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Variable Selection for Market Basket

Analysis

Katrin Dippold Harald Hruschka

February 2010

Results on cross category e�ects obtained by explanatory market basket
analyses may be biased as studies typically investigate only a small fraction of
the retail assortment (Chib et al. 2002). We use Bayesian variable selection
techniques to determine signi�cant cross category e�ects in a multivariate
logit model. Hence, we achieve a reduction of coe�cients to be estimated
which decreases computation time heavily and thus allows to consider more
product categories than most previous studies. We present three di�erent
approaches to variable selection and �nd that an adaptation of a technique by
Geweke (2005) meets the requirements of market basket analysis best, namely
high numbers of observations and cross category e�ects. We show (1) that
only a moderate fraction of possible cross category e�ects are signi�cantly
di�erent from zero (one third for our data), (2) that most of these e�ects
indicate complementarity and (3) that the number of considered product
categories in�uences signi�cances of cross category e�ects.

Keywords: Market basket analysis, cross category e�ects, variable selection,
multivariate logit model, pseudo likelihood estimation
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1 Introduction

As a rule, consumer purchase decisions involve multiple products. The most prominent
example is the so called market basket, which is de�ned as the set of product categories
purchased by one shopper in one store during a single shopping trip. The shopper is
confronted with a �pick-any� decision, where he has to choose a subset of categories from
a retailer's assortment. For every single category, he decides if he wants to buy it or
not, leading to as many purchase or non-purchase decisions as categories are available at
the store (Russell et al. 1997, 1999). In contrast to brand choice, the number of chosen
alternatives, i.e., categories, is not known a priori.
The main goal of market basket analysis is to uncover the pattern of cross category

relations within a retailer's assortment. Possible relations include complementarity, sub-
stitution, and independence. Usually, two categories are regarded as complements (sub-
stitutes) if their cross price elasticities are negative (positive) (e.g., Shocker et al. 2004;
Bucklin et al. 1998; Russell and Petersen 2000). These concepts are modi�ed in mar-
ket basket analysis where categories are considered as complements (substitutes) if their
cross e�ects are positive (negative), that is if categories are purchased jointly more (less)
frequently than expected under stochastic independence (Betancourt and Gautschi 1990;
Hruschka 1991; Hruschka et al. 1999; Mulhern and Leone 1991).
There are various causes for cross category e�ects. Several categories may be bought

at the same time for the sake of convenience (Bell and Latin 1998; Russell et al. 1999)
or to minimize transaction costs of purchase (e.g., costs of information search, purchase
initiation, transport of goods or invoice settlement). This tendency for one-stop-shopping
leads to an overall complementarity between categories of one assortment. On the other
hand, the fact that categories compete for limited budgets of shoppers contributes to
substitutability between categories (Niraj et al. 2008).
Moreover, di�erent complementarity e�ects may be distinguished w.r.t. consumption

and purchasing, respectively. Consumption complementarity means that the utility for
the joint consumption of two categories is higher than the sum of their individual utilities
(Shocker et al. 2004; Niraj et al. 2008). Cake-mix and frosting represent a well known
example. Purchase complementarity is assumed in the marketing literature if marketing
activities in one category in�uence purchase decisions not only in the promoted category
but also in other categories (Erdem 1998; Manchanda et al. 1999; Shocker et al. 2004).
Complementarity and substitution are rather complex concepts which often lead to

contradictory conclusions. Though these concepts may be helpful for prior determina-
tion of relevant cross category e�ects in small sized problems (Manchanda et al. 1999;
Niraj et al. 2008), such an approach appears to be futile for larger assortments. Results
of empirical studies on relations of categories in retail assortments are not consistent. The
probit model of Chib et al. (2002) for 12 categories reveals positive interaction e�ects
indicating a general assortment-wide complementarity. Also, Hruschka et al. (1999) �nd
mainly complementary e�ects between various categories. In their study, only tobacco
product are subject to substitutive e�ects. Russell and Petersen (2000) uncover only
substitutive relations among paper goods categories. Boztu§ and Hildebrandt (2008)
replicate the substitutive relations for the paper goods categories. They also �nd substi-
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tutive relations among various breakfast beverages and among di�erent detergents. On
the other hand, these authors obtain complementary relations among normal beverages.
Because of the di�culties to determine relationships a priori and contradictory empirical
results, we conclude that the use of an appropriate statistical method is necessary to
decide on strength and type of relations between categories.
Over the last decades, di�erent techniques to analyze market basket data and study

