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INTRODUCTION

The starting point for the study of regulators is Dirichlet’s regulator for a
number field F. If 71 (resp. 2r3) is the number of real (resp. complex) embed-
dings of F, one has the regulator map r : ¢ — H C R™*"2 from the group
of units in the ring of integers O of F' to a hyperplane in R™ 72, Its kernel is
finite and its image is a lattice, whose covolume is Dirichlet’s regulator Rp. In
the late 19" century, Dedekind related this regulator to the residue at s = 1
of the zeta function (r(s) of the number field. Using the meromorphic contin-
uation and the functional equation of (¢ proved by Hecke one can formulate
this relation in the class number formula
lim Cp(s)s(ritra=D) = _%7

where h is the class number of F'; w is the number of roots of unity and the
left hand side is the leading coefficient of the Taylor expansion of (r at s = 0.
In the 1970’s Quillen introduced higher algebraic K-groups K;(OF), i > 0,
generalizing K (OF) = O} and showed, that they are finitely generated. Borel
constructed higher regulators 7, : Kop,_1(0r) — R™ (resp. R™72) if n > 2
is even (resp. odd). He was able to prove, that the kernel of r,, is finite and
its image is a lattice, whose covolume is a rational multiple of the leading
coeflicient of the Taylor expansion of (z at the point 1 — n.

In the following, the construction of regulators was extended to the case of

K> of a curve by Bloch, and then to all smooth projective varieties over Q by
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Beilinson. In this context the regulator maps for the variety X,
Ki(X) — HZ'™'(Xr, R(n)),

have values in the Deligne-Beilinson cohomology of X and are obtained by
composing the natural map K;(X) — K;(X¢) with the Chern character map
Chgi: Ki(Xc) — HZ"'(Xc,R(n)).(!) Beilinson establishes a whole system
of conjectures relating these regulators to the leading coefficients of the Taylor
expansions of the L-functions of X at the integers [Bei84].

He also sketches a proof of the fact, that in the case of a number field, his
regulator maps coincide with Borel’s regulator maps. Then Borel’s theorem
implies Beilinson’s conjectures in this case. Many details of this proof were
given by Rapoport in [Rap88]. With a completely different strategy, based on
the comparison of Cheeger-Simons Chern classes with Deligne-Beilinson Chern
classes, Dupont, Hain and Zucker [DHZ00] tried to compare both regulators
and gave good evidence for their conjecture, that Borel’s regulator is in fact
twice Beilinson’s regulator. Later on Burgos [BG02] worked out Beilinson’s

original argument and proved, that the factor is indeed 2.

Nowadays there exists also a p-adic analogue of the above conjectures. Thanks
to Perrin-Riou [PR95] one has a conjectural picture about the existence and
properties of p-adic L-functions, so that one can formulate a p-adic Beilin-
son conjecture for smooth projective varieties over a p-adic field. There the
Deligne-Beilinson cohomology is replaced by (rigid) syntomic cohomology and
the regulator maps by the corresponding rigid syntomic Chern character.

In [HK06] Huber and Kings show, that one can also construct a p-adic Borel
regulator parallel to the classical Borel regulator, and relate it to the syntomic

regulator by an analogue of Beilinson’s comparison argument.

In a different direction, Karoubi [Kar87| constructed Chern character maps
(resp. relative Chern character maps) on the algebraic (resp. relative) K-theory
of any real, complex or even ultrametric Banach algebra with values in con-

tinuous cyclic homology, where relative K-theory is the homotopy fibre of the

(DThere is a natural action of complex conjugation on Hz' *(Xc, R(n)) and K;(X) lands
in the ivariant part of this action, which by definition is Hy' *(Xgr, R(n)).
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map from algebraic to topological K-theory. In the case, that the Banach al-
gebra is just C, Hamida [Ham00] related Karoubi’s relative Chern character
to the Borel regulator for C?). In the p-adic case Karoubi also conjectured a

relation with p-adic polylogarithms for p-adic fields.

This is the starting point of this thesis. As Karoubi pointed out, the p-adic
Borel regulator should be directly connected with his relative Chern character
in the case, where the ultrametric Banach algebra is just a finite extension of
Q,- In the preprint [Tam07], I was able to make this relation precise. Later
on I realized, that there should be a comparison result for a suitably gener-
alized “geometric” version of Karoubi’s relative Chern character for smooth
quasiprojective varieties over the ring of integers in a finite extension of Q, on
the one hand and the rigid syntomic Chern character on the other hand, and
that one should get the comparison result of Huber and Kings as a corollary
of this. In fact, Besser formulated such a conjecture in 2003 [Bes03]. In the
following, I developped a strategy to prove this conjectural relation, but did
not succeed due to technical problems with rigid syntomic cohomology.

Nevertheless, this strategy works in the analogue complex situation to give a

proof of the following theorem:

Theorem. — Let X be a smooth variety of finite type over C. For any i > 0

the diagram
K(X) Ki(X)
l (=" ~'Chiy l Ch7;

H2 =X, C)/Fil"H?" (X, C) —= HZ(X, Q(n))

commautes.

The interest in this result relies on the fact, that the relative Chern character
is quite explicit in nature, and, that for projective X the map from relative to

algebraic K-theory is rationally surjective. Combined with the comparison of

() After a suitable renormalization, the Borel regulator of any number field F factors through
Kon-1(F) = [1,.r.c K2n—1(C) followed by the Borel regulator for C.
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the relative Chern character with Borel’s regulator, this gives a new proof of
Burgos’ theorem, that Borel’s regulator is twice Beilinson’s regulator.

These results are contained in part I of this thesis. In part II we give a con-
struction of the relative Chern character for smooth affine varieties over the
ring of integers R in a finite extension of Q,,, and prove, that, when the variety

is Spec(R) itself, this essentially gives the p-adic Borel regulator.
Let us now describe the contents of the different chapters in more detail.

Karoubi’s construction of the relative Chern character for a Banach (or
Fréchet) algebra A relies on a Chern-Weil theory for GL(A)-bundles on
simplicial sets using de Rham—Sullivan differential forms. In the first chapter
we adapt this formalism to the geometric case of simplicial complex manifolds
(if A is the algebra of functions on a manifold X, Karoubi’s bundles on
the simplicial set S correspond in our geometric setting to bundles on the
simplicial manifold X ® S). This is similar to the simplicial Chern-Weil theory
developped by Dupont ([Dup76], [Dup78]) except for the consequent use
of what we call topological morphisms of simplicial manifolds (compatible
families of morphisms defined on AP x X, for a simplicial manifold X,)
and topological bundles. The use of topological morphisms and bundles is
motivated by the fact, that the relative K-theory of an affine scheme may
be described in terms of (algebraic, hence) holomorphic bundles on certain
simplicial varieties together with a trivialization of the underlying topological
bundle. The relative Chern character will then be given by certain secondary
characteristic classes for such bundles.

When one now wants to compare regulators on K-theory, one has by con-
struction of these regulator maps to compare characteristic classes of certain
bundles on simplicial varieties (or manifolds). This is often easy, when these
classes exist and are functorial for all (algebraic) bundles, since then it suffices
to consider the universal case B,GL and there the comparison result in ques-
tion follows from the simple structure of the cohomology of BeGL. In our case
one immediately arrives at the problem, that, whereas the Deligne-Beilinson

Chern character classes are defined for every algebraic bundle, the relative
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Chern character classes are not. Note, that it is exactly this kind of problem,
that also arises in [DHZ00].

The solution to this problem in our case is contained in the second chapter.
It also yields a refinement of the secondary classes constructed in chapter 1
for algebraic bundles, which are topologically trivialized, taking the Hodge
filtration into account. The basic idea is to construct another kind of charac-
teristic classes, which exist for all (algebraic) bundles, and from which, in the
case of a topologically trivialized bundle, one can get the secondary classes
constructed before by some simple procedure. These are the so called refined
Chern character classes, which live in a cohomology group, that depends on
the bundle. In some sense, they have a primary component, which is the de
Rham Chern character class, and a secondary component, which comes from
the canonical trivialization of the pullback of a principal bundle to itself. Since
these classes are obtained from the universal case simply by functoriality, it is
clear, that they are well behaved with respect to the Hodge filtration. These
classes then give the secondary classes in the topologically trivialized case sim-
ply by pulling back with a topological section of the corresponding principal
bundle, which corresponds to a topological trivialization of the bundle itself.
With these refined classes the above strategy then gives the comparison of
secondary and Deligne-Beilinson Chern character classes.

