-th pos.

∂̂wΨ × . . .×
j-th pos.

∂̂wΨ × . . .× ∂nΨ

)

︸ ︷︷ ︸
=0

+ terms with more than two ∂wΨ in the cross product, which also vanish

=
(
∂1Ψ × . . . × ∂nΨ

)
+

n∑

i=1

∂iρ

(
∂1Ψ × . . .×

i-th pos.

∂̂wΨ × . . .× ∂nΨ

)
.

Inserting the last identity into (3.23) for the fixed (t0, x0) with F (x0) = q0, we can do the
following calculation

d

dε

[(
∂1Φ

ερ
t0

× . . .× ∂nΦερ
t0

)
·
(
µ ◦ Φερ

t0

)
(F (x0))

]∣∣∣∣
ε=0

=
d

dε

{[(
∂1Ψ × . . . × ∂nΨ

)
(q0, ερ(t0, q0))

+
n∑

i=1

∂iερ(t0, q0)

(
∂1Ψ × . . .×

i-th pos.

∂̂wΨ × . . . × ∂nΨ

)
(q0, ερ(t0, q0))

]
· µ(Ψ(q0, ερ(t0, q0)))

}∣∣∣∣∣
ε=0

=
d

dε



(
∂1Ψ × . . .× ∂nΨ

)
(q0, ερ(t0, q0))

︸ ︷︷ ︸
(1)

+

n∑

i=1

∂iερ(t0, q0)

(
∂1Ψ × . . .×

i-th pos.

∂̂wΨ × . . . × ∂nΨ

)
(q0, ερ(t0, q0))

︸ ︷︷ ︸
(2)




∣∣∣∣∣∣∣∣∣∣
ε=0

· µ(Ψ(q0, 0))

+



(
∂1Ψ × . . .× ∂nΨ

)
(q0, 0)

︸ ︷︷ ︸
(3)

+0


 · d

dε
µ(Ψ(q0, ερ(t0, q0)))︸ ︷︷ ︸

(4)

∣∣∣∣∣∣∣
ε=0

.

52



3.2. MEAN CURVATURE FLOW

We will consider the above numbered terms separately. For the first one, we calculate

d

dε
(1)

∣∣∣∣
ε=0

=
n∑

k=1

(
∂1Ψ × . . .×

k-th pos.

∂̂w∂kΨ × . . .× ∂nΨ

)
(q0, 0) ρ(t0, q0)

3.6,(v)
=

n∑

k=1

n∗(q0)
(
∂k∂wΨ(F (x0), 0) · ∂kF (x0)

)
ρ(t0, q0) .

Therefore we get

d

dε
(1)

∣∣∣∣
ε=0

· µ(q0) =

n∑

k=1

(
∂k∂wΨ(F (x0), 0) · ∂kF (x0)

)
ρ(t0, q0) (n∗(q0) · µ(q0))︸ ︷︷ ︸

=0

= 0 ,

where we used µ(Ψ(q0, 0)) = µ(q0) due to (3.3) and the angle condition for Γ∗ to conclude
n∗ · µ = 0.
For the second term, we observe

d

dε
(2)

∣∣∣∣
ε=0

=

n∑

i=1

∂iρ(t0, q0)

(
∂1Ψ × · · · ×

i-th pos.

∂̂wΨ × · · · × ∂nΨ

)
(F (x0), 0)

3.6, (iv)
= −

n∑

i=1

∂iρ(t0, q0)∂iF (x0)

= −∇Γ∗ρ(t0, q0) ,

where the last identity can be seen with the representation of the surface gradient in local
coordinates from Remark 2.22 due to assumption (A) for F at the fixed x0. Taking the scalar
product with the normal yields

d

dε
(2)

∣∣∣∣
ε=0

· µ(q0) = −∇Γ∗ρ(t0, q0) · µ(q0) ,

which is the directional derivative −∂µρ(t0, q0) of ρ in direction of the outer unit conormal µ of
Γ∗ at ∂Γ∗. Here we used the fact µ(q) = n∂Γ∗(q) on ∂Γ∗, that is the outer unit normal of Ω
equals the outer unit conormal of Γ∗ at ∂Γ∗ due to the angle condition.
For the remaining terms we observe

(3) · d

dε
(4)

∣∣∣∣
ε=0

= (∂1Ψ × · · · ∂nΨ) (F (x0), 0) ·
d

dε
µ(Ψ(q0, ερ(t0, q0)))

∣∣∣∣
ε=0

3.6, (iii)
= n∗(q0) · ∂(n∗(q0) ρ(t0, q0))µ ,

where the directional derivative appears by definition with the help of the curve c(ε) = Ψ(q0, ερ(t0, q0)),
which fulfills

c(ε) ∈ ∂Ω ,

c(0) = Ψ(q0, 0) = q0 ,

c′(0) = ∂wΨ(q0, 0) ρ(t0, q0)
3.6, (ii)

= n∗(q0)ρ(t0, q0) .
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Due to linearity of the directional derivative, we finally get

(3) · d

dε
(4)

∣∣∣∣
ε=0

=
(
n∗(q0) · ∂n∗(q0)µ

)
ρ(t0, q0)

= Sq0(n
∗(q0), n

∗(q0)) ρ(t0, q0) ,

where S is the second fundamental form of ∂Ω equipped with normal −µ, see Definition 2.16.
Note that n∗(q0) ∈ Tq0∂Ω due to the angle condition for the stationary state Γ∗.
Altogether, the linearization of the boundary condition

n(t,Ψ(q, ρ(t, q))) · µ(Ψ(q, ρ(t, q)) = 0

at the fixed point (t0, q0) yields

0 =
d

dε
(1)

∣∣∣∣
ε=0

· µ(q0) +
d

dε
(2)

∣∣∣∣
ε=0

· µ(q0) + (3) · d

dε
(4)

∣∣∣∣
ε=0

= 0 −∇Γ∗ρ(t0, q0) · µ(q0) + Sq0(n
∗(q0), n

∗(q0)) ρ(t0, q0) ,

Since the fixed point (t0, q0) was arbitrary, we can conclude the above linearization for every
q ∈ ∂Γ∗ and t > 0, which completes the proof of Lemma 3.7. �

From the above Lemma 3.7 together with Lemmata 3.5 and 3.4 about mean curvature and
normal velocity, we get the following linearization of (3.16).





∂tρ(t, q) = ∆Γ∗ρ(t, q) + |σ∗|2(q) ρ(t, q) in Γ∗ for all t > 0 ,
∇Γ∗ρ(t, q) · µ(q) = S(n∗, n∗)(q) ρ(t, q) on ∂Γ∗ for all t > 0 ,

ρ(0, q) = 0 in Γ∗ ,
(3.25)

or in abbreviated form




∂tρ =
(
∆Γ∗ + |σ∗|2

)
ρ in Γ∗ for all t > 0 ,

0 = (∂µ − S(n∗, n∗)) ρ on ∂Γ∗ for all t > 0 ,
ρ(0) = 0 in Γ∗ .

(3.26)

Remark 3.8. For the above linearization of the right angle condition we chose the second
fundamental form S of ∂Ω with respect to −µ to have the same notation for the bilinear form
from Definition 3.9 as in the work of Ros and Souam [RS97] and Vogel [Vog00].

3.2.3 Conditions for linearized stability

In this important subsection we give conditions for the asymptotic stability of (3.26), which was
the linearization of the geometric problem mean curvature flow with outer boundary contact.
To this end we generalize the work of Garcke, Ito and Kohsaka [GIK05], where they considered
surface diffusion flow with outer boundary contact for curves in the plane. This method, based
on spectral theory for a specific linear operator, is independent of a maximum principle and can
therefore be generalized to later sections about volume-preserving mean curvature flow, surface
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diffusion flow or even to cases with triple junctions, when a coupled system of partial differential
equations does appear.
We want to give the necessary steps for this part firstly in words and formulate the result

already. At the beginning, we are going to show that the linearized problem (3.26) is the
gradient flow of a functional E(ρ) which is given with the help of a certain bilinear form I
through E(ρ) = I(ρ, ρ)/2. Then we can show that the linearized operator A, which describes
solutions of (3.26), is self-adjoint and we will study its spectrum. This spectrum will consist of
countable many eigenvalues, that can be related to the bilinear form I with the help of Courant’s
maximum-minimum principle. Finally, we can describe asymptotic stability of the zero solution
of the linearized problem (3.26) through the condition that I is positive and we achieved our
goal:

Γ∗ is linearly asymptotically stable

⇐⇒





I(ρ, ρ) :=
∫
Γ∗

(
|∇Γ∗ρ|2 − |σ∗|2ρ2

)
dHn −

∫
∂Γ∗ S(n∗, n∗)ρ2 dHn−1

is positive for all ρ ∈ H1(Γ∗)\{0} .

We recall shortly the term asymptotic stability as in the book of Lunardi [Lun95]. The zero
solution of (3.26) is called stable, if for each ε > 0 there is a δ > 0 such that for all solutions ρ
of (3.26) with starting condition ρ(0) = ρ0 in Γ∗ and ‖ρ0‖ < δ the inequality ‖ρ(t)‖ < ε holds for
all t > 0. It is called asymptotically stable, if it is stable and in addition limt→∞ ‖ρ(t)‖ = 0
uniformly for ρ0 in a neighbourhood of 0. The norm ‖.‖ is the norm of the subspace D(A) in
our upcoming notation and will be different from section to section.
Problem (3.14), that is the mean curvature flow with outer boundary contact as a right angle

condition, can be interpreted as the L2-gradient flow of the area functional A(t), which follows
from

d

dt
A(t) = −

∫

Γ(t)
V H

from Lemma 2.46. Here we demonstrate that the linearization (3.26) can also be interpreted as
a gradient flow, which will be an important observation for our stability analysis.
Therefore we introduce the following symmetric bilinear form on H1(Γ∗) and the associated

energy.

Definition 3.9. For ρ1, ρ2 ∈ H1(Γ∗) we define

I(ρ1, ρ2) :=

∫

Γ∗

(
∇Γ∗ρ1 · ∇Γ∗ρ2 − |σ∗|2ρ1 ρ2

)
dHn −

∫

∂Γ∗

S(n∗, n∗)ρ1 ρ2 dHn−1 (3.27)

and the associated energy for ρ ∈ H1(Γ∗)

E(ρ) :=
1

2
I(ρ, ρ) . (3.28)
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Now we can show that the linearized problem (3.26) is the L2-gradient flow of E. Here we
say that a time dependent function ρ with values in H1(Γ∗) is a solution to the gradient flow
equation to E and (. , .)L2 if and only if

(∂tρ(t), ξ)L2 = −∂E(ρ(t))(ξ) (3.29)

for all ξ ∈ H1(Γ∗) and all t. The above derivative of E in a direction ξ is given by I(ρ(t), ξ).
Then formula (3.29) is just a weak version of the linearized problem (3.26). In fact, if we consider
for fixed t the equation

∂tρ(t) = ∆Γ∗ρ(t) + |σ∗|2ρ(t)

for a solution ρ ∈ L2(0, T ;H2(Γ∗))∩H1(0, T ;L2(Γ∗)) of (3.26), multiply this identity with some
ξ ∈ H1(Γ∗) , integrate over Γ∗ and use the boundary condition, we get

∫

Γ∗

∂tρ(t) · ξ =

∫

Γ∗

(
∆Γ∗ρ(t) · ξ + |σ∗|2ρ(t) ξ

)

=

∫

Γ∗

(
−∇Γ∗ρ(t) · ∇Γ∗ξ + |σ∗|2ρ(t) ξ

)
+

∫

∂Γ∗

∇Γ∗ρ(t) · n∂Γ∗︸ ︷︷ ︸
=∂µρ(t)

ξ

= −
∫

Γ∗

(
∇Γ∗ρ(t) · ∇Γ∗ξ − |σ∗|2ρ(t) ξ

)
+

∫

∂Γ∗

S(n∗, n∗)ρ(t) ξ

= −I(ρ(t), ξ) .

Here we used integration by parts on hypersurfaces from Remark 2.30. This remark was formu-
lated for smooth functions, but by a usual approximation of Sobolev functions it also holds in
this case.

If on the other hand the equation

(∂tρ(t), ξ)L2 = −I(ρ(t), ξ)

holds for all ξ ∈ H1(Γ∗), we get with the help of regularity theory that ρ(t) ∈ H2(Γ∗) is a
solution of (3.26).

Now we define the corresponding linearized operator of (3.26) through

A : D(A) −→ H

with
{

D(A) = {ρ ∈ H2(Γ∗) | (∂µ − S(n∗, n∗)) ρ = 0 on ∂Γ∗} ,
H = L2(Γ∗) ,

(3.30)

by

Aρ := ∆Γ∗ρ+ |σ∗|2ρ (3.31)
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for all ρ ∈ D(A). With the help of the above gradient flow structure, we see that for ρ ∈ D(A)
and ξ ∈ H1(Γ∗) the identity

(Aρ, ξ)L2 = −I(ρ, ξ) (3.32)

holds true. This implies the symmetry of the operator A.

Lemma 3.10. The operator A is symmetric with respect to the inner product (. , .)L2 .

Proof. For ρ, ξ ∈ D(A) we have

(Aρ, ξ)L2 = −I(ρ, ξ) = −I(ξ, ρ) = (Aξ, ρ)L2 = (ρ,Aξ)L2 ,

so that A is symmetric. �

As in Garcke, Ito and Kohsaka [GIK05], we need to analyze the spectrum of A in order to decide
on the stability behaviour of the linearized problem (3.26). This spectrum can be described with
the help of the functional I from above. In fact, if ρ ∈ D(A) is an eigenfunction of A to the
eigenvalue λ, it holds

λ (ρ, ξ)L2 = (Aρ, ξ)L2 = −I(ρ, ξ)

for all ξ ∈ H1(Γ∗).
The next important step is to show boundedness of eigenvalues of A from above. Therefore,

the following lemma is needed.

Lemma 3.11. There exist positive constants C1 and C2 such that

‖ρ‖2
H1(Γ∗) ≤ C1 (ρ, ρ)L2(Γ∗) + C2I(ρ, ρ)

for all ρ ∈ H1,2(Γ∗).

Proof. At first, we want to use the following inequality. For all δ > 0 there exists a Cδ > 0,
such that

‖ρ‖2
L2(∂Γ∗) ≤ δ‖∇Γ∗ρ‖2

L2(Γ∗) + Cδ‖ρ‖2
L2(Γ∗) (3.33)

for all ρ ∈ H1(Γ∗).
To see this inequality, assume by contradiction that there exists a δ > 0, such that we can find

a sequence (ρ̃n)n∈N ⊂ H1(Γ∗) with

‖ρ̃n‖2
L2(∂Γ∗) > δ‖∇Γ∗ ρ̃n‖2

L2(Γ∗) + n‖ρ̃n‖2
L2(Γ∗) .

In particular this means ‖ρ̃n‖L2(∂Γ∗) > 0 and we can build ρn :=
(
‖ρ̃n‖L2(∂Γ∗)

)−1
ρ̃n to get

1 > δ‖∇Γ∗ρn‖2
L2(Γ∗) + n‖ρn‖2

L2(Γ∗) .
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This implies

‖ρn‖2
L2(Γ∗) <

1

n
−→ 0 as n→ ∞

and

‖∇Γ∗ρn‖2
L2(Γ∗) <

1

δ
.

Therefore ρn is bounded uniformly in H1(Γ∗), so a subsequence converges weakly

ρn ⇀ ρ in H1(Γ∗)

to some ρ ∈ H1(Γ∗). Due to ρn → 0 in L2(Γ∗), we conclude ρ = 0. From the compact embedding
H1(Γ∗) →֒ L2(∂Γ∗) we get then the strong convergence

ρn → 0 in L2(∂Γ∗) .

This is a contradiction to the fact ‖ρn‖L2(∂Γ∗) = 1 for all n ∈ N and therefore we proved
inequality (3.33).
Now we proceed with the estimate

I(ρ, ρ) =

∫

Γ∗

|∇Γ∗ρ|2 −
∫

Γ∗

|σ∗|2ρ2 −
∫

∂Γ∗

S(n∗, n∗)ρ2

≥
∫

Γ∗

|∇Γ∗ρ|2 − ‖|σ∗|2‖L∞(Γ∗) ‖ρ‖2
L2(Γ∗) − ‖S(n∗, n∗)‖L∞(∂Γ∗) ‖ρ‖2

L2(∂Γ∗)

(3.33)
≥

∫

Γ∗

|∇Γ∗ρ|2 − ‖|σ∗|2‖L∞(Γ∗) ‖ρ‖2
L2(Γ∗)

−δ‖S(n∗, n∗)‖L∞(∂Γ∗) ‖∇Γ∗ρ‖2
L2(Γ∗) − Cδ‖S(n∗, n∗)‖L∞(∂Γ∗) ‖ρ‖2

L2(Γ∗)

=
(
1 − δ‖S(n∗, n∗)‖L∞(∂Γ∗)

)
‖∇Γ∗ρ‖2

L2(Γ∗)

−
(
‖|σ∗|2‖L∞(Γ∗) + Cδ‖S(n∗, n∗)‖L∞(∂Γ∗)

)
‖ρ‖2

L2(Γ∗) .

By choosing δ > 0 small enough, so that
(
1 − δ‖S(n∗, n∗)‖L∞(∂Γ∗)

)
> 0 we get the inequality

I(ρ, ρ) + C‖ρ‖2
L2(Γ∗) ≥ ‖∇Γ∗ρ‖L2(Γ∗) .

Adding ‖ρ‖2
L2(Γ∗) gives the assertion. �

Due to the previous lemma we can show boundedness from above for the largest eigenvalue of A.

Lemma 3.12. Let λ be an eigenvalue of A. Then the following inequality holds

λ ≤ C1

C2
, (3.34)

where C1 and C2 are the positive constants of the above Lemma 3.11.
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Proof. Let ρ ∈ D(A) be an eigenvector corresponding to the eigenvalue λ, which in particular
means ρ 6= 0. This implies

λ (ρ, ρ)L2 = (Aρ, ρ)L2 = −I(ρ, ρ) .

If we now assume that λ > C1
C2

, we would have

0 = I(ρ, ρ) + λ (ρ, ρ)L2 > I(ρ, ρ) +
C1

C2
(ρ, ρ)L2

3.11
≥ 1

C2
‖ρ‖2

H1(Γ∗)

> 0 ,

which is a contradiction. �

The next step is to show that A is self-adjoint with respect to the L2-inner product (. , .)L2 .
This will be done without explicit work with the adjoint A∗, but with a property, that implies
the equivalence of symmetry and self-adjointness. For this abstract theorem we refer to the
book of Weidmann [Weid76]. Due to Lemma 3.10, which shows symmetry of A, we then proved
self-adjointness.

Lemma 3.13. The operator A is self-adjoint with respect to the L2-inner product.

Proof. We use the following theorem of operator theory. If there exists a λ ∈ R, such that

im (λId−A) = L2(Γ∗) ,

the properties symmetry and self-adjointness of A are equivalent, see [Weid76].

So we have to show that there exists a λ ∈ R, such that for a given f ∈ L2(Γ∗) there exists a
ρ ∈ D(A) with

λρ−Aρ = f on Γ∗ ,

that is

(∗)
{

−∆Γ∗ρ− |σ∗|2ρ+ λρ = f on Γ∗ ,
(∂µ − S(n∗, n∗)) ρ = 0 on ∂Γ∗ .

The weak formulation of (∗) is given through the following problem. For given f ∈ L2(Γ∗) find
a ρ ∈ H1(Γ∗) such that

∫

Γ∗

∇Γ∗ρ · ∇Γ∗ψ −
∫

Γ∗

|σ∗|2ρψ + λ

∫

Γ∗

ρψ −
∫

∂Γ∗

S(n∗, n∗)ρψ =

∫

Γ∗

f ψ

for all ψ ∈ H1(Γ∗). When we define the left side of the above equation as a bilinear form a(ρ, ψ)
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with a : H1(Γ∗) ×H1(Γ∗) → R we conclude the following inequalities. For ρ ∈ H1(Γ∗) it holds

a(ρ, ρ) = I(ρ, ρ) +

∫

Γ∗

λρ2

3.11
≥ 1

C2
‖ρ‖2

H1 − C1

C2

∫

Γ∗

ρ2 +

∫

Γ∗

λρ2

=
1

C2
‖ρ‖2

H1 +

(
λ− C1

C2

)∫

Γ∗

ρ2

≥ 1

C2
‖ρ‖2

H1 ,

where the last inequality can be achieved by choosing λ large enough, such that λ− C1
C2

is positive.
The above inequality shows coercivity of a for large λ and as in the theory of elliptic operators

in Rn one can show that the above problem (∗) has a unique solution ρ ∈ H1(Γ∗), see Aubin
[Aub82]. Regularity theory for elliptic partial differential equations on manifolds, which is due
to the fact that differentiability is a local property roughly is the same as on open sets in Rn,
shows ρ ∈ H2(Γ∗). The boundary condition ∂µρ − S(n∗, n∗)ρ = 0 on ∂Γ∗ is then fulfilled in a
strong sense.
Altogether we found a solution ρ ∈ D(A) of λρ−Aρ = f on Γ∗. With the above explanation,

we proved self-adjointness of A. �

As next point we want to give a first criterion for stability of (3.25) around the zero solution.

Theorem 3.14.

(i) The spectrum of A consists of countable many real eigenvalues.

(ii) The initial value problem (3.25) is solvable for initial data in H = L2(Γ∗).

(iii) The zero solution of (3.25) is asymptotically stable if and only if the largest eigenvalue of
A is negative, in short notation σ(A) < 0.

Proof. ad (i): For λ > C1
C2

we have shown surjectivity of

(λId−A) : D(A) → H

in the proof of the last Lemma 3.13.
With the identity

σ(λId−A) = λ− σ(A)

for the spectrum, together with the fact that µ ≤ C1
C2

for every µ ∈ σ(A) from Lemma 3.12, we
see that there exists no eigenvalue zero of λId−A. For a linear operator this means in particular
that it is injective.
Continuity of the resolvent

(λId−A)−1 : H → D(A)
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can be seen by observing that

(λId−A)−1 (f) = ρ ⇔ (λId−A) (ρ) = f ,

which means that ρ solves the elliptic partial differential equation (∗) from the proof of Lemma
3.13. So a standard inequality for solutions of elliptic partial differential equations

‖ρ‖H2 ≤ ‖f‖L2

gives the desired continuity.
Since the embedding D(A) →֒ L2 is compact, we get a compact operator

(λId−A)−1 : H → H .

Together with the self-adjointness of A from Lemma 3.13, we get the claim (i) with the help of
an abstract theorem of operator theory, for example we refer to the book of Kato [Kat95].
ad (ii) and (iii): Existence and stability of the problem

Find ρ(t) ∈ D(A) , such that ∂tρ(t) = A(ρ(t))

can be treated with the theory of analytic semigroups as is done for example, in the book of
Lunardi [Lun95]. We just show that A generates an analytic semigroup.
Firstly, we know that for ω ∈ R the operator Ã := A− ωId is self-adjoint, since from Lemma

3.13 the operator A has this property. Second, we can show that Ã is dissipative, which means
that

(Ãρ, ρ)L2 ≤ 0 for all ρ ∈ D(A) .

In fact, this can be seen with the help of Lemma 3.11 through

(Ãρ, ρ)L2 = (Aρ, ρ)L2 − ω(ρ, ρ)L2

= −I(ρ, ρ) − ω(ρ, ρ)L2

≤ − 1

C2
‖ρ‖2

H1 +

(
C1

C2
− ω

)
‖ρ‖2

L2

≤ 0 ,

where the last inequality can be achieved by choosing ω large enough. Now we use an abstract
theorem from [Weid76], which states that a linear, densely defined, self-adjoint and dissipative
operator is in particular sectorial and therefore generates an analytic semigroup T (t). For com-
pleteness we mention finally that S(t) := eωtT (t) is the analytic semigroup with generator A. �

As a characterization of the eigenvalues of A, we can directly generalize a result of [GIK05],
where the authors used the classical Courant’s maximum-minimum principle from [CH68].

Lemma 3.15. Let

λ1 ≥ λ2 ≥ λ3 ≥ . . .

be the eigenvalues of A (taken multiplicity into account).
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(i) For all n ∈ N, the following description of the eigenvalues holds

λn = inf
W∈Σn−1

sup
ρ∈W\{0}

− I(ρ, ρ)

(ρ, ρ)L2

,

−λn = sup
W∈Σn−1

inf
ρ∈W⊥\{0}

I(ρ, ρ)

(ρ, ρ)L2

,

where Σn is the collection of n-dimensional subspaces of H1,2(Γ∗) and W⊥ is the orthogonal
complement with respect to the (., .)L2- inner product.

(ii) The eigenvalues λn depend continuously on S(n∗, n∗) and |σ∗| in the L∞-norm.

Proof. The first part follows with the help Courant’s maximum-minimum principle from [CH68]
and the second part follows due to the structure of I, which is

I(ρ, ρ) =

∫

Γ∗

(
|∇Γ∗ρ|2 − |σ∗|2ρ2

)
dHn −

∫

∂Γ∗

S(n∗, n∗)ρ2 dHn−1 .

Since the generation of the infimum and supremum in (i) preserves continuity, we see the con-
tinuous dependence of λn to ‖σ∗‖L∞(Γ∗) and ‖S(n∗, n∗)‖L∞(∂Γ∗). �

Remark 3.16. For the largest eigenvalue λ1 of A we have the description

−λ1 = min
ρ∈H1(Γ∗)\{0}

I(ρ, ρ)

(ρ, ρ)L2

, (3.35)

which can be seen directly from the second description of λ1 in Lemma 3.15 through −λ1 =
supW∈Σ0

infρ∈W⊥\{0}
I(ρ,ρ)
(ρ,ρ)

L2
and Σ0 = {∅} and therefore W⊥ = H1(Γ∗). The fact that the

minimum is attained also follows from the classical work Courant and Hilbert [CH68].

From Theorem 3.14 we have asymptotic stability of the linearized problem (3.25) if and only
if λ1 < 0. This leads to the following main conclusion.

Theorem 3.17. The linearized problem (3.25) is asymptotically stable if and only if

I(ρ, ρ) > 0

for all ρ ∈ H1(Γ∗)\{0}, where

I(ρ, ρ) =

∫

Γ∗

(
|∇Γ∗ρ|2 − |σ∗|2ρ2

)
dHn −

∫

∂Γ∗

S(n∗, n∗)ρ2 dHn−1 .
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3.3 Volume preserving mean curvature flow

Let us consider here the so called volume preserving mean curvature flow with outer boundary
contact, which is a direct generalization of the previous Section 3.2. With the same notations
as before, we assume the special representation of the evolving hypersurface as a graph from
Section 3.1 and linearize the resulting equation. For the stability analysis we can then refer to
the last section, where we used methods that are also applicable in this case.

With the same notations as in the section of the mean curvature flow we consider here the
problem of finding an evolving hypersurface

Γ =
⋃

t∈[0,T )

{t} × Γ(t) with Γ(t) ⊂ R
n+1 , (3.36)

as in Definition 2.31, evolving due to the volume preserving mean curvature flow, such that Γ(t)
lies in a fixed bounded region Ω ⊂ Rn+1 and the boundary ∂Γ(t) of each of the hypersurfaces
intersects the boundary ∂Ω of the fixed region at a right angle.

In formulas, the problem reads as follows. Find Γ as in (3.36), such that





V = H −H in Γ(t) for all t > 0 ,
Γ(t) ⊂ Ω for all t > 0 ,
∂Γ(t) ⊂ ∂Ω for all t > 0 ,

n(t) · µ = 0 on ∂Γ(t) for all t > 0 ,
Γ(0) = Γ0 .

(3.37)

Here V , H, n and µ are the normal velocity, the mean curvature, a unit normal of the evolving
hypersurface Γ and the outer unit normal to ∂Ω as explained in Sections 3.1 and 3.2.

H is the mean value of mean curvature, that is

H(t) =

∫

Γ(t)
− H dHn . (3.38)

Γ0 is a given starting surface, which lies in Ω and intersects the boundary ∂Ω at a right angle.
We observe that stationary surfaces of this flow satisfy H ≡ H, so they are hypersurfaces with
constant mean curvature, so-called H-hypersurfaces.

With the notations of Section 2.4 for area A(t) and volume V ol(t) of Γ(t) , we can justify the
name of the flow in (3.37).

Lemma 3.18. For a solution Γ of the flow (3.37) the following estimates hold true

(i) d
dtA(t) ≤ 0 and

(ii) d
dtV ol(t) = 0.

Therefore the flow is area minimizing and also volume preserving, as the name of the flow already
indicated.
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Proof. ad (i): With the result of Lemma 2.46 we get

d

dt
A(t) = −

∫

Γ(t)
V H dHn = −

∫

Γ(t)
(H −H)H dHn

= −
∫

Γ(t)
H2 dHn +

1

|Γ(t)|

(∫

Γ(t)
H dHn

)2

≤ 0 ,

where the last inequality follows from the Cauchy-Schwarz inequality. In fact, we have

(∫

Γ(t)
H 1 dHn

)2

≤
(∫

Γ(t)
H2 dHn

) (∫

Γ(t)
12 dHn

)
= |Γ(t)|

∫

Γ(t)
H2 dHn .

ad (ii): Again with the result of Lemma 2.46, we get

d

dt
V ol(t) =

∫

Γ(t)
V dHn =

∫

Γ(t)

(
H −H

)
dHn = 0

and the proof is finished. �

As in the previous Section 3.2 we consider special solutions Γ of (3.37). Recalling the notation,
we fix a stationary solution Γ∗ of (3.37) and consider hypersurfaces Γρ(t) given as in Section 3.1
with the help of a function

ρ : [0, T ) × Γ∗ −→ (−d, d)

through a diffeomorphism onto its image

Φρ
t : Γ∗ −→ Ω

by

Γρ(t) = Φρ(t,Γ∗) .

For the details we refer again to Section 3.1.
The corresponding equation to (3.12) for ρ on the fixed stationary hypersurface Γ∗ is given

through





V (Ψ(q, ρ(t, q))) = H(Ψ(q, ρ(t, q))) −H(ρ, t) in Γ∗ for all t > 0 ,
(n · µ) (Ψ(q, ρ(t, q))) = 0 on ∂Γ∗ for all t > 0 ,

ρ(0, q) = ρ0(q) in Γ∗ .

(3.39)

Here the dependence of the mean value of mean curvature H on ρ reads as follows

H(ρ, t) =

∫

Γρ(t)
− H dHn ,
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such that this is an additional nonlocal term compared to mean curvature flow.

For the linearization of (3.39) around ρ ≡ 0, which is our notation for linearization of (3.37)
around the given stationary state Γ∗, we can use the results and notation of the previous sec-
tion. In particular, we use the linearization of normal velocity, mean curvature and the angle
condition. For the mean value of mean curvature, we have the following result.

Lemma 3.19. The linearization of the mean value of mean curvature is given through

d

dε
H(ερ, t)

∣∣∣∣
ε=0

=

∫

Γ∗

−
(
∆Γ∗ρ(t, q) + |σ∗|2(q)ρ(t, q)

)
dHn .

Proof. For fixed t, we use the mapping from the proof of the linearization of mean curvature
in Lemma 3.5 in the previous section

Φερ
t : Γ∗ → Ω , q 7→ Φερ

t (q) = Ψ(q, ερ(t, q)) ,

where ε is small. This mapping is a diffeomorphism onto its image and we get evolving hyper-
surfaces in ε through Γ̃(ε) = im(Φερ) = Γερ(t) and in particular Γ̃(0) = Γρ≡0(t) = Γ∗. With this
notation, we can write the mean value of mean curvature as

H(ερ, t) =

∫

Γερ(t)
− H(t, p) dHn =

(∫

Γερ(t)
1 dHn

)−1 (∫

Γερ(t)
H(t, p) dHn

)

=

(∫

eΓ(ε)
1 dHn

)−1 (∫

eΓ(ε)
H̃(ε, p) dHn

)
,

where H̃(ε, p) denotes the mean curvature of Γ̃(ε) at p ∈ Γ̃(ε), which is due to Γ̃(ε) = Γερ(t) for
fixed t really the same as the mean curvature H(t, p) of Γερ(t) at p ∈ Γερ(t). We just use this
notation to describe an evolving hypersurface in ε.

For the derivative with respect to ε at ε ≡ 0 we calculate with Lemma 2.46

d

dε

∫

eΓ(ε)
1 dHn

∣∣∣∣∣
ε=0

= −
∫

Γ∗

Ṽ (0, p) H̃(0, q) dHn = −
∫

Γ∗

ρ(t, p)H∗(p) dHn

= −H∗

∫

Γ∗

ρ(t, p) dHn ,

where we used the result Ṽ (0, p) = ρ(t, p) from the proof of Lemma 3.5 from the previous section
and the fact, that the mean curvature H∗ of the stationary surface Γ∗ is a constant.

Furthermore we get with the help of the Transport theorem 2.44 and the formula (2.3) for the
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normal time derivative for mean curvature

d

dε

∫

eΓ(ε)
H̃(ε, p) dHn =

∫

eΓ(ε)

(
∂̃
◦
H̃(ε, p) − H̃(ε, p)Ṽ (ε, p)H̃(ε, p)

)
dHn

+

∫

∂eΓ(ε)
H̃(ε, p)v

∂eΓ
(ε, p) dHn−1

=

∫

eΓ(ε)

(
∆eΓ(ε)

Ṽ (ε, p) + |σ̃|2(ε, p)Ṽ (ε, p)
)

−
∫

eΓ(ε)
H̃(ε, p)Ṽ (ε, p)H̃(ε, p) dHn +

∫

∂eΓ(ε)
H̃(ε, p)v

∂eΓ
(ε, p) dHn−1 .

For ε = 0 we get as in the proof of Lemma 2.46 the identity v∂Γ∗(0, p) = 0 due to the 90◦ angle
condition, which gives

d

dε

∫

eΓ(ε)
H̃(ε, p) dHn

∣∣∣∣∣
ε=0

=

∫

Γ∗

∆Γ∗ρ(t, p) + |σ∗|2(t, p)ρ(t, p) dHn − (H∗)2
∫

Γ∗

ρ(t, p) dHn .

Altogether, we get for the linearization of the mean value of mean curvature

d

dε
H(ερ, t)

∣∣∣∣
ε=0

=
d

dε



(∫

eΓ(ε)
1 dHn

)−1 (∫

eΓ(ε)
H̃(ε, p) dHn

)

∣∣∣∣∣∣
ε=0

=
1

(∫
Γ∗ 1

)2
(∫

Γ∗

1

[∫

Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
− (H∗)2

∫

Γ∗

ρ

]

−
∫

Γ∗

(H∗)

∫

Γ∗

(−ρH∗)

)

=

∫

Γ∗

−
(
∆Γ∗ρ+ |σ∗|2ρ

)
− (H∗)2

∫

Γ∗

−ρ+ (H∗)2
∫

Γ∗

−ρ

=

∫

Γ∗

−
(
∆Γ∗ρ+ |σ∗|2ρ

)
.

Here we omitted the volume form dHn for reasons of shortness. �

So together with the results of the previous section we get for the linearization of (3.39) around
the stationary hypersurface Γ∗ represented through ρ ≡ 0 the following equations.





∂tρ = ∆Γ∗ρ+ |σ∗|2ρ−
∫
Γ∗−
(
∆Γ∗ρ+ |σ∗|2ρ

)
in Γ∗ for all t > 0 ,

0 =
(
∂µ − S(n∗, n∗)

)
ρ on ∂Γ∗ for all t > 0 ,

ρ(0, q) = 0 in Γ∗ .

