Bishydrocotarnines - Stereochemical Aspects

Yoshio Okamoto
Department of Chemistry, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan

Doris Dirnberger, Thomas Burgemeister, Gerd Dannhardt and Wolfgang Wiegrebe* ${ }^{*}$)

Faculty of Chemistry and Pharmacy, University, P.O. Box 397, D-8400 Regensburg, Germany Eingegangen am 4. Dezember 1985

The bishydrocotarnines $\mathbf{2 a}$ and $\mathbf{2 b} \mathbf{b}^{\left.1),{ }^{* *}\right)}$ were converted into the urethanes $\mathbf{9 a}$ and $\mathbf{9 b}$ and into the carbamates $\mathbf{1 0 a}$ and $\mathbf{1 0 b}$, which in turn were split to yield the sec. amines $1 \mathbf{1 a}$ and $\mathbf{1 1 b}$. Cyclisation with diethyl oxalate led to the diketopiperazines $\mathbf{1 2 a}$ and $\mathbf{1 2 b}$. Contrary to $\mathbf{9 b}$, compound $9 \mathbf{a}$ was resolved into enantiomers on a cellulose carbamate column. This indicates that 9 a is the $\mathbf{D}, \mathrm{L}-$ and $9 \mathbf{b}$ is the peso form. NMR spectra of $\mathbf{1 2 a}$ and $\mathbf{1 2 b}$ led to an analogous conclusion.

Bishydrocotarnine - Stereochemische Gesichtspunkte

Die Bishydrocotarnine 2a and $\mathbf{2 b}{ }^{1)}$ warden in die Urethane 9a and 9b bzw. in die Carbamate 10a und 10b umgewandelt. Spaltung vo 10a bzw. 10b in die sek. Amine $11 \mathbf{a}$ and $\mathbf{1 1 b}$ and daren Cyclisierung führen mu den Diketopiperazinen 12a und 12b. 9a lie sich in Gegensatz qu $\mathbf{9 b}$ an finer Cellulosecarbamat-Säule in Enantiomere spalten. Danach is 9a die D, L-, $\mathbf{9 b}$ die meso-Form. NMR-Spektren vol 12a und $\mathbf{1 2 b}$ führen au derselben Schlußfolgerung.

In 1911, Freund and Kupfer ${ }^{1)}$ described the formation of two isomeric bishydrocotarnines 2 by reductive dimerisation of cotarnine (1). This reduction occurs when a bulky Grignard reagent obtained from 1,2-dibromoethane was used, whilst small monofunctional Grignard reagents added smoothly to the car-benium-iminium-ion in 1. Freund et al. ${ }^{1 /}$ separated the isomers of $\mathbf{2}$ and elucidated their structures unequivocally. The authors recognized that these symmetric molecules should exist as two enantiomers and as one meso form and tried to resolve one of the $\mathbf{2}$-isomers by formation of diastereomeric salts. When all their efforts failed they concluded that both isomers should be meso forms which arise by combination of two cis- and of two trans-forms of the tetrahydropyridine-moiety ${ }^{11}$. In this context "cis" and "trans" refer to H at $\mathrm{C}-1\left(\mathrm{C}-1^{\prime}\right)$ and CH_{3} at the adjoining N -atoms (see ${ }^{1)}$, page 16).

According to Dreiding models, Freund's meso forms ${ }^{1)}$ nowadays might be regarded as two conformers, the one with a bi-equatorial bond between $\mathrm{C}-1$ and $\mathrm{C}-1^{\prime}$ and axial methyl-groups, the other one with equatorial CH_{3}-groups and a bi-axial linkage of C -1

[^0]with C-1'. When Freund and Kupfer ${ }^{1)}$ heated the minor isomer of 2 to temp. exceeding the m. p., it was converted to the major isomer. This was explained as a thermal cis-trans-rearrangement. We became aware of Freund's isomers when we tried to cleave α narcotine (3) regioselectively by various bases to get narcotoline (4). 3 was recovered nearly quantitatively, $\mathbf{2 a}$ and $\mathbf{2 b}$ arose as minor products besides $\mathbf{1}$ and opianic acid (6-formyl-2,3-dimethoxybenzoic acid). As already stated by Freund ${ }^{1)}$, $\mathbf{2 a}$ and $\mathbf{2 b}$ have the same m. p. $\left(163^{\circ}\right)$, the mixed m. p. is depressed significantly. The isomers are easily differentiated by tlc on alumina (ethyl acetate): $\mathbf{2 a}$ exhibits a low, $\mathbf{2 b}$ a high rf-value.

1

enantiomers	
	R
2 a	CH_{3}
9 a	$\mathrm{CO}-\mathrm{OC}_{2} \mathrm{H}_{5}$
10 a	$\mathrm{CO}-\mathrm{OCH}_{2}-\mathrm{CCl}_{3}$
11 a	H

12a

meso forms

	R
$\mathbf{2 b}$	CH_{3}
$9 b$	$\mathrm{CO}-\mathrm{OC}_{2} \mathrm{H}_{5}$
10b	$\mathrm{CO}-\mathrm{OCH}_{2}-\mathrm{CCl}_{3}$
11b	H

12b

Contrary to Freund ${ }^{1)}$ we found that both isomers are mutually converted to each other by melting them. Up to 150° we did not observe isomerisation in solution (d_{5}-nitrobenzene, NMR-control); heating $\mathbf{2 a}$ or $\mathbf{2 b}$ to 190° (tetralin) led to mutual conversion. For differentiation between the possibilities of rotamers or products obtained from bond breaking and recombination, we synthesized the corresponding $8,8^{\prime}$-desmethoxybishydrocotarnines ($1,1^{\prime}$-bishydrohydrastinines 5^{2}) as a mixture of stereoisomers with very similar rf-values. When we melted equal quantities of 5 and $2(1: 1$ mixture of $\mathbf{2 a}$ and $\mathbf{2 b}$), we obtained the "mixed" bistetrahydroisoquinoline 6 (scheme 2) besides the $\mathbf{5}$-isomers, $\mathbf{2 a}$ and $\mathbf{2 b}$ (tlc). The FD-mass spectrum revealed molecular ions at $\mathrm{m} / \mathrm{z} 440$ (2a, 2b), m/z 380 (5) and $\mathrm{m} / \mathrm{z} 410$ (6), indicating that at least in part bond breaking and recombination had occurred, so favouring Freund's assumption of a pinacol type formation of $\mathbf{2 a}$ and $\mathbf{2 b} \mathbf{b}^{1)}$. Moreover, this experiment points towards diastereoisomerism of $\mathbf{2 a}$ and $\mathbf{2 b}$.