cross category e�ects have been developed in the �elds of statistics, data mining, and
marketing research. This progress has been promoted by the growing availability of mar-
ket basket data acquired by conventional and electronic retailers, loyalty card programs
and data providers (e.g., Boztu§ and Silberhorn 2006). We follow the established classi�-
cation of market basket analysis methods into exploratory and explanatory models (Mild
and Reutterer 2003; Boztu§ and Silberhorn 2006; Boztu§ and Hildebrandt 2008). Ex-
ploratory models typically aim at the discovery of purchase patterns or basket clusters
from POS scanner data. For the most part, exploratory models do not include addi-
tional covariates, such as marketing mix variables or consumer demographics. Methods
like association rules (e.g., Buchta 2007), vector quantization (e.g., Boztu§ and Reutterer,
2008), collaborative �ltering (e.g., Mild and Reutterer 2003), and association measures
(e.g., Hruschka 1985) condense a large amount of input data to a few statements, rules,
prototypes or similarity measures. Of course, such methods involve loss of information
(Hildebrandt and Boztu§ 2007). Besides, exploratory models are not well suited for fore-
casting (Boztu§ and Hildebrandt 2008). To summarize, exploratory model types can be
used to uncover cross category relations, but not to explicate their causes. Still, they are
useful for a �rst step to discover unknown relationships.
Explanatory models, on the other hand, aim at explaining e�ects and therefore in-

clude additional covariates. Data sets for explanatory models not only consist of market
baskets, they also comprise customer attributes and marketing mix variables. Usually,
models have logit or probit functional forms. Seminal work on the application of a probit
model for market basket analysis was done by Manchanda et al. (1999). A multivariate
probit model derived from random utility theory represents interdependent and simulta-
neous choices of categories. Characteristic of the probit model, cross-category e�ects can
be asymmetric across pairs of categories. These e�ects are incorporated in error correla-
tions which makes interpretation more di�cult. Russell and Petersen (2000) apply the
multivariate logit (MVL) model to market basket analysis.
Typically, the number of cross category e�ects studied by explanatory models is limited

in scope. Both Manchanda et al. (1999) and Russel and Petersen (2000) investigate four
categories only. We �nd that only a few studies with multivariate logit and probit models
have investigated more than six categories at a time. An overview of publications that
focus on multicategory purchase incidence decisions with logit and probit models is given
in table 1.
Only two publications study a comparatively higher number of categories. Hruschka

et al. (1999) implement the MVL model for 73 categories. They estimate this model
after discovering signi�cant cross category e�ects of univariate logit models by a stepwise
forward-backward procedure. Boztu§ and Reutterer (2008) proceed in two steps. In
the �rst step, they start from basket data on 65 categories and determine prototypes
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Table 1: Maximum number of product categories investigated

Logit Probit

Publication Categories Publication Categories

Hruschka et al. (1999) 73 Manchanda et al. (1999) 4
Russell & Petersen (2000) 4 Chib et al. (2002) 12
Boztu§ & Hildebrandt (2008) 5 Duvvuri et al. (2007) 6
Boztu§ & Reutterer (2008) 65

of market baskets by vector quantization. In the second step, they estimate one MVL
model for each prototype with about 5 categories.
We stick to the MVL model in this paper, but eliminate insigni�cant cross category

e�ects by Bayesian variable selection methods. Therefore, we are in a position to con-
sider a much higher number of categories than most previous studies. Moreover, we are
able to investigate whether cross category e�ects are biased if a considerable number of
categories, which market baskets of shoppers may contain, are ignored.
The MVL model is explained in section 2. Next, we state why variable selection is the

appropriate concept for our goals and present three di�erent selection methods (section
3). We apply these methods to a data set acquired at a Bavarian supermarket and discuss
the results in section 4. The paper ends with conclusions and remarks on future research
possibilities (section 5).

2 Model and Estimation

2.1 Multivariate Logit Model

The MVL model is based upon seminal work of Cox (1972) and Besag (1974). Data
input consists of i = 1, · · · , I market baskets. A market basket i is a binary vector
Yi = [Yi1, ..., YiJ ] of a certain combination of categories j = 1, · · · , J . A binary variable
Yij equal to one indicates that category j is present in market basket i. Deterministic
utility V (Yi) of market basket i is speci�ed as:

(1) V (Yi) =
∑

j

αjYij +
∑
j<k

θjkYijYik

This speci�cation implies θjj = 0. αj denotes the constant term of category j. θjk

symbolizes a �rst order interaction or cross category e�ect between categories j and k. It
is important to notice that θjk = θkj . Otherwise, the model would not be identi�ed, i.e.,
there would be no unique coe�cient vector maximizing the likelihood (see Russell and
Petersen (2000) for an intuitive proof). The model is restricted to �rst-order interaction
e�ects in order to limit the number of coe�cients and to keep the analysis tractable and
frugal. Interactions between more than two categories are neglected. We assume that
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absolute values of higher order interaction coe�cients are small compared to �rst order
interaction coe�cients.
Purchase probability of market basket Yi (which equals the joint probability of category

purchases) is given by the MVL model1 with Y ∗ denoting the set of all |Y ∗| = 2J potential
baskets:

