Non-Identity of Nazlinin and 6-Azacyclodeca[5,4-b]indol-1-amine

Nicht-Identität von Nazlinin und 6-Azacyclodeca[5,4-b]indol-1-amin
Siavosh Mahboobi*, Wolfgang Wagner, Thomas Burgemeister, and Wolfgang Wiegrebe
Faculty of Chemistry and Pharmacy, University, D-93040 Regensburg/Germany

Received February 17, 1994

In 1991 Üstünes and coworkers have published isolation and structure elucidation of a new alkaloid from Nitraria Schoberi (Zygophyllaceae), which was named nazlinin ${ }^{1)}$. Its spectroscopic data led to the conclusion that nazlinin is 6-azacyclodeca[5,4-b]indol-1-amine (1) (the authors do not report upon measurements of optical activity). - Whilst the NMR-data of nazlinin can be attributed to structure 1, the base peak in its EI-MS at $\mathrm{m} / \mathrm{z}=171$, in accordance with a N-protonated 3,4-dihydro- β-carbolinium-ion, cannot be explained straightforwardly by structure 1 (Scheme 1).

Koomen et al. ${ }^{2)}$ did not exclude the alternative structure of (+/-)-1-(ω-amino-n-butyl)-1,2,3,4-tetrahydro- β-carboline (2) which was synthesized by this group. The authors found the published NMR-data of nazlinin to be in complete agreement with those obtained for 2 in $\mathrm{CD}_{3} \mathrm{OD}$ containing more than two equivalents of $\mathrm{F}_{3} \mathrm{C}-\mathrm{COOD}$.

Scheme 1

Moreover, $2^{+\cdot}$ is expected to give rise to a fragment ion at $\mathrm{m} / \mathrm{z} 171$ by benzylic/ β-cleavage ${ }^{3}$) of high intensity, which is actually reported to be the base peak in the ms of nazlinin ${ }^{1)}$.
It remained open why the NMR-data published for nazinun strongly deviate from those obtained for 2 in $\mathrm{CD}_{3} \mathrm{OD}$ whilst those of (at least) diprotonated 2 and those of nazimin are identic ${ }^{2}$. In order to shed some additional light onto this problem we have synthesized compound 1 (Scheme 2).
The 1,2,3,4,6,7-hexahydro- 12 H -indolo[2,3-a]quinolizine $3^{4)}$ was converted by benzyl chloroformate in $\mathrm{MeOH} / \mathrm{Na}_{2} \mathrm{CO}_{3}$ to the ten-membered ring urethan 4 (mixtare of rotamers $)^{5)}$ which was readily oxidized to ketone 5 by tert-butyl hypochlorite, according to lit. ${ }^{6}$. Reaction of 5 with O-methylhydroxylamine $\cdot \mathrm{HCl}$ in pyridine afforded the oxime ether 6 which was reduced specifically by NaBH_{4} and almost equimolar amounts of $\mathrm{F}_{3} \mathrm{C}-\mathrm{COOH}$ in THF^{7}) leading to the amine-urethan 7 besides some 5. Surprisingly, hydrogenation of the oxime ether 6 on Pd / C led to the tetracyclic starting material 3: this can be explained by hydrogenolysis of the urethane, transannular addition of the sec. amin at the $\mathrm{C}=\mathrm{N}-\mathrm{OMe}$ group and subsequent hydrogenolysis of the benzylic C-NH-OCH3 increment. - Hydrogenolysis of the carbamate group of 7 afforded the title component 1. The chromatographic data of 1 are very similar