$\mathbf{2 a}$ and $\mathbf{2 b}$ could not be resolved on microcrystalline cellulose triacetate ${ }^{3)}$, probably on account of insufficient solubility in suitable solvents $\left(\mathrm{EtOH} ; \mathrm{CHCl}_{3}\right.$: EtOH 1:9). Therefore, we decided to block the rotation around the $\mathrm{C}-1 / \mathrm{C}-1^{\prime}$-bond by construction of rigid cyclic derivatives of $\mathbf{2 a}$ and $\mathbf{2 b}$ in order to associate $\mathbf{J}\left(\mathrm{H}-1 / \mathrm{H}-\mathbf{1}^{\prime}\right)$ with $\mathbf{2 a}$ and $\mathbf{2 b}$, respectively. Formation of bisquaternary cyclic derivatives failed: heating $\mathbf{2 a}$ with 1,4 -dibromobutane led to the mono-quaternized compund 7 . In this context it is noteworthy that Freund ${ }^{1)}$ as well as ourselves obtained the monomethylated derivative 8 from $\mathbf{2 a}$ even with an excess of $\mathrm{CH}_{3} \mathrm{I}$ under vigorous conditions. So we adopted Dreiding's approach ${ }^{4)}$ which he had elaborated for a similar problem, i. e. formation of the pertinent 2,3-diketopiperazines $\mathbf{1 2 a}$ and $\mathbf{1 2 b}$.

For twofold N -demethylation of $\mathbf{2 a}$ and $\mathbf{2 b}$ we slightly varied Lee's method ${ }^{5}$) for N -demethylation of tert. benzylamines with ethyl chloroformate (ECF) or β, β, β-trichloroethyl chloroformate. Heating $\mathbf{2 a}$ and $\mathbf{2 b}$ with a 5 -fold molar excess ECF afforded the urethanes $9 a$ and $9 b$. In order to rule out an isomerisation, $9 a$ and $9 b$ were reconverted to $\mathbf{2 a}$ and $\mathbf{2 b}$, respectively, by $\mathrm{LiAlH}_{4}{ }^{6}$: no isomerisation had occurred.

Various racemic compounds have been resolved by HPLC on cellulose triphenylcarbamate coated on silica gel ${ }^{7 \text { I }}$. This chiral stationary phase resolved 9 a partially into enantiomers. Cellulose tris-(p-chlorophenylcarbamate) ${ }^{8)}$ was found to be a more effective chiral stationary phase for 9 a and base-line separation of the enantiomers was attained. The basic compound, 2a, was not resolved to a detectable extent on the two cellulose phenylcarbamate columns showing a very broad peak with a long tailing. Similar results have been observed in the resolution of some amines on the columns ${ }^{77}$. This experiment clearly indicates that 9 a is the racemate, $\mathbf{9 b}$ is the meso form.

The $250 \mathrm{MHz}-{ }^{1} \mathrm{H}$-spectra of 9 a and 9 b indicate the presence of at least three different species - rotamers? - which leads to trebling of most of the signals; the $\underline{H}_{3} \underline{C}-\mathrm{CH}_{2}-$ regions are shown in fig. 1.

Therefore, addition of $(+)-\mathrm{Eu}(\text { facam })_{3}$ did not allow a clear-cut decision between the racemate and the meso form of 9 .

Whilst ethyl urethanes of type 9 can be hydrolyzed only under drastic conditions ${ }^{9}$, β, β, β-trichloroethyl carbamates are converted to sec. amines by mild reductive cleavage ${ }^{9)}$. When we reacted $\mathbf{2 a}$ and $\mathbf{2 b}$ with $\mathrm{Cl}-\mathrm{CO}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CCl}_{3}$, the urethanes 10 a and $\mathbf{1 0 b}$ arose, which were split to the amines 11 a and 11 b by Zn /acetic acid. Twofold amidation with diethyl oxalate ${ }^{4)}$ afforded the diketopiperazines $12 a$ and $\mathbf{1 2 b}$, respectively. These molecules also provide an unequivocal differentiation between the precursors $2 \mathbf{a}$ and 2b: the racemate 12a from 2a shows a sharp singlet at $\delta=5.16 \mathrm{ppm}$ of $\mathrm{H}-1$ and

Fig. 1: $\underline{H}_{3} \underline{C}-\mathrm{CH}_{2}$-multiplets of $\mathbf{9 a}$ and $9 \mathbf{b}$
$\mathbf{H}-1^{\prime}$, whilst $\mathrm{H}-1$ and $\mathrm{H}-\mathbf{1}^{\prime}$ (or vice versa) in $\mathbf{1 2 b}$ (meso form from $\mathbf{2 b}$) resonate at 5.49 and 5.66 ppm , respectively, whith $\mathrm{J}=3.72 \mathrm{~Hz}$.

We are grateful to Prof. Dr. A. Mannschreck, Regensburg, for helpful discussions and to Mr. Kawashi$m a$ for skilful experimental help in chromatographic resolution. The financial support of Deutsche Forschungsgemeinschaft is gratefully acknowledged.

