Kurzmitteilungen:

Í

Massenspektrometrische Untersuchung an Derivaten der Phenylessigsäure, 5. Mitt.¹⁾:

Verlust o-ständiger Substituenten aus ionisierten Phenylessigsäuren

Mass Spectrometric Investigations on Phenylacetic Acid Derivatives, V¹: Loss of *ortho*-Substituents from Ionized Phenylacetic Acids

H.-G. Striegel²⁾, Klaus K. Mayer^{*} und Wolfgang Wiegrebe

Fakultät für Chemie und Pharmazie der Universität Regensburg, Universitätsstraße 31, W-8400 Regensburg, Germany

Eingegangen am 8. Januar 1992

Die Molekülionen kernsubstituierter Phenyl-2-propanone^{1,2)}, Phenylessigsäure-Ester³⁻⁵⁾ und Phenylacetamide⁶⁾ verlieren positionsspezifisch die *o*-ständigen Halogen-Atome Cl, Br und J sowie *o*-Nitrogruppen. Die entspr. *m*- und *p*-Substituenten werden ebenso wie andere Funktionen am aromatischen Ring (*o*-, *p*-H, CH₃, F, OCH₃, -NR₂) nicht abgespalten. Der Verlauf dieser unerwarteten Reaktion wur-

Eine Prüfung des mechanistischen Ablaufs erwies sich im Falle der Phenylessigsäure-Ester⁵⁾ und -amide⁶⁾ als schwierig; die entspr. M⁺ treten oft mit nur sehr geringer Intensität auf oder sind nicht nachweisbar. Zudem waren Modellverbindungen zur Strukturanalyse der $(M-X)^+$ -Ionen präparativ nicht zugänglich. Bei der Untersuchung an *o*-substituierten Phenylacetonen traten diese Komplikationen nicht auf^{1,2)}; es

de mit unterschiedlichen mechanistischen Vorschlägen gedeutet (A, B, C; Schema 1).

Als Folgereaktion verlieren alle $(M-X)^+$ -Ionen CO. Diese führt zu Signalen geringer Intensität bei 70 und 12 eV, sie ist die einzige nachweisbare Fragmentierung unimolekular zerfallender metastabiler $(M-X)^+$ -Ionen im 1. und 2. feldfreien Raum (FFR). lag daher nahe, auch die analogen freien Phenylessigsäuren ms zu prüfen (Schema 2).

Die Daten in Tab. 1 und Tab. 2 (s. auch Exp. Teil) belegen, daß aus den ionisierten Phenylessigsäuren - in Übereinstimmung mit ihren Estern und Amiden - nur die o-ständigen Halogenatome Cl, Br und J sowie o-NO₂-Gruppen eliminiert werden. Ebenso verhalten sich die o-SCH₃-Grup-

Vbdg.	M+·	(M-X [.])+	(M-CO ₂)+·	(M-CO ₂ H)+
1	35/100	-	17/12	100/24
2a	33/100	-	14/<1	100/24
2b	33 /100		22/30	100/12
2c	34/100		12/5	100/10
3a*) 3b*) 3c*)	45/100 53/100 34/100	42/20 -	10/- 12/2 9 /2	100/- 100/1 100/1
4a*)	19/56	100/100	66/-	61/-
4b*)	72/100	-	14/4	100/6
4c*)	49/100	-	9/2	100/11
5a	34/62	100/100	3/-	34/-
5b	100/100	-	5/-	58/1
5c	100/100	-	8/-	86/6
ба	2/1	100/100	3/7	6/7
б b	100/100	* 22/-	18/4	91/-
б с	100/100	8/-	6/-	32/-
7a ⁺⁾	38/100	43/39	30/27	13/-
7c	48/100	-	2/-	100/3
8a ^{#)}	-/2	100/100	56/80	13/5
9a	100/100	25/1	9/1	34/2
10a	3/57	-	100/100	65/1
11a 11b 11c	60/100 58/100 41/100	- -	47/9 22/4 3/20	63/<1 100/<1 100/1
12a	100/100	-	40/2.	79/3

Tab. 1: Auszug aus den EI-MS (70/12 eV) der Phenylessigsäuren 1-12

*) Summe der Intensitäten für $^{35/37}$ Cl bzw. $^{79/81}$ Br; *) m/z 121 = 100% rel. Int.; #) MH⁺ < 1% rel. Int.