(3.40)

We give a remark concerning a term in the linearization of the mean value of mean curvature.
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Remark 3.20. It is also possible to write the term
∫
Γ∗− ∆Γ∗ρ as

∫

Γ∗

− ∆Γ∗ρ =
1

|Γ∗|

∫

Γ∗

∇∂Γ∗ρ · µ =
1

|Γ∗|

∫

∂Γ∗

S(n∗, n∗)ρ .

A solvability condition for solutions of the linearized problem (3.40) gives here
∫
Γ∗ ρ ≡ 0.

Lemma 3.21. Solutions of the linearized problem (3.40) fulfill

∫

Γ∗

ρdHn ≡ 0 . (3.41)

Proof. Integrating the first line in (3.40) gives

∫ t

0

∫

Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ−

∫

Γ∗

−
(
∆Γ∗ρ+ |σ∗|2ρ

))
dHn =

∫ t

0

∫

Γ∗

∂tρdHn ,

where the left side equals 0 and the right side gives

∫ t

0

∫

Γ∗

∂tρdHn =

∫ t

0
∂t

∫

Γ∗

ρdHn =

∫

Γ∗

ρ(t, q) dHn −
∫

Γ∗

ρ(0, q) dHn

︸ ︷︷ ︸
=0

.

Together we get

∫

Γ∗

ρ(t, q) dHn = 0 for all t ,

which shows the claim. �

We introduce the same bilinear form on H1,2(Γ∗) as in the previous chapter

I(ρ1, ρ2) =

∫

Γ∗

(
∇Γ∗ρ1 · ∇Γ∗ρ2 − |σ∗|2ρ1ρ2

)
dHn −

∫

∂Γ∗

S(n∗, n∗)ρ1ρ2 dHn−1 (3.42)

for ρ1, ρ2 ∈ H1(Γ∗).

Due to the solvability condition, we introduce the space

V := H1(Γ∗) ∩ {ρ |
∫
Γ∗ ρ = 0} . (3.43)

and supply it with the L2-inner product.

In analogy to the previous section, we want to show that the linearized problem (3.40) is the
L2-gradient flow of the functional E(ρ) := 1

2I(ρ, ρ) defined on V , which means exactly the iden-
tity stated in the next lemma.
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Lemma 3.22. The time dependent function ρ with values in V is a solution of the linearized
equation (3.40) if and only if

(∂tρ(t), ξ)L2 = −∂E(ρ(t))(ξ)

holds for all ξ ∈ V and all t and if ρ(0, q) ≡ 0 is fulfilled on Γ∗.

Proof. At first we remark the identity ∂E(ρ(t))(ξ) = I(ρ(t), ξ).

Now let ρ be a solution of (3.40). From Lemma 3.21 we get ρ(t) ∈ V . We multiply the first
line in (3.40) with ξ ∈ V and integrate over Γ∗ to get

∫

Γ∗

∂tρ ξ =

∫

Γ∗

(
∆Γ∗ρ ξ + |σ∗|2ρ ξ

)
−
∫

Γ∗

∫

Γ∗

−
(
∆Γ∗ρ+ |σ∗|2

)
ξ

︸ ︷︷ ︸
=0

= −I(ρ(t), ξ) ,

where the last equality follows with the same calculation as in the case of mean curvature flow.

On the other hand, let ρ(t) ∈ V fulfill the identity

(ρ(t), ξ)L2 = −∂E(ρ(t))(ξ)

for all ξ ∈ V and all t. In detail, this gives

∫

Γ∗

∂tρ(t) ξ =

∫

Γ∗

(
−∇Γ∗ρ · ∇Γ∗ξ + |σ∗|2ρ ξ

)
+

∫

∂Γ∗

S(n∗, n∗)ρ ξ (3.44)

for all ξ ∈ H1(Γ∗) with
∫
Γ∗ ξ = 0. Regularity theory for weak solutions of (3.44) leads to

ρ ∈ H2(Γ∗). After integration by parts, we observe

∫

Γ∗

∂tρ(t) ξ =

∫

Γ∗

(
∆Γ∗ρ ξ + |σ∗|2ρ ξ

)
−
∫

∂Γ∗

(∂µρ ξ − S(n∗, n∗)ρ ξ) . (3.45)

First we consider ξ ∈ H1
0 (Γ∗) with

∫
Γ∗ ξ = 0 and get with the help of the fundamental lemma

∂tρ(t) = ∆Γ∗ρ+ |σ∗|2ρ+ λ(t) on Γ∗ ,

where λ(t) = −
∫
Γ∗−
(
∆Γ∗ρ+ |σ∗|2ρ

)
+
∫
Γ∗− ∂tρ(t). Here, the integral over ∂tρ vanishes due to

1

|Γ∗|

∫

Γ∗

∂tρ(t) =
1

|Γ∗|∂t

∫

Γ∗

ρ(t)

︸ ︷︷ ︸
=0

= 0 ,

because ρ(t) ∈ V . So the terms in (3.45) simplify to

0 = λ(t)

∫

Γ∗

ξ

︸ ︷︷ ︸
=0

−
∫

∂Γ∗

(
∂µρ− S(n∗, n∗)ρ

)
ξ (3.46)
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for all ξ ∈ H1(Γ∗) with
∫
Γ∗ ξ = 0. Since the values of ξ on ∂Γ∗ are arbitrary, we observe again

with the help of the fundamental lemma

∂µρ− S(n∗, n∗)ρ on ∂Γ∗ .

Altogether, this means that ρ is a solution of (3.40) and we proved the lemma. �

Similarly as in the section about mean curvature flow we introduce the linearized operator of
(3.40) through

A : D(A) −→ H

with
{

D(A) = {ρ ∈ H2,2(Γ∗) | (∂µ − S(n∗, n∗)) ρ = 0 on ∂Γ∗ and
∫
Γ∗ ρ = 0} ,

H = L2(Γ∗) ,

by

Aρ := ∆Γ∗ρ+ |σ∗|2ρ−
∫

Γ∗

−
(
∆Γ∗ρ+ |σ∗|2ρ

)
dHn .

For this operator, we can show as in the previous Section 3.2, that A is symmetric, self-
adjoint with respect to the L2-inner product, the spectrum consists of a countable system of
real eigenvalues, the initial value problem (3.40) is solvable for initial data in H and the zero
solution is an asymptotically stable solution of (3.40) if and only if the largest eigenvalue of A
is negative.
Finally we get the following description of linearized stability.

Corollary 3.23. The linearized problem (3.40) is asymptotically stable if and only if

I(ρ, ρ) > 0

for all ρ ∈ H1(Γ∗)\{0} with
∫
Γ∗ ρ = 0, where

I(ρ, ρ) =

∫

Γ∗

(
|∇Γ∗ρ|2 − |σ∗|2ρ2

)
dHn −

∫

∂Γ∗

S(n∗, n∗)ρ2 dHn−1 .

3.4 Surface diffusion flow

In this section we consider a fourth order geometric evolution equation, the well-known surface
diffusion, in our case with boundary conditions as described in Section 3.1. As in the previous
two sections we introduce a specific setting for the considered evolving hypersurface, linearize
the resulting partial differential equation around a stationary state and analyze the stability of
the linearized problem with the help of spectral theory. This section is a direct generalization
of the paper of Garcke, Ito and Kohsaka [GIK05] about surface diffusion with boundary contact
for curves in the plane to hypersurfaces, although we need another parametrization as described
in Section 3.1.
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We also want to give some remarks concerning the nonlinear stability as is described in the
work of Garcke, Ito and Kohsaka [GIK08] for the curve case, which we do in Subsection 3.4.2.
To specify the problem in detail, we use the same notation as in the last two sections. So we

want to find an evolving hypersurface

Γ =
⋃

t∈[0,T )

{t} × Γ(t) with Γ(t) ⊂ R
n+1 , (3.47)

as in Definition 2.31, evolving due to the surface diffusion flow, such that Γ(t) lies in a fixed
bounded region Ω ⊂ Rn+1 and the boundary ∂Γ(t) of each of the hypersurfaces intersects the
boundary ∂Ω of the fixed region at a right angle.
In formulas, the problem reads as follows. Find Γ as in (3.47), such that





V = −∆Γ(t)H in Γ(t) for all t > 0 ,

∇Γ(t)H · n∂Γ(t) = 0 on ∂Γ(t) for all t > 0 ,

Γ(t) ⊂ Ω for all t > 0 ,
∂Γ(t) ⊂ ∂Ω for all t > 0 ,

n(t) · µ = 0 on ∂Γ(t) for all t > 0 ,
Γ(0) = Γ0 .

(3.48)

Here V , H, n, n∂Γ(t) and µ are the normal velocity, the mean curvature, a unit normal of the
evolving hypersurface Γ, the outer unit conormal of Γ(t) at ∂Γ(t) and the outer unit normal to
∂Ω. ∇Γ(t) is the surface gradient and ∆Γ(t) the Laplace-Beltrami operator on Γ(t). Γ0 is a given
starting surface, which lies in Ω and intersects the boundary ∂Ω at a right angle.
As in the Section 3.3 of volume-preserving mean curvature flow the area A(t) and volume V ol(t)

as described in Section 2.4 of a solution Γ(t) of (3.48) are decreasing and preserved.

Lemma 3.24. For a solution Γ of the flow (3.48) the following estimates hold true

(i) d
dtA(t) ≤ 0 and

(ii) d
dtV ol(t) = 0.

Therefore the flow is area minimizing and also volume preserving.

Proof. ad (i): With the result of Lemma 2.46 and the formula for integration by parts from
Remark 2.30 we get

d

dt
A(t) = −

∫

Γ(t)
V H dHn =

∫

Γ(t)
∆Γ(t)HH dHn

= −
∫

Γ(t)
|∇Γ(t)H|2 dHn +

∫

∂Γ(t)
∇Γ(t)H · n∂Γ(t)︸ ︷︷ ︸

=0

H dHn−1 ≤ 0 .

ad (ii): Again with the result of Lemma 2.46 and the formula for integration by parts, we get

d

dt
V ol(t) =

∫

Γ(t)
V dHn = −

∫

Γ(t)
∆Γ(t)H dHn =

∫

∂Γ(t)
∇Γ(t)H · n∂Γ(t) dHn−1 = 0 .
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This shows the assertions. �

We observe in the next lemma that stationary surfaces of the flow (3.48) satisfy H ≡ const, so
they are hypersurfaces with constant mean curvature, so-called H-hypersurfaces.

Lemma 3.25. Stationary surfaces of the flow (3.48) are H-hypersurfaces, that is they have
constant mean curvature H.

Proof. Let Γ∗ be a stationary surface of (3.48), that is Γ∗ lies in Ω, intersects ∂Ω at a right
angle and fulfills the surface diffusion equation (3.48) with V = 0, so that we have

∆Γ∗H∗ = 0 in Γ∗

and

∇Γ∗H∗ · µ = 0 on ∂Γ∗ .

Here we used the fact n∂Γ∗ = µ due to the right angle condition. From a calculation due to the
integration by parts formula from Remark 2.30

0 =

∫

Γ∗

∆Γ∗H∗H∗ dHn = −
∫

Γ∗

∇Γ∗H∗ · ∇Γ∗H∗ dHn +

∫

∂Γ∗

∇Γ∗H∗ · µdHn−1

= −
∫

Γ∗

|∇Γ∗H∗|2 dHn

we get the equality ∇Γ∗H∗ = 0 on Γ∗. With the representation

∇Γ∗H∗(p) =

n∑

i=1

∂τi
H∗(p) τi

for an orthonormal basis τ1, . . . , τn of TpΓ
∗ we get ∂τi

H∗ = 0 for any tangent vector τi ∈ TpΓ
∗.

This is true because every unit tangent vector can be extended to an orthonormal basis.
For a given p0 ∈ Γ∗ we set A = {p ∈ Γ∗ | H∗(p) = H∗(p0)} and with standard analysis

arguments we show that A is nonempty, open and closed in the relative topology of Γ∗. Since
our general assumption says that Γ∗ is connected, we conclude A = Γ∗ and therefore H∗ is a
constant. �

3.4.1 Linearized stability analysis

From now on let Γ∗ be a stationary hypersurface of (3.48), i.e. Γ∗ lies in Ω, intersects ∂Ω at a
right angle, fulfills the natural boundary condition ∇Γ∗H∗ · n∂Γ∗ = ∇Γ∗H∗ · µ = 0 on ∂Γ∗ and
the surface diffusion equation with V = 0, which is

∆Γ∗H∗ = 0 in Γ∗ .

Here H∗ is the mean curvature of Γ∗.
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As in the introductory section of this chapter we introduce a specific curvilinear coordinate
system, such that the surfaces Γ(t) = Γρ(t) can be described with the help of a function

ρ : [0, T ) × Γ∗ → (−d, d)

as graphs over the fixed stationary surface Γ∗. We recall the notation

Ψ : Γ∗ × (−d, d) −→ Ω , (q, w) 7→ Ψ(q, w) ,

such that Ψ(q, 0) = q for all q ∈ Γ∗, Ψ(q, w) ∈ ∂Ω for all q ∈ ∂Γ∗ and ∂wΨ(q, 0) · n∗(q) = 1 for
all q ∈ Γ∗, where n∗ is a unit normal to Γ∗. Then we built the mapping

Φρ : [0, T ) × Γ∗ −→ Ω , Φρ(t, q) := Ψ(q, ρ(t, q)) ,

which is a diffeomorphism onto its image for fixed t and we defined hypersurfaces

Γρ(t) := {Φρ(t, q) | q ∈ Γ∗} .

The corresponding equation to surface diffusion (3.48) written for ρ on the fixed hypersurface
Γ∗ is given here through





V (Ψ(q, ρ(t, q))) = −∆Γρ(t)H(Ψ(q, ρ(t, q))) in Γ∗ for all t > 0 ,

0 =
(
∇Γρ(t)H · n∂Γρ(t)

)
(Ψ(q, ρ(t, q))) on ∂Γ∗ for all t > 0 ,

0 = (n(t) · µ) (Ψ(q, ρ(t, q))) on ∂Γ∗ for all t > 0 ,
ρ(0, q) = ρ0(q) in Γ∗ .

(3.49)

As in Section 3.2 for mean curvature flow and as explained in (2.12) we use the common abbre-
viation V (Ψ(t, ρ(t, q))) = V (t,Ψ(t, ρ(t, q))) and analogously for H and n. We also assume as in
the previous sections that the starting hypersurface Γ0 is given through

Γ0 = {Ψ(q, ρ0(q)) | q ∈ Γ∗} .

For the linearization of (3.49) it will be useful to transform the surface gradient ∇Γρ(t) and the
Laplace-Beltrami operator ∆Γρ(t) on Γρ(t) to the fixed stationary hypersurface Γ∗. To this end,

we equip Γ∗ with the pull-back metric g := (Φρ
t )

∗
η, where η is a symbol for the euclidian scalar

product in Rn+1. This means for v,w ∈ TqΓ
∗ that

g(v,w) = η (dqΦ
ρ
t (v), dqΦ

ρ
t (w)) =

(
dqΦ

ρ
t (v) · dqΦ

ρ
t (w)

)
.

From Remark 2.41 we obtain then with p = Φρ
t (q) = Ψ(t, ρ(t, q)) ∈ Γρ(t) for some q ∈ Γ∗ the

following formulas.

∆Γρ(t)H(Ψ(t, ρ(t, q))) = ∆ρ
Γ∗H̃ρ(t, q) and (3.50)

∇Γρ(t)H(Ψ(t, ρ(t, q))) = dqΦ
ρ
t

(
∇ρ

Γ∗H̃ρ(t, q)
)
, (3.51)
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where we use H̃ρ(t, q) = H(Ψ(t, ρ(t, q))) and we indicated with an index ρ on ∇ρ
Γ∗ and ∆ρ

Γ∗ that
these differential operators depend on the function ρ. Therefore we will also have to differentiate
these operators when building the linearization of (3.49).
For the linearization of (3.49) around ρ ≡ 0, which means around the given stationary state

Γ∗, we can use the results and notation of Section 3.2. In particular, we use the linearization of
normal velocity and mean curvature from Lemma 3.4 and 3.5.

Lemma 3.26. The linearization of the surface diffusion equation from (3.49)

V (Ψ(t, ρ(t, q))) = −∆Γρ(t)H(Ψ(t, ρ(t, q)))

around the stationary state represented through ρ ≡ 0 is given by

∂tρ(t, q) = −∆Γ∗

(
∆Γ∗ρ(t, q) + |σ∗(q)|2ρ(t, q)

)
,

where q ∈ Γ∗ and t > 0.

Proof. The linerization of normal velocity

d

dε
V (Ψ(t, ερ(t, q)))

∣∣∣∣
ε=0

= ∂tρ(t, q)

follows as in Lemma 3.4.
We write the Laplace-Beltrami operator of mean curvature with the help of formula (3.50) as

−∆Γρ(t)H(Ψ(t, ρ(t, q))) = −∆ρ
Γ∗

(
H̃ρ(t, q)

)
.

Then we observe that for ρ ≡ 0 due to Φ0
t = id|Γ∗ the identity

∆0
Γ∗ = ∆Γ∗

holds, where ∆Γ∗ is the Laplace-Beltrami operator of Γ∗ with respect to the restriction of the
euclidian scalar product. We also have

H̃0 = H∗ ,

where H∗ is the constant mean curvature of Γ∗ due to Lemma 3.25. Therefore we get with a
similar calculation as in the work of Escher, Mayer and Simonett [EMS98]

d

dε
∆ερ

Γ∗

∣∣∣∣
ε=0

H̃0 =
d

dε
∆ερ

Γ∗

∣∣∣∣
ε=0

H∗ =
d

dε

(
∆ερ

Γ∗H
∗
)

︸ ︷︷ ︸
=0

∣∣∣∣∣∣∣
ε=0

= 0 .

Finally, this gives for the right side of the surface diffusion equation

d

dε

(
−∆ερ

Γ∗H̃ερ(t, q)
)∣∣∣∣

ε=0

= − d

dε
∆ερ

Γ∗

∣∣∣∣
ε=0

H∗ − ∆Γ∗

(
d

dε
H̃ερ(t, q)

∣∣∣∣
ε=0

)

= −∆Γ∗

(
∆Γ∗ρ(t, q) + |σ∗(q)|2ρ(t, q)

)
,
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where we used the linearization of mean curvature from Lemma 3.5. �

The next point is to linearize the natural boundary condition.

Lemma 3.27. The linearization of the natural boundary condition from (3.49)

0 =
(
∇Γρ(t)H · n∂Γρ(t)

)
(Ψ(q, ρ(t, q)))

around the stationary state represented through ρ ≡ 0 is given by

0 = ∇Γ∗

(
∆Γ∗ρ(t, q) + |σ∗|2ρ(t, q)

)
· µ(q)

= ∂µ

(
∆Γ∗ρ(t, q) + |σ∗(q)|2ρ(t, q)

)
,

where q ∈ ∂Γ∗ and t > 0.

Proof. With the help of formula (3.51) we can correlate the surface gradient on Γρ(t) and on
Γ∗ equipped with the pull-back metric (Φρ

t )
∗
η via

∇Γρ(t)H(Ψ(q, ρ(t, q))) = dqΦ
ρ
t

(
∇ρ

Γ∗H̃ρ(t, q)
)
,

where p = Φρ
t (q) = Ψ(q, ρ(t, q)) ∈ Γρ(t). We observe for ρ ≡ 0

n∂Γ0(t)(Ψ(q, 0)) = n∂Γ∗(q) = µ(q)

and

∇Γ0(t)H(Ψ(q, 0)) = ∇Γ∗H∗ = 0 ,

where we used the angle condition in the first equation and the fact that Γ∗ is an H-surface
from Lemma 3.25.
Then we can conclude for the linearization

d

dε

(
∇Γερ(t)

H · n∂Γερ(t)

)
(Ψ(q, ερ(t, q)))

∣∣∣∣
ε=0

= 0 +
d

dε

(
∇Γερ(t)H(Ψ(q, ερ(t, q)))

)∣∣∣∣
ε=0︸ ︷︷ ︸

=(∗)

·µ(q)

and the term (∗) can be calculated with an analogue argumentation as for the Laplace-Beltrami
operator in the proof of Lemma 3.26 as follows

(∗) =
d

dε

[
(dqΦ

ερ
t )
(
∇ερ

Γ∗H̃ερ(t, q)
)]∣∣∣∣

ε=0

=
d

dε
(dqΦ

ερ
t )

∣∣∣∣
ε=0

(∇Γ∗H∗)︸ ︷︷ ︸
=0

+ dqΦ
0
t︸ ︷︷ ︸

=Id

(
d

dε

(
∇ερ

Γ∗H̃ερ(t, q)
))∣∣∣∣

ε=0

=
d

dε
∇ερ

Γ∗

∣∣∣∣
ε=0

H̃0(t, q) + ∇Γ∗
d

dε
H̃ερ(t, q)

∣∣∣∣
ε=0

=
d

dε

(
∇ερ

Γ∗H
∗
)

︸ ︷︷ ︸
=0

∣∣∣∣∣∣∣
ε=0

+ ∇Γ∗

(
∆Γ∗ρ(t, q) + |σ∗(q)|2ρ(t, q)

)

= ∇Γ∗

(
∆Γ∗ρ(t, q) + |σ∗(q)|2ρ(t, q)

)
,
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where we used Φ0
t = id|Γ∗ , i.e. dqΦ

0
t = Id|TqΓ∗ , and the linearization of mean curvature from

Lemma 3.5. �

So together with the results of the previous section about the linearization of the angle condition
in Lemma 3.7 we get for the linearization of (3.49) around ρ ≡ 0 the following equations.





∂tρ = −∆Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
in Γ∗ for all t > 0 ,

0 =
(
∂µ − S(n∗, n∗)

)
ρ on ∂Γ∗ for all t > 0 ,

0 = ∂µ

(
∆Γ∗ρ+ |σ∗|2ρ

)
on ∂Γ∗ for all t > 0 ,

ρ(0, q) = 0 in Γ∗ .

(3.52)

Note that as in the previous sections S is the second fundamental form of ∂Ω with respect to
the inwards pointing unit normal (−µ) of Ω and due to the angle condition for the stationary
hypersurface Γ the unit normal n∗ of Γ∗ fulfills n(p) ∈ Tp∂Ω on ∂Ω ∩ Γ∗, so that the term
S(n∗, n∗) does make sense.
A solvability condition for solutions of the linearized problem (3.52) gives here as in Section

3.3 for the volume preserving mean curvature flow
∫
Γ∗ ρ ≡ 0.

Lemma 3.28. Solutions of the linearized problem (3.52) fulfill
∫

Γ∗

ρ dHn ≡ 0 .

Proof. Integrating the first equation in (3.52) gives with the help of partial integration by
Remark 2.30
∫ t

0

∫

Γ∗

∂tρ =

∫ t

0

∫

Γ∗

−∆Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
=

∫ t

0

∫

∂Γ∗

−∇Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
· µ = 0 .

For the time derivative we also have
∫ t

0

∫

Γ∗

∂tρ =

∫ t

0
∂t

∫

Γ∗

ρ =

∫

Γ∗

ρ(t, q) −
∫

Γ∗

ρ(0, q)︸ ︷︷ ︸
=0

,

so that we showed the assertion. �

To derive conditions for stability of the zero solution of the linearized problem (3.52) we proceed
in an analogue way as in the previous sections. First, we show that (3.52) can be interpreted
as a gradient flow with respect to an energy E given by a symmetric bilinear form I. Then we
relate the eigenvalues of the linearized operator with respect to (3.52) to the positivity of the
bilinear form to achieve the following result.

Γ∗ is linearly asymptotically stable

⇐⇒
{
I(ρ, ρ) :=

∫
Γ∗

(
|∇Γ∗ρ|2 − |σ∗|2ρ2

)
−
∫
∂Γ∗ S(n∗, n∗)ρ2

is positive for all ρ ∈ H1,2(Γ∗)\{0} with
∫
Γ∗ ρ = 0 .
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Here we generalize directly the work of Garcke, Ito and Kohsaka [GIK05] from curves to higher
dimensions. Since the problem (3.52) will be a gradient flow with respect to the H−1-inner
product, we give its definition. We denote by 〈. , .〉 the duality pairing between the dual space(
H1(Γ∗)

)′
and H1(Γ∗) and we define the space H−1(Γ∗) by

H−1(Γ∗) :=
{
ρ ∈

(
H1(Γ∗)

)′ | 〈ρ, 1〉 = 0
}
. (3.53)

Definition 3.29. We say that uv ∈ H1(Γ∗) with
∫
Γ∗ uv = 0 for a given v ∈ H−1(Γ∗) is a weak

solution of
{

−∆Γ∗uv = v in Γ∗ ,
∇Γ∗uv · n∂Γ∗ = 0 on ∂Γ∗ ,

(3.54)

if and only if uv satisfies

〈v, ξ〉 =

∫

Γ∗

∇Γ∗uv · ∇Γ∗ξ

for all ξ ∈ H1(Γ∗).

For ρi ∈ H−1(Γ∗), i = 1, 2, we introduce the inner product

(ρ1, ρ2)−1 :=

∫

Γ∗

∇Γ∗uρ1 · ∇Γ∗uρ2 , (3.55)

called the H−1-inner product, where uρi
is defined as the weak solution of (3.54) with respect

to ρi. This makes H−1(Γ∗) to a Hilbertspace and we also introduce the notation for the corre-
sponding norm

‖ρ‖−1 :=
√

(ρ, ρ)−1 for ρ ∈ H−1(Γ∗) .

By definition, we have the identity

(ρ1, ρ2)−1 = 〈ρ1, uρ2〉 (3.56)

for ρi ∈ H−1(Γ∗).
For further use we also introduce the notation

V :=

{
ρ ∈ H1(Γ∗) |

∫

Γ∗

ρ = 0

}
,

so that V is a subspace of H1(Γ∗).

Remark 3.30. We remark that in the literature the space H−1
lit (Γ∗) is usually defined as the

dual space H−1
lit (Γ∗) := V ′. For v ∈ H−1

lit (Γ∗) the duality pairing 〈v , ξ〉 would then be defined just
for functions ξ ∈ H1(Γ∗) with the constraint

∫
Γ∗ ξ = 0. But this functional v ∈ H−1

lit (Γ∗) can be
extended naturally to all of H1(Γ∗) by 〈v, 1〉 = 0. Together with this extension, the dual space
H−1

lit (Γ∗) then equals our definition of H−1(Γ∗).
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We also define as in the previous section a symmetric bilinear form on H1(Γ∗) and the corre-
sponding energy. The definition equals the one from Definition 3.9, but we state it again for
easy readability.

Definition 3.31. For ρ1, ρ2 ∈ H1(Γ∗) we define

I(ρ1, ρ2) :=

∫

Γ∗

(
∇Γ∗ρ1 · ∇Γ∗ρ2 − |σ∗|2ρ1 ρ2

)
−
∫

∂Γ∗

S(n∗, n∗)ρ1 ρ2 (3.57)

and the associated energy for ρ ∈ H1(Γ∗) by

E(ρ) :=
1

2
I(ρ, ρ) . (3.58)

The next point is to show that the linearized problem (3.52) is the gradient flow of E with
respect to the H−1-inner product (. , .)−1. This means that a solution ρ of (3.52) fulfils

(∂tρ, ξ)−1 = −∂E(ρ(t))(ξ)

for all ξ ∈ H1(Γ∗) with
∫
Γ∗ ξ = 0. Here, ∂E(ρ(t))(ξ) denotes the derivative of E at ρ(t) in

direction of ξ. Because of the definition of E via the bilinear form I, this derivative is given by

∂E(ρ(t))(ξ) = I(ρ(t), ξ) .

To simplify notation, we introduce the following time independent problem.

Definition 3.32. For a given v ∈ H−1(Γ∗) we say that ρ ∈ H3(Γ∗) with
∫
Γ∗ ρ = 0 is a weak

solution of the boundary value problem





v = −∆Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
in Γ∗ ,

0 = ∂µρ− S(n∗, n∗)ρ on ∂Γ∗ ,
0 = ∇Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
· n∂Γ∗ on ∂Γ∗ ,

(3.59)

if and only if ρ satisfies

〈v, ξ〉 =

∫

Γ∗

∇Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
· ∇Γ∗ξ

for all ξ ∈ H1(Γ∗) and

0 = ∂µρ− S(n∗, n∗)ρ on ∂Γ∗ .

In the case that v ∈ L2(Γ∗) with
∫
Γ∗ v = 0, we obtain from elliptic regularity theory on manifolds

that v = −∆Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
is fulfilled almost everywhere on Γ∗ and ∇Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
·

n∂Γ∗ = 0 is fulfilled almost everywhere on ∂Γ∗.
The fact that the linearized problem is the gradient flow of E with respect to the H−1-inner

product follows from the next lemma.
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Lemma 3.33. Let v ∈ H−1(Γ∗) and ρ ∈ H1(Γ∗) with
∫
Γ∗ ρ = 0 be given. Then ρ is a weak

solution of (3.59) if and only if

(v, ξ)−1 = −I(ρ, ξ)

holds for all ξ ∈ H1(Γ∗) with
∫
Γ∗ ξ = 0.

Proof. The proof of [GIK05] directly generalizes to the higher dimensional situation. For the
convenience of the reader, we give the details.
Let ρ ∈ H3(Γ∗) with

∫
Γ∗ ρ = 0 be a weak solution of (3.59). By (3.56) and Definition 3.32, we

deduce for ξ ∈ H1(Γ∗) with
∫
Γ∗ ξ = 0 the identities

(v, ξ)−1 = 〈v, uξ〉

=

∫

Γ∗

∇Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
· ∇Γ∗uξ .

Here, uξ ∈ H1(Γ∗) is the weak solution of (3.54) for the given ξ ∈ H1(Γ∗). Then, by virtue of(
∆Γ∗ρ+ |σ∗|2ρ

)
∈ H1(Γ∗) we see from the definition of the weak solution uξ with

(
∆Γ∗ρ+ |σ∗|2ρ

)

as testfunction
∫

Γ∗

∇Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
· ∇Γ∗uξ =

∫

Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
ξ .

This is true since the right side in (3.54) lies in this case in the function space H1(Γ∗) instead

of
(
H1(Γ∗)

)′
and therefore we can give the duality pairing as integral.

Now we conclude with integration by parts.

(v, ξ)−1 =

∫

Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
ξ

= −
∫

Γ∗

(
∇Γ∗ρ · ∇Γ∗ξ − |σ∗|2ρ ξ

)
+

∫

∂Γ∗

∇Γ∗ρ · n∂Γ∗ ξ

= −
∫

Γ∗

(
∇Γ∗ρ · ∇Γ∗ξ − |σ∗|2ρ ξ

)
+

∫

∂Γ∗

S(n∗, n∗) ρ ξ

= −I(ρ, ξ) ,

where we used the boundary condition ∇Γ∗ρ · n∂Γ∗ = ∂µρ = S(n∗, n∗)ρ on ∂Γ∗ for ρ.
Conversely, assume that ρ ∈ H1(Γ∗) with

∫
Γ∗ ρ = 0 satisfies

(v, ξ)−1 = −I(ρ, ξ)

for all ξ ∈ H1(Γ∗) with
∫
Γ∗ ξ = 0. Now we choose ξ = −∆Γ∗η for a given function η ∈ H3(Γ∗)

with ∇Γ∗η ·n∂Γ∗ = 0 on ∂Γ∗. From Definition 3.29 we can write η = uξ and with (3.56) it holds

〈v, η〉 = (v, ξ)−1 = −I(ρ, ξ)

= −
∫

Γ∗

(
∇Γ∗ρ · ∇Γ∗ξ − |σ∗|2ρ ξ

)
+

∫

∂Γ∗

S(n∗, n∗)ρ ξ

=

∫

Γ∗

(
∇Γ∗ρ · ∇Γ∗(∆Γ∗η) − |σ∗|2ρ (∆Γ∗η)

)
+

∫

∂Γ∗

S(n∗, n∗)ρ (∆Γ∗η) .
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Since v ∈
(
H1(Γ∗)

)′
we deduce from the above identity and elliptic regularity theory that

ρ ∈ H3(Γ∗). Integration by parts gives then

〈v, η〉 = −
∫

Γ∗

(
∆Γ∗ρ∆Γ∗η −∇Γ∗(|σ∗|2ρ) · ∇Γ∗η

)

+

∫

∂Γ∗


∇Γ∗ρ · n∂Γ∗ ∆Γ∗η − |σ∗|2ρ ∇Γ∗η · n∂Γ∗︸ ︷︷ ︸

=0

−S(n∗, n∗)ρ∆Γ∗η




=

∫

Γ∗

∇Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
· ∇Γ∗η −

∫

∂Γ∗

∆Γ∗ρ ∇Γ∗η · n∂Γ∗︸ ︷︷ ︸
=0

+

∫

∂Γ∗

(∂µρ− S(n∗, n∗)ρ) ∆Γ∗η

=

∫

Γ∗

∇Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
· ∇Γ∗η +

∫

∂Γ∗

(∂µρ− S(n∗, n∗)ρ) ∆Γ∗η .

To show that ρ is a weak solution of (3.59), we choose for a given test function ϕ ∈ H1(Γ∗) a
sequence ηn ∈ H3(Γ∗) with ∇Γ∗ηn · n∂Γ∗ = 0 and ∆Γ∗ηn = 0 each on ∂Γ∗ such that

ηn → ϕ in H1(Γ∗) .

For such ηn we get from the last equation

〈v, ηn〉 =

∫

Γ∗

∇Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
· ∇Γ∗ηn + 0 ,

where the left side converges to 〈v, ϕ〉 and the right side to
∫
Γ∗ ∇Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
· ∇Γ∗ϕ due

to the convergence ηn → ϕ in H1(Γ∗). So we conclude

〈v, ϕ〉 =

∫

Γ∗

∇Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
· ∇Γ∗ϕ

for arbitrary ϕ ∈ H1(Γ∗). Inserting this into the last equation for η finally gives

0 =

∫

∂Γ∗

(∂µρ− S(n∗, n∗)ρ) ∆Γ∗η

for all η ∈ H3(Γ∗) with ∇Γ∗η · n∂Γ∗ = 0 on ∂Γ∗. Since ∆Γ∗η is arbitrary on ∂Γ∗, we conclude
with the fundamental lemma

∂µρ− S(n∗, n∗)ρ = 0 on ∂Γ∗ .

This shows that ρ is a weak solution of (3.59) and concludes the proof. �

The next steps consist in showing that the linearized operator is self-adjoint and to study its
spectrum. This linearized operator corresponding to (3.52) is given by

A : D(A) −→ H ,
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with

{
D(A) = {ρ ∈ H3(Γ∗) | (∂µ − S(n∗, n∗)) ρ = 0 on ∂Γ∗ and

∫
Γ∗ ρ = 0} ,

H = {ρ ∈
(
H1(Γ∗)

)′
| 〈ρ, 1〉 = 0} (3.60)

by

〈Aρ, ξ〉 :=

∫

Γ∗

∇Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
· ∇Γ∗ξ . (3.61)

Then we can relate the boundary value problem (3.59) to the problem of finding a ρ ∈ D(A)
with

Aρ = v .

By Lemma 3.33 we also have for all ξ ∈ H1(Γ∗) with
∫
Γ∗ ξ = 0

(Aρ, ξ)−1 = −I(ρ, ξ) .