Scheme 2

Table: NMR-spectra in $\mathrm{CD}_{3} \mathrm{OD}$

*-H	1	$1+[\mathrm{D}]$ TFA	natural alkaloid $[1 \mathrm{lit} 1)]$ or $2+[\mathrm{D}]$ TFA $[1 \mathrm{it} 2)]$	$\begin{gathered} \mathbf{2} \\ {\left[\mathbf{l i t}^{2}\right)_{]}} \end{gathered}$
3	0.79-0.95 (1H, m)	1.03-1.16 (1H, m)	1.70 (2H, m)	1.5 (4H, m)
	1.46-1.56 ($1 \mathrm{H}, \mathrm{m}$)			
4	1.57-1.70 ($2 \mathrm{H}, \mathrm{m}$)	$\begin{aligned} & \text { 1.67-1.89 (3H, m, } \\ & \text { + one } 3-\mathrm{H}) \end{aligned}$	1.83 (2H, m)	1.71 (1H, m)
2	1.95-2.07 (2H, m)	$\begin{aligned} & 2.15-2.28(1 \mathrm{H}, \mathrm{~m}) \\ & 2.32-2.43(1 \mathrm{H}, \mathrm{~m}) \end{aligned}$	2.03 (1H, m)	1.99 (1H, m)
			2.30 (1H, m)	
5	2.55-2.63 ($1 \mathrm{H}, \mathrm{m}$)	3.06-3.16 (1H, m)	3.00 ($2 \mathrm{H}, \mathrm{m}$)	2.67 (4H, m)
7/8	2.81-2.90 (1H, m)	$\begin{aligned} & \text { 3.26-3.59 }(5 \mathrm{H}, \mathrm{~m} \\ & + \text { one } 5-\mathrm{H}) \end{aligned}$	3.10 (2H, m)	$\begin{gathered} 2.95(1 \mathrm{H}, \mathrm{dxdxd} \\ \mathrm{J}=12.3,8.9,5.2 \mathrm{~Hz}) \\ 3.31(1 \mathrm{H}, \mathrm{~m}) \end{gathered}$
	$\text { 2.90-3.02 }(2 \mathrm{H}, \mathrm{~m},$		3.45 (1H, m)	
	$\begin{gathered} \text { + one } 5-\mathrm{H}) \\ 3.05-3.15(1 \mathrm{H}, \mathrm{~m}) \end{gathered}$		3.72 (1H, m)	
	3.17-3.29 (1H, m)			
1	4.44 (1 H , dd, $\mathrm{J}^{1}=8.4$,	$\begin{gathered} 5.07(1 \mathrm{H}, \mathrm{dd}, \\ \mathbf{J}^{1}=6.0, \\ \left.\mathbf{J}^{2}=5.5 \mathrm{~Hz}\right) \end{gathered}$	4.72 (1H, m)	$\begin{gathered} 4.02(1 \mathrm{H}, \mathrm{~m}, \\ \mathrm{J}=8.4,3.5 \\ 1.8 \mathrm{~Hz}) \end{gathered}$
10/11	$\begin{aligned} & 6.99-7.03(1 \mathrm{H}, \mathrm{~m}) \\ & 7.09-7.11(1 \mathrm{H}, \mathrm{~m}) \end{aligned}$	7.13-7.17 (1H, m)$7.24-7.28(1 \mathrm{H}, \mathrm{m})$	$\begin{aligned} & 7.05(1 \mathrm{H}, \mathrm{dt}, \\ & \mathrm{J}=7.5,1.5 \mathrm{~Hz}) \\ & 7.15(1 \mathrm{H}, \mathrm{dt}, \\ & \mathrm{J}=7.5,1.5 \mathrm{~Hz}) \end{aligned}$	6.98 (2H, m)
9/12	$\begin{aligned} & 7.33-7.35(1 \mathrm{H}, \mathrm{~m}) \\ & 7.48-7.51(1 \mathrm{H}, \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { 7.48-7.50 }(1 \mathrm{H}, \mathrm{~m}) \\ & \text { 7.67-7.69 }(1 \mathrm{H}, \mathrm{~m}) \end{aligned}$	$\begin{gathered} 7.38(1 \mathrm{H}, \mathrm{~d}, \\ \mathrm{J}=7.5 \mathrm{~Hz}) \\ 7.48(1 \mathrm{H}, \mathrm{~d}, \\ \mathrm{J}=7.5 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 7.27(1 \mathrm{H}, \mathrm{~m}) \\ 7.36(1 \mathrm{H}, \mathrm{dxd}, \\ \mathrm{J}=7.1,1.3 \mathrm{~Hz}) \end{gathered}$