pen. Die aus den M⁺ austretenden *o*-Substituenten sind als Radikale relativ stabil. Ein "einfacher" Bruch der Bindung zum aromatischen Ring (Weg <u>C</u>, Schema 1) ist damit jedoch nicht beweisbar. So wird die S=C=N-Gruppe nicht aus den M⁺ von **12a** abgespalten; bei **7a** wie bei **12a** würde dasselbe mesomeriestabilisierte Radikal gebildet (°S-C=N \leftrightarrow S=C=N°). Zudem ist der Verlust dieser *o*-Substituenten bei M⁺ mit geringer Überschußenergie (nom. 12 eV, B/E) gegenüber anderen Zerfällen stark bevorzugt (Tab. 1).

Als Folgereaktion wird aus allen $(M-X)^+$ -Ionen CO abgespalten. Das führt in den EIMS (70/12 eV) zu Signalen mit

Tab. 2: EI-MS	von 1-12
---------------	----------

Vbdg	M+•	EI-MS: m/z (% rel. Ir 70eV	. Int.) 12eV	
1	136	136(35), 92(17), 91(100), 89(3), 65(12), 39(6)	136(100), 92(12), 91(24)	
2a	154	155(3) , 154(33), 110(14), 109(100), 108(3), 107(6), 90(11), 89(5), 83(18), 81(3), 63(5), 57(6), 39(4),	155(12), 154(100), 109(4), 90(4)	
2b	1 54	155(3), 154(33), 110(22), 109(100), 108(16), 107(19), 90(2), 89(4), 83(16), 81(3), 63(6), 57(7), 44(4), 39(4),	155(9), 154(100), 110(30), 109(12), 108(5)	
2c	154	155(3) , 154(34), 110(12), 109(100), 108(4), 107(6), 90(3), 89(3), 83(17), 81(4), 63(5), 57(7), 51(4), 44(4), 39(4),	155(10), 154(100), 110(5), 109(10), 90(2)	
3a	170/ 172	172(15), 171(5), 170(45), 136(5, 135(55), 128(3), 127(33), 126(10), 125(100), 107(3), 99(8), 92(4), 91(50), 90(18), 89(29), 77(6), 73(4), 65(4), 63(17), 62(7), 51(7), 50(4), 39(10)	173(5), 172(33), 171(10), 170(100), 135(96)	
3b	170/ 172	173(2), 172(18), 171(5), 170(52), 128(4), 127(34), 126(12), 125(100), 99(8), 92(5), 91(60), 90(10), 89(29), 77(5), 75(5), 73(4), 65(5), 63(15), 62(5), 51(5), 50(4), 39(8)	173(5), 172(33), 171(10), 170(100), 126(2), 125(2), 91(13)	
3c	170/ 172	173(3), 172(34), 171(2), 170(11), 128(3), 127(33), 126(9), 125(100), 99(6), 92(2), 91(17), 90(7), 89(20), 77(4), 75(3), 73(4), 65(3), 63(13), 62(4), 51(5), 50(4), 39(8)	173(5), 172(33), 171(10), 170(100), 127(3), 126(2), 125(11), 89(3)	