In chapter 3, after constructing a good simplicial model for the relative K-
theory, we construct the relative Chern character and compare it with the
Deligne-Beilinson Chern character, first in the smooth affine case, and then
for all smooth varieties of finite type using Jouanolou’s trick. Since our con-
struction of the relative Chern character differs slightly from Karoubi’s one,
we reprove the relation between the relative Chern character for Spec(C) and
Borel’s regulator, using the explicit description of van Est’s isomorphism due
to Dupont. This then gives the comparison of Beilinson’s and Borel’s regulator
for Spec(C) (and hence for number fields).

In part II we try to carry the constructions and results from the first part over
to the p-adic setting. Since rigid analytic spaces are not well suited for de Rham

cohomology (and hence for Chern-Weil theory) due to convergence problems
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caused by integration, we make systematic use of the theory of dagger spaces
developped by Grosse-Klonne [GK99]. After recalling some basic facts and
notations in chapter 4, we show in chapter 5, that the simplicial Chern-Weil
theory in the style of Dupont also works for simplicial dagger spaces, replacing
the standard simplex AP by the dagger space Sp(K (zo, ..., zp) /(3 x; — 1)).
This also gives a notion of topological morphisms in the p-adic setting and
we construct secondary classes for topologically trivialized bundles as in the
complex case.

In chapter 6 we construct the refined and secondary classes for algebraic bun-
dles. This is a little bit harder than in the complex case, since we dot not have
nice functorial complexes computing the different cohomology groups at hand.
The last chapter contains the construction of the relative Chern character in
the p-adic case. Karoubi and Villamayor [KV71] defined topological K-theory
for ultrametric Banach algebras using rings of convergent power series. Since
dagger algebras are not Banach algebras, we first of all show, that one can cal-
culate the topological K-theory of the completion of a dagger algebra, which
is a Banach algebra, also in terms of the dagger algebra and overconvergent
power series. Then we can construct relative K-theory and the relative Chern
character as before. Finally, we compare the relative Chern character in the
case of the ring of integers in a finite extension of Q, with the p-adic Borel reg-
ulator using the explicit description of the Lazard isomorphism due to Huber
and Kings.

We will give some remarks on the problems encountered when trying to com-
pare the relative Chern character with the syntomic Chern character in a

seperate introduction to part II.

In the appendix, we collect some mostly well-known facts used in the main

body of the text, for which we couldn’t find a good reference.

I should point out, that this whole work owes much to the ideas of Dupont

and Karoubi.



NOTATIONS AND CONVENTIONS 11

Acknowledgements

I would like to thank my advisor Guido Kings. He introduced me to the world
of regulators and brought my attention to Karoubi’s relative Chern character.
He patiently listened to all my problems and questions, and often turned my
thoughts to new directions.

It’s a pleasure to thank Amnon Besser for some inspiring discussions during
the “Minerva school on p-adic Methods in Arithmetic Algebraic Geometry” in
Jerusalem 2009 and his interest for my work.

I am grateful to Annette Huber for pointing out a stupid mistake during
presenting her my results.

Furthermore I would like to thank my colleagues for the nice working at-
mosphere and especially Volker Neumaier, with whom I could discuss many
mathematical problems.

Finally, I want to express my gratitude to my parents and my family. My wife
Verena supported and encouraged me constantly and I want to thank her and

my children Clara and Henrike for a wonderful non-mathematical life.

Notations and Conventions

Homological algebra. — If A is a cochain complex and k an integer, A[k]
denotes the complex A shifted k times to the left, i.e. A[k]" = A""* with
differential d 4 = (—1)kd 4.

Let f: A — B be a morphism of cochain complexes. We define the Cone of f
to be the complex Cone(f) which in degree n is A"*! @ B™ with differential

d(a,b) = (—da,db — f(a)). There is a short exact sequence of complexes
0 — B — Cone(f) — A[l] — 0,
where the maps are given by b +— (0,b) resp. (a,b) — a.
Simplicial objects. — We denote by A the category of finite ordered sets
[p] ={0,1,...,p} with morphisms the increasing maps [p] — [¢]. A simplicial

resp. cosimplicial object in a category % is contra- resp. covariant functor

X : A — ¢. We usually denote X ([p]) by X, resp. X?. We denote by & :
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[p—1] — [p], i = 0,...,p the strictly increasing map with i ¢ im(d%). The
induced map X, — X, _1 of a simplicial object is denoted by J; and called
the i-th face operator. Similarly, 0% : [p+ 1] — [p], i = 0,...p is the increasing
surjective map with o?(i) = o*(i+1). The induced map X, — X, is denoted
by s; and called the i-th degeneracy map. We denote the corresponding maps
on a cosimplicial object by 6 : XP~! — XP resp o' : XPt!1 — XP,

If C*® is a cosimplicial object in an abelian category, the associated cochain
complex is by definition the complex --- — CP~! 4 or o .. with d =

i—o(—1)"6".



PART 1

THE COMPLEX THEORY






CHAPTER 1

SIMPLICIAL CHERN-WEIL THEORY

1.1. De Rham cohomology of simplicial complex manifolds

This section mainly recalls Dupont’s computation of the de Rham cohomology
of simplicial manifolds and adapts it to the case of complex manifolds, thereby
fixing notations. This is fundamental for the Chern-Weil theory on simplicial
manifolds.

For an arbitrary complex manifold Y, we denote by &y the sheaf of holomor-
phic functions, by Qf the sheaf of holomorphic n-forms on ¥ and by Q™(Y)
its global sections.

Let X, be a simplicial complex manifold. The sheaves Q}p, p € N, together
with the pullback maps ¢% : Q}p — Q}q for every increasing map [p] — [q]
yield a sheaf®) V%, on the simplicial manifold X,. With the usual differen-
tial we get the complex Q% of sheaves on X,. The (holomorphic) de Rham
cohomology is defined as the hypercohomology

H* (X, 0%, )-

For an arbitrary complex manifold Y, we denote by 4 the sheaf of smooth
complex valued n-forms on Y and by /™ (Y) its global sections. More precisely,
a5 is the total complex associated with the double complex (427, 9, 0), where
/2% is the sheaf of (p,¢)-forms on Y, and for each p

O s PO Lot

Wer. [Del74, (5.1.6)] for the notion of a sheaf on an simplicial topological space.
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is a resolution of Q. by fine sheaves. Thus, if we denote by Q%T the naive filtra-
tion of the holomorphic de Rham complex, then H*(Y, Q%T) may be computed

as the cohomology of the complex Fil"&*(Y) := @, ;. p>, ZPI(Y).

Similarly in the simplicial case: If X, is a simplicial complex manifold, then
H*(X,, Q%) = H*(Tot Fil" o7* (X,)),

where Tot Fil".o7*(X,) is the total complex associated with the cosimplicial
complex [p] — Fil"&7* (X)) (cf. [Del74, (5.2.7)]). For the purpose of simplicial
Chern-Weil theory we need another version of the simplicial de Rham complex.
Let
AP = {(xg,...,a:p) e RPT! ‘ x; > O,Zfzoxi = 1} C RPT!

denote the affine standard simplex. Then [p] +— AP is a cosimplicial
topological space with coface operators & : AP™1 — AP (xg,...,2,) —
(xo,...,2i-1,0,2;,...,2p—1). A function (or form) on AP is called smooth,
if it extends to a smooth function (form) on a neighbourhood of AP in
{3 x; =1} C RPTL. We recall from [Dup76:

Definition 1.1. — A smooth simplicial n-form on a simplicial complex man-
ifold X, is a family w = (wp)p>0, where wy, is a smooth n-form on AP x X,

and the compatibility condition
(6" x 1)*wp = (1 x 8;)*wp—1  on  AP"Lx X,

1=20,...,p, p>0, is satisfied. The space of smooth simplicial n-forms on X,
is denoted by A™(X,).