Lemma 3.34. The operator A is symmetric with respect to the inner product (. , .)−1.

Proof. For ρ, ξ ∈ D(A) we have

(Aρ, ξ)−1 = −I(ρ, ξ) = −I(ξ, ρ) = (Aξ, ρ)−1 = (ρ,Aξ)−1 ,

so that A is symmetric. �

As in Section 3.2, we want to analyze the spectrum of A to decide on the stability behaviour of
the linearized problem (3.52). This spectrum is related to the functional I with the help of the
inner product (. , .)−1. In fact, for an eigenfunction ρ ∈ D(A) to the eigenvalue λ of A, it holds

λ (ρ, ξ)−1 = (Aρ, ξ)−1 = −I(ρ, ξ)

for all ξ ∈ H1(Γ∗) with
∫
Γ∗ ξ = 0.

The next point is to show boundedness of eigenvalues of A from above. Therefore we need the
following two lemmata.

Lemma 3.35. For all δ > 0 there exists a Cδ > 0, such that for all functions ρ ∈ V the
inequality

‖ρ‖2
L2(∂Γ∗) ≤ δ ‖∇Γ∗ρ‖2

L2(Γ∗) + Cδ ‖ρ‖2
−1

holds.
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Proof. Assume by contradiction that there exists δ > 0 such that we can find a sequence
(ρ̃n)n∈N

⊂ V such that

‖ρ̃n‖2
L2(∂Γ∗) > δ ‖∇Γ∗ ρ̃n‖2

L2(Γ∗) + n ‖ρ̃n‖2
−1 .

In particular we observe ‖ρ̃n‖L2(∂Γ∗) > 0 for all n ∈ N. Therefore, we get for the scaled functions

ρn = ρ̃n

(
‖ρ̃n‖L2(∂Γ∗)

)−1
by multiplying with

(
‖ρ̃n‖L2(∂Γ∗)

)−2
the inequality

1 > δ ‖∇Γ∗ρn‖2
L2(Γ∗) + n ‖ρn‖2

−1 .

This implies

‖ρn‖2
−1 <

1

n
−→ 0 as n→ ∞

and

‖∇Γ∗ρn‖2
L2(Γ∗) <

1

δ
.

Since
∫
Γ∗ ρn = 0, we conclude from Poincaré’s inequality that ρn is bounded uniformly inH1(Γ∗).

Therefore it converges weakly for a subsequence

ρn ⇀ ρ in H1(Γ∗)

to some ρ ∈ H1(Γ∗). Due to

0 = (ρn, 1)L2 → (ρ, 1)L2 =

∫

Γ∗

ρ

we observe
∫
Γ∗ ρ = 0. Furthermore from the compact embedding

{
ρ ∈ H1(Γ∗) |

∫

Γ∗

ρ = 0

}
→֒ H−1(Γ∗)

we see the strong convergence ρn → ρ in H−1(Γ∗). By uniqueness of the limit and ‖ρn‖H−1 → 0
we get finally ρ = 0. So we have

ρn ⇀ 0 in H1(Γ∗) .

By another compact embedding H1(Γ∗) →֒ L2(∂Γ∗) we see ρn → 0 in L2(∂Γ∗), which at last
contradicts the fact ‖ρn‖L2(∂Γ∗) = 1 for all n ∈ N. �

Lemma 3.36. There exist positive constants C1 and C2, such that

‖ρ‖2
H1(Γ∗) ≤ C1 ‖ρ‖2

−1 + C2 I(ρ, ρ)

for all ρ ∈ V .
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Proof. With an analogue argumentation as in the previous lemma we get the following inequal-
ity. For all δ > 0 there exists a Cδ > 0, such that

‖ρ‖2
L2(Γ∗) ≤ δ ‖∇Γ∗ρ‖2

L2(Γ∗) + Cδ ‖ρ‖2
−1

holds for all ρ ∈ V . For this inequality we just need the compact embedding H1(Γ∗) →֒ L2(Γ∗)
instead of H1(Γ∗) →֒ L2(∂Γ∗). Now we obtain with the help of the above inequality and Lemma
3.35

I(ρ, ρ) =

∫

Γ∗

|∇Γ∗ρ|2 −
∫

Γ∗

|σ∗|2 ρ2 −
∫

∂Γ∗

S(n∗, n∗) ρ2

≥ ‖∇Γ∗ρ‖2
L2(Γ∗) − ‖|σ∗|2‖L∞(Γ∗) · ‖ρ‖2

L2(Γ∗) − ‖S(n∗, n∗)‖L∞(∂Γ∗) · ‖ρ‖2
L2(∂Γ∗)

≥
(
1 − δ1 ‖S(n∗, n∗)‖L∞(∂Γ∗)

)
· ‖∇Γ∗ρ‖2

L2(Γ∗) − ‖|σ∗|2‖L∞(Γ∗) · ‖ρ‖2
L2(Γ∗)

−‖S(n∗, n∗)‖L∞(∂Γ∗) · Cδ1 ‖ρ‖2
−1

≥
(
1 − δ1‖S(n∗, n∗)‖L∞(∂Γ∗) − δ2 ‖|σ∗|2‖L∞(Γ∗)

)
· ‖∇Γ∗ρ‖2

L2(Γ∗)

−
(
‖|σ∗|2‖L∞(Γ∗) Cδ2 + ‖S(n∗, n∗)‖L∞(∂Γ∗)Cδ1

)
· ‖ρ‖2

−1 .

With the help of the Poincaré inequality on V and by choosing δ1 and δ2 small enough, we get
the assertion. �

With the previous two lemmata we can show boundedness from above for the largest eigenvalue
of A.

Lemma 3.37. Let λ be an eigenvalue of A. Then the following inequality holds

λ ≤ C1

C2
,

where C1 and C2 are the positive constants of the above Lemma 3.36.

Proof. Let ρ ∈ D(A) be an eigenvector to the eigenvalue λ, which in particular means ρ 6= 0.
It holds

λ (ρ, ρ)−1 = (Aρ, ρ)−1 = −I(ρ, ρ) .

Assuming that λ > C1
C2

, we would have

0 = I(ρ, ρ) + λ (ρ, ρ)−1 > I(ρ, ρ) +
C1

C2
(ρ, ρ)−1 ≥ 1

C2
‖ρ‖2

H1(Γ∗)

> 0 ,

which is a contradiction. �
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Now we are able to show that A is self-adjoint with respect to the (. , .)−1 inner product. As
in Section 3.2 of mean curvature flow, we proceed with a property that implies the equivalence
of symmetry and self-adjointness from [Weid76]. Since we know from Lemma 3.34 that A is
symmetric, this will provide us even with self-adjointness.

Lemma 3.38. The operator A is self-adjoint with respect to the (. , .)−1 inner product.

Proof. We use the following theorem of operator theory. If there exists an ω ∈ R, such that

im(ω Id−A) = H−1(Γ) ,

the properties symmetry and self-adjointness of A are equivalent, see for example [Weid76].
So we have to show that there exists an ω ∈ R, such that for given f ∈ H−1(Γ∗) there exists a
ρ ∈ D(A) with

ωρ−Aρ = f .

This means that ρ ∈ H3(Γ∗) is a weak solution of the boundary value problem





∆Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
+ ωρ = f in Γ∗ ,

∂µρ− S(n∗, n∗)ρ = 0 on ∂Γ∗ ,
∇Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
· n∂Γ∗ = 0 on ∂Γ∗ .

(3.62)

The weak formulation consists in finding a ρ ∈ H3(Γ∗) with ∂µρ− S(n∗, n∗)ρ = 0 on ∂Γ∗ and

∫

Γ∗

−∇Γ∗

(
∆Γ∗ρ+ |σ∗|2ρ

)
· ∇Γ∗ξ + ω

∫

Γ∗

ρ ξ = 〈f, ξ〉

for all ξ ∈ H1(Γ∗). Due to 〈f, 1〉 = 0, inserting ξ ≡ 1 in this equation yields
∫
Γ∗ ρ = 0, so that a

solution ρ really belongs to D(A).
To obtain such a solution ρ, we use the minimization problem

F (ρ) :=
1

2

∫

Γ∗

(
|∇Γ∗ρ|2 − |σ∗|2ρ2

)
−
∫

∂Γ∗

S(n∗, n∗) ρ2 +
ω

2
‖ρ‖2

−1 −
∫

Γ∗

uf ρ → min

under all ρ ∈ H1(Γ∗) with
∫
Γ∗ ρ = 0. Here, uf ∈ H1(Γ∗) is the weak solution of (3.54) with

respect to f ∈ H−1(Γ∗).
F is coercive if and only if

lim inf
‖ρ‖

H1(Γ∗)
→∞

ρ∈V

F (ρ)

‖ρ‖2
H1(Γ∗)

> 0 .

Since for the linear term in F it holds that
∣∣∣∣
(
‖ρ‖H1(Γ∗)

)−2
∫

Γ∗

uf ρ

∣∣∣∣ ≤ ‖uf‖L2(Γ∗) ·
‖ρ‖L2(Γ∗)

‖ρ‖2
H1(Γ∗)

−→ 0 as ‖ρ‖H1(Γ∗) → ∞ ,
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the coercivity condition is equivalent to

1

2

∫

Γ∗

(
|∇Γ∗ρ|2 − |σ∗|2ρ2

)
−
∫

∂Γ∗

S(n∗, n∗) ρ2 +
ω

2
‖ρ‖2

−1 ≥ C ‖ρ‖2
H1(Γ∗)

for all ρ ∈ V for some C > 0.
With the definition of the bilinear form I this reads as

1

2
I(ρ, ρ) +

ω

2
‖ρ‖2

−1 ≥ C ‖ρ‖2
H1(Γ∗) .

To show this inequality for arbitrary ρ ∈ V , we proceed with the help of Lemma 3.36 for ω > C1
C2

,
where C1 and C2 are the positive constants from Lemma 3.36.

1

2
I(ρ, ρ) +

ω

2
‖ρ‖2

−1 ≥ 1

2C2
‖ρ‖2

H1(Γ∗) −
C1

2C2
‖ρ‖2

−1 +
ω

2
‖ρ‖2

−1

=
1

2C2
‖ρ‖2

H1(Γ∗) +
1

2

(
ω − C1

C2

)
‖ρ‖2

−1

≥ 1

2C2
‖ρ‖2

H1(Γ∗) ,

where we used ω − C1
C2

> 0 in the last inequality. This shows coercivity. To apply an abstract
existence theorem for the minimization problem from, for example the book of Jost [Jo98], it is
now enough to show that the corresponding bilinear form

B(ρ1, ρ2) :=
1

2

∫

Γ∗

(
∇Γ∗ρ1 · ∇Γ∗ρ2 − |σ∗|2ρ1ρ2

)
− 1

2

∫

∂Γ∗

S(n∗, n∗)ρ1ρ2 +
ω

2
(ρ1, ρ2)−1

is bounded on bounded sets in V ×V . To this end, we use the boundedness of |σ∗|2 and S(n∗, n∗)
since we assumed that Γ∗ is smooth enough and we remark that for the last term with the help
of the Cauchy-Schwarz inequality and the continuous embedding V →֒ H−1(Γ∗) for ρ1, ρ2 ∈ V
it holds

∣∣(ρ1, ρ2)−1

∣∣ ≤ ‖ρ1‖H−1(Γ∗) · ‖ρ1‖H−1(Γ∗) ≤ C ‖ρ1‖H1(Γ∗) · ‖ρ1‖H1(Γ∗) .

Therefore there exists a unique minimizer ρ ∈ V of F on V . Since V is a subspace, this minimizer
is characterized by the first variation of F through

0 =
d

dε
F (ρ+ εv)

∣∣∣∣
ε=0

=

∫

Γ∗

(
∇Γ∗ρ · ∇Γ∗v − |σ∗|2ρ v

)
−
∫

∂Γ∗

S(n∗, n∗)ρ v + ω (ρ, v)−1 −
∫

Γ∗

uf v ,

where v ∈ V is arbitrary. By the Definition of uρ in (3.54) and the identity (3.56), we observe
that ω (ρ, v)−1 = ω 〈v, uρ〉 = ω

∫
Γ∗ uρ v. Since in the above equation the testfunctions v have to

fulfill the constraint
∫
Γ∗ v = 0, the identity is the weak version of the boundary value problem

{
−
(
∆Γ∗ρ+ |σ∗|2 ρ

)
+ ωuρ + λ = uf in Γ∗ ,

∂µρ− S(n∗, n∗)ρ = 0 on ∂Γ∗ .
(3.63)
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Here the Lagrange-multiplier λ is given through

λ =
1

|Γ∗|

(∫

Γ∗

(
|σ∗|2 ρ− ω uρ + uf

)
+

∫

∂Γ∗

S(n∗, n∗)ρ

)
.

Since uρ and uf are in H1(Γ∗), we obtain from elliptic regularity theory that ρ ∈ H3(Γ∗).
Therefore we can differentiate the first line in (3.63) and take the L2-inner product with ∇Γ∗ξ
for some arbitrary ξ ∈ H1(Γ∗) to obtain

−
∫

Γ∗

∇Γ∗

(
∆Γ∗ρ+ |σ∗|2 ρ

)
· ∇Γ∗ξ + ω

∫

Γ∗

∇Γ∗uρ · ∇Γ∗ξ =

∫

Γ∗

∇Γ∗uf · ∇Γ∗ξ .

With the Definition of the weak solutions uρ and uf from (3.54) we finally get

−
∫

Γ∗

∇Γ∗

(
∆Γ∗ρ+ |σ∗|2 ρ

)
· ∇Γ∗ξ + ω

∫

Γ∗

ρ ξ =

∫

Γ∗

〈f, ξ〉

for all ξ ∈ H1(Γ∗). So together with the boundary condition from (3.63), we found a ρ ∈ D(A)
with

ωρ−Aρ = f ,

provided ω > C1
C2

, where C1 and C2 are the positive constants from Lemma 3.36. �

For the following theorem, the characterization of the eigenvalues of A and the asymptotic
stability of the linearized problem (3.52) in terms of the positivity of the bilinear form I, we
could in principle refer to Section 3.2 about mean curvature flow and advise the reader to do the
necessary modifications. But we want to keep this section as complete as possible and therefore
we give the remaining proofs for linearized stability analysis in detail.

The next point is to give a stability criterion for the zero solution of the linearized operator A.

Theorem 3.39.

(i) The spectrum of A consists of countable many real eigenvalues.

(ii) The initial value problem (3.52) is solvable for initial data in H−1(Γ∗).

(iii) The zero solution of (3.52) is asymptotically stable if and only if the largest eigenvalue of
A is negative, in short notation σ(A) < 0.

Proof. ad (i). We want to show that for some λ ∈ R, the operator (λ I −A)−1 : H → H exists
and is compact.

For λ > C1
C2

, where C1 and C2 the positive constants from Lemma 3.36 we showed surjectivity
of

λ I −A : D(A) −→ H
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in the last Lemma 3.38. Since every eigenvalue µ ∈ σ(A) fulfills µ ≤ C1
C2

from Lemma 3.37, we
see from the identity

σ(λ I −A) = λ− σ(A)

for the spectrum that there exists no eigenvalue zero of λ I −A provided λ > C1
C2

. For a linear
operator this means in particular that it is injective.
Continuity of the resolvent

(λ I −A)−1 : H −→ D(A)

for λ > C1
C2

can be seen by observing that

(λ I −A)−1 (f) = ρ ⇔ (λ I −A) (ρ) = f ,

which means that ρ ∈ D(A) is a weak solution for the boundary value problem (3.62) with
ω = λ. Solutions of this problem fulfill an inequality

‖ρ‖H3(Γ∗) ≤ C ‖f‖H−1(Γ∗) ,

which gives continuity of the resolvent. Since the embedding D(A) →֒ H−1(Γ∗) is compact, we
get by composition a compact operator

(λ I −A)−1 : H −→ H ,

provided λ > C1
C2

. Together with the self-adjointness of A from Lemma 3.38, we get the claim
(i) with the help of an abstract operator theorem from the book of Kato [Kat95].
ad (ii) and (iii). Existence and stability of the problem

Find ρ(t) ∈ D(A) , such that ∂tρ(t) = A(t)

can be treated with the theory of analytic semigroups as, for example, in the book of Lunardi
[Lun95]. We just show that A generates an analytic semigroup.
On the one hand, we know that for ω ∈ R the operator Ã := A − ω I is self-adjoint, since

from Lemma 3.38 the operator A has this property. On the other hand, we can show that Ã is
dissipative, which means that

(Ãρ, ρ)−1 ≤ 0 for all ρ ∈ D(A) .

In fact, this can be seen with the help of Lemmata 3.33 and 3.36.

(Ãρ, ρ)−1 = (Aρ, ρ)−1 − ω (ρ, ρ)−1

= −I(ρ, ρ) − ω (ρ, ρ)−1

≤ − 1

C2
‖ρ‖2

H1(Γ∗) +

(
C1

C2
− ω

)
‖ρ‖L2(Γ∗)

≤ 0 ,
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where the last inequality can be achieved by choosing ω large enough. Now we use an abstract
theorem of [Weid76] which states that a linear, densely defined, self-adjoint and dissipative
operator is in particular sectorial and therefore generates an analytic semigroup T (t). For com-
pleteness we mention finally that S(t) := eωtT (t) is the analytic semigroup with generator A. �

The next lemma, which follows with classical arguments from Courant and Hilbert [CH68],
gets together eigenvalues of A and properties of the bilinear form I. The lemma is essentially
the same as in Section 3.2 of mean curvature flow, we just have to replace the L2-inner product
with (. , .)−1.

Lemma 3.40. Let

λ1 ≥ λ2 ≥ λ3 ≥ . . .

be the eigenvalues of A (taken multiplicity into account).

(i) For all n ∈ N, the following description of the eigenvalues holds

λn = inf
W∈Σn−1

sup
ρ∈W\{0}

− I(ρ, ρ)

(ρ, ρ)−1
,

−λn = sup
W∈Σn−1

inf
ρ∈W⊥\{0}

I(ρ, ρ)

(ρ, ρ)−1
,

where Σn is the collection of n-dimensional subspaces of V and W⊥ is the orthogonal
complement with respect to the (. , .)−1 inner product.

(ii) The eigenvalues λn depend continuously on S(n∗, n∗) and |σ∗| in the L∞-norm.

Proof. The first part follows with the help Courant’s maximum-minimum principle from [CH68]
and the second part follows due to the structure of I,

I(ρ, ρ) =

∫

Γ∗

(
|∇Γ∗ρ|2 − |σ∗|2ρ2

)
dHn −

∫

∂Γ∗

S(n∗, n∗)ρ2 dHn−1 ,

from which the continuous dependence can be seen directly. �

As before in Section 3.2 of the mean curvature flow, we can describe the eigenvalue λ1 in the
above lemma more explicitly.

Remark 3.41. For the largest eigenvalue λ1 of A we have the description

−λ1 = min
ρ∈V \{0}

I(ρ, ρ)

(ρ, ρ)−1
. (3.64)

From Theorem 3.39 we have asymptotic stability of the linearized equation (3.52) if and only
if λ1 < 0. This leads to the following main conclusion.
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Theorem 3.42. The linearized equation (3.52) is asymptotically stable if and only if

I(ρ, ρ) > 0

for all ρ ∈ V \{0}, where

I(ρ, ρ) =

∫

Γ∗

(
|∇Γ∗ρ|2 − |σ∗|2ρ2

)
dHn −

∫

∂Γ∗

S(n∗, n∗)ρ2 dHn−1 .

3.4.2 Some comments on nonlinear stability

In this short subsection we want to give some comments on nonlinear stability of surface diffusion
equation with boundary contact (3.48). This is the task of deriving stability results directly for
the highly nonlinear problem (3.49). Given a stationary solution Γ∗ of (3.48), which is linearly
stable in the sense of Theorem 3.42, we say that Γ∗ is nonlinear stable provided that a solution
Γ(t) of (3.48) with starting configuration Γ0 close to Γ∗ in a suitable sense, converges to Γ∗ also
in a suitable sense.
This problem was considered in the curve case by Garcke, Ito and Kohsaka [GIK08] and for

closed hypersurfaces in higher dimensions without outer boundary contact by Escher, Mayer
and Simonett in [EMS98]. In [EMS98] the authors use the concept of central manifolds, which
is hard to apply in our case due to the highly nonlinear boundary condition. In this direction
we also mention the work of Huisken (among lots of others [Hui84] and [Hui86]), who considered
mean curvature flow for closed hypersurfaces and the work of Stahl [Sta95] and [Sta96], who
extended the results of Huisken to the case of outer fixed boundary contact. Although their
work is primarily concerned with the description of arising singularities, they use formulas for
evolution of, for example, mean curvature and the second fundamental form, that are closely
related to our case. We just remark that in the last two cases the authors use the maximum
principle, which is not available for surface diffusion.
Therefore we propose to handle the nonlinear stability by a generalization of [GIK08], which

is based on strong a-priori estimates and semigroup theory. We will give here some of the
extensions of [GIK08] to the higher dimensional case, which are interesting on their own.
With the help of the results from the previous Section 3.4, we can derive an evolution equation

for mean curvature.

Lemma 3.43. Let Γ be a smooth solution of surface diffusion with boundary contact (3.48) i.e.
with the notations from Section 3.4 it holds Γ(t) ⊂ Ω, ∂Γ(t) ⊂ ∂Ω and for t > 0

V = −∆Γ(t)H in Γ(t)

with boundary conditions
{

∠(Γ(t), ∂Ω) = π
2 on ∂Γ(t) ,

∇Γ(t)H · n∂Γ(t) = 0 on ∂Γ(t) .

Then we have the following evolution of mean curvature for t > 0

∂◦H = −∆2
Γ(t)H − |σ|2∆Γ(t)H in Γ(t)
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and on the boundary

{
(∂µ − S(n, n)) ∆Γ(t)H = 0 on ∂Γ(t) ,

∇Γ(t)H · n∂Γ(t) = 0 on ∂Γ(t) .

Proof. The evolution of mean curvature is seen immediately with the result ∂◦H = ∆Γ(t)V +
|σ|2V in formula (2.3) and the evolution V = −∆Γ(t)H.
For the second part we write the angle condition as

n(t, p) · µ(p) = 0 on ∂Γ(t) ,

for all t > 0, where n(t, p) is a unit normal to Γ(t) at p ∈ Γ(t) and µ is the outer unit normal of
∂Ω. With the formula ∂◦n = −∇Γ(t)V from (2.4) and analogue calculations as in Lemma 2.38
we see

0 = ∂◦ (n · µ)

= ∂◦n · µ+ n · ∂◦µ
= −∇Γ(t)V · µ+ n · V dpµ(n)

= −∇Γ(t)V · µ+ V S(n, n)

= (∂µ − S(n, n)) (−V )

= (∂µ − S(n, n))∆Γ(t)H .

Note that S is our notation for the second fundamental form of ∂Ω with respect to the inwards
pointing unit normal (−µ) of Ω. �

Now we derive basic evolution formulas for area,
∫
Γ(t)H

2 and
∫
Γ(t) |∇Γ(t)H|2.

Lemma 3.44. Let Γ be a smooth solution of (3.48) as in the previous lemma. Then we have

(i)
d

dt

∫

Γ(t)
1 = −

∫

Γ(t)
|∇Γ(t)H|2 , (3.65)

(ii)
d

dt

1

2

∫

Γ(t)
H2 =

∫

Γ(t)

(
∆Γ(t)H − 1

2
H3 + |σ|2

)
V −

∫

∂Γ(t)
S(n, n)H V , (3.66)

(iii)
d

dt

∫

Γ(t)

1

2
|∇Γ(t)H|2 =

∫

Γ(t)

1

2
∂◦
(
|∇Γ(t)H|2

)
− 1

2

∫

Γ(t)
|∇Γ(t)H|2V H . (3.67)

Proof. (i) follows directly from Lemma 2.46 and the surface diffusion V = −∆Γ(t)H with
integration by parts

d

dt

∫

Γ(t)
1 = −

∫

Γ(t)
V H =

∫

Γ(t)
∆Γ(t)H ·H = −

∫

Γ(t)
|∇Γ(t)H|2 .

For (ii) we use the Transport theorem 2.44 for f = 1
2H

2, the formula for V = −∆Γ(t)H on the
boundary from the previous Lemma 3.43 and the vanishing of the normal boundary velocity
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v∂Γ = 0 due to the right angle condition as in the proof of Lemma 2.46.

d

dt

1

2

∫

Γ(t)
H2 =

∫

Γ(t)
H ∂◦H − 1

2

∫

Γ(t)
H2 V H +

1

2

∫

∂Γ(t)
H2 v∂Γ(t)︸ ︷︷ ︸

=0

=

∫

Γ(t)
H
(
∆Γ(t)V + |σ|2 V

)
− 1

2

∫

Γ(t)
V H3

= −
∫

Γ(t)
∇Γ(t)H · ∇Γ(t)V +

∫

∂Γ(t)
H (∇Γ(t)V · n∂Γ(t)︸ ︷︷ ︸

−S(n,n)V

)

+

∫

Γ(t)
|σ|2 V H − 1

2

∫

Γ(t)
V H3

=

∫

Γ(t)
∆Γ(t)H V −

∫

∂Γ(t)
(∇Γ(t)H · n∂Γ(t)︸ ︷︷ ︸

=0

)V −
∫

∂Γ(t)
S(n, n)V H

+

∫

Γ(t)
|σ|2 V H − 1

2

∫

Γ(t)
V H3

=

∫

Γ(t)

(
∆Γ(t)H + |σ|2H − 1

2
H3

)
V −

∫

∂Γ(t)
S(n, n)V H .

To see (iii), we just have to apply the Transport theorem 2.44 for f = 1
2 |∇Γ(t)H|2 to derive

d

dt

∫

Γ(t)

1

2
|∇Γ(t)H|2 =

∫

Γ(t)

1

2
∂◦
(
∇Γ(t)H · ∇Γ(t)H

)
−
∫

Γ(t)

1

2
|∇Γ(t)H|2V H

+

∫

∂Γ(t)

1

2
|∇Γ(t)H|2 v∂Γ .

As in the proof of Lemma 2.46 we get the vanishing of the normal boundary velocity v∂Γ = 0
due to the right angle condition. �

We give a remark concerning identity (3.67).

Remark 3.45. Of course the term
∫
Γ(t)

1
2∂

◦
(
|∇Γ(t)H|2

)
in the evolution formula for

∫
Γ(t)

1
2 |∇Γ(t)H|2

is not satisfactory. We give some local calculations which lead at least to an estimate.

The problem with the term 1
2∂

◦
(
|∇Γ(t)H|2

)
= ∇Γ(t)H · ∂◦∇Γ(t)H is that the normal time

derivative and the surface gradient do not commute with each other, which leads to

∇Γ(t)H · ∂◦
(
∇Γ(t)H

)
= ∇Γ(t)H · ∇Γ(t) (∂◦H) + other terms

= ∇Γ(t)H · ∇Γ(t)

(
∆Γ(t)V + |σ|2V

)
+ other terms .

Locally we can give the missing terms as follows. Let v1, . . . , vn be an orthonormal moving
frame of Γ(t), i.e. for all p ∈ Γ(t) the vectors v1(p), . . . , vn(p) form an orthonormal basis of
TpΓ(t) and therefore the vectors (0, v1(p)), . . . , (0, vn(p)) form an orthonormal basis of T(t,p)Γ,
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see Definition 2.13 from Chapter 2. With the normal time derivative ∂◦ given as directional
derivative in direction of (1, V n) ∈ T(t,p)Γ from Lemma 2.37 this gives us the possibility to write

∂◦∇Γ(t)H = ∂(1,V n)

(
n∑

i=1

(
∂(0,vi)H

)
(0, vi)

)

=

n∑

i=1

(
∂(1,V n)∂(0,vi)H

)
(0, vi) +

n∑

i=1

(
∂(0,vi)H

)
∂(1,V n)(0, vi)

=
n∑

i=1

(
∂(0,vi)∂(1,V n)H

)
(0, vi) +

n∑

i=1

(
∂[(1,V n),(0,vi)]H

)
(0, vi)

+

n∑

i=1

(
∂(0,vi)H

)
∂(1,V n)(0, vi) .

Here we used the Lie derivative, which is given through

[v,w] := ∂vw − ∂wv

for tangent vector fields v,w, i.e. v,w : Γ → R × Rn+1 with v(t, p), w(t, p) ∈ T(t,p)Γ.
Taking this term in the scalar product with ∇Γ(t)H, one can find inequalities for the terms

involving the local basis and get at least an inequality for the evolution d
dt

∫
Γ(t) |∇Γ(t)H|2.

Integration by parts yields then
∫

Γ(t)

1

2
∂◦|∇Γ(t)H|2 = −

∫

Γ(t)
∆Γ(t)H ∆Γ(t)V −

∫

Γ(t)
∆Γ(t)H |σ|2 V + other terms

+

∫

∂Γ(t)
∇Γ(t)H · n∂Γ(t)︸ ︷︷ ︸

=0

(
∆Γ(t)V + |σ|2V

)

=

∫

Γ(t)
V ∆Γ(t)V +

∫

Γ(t)
|σ|2 V 2 + other terms

= −
∫

Γ(t)
|∇Γ(t)V |2 +

∫

Γ(t)
|σ|2 V 2 + other terms

+

∫

∂Γ(t)
V
(
∇Γ(t)V · n∂Γ(t)

)
︸ ︷︷ ︸

=−S(n,n)V

.

By collecting the terms we get

d

dt

∫

Γ(t)

1

2
|∇Γ(t)H|2 = −

(∫

Γ(t)
|∇Γ(t)V |2 −

∫

Γ(t)
|σ|2 V 2 +

∫

∂Γ(t)
S(n, n)V 2

)

−1

2

∫

Γ(t)
|∇Γ(t)H|2 V H + other terms .

Of course here is a lot of work to be done to get an exact result. (�)
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The next lemma assures uniqueness of a geometric problem for hypersurfaces Γ given by the
parametrization of Section 3.1. In the case of fixed boundary, there is a similar proof in Grosse-
Brauckmann [Gro96].

Lemma 3.46. Let Γ∗ be a stationary solution of (3.48) such that the bilinear form I from
Theorem 3.42 is positive and let Γ be hypersurfaces given with the help of the parametrization
from Section 3.1 through

Γ = Γρ = {Φρ(q) | q ∈ Γ∗} , (3.68)

where ρ : Γ∗ → R is independent of time t.
Then there exists a C2-neighbourhood of Γ∗ such that ρ ≡ 0 (i.e. Γ∗) is the unique solution of
the problem

H = H , ∠(Γ, ∂Ω) =
π

2
, Vol(Γ) = Vol(Γ∗) . (3.69)

Here, H =
∫
Γ− H is the mean value of mean curvature and the volume Vol(Γ) is calculated as in

Section 2.4. Furthermore, C2-neighbourhood of Γ∗ means hypersurfaces Γ given as above with
small ‖ρ‖C2(Γ∗)-norm.

Proof. We want to make use of the following abstract implicit function theorem, see the book
of Zeidler [Zeid86]. Suppose that

(i) X,Y,Z are real Banach spaces, U = U(x0, y0) ⊂ X × Y is an open neighbourhood of
(x0, y0) ∈ X × Y and F : U → Z fulfills F (x0, y0) = 0.

(ii) Fy exists as partial Fréchet derivative on U and Fy(x0, y0) : Y → Z is bijective.

(iii) F and Fy are continuous at (x0, y0).

Then there exist r0, r > 0, such that for every x ∈ X satisfying ‖x − x0‖ < r0, there is exactly
one y(x) ∈ Y for which ‖y(x) − y0‖ < r and F (x, y(x)) = 0.

We use this theorem for

X := {ρ ∈ C2(Γ∗) | ρ ≡ const} ,

Y :=

{
ρ ∈ C2(Γ∗) |

∫

Γ∗

ρ = 0

}
,

Z :=

{
ρ ∈ C0(Γ∗) |

∫

Γ∗

ρ = 0

}
× C0(∂Γ∗) and

F (m,u) :=
(
H −H , ∠(∂Ω,Γ) − π

2

)
,

where the mean curvature H and the average mean curvature H are computed for the hypersur-
face Γ = Γρ that we get from (3.68) with ρ = u+m. Also the expression ∠(∂Ω,Γ) is the angle
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between the outer boundary and Γ. Since Γ∗ corresponds to ρ ≡ 0 and is a stationary solution
of (3.48), we have F (0, 0) = 0. The partial derivative ∂uF (0, 0) : Y → Z is given by

∂uF (0, 0)v =
d

dε
F (0, εv)

∣∣∣∣
ε=0

and can be computed with the methods from Subsection 3.4.1 as

∂uF (0, 0)v =

(
∆Γ∗v + |σ∗|2v − 1

|Γ∗|

∫

Γ∗

(
∆Γ∗v + |σ∗|2v

)
, ∂µv − S(n∗, n∗)v

)
.

Due to the fact that the bilinear form I from Theorem 3.42 is positive, Hölder regularity theory
implies that ∂uF (0, 0) is invertible. It is also true that F and ∂uF are continuous at (0, 0).
Hence, for m ∈ X small, we find exactly one u(m) ∈ Y such that

F (m,u(m)) = 0 .

Now we define

ρm = u(m) +m

for small m and let Γm = Γρm be the hypersurface from (3.68) given with the help of the
parametrization from Section 3.1. With the derivative of volume from Section 2.4 we can
conclude

Vol(Γm) = Vol(Γ∗) +

∫

Γ∗

(u(m) +m) + o(‖u(m) +m‖C2(Γ∗))

= Vol(Γ∗) +m |Γ∗| + o(‖u(m) +m‖C2(Γ∗)) .

By a contradiction argument we get therefore for m 6= 0

|Vol(Γm) − Vol(Γ∗)| 6= 0 , (3.70)

if ‖(m,u(m))‖C2(Γ∗) is small enough.
To finish the proof, we assume the existence of a solution ρ of (3.69) with ‖ρ‖C2(Γ∗) small.

With the splitting ρ = u+m with m = ρ and u = ρ− ρ, where

ρ =
1

|Γ∗|

∫

Γ∗

ρ ,

we see that F (m,u) = 0. Due to the volume-preserving property and (3.70), we obtain that
m = 0 and u ≡ 0, which implies ρ ≡ 0 and proves the lemma. �

We want to give some comments on the remaining work to show an analogous result for non-
linear stability as in Garcke, Ito and Kohsaka [GIK08]. When imitating the steps from [GIK08],
one has to prove at first a local existence result for the higher-dimensional case. Then one has to
control higher derivatives

∫
Γ(t) |∇m

Γ(t)H|2 to get the estimates of mean curvature in the adequate
norm. This should lead to the strong a-priori estimates to show a unique global-in-time existence
result. With the help of the above Lemma 3.46 a method similar to the one used in Elliott and
Garcke [EG97] should yield nonlinear stability.
At last we mention that this approach contains of course a lot of work that is not done in this

dissertation and is therefore left for future work.
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3.5 Examples for stability

In this section, we consider explicit given situations for the geometry. This means we will specify
a region Ω together with a hypersurface Γ∗ lying inside Ω and touching the boundary at a right
angle. Γ∗ will be a stationary solution and we want to determine a characteristic behaviour
concerning the linearized stability of Γ∗. Firstly we consider an example for surface diffusion
with outer boundary contact.
For a, c > 0 we let

Ω = {(x, y, z) ∈ R
3 | x

2

a2
+
y2

a2
+
z2

c2
< 1}

be surrounded by the ellipsoid

∂Ω = E = {(x, y, z) ∈ R
3 | x

2

a2
+
y2

a2
+
z2

c2
= 1} .