4 a	214/ 216	216(9) , 214(10), 172(3), 171(29), 170(3), 169(31), 136(9), 135(100), 107(11), 91(22), 90(29), 89(3), 79(5), 77(5), 65(5), 64(4), 63(12), 62(6), 51(7), 50(4), 39(7)	216(29), 214(27), 136(11), 135(100),
4b	214/ 216	217(4), 216(41), 215(4), 214(44), 172(7), 171(58), 170(7), 169(60), 107(5), 92(8), 91(100), 90(54), 89(45), 79(5), 78(5), 77(11), 65(9), 64(10), 63(32), 62(12), 51(11), 50(9), 45(6), 44(5), 39(19), 38(6)	217(9), 216(97), 215(9), 214(100), 172(4), 171(6), 170(4), 169(6), 92(4), 91(31)
4c	214/ 216	217(5), 216(47), 215(5), 214(50), 172(9), 171(97), 170(9), 169(100), 92(3), 91(38), 90(56), 89(46), 87(4), 79(5), 78(5), 77(10), 75(5), 65(6), 64(10), 63(22), 62(13), 61(5), 51(13), 50(12), 45(11), 44(5), 39(19), 38(7)	217(9), 216(97), 215(9), 214(100), 172(2), 171(10), 170(2), 169(11)
5a	262	263(3), 262(34), 218(3), 217(34), 136(10), 135(100), 134(5), 128(2), 127(4), 107(27), 92(2), 91(20), 90(41), 89(27), 79(18), 78(6), 77(12), 65(6), 64(7), 63(17), 62(7), 51(7), 50(5), 39(11)	263(7), 262(62), 136(12), 135(100)
5b	262	263(9), 262(100), 218(5), 217(58), 107(10), 92(4), 91(30), 90(38), 89(25), 79(7), 78(4), 77(10), 65(5), 64(5), 63(14), 62(6), 51(6), 50(5), 39(10)	263(10), 262(100), 217(1)
5c	262	263(9), 262(100), 218(8), 217(86), 107(7), 92(3), 91(18), 90(27), 89(15), 79(2), 78(3), 77(4), 65(3), 64(3), 63(8), 62(4), 51(4), 50(3), 39(5)	263(10), 262(100), 217(6)
ба	181	181(2), 164(2), 137(5), 136(14), 135(100), 134(2), 133(6), 121(9), 120(87), 119(5), 108(5), 107(17), 106(4), 105(14), 104(5), 93(13), 92(88), 91(21), 90(17), 89(37), 80(6), 79(37), 78(42), 77(77), 76(6), 75(5), 74(5), 66(8), 65(69), 64(17), 63(33), 62(8), 60(5), 57(5), 53(9), 52(13), 51(26), 50(11), 45(8), 44(24), 43(6), 41(7), 39(31), 38(6)	181(1), 164(2), 163(2), 137(8), 136(13), 135(100), 133(4), 123(4), 121(6), 120(29), 92(8)
6b	181	$\begin{array}{l} 182(10), 181(100), 166(5), 165(3), 164(7), 150(8), 151(14), \\ 137(22), 136(93), 135(22), 134(5), 121(9), 120(48), 117(5), \\ 107(16), 106(4), 105(13), 92(5), 91(49), 90(86), 89(65), \\ 79(35), 78(15), 77(60), 76(6), 75(5), 74(5), 65(16), 64(13), \\ 63(34), 62(11), 53(6), 52(6), 51(26), 50(14), 45(10), 44(5), \\ 43(9), 39(26), 38(7) \end{array}$	182(10), 181(100), 165(6), 137(4), 117(3),
6c	181	182(10), 181(100), 165(3), 151(1), 137(8), 136(34), 135(11), 120(4), 109(8), 107(17), 106(15), 92(4), 91(54), 90(20), 89(35), 79(24), 78(25), 77(32), 65(8), 64(6), 63(19), 62(6), 53(5), 52(5), 51(10), 50(5), 45(5), 39(13)	182(10), 181(100), 151(4), 91(10)
7a	193	$\begin{array}{l} 195(2), 194(4), 193(38), 150(15), 149(30), 148(13), 136(5), \\ 135(44), 123(10), 122(64), 121(100), 116(5), 107(7), 93(9), \\ 91(7), 90(5), 89(11), 79(5), 78(15), 77(24), 69(5), 65(5), \\ 63(10), 62(4), 51(9), 50(4), 45(9), 44(9), 39(9), \end{array}$	195(5), 194(11), 193(100), 151(6), 150(34), 149(27), 136(4), 135(39), 122(9),
7c	193	195(3), 194(5), 193(48), 150(5), 149(11), 148(100), 122(3), 121(10), 91(8), 90(7), 89(8), 78(4), 77(6), 63(5), 45(5), 44(4), 39(4)	195(5), 194(11), 193(100), 150(2), 148(3),
8a	214	215(1, MH ⁺), 197(5), 196(22), 172(3), 171(10), 170(56), 169(13), 155(26), 153(15), 152(5), 151(50), 150(7), 137(12), 136(10), 135(100), 134(5), 125(13), 123(21), 122(14), 121(10), 118(3), 110(5), 109(26), 108(8), 107(58), 106(5), 105(9), 97(5), 92(10), 91(99), 90(57), 89(54), 79(36), 78(29), 77(54), 69(5), 65(18), 64(14), 63(40), 62(11), 53(6), 52(7), 51(21), 50(8), 45(15), 44(5), 39(23),	214(2), 197(6), 196(23), 172(5), 171(18), 170(80), 169(5), 168(8), 155(13), 153(5), 151(10), 150(12), 137(4), 136(7), 135(100), 134(3), 123(5), 122(9), 118(5), 109(5), 108(5), 107(20), 91(6)
9a	182	184(5), 183(12), 182(100), 165(7), 164(55), 149(11), 138(11), 137(34), 136(27), 135(25), 134(4), 123(14), 122(19), 121(31), 105(3), 93(12), 92(4), 91(31), 89(6), 79(5), 78(12), 77(19), 69(5), 65(8), 63(7), 51(7), 50(4), 45(42), 44(5), 39(7),	184(5), 183(12), 182(100), 165(2), 164(20), 137(2), 135(1),
10a	161	162(21), 161(3), 133(4), 118(13), 117(100), 116(65), 115(4), 104(4), 91(6), 90(36), 89(40), 88(5), 78(5), 77(4), 64(7), 63(17), 62(7), 51(9), 50(5), 45(5), 39(13)	162(7), 161(57), 133(7), 118(13), 117(100)
11a	166	167(6), 166(60), 123(4), 122(47), 121(63), 107(27), 93(9), 92(11), 91(100), 90(5), 89(6), 79(6), 78(15), 77(18), 63(17), 61(6), 52(8), 51(15), 50(5), 45(5), 39(9)	167(10), 166(100), 122(9)
115	166	$\begin{array}{l} 167(6), \ 166(58), \ 123(5), \ 122(30), \ 121(100), \ 107(14), \\ 106(7), \ 105(5), \ 92(13), \ 91(60), \ 90(7), \ 89(11), \ 79(15), \\ 78(42), \ 77(42), \ 74(5), \ 67(4), \ 66(4), \ 65(19), \ 64(7), \ 63(16), \\ 62(5), \ 53(6), \ 52(16), \ 51(29), \ 50(14), \ 45(5), \ 44(9), \ 43(4), \\ 41(6), \ 40(4), \ 39(24) \end{array}$	167(10), 166(100), 123(4), 122(4)