Dupont considers real valued forms, but this makes no significant difference.
The exterior derivative d and the usual wedge product applied component-wise
make A*(X,) into a commutative differential graded C-algebra.

Next, A*(X,) is naturally the total complex of the double complex
(AM(X,),da,dx), where AM!(X,) consists of the forms w of type (k,I),
that is, wy is locally of the form ZI,J fradx, Ao ANdxg, Adyj, AN dyg,,
where xg,...,x, are the barycentric coordinates on AP and the y; are
(smooth) local coordinates on X, da resp. dx denote the exterior derivative

in A- resp. X-direction. On the other hand we have the double complex
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(Z%(X,),8,dx), where &7F!(X,) = &' (X},) and 6 : &P X,) — FFHH(X,)
is given by Zfzo(—l)iaf. Dupont proves [Dup76, Theorem 2.3]:

Theorem 1.2. — For each | the two chain compleres (A*'(X,),da) and
("1 (X,),6) are naturally chain homotopy equivalent.

In fact, there are natural maps I : A¥(X,) 2 &% X,) : E and chain homo-
topies s : AP (X)) — AFVU(X,), such that

Tody =601, Tody =dxol, (1.1)
droE=FEod, Eody =dxoE, (1.2)

IToE =id, (1.3)
Eol—id=soda+daos, sodx = dx o s. (1.4)

We need a filtered version of this theorem. First of all, observe that we have
a natural decomposition @™ (AP x X)) = @4 ey (AP x X)), where
/FLm (AT x X)) consists of the forms of type (k,l,m), i.e., which are locally

of the form

> froxdri A Ndxg, ANdCjy, A+ ANdCjy AdCry A+ AdG,,,
=k, |J|=L,| K|=m

where xg,...,z, are as usual the barycentric coordinates on A? and the (;
are holomorphic coordinates on X,,. Since the simplicial structure maps of
X, are holomorphic, this direct sum decomposition is respected by the pull-
back maps (§° x id)* resp. (id x ;)*, and thus leads to a direct sum de-
composition A"(Xe) = @y i1 men A¥"™(Xs). Then A*(X,) is the total com-
plex associated with the triple complex (A*™(X,),da,0x,0x) and we write
Fil"A*(Xe) = D1 1imesi>r ARLm(X,). Similarly to the above, we also have
the triple complex (&7*b™(X,), 8, dx, dx) with /*bm(X,) = o/b™(Xy).

Theorem 1.3. — Let X, be a simplicial complex manifold. For each l,m > 0
the two complexes (A (X,),da) and (/" (X,),d) are naturally chain

homotopy equivalent.
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In fact, the maps I, E and s in theorem 1.2 induce maps I : A (X,) =
AP(X)  E and s : ARD™ (X)) — AFTLIM(XL), such that

Toda=601, Todx =0xol, Todx =0xolI, (1.5)
dproE=FEod, FEodx =0xoE, FEodx=0xoFE, (1.6)
IoFE =id, (1.7)
Eol—id = sda + das, sodx = dx os, sody = dx o s. (1.8)
In particular, we get natural tsomorphisms
H* (X, Q)Z(f) ~ H*(Tot Fil"o7*(X,)) = H*(Fil"A*(X,)).
Proof. — We recall the constructions of the maps I, E and s of theorem 1.2.
Let again Y be an arbitrary complex manifold. Let eo, ..., e, denote the stan-
dard basis of R?*T! and xy, . .., x,, the barycentric coordinates on AP. For each

j =0,...,p define the operator h(j) : #™(AP x Y) — &/" (AP x Y) as fol-
lows: Let g : [0,1] x AP — AP be the homotopy ¢g(s,t) = s-€e; + (1 —s) - £.
Then hj(w) = fol i90s((g X idy)*w)ds, where 5,5, denotes the interior mul-
tiplication w.r.t the vector field %.

Lemma 1.4. — h(; maps AFE(AP x YY) to @k (AP x Y).

Proof. — The question being local on Y, we may assume Y to be an open
subset of some affine space C with holomorphic coordinates (i, ...,(y. It is

enough to consider a form of type
w= fdxy N Ndzg, ANdCy N NGy ANdCy A A dC,,
with a smooth function f. Then (g x idy)*w = f o (g x idy)g*(dx;y A--- A
dzi, ) ANdCjy A+ ANdCj, ANdC, A -+ AdC,, and
1
() = ([ 00 i Yiganla o, 1o, ))is)
AdCiy A+ NdCj, N dCey A A dC,,

is of type (k — 1,1,m). O



1.1. DE RHAM COHOMOLOGY OF SIMPLICIAL COMPLEX MANIFOLDS 19

The map I : A¥(X,) — &/!(X}) of theorem 1.2 is now defined by the formula

I(w) = (=1)*(ex x idx,)* (h(—1) © -+ © b)) (wi)- (1.9)

It follows from the lemma, that I maps A®M™(X,) to *bm(X,) = a7b™(X},).
Comparing types, the equalities (1.5) follow from (1.1).

Next we come to the definition of E. For w € «7(X},) the simplicial form E(w)
is given by a (k,1)-form on AP x X, for all p > 0. For p < k this form is 0 and
for p > k it is given by E(w), =

k
= k! Z Z(—l)JI¢(j)dx¢(0) AN (dxd,(])) AN d$¢(k) A dxw.
¢:[k]—[p] \7=0

Here the sum runs over all strictly increasing maps ¢ : [k] — [p] and ¢x :
X, — X}, denotes the corresponding structure map of the simplicial manifold.
Since ¢x is holomorphic, we see, that E indeed induces a map <7 k’l’m(X.) —
ARbm(X,). Again, the equalities (1.6) follow from (1.2).

Finally, if w € A*!/(X,) then s(w) is given by the family

k-1 %

s(w)p = Z 7! Z Z(—l)jl'¢(j)d$¢(0) AL A (dl‘¢(])) FANPIAN da:(b(,)
=0 il \1=0

N gy © 0 g0 (wp),
p > 0, and it follows from the above lemma, that s(w) € AF-Lbm(X,) if

w € ARL™(X,). Again, the identities (1.7) and (1.8) follow from (1.3) and
(1.4). O

Remark 1.5. — The map I in (1.9) is just given by integrating forms on
AF x X}, over AF, where the orientation of A* is given by the k-form dx; A
-+ Adzxy [Dup78, Ch. 1, Exercise 3]:

I(w):/ wr if we AP(X,).
Ak
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1.2. Bundles on simplicial manifolds

Similar to Karoubi [Kar87, Ch. V], we define bundles via their transition
functions. This viewpoint is very well-suited for computations, and we will
associate Chern-Weil theoretic characteristic classes with these bundles in the
next section. To compare this construction with other approaches however,
we have to study the precise relation of the bundles defined below with vector
bundles. This is done in section 1.2.1. The construction of Chern characters on
relative K-groups in chapter 3 naturally leads to the definition of topological

bundles in section 1.2.2 below.

Definition 1.6. — The classifying simplicial manifold for GL,.(C) is the
simplicial complex manifold B,GL,(C), where

B,GL,(C) = GL,(C) x --- x GL,(C) (p factors),
with faces and degeneracies

(925, 9p), ifi =0,
8i(gl,-~-7gp): (gla-"vgigiJrla'--’gp)a lflglgp_lv
(glv"' 7gp71)7 if 4 =D,

Si(gla"'7gp> = (917'"7gi717gi+17"'7gp)7 Z:077p

The wuniversal principal GL,.(C)-bundle is the simplicial complex manifold
E,GL,(C), where

E,GL,(C) = GL,(C) x --- x GL,(C) (p+ 1 factors),
with faces and degeneracies

0i(90s -, 9p) = (905 -+, Gi—1,Git1,- -+ Gp), i=0,...,p, (1.10)
5i(90s -+ 9p) = (905 - - -+ Gis Gis - -, Gp), 1=0,...,p. (1.11)

The canonical projection p : E4GL,.(C) — BeGL,(C) is given in degree p by

(90:--->9p) — (9097 " - - - 9p—19; ).
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Thus B,GL,(C) is the quotient of E4GL,(C) by the diagonal right action of
GL,(C). Obviously F,GL,(C) is a simplicial group and it operates from the
left on B,GL,(C) = E,GL,(C)/GL,(C). Explicitly, this action is given by

(907 e 7gp) : (hl) ceey hp) = (gohlgl_la o 7gp—1hpg;;1)'

We define BoG and F,G in the same way, if G is a discrete group, a group

scheme, etc.