A parametrization of E is given by

f : [0, π] × [0, 2π] −→ E , f(u, v) = (a sinu cos v, a sin u sin v, c cos u) .

We consider a stationary solution Γ∗ of the surface diffusion equation (3.48) given by

Γ∗ = {(x, y, 0) ∈ R
3 |x2 + y2 ≤ a2} .

Γ∗ is a circle in the (x, y)-plane lying inside the ellipsoid E with boundary

∂Γ∗ = {(x, y, 0) ∈ R
3 |x2 + y2 = a2}

= {f(
π

2
, v) | v ∈ [0, 2π]} ,

that touches E at a right angle.
To decide on linearized stability of Γ∗, we have to examine due to Theorem 3.42 the positivity

of

I(ρ, ρ) =

∫

Γ∗

(
|∇Γ∗ρ|2 − |σ∗|2ρ2

)
−
∫

∂Γ∗

S(n∗, n∗)ρ2

for all ρ ∈ H1(Γ∗)\{0} with
∫
Γ∗ ρ = 0. Here, |σ∗|2 is the squared norm of the second fundamental

form σ∗ of Γ∗, given by |σ∗|2 = (κ∗1)
2+(κ∗2)

2. Since Γ∗ is a flat disc, we observe that the principal
curvatures κ∗i vanish and therefore |σ∗|2 = 0. S is the second fundamental form of ∂Ω = E with
respect to the inwards pointing unit normal (−µ) of Ω, which is given at q = f(u, v) ∈ E with
the help of the cross product through

µ(q) = µ(u, v) =
∂uf × ∂vf

|∂uf × ∂vf |
=

1√
a2 cos2 u+ c2 sin2 u

(c sinu cos v, c sin u sin v, a cos u) ,

where we used

∂uf(u, v) = (a cos u cos v, a cos u sin v,−c sin u) and

∂vf(u, v) = (−a sinu sin v, a sin u cos v, 0) .
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At points q ∈ ∂Γ∗ ∩ E, that is at q = f(π
2 , v), this leads to

µ(q) = µ(
π

2
, v) = (cos v, sin v, 0) .

The corresponding matrix representation of S, i.e. hij(u, v) = (−µ(u, v), ∂ijf(u, v)) for i, j ∈
{1, 2} is then given by

(hij(u, v))
2
i,j=1 = − 1√

a2 cos2 u+ c2 sin2 u
·

(
a sinu(−c sin u) + (a cos u)(−c cos u) 0

0 a sinu(−c sinu)

)
.

which can be calculated for rotational surfaces as in the book of Kühnel [Kue06], for example.
At points q ∈ ∂Γ∗ ∩ E, that is at q = f(π

2 , v), we get

(
hij(

π

2
, v)
)2

i,j=1
=

(
a 0
0 a

)
.

With the above formula for the normal to E, we see that the normal n∗ = (0, 0, 1) is or-
thogonal to µ and therefore n∗ ∈ TqE for q ∈ ∂Γ∗ ∩ E. Writing n∗ = (a1, a2) in the basis(
∂uf(π

2 , v), ∂vf(π
2 , v)

)
at a point q = f(π

2 , v) yields

n∗ = −1

c
∂uf(

π

2
, v) + 0 ∂vf(

π

2
, v) ,

so that a1 = −1
c and a2 = 0. Finally we can calculate at a point q = f(π

2 , v) ∈ ∂Γ∗ ∩ E

S(n∗, n∗) =
2∑

i,j=1

aiajhij(
π

2
, v) =

1

c2
h11(

π

2
, v) =

a

c2
.

With this results the bilinear form from Theorem 3.42 reduces to

I(ρ, ρ) =

∫

Γ∗

|∇Γ∗ρ|2 − a

c2

∫

∂Γ∗

ρ2 . (3.71)

To determine the minimum of I we proceed in an analogue manner as in Courant and Hilbert
[CH68]. By using the fact that Γ∗ is a flat disc in R3 with radius a > 0, we can replace the
bilinear form (3.71) by the following one.

I(ρ, ρ) =

∫

Ba(0)
|∇ρ|2 − a

c2

∫

∂Ba(0)
ρ2 , (3.72)

whereBa(0) is the ball in R2 with center 0 and radius a > 0, and ρ ∈ H1(Ba(0)) with
∫
Ba(0) ρ = 0.

Note that ∇ is the usual gradient in R2. We can simplify the bilinear form (3.72) further by
introducing polar coordinates (r, ϑ) to get

I(ϕ,ϕ) =

∫ 2π

0

∫ a

0

(
(∂rϕ)2 +

1

r2
(∂ϑϕ)2

)
r dr dϑ − a

c2

∫ 2π

0
(ϕ(a, θ))2 a dϑ , (3.73)
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CHAPTER 3. EVOLUTION EQUATIONS WITH BOUNDARY CONTACT

where ϕ = ρ ◦ Π for polar coordinates Π(r, ϑ) with ϕ ∈ H1((0, 2π) × (0, a)) and
∫ 2π
0

∫ a
0 ϕr = 0.

Here we used the transformation rule |∇ρ|2 = (∂rϕ)2 + 1
r2 (∂ϑϕ)2.

If we now want to solve the minimum problem

I(ϕ,ϕ) −→ min , ϕ ∈ H1((0, 2π) × (0, a)) and

∫ 2π

0

∫ a

0
ϕr = 0 , (3.74)

we can assume for ϕ a Fourier series expansion as

ϕ(r, ϑ) =
1

2
f0(r) +

∞∑

n=1

[fn(r) cos(nϑ) + gn(r) sin(nϑ)] , (3.75)

for functions f0, fn and gn. Due to the volume constraint we observe that
∫ a
0 f0(r) r dr = 0. At

the boundary of Ba(0), formula (3.75) gives for r = a

ϕ(a, ϑ) =
1

2
f0(a) +

∞∑

n=1

[fn(a) cos(nϑ) + gn(a) sin(nϑ)] .

Differentiating (3.75) with respect to r and ϑ, inserting it into formula (3.73) for I(ϕ,ϕ) and
using the orthogonality of the trigonometric functions, we deduce the following expression for I.

I(ϕ,ϕ) = π

∫ a

0
(f ′0(r))

2 r dr + π

∞∑

n=1

∫ a

0

(
(f ′n(r))2 +

n2

r2
(fn(r))2

)
r dr

+π

∞∑

n=1

∫ a

0

(
(g′n(r))2 +

n2

r2
(gn(r))2

)
r dr − a2

c2
π(f0(a))

2 (3.76)

−a
2

c2
π

∞∑

n=1

(fn(a))2 − a2

c2
π

∞∑

n=1

(gn(a))2 .

Due to this structure we can minimize instead of I also the series of problems given by

∫ a

0
(f ′0(r))

2 r dr − a2

c2
(f0(a))

2 −→ min , (3.77)

∫ a

0

(
(f ′n(r))2 +

n2

r2
(fn(r))2

)
r dr − a2

c2
(fn(a))2 −→ min for n ∈ N , (3.78)

∫ a

0

(
(g′n(r))2 +

n2

r2
(gn(r))2

)
r dr − a2

c2
(gn(a))2 −→ min for n ∈ N . (3.79)

The first line (3.77) can be minimized at once by f ′0 = 0, and therefore f0(r) ≡ c for some
constant c. Due to the constraint

∫ a
0 f0(r) r dr = 0, we observe f0(r) ≡ 0 and in particular

f0(a) = 0. So the first line will yield the minimal value 0.

For n > 0, we must have fn(0) = 0, otherwise the function n2

r2 (fn(r))2r = n2

r (fn(r))2 from (3.76)
would have a pole at r = 0 that is not integrable. Therefore we can write the integral in (3.78)
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as follows.

∫ a

0

(
(f ′n(r))2 +

n2

r2
(fn(r))2

)
r dr

=

∫ a

0

(
f ′n − n

r
fn

)2
r dr +

∫ a

0
2nfn f

′
n dr

=

∫ a

0

(
f ′n − n

r
fn

)2
r dr + n(fn(a))2 ,

so that the above minimum problem for fn reads as

∫ a

0

(
f ′n − n

r
fn

)2
r dr +

(
n− a2

c2

)
(fn(a))2 −→ min for n ∈ N .

The minimum is attained if f ′n − n
r fn = 0, which gives fn(r) = cnr

n for some constant cn. The
minimal value is then given by

(
n− a2

c2

)
(fn(a))2 .

Analogous calculations for gn yield finally the minimal value of I given by

π

∞∑

n=1

(
n− a2

c2

)(
(fn(a))2 + (gn(a))2

)
. (3.80)

With this minimal value we can give the following result about linear stability of Γ∗.

Lemma 3.47. With the above notations we get the following result for Γ∗.

(i) If c > a, Γ∗ is linearly asymptotically stable.

(ii) If c < a, Γ∗ is linearly asymptotically instable.

Proof. Due to Theorem 3.42 we have asymptotic stability of Γ∗ if and only if I(ρ, ρ) > 0 for
all ρ ∈ H1(Γ∗) with

∫
Γ∗ ρ = 0, where I is given here as in (3.71). With the help of the above

remarks, we calculated the minimum of I in (3.80), where fn(a) and gn(a) are arbitrary values.

If c > a, we see that
(
n− a2

c2

)
≥
(
1 − a2

c2

)
> 0 and the above minimal value is positive.

If on the other hand c < a, we choose f1(a) = g1(a) = 1
2 and fn(a) = gn(a) = 0 for n > 1, so

that the above minimal value simplifies to

π

(
1 − a2

c2

)
< 0 .

This yields the proof. �
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Lemma 3.48. When we consider with the above notations the flat disc Γ∗ lying inside of an
hyperboloid instead of an ellipsoid, we remark briefly that in this case an inequality

S(n∗, n∗) ≤ c0 < 0

holds for some constant c0 < 0. Together with |σ∗|2 = 0, this gives for the bilinear form

I(ρ, ρ) =

∫

Γ∗

|∇Γ∗ |2 −
∫

∂Γ∗

S(n∗, n∗)ρ2

≥
∫

Γ∗

|∇Γ∗ |2 + |c0|
∫

∂Γ∗

ρ2

︸ ︷︷ ︸
≥0

≥ C‖ρ‖2
H1(Γ∗) ,

where the last inequality holds due to the Poincaré inequality on H1(Γ∗) ∩ {ρ |
∫
Γ∗ ρ = 0}.

Therefore in this case linearized stability for Γ∗ holds without any conditions as in the previous
Lemma 3.47.

Lemma 3.49. For the mean curvature flow we want to give the following abstract short example.
When we have a bound of the form

S(n∗, n∗) ≥ c0 > 0 ,

which is connected to strict convexity of Ω, we use the lack of the integral constraint in Theorem
3.17, and insert constant functions ρ ≡ c into the bilinear form I to get

I(c, c) = −c2




∫

Γ∗

|σ∗|2
︸ ︷︷ ︸

≥0

+

∫

∂Γ∗

S(n∗, n∗)︸ ︷︷ ︸
≥c0




< 0 .

So in this case we have linear instability for Γ∗.

The last lemma is already known in the literature and can be found for example in the paper
of Ei, Sato and Yanagida [ESY96].
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Chapter 4

Triple Lines with Boundary Contact

In this chapter we will extend the previous one by considering instead of one now three evolving
hypersurfaces, which lie inside a fixed region, meet the outer boundary at a right angle and get
together at a triple line, where also some angle conditions have to be fulfilled. The hypersurfaces
will evolve due to the mean curvature and the surface diffusion flow, each flow considered in one
section of the chapter. As before we give some basic geometric properties of the regarded flows
concerning the evolution of area and volume and the properties of stationary states.

In analogy to the previous chapter the main goal here is to do linearized stability analysis. To
this end we extend the work of Garcke, Ito and Kohsaka [GIK10], where the authors consider
surface diffusion with triple junctions for curves in the plane, to the present case of hypersurfaces
in Rn+1. A similar approach was considered by the authors in [GIK09], where they derived the
linearized problem through the second variation of an energy functional, but we will stick to the
style in [GIK10].

As in the previous chapter we first have to introduce a setting that allows us to formulate the
geometric evolution laws as partial differential equations for functions defined on fixed reference
hypersurfaces, which will be stationary solutions. Then we linearize the arising equations and
with the help of spectral theory we formulate a criterion for asymptotic stability through the
positivity of some bilinear form. As in the previous chapter it will be important to identify the
linearized equations as gradient flows.

In the first Section 4.1 we consider the mean curvature flow with outer boundary contact, which
means that three hypersurfaces evolve due to the mean curvature flow, meet each other at a
triple line with some prescribed angles and touch the outer boundary at a right angle. For this
situation we use a parametrization that is a coupling of the one from Section 3.1 for an evolution
equation for one hypersurface near the outer boundary and a more explicit one near the triple
line. More precisely, this mapping near the triple line will depend on two parameters where one
is responsible for a normal direction and the other one for a tangential movement.

In the second Section 4.2 of this chapter we consider the surface diffusion flow with outer bound-
ary contact and a triple line for three evolving hypersurfaces. Since this is a fourth order flow, we
get more boundary conditions than in the previous section but for the formulation of the result-
ing partial differential equations for unknown functions, we can use the same parametrization
as in Section 4.1.
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CHAPTER 4. TRIPLE LINES WITH BOUNDARY CONTACT

Although the linearized stability analysis in both sections gets more complicated than in Chap-
ter 3 for one evolving hypersurface, it is strongly influenced by it. This is done in the same way
as the paper [GIK10] depends on the stability analysis in [GIK05].

4.1 Mean curvature flow

In this first section of the chapter about triple lines with outer boundary contact we consider
mean curvature flow with prescribed angle conditions at the triple line and a right angle condition
at the outer boundary. We formulate the problem in detail, give some geometric properties and
derive with the help of a more explicit parametrization than in Chapter 3 near the triple line
the linearized problem for three functions ρi, i = 1, 2, 3. Then we proceed with stability analysis
for this linearized problem, where we have to take care of the three different hypersurfaces in
this case, of course.

So we consider here the following problem. Seek for three evolving hypersurfaces

Γi =
⋃

t∈[0,T )

{t} × Γi(t) with Γi(t) ⊂ R
n+1 , (4.1)

as in Definition 2.31, moving due to the mean curvature flow weighted with surface energy
densities γi > 0, i = 1, 2, 3, such that Γi(t) lies in a fixed bounded region Ω ⊂ Rn+1 and the
following decomposition is fulfilled. The boundary ∂Γi(t) shall be a disjoint union of two parts

∂Γi(t) = Li(t) ∪ Si(t) , (4.2)

such that

L(t) = L1(t) = L2(t) = L3(t) (4.3)

is an (n− 1)-dimensional manifold, called triple line, and the other parts represent the sections
with the outer fixed boundary ∂Ω, i.e.

Si(t) = ∂Γi(t) ∩ ∂Ω . (4.4)

Note our implicit assumption that L(t) does not intersect ∂Ω.

In formulas, we have to find hypersurfaces as in (4.1)-(4.4), such that





Vi = γiHi in Γi(t) for all t > 0 for i = 1, 2, 3 ,
∠(Γi(t), ∂Ω) = π

2 on Si(t) for all t > 0 , i = 1, 2, 3 ,
∠(Γ1(t),Γ2(t)) = θ3 on L(t) for all t > 0 ,
∠(Γ2(t),Γ3(t)) = θ1 on L(t) for all t > 0 ,
∠(Γ3(t),Γ1(t)) = θ2 on L(t) for all t > 0 ,

Γi(0) = Γ0
i for i = 1, 2, 3 .

(4.5)

Here Γ0
i , i = 1, 2, 3 are given starting hypersurfaces, which fulfill (4.2)-(4.4) and the angle

conditions from (4.5). Vi and Hi are the normal velocity and mean curvature of Γi as defined in

100



4.1. MEAN CURVATURE FLOW

Chapter 2. θ1, θ2 and θ3 are given contact angles with 0 < θi < π, which fulfill θ1 + θ2 + θ3 = 2π
and Young’s law

sin θ1
γ1

=
sin θ2
γ2

=
sin θ3
γ3

. (4.6)

With the help of the outer unit conormals n∂Γi(t) of Γi(t) at ∂Γi(t) we can write the angle
conditions at the triple line through the requirement that





n∂Γ1(t) · n∂Γ2(t) = cos θ3 ,

n∂Γ2(t) · n∂Γ3(t) = cos θ1 ,

n∂Γ3(t) · n∂Γ1(t) = cos θ2 .
(4.7)

Due to the condition θ1 + θ2 + θ3 = 2π and to the claim (4.3) that the three hypersurfaces meet
at one triple line, two of the above angle conditions already imply the third one.

4.1.1 Geometric properties of the flow

In this subsection we want to give some basic properties of the flow (4.5). These properties will
be an equivalence between Young’s law and a balance of forces, a property of the normals and
conormals of the arising hypersurfaces, decreasing of area and properties of stationary states.

The first point is to show an equivalence of the angle conditions (4.7) and Young’s law (4.6) to
a balance of forces given by

γ1n∂Γ1(t) + γ2n∂Γ2(t) + γ3n∂Γ3(t) = 0 on L(t) . (4.8)

Therefore it is important to observe that the three vectors n∂Γ1(t), n∂Γ2(t) and n∂Γ3(t) all lie in
a two-dimensional space, namely the orthogonal complement of the tangent space of L(t), i.e.

n∂Γi(t)(p) ∈ (TpL(t))⊥ .

Since L(t) is an (n− 1)-dimensional submanifold of Rn+1, this orthogonal complement is in fact
a two-dimensional space.

Lemma 4.1. Let θ1, θ2 and θ3 be given contact angles for the conormals n∂Γi(t) as in (4.7) with
0 < θi < π and θ1 + θ2 + θ3 = 2π. Then there holds an equivalence between Young’s law (4.6)
and the balance of forces (4.8).

Proof. First, let Young’s law be fulfilled. From the angle condition n∂Γ1(t)·n∂Γ2(t) = cos θ3 6= ±1,
we see that n∂Γ1(t) and n∂Γ2(t) are linearly independent vectors and hence are a basis in the two-

dimensional space (TpL(t))⊥. Since the three vectors n∂Γi(t), i = 1, 2, 3 all lie in this space, we
can show instead of the identity (4.8) the two scalar identities

{
γ1

(
n∂Γ1(t) · n∂Γ1(t)

)
+ γ2

(
n∂Γ2(t) · n∂Γ1(t)

)
+ γ3

(
n∂Γ3(t) · n∂Γ1(t)

)
= 0 and

γ1

(
n∂Γ1(t) · n∂Γ2(t)

)
+ γ2

(
n∂Γ2(t) · n∂Γ2(t)

)
+ γ3

(
n∂Γ3(t) · n∂Γ2(t)

)
= 0 .
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With the help of the angle conditions (4.7) this reads also as





(
−γ1

γ3

)
+
(
−γ2

γ3

)
cos θ3 = cos θ2 and

(
−γ1

γ3

)
cos θ3 +

(
−γ2

γ3

)
= cos θ1 .

Now Young’s law gives the identities γ1

γ3
= sin θ1

sin θ3
and γ2

γ3
= sin θ2

sin θ3
, so that we have to show





(
− sin θ1

sin θ3

)
+
(
− sin θ2

sin θ3

)
cos θ3 = cos θ2 and

(
− sin θ1

sin θ3

)
cos θ3 +

(
− sin θ2

sin θ3

)
= cos θ1 .

Multiplying with sin θ3 and rearranging the terms gives

{ − sin θ1 = cos θ2 sin θ3 + sin θ2 cos θ3 and

− sin θ2 = cos θ1 sin θ3 + sin θ1 cos θ3 .

Finally, we observe − sin θ1 = − sin(2π−θ2−θ3) = − sin(−(θ2 +θ3)) = sin(θ2 +θ3) (analogously
for − sin θ2), and the above identities are addition theorems, which hold true.
On the other hand, let the balance of forces (4.8) be true. Since the three vectors n∂Γi(t),
i = 1, 2, 3 lie in a two-dimensional space, (4.8) implies that the three vectors γ1n∂Γ1(t), γ2n∂Γ2(t)

and γ3n∂Γ3(t) can be arranged to give a triangle in this two-dimensional space. The angles in
this triangle are labelled through (4.7) and the law of sines gives exactly Young’s law (4.6). �

With the help of the following construction we choose a direction of the normals ni(t) of Γi(t).

Remark 4.2. With the same argument as above for the outer unit conormals, we see that at
the triple line L(t) even the vectors

±n1(t) , n∂Γ1(t) , ±n2(t) , n∂Γ2(t) , ±n3(t) , n∂Γ3(t)

all lie in a two-dimensional space, namely the orthogonal complement of the tangent space of
L(t).

We choose unit normals nj(t) of Γj(t) in an appropriate direction through the requirement that
the angle between n∂Γi(t) and nj(t) increases by π/2 compared to the angle between n∂Γi(t) and
n∂Γj(t), i.e. we have the following formulas

ni(t) · nj(t) = cos θk , (4.9)

n∂Γi(t) · n∂Γj(t) = cos θk , (4.10)

n∂Γi(t) · nj(t) = cos(θk +
π

2
) = − sin θk , (4.11)

each on L(t) and for (i, j, k) = (1, 2, 3), (2, 3, 1) and (3, 1, 2). To be precise we require formula
(4.11) at a fixed point of L(t), extend the normals by continuity to all of Γj(t) and observe
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Γ1

Γ2

Γ3
n1

n2
n3

Figure 4.1: The choice of the normals.

the validity of (4.11) on all of L(t) again by continuity. See Figure 4.1 for a sketch in the
two-dimensional situation for curves near the triple line.

With an analogue version of Lemma 4.1 we can write instead of (4.8) also

γ1n1(t) + γ2n2(t) + γ3n3(t) = 0 on L(t) . (4.12)

In the next lemma we show a decreasing of the weighted total area.

Lemma 4.3. For evolving hypersurfaces which move according to weighted mean curvature flow
and fulfill the angle conditions from (4.5), the weighted total area

A(t) =
3∑

i=1

γiAi(t) , (4.13)

with Ai(t) =
∫

Γi(t)

1 dHn, decreases in time t.

Proof. With the proof of the formula for the derivative of area from Lemma 2.46, we see

d

dt
Ai(t) = −

∫

Γi(t)
ViHi dHn +

∫

Si(t)
v∂Γi︸︷︷︸
=0

dHn−1 +

∫

L(t)
v∂Γi

dHn−1 ,

where the normal boundary velocity v∂Γi
at the outer boundary Si(t) vanishes due to the right

angle condition as in Lemma 2.46. Therefore we observe for the weighted total area

d

dt
A(t) = −

3∑

i=1

γi

∫

Γi(t)
ViHi dHn +

3∑

i=1

γi

∫

L(t)
v∂Γi

dHn−1 .

For the normal boundary velocities at the triple line, we observe

v∂Γi
(t, p) = n∂Γi

(t, p) · d

dτ
ci(τ)

∣∣∣∣
τ=t

for p ∈ ∂Γi(t) ,
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where ci : (t − ε, t + ε) → Rn+1 are curves with ci(τ) ∈ ∂Γi(τ) and ci(t) = p. Since we require
L(t) = ∂Γ1(t) = ∂Γ2(t) = ∂Γ3(t), and since the definition of normal boundary velocity is
independent of the curve, we can take one curve for all three hypersurfaces Γi, that is we get

v∂Γi
(t, p) = n∂Γi

(t, p) · d

dτ
c(τ)

∣∣∣∣
τ=t

.

Plugging this into the derivative of the weighted total area and using Vi = γiHi, we can deduce

d

dt
A(t) = −

3∑

i=1

γ2
i

∫

Γi(t)
H2

i dHn +

∫

L(t)

3∑

i=1

γin∂Γi(t)

︸ ︷︷ ︸
= 0 from (4.8)

· d
dτ
c(τ)

∣∣∣∣
τ=t

dHn−1

= −
3∑

i=1

γ2
i

∫

Γi(t)
H2

i dHn

≤ 0 .

This shows the lemma. �

As in the case for one hypersurface we want to describe Γi(t) with the help of functions ρi :
[0, T ) × Γ∗

i → R as graphs over some fixed stationary solution of (4.5). This means we fix three
hypersurfaces Γ∗

i , which lie in Ω, and the boundary has a decomposition ∂Γ∗
i = L∗

i ∪ S∗
i , such

that the three hypersurfaces meet at a triple line L∗ = L∗
1 = L∗

2 = L∗
3 and the other parts are

sections with the outer fixed boundary, i.e. S∗
i = ∂Γ∗

i ∩ ∂Ω.
These hypersurfaces shall fulfill the angle conditions and the mean curvature equations from

(4.5) with Vi ≡ 0. As above we can show that the outer unit conormals n∂Γ∗
i

of Γ∗
i at ∂Γ∗

i fulfill

γ1n∂Γ∗
1
+ γ2n∂Γ∗

2
+ γ3n∂Γ∗

3
= 0 on L∗ ,

and we introduce notation, such that the unit normals n∗i of Γ∗
i emerge from n∂Γ∗

i
by the

requirement that n∂Γ∗
i
· n∗j = cos(θk + π/2) and fulfill

γ1n
∗
1 + γ2n

∗
2 + γ3n

∗
3 = 0 on L∗ .

For these stationary solutions the following lemma holds.

Lemma 4.4. Stationary hypersurfaces as above are minimal hypersurfaces, i.e. they fulfill
H∗

i ≡ 0, and the identity

γ1κn∂Γ∗
1

+ γ2κn∂Γ∗
2

+ γ3κn∂Γ∗
3

= 0 on L∗

holds true, where κn∂Γ∗
i

= σ∗i (n∂Γ∗
i
, n∂Γ∗

i
) is the normal curvature of Γ∗

i in direction of n∂Γ∗
i
.

Remember that σ∗i is our notation for the second fundamental form of Γ∗
i with respect to the unit

normal n∗i .
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Proof. The fact H∗
i ≡ 0 follows directly from the mean curvature equations with Vi ≡ 0.

For q ∈ L∗, we can decompose the tangent space TqΓ
∗
i with the help of the outer unit conormal

n∂Γ∗
i

of Γ∗
i at L∗ into

TqΓ
∗
i = TqL

∗ ∪ span{n∂Γ∗
i
} .

Therefore we can complete n∂Γ∗
i

to an orthonormal basis {n∂Γ∗
i
, t1, . . . , tn−1} of TqΓ

∗
i with the

help of suitable vectors t1, . . . , tn−1 ∈ TqL
∗. Note that we choose for every i = 1, 2, 3 the same

set of vectors t1, . . . , tn−1. Since the mean curvature H∗
i is the trace of the Weingarten map, see

Definition 2.19, we obtain the identity

γiH
∗
i = γiσ

∗
i (n∂Γ∗

i
, n∂Γ∗

i
) + γi

n−1∑

j=1

σ∗i (tj , tj) . (4.14)

With the above result about Γ∗
i being a minimal hypersurface and with our notation of normal

curvature, we can write this as

0 = γiκn∂Γ∗
i

+ γi

n−1∑

j=1

σ∗i (tj , tj) .

Summing over i = 1, 2, 3 gives for the second term

3∑

i=1

γi

n−1∑

j=1

σ∗i (tj , tj) = −
n−1∑

j=1

3∑

i=1

γi∂tjn
∗
i · tj = −

n−1∑

j=1

∂tj

(
3∑

i=1

γin
∗
i

)

︸ ︷︷ ︸
=0 on L∗

·tj = 0 ,

where the last zero appears due to the fact that tj is a tangent vector of L∗. For the normal
curvatures in direction n∂Γ∗

i
this gives finally

γ1κn∂Γ∗
1

+ γ2κn∂Γ∗
2

+ γ3κn∂Γ∗
3

= 0 on L∗

and we finished the proof. �

4.1.2 Parametrization and resulting partial differential equations

In this subsection we want to introduce the considered parametrization, which is more explicit
near the triple line than in the previous Chapter 3. We will describe the considered evolving
hypersurfaces as graphs over fixed stationary reference hypersurfaces and give a remark about
our formulation for the condition that the arising evolving hypersurfaces meet at a triple line.
Finally we formulate the emerging equations for the unknown functions, that will be linearized
in the next part.
To describe the considered hypersurfaces Γi(t), we will use the representation from Section 3.1

near the fixed boundary ∂Ω and an explicit mapping near the triple line L∗, and finally compose
them with the help of a cut-off function.
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So for i = 1, 2, 3 and small ε, δ > 0 let

Ψi : Γ∗
i × (−ε, ε) −→ Ω , (q, w) 7→ Ψi(q, w) (4.15)

be a mapping from Section 3.1 with Ψi(q, 0) = q for all q ∈ Γ∗
i , Ψi(q, w) ∈ ∂Ω for all q ∈

∂Γ∗
i ∩ ∂Ω = S∗

i and ∂wΨi(q, 0) · n∗i (q) = 1 for all q ∈ Γ∗
i .

Also let Zi be a mapping given through

Zi : Γ∗
i × (−ε, ε) × (−δ, δ) −→ R

n+1 , (4.16)

(q, w, s) 7→ Zi(q, w, s) := q + wn∗i (q) + s t∗i (q) ,

where i = 1, 2, 3 and t∗i is a tangent vector field on Γ∗
i with support in a neighbourhood of

L∗
i , which equals the outer unit conormal n∂Γ∗

i
at L∗

i . More precisely we choose an open set
U ⊂ Rn+1, such that U is a neighbourhood of the triple line L∗ and set Ui := U ∩ Γ∗

i . Then we
require for t∗i that

t∗i (q) =





0 for q ∈ Γ∗
i \Ui ,

∈ TqΓ
∗
i for q ∈ Ui ,

n∂Γ∗
i
(q) for q ∈ L∗

i .
(4.17)

Now we choose a neighbourhood of L∗ given by some small tube B2τ (L
∗) around L∗, where

2τ > 0 such that B2τ (L
∗) is compactly included in Ω, i.e. B2τ (L∗) ⊂ Ω. Since our decomposition

of ∂Γ∗
i assured that L∗ ⊂ Ω, such a neighbourhood can be found.

An additional assumption is now that the evolution of the triple line shall always stay inside the
neighbourhood B2τ (L∗), in particular the triple line will never touch the outer fixed boundary
∂Ω. To this end, we choose a smooth cut-off function η ∈ C∞(Ω), such that

η(x) =

{
1 , x ∈ Bτ (L

∗) ,
0 , x ∈ Ω\B2τ (L

∗) .

For i = 1, 2, 3 and functions

ρi : [0, T ) × Γ∗
i −→ R and

µi : [0, T ) × L∗ −→ R

with |ρi| < ε and |µi| < δ, we define the mappings Φi = Φρi,µi

i (we often omit the superscript
(ρi, µi) for shortness) for i = 1, 2, 3 through

Φi : [0, T ) × Γ∗
i −→ Ω ,

Φi(t, q) := η(q)Zi(q, ρi(t, q), µi(t,pri(q))) + (1 − η(q))Ψi(q, ρi(t, q)) (4.18)

Here pri : Γ∗
i → L∗

i is some kind of projection on L∗
i , which we define as follows. We let V ⊂ Rn+1

be an open set such that U from the above definition of the tangent vector field t∗i is compactly
embedded in V , i.e. U ⊂⊂ V and set Vi := V ∩Γ∗

i . If V is a small enough neighbourhood of L∗,
we define the projection pri through

pri(q) =

{
u for q ∈ Vi ,

q0 for q ∈ Γ∗
i \Vi .

(4.19)
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Here q0 is some fixed point on L∗
i and u = pri(q) is the unique point on L∗

i , that is mapped to
q with the geodesic line αi(s) on Γ∗

i with

αi(0) = u and α′
i(0) = n∂Γ∗

i
(q) .

Note that we need this projection just inside of the small neighbourhood V of L∗, because it
is used in the product µi(t,pri(q)) t

∗
i (q), where the second term is 0 outside of the even smaller

neighbourhood U of L∗.
We also set for fixed t as above

(Φi)t : Γ∗
i −→ R

n+1 , (Φi)t(q) := Φi(t, q) ,

which is a diffeomorphism onto its image if ε and δ are small enough. Finally we define new
hypersurfaces through

Γρi, µi
(t) := {(Φi)t(q) | q ∈ Γ∗

i } . (4.20)

We observe that for ρi ≡ 0 and µi ≡ 0 the resulting hypersurface is simply Γρi≡0, µi≡0(t) = Γ∗
i

for every t.
The condition that the new hypersurfaces meet in one triple line L(t), can now be formulated

through

Φ1(t, q) = Φ2(t, q) = Φ3(t, q) for q ∈ L∗(= L∗
1 = L∗

2 = L∗
3) (4.21)

for all t > 0.
For the new hypersurfaces Γi(t) := Γρi,µi

(t) there exists also a decomposition of the boundary
∂Γi(t) through

∂Γi(t) = Li(t) ∪ Si(t) ,

where Si(t) = ∂Γi(t) ∩ ∂Ω and from (4.21) we can identify the other parts Li(t) = ∂Γi(t)\Si(t)
to one compact (n− 1)-dimensional submanifold

L(t) = L1(t) = L2(t) = L3(t) .

Note that (4.21) can be formulated as

Z1(t, ρ1(t, q), µ1(t, q)) = Z2(t, ρ2(t, q), µ2(t, q)) = Z3(t, ρ3(t, q), µ3(t, q)) for q ∈ L∗ ,

since the cut-off function η equals 1 at the triple line L∗ and the projections give pri(q) = q.
The last identity can also be written as

ρ1n
∗
1 + µ1n∂Γ∗

1
= ρ2n

∗
2 + µ2n∂Γ∗

2
= ρ3n

∗
3 + µ3n∂Γ∗

3
on L∗ .

Since on L∗ the six vectors

n∗1 , n∂Γ∗
1
, n∗2 , n∂Γ∗

2
, n∗3 , n∂Γ∗

3
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lie in the two-dimensional space (TqL
∗)⊥, the equations

Φ1 = Φ2 and Φ2 = Φ3 on L∗

(the third one is then automatically fulfilled) lead to 4 conditions, namely 2 in each case. There-
fore it is reasonable to try to find 4 equivalent conditions to (4.21), which is done in the next
lemma.

Lemma 4.5. Equivalent to the equations

Φ1 = Φ2 and Φ2 = Φ3 on L∗ (4.22)

are the following conditions, which describe an identity for the weighted sum of the ρi and a
linear dependence of µi to all of the ρi on L∗ given through

{
(i) γ1ρ1 + γ2ρ2 + γ3ρ3 = 0 on L∗ ,

(ii) µi = 1
si

(cjρj − ckρk) on L∗ .
(4.23)

for (i, j, k) = (1, 2, 3), (2, 3, 1) and (3, 1, 2) and where si = sin θi and ci = cos θi.

Proof. At first let (4.22) be fulfilled. We omit the variables and remark that due to (4.22) also
the condition Φ3 = Φ1 is fulfilled on L∗, which leads then to the identities

ρin
∗
i + µin∂Γ∗

i
= ρjn

∗
j + µjn∂Γ∗

j
on L∗ (4.24)

for (i, j) = (1, 2), (2, 3) and (3, 1).
Putting a function α on L∗ through

α := ρ1n
∗
1 + µ1n∂Γ∗

1
= ρ2n

∗
2 + µ2n∂Γ∗

2
= ρ3n

∗
3 + µ3n∂Γ∗

3

we obtain α · n∗i = ρi for i = 1, 2, 3. Thus Young’s law (4.6) respectively the balance of forces
(4.8) for the stationary hypersurfaces Γ∗

i gives on L∗

3∑

i=1

γiρi =

3∑

i=1

γi (α · n∗i ) = α ·
3∑

i=1

γin
∗
i

︸ ︷︷ ︸
=0

= 0 .