(2) P (Yi) = exp(V (Yi))/
∑
Y ∗

exp(V (Y ∗))

Because of the complex form of the joint probability distribution, we work with full
conditional category probabilities which are much easier to compute. Besag (1974) and
Cressie (1993) prove that the joint probability P (Yi) can be uniquely derived from a
consistent set of full conditional distributions P (Yij = 1|Yik) (for details on the derivation,
see Russell and Petersen (2000) and the appendix of Boztu§ and Hildebrandt (2008).).
The conditional purchase probability of category j given purchases of other categories

k 6= j can be deduced as

(3) P (Yij = 1|Yik) = exp(Vi,j|k)/(1 + exp(Vi,j|k))

Vij|k = αj +
∑

k 6=j θjkYik gives the conditional utility of a purchase from category j in
basket i given purchases of other categories.

2.2 Estimation

Because of the complexity of the denominator of the joint probability (expression (2)),
maximum likelihood (ML) estimation of the MVL model becomes intractable for a larger
number of categories. That is why we use pseudo likelihood (PL) estimation which results
in coe�cients that are consistent but not e�cient (Moon and Russell 2004).
Besag (1975) suggested PL estimation of the MVL as approximation to ML. PL es-

timation was developed further by Cressie (1993). Researchers in the �eld of Bayesian
learning and pattern recognition proposed or applied PL approximation (e.g., Murray
and Ghahramani 2004; Wang et al. 2000; Yu and Cheng 2003). The idea was also em-
ployed in marketing applications of the MVL model (e.g., Moon and Russell 2004) as
well as in other �elds (see, e.g., Ward and Gleditsch (2002) for an application in political
science or Sherman et al. (2006) for an application to medical data).
The PL of the MVL model given coe�cients β = (α, θ) is de�ned as (Cressie 1993):

(4) PL(β) =
∏

i

∏
j

P (Yij |Yik, β)

One element P (Yij |Yik, β) of the pseudo likelihood is expressed as

(5) P (Yij |Yik, β) = exp(αjYij +
∑
k 6=j

θjkYijYik)/(1 + exp(αj +
∑
k 6=j

θjkYik))

1The MVL model is also known as autologistic model and is frequently used to analyze autocorrelation
in space or time (Magnussen and Reeves 2007).
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Taking logs we obtain the pseudo loglikelihood (PLL):

(6) PLL(β) =
∑

i

∑
j

log P (Yij |Yik, β)

3 Selection of Cross Category E�ects

The model introduced in section 2 consists of J + J(J − 1)/2 coe�cients. Even for
assortments of moderate size, one has to deal with the involved complexity of estimating
and interpreting a large number of coe�cients. Of course, adding price and promotion
variables would further increase complexity.
That is why we intend to reduce the possible J(J − 1)/2 cross category e�ects. A

lower number of cross category coe�cients not only eases interpretation, it also speeds
up estimation. To calculate the conditional probability P (Yij = 1|Yik), we do not have to
sum over all J−1 other categories, but only over pδ−1 interacting categories with pδ−1
as number of θjk 6= 0. The third and maybe most important advantage of excluding
irrelevant coe�cients is model robustness, meaning that the PLL value does not change
much if the model is applied to validation data which have not been used for estimation.
Estimating all possible coe�cients, on the other hand, could result in over�tting the
model with many coe�cients reproducing noise in the estimation data.
A priori, we do not know which pairs of categories interact (θjk 6= 0) and which pairs of

categories are independent (θjk = 0). Therefore, we use variable selection techniques to
eliminate insigni�cant cross category coe�cients. To our knowledge, variable selection or
similar techniques for variable reduction have only been applied once before in the context
of market basket analysis (Hruschka 1991)2. In all other publications, the problem of
parameter abundance has been tackled with a priori selection of a small number of
categories, which could lead to biased estimates of cross category e�ects (Chib et al.
2002).
Given the high number of subsets of cross category e�ects equal to 2J(J−1)/2, it is

obvious that an examination of every possible model is tedious and may even be infeasible.
George and McCulloch (1993) propose stochastic search variable selection (SSVS) for
such a situation, which avoids the calculation of the posterior probability of all models.
Instead, SVSS suggests only more �promising� variable subsets with higher posterior
probability.
We compare three di�erent Bayesian approaches to variable selection appropriate for

binary logit models. We use these variable selection approaches because the conditional
purchase probabilities of each category j given purchases of other categories k 6= j have
a binary logit form for the MVL model (see expression 3). All three algorithms provide a
vector with posterior coe�cient estimates and a vector with probabilities that a coe�cient
is di�erent from zero. Two of these algorithms have been applied successfully for binary
logit models before, but the number of predictors was much lower than in our market

2Hruschka (1991) applied a model selection method based on the Marquardt algorithm that deletes
interaction e�ects if they are determined as insigni�cant by likelihood ratio tests.
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basket analysis study. The third algorithm is a modi�cation of a variable selection method
for linear regression.