with those reported for nazlinin, the spectroscopic data of $\mathbf{1}$, however, are absolutely different from those of nazlinin.
By ${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ - and ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$-correlation spectra all the signals can be attributed to atoms of compound 1. The resonance frequency of $1-\mathrm{H}$ is of special importance: in 1 (base) it resonates as a dd at 4.44 ppm , whilst addition of $\mathrm{F}_{3} \mathrm{C}$ COOD shifts this signal to 5.07 ppm without changing its shape, indicating that this dd results from a neighbouring CH_{2}-group which is part of a cyclic system. In β-carboline $21-\mathrm{H}$ resonates as a m, probably because the mobility of the side chain at $\mathrm{C}-1$ is not restricted. Under these NMRconditions bis-amine 1 is stable, whilst it is partially degraded by prolonged warming (8 d at $30-40^{\circ} \mathrm{C}$) or by treatment with 0.1 N HCl (slow reaction at room temp., fast reaction at about $40^{\circ} \mathrm{C}$), leading to more polar unknown compounds.
In conclusion compound 1 is not identic with nazlinin, neither as a base nor as its dication.

Financial support by Fonds der Chemischen Industrie is gratefully acknowledged.

Experimental Part

General remarks: m.p.: Büchi 512.- IR: FT Nicolet 510.- ${ }^{1} \mathrm{H}-\mathrm{NMR}$: Varian EM 390 (90 MHz), Bruker ARX 400 (400 MHz).- ${ }^{13} \mathrm{C}-\mathrm{NMR}$: Bruker ARX $400(100.61 \mathrm{MHz})$; all NMR-spectra in CDCl_{3}, if not otherwise stat-ed.- MS: Varian MAT 112 S/SS, 70 eV .- Column chromatography (cc): $\mathrm{SiO}_{2} /$ flash, if not otherwise stated.- All reactions have been performed under N_{2}.

1,2,3,4,6,7-Hexahydro-12H-indolo[2,3-a]chinolizine (3)
3 was prepared according to Costerousse et al. ${ }^{4 \mathrm{a})}$ (1. step), Costerousse ${ }^{4 \mathrm{a})}$ and Tamelen $^{4 \mathrm{~b})}$ (2. step), and Rapoport ${ }^{4 \mathrm{c})}$ (3. step): colourless crystals, m.p. $147-149^{\circ} \mathrm{C}$ (lit. ${ }^{4 \mathrm{c})}: 147-149^{\circ} \mathrm{C}$). For ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data see lit. ${ }^{4 c)}$ -

6-Benzyloxycarbonyl-1-methoxy-6-azacyclodeca[5,4-b]indole (4)
1.46 g (6.46 mmole) 3 were dissolved in 10 ml of absol. THF and 1 ml of absol. MeOH. 3 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ were added, this suspension was cooled to $0^{\circ} \mathrm{C}$ and 1.21 g (7.11 mmole) of benzyl chloroformate were added dropwise. The mixture was stirred for 2 h at room temp., poured into a mixture of 20 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 50 ml of ice water and stirred vigorously for 10 \min. The org. phase was washed with a satd. aq. solution of NaHCO_{3}, then with water and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right): 1.95 \mathrm{~g}(77 \%)$ yellowish oil. After cc (column: $2.5 \times 40 \mathrm{~cm}^{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ethyl acetate $=95 / 5$) $1.82 \mathrm{~g}(71 \%) 4$: colourless oil.- $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}$ (392.5).- IR (Film): $\tilde{v}=3315$ (NH); 2933; 1684 (CO); 1464; 1422; 1337; 1258; 1094; $743 \mathrm{~cm}^{-1} .{ }^{-1} \mathrm{H}-\mathrm{NMR}(90 \mathrm{MHz})$: $\delta(\mathrm{ppm})=0.70-2.36(6 \mathrm{H} ; \mathrm{m}), 2.50-4.22(6 \mathrm{H} ; \mathrm{m}), 3.27\left(3 \mathrm{H} ; \mathrm{s}, \mathrm{OCH}_{3}\right)$, 4.23-4.57 ($1 \mathrm{H} ; \mathrm{m}$), $4.87\left(2 / 3 \mathrm{H} ; \mathrm{d}, \mathrm{J}=13 \mathrm{~Hz}\right.$, AB-system, $\mathrm{CH}_{2} \mathrm{Ph}$, rotamer), $5.26\left(2 / 3 \mathrm{H} ; \mathrm{d}, \mathrm{J}=13 \mathrm{~Hz}, \mathrm{AB}\right.$-system, $\mathrm{CH}_{2} \mathrm{Ph}$, rotamer), $5.26(2 / 3 \mathrm{H}$; br s, $\mathrm{CH}_{2} \mathrm{Ph}$, rotamer), 7.02-7.68 $(9 \mathrm{H} ; \mathrm{m}), 8.87(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}$-indole, ex-changeable).- MS (70 eV): m/z = 392 (92) [$\left.\mathrm{M}^{+\bullet}\right], 226$ (19), 225 (77), 91 (100) $\left[\mathrm{C}_{7} \mathrm{H}_{7}\right]^{+}$.