Definition 1.7. — Let X, be a simplicial complex manifold. A holomorphic
GL,(C)-bundle on X, is a holomorphic morphism of simplicial complex man-
ifolds
g: Xe — BoGL,(C).

We also denote such a bundle by E/X, and call g the classifying map of E.
The universal GL,(C)-bundle E™ is the bundle given by id : BsGL,(C) —
B,GL,(C).

A morphism « : g — h of GL,(C)-bundles on X, is a morphism of simpli-
cial complex manifolds a : X — FE4GL,(C), such that a - g = h w.r.t the

abovementioned action. Every morphism is an isomorphism.

Remark 1.8. — Note, that B{GL,(C) may also be viewed as (the C-valued
points of) a simplicial C-scheme. In analogy with the above definition, we
define an algebraic GL,(C)-bundle on a simplicial C-scheme X, to be a mor-

phism g : Xo — BeGL,(C) of simplicial C-schemes.

Remark 1.9. — To give a holomorphic morphism g : X, — BeGL,(C) is
equivalent to give a morphism g; : X; — GL,(C) satisfying the cocycle con-
dition (g1 0 d2) - (g1 0 9y) = g1 © O1.

In fact, if g : X¢ — BeGL,(C) is a morphism, the cocycle condition follows
from the identities dy 0 go = pry 0 gas = g1 0y, J2 0 gy = pry o gs = g1 © s
and g1 00y = 9109y = (pr; 0 g2) - (pry 0 g2) = (g1 0 &) - (g1 © Opy), where
pry, pry : BoGL,(C) = GL,(C) x GL,(C) — B;GL,(C) = GL,(C) denote the
projections.

On the other hand, the composition 86_1 00j4100i420---00, : B,GL,.(C) —
B1GL,(C) is given by the projection pr; to the i-th factor. Hence pr; o g, =
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g1 o@é_lo i+100;420- - -00, and g, : X, — B,GL,(C) is completely determined
by g1. One can check, that, given g1, if one defines g, by the preceding formula,

this indeed gives a morphism of simplicial manifolds X — BeGL,(C).

Exzample 1.10 (Cf. section 1.2.1). — Let Y be an arbitrary complex
manifold and F a holomorphic vector bundle of rank r. Choose an open
covering % = {Uy, a0 € A} of Y such that E‘Ua is trivial for each a € A.
A set of transition functions g.g : Uy N Ug — GL,(C) defininig £ yields
a holomorphic map NM% = HaﬁeA U, NUg — B1GL.(C) = GL,.(C)
and the cocycle condition ensures, that this map extends uniquely to a
holomorphic map g : Ne% — Be.GL,.(C), where N,% denotes the Cech
nerve of %/, i.e. the simplicial manifold which in degree p is given by
No% = 1lg, 4 Uao N---NU,,. Thus we get a GL,(C)-bundle on Ne%

in the above sense.

sy QA€

Example 1.11. — Again let Y be a complex manifold and in addition let S
be a simplicial set. Let &(Y) denote the ring of holomorphic functions on Y
and G the constant simplicial group GL, (€ (Y)). Then a G-fibre bundle (“G-
fibré repéré”) on S in the sense of Karoubi [Kar87, 5.1] may be defined as a
morphism of simplicial sets S — BeG (cf. the proof of loc. cit. Théoreme 5.4).
But G = GL,(0(Y)) may be identified with the group of holomorphic maps
Y — GL,(C) and thus a morphism of simplicial sets S — BeG is equivalent
to a morphism of simplicial complex manifolds Y ® S — BeGL,(C), where
Y ® S is the simplicial manifold given in degree p by ][], s, Y with structure

maps induced from those of S.

1.2.1. Relation with vector bundles. — The notion of a GL,(C)-bundle
on a simplicial manifold has the advantage, that it is very well suited for
computations, at the drawback of being sometimes too rigid. For example, if
E is a GL,(C)-bundle on X,, we may form the associated projective bundle
as a simplicial manifold P(E) — X,, but the associated tautological bundle
is not a G,,-bundle in the above sense. There is the more flexible notion of

vector bundles on simplicial manifolds (or schemes ... ), which we now recall

(ct. [Gil83, Ex. 1.1]).
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Definition 1.12. — A (holomorphic) vector bundle on a simplicial complex
manifold X, is a sheaf & of Ox,-modules, such that each &, is locally free
and for every ¢ : [p] — [¢] the associated map ¢% &, — &, is an isomorphism.
A vector bundle &, is called degreewise trivial, if each &), is trivial, i.e. isomor-

phic to a free Ox, -module.

The precise relation between vector bundles and G L, (C)-bundles is described
in the following lemmata. All this is certainly well-known, but I could not find

an accurate reference.

Lemma 1.13. — Let X, be a simplicial complex manifold. There is a natural

1-1 correspondence

isomorphism classes of . )
] o isomorphism classes of
degreewise trivial _
— holomorphic

holomorphic rank r vector
GL,(C)-bundles on X,
bundles on Xe

Proof. — Let &, be a degreewise trivial holomorphic vector bundle on X,.
Fix an isomorphism 4@ : & = 0%, For any p > 0 and any i € [p] let
7i : [0] — [p] denote the unique map, that sends 0 to i. Then () induces

trivializations z/)gp ) of &, defined as the composition

& & s T o
p < T ©0 Xp-

Then wi(p ) o (1/;3(.” ))_1 : ﬁ}}p — @’}}p is given by a holomorphic map gz-(f ). Xp —
GL,(C). The required morphism g : X¢ — Bo4GL,(C) is then given in degree

pby (g8, 0.

Let ¢ : & — & be an isomorphism of degreewise trivial vector bundles on X,.
Fix trivializiations 1), /(9 of &, &) respectively. They induce trivializations
¢§p ), @/J;(p ) and corresponding morphisms g,¢" : Xo — BeGL,(C) as above.
(p) .

i

Then w;(p ) o Yp O (w,fp ))_1 : ﬁ}}p — S(p is given by a holomorphic map «
X, — GL,(C). It follows from the constructions, that

¢£(p)(¢/-(p))_1 _ agp)wgp)<w§p))—1<a§p))—l and az(p) _ a(()O) o (1)x.
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These conditions imply, that a : Xe — E¢GL,.(C), given in degree p by

(a(()p),..

. ,az(gp )), is a morphism of simplicial manifolds, that satisfies a.- g = ¢'.
This shows, that any isomorphism class of degreewise trivial rank r vector
bundles corresponds to a well defined isomorphism class of GL,(C)-bundles.
On the other hand, given g : Xo — BeGL,(C), we define the associated vector
bundle &, as follows: Set &, = ﬁ}"{p for every p > 0. The structure maps
Ofép1 = Oy — &, = O are given by idﬁ;{p, if i < p, and by (gl(,p))_l,
if i = p. Here gép) : X, — GL,(C) is the p-th component of the map ¢ in
simplicial degree p. The maps s;é,4+1 — &, are given by idﬁ;{p. One checks,
that &, is a well defined vector bundle.

Now let g,9' : Xo — BeGL,(C) be two GL,(C)-bundles and o : ¢ — h a
morphism, i.e. @ : Xq — FoGL,.(C) and a - g = ¢’. Denote the associated

vector bundles by &, &” respectively. Then a induces an isomorphism & =&
(p)
in degree p by &, = 0% N 0%, = &, where oz,(,p) : X, — GL,(C) denotes

the last component of the map given by « in degree p. The diagrams

a;{‘f)oa. .

%
l a®) J/I
&, &l

commute: for ¢ < p this is clear since 9; &,—1 — &), is the identity and for ¢ = p
it follows from the relation o - g = ¢'.

Thus any isomorphism class of GL,(C)-bundles gives a well defined isomor-
phism class of degreewise trivial vector bundles. We have to show that these
constructions are inverse to each other.