Experimental Part

Apparatus: $m p$ (uncorr.): apparatus according to Dr. Tottoli; elementary analysis: Microanalytical Laboratory (G. Wandinger) of the University of Regensburg. - IR: Beckman Acculab III. - ${ }^{1} \mathrm{H}-\mathrm{NMR}$: Varian EM $390\left(90 \mathrm{MHz}\right.$), Bruker (250 MHz), 35°, TMS int. stand. - UV: Uvikon $810, \mathrm{MeOH}$ Uvasol "Merck". - MS: Varian MAT CH5, excitation energy 70 eV , if not stated otherwise.

Cotarnine base

It was produced by modifying Bruns' method ${ }^{10}$) as follows: $4.13 \mathrm{~g}(10 \mathrm{mmol})$ narcotine base (3) in 40.0 g $\mathrm{HNO}_{3}(18 \%)$ was stirred at $50^{\circ}\left(+/-2^{\circ}\right)$ until 3 had disappeared (tlc, $\left.\mathrm{SiO}_{2}, \mathrm{MeOH}\right)$. After cooling the filtrate was chilled with ice and basified with $40 \% \mathrm{KOH}$. The precipitate formed was filtered off immediately and dried at $40^{\circ}(0.1$ torr): yield $2.10 \mathrm{~g}(88 \%)$. From benzene: colourless needles, yield $1.87 \mathrm{~g}(79 \%)$, $\mathrm{mp} .132^{\circ}$ (lit. ${ }^{10}$: 132°). - IR (KBr): $1620 \mathrm{~cm}^{-1}$ (C=C, arom.). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=$ 2.25-3.25 (m; 4H, CH2), $2.60\left(\mathrm{~s} ; 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 4.10\left(\mathrm{~s} ; 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), $5.48(\mathrm{~s} ; 1 \mathrm{H}, \mathrm{C}-1), 5.95(\mathrm{~s} ; 2 \mathrm{H}$, $\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}$), 6.40 ($\mathrm{s} ; 1 \mathrm{H}$, arom.).

Cotarnine chloride (1) from cotarnine base

To an ice cold mixture of $2.0 \mathrm{~g}(8.5 \mathrm{mmol})$ crude cotarnine base and 5 ml absol. $\mathrm{EtOH}, 30 \% \mathrm{HCl}$ in EtOH was added drop by drop until the colour turned yellow (pH 5). Then 19 ml ice cold absol. acetone
was added. After 2 h at $-10^{\circ} 1$ was collected; yield $1.8 \mathrm{~g}(85 \%)$, faint yellow crystals, m. p. 197° (decomp.), (lit. ${ }^{11)} 197^{\circ}$). - IR (KBr): $1670(\mathrm{C}=\mathrm{N}), 1615 \mathrm{~cm}^{-1}$ ($\mathrm{C}=\mathrm{C}$, arom.). - ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (90 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta(\mathrm{ppm})=2.7 \mathrm{O}\left(\mathrm{t} ; 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of $\left.\mathrm{C}-4\right), 3.29\left(\mathrm{~s} ; 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.49\left(\mathrm{t} ; 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of $\left.\mathrm{C}-3\right), 3.72(\mathrm{~s} ; 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 5.67\left(\mathrm{~s} ; 2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right), 6.22(\mathrm{~s} ; 1 \mathrm{H}$, arom.), $8.49(\mathrm{~s} ; 1 \mathrm{H}, \mathrm{C}-1)$.

Bishydrocotarnines 2a and 2b

0.4 g 1,2-Dibromoethane was added to $2.0 \mathrm{~g}(82 \mathrm{mmol}) \mathrm{Mg}$ in 60 ml absol. ether. After addition of a catalytic amount I_{2} the Grignard reaction was started by gentle heating. Then 7.6 g dibromoethane (altogether 42 mmol) were added drop by drop within 10 min so that the ether was boiling gently, the mixture was refluxed for 1 h and cooled to r.t. $5.1 \mathrm{~g}(20 \mathrm{mmol})$ well ground 1 was added in parts, then refluxing was continued for 1 h . After decomposing with water, the solvent was decanted and the residue extracted thrice with $50 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ each. After drying the organic phases over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvents were evaporated i. vac. to yield $4.3 \mathrm{~g}(98 \%)$ brownish powder, which was separated by column chromatography (cc) (Alumina Woelm N, act. II, ethyl acetate, later on methanol): 2b: rf $=0.55 ; 1.8 \mathrm{~g}$ (41%), rhombic crystals, mp. 163-164 ${ }^{\circ}$ (EtOH); $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}$ (440.5) Calc. C 65.4 H 6.40 N 6.4 . Found C 65.3 H 6.29 N 6.4. - UV: $\lambda \max (\log \varepsilon)=213$ (4.6), 260 (3.2), 285 nm (3.5). - IR (KBr): $1625 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}$, arom.). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=2.36-2.48\left(\mathrm{~m} ; 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.44\left(\mathrm{~s} ; 6 \mathrm{H}, 2 \times \mathrm{NCH}_{3}\right), 2.56-2.67$ $\left(\mathrm{m} ; 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.84-2.98\left(\mathrm{~m} ; 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.69\left(\mathrm{~s} ; 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 4.15\left(\mathrm{~s} ; 2 \mathrm{H}, \mathrm{C}-1\right.$ and $\left.\mathrm{C}-\mathrm{l}^{\prime}\right), 5.81,5.83$
 $220(\mathrm{M} / 2)^{+}$.
2a: rf $=0.33 ; 1.2 \mathrm{~g}$ (27 \%), rhombic crystals, mp. $163-164^{\circ}(\mathrm{EtOH}) . \mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}$ (440.5) Calc. C 65.4 H 6.40 N 6.4. Found C 65.4 H 6.38 N 6.4 . - UV: $\lambda \max (\log \varepsilon)=212(4.6), 260(3.1), 285 \mathrm{~nm}(3.4)$. -IR $(\mathrm{KBr}): 1625 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{C}\right.$, arom.). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=2.26\left(\mathrm{~s} ; 6 \mathrm{H}, 2 \times \mathrm{NCH}_{3}\right)$, $2.58-2.84\left(\mathrm{~m} ; 6 \mathrm{H}, \mathrm{CH}_{2}\right), 3.49-3.65\left(\mathrm{~m} ; 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.62\left(\mathrm{~s} ; 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.99\left(\mathrm{~s} ; 2 \mathrm{H}, \mathrm{C}-1\right.$ and $\left.\mathrm{C}-1^{\prime}\right)$, $5.72,5.76$ (AB-system; 4H, $2 \times \mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}, \mathrm{J}=1.43 \mathrm{~Hz}$), $6.28\left(\mathrm{~s} ; 2 \mathrm{H}\right.$, arom.). $-\mathrm{MS}(\mathrm{FI}): 441(\mathrm{M}+\mathrm{H})^{+}$, $440 \mathrm{M}^{+}$., $220(\mathrm{M} / 2)^{+}$.