6-Benzyloxycarbonyl-6-azacyclodeca[5,4-b]indol-1-one (5)
To the solution of 1.82 g (4.64 mmole) 4 in 10 ml of absol. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added at $0^{\circ} \mathrm{C} 453 \mathrm{mg}$ (4.87 mmole) of tert-butyl hypochlorite drop by drop under stirring (the solution became red but the colour faded away by the time). Stirring was continued for 10 min after the addition, then 2 g of
solid NaHCO_{3} were added, and the mixture was poured into a mixture of 10 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 10 g of ice immediately. The aqueous phase was thoroughly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the org. phase was washed with satd. NaHCO_{3}-solution and water. Evaporation of the solvent yielded 1.71 g (98%) brownish oil. After cc (column: $2.5 \times 40 \mathrm{~cm}^{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ethyl acetate $=95 / 5): 1.06 \mathrm{~g} 5(61 \%)$, colourless oil.- $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$ (376.5).- IR (Film): $\tilde{v}=3327$ (NH); 2935; 1694 (CO); 1636 (CO); 1472; 1420; 1339; 1270; 1240; 1216; 1120; $741 \mathrm{~cm}^{-1}$.- ${ }^{1} \mathrm{H}-\mathrm{NMR}(90 \mathrm{MHz}): \delta(\mathrm{ppm})=1.12-2.13$ $(5 \mathrm{H} ; \mathrm{m}), 2.76-3.04(2 \mathrm{H} ; \mathrm{m}), 3.25-3.57(3 \mathrm{H} ; \mathrm{m}), 3.58-3.83(1 \mathrm{H} ; \mathrm{m}), 3.84-$ $4.40(1 \mathrm{H} ; \mathrm{m}), 4.99\left(1 \mathrm{H} ; \mathrm{br}\right.$ s, $\mathrm{CH}_{2} \mathrm{Ph}$, rotamer), $5.14\left(1 \mathrm{H}\right.$; br s, $\mathrm{CH}_{2} \mathrm{Ph}$, rotamer), 6.91-7.82 ($9 \mathrm{H} ; \mathrm{m}$), 9.33 ($1 \mathrm{H} ; \mathrm{br} \mathrm{s}$, NH -indole, exchangeable).MS (70 eV): $\mathrm{m} / \mathrm{z}=376(31)\left[\mathrm{M}^{+}\right], 241(12), 91(100)\left[\mathrm{C}_{7} \mathrm{H}_{7}\right]^{+}$.

6-Benzyloxy-1-methoxyimino-6-azacyclodecal5,4-b]indole (6)

1.10 g (2.93 mmole) 5 and $10 \mathrm{~g} O$-methylhydroxylamine. HCl were suspended in 50 ml of freshly distilled absol. pyridine and heated to reflux for 14 h . After cooling 20 g ice and 100 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added. The org. phase was 3 x extracted with 2 N HCl and washed with half satd. $\mathrm{NaHCO}_{3-}-$ solution. After evaporation of solvent: $1.12 \mathrm{~g}(94 \%) 6$, dark brown oil. Purification by cc (column: $2.5 \times 40 \mathrm{~cm}^{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ethyl acetate $=98 / 2$): $1.03 \mathrm{~g}(87 \%)$ colorless oil.- $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3}$ (405).- IR (Film): $\tilde{\mathrm{v}}=3327$ (NH), 2937; 1690 (CO); 1472; 1420; 1335; 1272; 1243; 1212; 1054; $745 \mathrm{~cm}^{-1}$.${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}): \delta(\mathrm{ppm})=1.33-1.43(1 \mathrm{H} ; \mathrm{m}), 1.49-1.57(1 \mathrm{H} ; \mathrm{m})$, 1.74-1.84 ($2 \mathrm{H} ; \mathrm{m}$), 2.84-2.92 ($2 \mathrm{H} ; \mathrm{m}$), 3.20-3.41 ($4 \mathrm{H} ; \mathrm{m}$), 3.61-3.67 (2 H ; $\mathrm{m}), 3.963$ and $3.965\left(3 \mathrm{H} ; 2 \mathrm{x} \mathrm{s}, \mathrm{NOCH}_{3}\right.$, rotamers), $5.01\left(1 \mathrm{H} ; \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right.$, rotamer), $5.15\left(1 \mathrm{H} ; \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right.$, rotamer), 7.06-7.19 ($2 \mathrm{H} ; \mathrm{m}$), 7.19-7.42 (6 H ; $\mathrm{m}), 7.49-7.57(1 \mathrm{H} ; \mathrm{m}), 8.70$ and 8.71 ($1 \mathrm{H} ; 2 \mathrm{x} \mathrm{s}$, NH-indole, exchangeable, rotamers).- MS (70 eV): m/z = 405 (35) [M $\left.{ }^{+} \cdot\right], 374$ (33), 225 (11), 91 (100) $\left[\mathrm{C}_{7} \mathrm{H}_{7}\right]^{+}$.