Thus let g : Xo¢ — BeGL,(C) be a GL,(C)-bundle with associated vector
bundle &,. Let g : Xo¢ — BeGL,(C) be the morphism associated with &,
and the trivialization id : § = Ox, by the above construction. We want to
prove, that g = g. Since any morphism X, — B,GL,(C) is determined by

its component in simplicial degree 1 (cf. remark 1.9), it suffices to show, that
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g1 = 1. By construction g; is the matrix of the morphism

7 * = =« T
ﬁXllego—)éaleoéooz X+

But since 79 = 61,71 = §° : [0] — [1] this is just 95 LNy <gl—1 07 &, that is
g1-

It remains to show that, given a vector bundle &, and a trivialization 1/1(0) :
b0 — O%, with associated GL,(C)-bundle g : Xo — BesGL;(C), the bundle
constructed above associated with g is isomorphic to &. But an isomorphism
is given explicitly by the sequence of maps @Z);[(;p ). &p =N ﬁ}}p constructed at
the beginning. Again it follows immediately from the constructions, that this

really defines a morphism of vector bundles. O

We fix some terminology. Let X, be a simplicial complex manifold. A mor-
phism U, — X, is an open covering if each U, — X, is an open covering in
the usual sense, i.e. U, = [[, Up,o Where each U, is an open subset of X,
and Ua Upa = Xp. The Cech nerve of Uy — X, is the bisimplicial manifold
N(U,) = Nx,(U,) defined by

Nx, (U-)p,q = (NXp(Up))%

where (Nx,(Up))s is the usual simplicial Cech nerve of U, — X, ie.
(Nx,(Up))qg = Up xXx, --- xXx, Up (¢ + 1 factors) with structure maps as in
(1.10), (1.11).

The diagonal simplicial manifold of N(U,) is denoted by AN (U,).

Lemma 1.14. — Let Uy — Xo be an open covering and #§ a complex of

abelian sheaves on Xo. Then the natural maps
H*(X,, 7)) — H(N(U,), ZJInw.)) — H(AN(Us), ZJ|an(w.))
are isomorphisms.

Here Z(| N(U,) denotes the inverse image of the complex of sheaves ZJ on
N(U).

Proof. — The second isomorphism follows from the theorem of Eilenberg-
Zilber [Del74, (6.4.2.2)].
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Each N(Us)p,e — X is the nerve of an open covering and thus of cohomolog-
ical descent [Del74, (5.3.7)]. Hence N(U,) — X, is of cohomological descent
(loc. cit. (6.4.3)), hence the result. O

We need this in the situation where .ZJ is a complex of differential forms.
Since we only consider open coverings, QiX. N = QéV(U.) and similarly for

smooth forms.

Lemma 1.15. — Let & be a vector bundle on Xo. Then there exists an open

covering f : Uy — Xo such that f*&, is trivial in each degree.

Proof. — Choose an open covering fy : Uy — Xo such that fjé&p is trivial.
Define

for Uy =UP Xyt Xp LERS '

where the i-th component of the map X, — X([)p lis the morphism 7; : X, —

Xo induced by 7 : [0] 225 [p]. Explicitely, if Uy = [[,c 4 Vas then U, =
eo,..apeca 70 H(Vag) N -+ N 7, (Vo). Since 778y — &, is an isomorphism,

£p|ri’1(Vai) is trivial, hence also f,&). O
Remark 1.16. — We have the usual isomorphism
{isomorphism classes of holomorphic line bundles on X.} & H'(X,, 0%,)

(cf. [Gil83, example 1.1]). The cohomology class associated with a degree-
wise trivial line bundle %, is easy to describe: %, is classified by a map
g : Xe — BeGLi(C). Its component in degree 1, g; : X3 — C*, viewed
as an element of T'(X7, ﬁ}"(l) is, by the cocycle condition of remark 1.9, a
cocycle of degree 1 in the complex I'*(X,, 0%,) (the complex associated
with the cosimplicial group [p] +— ['(Xp, 0%,)). There is a natural map
H*(I'(X,, 0%,)) — H*(X,,0%,) (an edge morphism in the spectral se-
quence E{"! = HY(X), 0% ) = HP(X,, 0%,)) and the cohomology class

associated with %, is just the image of the class of g1 under this map.
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1.2.2. Topological morphisms and bundles. — The definition of a dif-
ferential form on a simplicial complex manifold leads to the following notion

of what we call topological morphisms.

Definition 1.17. — A topological morphism of simplicial manifolds f : Yy ~~

X, is a family of smooth maps
fp:ApX}/})_)Xpa p207

satisfying the following compatibility condition: For every increasing map ¢ :

[p] — [q] the diagram

AY XY, fa X,
AP x Y, dx
w)
I
AP x Y, X,

commutes. Here ¢, ¢y, ¢x denote the (co)simplicial structure maps induced
by ¢.

Every holomorphic or smooth morphism of simplicial (complex) manifolds
f:Ye — X, induces a topological morphism f : Y, ~~» X, by composition

with the natural projections AP x 'Y, — Y.
Remark 1.18. — Let f : Yy ~~ X4 be a topological morphism. Then we have
commutative diagrams

A9 % Y(.I (prag,fq) Ad % Xq

¢V W

(prap,fqo(paxid))

AP xY, AP x X,
AP x Yp (prapfp) AP x Xp

for every increasing ¢ : [p] — [¢q]. Now let w = (wp)p>0 be a simplicial form on

Xe. Define f*w := ((pras, fp)*wp),>o- From the above diagram (in the special
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case where ¢ = 0 : [p—1] — [p]) one sees, that f*w is a well defined simplicial
form on Y, the pullback of w by f. Thus we have a well defined pull-back map
[ AM(Xe) — A™(Ya).

In a similar way we define the composition of two topological morphisms.

Definition 1.19. — Let X, be a simplicial manifold. A topological GL,(C)-

bundle on X, is a topological morphism of simplicial manifolds

g : Xe ~ BoGL,(C).

A morphism « : g — h of topological GL,(C)-bundles on X, is a topological
morphism of simplicial manifolds « : Xo ~ FeGL,(C), such that a- g = h.

Example 1.20. — Let S be a simplicial set, A a complex Fréchet algebra and
A, the simplicial algebra €>°(Ag )&, A, where > denotes smooth complex
valued functions and ®, the projectively completed tensor product over C.
The simplicial classifying set BeGL,(As) for the simplicial group GL,(A,)
is by definition the diagonal of the bisimplicial set ([p],[q]) — BpGL.(A4,).
Karoubi defines a topological GL,(A)-bundle (= a “GL,(A,)-fibré repéré”) on
the simplicial set S to be a morphism S — B,GL,(A,) [Kar87, 5.1, proof of
5.4 and 5.26].

In the special case, where A is the ring of smooth complex valued functions
¢>°(Y) on a complex manifold Y, this gives a topological bundle on the sim-
plicial manifold Y ® S (cf. example 1.11) as follows:

First, there is a natural map €>°(AP)@,€>®(Y) — F>*(AP x Y). Next,
B,GL, (¢*°(AP x Y)) = €°(AP x Y, B,GL,(C)). Thus, a morphism of sim-
plicial sets f : S — BeGL,(As) gives rise to a family of smooth morphisms

AP x v 19 B.GL.(C),  oeS,p>o0.
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The fact that f is a morphism of simplicial sets is reflected in the fact, that

for every increasing ¢ : [p] — [¢] and o € S, the diagram

flo
Al xY ( ) BqGLT(C)
oa xid iﬁbB.G
f(¢%0)
AP XY *’ . B,GL,(C)

commutes. Here ¢35 : S, — S, denotes the simplicial structure map induced

by ¢. Now the collection of maps f(c), o € Sp, defines a smooth morphism

fiarx(vas), =[] avxv 12 g oL, (c)

oSy
and the commutativity of the above diagrams is equivalent to the fact, that the
family of maps j;, p > 0, defines a topological morphism Y ® S ~» BsGL,.(C)

In our sense.