3.1 Algorithm of Groenewald and Mokgatlhe (A1)

We choose the algorithm of Groenewald and Mokgatlhe (2005) because of its simple
sampling scheme for coe�cients and its forecast robustness and accuracy in tests on
smaller data sets. This algorithm works with Bayes factors. The current model is named
Mt with coe�cient vector βδ

j = (αj , θ
δ
jk) with category constant and pδ − 1 included

cross category e�ects. Accordingly, each model Mt has a binary indicator vector δt of
length J(J − 1)/2 for coe�cient inclusion. The marginal likelihood of a model Mt for all
purchases in category j, i.e., Yj , can be written as

(7) m(Yj |Mt) = L(βδ
j |Yj ,Mt)π(βδ

j , σj)π(σj)/π(βδ
j , σj |Yj ,Mt)

with scale parameter σj , the prior on parameters π(βδ
j , σj) and the likelihood function

L(βδ
j |Yj ,Mt).

The intractable posterior likelihood, i.e., the denominator of the marginal likelihood, is
calculated by introducing latent variables (Tanner and Wong 1987) and applying Gibbs
sampling steps as proposed by Chib (1995) to the conditional probability components of
the posterior density

(8) π(βδ
j , σj |Yj ,Mt) = π(αj |Yj ,Mt) π(θδ

j1|αj , Yj ,Mt) ... π(σj |βδ
j , Yj ,Mt)

Posterior coe�cient values for category constant and interaction e�ects are computed
by drawing from uniform distributions within a second Gibbs cycle. A single coe�cient
value βj = (αj , θjk) is sampled as follows:

βjk = −σjln((1− υjk)/υjk)(9)

with

υjk|ajk, bjk, σj

∼ U(exp(ajk/σj)/(1 + exp(ajk/σj)), exp(bjk/σj)/(1 + exp(bjk/σj))

ajk = maxi∈Ajk
[Y −1

ik log(U(0, 1)/(1− U(0, 1)))−
∑
k′ 6=k

βY ik′ )]

bjk = mini∈Bjk
[Y −1

ik log(U(0, 1)/(1− U(0, 1)))−
∑
k′ 6=k

βY ik′ )]

Ajk = i : ((Yij = 1) ∩ (Y ik > 0)) ∪ ((Yij = 0) ∩ (Y ik < 0)),
Bjk = i : ((Yij = 0) ∩ (Y ik > 0)) ∪ ((Yij = 1) ∩ (Y ik < 0))(10)

U(u1, u2) denotes a random number uniformly distributed over the interval [u1, u2].
Scale parameters σj are drawn from the following distribution:

(11) π(σj |βδ
j ) ∝ σ−pδ−2

j exp(
∑

βjk/σj)/
∏

(1 + exp(βjk/σj))2
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Averaged over the Gibbs sampling steps, estimates are used to calculate the numerator
of m(Yj |Mt). Marginal likelihoods are calculated for models including and excluding each
single cross category coe�cient θjk. The evidence of the respective Bayes factor for the
simpler null model (exclusion of θjk) is evaluated according to the guidelines of Je�reys
(1961) which favor simpler models, as suggested by Gill (2002). This result is put into
the respective position of indicator vector δt.

3.2 Algorithm of Tüchler and Scott (A2)

We also test the algorithm of Tüchler (2008) developed as variable selection technique for
logit models. It is based upon the concept of SSVS promising higher e�ciency compared
to algorithm A1 and only samples from standard distributions. The fundamental idea of
SSVS is to derive a binary indicator vector δ with J(J−1)/2−pδ zeros and pδ ones. If an
element of δ is 1, the respective coe�cient is left in the model, otherwise it is eliminated.
By means of data augmentation (Tanner and Wong 1987), stochastic utility values Ỹij

for purchase or non-purchase of category j are introduced as latent variables in analogy
to the utility maximization concept of McFadden (1974). Drawing two uniform random
numbers U1 = U(0, 1) and U2 = U(0, 1), latent stochastic utilities are sampled as follows:

(12) Ỹij = − log(− log U1/(1 + exp(Vi,j|k))− log U2/ exp(Vi,j|k) (1− Yij))

Vi,j|k = αj +
∑

k θjkYik and k runs over the pδ−1 interacting coe�cients di�erent from
zero only.
The logit problem with a binary dependent variable Yij is transformed into a linear

regression with Gumbel distributed error terms εi being approximated by a mixture
of normal distributions (cf. Frühwirth-Schnatter and Frühwirth 2007). For the mixture
approximation, every market basket is assigned to one of r = 1, ..., 10 normal distributions
with speci�c mean mr and variance s2

r .
Indicators are sampled by a subalgorithm of Smith and Kohn (2002) using conditional

priors for the indicators and marginal likelihoods p(Ỹ |δ,R) with respect to the reduced
coe�cient vector βδ and with utilities vector Ỹ , indicators δ, and index of the assigned
mixture component R with mean vector m = (m′

ri) and covariance matrix Σ = diag(s2
ri).