Bishydrohydrastines (5)

The mixture of the bishydrohydrastines (5) was prepared following Freund ${ }^{2}$. The mixture was not separated ($\mathrm{rf}=0.67$ and 0.57) and was used for the cross-over experiment (see below) as such.

Resolution of 9a into enantiomers

9a, dissolved in CHCl_{3}, was resolved on a cellulose tris-(p-chlorophenylcarbamate) column ($25 \times$ 0.46 cm), prepared by the previous method ${ }^{7}$), using a Jasco-TRIROTAR-II instrument equipped with detectors Jasco-UV-100-III (254 nm), 1 mm cell, and Jasco-DIP-180C (Hg), $50 \times 2 \mathrm{~mm}$ cell. Eluent: hexane/2-propanol/chloroform (7:1:2-vol); flow rate: $0.5 \mathrm{ml} / \mathrm{min}$; pressure: $22 \mathrm{~kg} / \mathrm{cm}^{2}$; temp.: 25°.

Cross-over experiment

$20 \mathrm{mg} \mathrm{2a}, 20 \mathrm{mg} 2 \mathrm{~b}$ and 40 mg 5 were mixed thoroughly by grinding and heated for 180 sec under N_{2} in an oil bath of 180°. The mixture melted and turned brown. After cooling the cake was dissolved in CHCl_{3}, degradation products were separated by cc (Alumina Woelm N act. II, ethyl acetate). After evaporation i. vac. and drying ($40^{\circ}, 0.1$ torr): 55 mg of a yellowish powder, which was used for ms .

N-Mono(δ-bromo-n-butyl)-bishydrocotarninium bromide (7a)

$440 \mathrm{mg} 2 \mathbf{a}$ in 3 ml 1,4-dibromo-n-butane was heated to 110° for 10 min . Unreacted dibromobutane was removed i. vac., the residue was recrystallized from absol. acetone: $525 \mathrm{mg}(80 \%), \mathrm{mp} .197^{\circ}$.
$\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{6} 656.4$). Calc. C 51.2 H 5.53 N 4.3 . Found C 51.4 H 5.60 N 4.3 . - IR (KBr): $1630 \mathrm{~cm}^{-1}$ $\left(\mathrm{C}=\mathrm{C}\right.$ arom.). $-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.75-2.14\left(\mathrm{~m} ; 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.22-2.54(\mathrm{~m} ; 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 2.38\left(\mathrm{~s} ; 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.79-3.54\left(\mathrm{~m} ; 8 \mathrm{H}, \mathrm{CH}_{2}\right), 3.64\left(\mathrm{~s} ; 3 \mathrm{H},{ }^{+} \mathrm{NCH}_{3}\right), 3.72,3.74(2 \times \mathrm{s} ; 6 \mathrm{H}, 2 \times$ OCH_{3}), 3.70-4.77 (m; 5H, C-1 and C-1', 3 H of CH_{2}-groups), $5.60,5.66$ (AB-system; $2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}$, $\mathrm{J}=0.74 \mathrm{~Hz}), 5.72,5.78\left(\mathrm{AB}\right.$-system; $\left.2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}, \mathrm{J}=0.74 \mathrm{~Hz}\right), 6.21,6.27(2 \times \mathrm{s} ; 2 \mathrm{H}$, arom. $)$.

N-Mono(δ-bromo-n-butyl)-bishydrocotarninium bromide (7b)

7b was prepared analogously in 85% yield, m. p. 196-197 ${ }^{\circ}$. $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{6}$ (656.4). Calc. C 51.2 H 5.53 N 4.3. Found C 51.2 H 5.57 N 4.2 . - IR (KBr): $1630 \mathrm{~cm}^{-1}$ (C=C, arom.). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (90 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.55-2.55\left(\mathrm{~m} ; 8 \mathrm{H}, \mathrm{CH}_{2}\right), 2.38\left(\mathrm{~s} ; 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.95-3.55\left(\mathrm{~m} ; 6 \mathrm{H}, \mathrm{CH}_{2}\right), 3.32(\mathrm{~s} ; 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.78\left(\mathrm{~s} ; 3 \mathrm{H},+\mathrm{NCH}_{3}\right), 4.05-4.78\left(\mathrm{~m} ; 3 \mathrm{H}, \mathrm{CH}_{2}\right.$ and 1 H of $\mathrm{C}-1$ or $\left.\mathrm{C}-1^{\prime}\right), 4.23\left(\mathrm{~s} ; 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.13$ $\left(\mathrm{s} ; 1 \mathrm{H}, \mathrm{C}-1\right.$ or $\left.\mathrm{C}-1^{\prime}\right), 5.80-6.01\left(\mathrm{~m} ; 4 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}, 2\right.$ overlapping AB -systems $), 6.29,6.40(2 \times \mathrm{s} ; 2 \mathrm{H}$, arom.).