1.3. Connections, curvature and characteristic classes

In this section we define connections, the associated curvature and construct
the Chern-Weil theoretic characteristic classes. This is done by carrying Ka-
roubi’s definitions and constructions from the case of simplicial sets [Kar87,
Ch. 5] over to our geometric setting. The systematic use of this formalism was
a fundamental idea of Karoubi.

In order to define the notion of a connection, we have to introduce some
more notation. Any p-simplex z in the classifying space B,GL,(C) may be
written as = = (go1,912,--.,9p—1,p). Thus, if (go,...,9p) € E,GL,(C) is a
p-simplex lying over z, then gg; = gogl_1 etc. and we define gj; := gjgi_1 for
any 0 < 4,5 < p. If g : Xq ~» B,GL,;(C) is a topological GL,(C)-bundle,
we write g;; for the smooth maps AP x X, — GL,(C) obtained in the above
way. If g is a holomorphic bundle then gj; factors through a holomorphic map
X, — GL,(C) which, by abuse of notation, will also be denoted by g;;.

Definition 1.21. — A connection in a topological GL,(C)-bundle g : X¢ ~~
B,GL,(C) is given by the following data: For any p > 0 and any i € [p] =



30 CHAPTER 1. SIMPLICIAL CHERN-WEIL THEORY

0,...,p} a matrix valued 1-form I'; = % ¢ (AP x X ;Mat,.(C)) =
P

)

Mat, (&7 (AP x X,,)) subject to the conditions

(1) (pa x id)*F((bq()i) = (id x qﬁX)*Fl(p) for any increasing map ¢ : [p] — [q] and
(i) Ti = g;;'dgji + g5, Tjgji-

Here Mat, denotes r x r-matrices. We view g;; as a matrix of smooth functions

on AP x X,,. Thus dgj; is a matrix valued 1-form on AP x X,.

If g is a holomorphic bundle, we call the connection (partially) holomorphic, if

I; € o%0(AP x X, Mat,(C)) C & (AP x X,; Mat,(C)) (cf. the discussion

before theorem 1.3).

Example 1.22. — Every topological GL,(C)-bundle g : X, ~» B,GL,(C)

may be equipped with the standard connection given by
T =Y wkgy; dgei,
k

where xg, . . ., 2, denote the barycentric coordinates of AP. If g is holomorphic,
this connection is holomorphic. The conditions of the definition are easily

verified by direct computation.

Example 1.23. — This example shows, how the classical notion of a connec-
tion fits into our framework. It will not be needed later on.

Let Y be an arbitrary complex analytic manifold, £/Y a smooth complex
vector bundle of rank r and V an ordinary connection on F, i.e. a C-linear
map & — oy Qe & satisfying Leibnitz’ rule, where & denotes the sheaf
of smooth sections of E. Choose an open covering % = {Uy}aca such that
E|y,, is trivial for each a. Denote the pullback E|y,4 by E., the corresponding
simplicial sheaf by &,.. The pullback of V is a compatible family of connections
on each Ej,. As in lemma 1.13, choose a trivialization PO . & — (Cxoa )"
This induces trivializations wgp), i =0,...,p, of &, and w@(p) o (ij(.p))*1 is
given by the smooth transition function gg’ ) Ny% — GL,(C). Then E, is
classified by the smooth morphism g : Ne% — Bl.GL,(C), analogous to the
holomorphic case. In particular E gives rise to a topological GL,(C)-bundle
on N .
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With respect to the trivialization w@(p ) the connection is given by a matrix
valued 1-form I'; = ng) € o/ (N, ; Mat,.(C)) (see e.g. [Kar87, 1.8]). These
forms satisfy the transformation rule I'; = gj*ildgji + gﬁlegji (loc. cit.) and
the compatibility condition Fgl()i) = gzb}‘v.q/Fl(p ) for every increasing ¢ : [p] — [q].
Hence, the pullbacks of the I'; to AP x N,% yield a connection in the above

sense.
This example also motivates the following definitions.

Definition 1.24. — The curvature of the connection {I';} is defined as the

family of matrix valued 2-forms
2
Ry i= R = ar” + (T)" € o7%(A% x X5 Mat, (C)),
p>0,i=0,...p.

Remarks 1.25. — (i) Let g,h : Xo ~> Yo be two bundles, « : ¢ — h a
morphism of bundles and I' = {I';} a connection on h with curvature {R;}.

Then the pullback o*T of the connection I is defined by the family of forms
(a*T); = a; 'da; + a; 'Tiay,

where o; : AP x X, — GL,(C) is the i-th component of the morphism « in
simplicial degree p. The curvature of o*I" is given by the family of 2-forms
o LR

(ii) If £/ X, is a topological bundle on X, given by g : X ~» BoGL,(C), and
f:Ye ~ X, is a topological morphism, the pullback f*FE is given by go f. If
I' = {I';} is a connection on E, the induced connection f*I' on f*FE is given
by

(F )P = (pras, £,) T,

Consequently, its curvature is given by the family of forms (pray, fp)*R(p ),

7

If I is the standard connection on E, then f*I" is the standard connection on

f*E, as follows directly from the definitions.

Lemma 1.26. — The forms R; satisfy R; = gﬁlegji.
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Proof. — Again, this follows directly from the definitions. We give the proof
as a prototype for all the calculations of this type.
Using the formula d(g~!) = —g~!(dg)g~! and Leibnitz’ rule we get

R; = dU;+T?
—1 -1 —1 -1 2
= d (93-1' dgji + 9j; Fjgji) + (gji dgji + 9j; Fjgji)
= —g5; (dgji)g5; dgji + —g5; (dgji)g5: Tigsi + g5 (dU5)gsi — g5 Tjdgi
+(95; dgsi)* + 957 (dgsi) 955 Tigsi + 95 ' Tigzigy: dgji + 955 1395
= 95 (dy)gji + 95" T3 g5
= 95 Rjgji-
O

Definition 1.27. — We define the n-th Chern character form Chy,(I") of the
n

connection I' = {I';} to be the family of forms 1 Tr ((Rgp)) ) on AP x X,

p > 0. According to lemma 1.26, this form does not depend on i.

Proposition 1.28. — Let g : Xo ~» BeGL,.(C) be a topological bundle and

I' a connection on g.

(i) Ch,(T) is a closed 2n-form on X, i.e. belongs to A?™(Xe) and
dCh,(T") = 0.

(ii) The cohomology class of Chy,(I") does not depend on the connection cho-
sen.

(iii) If the bundle g and the connection are holomorphic, Ch,(T') €
Fil" A?"(X,). Moreover, the class of Ch,(T') in H?"(Fil"A*(X,)) =
H2" (X, Q)Z(:L) does not depend on the holomorphic connection chosen.

(iv) If h : Xo ~» BoGL,(C) is a second bundle, and o : h — g is a morphism,
then Chy,(a*I") = Ch,(T").

(v) If f:Ye ~ Xq is a topological morphism, Ch,(f*I') = f*Ch,(T).

Proof. — (i) It follows from Condltlon (1) in definition 1.21, that (¢a X
idi, ) Tr((RY))") = (idar xéx)*Tr((RP”)"), hence the forms T&«((R“’)) )
p > 0, are indeed compatible and define Ch,,(T') € A?"(X,). For the closedness

cf. the proof of [Kar87, théoreme 1.19].



1.3. CONNECTIONS, CURVATURE AND CHARACTERISTIC CLASSES 33

(ii) This follows from a standard homotopy argument. See lemma 1.33 with
a = id below.

(iii) With the notations of section 1.1 write

Filla* (AP x X,) = @ a"™(AP x X))
kHlbm=x,1>i

and similarly for matrix valued forms. These are subcomplexes and the prod-
uct maps Fil’ x Fil/ to Fil'™/. Now, if the connection is holomorphic, T; €
Fil' 71 (AP x X, Mat,(C)), hence R; = dI'; +T? € Fil'.&/?(AP x X,,; Mat,.(C))
and then also Ch,(T) € Fil"A?"(X,).

Again, the independence of the associated cohomology class of the holomor-
phic connection chosen follows from a (slightly more complicated) homotopy
argument, see lemma 1.34 below.