6-Benzyloxycarbonyl-6-azacyclodeca[5,4]indol-1-amine (7)

130 mg (3.45 mmole) of NaBH_{4} were slowly added at $0^{\circ} \mathrm{C}$ to 57 ml of absol. THF, being 0.06 molar in $\mathrm{F}_{3} \mathrm{C}-\mathrm{COOH}$. When the reaction had ceased 230 mg (0.57 mmole) 6 in 5 ml of absol. THF were added drop by drop at $0^{\circ} \mathrm{C}$, then the mixture was refluxed for 90 min . After cooling and dilution with 50 ml of $\mathrm{Et}_{2} \mathrm{O}, 0.5 \mathrm{~g}$ of solid NaHCO_{3} were added followed by washing with water.- Drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporation of the org. phase yielded $200 \mathrm{mg}(93 \%)$ of yellowish oil which was purified by cc (column: $1.5 \times 30 \mathrm{~cm}^{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}$ (about 1% of NH_{3} gas) $=98 / 2$): 122 $\mathrm{mg}(57 \%)$ of $\mathbf{7}$ as a colourless oil besides $15 \mathrm{mg}(7 \%)$ of $5 .-\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2}$ (377.5).- IR (Film): $\tilde{v}=3340$ (NH); 2933; 1679 (CO); 1463; 1424; 1333; 1260; 1218; 1121; $735 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}): \delta(\mathrm{ppm})=0.67-1.00$ $(1 \mathrm{H} ; \mathrm{m}), 1.13-1.82(5 \mathrm{H} ; \mathrm{m}), 1.57\left(2 \mathrm{H} ; \mathrm{br}\right.$ s, NH_{2}, exchangeable), 2.53-3.63 ($5 \mathrm{H} ; \mathrm{m}$), 3.93-4.02 ($2 / 3 \mathrm{H} ; \mathrm{m}$, rotamer), 4.17-4.30 $(4 / 3 \mathrm{H} ; \mathrm{m}$, rotamer), $4.79\left(2 / 3 \mathrm{H} ; \mathrm{d}, \mathrm{J}=12.4 \mathrm{~Hz}\right.$, AB-system, $\mathrm{CH}_{2} \mathrm{Ph}$, rotamer), $5.13(2 / 3 \mathrm{H} ; \mathrm{d}, \mathrm{J}$ $=12.4 \mathrm{~Hz}$, AB -system, $\mathrm{CH}_{2} \mathrm{Ph}$, rotamer), $5.14\left(2 / 3 \mathrm{H} ; \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right.$, rotamer), 7.02-7.49 ($9 \mathrm{H} ; \mathrm{m}$), 8.58 (1 H ; br s, NH-indole, exchangeable).- MS (70 $\mathrm{eV}): \mathrm{m} / \mathrm{z}=377(100)\left[\mathrm{M}^{+}\right], 243(14), 225(51), 198(30), 91(92)\left[\mathrm{C}_{7} \mathrm{H}_{7}\right]^{+}$.