As estimation uses the reduced form of the coe�cient vector βδ, the market basket matrix
is adapted accordingly, which is symbolized by Y δ.
The pδ coe�cients di�erent from zero are sampled from the normal distribution

p(βδ|Ỹ , R) ∼ N(c, C)(13)

with c = CY δβδΣ−1(Ỹ −m) and C−1 = (Y δ)′Σ−1Y δ

in one step. New coe�cient values are sampled by a Metropolis-Hastings step (Scott
2006).

3.3 Algorithm of Geweke (A3)

We adapt an algorithm of Geweke (2005) developed for linear regression to logit models
by introducing and sampling latent utilities the same way as in algorithm A2. The linear
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regression version of this algorithm proved to be stable and e�cient in applications. It
also exactly discriminated relevant against irrelevant predictors. Another advantage of
this algorithm is the possibility to truncate values of coe�cients. Prior values indicated by
an underline are set for β, error precision h, null-probability of coe�cient j ρj and degrees
of freedom ν. The starting point for estimation is a model Mt with a speci�c subset of
coe�cients k = 1, ..., pδ. Assuming a priori independence of coe�cients, the probability
ρj = p(βj = 0|βk(k 6= j), Y,Mt, h) conditional on the other coe�cients currently in
model Mt is calculated. Derived from the conditional posterior distribution p(βj |βk(k 6=
j), Y,Mt, h), ρj is proportional to p

j
exp(−h

∑I
i=1 z2

i /2) with zi = Ỹij −
∑

j 6=k βjYjk.

If this probability p(βj = 0) is smaller than a random uniform number U(0, 1), the
truncated value of βj and the error precision h are sampled as follows:

βj ∼ N(βj , h
−1
j )(14)

with

hj = hj + h
I∑

i=1

Y 2
ij , βj = h

−1
j (hjβj

+ h
I∑

i=1

Yijzi)

h ∼ χ2(I + ν)/(sse + s2)(15)

β and h are sampled within a Gibbs cycle in which coe�cient βj is conditioned on the
other coe�cients βk and error precision h depends on the sum of squared residuals sse
given the sampled constant and interaction e�ects.

4 Empirical Study

4.1 Data

20,000 market baskets collected at a supermarket in Bavaria are randomly split into two
data sets of equal size. One set (estimation data) is required for estimation, the second
set (validation data) is used to determine the predictive accuracy of MVL models. From
all 209 categories in the original data, we only use the 30 categories purchased most
frequently.3 Basket size, which is the number of categories contained in one basket,
ranges between 1 and 19. Average basket size is 3.99 for the estimation data, and 4.01
for the validation data. Column 3 and 4 of table 2 show the categories considered together
with their purchase frequencies.

4.2 Comparison of algorithms

Our goal is to study the suitability of the three variable selection algorithms described
in section 3 for market basket analysis, primarily w.r.t. the ability to uncover signi�cant
cross category e�ects but also w.r.t. predictive accuracy and computation times for esti-
mation. We measure predictive accuracy by cross-validated pseudo loglikelihood values

3We decide to analyze a smaller number of categories to ensure a clear presentation of results.
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Table 2: Data Description and Estimated Category Constants

Number Abbreviation Category Name Purchase Frequency αj (A1) αj (A2) αj (A3)