N-Monomethyl-bishydrocotarninium iodide (8a)

44 Vmg (1 mmol) 2 a in $3 \mathrm{ml} \mathrm{CH} \mathrm{I}_{3}$ were refluxed for 2 h . - The amorphous precipitate was crystallized from absol. $\mathrm{EtOH} ; 460 \mathrm{mg} 8 \mathbf{8 a}(79 \%)$, mp. $232-233^{\circ}\left(\mathrm{lit} .{ }^{1}{ }^{1}: 233^{\circ}\right.$). - IR (KBr): $1630 \mathrm{~cm}^{-1}$ (C=C, arom.). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=2.31-2.48\left(\mathrm{~m} ; 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.38\left(\mathrm{~s} ; 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.80-3.14(\mathrm{~m}$; $\left.3 \mathrm{H}, \mathrm{CH}_{2}\right), 3.18-3.47\left(\mathrm{~m} ; 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.39\left(\mathrm{~s} ; 3 \mathrm{H},{ }^{+} \mathrm{NCH}_{3}\right), 3.60-3.88\left(\mathrm{~m} ; 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.70\left(\mathrm{~s} ; 3 \mathrm{H},{ }^{+} \mathrm{NCH}_{3}\right)$, $3.74,3.76\left(2 \times \mathrm{s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.95-4.13\left(\mathrm{~m} ; 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.99\left(\mathrm{~d} ; 1 \mathrm{H}\right.$ of $\mathrm{C}-1$ or $\left.\mathrm{C}-1^{\prime}, \mathrm{J}=6.25 \mathrm{~Hz}\right)$, $4.50-4.64\left(\mathrm{~m} ; 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.52\left(\mathrm{~d} ; 1 \mathrm{H}\right.$ of $\mathrm{C}-1$ or $\left.\mathrm{C}-1^{\prime}, \mathrm{J}=6.25 \mathrm{~Hz}\right), 5.63,5.67\left(\mathrm{AB}\right.$-system; $2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-$ $\mathrm{O}, \mathrm{J}=1.34 \mathrm{~Hz}), 5.74,5.79$ (AB-system; 2H, $\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}, \mathrm{J}=1.34 \mathrm{~Hz}$), 6.23, $6.29(2 \times \mathrm{s} ; 2 \mathrm{H}$, arom.).

N-Monomethyl-bishydrocotarninium iodide (8b)

$\mathbf{8 b}$ was prepared analogously from $440 \mathrm{mg} \mathrm{2b} ; 480 \mathrm{mg}(82 \%), \mathrm{mp} .233^{\circ}$ (lit. ${ }^{1)}: \mathbf{2 3 3}^{\circ}$). - IR (KBr): $1630 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{C}\right.$, arom.). $-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.61-1.83\left(\mathrm{~m} ; 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.97-2.08$ $\left(\mathrm{m} ; 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.29-2.45\left(\mathrm{~m} ; 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.40\left(\mathrm{~s} ; 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.55-2.73\left(\mathrm{~m} ; 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.11-3.21(\mathrm{~m} ;$ $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.28\left(\mathrm{~s} ; 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.31\left(\mathrm{~s} ; 3 \mathrm{H},{ }^{+} \mathrm{NCH}_{3}\right), 3.71\left(\mathrm{~s} ; 3 \mathrm{H},{ }^{+} \mathrm{NCH}_{3}\right), 4.21\left(\mathrm{~s} ; 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $4.32-4.47\left(\mathrm{~m} ; 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.44\left(\mathrm{~s} ; 1 \mathrm{H}, \mathrm{C}-1\right.$ or $\left.\mathrm{C}-1^{\prime}\right), 4.48-4.64\left(\mathrm{~m} ; 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.87\left(\mathrm{~s} ; 1 \mathrm{H}, \mathrm{C}-1\right.$ or $\left.\mathrm{C}-1^{\prime}\right)$, $5.86-5.96$ ($\mathrm{m} ; 4 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}, 2$ overlapping AB-systems), $6.29,6.40(2 \times \mathrm{s}, 2 \mathrm{H}$, arom.).
Of course, the index "b" does not indicate "meso" in $\mathbf{7 b}$ and $\mathbf{8 b}$ and is used only for systematic reasons.