To derive (ii), we take the scalar product with n∂Γ∗
i

in (4.24) to get

ρi

(
n∗i · n∂Γ∗

i

)
︸ ︷︷ ︸

=0

+µi

(
n∂Γ∗

i
· n∂Γ∗

i

)
︸ ︷︷ ︸

=1

= ρj

(
n∗j · n∂Γ∗

i

)
︸ ︷︷ ︸

=− sin θk

+µj

(
n∂Γ∗

j
· n∂Γ∗

i

)

︸ ︷︷ ︸
=cos θk

for triples (i, j, k) = (1, 2, 3), (2, 3, 1) and (3, 1, 2), where we used the angle conditions. With the
abbreviation ci = cos θi and si = sin θi this leads to the three equations

µ1 = µ2 c3 − ρ2 s3 ,

µ2 = µ3 c1 − ρ3 s1 ,

µ3 = µ1 c2 − ρ1 s2 .
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Solving this linear equations with respect to µi leads to the following dependence

(1 − c1c2c3)µi = − (ckcisjρi + skρj + cksiρk)

for (i, j, k) = (1, 2, 3), (2, 3, 1) and (3, 1, 2). Further, (i) and Young’s law (4.6) imply

(1 − c1c2c3)µi = − 1

si

((
sksi − ckci(sj)

2
)
ρj +

(
ck(si)

2 − ckcisjsk

)
ρk

)
.

With the following observation from the addition theorems for the angle functions

sksi − ckci(sj)
2 = −cj(1 − cicjck) and ck(si)

2 − ckcisjsk = ck(1 − cicjck) ,

we are led to (ii).
To derive the remaining part of the lemma, some linear algebra is needed. We fix p ∈ L∗ and

formulate (4.22) with the help of the matrix

A =

(
n∗1 −n∗2 0 n∂Γ∗

1
−n∂Γ∗

2
0

0 n∗2 −n∗3 0 n∂Γ∗
2

−n∂Γ∗
3

)

and the vector (ρ, µ) = (ρ1, ρ2, ρ3, µ1, µ2, µ3) through

(ρ, µ) fulfill (4.22) ⇐⇒ A

(
ρ
µ

)
= 0 ⇐⇒ (ρ, µ) ∈ kerA .

Since Φ1 = Φ2 and Φ2 = Φ3 on L∗ are each identities for linear combinations of the vectors
n∗1, n

∗
2, n

∗
3, n∂Γ∗

1
, n∂Γ∗

2
, n∂Γ∗

3
, which lie in a two-dimensional space, the image of A has at most

dimension four. From the fact that the first, the third, the fourth and the sixth column in A are
linearly independent, we see that in fact dim(imA) = 4. This leads to dim(kerA) = 6 − 4 = 2.
Now we observe that (4.23) can be written with the help of the matrix

B =




γ1 γ2 γ3 0 0 0
0 − c2

s1
− c3

s1
1 0 0

− c1
s2

0 − c3
s2

0 1 0

− c1
s3

− c2
s3

0 0 0 1




through

(ρ, µ) fulfill (4.23) ⇐⇒ B

(
ρ
µ

)
= 0 ⇐⇒ (ρ, µ) ∈ kerB .

Since the third, the fourth, the fifth and the sixth column of B are linearly independent, we see
that the rank of B, i.e. the dimension of the image of B, is four. The rank formula leads to
dim(kerB) = 6 − 4 = 2.
With the above calculations we showed kerA ⊂ kerB, and since both kernels have dimension
two, we conclude kerA = kerB, which gives the desired equivalence of the lemma. �
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Remark 4.6. With analogue calculations as in the last proof, i.e. taking the scalar product of
α with n∂Γ∗

i
and of (4.24) with n∗i , we get the following equations

{
(i) γ1µ1 + γ2µ2 + γ3µ3 = 0 on L∗ ,

(ii) ρi = 1
si

(cjµj − ckµk) on L∗ .
(4.25)

for (i, j, k) = (1, 2, 3), (2, 3, 1) and (3, 1, 2).

From now on, we always assume condition (4.21) and write equation (4.5) over the fixed sta-
tionary hypersurfaces Γ∗

1, Γ∗
2 and Γ∗

3 as partial differential equations for µi and ρi as follows.





Vi(Φi(t, q)) = Hi(Φi(t, q)) in Γ∗
i for all t > 0 , i = 1, 2, 3 ,

(ni · µ) (Φi(t, q)) = 0 on S∗
i for all t > 0 , i = 1, 2, 3 ,

n1(Φ1(t, q)) · n2(Φ2(t, q)) = cos θ3 on L∗ for all t > 0 ,
n2(Φ2(t, q) · n3(Φ3(t, q)) = cos θ1 on L∗ for all t > 0 ,

(ρi(0, q), µi(0, q)) = (ρ0
i , µ

0
i ) in Γ∗

i , i = 1, 2, 3 ,

(4.26)

where ni(Φi(t, q)) are the normals of Γρi,µi
(t) at Φi(t, q), µ is the outer unit normal of Ω at ∂Ω

and we assume that the surfaces Γ0
i from (4.5) are given through

Γ0
i = {Ψi(q, ρ

0
i (q), µ

0
i (pri(q))) | q ∈ Γ∗

i } . (4.27)

As explained in (2.12), we use the abbreviation Vi(Φi(t, q)) = Vi(t,Φi(t, q)) and analogously for
Hi and ni.
Due to the condition θ1 + θ2 + θ3 = 2π and the fact, that the hypersurfaces all meet at a triple

line at their boundary, which follows from (4.21), the third angle condition

(n3 ◦ Φ3) · (n1 ◦ Φ1) (t, q) = cos θ2 on L∗ (4.28)

is automatically fulfilled and we omit it from now on. The equation (4.26) gives a second order
system of partial differential equations for the functions (ρ1, µ1, ρ2, µ2, ρ3, µ3).

4.1.3 Linearization around a stationary state

As in the previous Chapter 3 we mean by the linearization of mean curvature flow (4.5) around
stationary hypersurfaces Γ∗

1, Γ∗
2, Γ∗

3 always the linearization of (4.26) around (ρi, µi) ≡ (0, 0)
for i = 1, 2, 3. To obtain this linearization we consider the terms separately, write ερi and εµi

instead of ρi and µi for i = 1, 2, 3, differentiate with respect to ε and set ε = 0 in the resulting
equations. In this way, we get a system of three linear partial differential equations for the
functions (ρ1, µ1, ρ2, µ2, ρ3, µ3), which are coupled through the boundary conditions.

Remark 4.7. As in Remark 3.3 from Chapter 3 we just state that a formally correct description
of the linearization is given with the help of the first variation for each term in (4.26). Therefore
we consider each of the terms in the first line in (4.26) as operator

Fi : C∞(Γ∗
i ) × C∞(∂Γ∗

i ) → C∞(Γ∗
i ) ,
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(omit the t-variable) and define the first variation of F at (ρi, µi) ≡ (0, 0) as

δF (ρi, µi) :=
∂F

∂(ρi, µi)
(0, 0)(ρi, µi) =

d

dε
F (ερi, εµi)

∣∣∣∣
ε=0

.

For the linearization of the boundary conditions, which make sure a coupling of the equations,
we would have to define the mapping as

Fi,j : C∞(Γ∗
i ) × C∞(∂Γ∗

i ) × C∞(Γ∗
j ) × C∞(∂Γ∗

j ) → C∞(L∗) ,

for (i, j) = (1, 2) and (2, 3) and define an analogue first variation.

For building the linearization of each term in (4.26), we can use results of the previous Chapter
3 with the exception of the angle conditions at the triple line.

Lemma 4.8. The linearization of the mean curvature equations

Vi(t,Φi(t, q)) = γiHi(t,Φi(t, q)) in Γ∗
i

around the stationary state represented through (ρi, µi) ≡ (0, 0) are given by

∂tρi = γi

(
∆Γ∗

i
ρi + |σ∗i |2ρi

)
in Γ∗

i .

Proof. The linearization of the normal velocities

d

dε
Vi(t,Ψi(q, ερi(t, q), εµi(t,pri(q)))

∣∣∣∣
ε=0

= ∂tρi(t, q)

follows from Lemma 3.4 in the previous chapter. Since we have a special parametrization in this
part, we can also use the following observations.
We calculate for the normal velocities with the help of Lemma 2.40

Vi(t,Φi(t, q)) = ni(t,Φi(t, q)) · ∂tΦi(t, q)

= ni(t,Φi(t, q)) · ∂t

(
q + ρi(t, q)n

∗
i (q) + µi(t,pri(q)) t

∗
i (q)

)

= ni(t,Φi(t, q)) · n∗i (q) ∂tρi(t, q) + ni(t,Φi(t, q)) · t∗i (q) ∂tµi(t,pri(q)) .

For the linearization, this gives

d

dε
Vi(t,Φ

ερi,εµi

i (t, q))

∣∣∣∣
ε=0

=
d

dε
Vi

(
t, q + ερi(t, q)n

∗
i (q) + εµi(t,pri(q)) t

∗
i (q)

)∣∣∣∣
ε=0

= ni(t, q) · n∗i (q)︸ ︷︷ ︸
=1

∂tρi(t, q) + ni(t, q) · t∗i (q)︸ ︷︷ ︸
=0

∂tµi(t,pri(q))

= ∂tρi(t, q) ,

where we used the fact that for q ∈ Γ∗
i it holds ni(t, q) = n∗i (q).
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For the linearization of mean curvature Hi we know from Lemma 3.5 that

d

dε
Hi(t,Φ

ερi,εµi

i (t, q))

∣∣∣∣
ε=0

= ∆Γ∗
i
ρi(t, q) + |σ∗i |2(t, q)ρi(t, q) .

To be precise, we have to mention that in this case we consider two functions (ρi, µi) instead of
one as in the parametrization for Lemma 3.5. But anyhow the calculations generalize directly, the
only thing that could cause problems is the calculation of the normal velocity for the considered
evolving hypersurface Γ̃i with parameter ε instead of t given by

Γ̃i(ε) :=
{
(Φερi,εµi

i )t (q) | q ∈ Γ∗
i

}
.

Therefore we do this detail explicitly.

Ṽ
(
ε, (Φερi,εµi

i )t (q)
)

= ñ
(
ε, (Φερi,εµi

i )t (q)
)
· d
dε

(Φερi,εµi

i )t (q)

= ñ
(
ε, (Φερi,εµi

i )t (q)
)
· (ρi(t, q)n

∗
i (q) + µi(t,pri(q)) t

∗
i (q)) ,

which gives for ε = 0

Ṽ (0, q) = ñ(0, q) · (ρi(t, q)n
∗
i (q) + µi(t,pri(q)) t

∗
i (q))

= n∗i (q) · (ρi(t, q)n
∗
i (q) + µi(t,pri(q)) t

∗
i (q))

= ρi(t, q) .

Since this coincides with the result from Lemma 3.5, we finished the proof. �

Remark 4.9. For the linearization of mean curvature we get in fact from the calculations in
Lemma 3.5 from Chapter 3 the identity

d

dε
Hi(t,Φ

ερi,εµi

i (t, q))

∣∣∣∣
ε=0

= ∆Γ∗
i
ρi(t, q) + |σ∗i |2(t, q)ρi(t, q)

+∇Γ∗
i
Hi(q) ·

(
d

dε
Φερi,εµi

i (t, q)

∣∣∣∣
ε=0

)T

.

If we would consider reference hypersurfaces Γ∗
i , which are not necessary stationary, the last

term would not vanish because the mean curvature is then in general neither zero nor constant.
In any case, with the special parametrization Φi of this chapter, we can even calculate the last
term through

(
d

dε
Φερi,εµi

i (t, q)

∣∣∣∣
ε=0

)T

=

(
d

dε
(q + ερi(t, q)n

∗
i (q) + εµi(t,pri(q)) t

∗
i (q))

∣∣∣∣
ε=0

)T

=
(
ρi(t, q)n

∗
i (q) + µi(t,pri(q)) t

∗
i (q)

)T

= µi(t,pri(q)) t
∗
i (q) ,
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so that we get

d

dε
Hi(t,Φ

ερi,εµi

i (t, q))

∣∣∣∣
ε=0

= ∆Γ∗
i
ρi(t, q) + |σ∗i |2(t, q)ρi(t, q) + ∇Γ∗

i
Hi(q) · µi(t,pri(q)) t

∗
i (q) .

Note that in this case the linearization of mean curvature also depends on the functions µi. This
observation will be important in future work for a local existence result.

The next step is to linearize the angle conditions from (4.26), which were given through

ni(t,Φ
ρi,µi

i (t, q)) · nj(t,Φ
ρj ,µj

j (t, q)) = cos θk on L∗ (4.29)

for all t > 0, where (i, j, k) = (1, 2, 3) or (2, 3, 1). To calculate the linearization at a fixed point
q0 ∈ L∗(= L∗

1 = L∗
2 = L∗

3) for t > 0, we choose as in the linearization of the angle condition
(3.19) from Section 3.2 a suitable local parametrization Fi of L∗

i as in (3.20) with nice properties
at a fixed point. So we are able to claim for a local parametrization

Fi : Di −→ Γ∗
i , x 7→ Fi(x) (4.30)

with Fi(x
i
0) = q0 for some xi

0 ∈ ∂Di the following assumptions.

(A) ∂1Fi(x
i
0), . . . , ∂nFi(x

i
0) is an orthonormal basis of Tq0Γ

∗
i ,

(B) ∂1Fi(x
i
0) = n∂Γ∗

i
(q0), where n∂Γ∗

i
is the outer unit conormal of Γ∗

i at L∗
i and

(C) (∂1Fi × . . .× ∂nFi) (xi
0) = n∗i (Fi(x

i
0)), where we just fix the sign.

These properties are the same as for the parametrization (3.20) in Section 3.2, where we cal-
culated the linearization of the right angle condition, and can always be achieved at a fixed
point.
To calculate the linearization of the boundary conditions (4.29), we need the following proper-

ties.

Lemma 4.10. With the help of the parametrizations Fi it holds for Fi(x) = q ∈ Γ∗
i

(i) Ψi(Fi(x), 0, 0) = Fi(x),

(ii) ∂jΨi(Fi(x), 0, 0) = ∂jFi(x), ∂wΨi(Fi(x), 0, 0) = n∗i (Fi(x)),

∂sΨi(Fi(x), 0, 0) = t∗i (Fi(x)).

Additionally, for the fixed point Fi(x
i
0) = q0 ∈ L∗ it holds

(iii)

(
∂1Fi × . . .×

l-th pos.

n̂∗i ◦ Fi × . . .× ∂nFi

)
(xi

0) = (−1)∂lFi(x
i
0),

(iv)

(
∂1Fi × . . .×

l-th pos.

̂∂l (n
∗
i ◦ Fi) × . . .× ∂nFi

)
(xi

0)

=

(
∂l (n

∗
i ◦ Fi) · ∂lFi

)
(xi

0) (n∗i ◦ Fi) (xi
0),
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(v)

(
∂1Fi × . . .×

l-th pos.

t̂∗i ◦ Fi × . . .× ∂nFi

)
(xi

0) =

(
(t∗i ◦ Fi) · ∂lFi

)
(xi

0) (n∗i ◦ Fi) (xi
0),

(vi)

(
∂1Fi × . . .×

l-th pos.

̂∂l (t
∗
i ◦ Fi) × . . . × ∂nFi

)
(xi

0)

=

(
∂l (t

∗
i ◦ Fi) · ∂lFi

)
(xi

0) (n∗i ◦ Fi) (xi
0) −

(
∂l (t

∗
i ◦ Fi) · n∗i

)
(xi

0) ∂lFi(x
i
0).

Proof. Parts (i) and (ii) follow directly from the definition of Ψi, which was given by

Ψi(q, w, s) = q + w · n∗i (q) + s · t∗i (q) .

Part (iii) now follows from assumption (C) for Fi and Lemma 5.6 in the appendix.
For the remaining parts we observe at the fixed point

t∗i (q0) · n∗i (q0) = 0 ,

(∂l (n
∗
i ◦ Fi) · (n∗i ◦ Fi)) (xi

0) = 0 ,

and that the vectors ∂1Fi(x
i
0), . . . , ∂nFi(x

i
0), n

∗
i (q0) form an orthonormal basis of Rn+1. Therefore

we have the following representations

t∗i (q0) = (t∗i ◦ Fi) (xi
0) =

n∑

k=1

(
(t∗i ◦ Fi) · ∂kFi

)
(xi

0) ∂kFi(x
i
0) ,

∂ln
∗
i (q0) = ∂l (n

∗
i ◦ Fi) (xi

0) =

n∑

k=1

(
∂l (n

∗
i ◦ Fi) · ∂kFi

)
(xi

0) ∂kFi(x
i
0) and

∂lt
∗
i (q0) = ∂l (t

∗
i ◦ Fi) (xi

0)

=
n∑

k=1

(
∂l (t

∗
i ◦ Fi) · ∂kFi

)
(xi

0) ∂kFi(x
i
0)

+

(
∂l (t

∗
i ◦ Fi) · (n∗i ◦ Fi)

)
(xi

0) (n∗i ◦ Fi) (xi
0) .

To see (iv), we use the above representations and the properties of the vector product, which
are summarized in the appendix to get

(
∂1Fi × . . .×

l-th pos.

̂∂l (n
∗
i ◦ Fi) × . . .× ∂nFi

)
(xi

0)

=

n∑

k=1

(
∂l (n

∗
i ◦ Fi) · ∂kFi

)
(xi

0)

(
∂1Fi × . . .×

l-th pos.

∂̂kFi × . . .× ∂nFi

)

︸ ︷︷ ︸
=δkl(n

∗
i ◦Fi)

(xi
0)

=

(
∂l (n

∗
i ◦ Fi) · ∂lFi

)
(xi

0) (n∗i ◦ Fi) (xi
0) .
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For (v), we proceed analogously to get
(
∂1Fi × . . .×

l-th pos.

t̂∗i ◦ Fi × . . .× ∂nFi

)
(xi

0)

=

n∑

k=1

(
(t∗i ◦ Fi) · ∂kFi

)
(xi

0)

(
∂1Fi × . . .×

l-th pos.

∂̂kFi × . . .× ∂nFi

)

︸ ︷︷ ︸
=δkl(n

∗
i ◦Fi)

(xi
0)

=

(
(t∗i ◦ Fi) · ∂lFi

)
(xi

0) (n∗i ◦ Fi) (xi
0) .

Finally, we have the following identity, which shows (vi).
(
∂1Fi × . . .×

l-th pos.

̂∂l (t
∗
i ◦ Fi) × . . .× ∂nFi

)
(xi

0)

=

n∑

k=1

(
∂l (t

∗
i ◦ Fi) · ∂kFi

)
(xi

0)

(
∂1Fi × . . .×

l-th pos.

∂̂kFi × . . .× ∂nFi

)

︸ ︷︷ ︸
=δkl(n

∗
i ◦Fi)

(xi
0)

+

(
∂l (t

∗
i ◦ Fi) · (n∗i ◦ Fi)

)
(xi

0)

(
∂1Fi × . . .×

l-th pos.

̂(n∗i ◦ Fi) × . . .× ∂nFi

)

︸ ︷︷ ︸
(−1)∂lFi

(xi
0)

=

(
∂l (t

∗
i ◦ Fi) · ∂lFi

)
(xi

0) (n∗i ◦ Fi) (xi
0) −

(
∂l (t

∗
i ◦ Fi) · n∗i

)
(xi

0) ∂lFi(x
i
0) .

�

Now we are in a position to derive the linearization of the angle condition (4.29) at the triple
junction.

Lemma 4.11. The linearization of

ni(t,Φ
ρi,µi

i (t, q)) · nj(t,Φ
ρj ,µj

j (t, q)) = cos θk on L∗

around (ρ, µ) = (0, 0), where ρ = (ρ1, ρ2, ρ3) and µ = (µ1, µ2, µ3), is given through

∂n∂Γ∗
i
ρi + κn∂Γ∗

i
µi = ∂n∂Γ∗

j
ρj + κn∂Γ∗

i
µj on L∗ , (4.31)

where κn∂Γ∗
i

= σ∗i (n∂Γ∗
i
, n∂Γ∗

i
) is the normal curvature of Γ∗

i in direction n∂Γ∗
i
. Equivalently, we

can write this equation as

∂n∂Γ∗
i
ρi +

1

si

(
cjκn∂Γ∗

j
− ckκn∂Γ∗

k

)
ρi = ∂n∂Γ∗

j
ρj +

1

sj

(
ckκn∂Γ∗

k

− ciκn∂Γ∗
i

)
ρj on L∗ , (4.32)

where (i, j, k) = (1, 2, 3), (2, 3, 1) or (3, 1, 2), si = sin θi and ci = cos θi.
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Proof. We show the linearization at a fixed point q0 ∈ L∗ for t0 > 0 and choose parametrizations
Fi as in (4.30) with properties (A)-(C) at the fixed point Fi(x

i
0) = q0.

Using the diffeomorphism (Φi)t : Γ∗
i → Γρi,µi

(t) we also get a parametrization of Γρi, µi
(t), which

we denote by

Gt
i : Di −→ Γρi,µi

(t) , Gt
i(x) := Φi(t, Fi(x)) .

Then the normal ni of Γρi,µi
(t) at p = Φi(t, q) ∈ Γρi, µi

(t) for some q ∈ Γ∗
i , is given with the help

of the cross product of n vectors in Rn+1 through

ni(t, p) = ni(t,Φi(t, q)) = ni(t,Gi(x)) =
∂1G

t
i(x) × . . .× ∂nG

t
i(x)

|∂1Gt
i(x) × . . .× ∂nGt

i(x)|
. (4.33)

For some properties of the vector product, we refer to the appendix.
A calculation of the partial derivative ∂lG

t
i(x) gives

∂lG
t
i(x) = ∂lFi(x) + ∂lρi(t, Fi(x))n

∗
i (Fi(x)) + ρi(t, Fi(x)) ∂ln

∗
i (Fi(x))

+ ∂lµi(t, Fi(x)) t
∗
i (Fi(x)) + ρi(t, Fi(x)) ∂lt

∗
i (Fi(x))

= ∂lFi + ∂lρi n
∗
i + ρi ∂ln

∗
i + ∂lµi t

∗
i + ρi ∂lt

∗
i ,

where we omitted variables for reasons of shortness.
Now we consider the numerator of ni(t,G

t
i(x)) from (4.33).

∂1G
t
i × . . .× ∂nG

t
i =

n×
l=1

(∂lFi + ∂lρi n
∗
i + ρi∂ln

∗
i + ∂lµi t

∗
i + µi ∂lt

∗
i )

= (∂1Fi × . . .× ∂nFi) +

n∑

l=1

∂lρi

(
∂1Fi × . . .×

l-th pos.

n̂∗i × . . .× ∂nFi

)

+
n∑

l=1

ρi

(
∂1Fi × . . .×

l-th pos.

∂̂ln
∗
i × . . .× ∂nFi

)

+
n∑

l=1

∂lµi

(
∂1Fi × . . .×

l-th pos.

t̂∗i × . . .× ∂nFi

)

+

n∑

l=1

µi

(
∂1Fi × . . .×

l-th pos.

∂̂lt
∗
i × . . .× ∂nFi

)

+ quadratic terms in ρi and µi ,

where the quadratic terms are not written down explicitly, because they will not give a contri-
bution to the linearization. Cubic or higher order terms in ρi and µi do not appear, because the
vector product will always vanish for such expressions.

With the help of the results from Lemma 4.10 for the parametrization, we can proceed at the
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fixed point q0 ∈ L∗ for t0 > 0 as follows.

∂1Gi × . . . × ∂nGi − quadratic terms from above

= n∗i −
n∑

l=1

∂lρi ∂lFi +
n∑

l=1

ρi (∂ln
∗
i · ∂lFi) n

∗
i +

n∑

l=1

∂lµi (t∗i · ∂lFi) n
∗
i

−
n∑

l=1

µi (∂lt
∗
i · n∗i ) ∂lFi

=

(
1 +

n∑

l=1

ρi (∂ln
∗
i · ∂lFi) +

n∑

l=1

∂lµi (t∗i · ∂lFi) +

n∑

l=1

µi (∂lt
∗
i · ∂lFi)

)
n∗i

−
n∑

l=1

∂lρi ∂lFi −
n∑

l=1

µi (∂lt
∗
i · n∗i ) ∂lFi

=: Ri(ρi, µi) ,

where we use the abbreviation Ri to get a better view for the linearization.
So we want to linearize the relation

Ri(ρi, µi)

|Ri(ρi, µi)|
· Rj(ρj , µj)

|Rj(ρj , µj)|
= cos θk (4.34)

around (ρi, µi) ≡ (0, 0).
Replacing ρi and µi by ερi and εµi and setting

Qi(ε) := Ri(ερi, εµi)

we have to compute the term

d

dε

(
Qi(ε)

|Qi(ε)|
· Qj(ε)

|Qj(ε)|

)∣∣∣∣
ε=0

.

We see the identity

Qi(0) = Ri(0ρi, 0µi) = Ri(0, 0) = n∗i

and can therefore calculate abstractly

d

dε

(
Qi(ε)

|Qi(ε)|

)∣∣∣∣
ε=0

=
|Qi(0)|Q′

i(0) −Qi(0)
d
dε (|Qi(ε)|)

∣∣
ε=0

|Qi(0)|2

= Q′
i(0) −Qi(0)

Qi(0) ·Q′
i(0)

|Qi(0)|
= Q′

i(0) − n∗i
(
Q′

i(0) · n∗i
)

=
(
Q′

i(0)
)T

,
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where we used the projection on the tangent space of Γ∗
i given by (y)T = y − (y · n∗i ) n∗i .

With the relation Q′
i(0) = d

dεRi(ερi, εµi)
∣∣
ε=0

and with the definition of R we see

(
Q′

i(0)
)T

=

(
d

dε
Ri(ερi, εµi)

∣∣∣∣
ε=0

)T

= −
n∑

l=1

∂lρi ∂lFi − µi

n∑

l=1

(∂lt
∗
i · n∗i ) ∂lFi .

Therefore, we get

d

dε

(
Qi(ε)

|Qi(ε)|
· Qj(ε)

|Qj(ε)|

)∣∣∣∣
ε=0

=
(
Q′

i(0)
)T · Qj(0)

|Qj(0)|
+

Qi(0)

|Qi(0)|
·
(
Q′

j(0)
)T

=

(
−

n∑

l=1

∂lρi ∂lFi − µi

n∑

l=1

(∂lt
∗
i · n∗i ) ∂lFi

)
· n∗j

+n∗i ·
(
−

n∑

l=1

∂lρj ∂lFj − µj

n∑

l=1

(
∂lt

∗
j · n∗j

)
∂lFj

)
.

At this moment we use the assumption (B) that ∂1Fi equals the outer unit conormal n∂Γ∗
i

at

the fixed point xi
0. Because of the orthogonality of ∂1Fi, . . . , ∂nFi from assumption (B), we can

conclude that the tangent vectors ∂2Fi, . . . , ∂nFi are all perpendicular to n∂Γ∗
i
. Of course, they

are also perpendicular to the normal n∗i , everything at the fixed point q0 = F (xi
0) ∈ L∗, which

means

∂2Fi, . . . , ∂nFi

{ ⊥ n∗i and
⊥ n∂Γ∗

i
.

From Remark 4.2 we also know that the vectors

n∗1 , n∂Γ∗
1
, n∗2 , n∂Γ∗

2
, n∗3 , n∂Γ∗

3

all lie in a two-dimensional space, namely the space which is orthogonal to the tangent space of
L∗. So we can write n∗j as a linear combination of n∗i and n∂Γ∗

i
, that is

n∗j ∈ span{n∗i , n∂Γ∗
i
} .

Therefore in the above linearization of the angle conditions the scalar products involving ∂2Fi, . . . ,
∂nFi and also ∂2Fj , . . . , ∂nFj all cancel out and the following terms remain

− d

dε

(
Qi(ε)

|Qi(ε)|
· Qj(ε)

|Qj(ε)|

)∣∣∣∣
ε=0

=
(
∂1ρi ∂1Fi + µi (∂1t

∗
i · n∗i ) ∂1Fi

)
· n∗j + n∗i ·

(
∂1ρj ∂1Fj + µj

(
∂1t

∗
j · n∗j

)
∂1Fj

)

=
(
∂1ρi n∂Γ∗

i
+ µi (∂1t

∗
i · n∗i ) n∂Γ∗

i

)
· n∗j + n∗i ·

(
∂1ρj n∂Γ∗

j
+ µj

(
∂1t

∗
j · n∗j

)
n∂Γ∗

i

)

= (∂1ρi + µi (∂1t
∗
i · n∗i ))

(
n∂Γ∗

i
· n∗j
)

+
(
∂1ρj + µj

(
∂1t

∗
j · n∗j

)) (
n∂Γ∗

j
· n∗i
)
.
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Due to the angle conditions for the stationary reference hypersurfaces Γ∗
i , it holds that one of

the terms
(
n∂Γ∗

i
· n∗j
)

and
(
n∂Γ∗

j
· n∗i
)

is sin θk and the other one is − sin θk. Since sin θk 6= 0,

cancelling provides for the linearization of the angle condition

∂1ρi + µi (∂1t
∗
i · n∗i ) = ∂1ρj + µj

(
∂1t

∗
j · n∗j

)

for (i, j) = (1, 2) and (2, 3).
In geometric terms, the derivative ∂1 here is a directional derivative in direction of the conormal,
which follows from assumption (B), so we get

∂1ρi = ∂n∂Γ∗
i
ρi = ∇Γ∗

i
ρi · n∂Γ∗

i
and

(∂1t
∗
i · n∗i ) =

(
∂n∂Γ∗

i
n∂Γ∗

i
· n∗i
)

= −n∂Γ∗
i
· ∂n∂Γ∗

i
n∗i = σ∗i (n∂Γ∗

i
, n∂Γ∗

i
) = κn∂Γ∗

i
,

where σ∗i is the second fundamental form of Γ∗
i with respect to n∗i and κn∂Γ∗

i
is the normal

curvature of Γ∗
i in direction of the conormal n∂Γ∗

i
.

The linearization of the angle condition then reads as follows

∂n∂Γ∗
i
ρi + κn∂Γ∗

i
µi = ∂n∂Γ∗

j
ρj + κn∂Γ∗

j
µj ,

for (i, j) = (1, 2) and (2, 3).
To derive (4.32) from this identity, we use (4.23),(ii) from Lemma 4.5 to get

∂n∂Γ∗
i
ρi + κn∂Γ∗

i

1

si
(cjρj − ckρk) = ∂n∂Γ∗

j
ρj + κn∂Γ∗

j

1

sj
(ckρk − ciρi)

for (i, j, k) = (1, 2, 3), (2, 3, 1) and (3, 1, 2). Now we take into account Young’s law (4.6) and
(4.23),(i) from Lemma 4.5 to observe

1

si
(cjρj − ckρk) =

1

γi

(
cj
sj
γjρj −

ck
sk
γkρk

)

=
1

γi

(
cj
sj
γjρj +

ck
sk

(γiρi + γjρj)

)

=
1

γi

(
ck
sk
γiρi +

(
cj
sj

+
ck
sk

)
γjρj

)

=
1

sk
ckρi +

1

sk
sk
sj

si

(
cj
sj

+
ck
sk

)

︸ ︷︷ ︸
=(∗)

ρj

=
1

sk
(ckρi − ρj) ,

where we used θ1 + θ2 + θ3 = 2π and an addition theorem to calculate

(∗) =
sksi (cjsk + cksj)

sisjsk
=

cos θj sin θk + cos θk sin θj

sin θi
=

sin(θj + θk)

sin θi
=

sin(2π − θi)

sin θi

= −1 .
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By an analogous argument, we also have

1

sj
(ckρk − ciρi) =

1

sk
(ρi − ckρj) .

Plugging these two identities into the linearization of the angle condition gives

∂n∂Γ∗
i
ρi + κn∂Γ∗

i

1

sk
(ckρi − ρj) = ∂n∂Γ∗

j
ρj + κn∂Γ∗

j

1

sk
(ρi − ckρj) .

Arranging the terms of ρi on one side and these of ρj on the other side, finally leads to

∂n∂Γ∗
i
ρi +

1

sk

(
ckκn∂Γ∗

i
− κn∂Γ∗

j

)
ρi = ∂n∂Γ∗

j
ρj +

1

sk

(
κn∂Γ∗

i
− ckκn∂Γ∗

j

)
ρj .

Using Lemma 4.4 for the stationary hypersurfaces and Young’s law (4.6), we derive

1

sk

(
ckκn∂Γ∗

i
− κn∂Γ∗

j

)
= − ck

γisk

(
γjκn∂Γ∗

j
+ γkκn∂Γ∗

k

)
− 1

sk
κn∂Γ∗

j

= − ck
γksi

(
γjκn∂Γ∗

j
+ γkκn∂Γ∗

k

)
− 1

sk
κn∂Γ∗

j

= − 1

sksi
(cksj + si)κn∂Γ∗

j
− ck
si
κn∂Γ∗

k

= − 1

sksi
(cksj − (sjck + skcj))κn∂Γ∗

j
− ck
si
κn∂Γ∗

k

=
1

si

(
cjκn∂Γ∗

j
− ckκn∂Γ∗

k

)
,

where we used the addition theorem si = − (sjck + skcj). An analogous calculation gives

1

sk

(
κn∂Γ∗

i
− ckκn∂Γ∗

j

)
=

1

sj

(
ckκn∂Γ∗

k

− ciκn∂Γ∗
i

)
.

Plugging this into the above equation leads to

∂n∂Γ∗
i
ρi +

1

si

(
cjκn∂Γ∗

j
− ckκn∂Γ∗

k

)
ρi = ∂n∂Γ∗

j
ρj +

1

sj

(
ckκn∂Γ∗

k

− ciκn∂Γ∗
i

)
ρj ,

which is the assertion (4.32). �

To proceed, we abbreviate for reasons of shortness the following terms on L∗.

a1 :=
1

s1

(
c2 κn∂Γ∗

2
− c3 κn∂Γ∗

3

)
, (4.35)

a2 :=
1

s2

(
c3 κn∂Γ∗

3
− c1 κn∂Γ∗

1

)
and (4.36)

a3 :=
1

s3

(
c1 κn∂Γ∗

1
− c1 κn∂Γ∗

1

)
. (4.37)
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We remind the Definition 2.17 of normal curvature κn∂Γ∗
i

through κn∂Γ∗
i

= σ∗i (n∂Γ∗
i
, n∂Γ∗

i
), where

σ∗i is the second fundamental form of Γ∗
i with respect to n∗i .

When we now consider two angle conditions for (i, j, k) = (1, 2, 3) and (2, 3, 1) in the previous
Lemma 4.11, we get the following short identities for the linearization on L∗.

∂n∂Γ∗
1
ρ1 + a1 ρ1 = ∂n∂Γ∗

2
ρ2 + a2 ρ2 = ∂n∂Γ∗

3
ρ3 + a3 ρ3 . (4.38)

Finally the linearization of the right angle condition at the outer boundary S∗
i can be adressed

directly to Lemma 3.7 because on S∗
i the parametrization fulfills

Φρi,µi

i (t, q) = Ψi(t, ρi(t, q))

and equals therefore the curvilinear coordinate system from Chapter 3.