Tab 2: Fortsetzung				
11c	166	167(4), 166(41), 122(10), 121(100), 91(8), 89(3), 78(10), 77(13), 65(4), 63(3), 52(4), 51(6), 50(3), 43(8), 39(5)	167(10), 166(100), 123(2), 122(20)	
12a	193	195(5), 194(11), 193(100), 150(10), 149(43), 148(79), 122(17), 121(41), 118(4), 117(15), 116(6), 104(12), 92(6), 91(38), 90(10), 89(19), 78(7), 77(16), 65(6), 63(12), 62(5), 51(9), 50(5), 45(12), 44(6), 39(9)	195(5), 194(11), 193(100), 149(2), 148(3),	

geringer Intensität (< 10% rel. Int.) und ist die einzige nachweisbare Reaktion in den B/E Spektren (70; 12 eV). Ob auch hierbei destabilisierte Carbeniumionen c_2^{7} auftreten - wie für den Zerfall ionisierter Phenyl-2-propanone wahrscheinlich gemacht^{1,2)} - ist Gegenstand weiterer Untersuchungen.

Experimenteller Teil

Die Säuren 1, 2a,c, 3a-c, 4a-c, 6a-c und 11a-c sind Präparate der Fa. Merck, Darmstadt, Deutschland; sie wurden IR- und ¹H-NMR-spektroskopisch charakterisiert und dc bzw. gc auf Reinheit geprüft, nötigenfalls sc (SiO₂), durch Kugelrohrdestillation oder Umkristallisieren (Lösungsmittel s. zugehörige Lit.) gereinigt.

m-Fluorphenylessigsäure (2b):⁸⁾.

o-Jodphenylessigsäure (5a):⁹⁾.

m-Jodphenylessigsäure (5c): 9).

o-Thiocyanatophenylessigsäure $(7a)^{10}$, p-Thiocyanatophenylessigsäure (7c), o-Isothiocyanatophenylessigsäure (12a) und p-Isothiocyanatophenylessigsäure $(12c)^{11}$

Sandmeyer-Reaktion von diazotierter 2-Amino- bzw. 4-Aminophenylessigsäure mit $Cu(SCN)_2$ und KSCN analog Marschalk¹⁰⁾ und fraktionierende Kristallisation aus Wasser (Aktivkohle) (dc Kontrolle) bzw. SC (SiO₂; Et₂O) lieferten die Säuren **7a**, **7c**, **12a** und **12c**.

o-Isothiocyanatophenylessigsäure (12a)