(iv), (v) These follow directly from remarks 1.25 (i) and (ii) respectively. [

Definition 1.29. — If E/X, is a topological bundle, we write Ch,(E) for
the cohomology class of Ch,,(T") in H?"(A*(X,)) = H?"(X,, C), where I is any
connection on E. If E is holomorphic, we also denote by Ch,,(E) the class of

Ch,,(T") in H?"(X,, Q)Z(t‘), where I' is any (partially) holomorphic connection.

Characteristic classes of holomorphic vector bundles. — In order to compare
our construction of characteristic classes with other approaches, we have to
extend the definition of Chern character classes to vector bundles using the
results of section 1.2.1.

Let & be an arbitrary holomorphic vector bundle of rank r on the simplicial
manifold X,. We construct its Chern character classes as follows: Choose an
open covering U, — X, such that &|y, is degreewise trivial. Denote by X
the diagonal simplicial manifold of the Cech nerve Nx,(U,). Then &|x; is
degreewise trivial, hence corresponds to a holomorphic GL,(C)-bundle E'/X}.
We define the n-th Chern character class Ch,(&,) € H2”(X.,Q§’f) of & to

be the inverse image of Ch,(E’) under the isomorphism HZ”(X,,Q?:”) —
H?"(X}, Q%)) of lemma 1.14.

Lemma 1.30. — Ch,(&,) € HQ"(X.,Q)%?) is well defined.
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Proof. — Let V, — X, be a second open covering such that &,|y, is degreewise
trivial. Denote the diagonal of the associated Cech nerve by X/ and let Solxy
correspond to the holomorphic GL,(C)-bundle E”.

Consider a common refinement W, of Uy and Vs, €. g. Wy = U, X x, Ve, and

denote the diagonal of the Cech nerve of W, by X/”. We have a commutative

diagram
Xl
k.
\ X// /

all maps inducing isomorphisms in cohomology. The pullbacks of E’'/X] and
E"/X] to X" both correspond to the vector bundle &,|x;~, hence are isomor-

phic, hence have the same Chern character classes. The claim follows. O
In order to be able to apply the splitting principle later on, we need the

Proposition 1.31 (Whitney sum formula). — Let 0 — &, — & —
&l — 0 be a short exact sequence of holomorphic vector bundles on Xo. Then
Ch,, (&) = Chy,(&)) + Chy,(&)).

Proof. — Without loss of generality we may assume, that 0 — & — &) —
&y — 0 is a split short exact sequence of free Ox,-modules. In fact, choose
an open covering Uy — X, such that 0 — &f|v, — éolu, — &/'lv, — 0'is a
split short exact sequence of free Op,-modules. As in the proof of lemma 1.15
this induces an open covering U, — X, and we denote the diagonal of the
corresponding Cech nerve by X. Then Chy,(&,) maps to Ch,(&|x;) under
the isomorphism H?"(X,, 9)2(1.1) =N H2" (X, Q)Z(?) and similarly for &, &).

Fix isomorphisms /() : &) =N N "0 . &Y =, 0%,” and a section of the

secquence 0 — &5 — &y — & — 0. This yields compatible isomorphisms:

0 & & & 0
o J{ w/(o) o~ l 7,[1(0) o \L w//(O)

0 % 0%, ® 0% 2 0.
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As in the proof of lemma 1.13 we get compatible trivializations wg(p ) ,wgp )
and w;l(p ), i =0,...,p, of &,&, and & respectively. Denote the transition
functions w;(p) o (wg(p))’l, ... by gj;,.... From the compatibility of the trivi-

alizations it follows, that g;; is of the form

géj *
0 g

Denote the GL,(C)-bundles associated with &/, &, and &) by E', E and E”

respectively. The standard connection I' on E (cf. example 1.22) is given by

. . E 1 re  « .
the family of matrix valued 1-forms I'/’ = >, Tk Agki = ( E) FE”) with

(3

curvature RF = dI'F + (IF)? = (Rf RZ,/ ). Thus Ch,,(I'") = 5 Tr((RP)") =

L (Tr((Rf/)”) + Tr((Rf”)n)) = Chy(DF') + Chy(DF”) and the claim follows.
O

1.4. Secondary classes

In this section we construct secondary characteristic classes for holomorphic
GL,(C)-bundles, which are trivialized as topological bundles. These classes
will be of fundamental interest in the following, since they appear in the con-
struction of the relative Chern character on K-theory. The idea to consider
these secondary classes and their construction is due to Karoubi. The main

technical tool is the homotopy operator from de Rham cohomology:

Lemma 1.32. — LetY be an arbitrary complex (or differentiable) manifold.
Let K : &/*(Y x C) — &% 1(Y) be the standard homotopy operator of de
Rham cohomology given by w — fol (ia/atw)dt, where t is the coordinate on C.
Then

dK + Kd =14} — i} : %Y x C) — " (Y),

where iy resp. i1 : Y — Y x C denote the embeddings y — (y,0) resp. (y,1).
If f : Z — Y is smooth, then Ko(fxidg)* = f*oK : &*(Y xC) — &+ 1(Z).
In particular, K induces a homotopy operator K : AF(X, x C) — A*1(X,)

for any simplicial manifold X, verifying the same properties.
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Proof. — The first formula is standard and follows by straight forward compu-

tation. Also the naturality is an easy consequence of the defining formula. [

Construction of secondary forms. — Let E and F' be two topological bundles
on X,, given by g and h : X, ~ BoGL,(C) respectively, with connections I'”
resp. I'". Assume, that o is a morphism from ¢ to h. There is a canonical
(2n — 1)-form Ch™}(T'F, T'F, o), whose boundary is Ch,,(I'¥) — Ch,,(I'F). It is
constructed as follows:

Let 7 denote the projection Xo x C — X,. On 7*E we have the connections
7*TF and 7*a*T*. We can also consider the connection I' = t7*T'F + (1 —

t)m*a*T'F on m*E, given by the family
Iy = t(r* TE); + (1 — t) (7" a*TT),;, (1.12)

where ¢ is the coordinate on C. It is easy to see, that this family indeed defines

a connection. Then Ch,(I") is a closed 2n-form on X, x C and we define
Ch(IE, TF, ) := K (Chy,(I)).
Lemma 1.33. — dCh'®(T'®,TF o) = Ch,(I'") — Ch, (I'F).

Proof. — Since Ch,(T") is closed we have

dKCh,(T') = hy, (T) — i5Ch,(T)
= Ch,(iiT) — Ch, (i)
= Ch,(I'") = Ch,(a*TT)
= (FE) Chn( )

O]

This lemma shows in particular, that the class of Ch,,(I'f) in H*"(A*(X,)) =
H?"(X,,C) only depends on the isomorphism class of E' and not on the par-
ticular connection chosen, thus proving proposition 1.28 (ii). To prove the
independence of the holomorphic connection in part (iii) of this proposition

we need the following
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Lemma 1.34. — Let E and I be two holomorphic bundles on X4 with holo-
morphic connections T'F resp. TF, and let a : E — F be a holomorphic mor-
phism. Then ChX*(TE T'F o) € Fil"A?"~1(X,).

Proof. — Let Fil".&/*(AP x X, x C) denote the subcomplex of forms, which

are locally of the form

> fragamder AdCy AdCg Adt A dET,
1,J,K,lm,|J|>%

where x9, . .., x, are the barycentric coordinates on AP, the (; are holomorphic
local coordinates on X, ¢ is the coordinate on C, I,J, K are multiindices,
dxy = dxy, ... dx;,, etc., and [,m € {0,1}. The wedge product of forms maps
Fil” x Fil” to Fil"™/ and the homotopy operator K maps Fil"’.e7*(AP x X, x C)
to Fil'a/F (AP x X,).

Since a is holomorphic, so is the connection o*T'F" (cf. the formula in remark

1.25). Obviously, the matrices
Iy = t(r* ") + (1 — t)(r*a*TF);

belong to Filte71(AP x X, x C;Mat,(C)), hence the forms Tr(R?) live in
Fil""o/?" (AP x X, x C) and K (Tr(R?)) € Fil"&/*"~1(AP x X,) and the claim
follows. O

We have the following naturality property for secondary forms: Let again F, F'
be topological bundles on X, with connections I'¥ resp. I''" and in addition let
f:Ye ~» X, be a topological morphism. Then we can consider the pullbacks
f*E, f*F with connections f*I'”, f*I'"" and the morphism f*a : E — F given
by ao f: Y, — E,GL,(C).