6-Azacyclodeca[5,4-b]indol-1-amine (1)

Under normal pressure 150 mg (0.40 mmole) urethan 7 , dissolved in 2 ml of absol. MeOH , were stirred with $150 \mathrm{mg} \mathrm{Pd} / \mathrm{C}(5 \%)$ under H_{2} at $30^{\circ} \mathrm{C}$ for 10 min . The catalyst was filtered off using celite and was washed several times with warm MeOH until the reaction with Mayer's reagent was negative. Evaporation of solvent afforded a yellow oil ($80 \mathrm{mg}, 82 \%$) which was purified by twofold cc (1.column: $1.5 \times 10 \mathrm{~cm}^{2}$; ethyl
acetate/propan-2-ole/ NH_{3} (aq., 25%) $=55 / 30 / 15$.- 2.column: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}$ (satd. with NH_{3} gas) $=8 / 2$): $25 \mathrm{mg}(26 \%)$ colourless oil, precipitating from ethyl acetate/hexane $=2 / 1$ as a colourless powder after scratching.- Melting range: $83-90^{\circ} \mathrm{C}$.- $\mathbf{1}$ decomposes partially when we tried to get rid of solvent by drying at $30-40^{\circ} \mathrm{C}$ in vacuo.- $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{3}$ (243.5).- Bis-picrate. 2 $\mathrm{MeOH}: \mathrm{m} . \mathrm{p} .231^{\circ} \mathrm{C}$ (decomp.): $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~N}_{9} \mathrm{O}_{16}$ (765.6) calcd. C 45.5 H 4.61 N 16.5 found C 45.3 H 4.35 N 16.2.- IR (KBr): $\widetilde{v}=3290(\mathrm{NH}) ; 2929$; 1461; 1337; 1273; 1175; 1148; 1055; $747 \mathrm{~cm}^{-1} .^{1} \mathrm{H}$-NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta(\mathrm{ppm})=0.79-0.95(1 \mathrm{H} ; \mathrm{m}, 3-\mathrm{H}), 1.46-1.56(1 \mathrm{H} ; \mathrm{m}, 3-\mathrm{H}), 1.57-$ 1.70 ($2 \mathrm{H} ; \mathrm{m}, 4-\mathrm{H}$), 1.95-2.07 ($2 \mathrm{H} ; \mathrm{m}, 2-\mathrm{H}$), 2.55-2.63 ($1 \mathrm{H} ; \mathrm{m}, 5-\mathrm{H}$), 2.812.90 ($1 \mathrm{H} ; \mathrm{m}, 7-\mathrm{H}$ or $8-\mathrm{H}$), 2.90-3.02 ($2 \mathrm{H} ; \mathrm{m}, \mathrm{H}-5,7-\mathrm{H} / 8-\mathrm{H}$), $3.05-3.15$ $(1 \mathrm{H} ; \mathrm{m}, 7-\mathrm{H} / 8-\mathrm{H}), 3.17-3.29(1 \mathrm{H} ; \mathrm{m}, 7-\mathrm{H} / 8-\mathrm{H}), 4.44\left(\mathbf{1 H} ; \mathbf{d d}, \mathrm{J}^{1}=\mathbf{8 . 4}, \mathrm{J}^{2}\right.$ $=7.2 \mathrm{~Hz}, 1-\mathrm{H}), 6.99-7.03(1 \mathrm{H} ; \mathrm{m}, 10-\mathrm{H} / 11-\mathrm{H}), 7.09-7.11(1 \mathrm{H} ; \mathrm{m}, 10-$ $\mathrm{H} / 11-\mathrm{H}), 7.33-7.35(1 \mathrm{H} ; \mathrm{m}, 9-\mathrm{H} / 12-\mathrm{H}), 7.48-7.51$ ($1 \mathrm{H} ; \mathrm{m}, 9-\mathrm{H} / 12-\mathrm{H}$).${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta(\mathrm{ppm})=21.08(\mathrm{C}-3), 22.11(\mathrm{C}-8), 28.07(\mathrm{C}-4)$, 38.68 (C-2), 44.20 (C-5), 45.67 (C-7), 47.98 (C-1), 108.12 (pyrrol), 112.04 (C-10/C-11), 119.28 (C-10/C-11), 120.04 (C-9/C-12), 122.90 (C-9/C-12), 128.37 (pyrrol), 138.28 (pyrrol), 144.22 (pyrrol).- ${ }^{13} \mathrm{C}$-DEPT ($\mathrm{CD}_{3} \mathrm{OD}$, rel.Int.): $\delta(\mathrm{ppm})=21.03\left(-84, \mathrm{CH}_{2}\right), 21.88\left(-92, \mathrm{CH}_{2}\right), 28.81\left(-82, \mathrm{CH}_{2}\right)$, $38.46\left(-56, \mathrm{CH}_{2}\right), 44.19\left(-89, \mathrm{CH}_{2}\right), 45.59\left(-91, \mathrm{CH}_{2}\right), 47.99(+82, \mathrm{CH})$, $112.11(+89, \mathrm{CH}), 119.29(+100, \mathrm{CH}), 120.11(+100, \mathrm{CH}), 122.99(+94$, CH).- MS (70 eV): m/z = 243 (31) [$\left.\mathrm{M}^{+\cdot}\right], 226$ (66), 225 (100), 197 (22).-FD-MS (MeOH): $243.0\left[\mathrm{M}^{+}\right]$]. To $4.0 \mathrm{mg}(0.016$ mmole) $\mathbf{1}$ dissolved in 1 ml of $\mathrm{CD}_{3} \mathrm{OD}$ were added $4 \mu \mathrm{l}$ (3.2 equiv) of [D]TFA: ${ }^{1} \mathrm{H}$-NMR (400 $\mathrm{MHz}): \delta(\mathrm{ppm})=1.03-1.16(1 \mathrm{H} ; \mathrm{m}), 1.67-1.89(3 \mathrm{H} ; \mathrm{m}), 2.15-2.28(1 \mathrm{H} ;$ m), 2.32-2.43 (1H; m), 3.06-3.16 (1H; m), 3.26-3.59 (5H; m), 5.07 ($\mathbf{1 H}$; dd, $\left.\mathbf{J}^{1}=\mathbf{6 . 0}, \mathbf{J}^{2}=\mathbf{5 . 5} \mathrm{Hz}, \mathbf{1 - H}\right)$, 7.13-7.17 ($1 \mathrm{H} ; \mathrm{m}$), 7.24-7.28 ($1 \mathrm{H} ; \mathrm{m}$), 7.48-7.50 ($1 \mathrm{H} ; \mathrm{m}$), 7.67-7.69 ($1 \mathrm{H} ; \mathrm{m}$).- After alkalisation by $\mathrm{Na}_{2} \mathrm{CO}_{3} 1$ was recovered unchanged so excluding a reaction of the skeleton.