Altogether, we get for the linearization of (4.26) the following linear system of partial differential
equations for (ρi, µi), i = 1, 2, 3, which fulfill (4.21).

∂tρi = γi

(
∆Γ∗

i
ρi + |σ∗i |2ρi

)
in Γ∗

i , (4.39)

with boundary conditions on S∗
i given through

(∂µ − S(n∗i , n
∗
i )) ρi = 0 (4.40)

and boundary conditions on L∗ given through

{
γ1ρ1 + γ2ρ2 + γ3ρ3 = 0 ,

∂n∂Γ∗
1
ρ1 + a1 ρ1 = ∂n∂Γ∗

2
ρ2 + a2 ρ2 = ∂n∂Γ∗

3
ρ3 + a3 ρ3 .

(4.41)

Note that the functions µi do not appear in this partial differential equation and can be calcu-
lated through the algebraic equations from Lemma 4.5.

4.1.4 Conditions for linearized stability

In this section we want to give a condition for the linearized stability of the mean curvature flow
(4.5) with a triple line and outer boundary contact around a stationary state Γ∗. With our choice
of parametrization this means that we consider the linearized equation (4.39) together with the
linearized boundary conditions (4.40) and (4.41) and examine the stability of the zero solution.
To this end, we use the ideas of Garcke, Ito and Kohsaka [GIK10], where they considered surface
diffusion with triple lines and outer boundary contact for curves in the plane. We modify this
work to the present case of mean curvature flow with triple junction with outer boundary contact
for hypersurfaces in Rn+1. The necessary steps are similar to the linearized stability analysis
from Section 3.2 but we have to take care of three different hypersurfaces and the equations on
the triple line.

In generalization of Section 3.2 for the case of one hypersurface with outer boundary contact
we get the following equivalence.

121



CHAPTER 4. TRIPLE LINES WITH BOUNDARY CONTACT

Γ∗ is linearly asymptotically stable

⇐⇒





I(ρ, ρ) :=
∑3

i=1 γi

∫
Γ∗

i

(
|∇Γ∗

i
ρi|2 − |σ∗i |2ρ2

i

)
−∑3

i=1 γi

∫
S∗

i
S(n∗i , n

∗
i ) ρ

2
i

+
∑3

i=1 γi

∫
L∗ ai ρ

2
i

is positive for all 0 6= ρ = (ρ1, ρ2, ρ3) with ρi ∈ H1(Γ∗
i )

and γ1ρ1 + γ2ρ2 + γ3ρ3 = 0 at L∗ .

To achieve this goal, we proceed analogously as in Section 3.2 by describing problem (4.39)-
(4.41) as the L2-gradient flow of an energy defined with the help of a bilinear form I from
Definition 4.12. Then we analyze the spectrum of the linearized operator corresponding to
(4.39)-(4.41) and get a connection between the eigenvalues of A and the bilinear form I.

Definition 4.12. We use the following abbreviations for function spaces. For k ∈ N0 we set
(omit the integrability value p = 2)

Hk := Hk(Γ∗
1) ×Hk(Γ∗

2) ×Hk(Γ∗
3) ,

W :=
{
ξ = (ξ1, ξ2, ξ3) ∈ H1 | ξ1 + ξ2 + ξ3 = 0 at L∗

}
and

Z :=
{
ξ = (ξ1, ξ2, ξ3) ∈ H1 | γ1ξ1 + γ2ξ2 + γ3ξ3 = 0 at L∗

}
.

Observe that we assume in this section ∂Γ∗
i = L∗ and that for k = 0 the convention is H0 =

L2(Γ∗
1) × L2(Γ∗

2) × L2(Γ∗
3).

We define a bilinear form for ρ = (ρ1, ρ2, ρ3) and η = (η1, η2, η3) in H1 through

I(ρ, η) :=
3∑

i=1

γi

∫

Γ∗
i

(
∇Γ∗

i
ρi · ∇Γ∗

i
ηi − |σ∗i |2ρiηi

)
dHn −

3∑

i=1

γi

∫

S∗
i

S(n∗i , n
∗
i ) ρiηi dHn−1

+

3∑

i=1

γi

∫

L∗

aiρiηi dHn−1 ,

and the associated energy for ρ ∈ H1 by

E(ρ) :=
1

2
I(ρ, ρ) .

Here the ai are given by (4.35)-(4.37). We say that a time dependent function ρ with values in
H1 is a solution of the L2-gradient flow equation to E if and only if

(∂tρ(t), ξ)L2 = −∂E(ρ(t))(ξ)

for all ξ ∈ H1 and all t > 0. Here we use the L2-inner product component-wise, i.e.

(∂tρ(t), ξ)L2 =

3∑

i=1

(∂tρi(t), ξi)L2 ,
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and we observe that

∂E(ρ(t))(ξ) = I(ρ(t), ξ) .

The next lemma shows that the linearized problem (4.39) and (4.41) is the L2-gradient flow of E.

Lemma 4.13. The function ρ = (ρ1, ρ2, ρ3) ∈ L2(0, T ;H2)∩H1(0, T ;H0) is a solution to (4.39)
with boundary conditions (4.40) at the outer boundary S∗

i and (4.41) at the triple line L∗ for all
t > 0, if and only if ρ ∈ L2(0, T ;Z) ∩H1(0, T ;H0) and

(∂tρ(t), ξ)L2 = −I(ρ(t), ξ)

for all ξ ∈ Z and all t > 0.

Proof. If ρ ∈ H2 is a solution of (4.39) -(4.41), we omit the time variable t and test with a
ξ = (ξ1, ξ2, ξ3) ∈ Z to get with integration by parts and (4.39)

(∂tρ, ξ)L2 =

3∑

i=1

(∂tρi, ξi)L2

=

3∑

i=1

γi

∫

Γ∗
i

(
∆Γ∗

i
ρiξi + |σ∗i |2ρiξi

)

= −
3∑

i=1

γi

∫

Γ∗
i

(
∇Γ∗

i
ρi · ∇Γ∗

i
ξi − |σ∗i |2ρiξi

)
+

3∑

i=1

γi

∫

∂Γ∗
i

(
∇Γ∗

i
ρi · n∂Γ∗

i

)
ξi

= −
3∑

i=1

γi

∫

Γ∗
i

(
∇Γ∗

i
ρi · ∇Γ∗

i
ξi − |σ∗i |2ρiξi

)
+

3∑

i=1

γi

∫

L∗

(
∇Γ∗

i
ρi · n∂Γ∗

i
+ aiρi

)
ξi

︸ ︷︷ ︸
(∗)

−
3∑

i=1

γi

∫

L∗

aiρiξi +

3∑

i=1

γi

∫

S∗
i

(
∇Γ∗

i
ρi · µ

)
︸ ︷︷ ︸
=S(n∗

i ,n∗
i )ρi

ξi

= −I(ρ, ξ) .

For (∗) we use the boundary condition (4.41) and
∑3

i=1 γiξi = 0 for ξ ∈ Z at L∗ to achieve

(∗) =
3∑

i=1

γi

∫

L∗

(
∇Γ∗

i
ρi · n∂Γ∗

i
+ aiρi

)
ξi =

∫

L∗

(
∇Γ∗

1
ρ1 · n∂Γ∗

1
+ a1ρ1

) 3∑

i=1

γiξi

︸ ︷︷ ︸
=0

= 0 .

If on the other hand ρ ∈ L2(0, T ;Z)∩H1(0, T ;H0) fulfills (∂tρ(t), ξ)L2 = −I(ρ(t), ξ) for all ξ ∈ Z,
regularity theory gives us ∂tρ ∈ L(0, T ;H0) and ρ ∈ L2(0, T ;H2). Therefore we can do the above
calculation backwards and use the fundamental lemma to get that ρ is indeed a solution of (4.39)
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with the boundary conditions (4.40) at the outer boundary S∗
i and (4.41) at the triple line L∗. �

Let us now define the corresponding linearized operator to (4.39) and (4.41) through

A : D(A) −→ H0

with

D(A) =
{
ρ ∈ H2 | ρ satisfies (4.40) at S∗

i and (4.41) at L∗
}

(4.42)

by

Aρ := ((Aρ)1 , (Aρ)2 , (Aρ)3) , where (Aρ)i := γi

(
∆Γ∗

i
ρi + |σ∗i |2ρi

)
(4.43)

for all ρ = (ρ1, ρ2, ρ3) ∈ D(A).
The linearized problem (4.39) and (4.41) is then related to the problem in finding a time

dependent function ρ ∈ L2(0, T ;D(A)) ∩H1(0, T ;H0) with

∂tρ = Aρ .

From now on we skip the variable t, so that by Definition 4.12 and Lemma 4.13 we also have
for all ρ ∈ D(A) and ξ ∈ Z the identity

(Aρ, ξ)L2 = −I(ρ, ξ) .

This gives us the opportunity to show symmetry of A in a simple way as before in Section 3.2.

Lemma 4.14. The operator A is symmetric with respect to the L2-inner product. Therefore it
has real eigenvalues.

Proof. Exactly the same as in Lemma 3.10. �

The next point is to describe the spectrum of A. Therefore we have to generalize the inequality
from Lemma 3.11 to the present case of a triple line, so that we get as a corollary an upper
bound for the eigenvalues of A. We introduce the following notation for ρ = (ρ1, ρ2, ρ3) ∈ Hk.

‖ρ‖Hk :=

(
3∑

i=1

‖ρi‖2
Hk

) 1
2

, (4.44)

which denotes a norm on Hk.

Lemma 4.15. There exist positive constants C1 and C2 such that

‖ρ‖2
H1 ≤ C1‖ρ‖2

H0 + C2I(ρ, ρ) (4.45)

for all ρ ∈ H1.
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Proof. We will use inequality (3.33) from Lemma 3.11, which in this case with three hypersur-
faces reads as follows. For all δ > 0 there exists a Cδ > 0, such that

‖ρi‖2
L2(∂Γ∗

i ) ≤ δ‖∇Γ∗
i
ρi‖2

L2(Γ∗
i ) + Cδ‖ρi‖2

L2(Γ∗
i ) (4.46)

for all ρi ∈ H1(Γ∗
i ), i = 1, 2, 3. In fact, we get tree different constants Ci

δ, but we can take the
largest one and call it Cδ.
Now we proceed with the estimate

I(ρ, ρ) =

3∑

i=1

γi

∫

Γ∗
i

(
|∇Γ∗

i
ρi|2 − |σ∗i |2ρ2

i

)
+

3∑

i=1

γi

∫

L∗

aiρ
2
i −

3∑

i=1

γi

∫

S∗
i

S(n∗i , n
∗
i )ρ

2
i

≥ γ
3∑

i=1

‖∇Γ∗
i
ρi‖2

L2(Γ∗
i ) −m

3∑

i=1

‖ρi‖2
L2(Γ∗

i ) −M
3∑

i=1

‖ρi‖2
L2(∂Γ∗

i ) ,

where we set

γ := min{γi | i = 1, 2, 3} ,
m := max{‖|σ∗i |2‖L∞(Γ∗

i ) | i = 1, 2, 3} and

M := max{‖γiai‖L∞(∂Γ∗
i ) , ‖γiS(n∗i , n

∗
i )‖L∞(∂Γ∗

i ) | i = 1, 2, 3} .

We use (4.46) to get

I(ρ, ρ) ≥ (γ − δM)‖∇Γ∗
i
ρi‖2

L2(Γ∗
i ) − (m+ CδM)‖ρi‖2

L2(Γ∗
i ) .

By choosing δ > 0 so small that (γ − δM) > 0, we derive for some constants c, C > 0 the
inequality

c‖ρi‖2
L2(Γ∗

i ) + CI(ρ, ρ) ≥ ‖∇Γ∗
i
ρi‖2

L2(Γ∗
i ) .

Adding ‖ρi‖2
L2(Γ∗

i ) to both sides and summing over i = 1, 2, 3 gives the assertion with some

positive constants C1 and C2. �

With the help of the previous lemma we are able to show boundedness from above for the
eigenvalues of A.

Lemma 4.16. Let λ be an eigenvalue from A. Then the following inequality holds.

λ ≤ C1

C2
,

where C1 and C2 are the positive constants of the previous Lemma 4.15.

Proof. With the help of the previous Lemma 4.15 the proof is exactly the same as in Lemma
3.12. �

The next step is to show that A is self-adjoint with respect to the L2-inner product, which
will be done as in the previous chapter in Lemma 3.13 with the help of a property that implies
equivalence of symmetry and self-adjointness.
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Lemma 4.17. The operator A is self-adjoint with respect to the L2-inner product.

Proof. We use the following theorem of operator theory. If there exists an ω ∈ R, such that

im(ωId−A) = H0 ,

then the properties symmetry and self-adjointness are equivalent, see for example the book of
Weidmann [Weid76].

So we have to show that there exists an ω ∈ R such that for given f ∈ H0 there exists a
ρ ∈ D(A) with

ωρ−Aρ = f .

In detail, this means





−γi

(
∆Γ∗

i
ρi + |σ∗i |2ρi

)
+ ωρi = fi in Γ∗

i , i = 1, 2, 3 ,

(∂µ + S(n∗i , n
∗
i )) ρi = 0 on §∗i , i = 1, 2, 3 ,

γ1ρ2 + γ2ρ2 + γ3ρ3 = 0 on L∗ ,(
∇Γ∗

1
ρ1 · n∂Γ∗

1

)
+ a1ρ1 =

(
∇Γ∗

2
ρ2 · n∂Γ∗

2

)
+ a2ρ2

=
(
∇Γ∗

3
ρ3 · n∂Γ∗

3

)
+ a3ρ3 on L∗ .

(4.47)

With analogue calculations as in Lemma 4.13 we get the weak formulation of (4.47) through the
following problem. For given f ∈ H0 find a ρ ∈ Z, i.e. ρ ∈ H1 and γ1ρ1 + γ2ρ2 + γ3ρ3 = 0 on
L∗, such that

I(ρ, ψ) + ω (ρ, ψ)L2 = (f, ψ)L2

for all ψ ∈ W, i.e. ψ ∈ H1 and ψ1 + ψ2 + ψ3 = 0 on L∗. With the help of Lemma 4.15 and 4.16
we can show with the same calculation as in Lemma 3.13 that the left side defines a coercive
bilinear form for large ω ∈ R.
The fundamental theorem of Lax-Milgram gives then a unique weak solution ρ ∈ Z. Since
f ∈ H0, regularity theory leads to ρ ∈ H2 and to the remaining boundary condition in (4.47).
So we found an ω ∈ R and a ρ ∈ D(A), such that

ωρ−Aρ = f .

Therefore we can apply the above theorem from operator theory and conclude from the symme-
try of Lemma 4.14 even the self-adjointness of A. �

With the help of the previous results we are able to apply standard theory of self-adjoint
operators and the theory of semigroups to get the following theorem.

Theorem 4.18.

(i) The spectrum of A consists of countable many real eigenvalues.

(ii) The initial value problem (4.39)-(4.41) is solvable for given initial data in H0.
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(iii) The zero solution of the linearized problem (4.39)-(4.41) is asymptotically stable if and
only if the largest eigenvalue of A is negative.

Proof. With the same abstract arguments as in the proof of Lemma 3.14 we can show the
assertions with the help of Lemma 4.16 and Lemma 4.17. �.

The next lemma relates eigenvalues of A to the bilinear form I, so that we can formulate our
linearized stability criterion.

Lemma 4.19. Let

λ1 ≥ λ2 ≥ λ3 ≥ . . .

be the eigenvalues of A (taken into account the multiplicity).

(i) For all n ∈ N, the following description of the eigenvalues of A holds.

λn = inf
W∈Σn−1

sup
ρ∈W\{0}

− I(ρ, ρ)

(ρ, ρ)L2

,

−λn = sup
W∈Σn−1

inf
ρ∈W⊥\{0}

I(ρ, ρ)

(ρ, ρ)L2

,

where Σn is the collection of n-dimensional subspaces of Z and W⊥ is the orthogonal
complement with respect to the L2-inner product.

(ii) The eigenvalues λn depend continuously on κn∂Γ∗
i

and |σ∗i | in the L∞-norm.

Proof. As in Lemma 3.15, for the first part we just refer to the classical work of Courant and
Hilbert [CH68]. The second part follows directly from the structure of I. �

In the next remark the largest eigenvalue of A is described more explicitly.

Remark 4.20. For the largest eigenvalue λ1 of A we have the description

−λ1 = min
ρ∈Z\{0}

I(ρ, ρ)

(ρ, ρ)L2

, (4.48)

which can be seen directly from the second description of λ1 in Lemma 4.19 through −λ1 =
supW∈Σ0

infρ∈W⊥\{0}
I(ρ,ρ)
(ρ,ρ)L2

and Σ0 = ∅ and therefore W⊥ = Z. The fact that the minimum is

attained also follows from the classical work of Courant and Hilbert [CH68].

From Theorem 4.18 we have asymptotic stability of the linearized problem (4.39)-(4.41) if and
only if λ1 < 0. This leads to the following main conclusion.
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Theorem 4.21. The linearized problem (4.39)-(4.41) is asymptotically stable if and only if

I(ρ, ρ) > 0

for all ρ ∈ Z\{0}, where

I(ρ, ρ) =

3∑

i=1

γi

∫

Γ∗
i

(
|∇Γ∗

i
ρi|2 − |σ∗i |2ρ2

i

)
dHn −

3∑

i=1

γi

∫

S∗
i

S(n∗i , n
∗
i )ρ

2
i dHn−1

+

3∑

i=1

γi

∫

L∗

aiρ
2
i dHn−1 .

4.2 Surface diffusion flow

In this last section we want to complete our considerations with the surface diffusion flow with
triple lines and outer boundary contact with a fixed bounded region. As in the previous Section
4.1 we formulate the problem in detail, give some geometric properties and derive the linearized
problem for functions ρi, i = 1, 2, 3. We use the same parametrization from (4.18) as in the
previous section. Then we proceed with stability analysis as in Section 3.4 for the emerging
linear fourth-order system of partial differential equations.
So we want to find three evolving hypersurfaces Γi =

⋃
t∈[0,T ){t}×Γi(t) with Γi(t) ⊂ Rn+1 as in

Definition 2.31, moving due to the surface diffusion flow, such that Γi(t) lies in a fixed bounded
region Ω ⊂ Rn+1 and the decomposition (4.2)-(4.4) is fulfilled. This means that the boundary
can be seperated disjointly into ∂Γi(t) = Li(t)∪Si(t), such that L(t) = L1(t) = L2(t) = L3(t) is
a triple line and the other parts Si(t) = ∂Γi(t) ∩ ∂Ω represent the sections with the outer fixed
boundary. Note our implicit assumption that L(t) does not intersect ∂Ω.
In formulas, we have to find hypersurfaces as in (4.1)-(4.4) which fulfill the following surface

diffusion equation in Γi(t)

Vi = −miγi∆Γi(t)Hi , (4.49)

where the positive constants γi and mi are the surface energy density and the mobility of the
interface Γi(t).
At the outer boundary Si(t), we require as in the case of one hypersurface in Section 3.4 the

following right angle and natural boundary conditions.
{

∠(Γi(t), ∂Ω) = π
2 ,

∇Γi(t)Hi · n∂Γi(t) = 0 .
(4.50)

At the triple line L(t), we require the following conditions




∠(Γ1(t),Γ2(t)) = θ3 , ∠(Γ2(t),Γ3(t)) = θ1 , ∠(Γ3(t),Γ1(t)) = θ2 ,
γ1H1 + γ2H2 + γ3H3 = 0 ,
m1γ1∇Γ1(t)H1 · n∂Γ1(t) = m2γ2∇Γ2(t)H2 · n∂Γ2(t) = m3γ3∇Γ3(t)H3 · n∂Γ3(t) .

(4.51)

The first condition denotes angles between the hypersurfaces at the triple line, where we require
as in the previous section 0 < θi < π, θ1 + θ2 + θ3 = 2π and Young’s law (4.6). The second
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condition follows from the continuity of the chemical potentials and the third conditions are
the flux balance at the triple junction. We refer to Garcke and Novick-Cohen [GN00] for the
derivation of the above model in the planar case. For reasons of shortness we will omit the
starting configuration in this section.
As in Lemma 4.1 of the previous section, we can show the following balance of forces at the

triple line due to the angle conditions and Young’s law,

γ1n∂Γ1(t) + γ2n∂Γ2(t) + γ3n∂Γ3(t) = 0 .

Also Remark 4.2 and the corresponding equations (4.9)-(4.12) are fulfilled, see Figure 4.2 for a
sketch in the curve case.

Ω

Γ1

Γ2

Γ3 n1

n2n3
L

S1

S2

S3

Figure 4.2: The choice of the normals.

4.2.1 Geometric properties of the flow

Here we want to show the properties area decreasing and volume preserving for surface diffusion
(4.49)-(4.51). Therefore we have to generalize the calculations from Lemma 2.46 about evolution
of area and volume in case of one hypersurface lying in a fixed bounded region to the present
situation for three hypersurfaces that get together at a triple line. After this we will give
properties for stationary states of (4.49)-(4.51).

Lemma 4.22. Solutions Γi(t) of the surface diffusion equation (4.49) which fulfill the boundary
conditions (4.50) and (4.51), decrease the weighted total area

A(t) =
3∑

i=1

γi

∫

Γi(t)
1 dHn

and preserve the enclosed volumes. With Ωij(t) defined as the region in Ω bounded by Γi(t),
Γj(t) and ∂Ω for (i, j) = (1, 2), (2, 3), (3, 1), see Figure 4.3, this means in detail

d

dt

∫

Ωij(t)
1 dx = 0 .

Proof. Similar calculations as in Lemma 4.3 from the previous section lead to

d

dt
A(t) = −

3∑

i=1

γi

∫

Γi(t)
ViHi dHn +

∫

L(t)

3∑

i=1

γiv∂Γi
dHn−1 +

3∑

i=1

γi

∫

Si(t)
v∂Γi

dHn−1 .
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Ω

Γ1

Γ2

Γ3 n1

n2n3
Ω12

Ω23

Ω31

Figure 4.3: The definition of Ωij.

The second term vanishes as in the proof of Lemma 4.3 due to Young’s law and the angle
conditions and for the third term we can argue in the same way as in Lemma 2.46 in Chapter
2, where we saw v∂Γi

= 0 due to the right angle at the fixed boundary. So we get by using the
surface diffusion equation Vi = −γimi∆Γi(t)Hi

d

dt
A(t) = −

3∑

i=1

∫

Γi(t)
−γ2

imi∆Γi(t)Hi ·Hi dHn

= −
3∑

i=1

γ2
i mi

∫

Γi(t)
|∇Γi(t)Hi|2 dHn +

3∑

i=1

γimi

∫

∂Γi(t)

(
∇Γi(t)Hi · n∂Γi(t)

)
Hi dHn−1 .

For the second term, we observe

3∑

i=1

γimi

∫

∂Γi(t)

(
∇Γi(t)Hi · n∂Γi(t)

)
Hi dHn−1

=
3∑

i=1

∫

L(t)
mi

(
∇Γi(t)Hi · n∂Γi(t)

)
γiHi dHn−1 +

3∑

i=1

γimi

∫

Si(t)

(
∇Γi(t)Hi · n∂Γi(t)

)
︸ ︷︷ ︸

=0

Hi dHn−1

=

∫

L(t)
m1

(
∇Γ1(t)H1 · n∂Γ1(t)

) 3∑

i=1

γiHi

︸ ︷︷ ︸
=0

dHn−1

= 0 ,

where we used the boundary conditions (4.50) and (4.51). Therefore it holds

d

dt
A(t) = −

3∑

i=1

γ2
imi

∫

Γi(t)
|∇Γi(t)Hi|2 dHn−1

≤ 0 .

For the volume preservation we first claim that

d

dt

∫

Ωij(t)
1 dx = −

∫

Γi(t)
Vi dHn +

∫

Γj(t)
Vj dHn . (4.52)
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To see this identity, we proceed analogously to Lemma 2.46 from Chapter 2 to get

(n+ 1)

∫

Ωij(t)
1 dx =

∫

Ωij(t)
div id dx =

∫

∂Ωij(t)
p · ν(t, p) dHn .

Here ν is the outer unit normal of Ωij(t) and with our choice of the normals of the hypersurfaces
it equals ν = µ on Λ(t), which describes as in Lemma 2.46 the part of the boundary of Ω, that
coincides with ∂Ωij(t), ν = −ni on Γi(t) and ν = nj on Γj(t). Therefore we can decompose the
above boundary integral into

∫

∂Ωij(t)
p · ν(t, p) =

∫

Λ(t)
p · µ(p) dHn

︸ ︷︷ ︸
(1)

−
∫

Γi(t)
p · ni(t, p) dHn

︸ ︷︷ ︸
(2)

+

∫

Γj(t)
p · nj(t, p) dHn

︸ ︷︷ ︸
(3)

.

As in Lemma 2.46 we get for the first term

d

dt

∫

Λ(t)
p · µ(p) dHn =

∫

∂Λ(t)
(p · µ(p)) v∂Λ dHn−1 ,

where the other terms from the Transport theorem 2.44 vanish due to the fact that the normal
velocity of Λ is zero. For the second and third term (2) and (3) from above can also use the
calculations from Lemma 2.46 to get for l = i, j

d

dt

∫

Γl(t)
p · nl(t, p) dHn = (n+ 1)

∫

Γl(t)
Vl dHn +

∫

∂Γl(t)
(p · nl(t, p)) v∂Γl

(t, p) dHn−1

−
∫

∂Γl(t)
(p · n∂Γl

(t, p))Vl(t, p) dHn−1 .

With the decompositions

∂Λ(t) = Si(t) ∪ Sj(t) ,

∂Γi(t) = Si(t) ∪ L(t) and

∂Γj(t) = Sj(t) ∪ L(t)

we get then for the derivative of the volume the following formula

(n+ 1)
d

dt

∫

Ωij(t)
1 dx = −(n+ 1)

∫

Γi(t)
Vi dHn + (n + 1)

∫

Γj(t)
Vj dHn

+

∫

Si(t)
(p · µ(p)) v∂Λ(t, p) dHn−1 +

∫

Sj(t)
(p · µ(p)) v∂Λ(t, p) dHn−1

+

∫

Si(t)
(p · n∂Γi

(t, p))Vi(t, p) dHn−1 −
∫

Sj(t)

(
p · n∂Γj

(t, p)
)
Vj(t, p) dHn−1

+

∫

L(t)
(p · n∂Γi

(t, p))Vi(t, p) dHn−1 −
∫

L(t)

(
p · n∂Γj

(t, p)
)
Vj(t, p) dHn−1

−
∫

L(t)
(p · ni(t, p)) v∂Γi

(t, p) dHn−1 +

∫

L(t)
(p · nj(t, p)) v∂Γj

(t, p) dHn−1 .
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Due to the choice of the normals ni, on Si(t) there holds v∂Λ = −Vi and we can proceed as in
Lemma 2.46 to see that the integrals over Si(t) and Sj(t) vanish. This leads us to

(n+ 1)
d

dt

∫

Ωij(t)
1 dx = −(n+ 1)

∫

Γi(t)
Vi dHn + (n+ 1)

∫

Γj(t)
Vj dHn

+

∫

L(t)
(p · n∂Γi

(t, p))Vi(t, p) dHn−1 −
∫

L(t)

(
p · n∂Γj

(t, p)
)
Vj(t, p) dHn−1

−
∫

L(t)
(p · ni(t, p)) v∂Γi

(t, p) dHn−1 +

∫

L(t)
(p · nj(t, p)) v∂Γj

(t, p) dHn−1 .

To see that the integrals over the triple line L(t) vanish, we first recall from Remark 4.2 that the
vectors ni, nj , n∂Γi

, n∂Γj
at the point (t, p) all lie in the two-dimensional subspace U = (TpL(t))⊥.

Then let D be the orthogonal matrix that assigns the chosen unit normal to the outer unit
conormal, that is at L(t) the following formulas hold

ni = Dn∂Γi
, nj = Dn∂Γj

, −n∂Γi
= Dni and − n∂Γj

= Dnj .

Due to the orthogonality condition DT = D−1 we can conclude

p · ni = p · (Dn∂Γi
) =

(
D−1p

)
· n∂Γi

,

p · n∂Γi
= p · (−Dni) = −

(
D−1p

)
· ni ,

and analogously

p · nj =
(
D−1p

)
· n∂Γj

and p · n∂Γj
= −

(
D−1p

)
· nj .

This gives for the considered integrals over the triple line L(t)

1

n+ 1

∫

L(t)

(
D−1p

)
·
(
(ni Vi + n∂Γi

v∂Γi
) −

(
nj Vj + n∂Γj

v∂Γj

))
dHn−1 .

As in the proof of Lemma 2.46 we can calculate the velocities with the help of the same curve
c(τ) ∈ L(τ) with c(t) = p ∈ L(t) through

Vi = ni · c′(t) , Vj = nj · c′(t) , v∂Γi
= n∂Γi

· c′(t) and v∂Γj
= n∂Γj

· c′(t) .

Therefore we can write

ni Vi + n∂Γi
v∂Γi

= ni ·
(
ni · c′(t)

)
+ n∂Γi

(
n∂Γi

· c′(t)
)

= Pc′(t) and

nj Vj + n∂Γj
v∂Γj

= nj ·
(
nj · c′(t)

)
+ n∂Γj

(
n∂Γj

· c′(t)
)

= Pc′(t) ,

where P denotes the projection onto the two-dimensional subspace U . With this observation
the above integral over L(t) vanishes and we proved the formula (4.52).
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With equation (4.49) and integration by parts we can conclude further from (4.52)

d

dt

∫

Ωij(t)
1 dx =

∫

Γi(t)
miγi∆Γi(t)Hi dHn −

∫

Γj(t)
mjγj∆Γj(t)Hj dHn

=

∫

∂Γi(t)
miγi∇Γi(t)Hi · n∂Γi

dHn−1 −
∫

∂Γj(t)
mjγj∇Γj(t)Hj · n∂Γj

dHn−1

=

∫

Si(t)
miγi ∇Γi(t)Hi · n∂Γi︸ ︷︷ ︸

=0

dHn−1 −
∫

Sj(t)
mjγj ∇Γj(t)Hj · n∂Γj︸ ︷︷ ︸

=0

dHn−1

+

∫

L(t)

(
miγi∇Γi(t)Hi · n∂Γi

−mjγj∇Γj(t)Hj · n∂Γj

)

︸ ︷︷ ︸
=0

dHn−1

= 0 ,

where we used the boundary conditions (4.50) on Si(t) and Sj(t) and (4.51) on L(t). �

As in the previous parts of this work we fix a stationary solution of the above problem (4.49)-
(4.51). This means we consider three hypersurfaces Γ∗

i , which lie in Ω, and the boundary
has a decomposition ∂Γ∗

i = L∗
i ∪ S∗

i , such that the three hypersurfaces meet at a triple line
L∗ = L∗

1 = L∗
2 = L∗

3 and the other parts are sections with the outer fixed boundary, i.e.
S∗

i = ∂Γ∗
i ∩ ∂Ω. Γ∗

i shall fulfill the surface diffusion equation (4.49) with Vi = 0, the condi-
tions (4.50) at S∗

i and (4.51) at the triple line L∗. We choose the normals n∗i of Γ∗
i so that

γ1n
∗
1 + γ2n

∗
2 + γ3n

∗
2 = 0, as we did in the previous section. We can show similar to the surface

diffusion equation for one hypersurface from Section 3.4 that Γ∗
i has constant mean curvature.

Lemma 4.23. Stationary solutions as described above have constant mean curvature and fulfill
the identity

γ1κn∂Γ∗
1

+ γ2κn∂Γ∗
2

+ γ3κn∂Γ∗
3

= 0 on L∗

as in Lemma 4.4.

Proof. We proceed as in Lemma 3.25 to get from ∆Γ∗
i
H∗

i = 0, where H∗
i is the mean curvature

of Γ∗
i , that

0 =

∫

Γ∗
i

∆Γ∗
i
H∗

i ·H∗
i = −

∫

Γ∗
i

|∇Γ∗
i
H∗

i |2 +

∫

∂Γ∗
i

(
∇Γ∗

i
H∗

i · n∂Γ∗
i

)
H∗

i .
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Multiplying this equation with miγ
2
i > 0 and summing gives

0 = −
3∑

i=1

miγ
2
i

∫

Γ∗
i

|∇Γ∗
i
H∗

i |2 +

3∑

i=1

miγ
2
i

∫

L∗

(
∇Γ∗

i
H∗

i · n∂Γ∗
i

)
H∗

i

+

3∑

i=1

miγ
2
i

∫

S∗
i

(
∇Γ∗

i
H∗

i · n∂Γ∗
i

)
︸ ︷︷ ︸

=0

H∗
i

= −
3∑

i=1

miγ
2
i

∫

Γ∗
i

|∇Γ∗
i
H∗

i |2 +
3∑

i=1

∫

L∗

miγi

(
∇Γ∗

i
H∗

i · n∂Γ∗
i

)
γiH

∗
i

= −
3∑

i=1

miγ
2
i

∫

Γ∗
i

|∇Γ∗
i
H∗

i |2 +

∫

L∗

m1γ1

(
∇Γ∗

1
H∗

1 · n∂Γ∗
1

) 3∑

i=1

γiH
∗
i

︸ ︷︷ ︸
=0

= −
3∑

i=1

miγ
2
i

∫

Γ∗
i

|∇Γ∗
i
H∗

i |2 .

Therefore we get the equality ∇Γ∗
i
H∗

i = 0 on Γ∗
i and the same argumentation as in Lemma 3.25

applies to give the claim of constant mean curvature.
To show the identity for the normal curvatures, we use the same notations and calculations as

in Lemma 4.4 to get

γiH
∗
i = γiκn∂Γ∗

i
+ γi

n−1∑

j=1

σ∗i (tj, tj) .

Now we use the second equation γ1H
∗
1 + γ2H

∗
2 + γ3H

∗
3 = 0 on L∗ from (4.51) for the stationary

hypersurfaces to get

0 =

3∑

i=1

γiκn∂Γ∗
i

+

3∑

i=1

γi

n−1∑

j=1

σ∗i (tj , tj) .