5,5'-Bis-(N-ethoxycarbonyl-4-methoxy-5,6,7,8-tetrahydro)-1,3-dioxolo[4,5-g/isoquinolines (9a and 9b)
$440 \mathrm{mg}(1 \mathrm{mmol}) 2 \mathrm{a}, 0.96 \mathrm{ml}$ freshly distilled ethyl chloroformate and $30 \mathrm{mg} \mathrm{K}_{2} \mathrm{CO}_{3}$ were refluxed in 10 ml absol. benzene for 48 h . After evaporation and drying i. vac. the oily residue was purified by cc $\left(\mathrm{SiO}_{2}\right.$, chloroform/ether 3:1-vol.): $445 \mathrm{mg}(80 \%) 9 \mathrm{a}, \mathrm{m}$. p. $207^{\circ}(\mathrm{EtOH})$, needles. $-\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{10}(556.6)$ Calc. C 60.4 H 5.80 N 5.0. Found C 60.4 H 5.88 N 5.0. $-\mathrm{UV}(\mathrm{MeOH}): ~ \lambda \max (\log \varepsilon)=218(4.5), 260$ (3.2), 283 nm (3.5). - IR (KBr): $1690(\mathrm{C}=\mathrm{O}), 1630 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{C}\right.$, arom.). $-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta(\mathrm{ppm})=1.18-1.36\left(\mathrm{~m} ; 6 \mathrm{H}, 2 \times \mathrm{CH}_{2} \underline{\mathrm{CH}}_{3}\right), 2.65-2.83\left(\mathrm{~m} ; 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.15-3.66\left(\mathrm{~m} ; 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.35$, $3.38,3.40\left(3 \mathrm{~s} ; 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.74-3.95\left(\mathrm{~m} ; 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.99-4.25\left(\mathrm{~m} ; 4 \mathrm{H}, \mathrm{CH}_{2}\right), 5.44-5.71(6 \times \mathrm{s} ; 2 \mathrm{H}$, $\mathrm{C}-1$ and $\left.\mathrm{C}-1^{\prime}\right), 5.74-5.85\left(\mathrm{~m} ; 4 \mathrm{H}, 2 \times \mathrm{O}^{-} \mathrm{CH}_{2}-\mathrm{O}\right), 6.40,6.42\left(2 \times \mathrm{s} ; 2 \mathrm{H}\right.$, arom.). $-\mathrm{MS}(\mathrm{FD}): 556 \mathrm{M}^{+}$, 278 (M/2) ${ }^{+}$.
9b was prepared analogously: 290 mg (52%) 9b, m. p. 258° (EtOH), lozenge-shaped crystals. $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{10}$ (556.6) Calc. C 60.4 H 5.80 N 5.0 . Found C 60.1 H 5.83 N 5.0 . $-\mathrm{UV}: \lambda \max (\log \varepsilon)=$ 218 (4.5), 260 (3.2), 283 nm (3.5). - IR (KBr): $1680(\mathrm{C}=\mathrm{O}), 1630 \mathrm{~cm}^{-1}$ ($\mathrm{C}=\mathrm{C}$, arom.). $-{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=0.91-1.12$ (overlapping t (fig. 1), $6 \mathrm{H}, 2 \times-\mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.67-2.85(\mathrm{~m} ; 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 3.14-3.62\left(\mathrm{~m} ; 6 \mathrm{H}, \mathrm{CH}_{2}\right), 3.73-3.92\left(\mathrm{~m} ; 4 \mathrm{H}, \mathrm{CH}_{2}\right), 4.01,4.02,4.03$ and $4.04\left(4 \mathrm{~s} ; 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right)$,
5.49-5.75 ($6 \times \mathrm{s} ; 2 \mathrm{H}, \mathrm{C}-1$ and $\left.\mathrm{C}-1^{\prime}\right), 5.77-5.90\left(\mathrm{~m} ; 4 \mathrm{H}, 2 \times \mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right), 6.35-6.50(\mathrm{~m} ; 2 \mathrm{H}$, arom. $) .-\mathrm{MS}$ (FD): $556 \mathrm{M}^{+\cdot}, 278(\mathrm{M} / 2)^{+}$.

5,5'-Bis-(N- β, β, β-trichloroethoxycarbonyl-4-methoxy-5,6,7,8-tetrahydo)-1,3-dioxolò[4,5-g-Jisoquinolines (10a and 10b)

$440 \mathrm{mg}(1 \mathrm{mmol}) 2 \mathrm{a}, 0.3 \mathrm{ml}(2.2 \mathrm{mmol}) \beta, \beta, \beta$-trichloroethyl chloroformate, $30 \mathrm{mg}(0.21 \mathrm{mmol}) \mathrm{K}_{2} \mathrm{CO}_{3}$ and 3 ml absol. toluene were heated in an oil bath at 110° for 48 h . After evaporation and drying $\left(60^{\circ}\right.$, 0.1 torr) crude 10a was purified by cc (Alumina Woelm N act. II, chloroform/ether 1:1-vol.): 305 mg (40%) white foam, which could not be crystallized. $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{O}_{10}$ (763.2). Calc. C 44.1 H 3.43 , N 3.7. Found C 44.8 H 3.74 N 3.6 . - UV $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$: $\lambda \max (\log \varepsilon)=220(4.2), 260(3.1), 284 \mathrm{~nm}(3.5)$. IR (KBr): $1720(\mathrm{C}=\mathrm{O}), 1630 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{C}\right.$, arom.). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=2.52-3.00(\mathrm{~m} ; 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 3.05-3.64\left(\mathrm{~m} ; 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.28,3.30,3.35\left(3 \times \mathrm{s} ; 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.65-4.23\left(\mathrm{~m} ; 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.47$, $4.95\left(\mathrm{AB}\right.$-system, $2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{~J}_{\mathrm{AB}}=12.0 \mathrm{~Hz}$, the low field part shows additional doublet splitting, ${ }^{2} \mathrm{~J}=$ $7.5 \mathrm{~Hz}), 4.63\left(\mathrm{~s} ; 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.52-5.84\left(\mathrm{~m} ; 6 \mathrm{H}, 2 \times \mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right.$ and 2 H of $\mathrm{C}-1$ and $\left.\mathrm{C}-1^{\prime}\right), 6.32,6.37(2 \times \mathrm{s} ;$ 2 H , arom.). - MS (FAB(-), 18-crown-6/pyridine): calc. $\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)=760$; found $\mathrm{m} / \mathrm{z} 795 ; 797 ; 799 ; 801$; 803; 805; (807), corresponding to $\left(\mathrm{M}+\mathrm{Cl}^{-}\right)^{-}$.