Gelbe Nadeln, Schmp. 130-131°C (Wasser); C₃H₇NO₂S Ber. 193.0198 Gef. 193.0202 (HRMS).

p-Thiocyanatophenylessigsäure (7c)

Weiße Plättchen, Schmp. 104-105°C (Wasser); C₉H₇NO₂S Ber. 193.0198 Gef. 193.0192 (HRMS).

o-Methylsulfonylphenylessigsäure (8a)

- A) Oxidation von 9a (s.u.) mit 2 Equiv. m-Chlorperbenzoesäure in CH₂Cl₂ bei 40°C.
- B) Oxidation von 9a (s.u.) mit H₂O₂ in AcOH bei Raumtemp. analog der

Umsetzung von *p*-Cyanobenzyl-methylsulfid zum entspr. Sulfon¹²⁾. 8a kristallisiert in einer -COOH-Form (8a') und einer -S(OH)-Form (8a'') (Ring-Ketten-Tautomerie¹³⁾). Während sich die Schmp. und IR-Spektren von 8a' und 8a'' unterscheiden, stimmen ¹H-NMR- und Massenspektren (EI-MS) überein.

8a': Nadeln (CHCl₃/AcOH), Schmp. 160°C.- C₉H₁₀O₄S (214.4) Ber. C 50.5 H 4.70 Gef. C 50.4 H 4.56.- FT-IR (KBr) $\tilde{\nu} = 3300-2500$ (COOH); 2939; 1707; 1314; 1298; 1238; 1153; 1118; 758; 532 cm⁻¹.

8a'': Nadeln (MeOH), Schmp. 162°C.- FT-IR (KBr): $\tilde{v} = 3311$ (OH, assoziiert); 1738; 1293; 1151; 986; 960; 754 cm⁻¹.- ¹H-NMR (DMSO-d₆) (**8a' = 8a''**): δ (ppm) = 12.5 (br; 1H, COOH), 8.07-7.9 (m; 1H aromat.), 7.83-7.43 (m, 3H aromat.), 4.10 (s; 2H, CH₂), 3.15 (s; 3H, SO₂CH₃).

o-Methylmercaptophenylessigsäure (9a): 13).

o-Cyanophenylessigsäure (10a): 14).

Literatur

- 1 4. Mitt.: H.-G. Striegel, K.K. Mayer, W. Wiegrebe, U.P. Schlunegger, Ph. Siegrist, B. Aebi, Arch. Pharm. (Weinheim); im Druck (Ph 3).
- 2 H.-G. Striegel, Dissertation, Regensburg 1991.
- 3 D.C. Boop, Thesis, Univ. of Idaho, Moscow, U.S.A., 1973.
- 4 N.-C. Yang, Thesis, Univ. of Idaho, Moscow, U.S.A., 1978.
- 5 D.U. Lee, K.K. Mayer, W. Wiegrebe, R. Lauber, U.P. Schlunegger, Arch. Pharm. (Weinheim) 321, 303 (1988).
- 6 D.U. Lee, K.K. Mayer, W. Wiegrebe, R. Lauber, U.P. Schlunegger, Arch. Pharm. (Weinheim) 321, 265, 315 (1988).
- 7 R. Wolf, A.M. Dommröse, H.-Fr. Grützmacher, Org. Mass. Spectrom. 23, 26 (1988); Th. Sürig, H.-Fr. Grützmacher, N. Dekimpe, Org. Mass. Spectrom. 26, 882 (1991).
- 8 R.W. Taft, E. Price, I.R. Fox, I.C. Lewis, K.K. Andersen, G.T. Davis, J. Am. Chem. Soc. 85, 712 (1963).
- 9 J.G. Watkinson, W. Watson, B.L. Yates, J. Chem. Soc. 1963, 5444.
- 10 Ch. Marschalk, Ber. Dtsch. Chem. Ges. 45, 1481 (1912).
- 11 P. Kristian, K. Antos, L. Drobnica, M. Vargova, Sb. Pr. Chem. Fak. SVST 1966, 57; C.A. 67, 21531 (1967).
- 12 H.S. Forrest, A.T. Fuller, J. Walker, J. Chem. Soc. 1948, 1501.
- 13 A. Kucsman, T. Kremmer, Acta Chim. Acad. Sci. Hung. 34, 75 (1962); C.A. 59, 502 f (1963).
- 14 J.O. Halford, B. Weissmann, J. Org. Chem. 18, 34 (1953).

[KPh576]