References

1 L. Üstünes, A. Özer, G.M. Laekeman, J. Corthout, L.A.C. Pieters, W. Baeten, A.G. Herman, M. Claeys, A.J. Vlietinck, J. Nat. Prod. 1991, 54, 959-966.
2 M.J. Wanner, A.W. Velzel, G.J. Koomen, J. Chem. Soc. Chem. Commun. 1993, 174-175.
3a M. Hesse, Indolalkaloide, Verlag Chemie, Weinheim, 1974, p. 103216.

3b S. Mahboobi, Arch. Pharm. (Weinheim) 1992, 325, 249-250.
3c J. Gynther, P. Peura, S. Salmi, Acta. Chem. Scand. 1985, B35, 849859.

4 a G. Costerousse, J. Buendia, E. Toromanoff, J. Martel, Bull. Soc. Chim. France II 1978, 355-360.
4b E.E. Tamelen, P.E. Aldrich, T.J. Katz, Chem. Ind. 1956, 793.
4c J.E. Johansen, B.D. Christie, H. Rapoport, J. Org. Chem. 1981, 46, 4914-4920.
5a G. Schill, H. Löwer, C.U. Priester, U.F. Windhövel, H. Fritz, Tetrahedron 1987, 43, 3729-3745.
5b M.J. Calverley, J. Harley-Mason, S.A. Quarrie, P.D. Edwards, Tetrahedron 1981, 37, 1547-1556.
5c T. Koike, H. Takayama, S. Sakai, Chem. Pharm. Bull. 1991, 39, 16771681.

6 S. Sakai, E. Yamanaka, L.J. Dolby, Heterocycles 1976, 4, 981-984.
7 N. Umino, T. Iwakuma, M. Ikesaki, N. Itoh, Chem. Pharm. Bull. 1978, 26, 2897-2898.