1 FRU Fruit 3141 (3099) -1.067 -1.535 -2.079
2 BRE Bread 3098 (3078) -0.974 -1.452 -1.719
3 VEG Vegetables 2547 (2599) -1.349 -1.445 -2.445
4 MAG Magazines 2151 (2092) -1.537 -1.296 -1.732
5 YOG Yoghurt & Curd 2134 (2194) -1.554 -1.779 -2.650
6 MIL Milk 1907 (1971) -1.721 -1.786 -2.781
7 CHO Chocolate 1497 (1545) -1.903 -1.716 -2.401
8 SOF Soft Drinks 1469 (1492) -1.860 -1.613 -2.049
9 BEE Beer 1423 (1389) -1.938 -1.581 -2.027
10 CIG Cigarettes 1395 (1439) -1.935 -1.750 -2.126
11 CHE Cheese 1286 (1225) -2.168 -1.907 -3.273
12 JUI Juice 1280 (1342) -1.407 -2.045 -2.672
13 BUT Butter 1250 (1258) -2.270 -1.989 -3.548
14 UHT UHT Milk 1087 (1112) -2.324 -2.127 -3.268
15 FAT Fat & Oil 1055 (1121) -2.437 -1.995 -3.447
16 SOU Soups & Sauces 1048 (1015) -2.444 -2.448 -3.373
17 TIN Tinned Sour Food 1041 (1056) -2.411 -2.074 -3.535
18 WAT Water 1024 (1010) -2.322 -1.623 -2.209
19 SPI Spices & Mustard 965 (896) -2.435 -2.106 -3.112
20 CUT Cut Cheese 955 (1077) -2.551 -2.049 -3.801
21 SWE Sweets 940 (898) -2.350 -2.439 -2.938
22 SEA Seasonal Items 937 (923) -2.418 -1.999 -2.954
23 BAK Baking Ingredients 905 (992) -2.619 -2.221 -3.335
24 ROL Rolls 809 (778) -2.517 -2.363 -3.144
25 SNA Snacks & Crisps 801 (786) -2.570 -2.581 -3.235
26 FOI Foil & Plastic Bags 798 (720) -2.579 -2.305 -3.037
27 COF Co�ee 775 (781) -2.659 -2.798 -3.231
28 PAS Pasta 724 (723) -2.863 -2.475 -3.720
29 TRU Tru�es 713 (738) -2.664 -2.542 -3.089
30 HYG Hygiene Articles 699 (707) -2.679 -2.410 -3.390
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(CV-PLL), i.e., PLL values of models applied to the validation data after estimation.
The PLL value for the model consisting of constants only is -112,519.76 (estimated con-
stants of this model equal the respective log odds, i.e., logarithms of ratios of the relative
purchase frequencies and relative non-purchase frequencies, for the estimation data), its
CV-PLL value amounts to -112,891.57.

Table 3: Performance and E�ciency Measures

Algorithm 1 Algorithm 2 Algorithm 3
Groenewald Tüchler Geweke

Duration 384.32h 54.9h 2.4h
PLL -103,086.35 -107,419.83 -100,162.02
CV-PLL -103,916.04 -107,921.22 -101,329.06
Included Interactions 74 148 151

All three variable selection algorithms converge quickly. The number of burn-in and
saved iterations as well as the appropriate amount of chain thinning is determined indi-
vidually for every algorithm to ensure a comparably good adaptation to the data. Our
requirements for inclusion of coe�cients are rather strict (average exclusion probability
ρ < 0.1, indicator average over iterations δ > 0.9, absolute value of coe�cient |θjk| > 0.1).
All estimated models turn out to be robust as CV-PLL values demonstrate. Computa-
tion times vary between two extremes (see table 3). Computing times for A1 are very
high and increase strongly with the number of categories considered.
A3 achieves the largest improvement of PLL, followed by A1, whereas improvement

attained by A2 is rather modest. A1 includes approximately half the number of cross
category e�ects of A2 or A3. Therefore, comparing A1 to its competitors may be con-
sidered unfair. Relaxing the inclusion probability from .9 to .5 and the absolute value
of |θjk| > 0.1 to |θjk| > 0.045 in A1 results in a a model with 150 interaction e�ects.
This enlarged model leads to PLL and CV-PLL values of -100,788.59 and -101,741.87,
respectively, which are close to the values obtained by A3.
There is some variation of the relative sizes of constants due to their dependency on

the number and the magnitude of included interaction e�ects (see table 2 columns 5 to
7). With regard to the �ve largest cross category e�ects, there is a remarkable overlap
between algorithms (see table 4 for category pairs in descending order of interaction
coe�cients).
Using absolute values of cross category coe�cients as proximities, we provide MDS

graphics (see �gure 1, created with SPSS Proxscal). These graphics reveal similar clus-
ters of categories for the three selection algorithms. Categories of daily nutrition, such
as milk, bread, fruit, vegetables, yogurt, etc., have large cross-category e�ects and in-
teract with many other categories. Within this broad cluster, more subclusters can be
identi�ed: fresh produce (milk, butter, vegetables, cheese) as well as bread, rolls, and
cut cheese or soups/sauces, fat/oil and pasta interact heavily. Beverage categories (i.e.,
water, beer, soft drinks) interact highly, but show weak interactions with the remaining
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Table 4: Five Largest Cross Category E�ects

A1 A2 A3

Cut Cheese and Bread Pasta and Soups & Sauces Cut Cheese and Bread
Beer and Water Cut Cheese and Bread Pasta and Soups & Sauces

Milk and Yogurt & Curd Fruit and Vegetables Beer and Water
Beer and Soft Drinks Chocolate and Tru�es Baking Ingred. and Fat & Oil