Preparation of $\mathbf{1 0 b}$: $440 \mathrm{mg}(1 \mathrm{mmol}) \mathbf{2 b}, 0.3 \mathrm{ml}$ ($2.2 \mathrm{mmol} \beta, \beta, \beta$-trichloroethyl chloroformate and 30 mg (0.21 mmol) $\mathrm{K}_{2} \mathrm{CO}_{3}$ were refluxed in absol. benzene for 48 h . After evaporation and drying (see 10a) 10b was purified by cc on silica (chloroform/ether $3: 1-\mathrm{vol}): 504 \mathrm{mg}(66 \%)$ yellow oil, which was boiled with a little ether: 340 mg (44%) colourless crystals, $\mathrm{mp} .251^{\circ}$. Recrystallization from glacial acetic acid: 320 mg (42 \%) double pyramids, mp. $256-257^{\circ} . \mathrm{C}_{28} \mathrm{H}_{26} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{O}_{10}$ (763.2). - Calc. C 44.1 H 3.43 N 3.7. Found C 44.0 H 3.58 N 3.6 . $-\mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{CN}\right): \lambda \max :(\log \varepsilon)=220(4.2), 260(3.1), 284 \mathrm{~nm}$ (3.5). - IR (KBr): $1715(\mathrm{C}=\mathrm{O}), 1630 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{C}\right.$, arom.). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=$ $2.51-3.05\left(\mathrm{~m} ; 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.10-3.62\left(\mathrm{~m} ; 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.70-4,35\left(\mathrm{~m} ; 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.00,4.03(2 \times \mathrm{s} ; 6 \mathrm{H}, 2 \times$ $\left.\mathrm{OCH}_{3}\right), 4.66-4.95\left(\mathrm{~m} ; 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.71,5.73\left(2 \mathrm{~s} ; 2 \mathrm{H}, \mathrm{C}-1\right.$ and $\left.\mathrm{C}-1^{\prime}\right) 5.81-5.95\left(\mathrm{~m} ; 4 \mathrm{H}, 2 \times \mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right)$, $6.36,6.38,6.40(\mathrm{~m} ; 2 \mathrm{H}$, arom. $) .-\mathrm{MS}(\mathrm{FD}$, acetone $)$: calc. $\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)=760$; found $760\left(\mathrm{M}^{+\cdot}\right), 380(\mathrm{M} / 2)^{+}$.

5,5'-Bis-(4-methoxy-5,6,7,8-tetrahydro)-1,3-dioxolo[4,5-g-Jisoquinolines (11a and 11b)

$200 \mathrm{mg}(0.26 \mathrm{mmol}) \mathbf{1 0 b}$ and 340 mg activated Zn -powder ${ }^{12}$, were slightly heated in 5 ml glacial acetic acid, until strong evolution of H_{2} occurred. Then the mixture was stirred at r . t. for $4 \mathrm{~h}, 3 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ were added. The filtrate was basified by KOH and extracted with chloroform. Drying and evaporation i. vac. led to an oil which was dissolved in EtOH . Addition of a few drops conc. $\mathrm{HCl}(\mathrm{pH} 5)$ and scratching led to white needles.
11b-di-HCl: 110 mg (87%), m. p. $220-221^{\circ}$ (decomp.). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(90 \mathrm{MHz}, \mathrm{CF}_{3} \mathrm{COOH}\right): \delta(\mathrm{ppm})=$ 2.88-4.34 (m; $8 \mathrm{H}, \mathrm{CH}_{2}$), $4.17\left(\mathrm{~s} ; 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 5.34\left(\mathrm{~s} ; 2 \mathrm{H}, \mathrm{C}-1\right.$ and $\left.\mathrm{C}-1^{\prime}\right), 6.00$ (degenerated AB-system; $\left.4 \mathrm{H}, 2 \times \mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right), 6.57(\mathrm{~s} ; 2 \mathrm{H}$, arom.), $6.74-7.27$ (broad s; $2 \mathrm{H}, 2 \times \mathrm{HN}$), 8.27-8.83 (broad s; 2H, $2 \times \mathrm{HN})$. The solution of this salt in a little water was basified (KOH) and extracted with chloroform. Drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporation produced a colourless oil, which crystallized slowly: 85 mg (79%) white material, mp. $192^{\circ}-193^{\circ}(\mathrm{EtOH}) . \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}(412.4)$. Calc. C 64.1 H 5.87 N 6.8 . Found C 64.2 H 6.01 N 6.7. - UV $\left(\mathrm{CH}_{3} \mathrm{CN}\right): \lambda \max (\log \varepsilon)=223$ (4.2), $260(3.2), 285 \mathrm{~nm}(3.6) .-\mathrm{IR}(\mathrm{KBr}): 1625 \mathrm{~cm}^{-1}$ $\left(\mathrm{C}=\mathrm{C}\right.$, arom.). $-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=2.02(\mathrm{~s}$ broad; $2 \mathrm{H}, 2 \times \mathrm{HN}$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.33-3.22\left(\mathrm{~m} ; 8 \mathrm{H}, \mathrm{CH}_{2}\right), 3.67\left(\mathrm{~s} ; 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 4.33\left(\mathrm{~s} ; 2 \mathrm{H}, \mathrm{C}-1\right.$ and $\left.\mathrm{C}-1^{\prime}\right), 5.72$ (degenerated
 $413\left(\mathrm{MH}^{+}\right), 207(\mathrm{M} / 2+\mathrm{H})^{+}, 206(\mathrm{M} / 2)^{+}$.

Preparation of 11a: analogous to that of 11b
11a-di-HCl: 104 mg (82%) white needles, mp. $220^{\circ}-221^{\circ}$ (decomp.) ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(90 \mathrm{MHz}, \mathrm{CF}_{3} \mathrm{COOH}\right.$): $\delta(\mathrm{ppm})=2.80-4.28\left(\mathrm{~m} ; 8 \mathrm{H}, \mathrm{CH}_{2}\right), 3.98\left(\mathrm{~s} ; 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 5.68\left(\mathrm{~s}\right.$ broad; $2 \mathrm{H}, \mathrm{C}-1$ and $\left.\mathrm{C}-1^{\prime}\right), 5.85(\mathrm{~s}$

Corresponding base 11a; mp. $193^{\circ}-194^{\circ}(\mathrm{EtOH}), 79 \mathrm{mg}(73 \%) . \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}$ (412.4) Calc. C 64.1 H 5.87 N 6.8 . Found C 63.9 H 5.91 N 6.7. $-\mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{CN}\right): \lambda \max (\log \varepsilon)=229$ (4.1), 260 (3.2), 285 nm (3.6). - IR (KBr): $1625 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{C}\right.$, arom.). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.80$ (s broad; 2 H , $2 \times \mathrm{HN}$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), $2.35-\left(\mathrm{s} ; 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 4.86\left(\mathrm{~s} ; 2 \mathrm{H}, \mathrm{C}-1\right.$ and $\left.\mathrm{C}-1^{\prime}\right), 5.77-5.90(\mathrm{~m} ;$ $\left.4 \mathrm{H}, 2 \times \mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right), 6.25\left(\mathrm{~s} ; 2 \mathrm{H}, 2 \times \mathrm{H}\right.$, arom.). $-\mathrm{MS}\left(\mathrm{FAB}(+)\right.$, glycerol): $413\left(\mathrm{MH}^{+}\right), 206(\mathrm{M} / 2)^{+}$.