As in the proof of Lemma 4.4 we can show that the second term is zero and therefore get the
claim γ1κn∂Γ∗

1
+ γ2κn∂Γ∗

2
+ γ3κn∂Γ∗

3
= 0. �

4.2.2 Parametrization and resulting partial differential equations

To formulate partial differential equations from the geometric evolution equation (4.49)-(4.51),
we use the same parametrization of the hypersurfaces Γi(t) over some fixed stationary state Γ∗

of (4.49)-(4.51) as in the previous section. This means that for i = 1, 2, 3 and functions

ρi : [0, T ) × Γ∗
i −→ R and

µi : [0, T ) × L∗ −→ R
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with |ρi| < ε and |µi| < δ, we define the mappings Φi = Φρi,µi

i (we often omit the superscript
(ρi, µi) for shortness) through

Φi : [0, T ) × Γ∗
i −→ Ω ,

Φi(t, q) := η(q)Zi(q, ρi(t, q), µi(t,pri(q))) + (1 − η(q))Ψi(q, ρi(t, q))

for i = 1, 2, 3, where pri : Γ∗
i → ∂Γ∗

i is the projection as in the previous section given through
the construction in (4.19). As in the previous Section 4.1 this projection will be used just in a
small neighbourhood around the triple line L∗. The mappings Zi and Ψi are defined in (4.15)
and (4.16).
We also set for fixed t as in the previous parts the diffeomorphisms onto their images

(Φi)t : Γ∗
i −→ Ω , (Φi)t(q) := Φi(t, q) , (4.53)

and finally define new surfaces through

Γρi,µi
(t) := {(Φi)t(q) | q ∈ Γ∗

i } . (4.54)

As in the previous section we formulate the condition, that the evolution of the triple line L∗

results still in a triple line, through the requirement that

Φ1(t, q) = Φ2(t, q) = Φ3(t, q) for q ∈ L∗(= L∗
1 = L∗

2 = L∗
3) . (4.55)

For the new hypersurfaces Γi(t) := Γρi,µi
(t) there exists also a decomposition of the boundary

∂Γi(t) through ∂Γi(t) = Li(t) ∪ Si(t), where Si(t) = ∂Γi(t) ∩ ∂Ω and from (4.55) we can
identify the other parts Li(t) = ∂Γi(t)\Si(t) to one compact (n − 1)-dimensional submanifold
L(t) = L1(t) = L2(t) = L3(t).
From now on, we always assume condition (4.55) and write the surface diffusion equation

(4.49) and the boundary conditions (4.50) and (4.51) over the fixed stationary hypersurfaces Γ∗
i

to get partial differential equations for ρi and µi, i = 1, 2, 3. This gives for the surface diffusion
equations in Γ∗

i

Vi(Φi(t, q)) = −miγi∆Γi(t)Hi(Φ(t, q)) , (4.56)

for the boundary equations on S∗
i

{
(ni · µ) (Φi(t, q)) = 0 ,

∇Γi(t)Hi(Φi(t, q)) · n∂Γi(t)(Φi(t, q)) = 0 ,
(4.57)

and for the boundary equations at the triple line L∗





n1(Φ1(t, q)) · n2(Φ2(t, q)) = cos θ3 ,

n2(Φ2(t, q)) · n3(Φ3(t, q)) = cos θ2 ,

γ1H1(Φ1(t, q)) + γ2H2(Φ2(t, q)) + γ3H3(Φ3(t, q)) = 0 ,

m1γ1∇Γ1(t)H1(Φ1(t, q)) · n∂Γ1(t)(Φ1(t, q))

= m2γ2∇Γ2(t)H2(Φ2(t, q)) · n∂Γ2(t)(Φ2(t, q))

= m3γ3∇Γ3(t)H3(Φ3(t, q)) · n∂Γ3(t)(Φ3(t, q)) .

(4.58)
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As in the previous section, see (4.27), we also match the starting condition and use the abbrevi-
ation Vi(Φi(t, q)) = Vi(t,Φi(t, q)), analogously for Hi and ni as explained in (2.12). We omitted
the third angle condition because under our assumptions it is automatically fulfilled, compare
(4.28).

4.2.3 Linearization around a stationary state

The next step is to give the linearization of (4.56), (4.57) and (4.58) around (ρi, µi) ≡ (0, 0),
which is our interpretation of the linearization of (4.49)-(4.51) around a stationary state given
by Γ∗

1, Γ∗
2 and Γ∗

3. Therefore we consider the terms separately and observe that most of the
necessary work is already done.
In fact, by putting together the calculations of Lemma 3.4 and of Lemma 4.8 for the normal

velocity, we get as expected

d

dε
Vi(Φ

ερi,εµi

i (t, q))

∣∣∣∣
ε=0

= ∂tρi(t, q) .

Furthermore the geometric argumentation from Lemma 3.5 and Lemma 3.26 also applies in this
case and gives us the linearization for the Laplace-Beltrami operator of mean curvature.
To deal with the linearization of the boundary conditions in (4.57), we just have to observe

that on S∗
i the parametrization fulfills

Φρi,µi

i (t, q) = Ψi(t, ρi(t, q)) (4.59)

and equals therefore the curvilinear coordinate system from Chapter 3. Therefore it is possible
to apply Lemma 3.7 and Lemma 3.27, which gives us the desired linearization.
In fact, for Lemma 3.27 we do not need the identity (4.59), the calculations there hold also

for the parametrization in this section. We just have to replace the outer unit normal µ of the
fixed region Ω with the outer unit conormal n∂Γ∗

i
of Γ∗

i . These two were the same in that case
due to the right angle between Γ∗

i and the outer fixed boundary. So we get the linearization of
the third condition in (4.58). Together with Lemma 4.11 about the linearization of the angle
conditions at the triple line and with Lemma 4.8 for the mean curvature we get the linearization
of all terms in the boundary conditions of (4.58) at the triple line L∗.
Altogether we obtain the linearized problem for i = 1, 2, 3 and t > 0

∂tρi = −miγi∆Γ∗
i

(
∆Γ∗

i
ρi + |σ∗i |2ρi

)
in Γ∗

i (4.60)

with the boundary conditions on S∗
i

{ (
∂µ − S(n∗i , n

∗
i )
)
ρi = 0 ,

∂µ

(
∆Γ∗

i
ρi + |σ∗i |2ρi

)
= 0 ,

(4.61)

and the boundary conditions on the triple line L∗





γ1ρ1 + γ2ρ2 + γ3ρ3 = 0 ,
∂n∂Γ∗

1
ρ1 + a1ρ1 = ∂n∂Γ∗

2
ρ2 + a2 ρ2 = ∂n∂Γ∗

3
ρ3 + a3 ρ3 ,

γ1

(
∆Γ∗

1
ρ1 + |σ∗1|2ρ1

)
+ γ2

(
∆Γ∗

2
ρ2 + |σ∗2 |2ρ2

)
+ γ3

(
∆Γ∗

3
ρ3 + |σ∗3 |2ρ3

)
= 0 ,

m1γ1∂n∂Γ∗
1

(
∆Γ∗

1
ρ1 + |σ∗1 |2ρ1

)
= m2γ2∂n∂Γ∗

2

(
∆Γ∗

2
ρ2 + |σ∗2 |2ρ2

)

= m3γ3∂n∂Γ∗
3

(
∆Γ∗

3
ρ3 + |σ∗3 |2ρ3

)
.

(4.62)
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We recall some notations. σ∗i is the second fundamental form of Γ∗
i with respect to n∗i and

|σ∗i |2 =
∑n

i=1 κ
2
i is its squared norm given through the squared sum of the principal curvatures.

µ is the outer unit normal of Ω and S is the second fundamental form of ∂Ω with respect to
the inwards pointing normal (−µ) of Ω. Due to the right angle condition at the outer fixed
boundary the normal n∗i of Γ∗

i lies in the tangent space of ∂Ω and can therefore be inserted in
S. Finally, the terms ai are the abbreviations given by (4.35), (4.36) and (4.37).

Remark 4.24. The above system of partial differential equations is just a problem for ρi. The
functions µi are then given by the linear dependence from Lemma 4.5 through

µi =
1

si
(cjρj − ckρk) on L∗ .

We remark that this is the case because we linearize around a stationary solution and would not
be true any more if the linearization is around an arbitrary hypersurface satisfying the boundary
conditions.

As in Section 3.4 for surface diffusion with boundary contact for one hypersurface without
triple junction there holds a solvability condition.

Lemma 4.25. Solutions of the linearized problem (4.60) with boundary conditions (4.61) and
(4.62) fulfill

∫

Γ∗
1

ρ1 =

∫

Γ∗
2

ρ2 =

∫

Γ∗
3

ρ3 .

Proof. Observe that through a linearization around (ρi, µi) ≡ (0, 0), the starting condition for
the linearized problem, that we omitted for reasons of shortness, is (ρi)t=0 = 0. So we can do
the analogue calculation as in Lemma 3.28 to get

∫

Γ∗
i

ρi =

∫ t

0

∫

Γ∗
i

∂tρi =

∫ t

0

∫

Γ∗
i

−miγi∆Γ∗
i

(
∆Γ∗

i
ρi + |σ∗i |2ρi

)

=

∫ t

0

∫

∂Γ∗
i

−miγi

(
∇Γ∗

i

(
∆Γ∗

i
ρi + |σ∗i |2ρi

)
· n∂Γ∗

i

)

=

∫ t

0

∫

S∗
i

−miγi

(
∇Γ∗

i

(
∆Γ∗

i
ρi + |σ∗i |2ρi

)
· µ
)

︸ ︷︷ ︸
=0 due to (4.61)

+

∫ t

0

∫

L∗

−miγi

(
∇Γ∗

i

(
∆Γ∗

i
ρi + |σ∗i |2ρi

)
· n∂Γ∗

i

)

=

∫ t

0

∫

L∗

−m1γ1

(
∇Γ∗

1

(
∆Γ∗

1
ρ1 + |σ∗1 |2ρ1

)
· n∂Γ∗

1

)
,

where the last identity follows with the help of the boundary condition (4.62). This gives the
same value for

∫
Γ∗

i
ρi for all i = 1, 2, 3 and the claim is shown. �
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4.2.4 Conditions for linearized stability

As in Section 3.4 for one hypersurface we want to describe linearized stability of the stationary
solution Γ∗ of (4.49)-(4.51), i.e. with our parametrization stability of the zero solution of the
linearized problem (4.60)-(4.62) through the requirement that some bilinear form is positive.
Garcke, Ito and Kohsaka [GIK10] generalized their own paper [GIK05] for surface diffusion flow
for one curve to the case of three curves meeting at a triple point. In an analogue way we will
generalize here the case of surface diffusion flow for one hypersurface from Section 3.4 to the
case of three hypersurfaces meeting at a triple line.
To recall the approach, we will show that the linearized problem (4.60) - (4.62) can be inter-

preted as a gradient flow with respect to an energy E given by a symmetric bilinear form I.
Then we relate the eigenvalues of the solution operator corresponding to the linearized problem
to the positivity of the bilinear form I to achieve the following result for a stationary solution
Γ∗ =

⋃3
i=1 Γ∗

i of problem (4.60)-(4.62).

Γ∗ is linearly asymptotically stable

⇐⇒





I(ρ, ρ) :=
∑3

i=1 γi

∫
Γ∗

i

(
|∇Γ∗

i
ρi|2 − |σ∗i |2ρ2

i

)
−∑3

i=1 γi

∫
S∗

i
S(n∗i , n

∗
i ) ρ

2
i

+
∑3

i=1 γi

∫
L∗ ai ρ

2
i

is positive for all 0 6= ρ = (ρ1, ρ2, ρ3) with ρi ∈ H1(Γ∗
i ) such that

∫
Γ∗

1
ρ1 =

∫
Γ∗

2
ρ2 =

∫
Γ∗

3
ρ3 and γ1ρ1 + γ2ρ2 + γ3ρ3 = 0 on L∗ .

The following abbreviations for function spaces resp. dual spaces will be useful. For k ∈ N, we
set (omit the integrability value p = 2)

Hk := Hk(Γ∗
1) ×Hk(Γ∗

2) ×Hk(Γ∗
3) ,(

Hk
)′

:=
(
Hk(Γ∗

1)
)′

×
(
Hk(Γ∗

2)
)′

×
(
Hk(Γ∗

3)
)′
,

Y :=

{
(ξ1, ξ2, ξ3) ∈ H1 | ξ1 + ξ2 + ξ3 = 0 on L∗ and

∫

Γ∗
1

ξ1 =

∫

Γ∗
2

ξ2 =

∫

Γ∗
3

ξ3

}
,

Ỹ :=
{
(ξ1, ξ2, ξ3) ∈ H1 | ξ1 + ξ2 + ξ3 = 0 on L∗

}
,

E :=

{
(v1, v2, v3) ∈ H1 | γ1v1 + γ2v2 + γ3v3 = 0 on L∗ and

∫

Γ∗
1

v1 =

∫

Γ∗
2

v2 =

∫

Γ∗
3

v3

}
,

H−1 :=
{

(w1, w2, w3) ∈
(
H1
)′ | 〈w1, 1〉 = 〈w2, 1〉 = 〈w3, 1〉

}
.

Here 〈. , .〉 is the duality pairing between the dual space
(
H1(Γ∗

i )
)′

and the Sobolev space H1(Γ∗
i ).

We will also denote the duality pairing between w = (w1, w2, w3) ∈ H−1 and u = (u1, u2, u3) ∈
H1 with the same symbol, i.e.

〈w, u〉 = 〈w1, u2〉 + 〈w2, u2〉 + 〈w3, u3〉 .
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We will show that the linearized problem (4.60) - (4.62) is a gradient flow with respect to the
H−1 inner product. Therefore we have to generalize Definition 3.29 from Section 3.4 to the
present case of three hypersurfaces.

Definition 4.26. We say that uw = (uw
1 , u

w
2 , u

w
3 ) ∈ Y for a given w = (w1, w2, w3) ∈ H−1 is a

weak solution of




−mi∆Γ∗
i
uw

i = wi in Γ∗
i (i = 1, 2, 3) ,

uw
1 + uw

2 + uw
3 = 0 on L∗ ,

m1∇Γ∗
1
uw

1 · n∂Γ∗
1

= m2∇Γ∗
2
uw

2 · n∂Γ∗
2

= m3∇Γ∗
3
uw

3 · n∂Γ∗
3

on L∗ ,

∇Γ∗
i
uw

i · n∂Γ∗
i

= 0 on S∗
i (i = 1, 2, 3) ,

(4.63)

if and only if uw ∈ Y satisfies

〈w, ξ〉 =
3∑

i=1

mi

∫

Γ∗
i

∇Γ∗
i
uw

i · ∇Γ∗
i
ξi (4.64)

for all ξ = (ξ1, ξ2, ξ3) ∈ Y.

For later use we show in the next lemma that the above weak formulation (4.64) can also be
written with the help of testfunctions from the larger space Ỹ instead of Y.

Lemma 4.27. Equation (4.64) can be written equivalently with testfunctions ξ ∈ Ỹ instead of
Y. In detail this means for w ∈ H−1 and uw ∈ Y the equivalence between the following two
equations

(i) 〈w, ξ〉 =
∑3

i=1mi∇Γ∗
i
uw

i · ∇Γ∗
i
ξi for all ξ ∈ Y and

(ii)
〈
w, ξ̃

〉
=
∑3

i=1mi∇Γ∗
i
uw

i · ∇Γ∗
i
ξ̃i for all ξ̃ ∈ Ỹ.

Proof. The inclusion Y ⊂ Ỹ leads to the implication (ii) ⇒ (i).
For the other implication let ξ̃ = (ξ̃1, ξ̃2, ξ̃3) ∈ Ỹ be given, i.e. ξ̃i ∈ H1(Γ∗

i ) and ξ̃1 + ξ̃2 + ξ̃3 = 0
on L∗. We want to find constants (c1, c2, c3), such that

ξ := (ξ̃ − c) := (ξ̃1 − c1, ξ̃2 − c2, ξ̃3 − c3) ∈ Y .

This means, we have to find constants c = (c1, c2, c3) such that

c1 + c2 + c3 = 0 and
∫
Γ∗

1

(
ξ̃1 − c1

)
=
∫
Γ∗

2

(
ξ̃2 − c2

)
=
∫
Γ∗

3

(
ξ̃3 − c3

)
.

We formulate these conditions as a linear system of three equations for the unknowns (c1, c2, c3)
and observe that the corresponding matrix

M :=




1 1 1
−|Γ∗

1| |Γ∗
2| 0

0 −|Γ∗
2| |Γ∗

3|



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is invertible due to

detM = |Γ∗
2| · |Γ∗

3| + |Γ∗
1| · |Γ∗

2| + |Γ∗
1| · |Γ∗

3| > 0 .

Therefore we can find c with the above properties and ξ = ξ̃ − c fulfills ξ ∈ Y and can be used
as a testfunction in (i) to get

〈
w, ξ̃ − c

〉
=

3∑

i=1

mi∇Γ∗
i
uw

i · ∇Γ∗
i
ξ̃i ,

where the constant on the right side has vanished. Due to 〈w1, 1〉 = 〈w2, 1〉 = 〈w3, 1〉 the left
side can be written as

〈
w, ξ̃ − c

〉
=
〈
w, ξ̃

〉
−

3∑

i=1

〈wi, ci〉 =
〈
w, ξ̃

〉
− 〈w1, 1〉

3∑

i=1

ci

︸ ︷︷ ︸
=0

=
〈
w, ξ̃

〉

and we proved (ii). �

Since the problem (4.63) is a bit unusual due to the different domains of definition Γ∗
i , we want

to show equivalence of strong and weak solutions in the smooth case.

Lemma 4.28. Let w ∈ H−1 be smooth, so that we can assume 〈w, ξ〉 =
∑3

i=1

∫
Γ∗

i
wi ξi for the

duality pairing. Then uw ∈ Y is a smooth solution of (4.63) then and only then when uw ∈ Y is
smooth and fulfills (4.64).

Proof. Let uw ∈ Y be a smooth solution of (4.63). By testing with ξ ∈ Y, we get with the help
of integration by parts

〈w, ξ〉 =
3∑

i=1

∫

Γ∗
i

wi ξi

=

3∑

i=1

∫

Γ∗
i

(−mi∆Γ∗
i
uw

i ) ξi

=

3∑

i=1

mi

∫

Γ∗
i

∇Γ∗
i
uw

i · ∇Γ∗
i
ξi −

3∑

i=1

mi

∫

S∗
i

(
∇Γ∗

i
uw

i · n∂Γ∗
i

)
︸ ︷︷ ︸

=0

ξi

−
3∑

i=1

mi

∫

L∗

(
∇Γ∗

i
uw

i · n∂Γ∗
i

)
ξi

=
3∑

i=1

mi

∫

Γ∗
i

∇Γ∗
i
uw

i · ∇Γ∗
i
ξi −

∫

L∗

m1

(
∇Γ∗

1
uw

1 · n∂Γ∗
1

) 3∑

i=1

ξi

︸ ︷︷ ︸
=0

=

3∑

i=1

mi

∫

Γ∗
i

∇Γ∗
i
uw

i · ∇Γ∗
i
ξi .
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Conversely, let uw ∈ Y be smooth and fulfill (4.64) for testfunctions ξ ∈ Ỹ, which is possible
due to Lemma 4.27. Integration by parts gives then

3∑

i=1

∫

Γ∗
i

wi ξi =

3∑

i=1

mi

∫

Γ∗
i

∇Γ∗
i
uw

i · ∇Γ∗
i
ξi

= −
3∑

i=1

mi

∫

Γ∗
i

∆Γ∗
i
uw

i ξi +

3∑

i=1

mi

∫

L∗

(
∇Γ∗

i
uw

i · n∂Γ∗
i

)
ξi

+
3∑

i=1

mi

∫

S∗
i

(
∇Γ∗

i
uw

i · n∂Γ∗
i

)
ξi .

Therefore it holds

0 =

3∑

i=1

∫

Γ∗
i

(
wi +mi∆Γ∗

i
uw

i

)
ξi

+

3∑

i=1

∫

L∗

mi

(
∇Γ∗

i
uw

i · n∂Γ∗
i

)
ξi +

3∑

i=1

∫

S∗
i

mi

(
∇Γ∗

i
uw

i · n∂Γ∗
i

)
ξi

for all ξi ∈ H1(Γ∗
i ) with ξ1 + ξ2 + ξ3 = 0 on L∗.

By setting two of the ξi constantly equal to zero and using zero boundary conditions for the
remaining one, we get with the help of the fundamental lemma wi = −mi∆Γ∗

i
uw

i on Γ∗
i . Since ξi

is arbitrary at S∗
i , we also get the boundary condition ∇Γ∗

i
uw

i · n∂Γ∗
i

= 0 at S∗
i , remaining with

the identity

0 =

3∑

i=1

∫

L∗

mi

(
∇Γ∗

i
uw

i · n∂Γ∗
i

)
ξi .

Here we use ξ1 + ξ2 + ξ3 = 0 at L∗ to get

m1∇Γ∗
1
uw

1 · n∂Γ∗
1

= m2∇Γ∗
2
uw

2 · n∂Γ∗
2

= m3∇Γ∗
3
uw

3 · n∂Γ∗
3

at L∗ .

Altogether we showed that uw is a strong solution of (4.63). �

The next step is to show a Poincaré-type inequality for functions in E resp. in Y. Therefore
we use the notation for ρ = (ρ1, ρ2, ρ3)

‖ρ‖ :=

(
3∑

i=1

‖ρi‖2
L2(Γ∗

i )

)1/2

and ‖∇Γ∗ρ‖ :=

(
3∑

i=1

‖∇Γ∗
i
ρi‖2

L2(Γ∗
i )

)1/2

. (4.65)

Lemma 4.29. There exists a constant C > 0, such that

‖ρ‖ ≤ C ‖∇Γ∗ρ‖

holds for all ρ = (ρ1, ρ2, ρ3) ∈ E.
The statement is also true for functions ρ = (ρ1, ρ2, ρ3) ∈ Y.
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Proof. We argument by contradiction and assume that we can find a sequence (ρ̃n)n∈N
∈ E ,

such that

‖ρ̃n‖ > n ‖∇Γ∗ ρ̃n‖ .

In particular, this gives ‖ρ̃n‖ > 0 and normalizing ρn := ρ̃n

‖ρ̃n‖ leads to a sequence ρn ∈ E with

‖ρn‖ = 1 and

1 > n ‖∇Γ∗ρn‖ .

For the components, we get the bound

‖ρn
i ‖L2(Γ∗

i ) ≤
3∑

j=1

‖ρn
j ‖L2(Γ∗

j ) ≤
√

3




3∑

j=1

‖ρn
j ‖2

L2(Γ∗
j )




1
2

=
√

3‖ρn‖ =
√

3 .

For the surface gradient of the components, we observe the convergence

‖∇Γ∗
i
ρn

i ‖L2(Γ∗
i ) ≤

√
3 ‖∇Γ∗ρn‖ ≤

√
3

n
−→ 0 for n→ ∞ .

Therefore, we can deduce the weak convergence ρn
i ⇀ Ci in H1(Γ∗

i ) for constants Ci ∈ R. The
Rellich embedding theorem gives

ρn
i −→ Ci in L2(Γ∗

i ) for n→ ∞ .

Furthermore, the integral condition
∫
Γ∗

1
ρ1 =

∫
Γ∗

2
ρ2 =

∫
Γ∗

3
ρ3 leads to |Γ∗

1|·C1 = |Γ∗
2|·C2 = |Γ∗

3|·C3,

so that we can conclude that the constants Ci all have the same sign.
Finally, the boundary condition γ1ρ

n
1 + γ2ρ

n
2 + γ3ρ

n
3 = 0 on L∗ gives γ1C1 + γ2C2 + γ3C3 = 0

and therefore C1 = C2 = C3 = 0. More precisely, we have to use the compact embedding
H1(Γ∗

i ) →֒ L2(∂Γ∗
i ) here.

But this is a contradiction to ‖ρn‖ = 1 for all n ∈ N. �

Now we can show unique existence of a weak solution from problem (4.63).

Lemma 4.30. For each w ∈ H−1, there exists a unique weak solution uw ∈ Y of problem (4.63).

Proof. We set

B(u, ξ) :=

3∑

i=1

mi

∫

Γ∗
i

∇Γ∗
i
ui · ∇Γ∗

i
ξi

for u, ξ ∈ Y. Since from Lemma 4.29 a Poincaré-type inequality holds for all u ∈ Y, the bilinear
form B is continuous and coercive on Y. From the Lax-Milgram theorem we get then for a given
w ∈ H−1 the existence of a unique uw ∈ Y such that

B(uw, ξ) = 〈w, ξ〉 .
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This means that uw ∈ Y is a weak solution of (4.63). �

Now we are able to define the H−1-inner product.

Definition 4.31. For v,w ∈ H−1 we define the inner product

(v,w)−1 :=

3∑

i=1

mi

∫

Γ∗
i

∇Γ∗
i
uv

i · ∇Γ∗
i
uw

i ,

where uv = (uv
1, u

v
2, u

v
3), u

w = (uw
1 , u

w
2 , u

w
3 ) ∈ Y are the weak solutions of (4.63) for given

v = (v1, v2, v3), w = (w1, w2, w3) ∈ H−1.
We also define the corresponding norm

‖v‖−1 :=
√

(v, v)−1

for v ∈ H−1 and remark that the identity

(v,w)−1 = 〈v, uw〉

holds for all u,w ∈ H−1.

In an analogous manner as in the previous chapter we define a symmetric bilinear form and an
energy on H1.

Definition 4.32. For ρ = (ρ1, ρ2, ρ3) and η = (η1, η2, η3) in H1 we define

I(ρ, η) :=
3∑

i=1

γi

∫

Γ∗
i

(
∇Γ∗

i
ρi ∇Γ∗

i
ηi − |σ∗i |2ρi ηi

)
dHn −

3∑

i=1

∫

S∗
i

γiS(n∗i , n
∗
i )ρi ηi dHn−1

+
3∑

i=1

∫

L∗

γiaiρi ηi dHn−1

and the associated energy for ρ ∈ H1 by

E(ρ) :=
1

2
I(ρ, ρ) .

We remind that ai are the abbreviations from (4.35)-(4.37).

Now we want to show that the linearized problem (4.60) - (4.62) is the gradient flow of E with
respect to the H−1 inner product (. , .)−1. Analogously as in the previous chapter this means
that a solution ρ of the linearized problem fulfills

(∂tρ, ξ)−1 = −I(ρ, ξ)

for all ξ ∈ E .
We introduce the following time independent problem.
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Definition 4.33. For a given w = (w1, w2, w3) ∈ H−1 we say that ρ = (ρ1, ρ2, ρ3) ∈ H3 with∫
Γ∗

1
ρ1 =

∫
Γ∗

2
ρ2 =

∫
Γ∗

3
ρ3 is a weak solution of the boundary value problem

wi = −miγi∆Γ∗
i

(
∆Γ∗

i
ρi + |σ∗i |2ρi

)
in Γ∗

i , (4.66)

with the boundary conditions (4.61) on S∗
i and the boundary conditions (4.62) on the triple line

L∗, if and only if ρ satisfies

〈w, ξ〉 =

3∑

i=1

miγi

∫

Γ∗
i

∇Γ∗
i

(
∆Γ∗

i
ρi + |σ∗i |2ρi

)
· ∇Γ∗

i
ξi (4.67)

for all ξ = (ξ1, ξ2, ξ3) ∈ Y and fulfills the boundary conditions

(∂µ − S(n∗i , n
∗
i )) ρi = 0 (4.68)

on S∗
i and





γ1ρ1 + γ2ρ2 + γ3ρ3 = 0 ,
∂n∂Γ∗

1
ρ1 + a1ρ1 = ∂n∂Γ∗

2
ρ2 + a2 ρ2 = ∂n∂Γ∗

3
ρ3 + a3 ρ3 ,

γ1

(
∆Γ∗

1
ρ1 + |σ∗1 |2ρ1

)
+ γ2

(
∆Γ∗

2
ρ2 + |σ∗2 |2ρ2

)
+ γ3

(
∆Γ∗

3
ρ3 + |σ∗3 |2ρ3

)
= 0

(4.69)

on the triple line L∗.

The next lemma shows the above claim regarding the gradient flow structure.

Lemma 4.34. Let w = (w1, w2, w3) ∈ H−1 and ρ = (ρ1, ρ2, ρ3) ∈ E be given. Then ρ is a weak
solution of (4.66) if and only if

(w, ξ)−1 = −I(ρ, ξ)

for all ξ ∈ E.

Proof. Let ρ ∈ E be a weak solution of (4.66). Due to ξ ∈ E ⊂ H−1 through 〈ξ, u〉 =∑3
i=1

∫
Γ∗

i
ξi ui for u ∈ H1 we get from Definition 4.31

(w, ξ)−1 =
〈
w, uξ

〉
.

Using uξ ∈ Y as a testfunction in the weak formulation of (4.66), we observe

〈
w, uξ

〉
=

3∑

i=1

miγi

∫

Γ∗
i

∇Γ∗
i

(
∆Γ∗

i
ρi + |σ∗i |2ρi

)
· ∇Γ∗

i
uξ

i =
3∑

i=1

mi

∫

Γ∗
i

∇Γ∗
i
Θi · ∇Γ∗

i
uξ

i ,

where we defined for shortness Θi = γi

(
∆Γ∗

i
ρi + |σ∗i |2ρi

)
. The third boundary condition on

L∗ from problem (4.66) yields Θ1 + Θ2 + Θ3 = 0 on L∗. Due to Lemma 4.27 we can use
Θ = (Θ1,Θ2,Θ3) as a testfunction in (4.64) to get

3∑

i=1

∫

Γ∗
i

ξi · Θi =

3∑

i=1

mi

∫

Γ∗
i

∇Γ∗
i
Θi · ∇Γ∗

i
uξ

i .
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Here we used the inclusion ξ ∈ E ⊂ H−1 through 〈ξ,Θ〉 =
∑3

i=1

∫
Γ∗

i
ξi Θi.

Thus we can conclude with integration by parts

(w, ξ)−1 =
3∑

i=1

∫

Γ∗
i

ξi γi

(
∆Γ∗

i
ρi + |σ∗i |2ρi

)

= −
3∑

i=1

γi

∫

Γ∗
i

(
∇Γ∗

i
ξi · ∇Γ∗

i
ρi − |σ∗i |2ξi ρi

)
+

3∑

i=1

γi

∫

∂Γ∗
i

ξi
(
∇Γ∗

i
ρi · n∂Γ∗

i

)

= −
3∑

i=1

γi

∫

Γ∗
i

(
∇Γ∗

i
ξi · ∇Γ∗

i
ρi − |σ∗i |2ξi ρi

)
+

3∑

i=1

γi

∫

L∗

ξi ∂n∂Γ∗
i
ρi

+

3∑

i=1

γi

∫

S∗
i

ξi ∂µρi .

Using γ1ξ1 + γ2ξ2 + γ3ξ3 = 0 at L∗ for ξ ∈ E and the third boundary condition on L∗ for the
weak solution ρ of (4.66), we get

3∑

i=1

γi

∫

L∗

ξi ∂n∂Γ∗
i
ρi =

3∑

i=1

γi

∫

L∗

ξi

(
∂n∂Γ∗

i
ρi + aiρi

)
−

3∑

i=1

γi

∫

L∗

ai ξi ρi

=

∫

L∗

(
∂n∂Γ∗

1
ρ1 + a1ρ1

) 3∑

i=1

γiξi

︸ ︷︷ ︸
=0

−
3∑

i=1

γi

∫

L∗

ai ξi ρi

= −
3∑

i=1

γi

∫

L∗

ai ξi ρi .

From the first boundary condition on S∗
i for the weak solution ρ of (4.66) we get

3∑

i=1

γi

∫

S∗
i

ξi · ∂µρi =
3∑

i=1

γi

∫

S∗
i

ξi · S(n∗i , n
∗
i )ρi .

Altogether, we arrive at

(w, ξ)−1 = −I(ρ, ξ)

for all ξ ∈ E .

Conversely, assume that ρ ∈ E satisfies (w, ξ)−1 = −I(ρ, ξ) for all ξ ∈ E . Now let ζ ∈ H3 ∩ Y
be a given function with

m1

(
∇Γ∗

1
ζ1 · n∂Γ∗

1

)
= m2

(
∇Γ∗

2
ζ2 · n∂Γ∗

2

)
= m3

(
∇Γ∗

3
ζ3 · n∂Γ∗

3

)
on L∗ , (4.70)

(
∇Γ∗

i
ζi · n∂Γ∗

i

)
= 0 on S∗

i and (4.71)

γ1m1∆Γ∗
1
ζ1 + γ2m2∆Γ∗

2
ζ2 + γ3m3∆Γ∗

3
ζ3 = 0 on L∗ . (4.72)
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With the help the abbreviation m∆Γ∗ζ =
(
m1∆Γ∗

1
ζ1,m2∆Γ∗

2
ζ2,m3∆Γ∗

3
ζ3
)

we set ξ := m∆Γ∗ζ.
Then we get through condition (4.72) and an observation analogously to Lemma 4.25 the prop-
erty ξ ∈ E for ξ, so that we can plug it into the assumption in this part of the proof. Since ζ is a
solution of problem (4.63) for the right side ξ, we see with our above notation that ζ = uξ and
from Definition 4.31 we get −I(ρ, ξ) = (w, ξ)−1 = 〈w, ζ〉. This leads to the following equation

〈w, ζ〉 = −I(ρ, ξ)
= I(ρ,m∆Γ∗ζ)

=

3∑

i=1

miγi

∫

Γ∗
i

(
∇Γ∗

i
ρi · ∇Γ∗

i
∆Γ∗

i
ζi − |σ∗i |2ρi ∆Γ∗

i
ζi
)

−
3∑

i=1

miγi

∫

S∗
i

S(n∗i , n
∗
i ) ρi ∆Γ∗

i
ζi +

3∑

i=1

miγi

∫

L∗

ai ρi ∆Γ∗
i
ζi .

Since w ∈ H−1, we obtain from regularity theory that ρ ∈ H3. Then we can integrate by parts
to see

〈w, ζ〉 = −
3∑

i=1

miγi

∫

Γ∗
i

(
∆Γ∗

i
ρi ∆Γ∗

i
ζi −∇Γ∗

i

(
|σ∗i |2ρi

)
· ∇Γ∗

i
ζi
)

+

3∑

i=1

miγi

∫

∂Γ∗
i

((
∇Γ∗

i
ρi · n∂Γ∗

i

)
∆Γ∗

i
ζi − |σ∗i |2ρi

(
∇Γ∗

i
ζi · n∂Γ∗

i

))

−
3∑

i=1

miγi

∫

S∗
i

S(n∗i , n
∗
i ) ρi ∆Γ∗

i
ζi +

∫

L∗

3∑

i=1

mi γi ai ρi ∆Γ∗
i
ζi

= −
3∑

i=1

miγi

∫

Γ∗
i

(
∆Γ∗

i
ρi ∆Γ∗

i
ζi −∇Γ∗

i

(
|σ∗i |2ρi

)
· ∇Γ∗

i
ζi
)

+

3∑

i=1

miγi

∫

S∗
i

(∂µρi − S(n∗i , n
∗
i ) ρi) ∆Γ∗

i
ζi

+
3∑

i=1

miγi

∫

L∗

(
∂n∂Γ∗

i
ρi + ai ρi

)
∆Γ∗

i
ζi −

3∑

i=1

miγi

∫

∂Γ∗
i

|σ∗i |2ρi

(
∇Γ∗

i
ζi · n∂Γ∗

i

)
︸ ︷︷ ︸

=0 on S∗
i

=
3∑

i=1

miγi

∫

Γ∗
i

∇Γ∗
i

(
∆Γ∗

i
ρi + |σ∗i |2ρi

)
· ∇Γ∗

i
ζi

+

3∑

i=1

miγi

∫

S∗
i

(∂µρi − S(n∗i , n
∗
i ) ρi) ∆Γ∗

i
ζi

+

3∑

i=1

miγi

∫

L∗

(
∂n∂Γ∗

i
ρi + ai ρi

)
∆Γ∗

i
ζi

−
3∑

i=1

miγi

∫

L∗
i

(
∆Γ∗

i
ρi + |σ∗i |2ρi

) (
∇Γ∗

i
ζi · n∂Γ∗

i

)
.
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For a given testfunction η ∈ Y we choose a sequence ηn = (ηn
1 , η

n
2 , η

n
3 ) ∈ H3 ∩ Y with

∇Γ∗
i
ηn

i · n∂Γ∗
i

= 0 on ∂Γ∗
i ,

∆Γ∗
i
ηn

i = 0 on ∂Γ∗
i and

ηn → η in H1 .