Pasta and Soups & Sauces Co�ee and Foil & Plastic Bags Fruit and Vegetables

Figure 1: MDS graphics based on A1, A2 and A3

assortment. Magazines are independent from the remaining assortment with the excep-
tion of cigarettes. There exists a strong connection between categories in the candy
category which could be caused by proximity of shelves. Interestingly, no algorithm �nds
any category that is completely independent of the other categories.
Equations with estimated coe�cients show to what extent selection algorithms provide

similar or di�erent results on interactions. As examples, we choose the categories fruit,
chocolate, beer, and pasta (see table 5). All algorithms reveal strong positive interactions
equally well, less pronounced interactions are missed by A1 and in a few cases by A2.
Di�erences between the algorithms are most striking for substitutive interactions. In the
beer category, for example, A1 does not detect any negative interaction. A2 and A3, on
the other hand, �nd substitutive e�ects but attribute it to di�erent categories.
Forecasting accuracy of A1 is high, but A1 does not perform well in terms of compu-

tation times. This drawback of A1 will intensify, if covariates (e.g., price, promotions)
are added. High computation times also rule out using A1 as component of an extended
model with latent heterogeneity. Another weakness of this algorithm is its tendency to
underestimate interaction e�ects which is to a large degree due to the high number of
inclusion probabilities in the range between 20% and 90% (see �gure 2)4.
Computation times of A2 are acceptable, but A2 is clearly inferior to A1 and A3 in

4Mean delta and mean rho respectively are computed as average over all sampled values. Graphics
include indicators for constants.
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Table 5: Coe�cients for fruit, chocolate, beer, and pasta

Fruit Chocolate Beer Pasta

A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

FRU -1.067 -1.535 -2.079 .147 .465 .381

BRE .139 .238 .346 .113 .126

VEG .990 .987 .284 .487 .648

MAG -.110

YOG .291 1.034 .670 .120 .184

MIL .202 .341 .487 .103 .150 .407 .567

CHO .147 .465 .381 -1.903 -1.716 -2.401 -.354

SOF .323 .545 .920

BEE -.354 -1.903 -1.581 -2.027

CIG .260

CHE .138 .242 .364 .220 .432

JUI .105 .331 .148 .337

BUT .140 .365 .377 .306 .334

UHT .148 .442

FAT .109 .339 .567

SOU .164 .521 .385 .277 .322 1.094 1.235

TIN .195 .509 .407

WAT .224 .396 .852 1.191

SPI -.112 .404

CUT .183 .135 .480

SWE .560 .368 .258 .881 .865

SEA .160 .183 .526 .240 .129 .664 -.316

BAK .484 .375 .157 .414 .531 -.545

ROL .323

SNA .364 .493 .456

FOI .390

COF

PAS -2.863 -2.475 -3.720

TRU .231 .976 .850

HYG .542
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Figure 2: Histograms of inclusion/ exclusion probabilities

terms of PLL values. Figure 2 shows that A2 fails to exclude insigni�cant e�ects5 and
consequently results in many very small interaction e�ects (|θjk| < 0.1).
A3 accomplishes the best overall performance, both in terms of computation time and

PLL values. Parameter exclusion probabilities ρ have high discriminative power (see
�gure 2). W.r.t. coe�cients, estimation is very accurate, and truncation prevents the
increase of coe�cients. Conditioning each coe�cient on the other coe�cients does not
slow down estimation, as suspected by Geweke (2005). Taking all these factors into
account, we propose to use A3 for market basket analysis. Accordingly, the rest of our
paper discusses results obtained by A3.

4.3 Results of Algorithm A3

Contrary to Chib et al. (2002) or Russell and Petersen (2000), who analyze 12 and 4
categories, respectively, we do not �nd all possible cross category e�ects to be signi�cantly
di�erent from zero. Our result that 34.5% of these e�ects are signi�cant agrees to some
extent with the only comparable publication (Hruschka et al. 1999). Hruschka et al.
report only 4.9% signi�cant interactions for 73 categories many of which have very low
relative purchase frequencies. Please note that such low-frequency categories are not
considered in our study.
The large increase of PLL values of our model over the model which only contains

constants demonstrates that cross category coe�cients are important for the explanation
of purchase probabilities. Interaction e�ects obtained are smaller compared to several
studies whose MVL models consider a small number of categories (e.g., Boztu§ and
Hildebrandt 2008; Boztu§ and Reutterer 2008; Russell and Petersen 2000) and more in
line with Chib et al. (2002).
Our results agree with Hruschka et al. (1999) and Chib et al. (2002). Positivity of

most signi�cant interaction e�ects corroborates the hypothesis of general complementar-
ity among all categories in the assortment, e.g., due to one-stop-shopping. Still, some
negative correlations are revealed, e.g., baking ingredients and cigarettes, baking ingre-