1,2,7,8,12b,12c-Hexahydro-13,14-dimethoxy-pyrazino[2,1-a:3,4-aldi-(1,3-dioxolo[4,5-g]isoquinoline)-4,5-diones (12a and 12b)

A suspension of $85 \mathrm{mg}(0.2 \mathrm{mmol}) 11 \mathrm{a}$ and $150 \mathrm{mg}(1.0 \mathrm{mmol})$ diethyl oxalate in 3.0 ml absol. EtOH was heated under reflux for 2.5 h . At first a clear solution is formed, later on 12a precipitated partially. After 14 h at -20° the precipitation was complete. Washing with cold EtOH led to pure $\mathbf{1 2 a}$ (white needles) mp . 360° (decomp., ETOH). $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{8}$ (466.4) Calc. C 61.8 H 4.75 N 6.0 . Found C 61.6 ; H 4.82 N 6.0. UV (MeOH): $\lambda \max (\log \varepsilon)=216(4.6), 269(3.5), 279 \mathrm{~nm}(3.5)$. $\mathrm{IR}(\mathrm{KBr}): 1695(\mathrm{C}=0), 1680(\mathrm{CO})$, $1625 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{C}\right.$, arom.). - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=2.68-2.98\left(\mathrm{~m} ; 6 \mathrm{H}, \mathrm{CH}_{2}\right), 3.39(\mathrm{~s} ;$ $\left.6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 4.85-4.97\left(\mathrm{~m} ; 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.16\left(\mathrm{~s} ; 2 \mathrm{H}, \mathrm{C}-1\right.$ and $\left.\mathrm{C}-1^{\prime}\right), 5.82\left(\mathrm{~s} ; 4 \mathrm{H}, 2 \times \mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right), 6.38$ (s; 2H, arom.). - MS (FD): $=466 \mathrm{M}^{+}, 233(\mathrm{M} / 2)^{+}$.
$\mathbf{1 2 b}$ was prepared analogously. Yield: $60 \mathrm{mg}(63 \%)$ small plates, mp. $273^{\circ}-274^{\circ}(\mathrm{EtOH}) . \mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{8}$ (466.4) Calc. C 61.8 H 4.75 N 6.0 . Found C 61.4 H 4.80 N 6.0 . $-\mathrm{UV}(\mathrm{MeOH}): \lambda \max (\log \varepsilon)=218(4.4)$, 265 (3.5), 279 nm (3.6). - IR (KBr): 1680 (CO), $1620 \mathrm{~cm}^{-1}$ (C=C, arom.). - ${ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=2.64-3.14\left(\mathrm{~m} ; 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.24\left(\mathrm{~s} ; 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.42-3.58\left(\mathrm{~m} ; 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.85(\mathrm{~s} ; 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 4.10-4.28\left(\mathrm{~m} ; 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.50,5.66\left(2 \times \mathrm{d}, 2 \mathrm{H}, \mathrm{C}-1\right.$ and $\mathrm{C}-1^{\prime}, \mathrm{J}=3.7 \mathrm{~Hz}$), $5.81,5.85$ (AB-system, $\left.2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}, \mathrm{J}=1.41 \mathrm{~Hz}\right), 5.92,5.93\left(\mathrm{AB}\right.$-system, $\left.2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}, \mathrm{J}=1.35 \mathrm{~Hz}\right), 6.40,6.48(2 \times \mathrm{s} ;$ $2 \mathrm{H}, 2 \times \mathrm{H}$ arom. $).-\mathrm{MS}\left(\mathrm{FAB}(+), 18\right.$-crown-6): $=468(\mathrm{M}+2 \mathrm{H})^{+}, 467(\mathrm{MH})^{+}, 466 \mathrm{M}^{+} .-\mathrm{MS}(\mathrm{FAB}(-)$, 18 -crown-6) $=466 \mathrm{M}^{-}, 465(\mathrm{M}-\mathrm{H})^{-}$.

References

1 M. Freund and O. Kupfer, Liebigs Ann. Chem. 384, 1 (1911).
2 M. Freund and K. Shibata, Chem. Ber. 45, 855 (1912).
3 A. Mannschreck, H. Koller and R. Wernicke, Kontakte (Darmstadt) 1985 (1), 40.
4 M.-A. Siegfried, H. Hilpert, M. Rey and A. S. Dreiding, Helv. Chim. Acta 63, 938 (1980).
5 D. U. Lee and W. Wiegrebe, Arch. Pharm. (Weinheim) 319, 694 (1986).
6 F. v. Bruchhausen and J. Knabe, Arch. Pharm. (Weinheim) 287, 601 (1954).
7 Y. Okamoto, M. Kawashima and K. Hatada, J. Am. Chem. Soc., 106, 5357 (1984).
8 Y. Okamoto, M. Kawashima, and K. Hatada, unpublished data.
9 W.-J. Kim, D.-U. Lee and W. Wiegrebe, Arch. Pharm. (Weinheim) 317, 438 (1984).
10 D. Bruns, Arch. Pharm. (Weinheim) 243, 60 (1905).
11 A. H. Salway, J. Chem. Soc. 97, 1216 (1910).
2 Org. Synth. Coll. Vol. 3, 410 (1955).

[^0]: ${ }^{+)}$Dedicated to Prof. Dr. Maurice Shamma, The Pennsylvania State University, on the occasion of his 60th anniversary.
 ${ }^{* *)}$ Index \mathbf{a} : racemates; index \mathbf{b} : miso forms.