From the last equation, with ζ = ηn we observe

〈w, ηn〉 =

3∑

i=1

miγi

∫

Γ∗
i

∇Γ∗
i

(
∆Γ∗

i
ρi + |σ∗i |2ρi

)
· ∇Γ∗

i
ηn

i .

Due to the convergence ηn → η in H1, we get

〈w, η〉 =
3∑

i=1

miγi

∫

Γ∗
i

∇Γ∗
i

(
∆Γ∗

i
ρi + |σ∗i |2ρi

)
· ∇Γ∗

i
ηi

for arbitrary η ∈ Y. Inserting this into the last equation for ζ leads to the following boundary
integrals

0 =
3∑

i=1

miγi

∫

S∗
i

(∂µρi − S(n∗i , n
∗
i ) ρi) ∆Γ∗

i
ζi +

3∑

i=1

miγi

∫

L∗

(
∂n∂Γ∗

i
ρi + ai ρi

)
∆Γ∗

i
ζi

−
3∑

i=1

miγi

∫

L∗
i

(
∆Γ∗

i
ρi + |σ∗i |2ρi

) (
∇Γ∗

i
ζi · n∂Γ∗

i

)

for all ζ with the properties (4.70)-(4.72).
Since ∆Γ∗

i
ζi is arbitrary at S∗

i , we get ∂µρi−S(n∗i , n
∗
i )ρi = 0 at S∗

i . Moreover, from the boundary
conditions (4.70) and (4.72) at L∗ for the testfunctions ζ, we are led to

γ1

(
∆Γ∗

1
ρ1 + |σ∗1 |2ρ1

)
+ γ2

(
∆Γ∗

2
ρ2 + |σ∗2 |2ρ2

)
+ γ3

(
∆Γ∗

3
ρ3 + |σ∗3 |2ρ3

)
= 0 and

∂n∂Γ∗
1
ρ1 + a1ρ1 = ∂n∂Γ∗

2
ρ2 + a2 ρ2 = ∂n∂Γ∗

3
ρ3 + a3 ρ3

at the triple line L∗.
Altogether we showed that ρ ∈ E is a weak solution of problem (4.66). �

We define the linearized operator corresponding to the linearized problem (4.60) - (4.62) through

A : D(A) −→ H−1

with

D(A) = {ρ = (ρ1, ρ2, ρ3) ∈ H3 | ρ satisfies (4.68) on S∗
i and (4.69) on L∗ ,

and

∫

Γ∗
1

ρ1 =

∫

Γ∗
2

ρ2 =

∫

Γ∗
3

ρ3} (4.73)
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by

〈Aρ, ξ〉 =

3∑

i=1

miγi

∫

Γ∗
i

∇Γ∗
i

(
∆Γ∗

i
ρi + |σ∗i |2ρi

)
· ∇Γ∗

i
ξi (4.74)

for all ρ ∈ D(A) and ξ ∈ H1.
The boundary value problem (4.66) is then related to the problem in finding a ρ ∈ D(A) with

Aρ = w .

By Lemma 4.34, we observe for all ξ ∈ E the identity

(Aρ, ξ)−1 = −I(ρ, ξ) .

With this property we can show symmetry of A.

Lemma 4.35. The operator A is symmetric with respect to the inner product (. , .)−1.

Proof. Exactly the same as in Lemma 3.34. �

To study the spectrum of A as in the previous chapter, we need the analogue inequalities of
Lemmata 3.35 and 3.36 to get as a corollary an upper bound for the eigenvalues of A.

Lemma 4.36. For all δ > 0 there exists a Cδ > 0, such that for all ρ = (ρ1, ρ2, ρ3) ∈ E and
each i = 1, 2, 3 the inequality

‖ρi‖2
L2(∂Γ∗

i ) ≤ δ‖∇Γ∗ρ‖2 + Cδ‖ρ‖2
−1 ,

holds, where we used the ‖.‖−1-norm on H−1 from Definition 4.32 and the Definition of ‖∇Γ∗ρ‖
from (4.65).

Proof. With the help of the Poincaré-type inequality from Lemma 4.29 we can apply a similar
argument as in the proof of Lemma 3.35 for the case of one hypersurface without a triple line.
Thus we omit it. �

Lemma 4.37. There exist positive constants C1 and C2, such that

‖∇Γ∗ρ‖2 ≤ C1 ‖ρ‖2
−1 + C2 I(ρ, ρ)

for all ρ ∈ E.

Proof. Using the previous Lemma 4.36 and the Poincaré-type inequality from Lemma 4.29 we
again just refer to a similar argument in the proof of Lemma 3.35. �
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Lemma 4.38. The largest eigenvalue of A is bounded from above by C1
C2

, where C1 and C2 are
the positive constants from Lemma 4.37.

Proof. Exactly the same as in Lemma 3.37. �

Now we are able to show self-adjointness of A. As in Lemma 3.38 of Section 3.4 we show a
property that implies equivalence of symmetry and self-adjointness and then cite Lemma 4.35.

Lemma 4.39. The operator A is self-adjoint with respect to the (. , .)−1 inner product.

Proof. The proof is formally the same as in Lemma 3.38, we just have to take care of the
additional boundary conditions at the triple line, which will be done in the next steps.
We use the following theorem of operator theory from the book of Weidmann [Weid76]. If there

exists an ω ∈ R, such that

im (ωId−A) = H−1 ,

then the properties symmetry and self-adjointness of A are equivalent.
So we have to show that there exists an ω ∈ R such that for a given f ∈ H−1 there exists a
ρ ∈ D(A) with

ωρ−Aρ = f .

This means that ρ is a weak solution of the boundary value problem





∆Γ∗
i

(
∆Γ∗

i
ρi + |σ∗i |2ρi

)
+ ωρi = f in Γ∗

i ,

ρ satisfies (4.61) on S∗
i ,

ρ satisfies (4.62) on L∗ .

In detail the weak solution consists in finding a ρ ∈ H3 with the boundary condition (4.68) on
S∗

i and (4.69) on the triple line L∗ such that

−
3∑

i=1

(
miγi

∫

Γ∗
i

∇Γ∗
i

(
∆Γ∗

i
ρi + |σ∗i |2ρi

)
· ∇Γ∗

i
ξi − ω

∫

Γ∗
i

ρi ξi

)
= 〈f, ξ〉

holds for all ξ ∈ Y. As in Lemma 4.25 such a weak solution fulfills
∫
Γ∗

1
ρ1 =

∫
Γ∗

2
ρ2 =

∫
Γ∗

3
ρ3, so

that ρ ∈ D(A).
To get a solution, we use the minimizing problem

F (ρ) :=
1

2

(
I(ρ, ρ) + ω‖ρ‖2

−1

)
−

3∑

i=1

∫

Γ∗
i

uf
i ρi −→ min

for all ρ ∈ E , where uf ∈ Y is the weak solution of (4.63) with respect to f ∈ H−1. With the help
of Lemma 4.37 we can show with an analogue argumentation as in the proof of Lemma 3.38 that
F is coercive on E for large ω, so that the minimizing problem has a solution ρ = (ρ1, ρ2, ρ3) ∈ E ,
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when ω is large enough.
Taking the first variation of F we get

I(ρ, v) + ω (ρ, v)−1 =
3∑

i=1

∫

Γ∗
i

uf
i vi

for all v ∈ E . By the Definition of uρ ∈ Y as weak solution of (4.63) with respect to ρ ∈ E ⊂ H−1

and Definition 4.31 we observe that

ω (ρ, v)−1 = ω
〈
v, uρ

〉
=

3∑

i=1

∫

Γ∗
i

uρ
i vi

for all v ∈ E .
So the above first variation is the weak version of the boundary value problem





−γi

(
∆Γ∗

i
ρi + |σ∗i |2ρi

)
+ ωuρ

i + ci = uf
i in Γ∗

i ,

ρ satisfies the first condition in (4.61) on S∗
i ,

ρ satisfies the first and second condition in (4.62) on L∗ .

(4.75)

Here ci are constants as in the proof of Lemma 4.27 that appear due to the condition
∫
Γ∗

1
v1 =∫

Γ∗
2
v2 =

∫
Γ∗

2
v2 for the testfunctions. This constants are generalized Lagrange-multipliers when

compared to the proof of Lemma 3.38.
Since uρ and uf lie in H1, regularity theory gives us ρ ∈ H3 and the fact that the identities in
(4.75) hold pointwise. Summing the first line in (4.75) leads to the third condition in (4.62),

since
∑3

i=1 ci = 0,
∑3

i=1 u
ρ
i = 0 and

∑3
i=1 u

f
i = 0, where the last two identities hold on L∗ due

to uρ, uf ∈ Y. We arrive at

−
3∑

i=1

miγi

∫

Γ∗
i

∇Γ∗
i

(
∆Γ∗

i
ρi + |σ∗i |2ρi

)
· ∇Γ∗

i
ξi +

3∑

i=1

ωmi

∫

Γ∗
i

∇Γ∗
i
uρ

i · ∇Γ∗
i
ξi

=
3∑

i=1

mi

∫

Γ∗
i

∇Γ∗
i
uf

i · ∇Γ∗
i
ξi ,

where we differentiated the first line in (4.75) and tested with mi∇Γ∗
i
ξi for ξ = (ξ1, ξ2, ξ3) ∈ Y.

With the Definition (4.64) of the weak solutions uρ and uf we can rewrite the last equation to

−
3∑

i=1

miγi

∫

Γ∗
i

∇Γ∗
i

(
∆Γ∗

i
ρi + |σ∗i |2ρi

)
· ∇Γ∗

i
ξi +

3∑

i=1

ω

∫

Γ∗
i

ρi ξi =
3∑

i=1

∫

Γ∗
i

〈fi, ξi〉
︸ ︷︷ ︸

=〈f,ξ〉

for all ξ ∈ Y. So we found a ρ ∈ D(A) with

ωρ−Aρ = f
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for ω large enough, which was remaining to get the assertion. �

With the help of the previous results we are able to apply standard theory of self-adjoint op-
erators and the theory of semigroups to get the following theorem.

Theorem 4.40.

(i) The spectrum of A consists of countable many real eigenvalues.

(ii) The initial value problem (4.60) - (4.62) is solvable for given initial data in H−1.

(iii) The zero solution of the linearized problem (4.60) - (4.62) is asymptotically stable if and
only if the largest eigenvalue of A is negative.

Proof. With the same abstract arguments as in the proof of Lemma 3.39 we can show the
assertions with the help of Lemma 4.38 and Lemma 4.39. �.

The next lemma relates eigenvalues of A to the bilinear form I, so that we can formulate our
linearized stability criterion.

Lemma 4.41. Let

λ1 ≥ λ2 ≥ λ3 ≥ . . .

be the eigenvalues of A (taken into account the multiplicity).

(i) For all n ∈ N, the following description of the eigenvalues of A holds.

λn = inf
W∈Σn−1

sup
ρ∈W\{0}

− I(ρ, ρ)

(ρ, ρ)−1
,

−λn = sup
W∈Σn−1

inf
ρ∈W⊥\{0}

I(ρ, ρ)

(ρ, ρ)−1
,

where Σn is the collection of n-dimensional subspaces of E and W⊥ is the orthogonal
complement with respect to the (., .)−1- inner product.

(ii) The eigenvalues λn depend continuously on S(n∗i , n
∗
i ), κn∂Γ∗

i
and |σ∗i | in the L∞-norm.

Proof. As in Lemma 3.40, for the first part we just refer to the classical work of Courant and
Hilbert [CH68]. The second part follows directly from the structure of I. �

As in the previous parts of this work, we describe the largest eigenvalue in the above lemma
more explicitly.
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Lemma 4.42. For the largest eigenvalue λ1 of A we have the description

−λ1 = min
ρ∈E\{0}

I(ρ, ρ)

(ρ, ρ)−1
, (4.76)

which can be seen directly from the second description of λ1 in Lemma 4.41 through −λ1 =
supW∈Σ0

infρ∈W⊥\{0}
I(ρ,ρ)
(ρ,ρ)−1

and Σ0 = ∅ and therefore W⊥ = E. The fact that the minimum is

attained also follows from the classical work of Courant and Hilbert [CH68].

From Theorem 4.40 we have asymptotic stability of the linearized problem (4.60) - (4.62) if
and only if λ1 < 0. This leads to the following main conclusion of the final section.

Theorem 4.43. The linearized problem (4.60) - (4.62) is asymptotically stable if and only if

I(ρ, ρ) > 0

for all ρ ∈ E\{0}, where

I(ρ, ρ) :=
3∑

i=1

γi

∫

Γ∗
i

(
|∇Γ∗

i
ρi|2 − |σ∗i |2ρ2

i

)
dHn −

3∑

i=1

γi

∫

S∗
i

S(n∗i , n
∗
i )ρ

2
i dHn−1

+

∫

L∗

γ1

s1

(
c2κn∂Γ∗

2
− c3κn∂Γ∗

3

)
ρ2
1 dHn−1 +

∫

L∗

γ2

s2

(
c3κn∂Γ∗

3
− c1κn∂Γ∗

1

)
ρ2
2 dHn−1

+

∫

L∗

γ3

s3

(
c1κn∂Γ∗

1
− c2κn∂Γ∗

2

)
ρ2
3 dHn−1 .

For this time we wrote out the corresponding terms for the abbreviations ai.

To complete the considered evolution laws, we want to describe in the following extensive
corollary the linearized stability of volume preserving mean curvature flow with outer boundary
contact and triple lines.

Corollary 4.44. We consider the problem of finding three evolving hypersurfaces as in (4.1)
which lie inside a fixed bounded region Ω ⊂ Rn+1 and whose boundaries allow the decomposition
(4.2)-(4.4) in a triple line L(t) and in an outer part Si(t). The hypersurfaces shall evolve due
to weighted volume preserving mean curvature flow in Gi(t)

Vi = γi

(
Hi −Hi

)
,

with the following right angle condition at the outer boundary Si(t)

∠(Γi(t), ∂Ω) =
π

2

and the following angle conditions at the triple line L(t) for angles θi as above

∠(Γ1(t),Γ2(t) = θ3 , ∠(Γ2(t),Γ3(t) = θ1 , ∠(Γ3(t),Γ1(t) = θ2 .
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With the help of the parametrization of this section we can formulate the above evolution law
as partial differential equations for functions ρi on Γ∗

i , where Γ∗
i are stationary solutions. Lin-

earization of these equations leads to the following linear problem.





∂tρi =
(
∆Γ∗

i
ρi + |σ∗i |2ρi

)
−
∫
Γ∗

i
−
(
∆Γ∗

i
ρi + |σ∗i |2ρi

)
in Γ∗

i ,

0 = ∂µρi − S(n∗i , n
∗
i )ρi on S∗

i ,

0 = γ1ρ1 + γ2ρ2 + γ3ρ3 on L∗ ,

∂n∂Γ∗
1
ρ1 + a1 ρ1 = ∂n∂Γ∗

2
ρ2 + a2 ρ2 = ∂n∂Γ∗

3
ρ3 + a3 ρ3 on L∗ .

Here we use the abbreviations ai from (4.35)-(4.37) and we observe that a sovability condition
as in Lemma 4.25 gives here the conditions

∫
Γ∗

i
ρi = 0. Stability analysis as in this and the

previous section leads to the following linearized stability criterion for the stationary solution
Γ∗ =

⋃3
i=1 Γ∗

i .

Γ∗ is linearly asymptotically stable

⇐⇒





I(ρ, ρ) :=
∑3

i=1 γi

∫
Γ∗

i

(
|∇Γ∗

i
ρi|2 − |σ∗i |2ρ2

i

)
−∑3

i=1 γi

∫
S∗

i
S(n∗i , n

∗
i ) ρ

2
i

+
∑3

i=1 γi

∫
L∗ ai ρ

2
i

is positive for all 0 6= ρ = (ρ1, ρ2, ρ3) with ρi ∈ H1(Γ∗
i ) such that

∫
Γ∗

i
ρi = 0 and γ1ρ1 + γ2ρ2 + γ3ρ3 = 0 on L∗ .

Remark 4.45. As an example for stability results with the help of the above bilinear form, we
want to refer to the well-known proof of the double bubble conjecture from Hutchings, Morgan,
Ritoré and Ros [HMRR02], where the authors used the above bilinear form without the outer
boundary part to show instability of the so-called nonstandard double bubble.
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Chapter 5

Appendix

In the appendix of this work, we present detailed proofs of the normal time derivative of mean
curvature and the Gauß mapping, i.e. the normal for an evolving hypersurface. Although these
formulas are known in the literature, for example in Ecker [Eck04] or Rosenberg [Ros93], the
authors consider mainly the case when the evolving hypersurfaces are given with the help of a
fixed reference hypersurface as in Section 3.1. Since we want to use these formulas also in the
calculation of the evolution of area and volume in Section 2.4, we have to consider the general
case for an arbitrary evolving hypersurface.

Finally we want to define the vector product in Rn+1, that is used for the linearization of the
angle conditions, and give some important properties.

5.1 Normal time derivative of mean curvature

Although the following formula is known, we give a proof of the normal time derivative of mean
curvature of an evolving hypersurface. The literature is very short in this case and for the con-
venience of the reader here are the details.

Lemma 5.1. With the notation of Chapter 2 the following formula for the normal time deriva-
tive of mean curvature for an evolving hypersurface holds.

∂◦H(t, p) = ∆Γ(t)V (t, p) + V (t, p)

n∑

i=1

κ2
i (t, p) , (5.1)

where the sum is often written as |σ|2, the square of the second fundamental form.

Proof. We show the assertion at a fixed point (t0, p0) ∈ Γ and choose coordinates with nice
properties at this point. Firstly, we can always achieve with the help of a suitable rotation that
the normal equals the direction en+1, that is

n(t0, p0) = (0, . . . , 0, 1) ∈ R
n+1 .
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Note that all relevant terms like H, V and κi will not change values for the rotated surface.
Locally around (t0, p0) ∈ Γ we describe Γ as a graph, that is, there exists an open neighbourhood
W ⊂ R × Rn+1 of (t0, p0) and an open set I ×A ⊂ R × Rn, such that with a function

ϕ : I ×A −→ R , (t, x) 7→ ϕ(t, x)

we have a local parametrization of Γ given through

Φ : I ×A −→ Γ ∩W , (t, x) 7→ (t, x, ϕ(t, x)) .

Because of point (ii) of the Definition 2.31 of an evolving hypersurface it also holds that for
fixed t ∈ I the mapping

Φt : A −→ Γ(t) ∩ U , x 7→ (x, ϕ(t, x))

is a local parametrization of Γ(t) for some neighbourhood U ⊂ Rn+1 of p0.
With the help of this graph representation there holds the formula for the normal at (t, p) =
Φ(t, x) ∈ Γ ∩W through

n(t, p) =
1√

1 + |∇xϕ(t, x)|2
(−∇xϕ(t, x), 1) =: β(t, x) (−∇xϕ(t, x), 1) ,

because (∂1Φt(x), . . . , ∂nΦt(x)) is a basis of TpΓ(t) and

∂jΦt(x) · (−∇xϕ(t, x), 1) = (ej , ∂jϕ(t, x)) · (−∇xϕ(t, x), 1) = −∂jϕ(t, x) + ∂jϕ(t, x) = 0

for j = 1, . . . , n and (e1, . . . , en) the standard basis of Rn.
Therefore at the fixed point (t0, p0) = Φ(t0, x0) the following identity

(0, . . . , 0, 1) = n(t0, p0) = β(t0, x0) (−∇xϕ(t0, x0), 1)

holds, so that we see

∇xϕ(t0, x0) = 0 . (5.2)

From this last equation we also observe

β(t0, x0) = 1 , ∂tβ(t0, x0) = 0 and ∇xβ(t0, x0) = 0 , (5.3)

where the last two identities arise through a direct calculation of ∂tβ and ∇xβ. For fixed t, we
can write the first fundamental form of Γ(t) locally as

(gij)t (x) = (∂iΦt(x), ∂jΦt(t, x)) = δij + ∂iϕ(t, x) ∂jϕ(t, x) ,

where Φt(x) = p ∈ Γ(t). At the point x0, we get therefore with (5.2)

(gij)t0
(x0) = δij .
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With the calculation

∂k (gij)t (x) = ∂k∂iϕ(t, x) ∂jϕ(t, x) + ∂iϕ(t, x) ∂k∂jϕ(t, x)

we also see the vanishing of the Christoffel symbols from Remark 2.26 at the point x0

(
Γk

ij

)
t0

(x0) = 0 ,

where we used equation (5.2).
For an arbitrary smooth function f : Γ(t) → R we set f : A → R defined through f(x) :=
f(Φt(x)) and conclude at the point p0 = Φt0(x0) with the local representation of the Laplace-
Beltrami operator from Remark 2.26 it holds that

∆Γ(t)f(p0) =

n∑

i,j=1

gij(x0)︸ ︷︷ ︸

(
∂i∂j(f ◦ Φt0)(x0) −

n∑

k=1

Γk
ij(x0)︸ ︷︷ ︸

∂k(f ◦ Φt0)(x0)

)

= δij = 0

=
n∑

i=1

∂i∂if(x0)

= ∆xf(x0) ,

where the Laplace operator in the last term is the usual one in euclidian space. In particular,
we get for the normal velocity with the same notation as for f

∆Γ(t)V (t, p) = ∆xV (t, x) . (5.4)

Now we use the following representation for mean curvature, when the surface is given as a
graph which can be found for example in the book of Gilbarg and Trudinger [GT98].

H(t, p) = H(Φ(t, x))

=

n∑

i=1

∂i

(
∂iϕ(t, x)√

1 + |∇ϕ(t, x)|2

)

=
n∑

i=1

∂i(∂iϕ(t, x)β(t, x)) (5.5)

= ∆xϕ(t, x)β(t, x) + ∇xϕ(t, x) · ∇xβ(t, x) ,

where (t, p) = Φ(t, x) ∈ Γ.
For the normal velocity we calculate with the help of Lemma 2.40

V (t, p) = V (Φ(t, x))

= ∂tΦt(x) · n(t, p)

= ∂t (x, ϕ(t, x)) · (−∇xϕ(t, x), 1) β(t, x)

= (0, . . . , 0, ∂tϕ(t, x)) · (−∇xϕ(t, x), 1) β(t, x)

= ∂tϕ(t, x)β(t, x) ,
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where p = Φt(x) ∈ Γ(t) and the last term denotes the function V (t, x) from above.
To derive ∂◦H(t0, p0), let y : (t0 − ε, t0 + ε) → Rn+1 be a curve with y(t0) = p0 and

{
y(τ) ∈ Γ(τ) ,
y′(τ) = V (τ, y(τ))n(τ, y(τ)) .

With the above formulas for the normal and normal velocity we see

y′(τ) = ∂tϕ(τ, c(τ))β2(τ, c(τ)) (−∇xϕ(τ, c(τ)), 1) .

On the other hand it has to hold, due to the graph representation,

y(τ) = Φτ (c(τ)) = (c(τ), ϕ(τ, c(τ)))

with a curve c : (t0 − ε, t0 + ε) → A, c(t0) = x0 with Φt0(x0) = p0, so that

y′(τ) =
(
c′(τ), ∂tϕ(t, c(τ)) + ∇xϕ(t, c(τ)) · c′(τ)

)
.

Comparing the two representations of y′(τ) at the point τ = t0 together with (5.2) yields

c′(t0) = 0 . (5.6)

Finally we get the following identity for the normal-time derivative of mean curvature

∂◦H(t0, p0) =
d

dτ
H(τ, y(τ))

∣∣∣∣
τ=t0

(5.5)
=

d

dτ
[β(τ, c(τ))∆xϕ(τ, c(τ)) + ∇xβ(τ, c(τ)) · ∇xϕ(τ, c(τ))]

∣∣∣∣
τ=t0

= ∂tβ(t0, x0)∆xϕ(t0, x0) + ∇xβ(t0, x0) · c′(t0)∆ϕ(t0, x0)

+β(t0, x0) ∂t∆xϕ(t0, x0) + β(t0, x0)∇x∆xϕ(t0, x0) · c′(t0)
+∂t∇xβ(t0, x0) · ∇xϕ(t0, x0) + hessx β(t0, x0)(c

′(t0)) · ∇xϕ(t0, x0)

+∇xβ(t0, x0) · ∂t∇xϕ(t0, x0) + ∇xβ(t0, x0) · hessx ϕ(t0, x0)(c
′(t0))

= ∂t∆xϕ(t0, x0) ,

because all terms except one vanish due to (5.2), (5.3) and (5.6).
Another calculation for the normal velocity gives with the help of (5.4) and (5.2)

∆Γ(t)V (t0, p0) = ∆x (β(t0, x0) ∂tϕ(t0, x0))

= ∆xβ(t0, x0) ∂tϕ(t0, x0) + 2∇xβ(t0, x0) · ∇x∂tϕ(t0, x0)

+β(t0, x0)∆x∂tϕ(t0, x0)

= ∆xβ(t0, x0) ∂tϕ(t0, x0) + ∆x∂tϕ(t0, x0) .

The last two expressions together with V (t0, p0) = ∂tϕ(t0, x0) lead to

∂◦H(t0, p0) = ∆Γ(t)V (t0, p0) − ∆xβ(t0, x0)V (t0, p0) , (5.7)
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so that the remaining work is to find the right expression for ∆xβ(t0, x0). To this end, a direct
calculation gives

∂iβ(t, x) = −1

2

(
1 + |∇xϕ(t, x)|2

)− 3
2 ∂i

(
1 + |∇xϕ(t, x)|2

)

= −β3(t, x)∇xϕ(t, x) · ∇x∂iϕ(t, x)

and

∂2
iiβ(t, x) = −3β2(t, x) ∂iβ(t, x)∇xϕ(t, x) · ∇x∂iϕ(t, x)

−β3(t, x) (∂i∇xϕ(t, x) · ∇x∂iϕ(t, x) + ∇xϕ(t, x) · ∂i∇x∂iϕ(t, x)) ,

so that at the point (t0, x0) we can conclude with (5.3) and (5.2)

∂2
iiβ(t0, x0) = −|∇x∂iϕ|2(t0, x0) .

This gives eventually

∆xβ(t0, x0) =
n∑

i=1

∂2
iiβ(t0, x0) = −

n∑

i,j=1

(
∂2

ijϕ
)2

(t0, x0) .

Without loss of generality we can now choose suitable coordinates in the tangent space, that is
we write the hypersurface as a graph with respect to a basis (w1, . . . , wn, n), where (w1, . . . , wn)
is a basis of the tangent space Tp0Γ(t0) and n(t0, p0) = (0, . . . , 0, 1) as in the beginning of the
proof. This gives us the possibility to denote the hessian hessx ϕ(t0, x0) as a diagonal matrix,
at least at the fixed point (t0, x0).
Then we get

∆xβ(t0, x0) = −
n∑

i=1

(
∂2

iiϕ(t0, x0)
)2

=

n∑

i=1

κ2
i (t0, x0) ,

where the last identity can be seen for example in [GT98].
Putting together the last equation with (5.7) we arrive at

∂◦H(t0, p0) = ∆Γ(t)V (t0, p0) + V (t0, p0)

n∑

i=1

κ2
i (t0, p0)

and we proved the lemma. �
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5.2 Normal time derivative of the normal

Lemma 5.2. With the notation from Chapter 2 the following formula for the normal time
derivative of the normal for an evolving hypersurface holds

∂◦n(t, p) = −∇Γ(t)V (t, p) . (5.8)

Proof. As in the above Lemma 5.1, we show the claim at a fixed point (t0, p0) ∈ Γ and use
the same coordinates. Firstly, we do a transformation of the gradient as we did for the Laplace-
Beltrami operator in the previous proof. So let f : Γ(t) → R be an arbitrary smooth function
and define f : A → R through f(x) := f(Φt(x)). Then we see with the local representation of
the gradient from Remark 2.22 that

∇Γ(t)f(p) =

n∑

i,j=1

gij(x)︸ ︷︷ ︸ ∂i (f ◦ Φt) (x) ∂jΦt(x)

= δij

=

n∑

i=1

∂i (f ◦ Φt) (x) ∂iΦt(x)

=

n∑

i=1

∂if(x) (ei, ∂iϕ(t, x))

=

(
∇xf(x),

n∑

i=1

∂if(x) ∂iϕ(t, x)

)
.

At the point (t0, p0) = Φ(t0, x0), we get with the help of (5.2)

∇Γ(t0)f(p0) =
(
∇xf(x0), 0

)
.

This gives for the normal velocity V (t, p) = β(t, x) ∂tϕ(t, x) at the point (t0, p0) = Φ(t0, x0)

∇Γ(t)V (t0, p0) = (∇x (β ∂tϕ) (t0, x0), 0)

= (∇xβ(t0, x0) ∂tϕ(t0, x0) + β(t0, x0) ∂t∇xϕ(t0, x0), 0)

= (∂t∇xϕ(t0, x0), 0) ,

which is seen with the help of (5.3).
To calculate the normal-time derivative of the normal, we consider a curve as in the previous
proof and get with the formula n(t, p) = β(t, x) (−∇xϕ(t, x), 1) the following identities.

∂◦n(t0, p0) =
d

dτ
[β(τ, c(τ)) (−∇xϕ(τ, c(τ)), 1)]

∣∣∣∣
τ=t0

= ∂tβ(t0, x0) (−∇xϕ(t0, x0), 1) + ∇xβ(t0, x0) · c′(t0) (−∇xϕ(t0, x0), 1)

+β(t0, x0) (−∂t∇xϕ(t0, x0), 0) + β(t0, x0)

(
n∑

i=1

∂i∇xϕ(t0, x0) · c′(t0) ei, 0
)

= (−∇x∂tϕ(t0, x0), 0) ,
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where all terms except one vanish due to (5.3) and (5.6). Putting together the above two for-
mulas gives the desired claim. �

5.3 Facts about the vector product

The vector product in Rn+1 extends the cross product of two vectors in R3. It assigns n vectors
v1, . . . , vn in Rn+1 a new vector v1 × . . . × vn, which is perpendicular to each vi and its length
equals the volume of the parallelotope spanned by v1, . . . , vn in Rn+1. Since the vector product
in Rn+1 isn’t that common in literature, we gather together some facts that are used in this
work. Of course, one can find them also in some textbooks on analysis and algebra, for example
[Fi02] and [Koe03].
At first, we give two definitions of the vector product of n vectors in Rn+1, which are, despite

the fact they are equivalent, good to know.

Definition 5.3 (Vector product, version 1). Let v1, . . . , vn ∈ Rn+1. Then we define the vector

product as

v1 × . . .× vn :=

n+1∑

i=1

(−1)i+1 det(Ai) ei , (5.9)

where e1, . . . , en+1 is the standard basis of Rn+1, A ∈ M(n × (n + 1),R) is the matrix, which
consists of the vectors v1, . . . , vn as columns,

n columns

A =

︷ ︸︸ ︷(
v1

∣∣∣∣v2
∣∣∣∣ . . .

∣∣∣∣ vn

) }
n+ 1 rows

and Ai results from A by deleting the i-th row. So v1 × . . . × vn is a formal development of

det




e1
e2
...

en+1

∣∣∣∣∣∣∣∣∣
v1

∣∣∣∣∣∣∣∣∣
v2

∣∣∣∣∣∣∣∣∣
. . .

∣∣∣∣∣∣∣∣∣
vn




with respect to the first column.

An equivalent definition is the following one.

Definition 5.4 (Vector product, version 2). Let v1, . . . , vn ∈ Rn+1. Define the function ϕ :
Rn+1 → R through

ϕ(w) := det

(
v1

∣∣∣∣ . . .
∣∣∣∣ vn

∣∣∣∣w
)
.
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Then ϕ is linear and therefore there exists a unique vector z ∈ Rn+1, such that

〈w, z〉
Rn+1 = ϕ(w) for all w ∈ R

n+1 .

This z is then called vector product of v1, . . . , vn and denoted by v1 × . . .× vn.

In the next lemma, we quote the used properties of the vector product.

Lemma 5.5 (Properties of the vector product).

(i) The vector product is linear in each component and alternating.

(ii) v1 × . . . × vn is orthogonal to each of the vectors v1, . . . , vn.

(iii) v1 × . . . × vn = 0 ⇔ v1, . . . , vn are linearly dependent.

(iv) If v1, . . . , vn are linearly independent, then (v1, . . . , vn, v1×. . .×vn) has positive orientation.

(v) |v1 × . . .× vn| =
√

det(gij) with gij = vi · vj . This means that |v1 × . . .× vn| is the volume
of the parallelotope spanned by v1, . . . , vn.

The above definitions and the statements from the lemma can be found in [Fi02] or [Koe03],
whereas the next statement, that we use in the linearization of the angle condition, would be a
small exercise, that we give with proof.

Lemma 5.6. Let v1, . . . , vn be an orthonormal system in Rn+1, that is v1, . . . , vn are linearly
independent and vi · vj = δij . With z := v1 × . . .× vn it holds that

v1 × . . .× (l-th pos.)
z × . . .× vn = (−1)vl . (5.10)

Proof. Since v1, . . . , vn, z form an orthonormal basis of Rn+1, we see with properties from the
above lemma that

v1 × . . .× (l-th pos.)
z × . . .× vn = αvl ,

where α = ±1. Now we calculate

α = α(vl · vl) = vl · z def. 5.4
= det

(
v1

∣∣∣. . .
∣∣∣z
∣∣∣ . . .

∣∣∣ vn

∣∣∣ vl

)
= (−1) det

(
v1

∣∣∣. . .
∣∣∣vl

∣∣∣ . . .
∣∣∣ vn

∣∣∣ z
)
,

where the last determinant is greater than 0 due to Lemma 5.5, (iv). Therefore we conclude

α = (−1)

and finished the proof. �
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[HMRR02] Hutchings M., Morgan F., Ritoré M., Ros A., Proof of the Double Bubble Conjec-
ture, Ann. Math., vol.155 (2002), p.459-489.

[Hui84] Huisken G., Flow by mean curvature of convex surfaces into spheres, J.Diff.Geom.,
vol. 20 (1984), p.237-266.

[Hui86] Huisken G., Contracting convex hypersurfaces in Riemannian manifolds by their
mean curvature, Invent.math., vol. 84 (1986), p.463-480.

[Hui87] Huisken G., The volume preserving mean curvature flow, J. Reine Angew. Math.,
vol. 382 (1987), p.35-48.

[IK01a] Ito K., Kohsaka Y., Three phase boundary motion by surface diffusion: Stability
of a mirror symmetric stationary solutions, Interfaces Free Bound., vol 3 (2001),
p.45-80.

[IK01b] Ito K., Kohsaka Y., Three phase boundary motion by surface diffusion in triangular
domain, Adv. Math. Sci. Appl., vol 11 (2001), p.753-779.

[IY03] Ikota R., Yanagida E., A stability criterion for stationary curves to the curvature-
driven motion with a triple junction, Diff.Int.Equ., vol. 16 (2003), no. 6, p.707-726.

[Jae01] Jänich K. Vector analysis, Springer Verlag, 2001.

[Jo98] Jost J. Partielle Differentialgleichungen, Springer Verlag, 1998.

164



BIBLIOGRAPHY

[Kat95] Kato T., Perturbation theory for linear operators, Springer Verlag, 1995.

[Koe03] Königsberger K. Analysis 2, 5th ed., Springer Verlag, 2003.

[Kue06] Kühnel W., Differential Geometry, 2nd edition, American Mathematical Society,
2006.

[Lun95] Lunardi A., Analytic semigroups and optimal regularity in parabolic problems,
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