5In this case, A2 includes around 70% of all interactions. Recall that we additionally exclude |θ| < 0.1
for our analysis reducing the number of e�ects by half. This reduction is justi�ed, as the contribution
of smaller e�ects to the PL value is negligible.
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dients and water, water and tru�es, soups & sauces and beer, beer and seasonal items,
water and hygiene products or chocolate and beer.
Chib et al. (2002) argue that considering only a subset of categories induces underesti-

mation of values of interaction e�ects, even signs might change from positive to negative.
Though we already model far more categories than Chib et al., we investigate their
hypothesis by expanding our data set to the 45 most often purchased categories6 and
estimate coe�cients by A3 to explore possible increases or decreases of the interaction
e�ects caused by the number of included categories. We also examine whether we obtain
negative interaction coe�cients if we limit our data set to the 15 most often purchased
categories7. Results for the estimation data are reported in table 6.

Table 6: Variation of Number of Categories Included in the Model

Categories PL Basket Size Complementary Independent Substitutive

15 -61,213.82 2.67 52 (49.5%) 51 (48.6%) 2 (1.9%)
30 -100,162.02 3.99 141 (32.4%) 284 (65.3%) 10 (2.3%)
45 -131,555.53 4.84 188 (19.0%) 794 (80.2%) 8 (0.8%)

The 51 interaction coe�cients determined as insigni�cant considering 15 categories are
also insigni�cant in the 30 categories case. Contrary to the underestimation hypothesis of
Chib et al., the two substitutive e�ects do not become positive, but stay negative in the
30 categories case. The majority of constants and all signi�cant positive cross category
coe�cients are larger for 15 categories compared to the 30 categories model - except for
the constant of the cigarettes category- what might be caused by the lower number of
cross category e�ects. Complementarity is found between seven category pairs that are
independent relations in the 30 category case, e.g., UHT milk and juice. These results
clearly contradict the underestimation hypothesis.
Similar conclusions are drawn from the comparison of the estimation with 30 categories

to the estimation with 45 categories. Independent pairs for the 30 categories estimation
are replicated for the 45 categories case. As a weak support of the underestimation hy-
pothesis, only six of the ten negative interactions from the 30 categories case are identi�ed
as substitutive in the 45 categories case. However, 39 of the 141 positive interactions dis-
covered in the 30 categories set are estimated as independent in the 45 categories set, i.e.,
they are overestimated in the reduced set. Surprisingly, positive interaction estimates
which are signi�cant in both data sets are smaller for the 30 categories data set.
To summarize, reducing the number of analyzed categories leads to biased estimates.

However, no extreme switches from negative to positive or vice versa could be observed.
Generally, the percentage of independent category pairs increases with the number of
6The additional categories are sugar, delicatessen, tinned vegetables, tinned �sh, eggs, condensed milk,
wholewheat bread, zwieback, sparkling wine, toilet paper, personal hygiene items, oral hygiene items,
hair care products, cat food, gifts & candles. Purchase frequencies range from 460 (sparkling wine)
to 3141 (fruit).

7These are fat, milk, yogurt, cheese, butter, UHT milk, bread, chocolate, cigarettes, beer, soft drinks,
juice, fruit, vegetables, and magazines. For purchase frequencies, see table 2.
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categories in the model due to less overestimated coe�cients and more categories with
low purchase frequencies.

5 Conclusions and Future Research

We use variable selection techniques to explore the cross category e�ects of a supermar-
ket assortment within the framework of a MVL model. We test three variable selection
techniques of which only an adaptation of an algorithm of Geweke (2005) meets the re-
quirements of market basket analysis. We �nd that explanatory approaches that consider
only few categories result in biased cross category e�ects. We conclude that the incor-
poration of the most important categories witin an assortment into a model is essential
to obtain less biased parameters. One advantage of our model, especially in contrast to
traditional exploratory methods, is the obvious way in which segmentation or covariates,
such as marketing-mix data or customer demographics, may be integrated.
For reasons of simplicity and clarity we did not implement price and promotion co-

variates so far. However, their inclusion is straight forward: category constants and
interaction e�ects are split into a promotion, a price and a category component. This
enables the di�erentiation between purchase and consumption complementarity explain-
ing consumer purchase behavior in a more detailed way (see, e.g., Hruschka et al. 1999
or Russell and Petersen 2000).
It is not clear how the assumed customer homogeneity in�uences the magnitude of

the interaction e�ects. It might lead to a decrease as category interactions might have
di�erent values and even opposed signs in the various segments. Chib et al. (2002) quite
contrary �nd that a disregard of unobserved heterogeneity leads to overestimated cross
category e�ects. To answer this question, a �nite mixture extension of the MVL model
could turn out to be useful.
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