Lemma 1.35. — Ch(f*TF f*TF f*a) = f*ChY(T'F,TF, a).
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Proof. — Denote the projections Y, x C — Y, and X, x C — X, by 7y and

mx respectively. Then

f*ChiLCl(FE,FF, a) _
= f*K (Ch,(t75TF + (1 — t)7% («'TT)))
= K ((f xidc)*Chy,(tn%x " + (1 — t)% (a*TT)))
= K (Chy(t(f x ide)* 75T + (1 — t)(f x idc)* 7k (a*TF)))
= K (Chy(tn} f T + (1 — )7} f*(a*TH)))
= K (Chy(tmy f TP + (1 = )m5-((f*)*(f*T7))))
_ Ch;el(f*FE’ f*FF,f*a).

Here we used the fact, that f*(«*T'F) = (f*a)*(f*T'F). In fact, the connection
on the left hand side is given by (prap, fp)*(o; 'de;+a; 'TF a;), which is equal
to (f*a);td(f*a); + (f*a); (£ TF)i(f*a);, that is, to the family defining the

connection on the right hand side. O

Secondary classes. — Now let E and F' be two holomorphic bundles on X, and
« : F — F a morphism of the underlying topological bundles. Choose holomor-
phic connections I'? and I'F on E and F, respectively. Then Ch*/(I'? T'F, a)
is closed modulo Fil"A*(X,) and we can consider its cohomology class in
H* (A% (X,) /Fil" A*(X,)) = H*" (X, Q30).

Proposition 1.86. — The class of Chi?(TE TF o) in H*"~1(X,, Q%") does
not depend on the holomorphic connections chosen. We denote this class by

Ch'(E, F, o).

Proof. — Let I'? and I'F be other holomorphic connections on E resp. F.
Denote by 7 the projection X, x C x C — X,, by s,t the variables on C x C

and consider the connection

Ty = (1—5)((1— )7 TF + tr*a*TF) + s((1 — )7 TF + tn*a*TF)
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on " E. Denote by K resp. K; the homotopy operators with respect to s resp.
t and consider the form K o K¢(Chy(I's¢)). Then

d(Ks o K(Chn(T's))) =
= Ki(Chyp(Ls¢))|s=1 — Kt(Chy(Tst))]s=0 — Ks(dK(Chy(Ts)))
= Cu(F,T", @) = Chyfi(TF, T, @) — Ky(Chy(Ts,1) — Chy(Tsp))
= Ch/(TF T7 o) — C(P T, a)

—Ch (TP TP id) + Ch(o*TF, o’ TF id).

Using remark 1.25 (i), it is not hard to see, that Ch!®(a*T'F,o*TF id) =
Ch/(TF,TF id). Then it follows from lemma 1.34, that the last two sum-

mands above lie in Fil" A?"~!(X,), thus proving the claim. O

Topologically trivialized bundles. — Now we specialize to the case, of a
GL,(C)-bundle together with a trivialization of the underlying topological
bundle. On any simplicial manifold Y,, we denote by T or 7T, the trivial
GL,(C)-bundle, given by the constant map 1: Y, — {1} € B¢GL,(C).

Let X, be a simplicial complex manifold and E/X, a topological GL,(C)-
bundle given by g : X ~» BeGL,.(C). Then the morphisms of GL,(C)-bundles
a: T — FE are exactly the topological morphims « : Xo ~» E4GL,.(C), such
that o - 1 = g, or, equivalently, p o & = g, where p : E,GL,(C) — B,GL,(C)
denotes the projection.

This may be reformulated as follows: The (holomorphic) GL,(C)-bundle
p*E"Y given by p : FE,GL,(C) — B,GL.(C) together with the trivial-
ization id : E,GL,(C) — FE.GL,(C) is universal for bundles E together
with a trivialization « : T' — FE. In fact, if F is any topological bundle on
Xe and @ : T — E a trivialization, then the pair (E,«) is the pullback
(ap* B, a*(idg, L, (0)))-

In particular, if we equip all bundles with the standard connection and write
Chrebwnlv = Chre(TT, TP P idp,qroc)) € A? ' (EeGL,(C)), then we

have the following consequence of lemma 1.35:
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Proposition 1.37. — If E/X, is a topological GL,(C)-bundle together with

a trivialization o : T — E, then
Ch;el(I-\T’ FE, Oé) — a*Chzel,univ’
I'T TE denoting the standard connections on T, E respectively.

Remark 1.38. — This description will be needed in proposition 2.14 to com-
pare the class Chffl(T, E,«) for an algebraic bundle E with a topological
trivialization o with the class (,]Tl;el (T, E, o) constructed by a completely dif-
ferent strategy. It will be this latter class, that can be compared with the
Deligne-Beilinson Chern character class Ch? (E). Note, that this kind of “uni-
versal” description of relative Chern character forms, would not be possible in

Karoubi’s setting of bundles on simplicial sets.



CHAPTER 2

CHARACTERISTIC CLASSES OF ALGEBRAIC
BUNDLES

The heart of this chapter is the comparison of relative and Deligne-Beilinson
Chern character classes in the last section. To do this, we first construct a
refinement of the secondary classes of section 1.4 for an algebraic bundle on a
simplicial variety X, together with a topological trivialization. These classes
live in H?*"(X,, C)/Fil"H?*"(X,, C). Using the so called refined Chern char-
acter classes constructed in section 2.3, the comparison will be reduced to
the comparison of (primary) Chern character classes, which is done in sec-
tion 2.2. The first section recalls the definition of the Hodge filtration on the

cohomology of a simplicial variety.

2.1. Preliminaries

By a wvariety we will mean a smooth separated scheme of finite type over
Spec(C). We will always equip a variety with the analytic topology, and
Ox, % will denote the sheaves of holomorphic functions and differential forms
respectively.

Recall the following definitions and properties (see e. g. [Del71, §3]): Let X
be a variety. According to Nagata and Hironaka there exists an open immer-
sion j : X — X in a smooth proper variety X, such that D = X — X is
a divisor with normal crossings. Such compactifications are called good com-
pactifications. The logarithmic de Rham complex, denoted Q*Y(log D), is the

smallest subcomplex of j.2%, which contains Q*Y’ is stable under the exterior
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product, and such that df /f is a local section of Q% (log D), whenever f is a
local section of j, 0%, meromorphic along D.

There are quasiisomorphisms
Rj.C — Rj Q% = jly « Q% (log D)

and in particular H*(X, C) = H*(X, Q% (log D)). The complex 2% (log D) is
filtered by the subcomplexes Fil"Q%(log D) := Q%”(log D) and the natural
maps H* (X, Fil"Q%(log D)) — H* (X, Q%(log D)) are injective. The image of
this map is by definition Fil" H*(X, C), the n-th step of the Hodge filtration.
This definition does not depend on the chosen compactification and is functo-
rial in X [Del71, (3.2.11)].

The cohomology of the complexes Fil"Q*Y(log D) may also be computed
using ¢*°-forms [Del7l, (3.2.3)]: Write &%(logD) for the subsheaf
Of(log D) @ szﬁ%q of j.o/g?. This is a sheaf of #*-modules, hence
fine, hence acyclic for the global sections functor. Let Fil"ﬂ%‘(log D) be the

complex of sheaves P ,Q/%q(log D) (subcomplex of the total complex

DPHq=*,p2n T
of juo/y™) and denote its global sections by Fil".o7*(X,log D). Then the
natural map Fil"Q%(log D) — Fil"#(log D) is a quasiisomorphism and we

get the isomorphisms
H* (X, Fil"O0%(log D)) = H* (Fil" &/~ (X,log D)) = Fil"H*(X, C).

Now let X, be a simplicial variety. The mixed Hodge structure on H*(X,,Z)
(in particular the Hodge filtration on H*(X,, C)) may be constructed as fol-
lows (cf. [Sou89, 1.2]): Denote by AS™ the subcategory of the simplicial cate-
gory A with the same objects [p] = {0,1,...,p}, p > 0, but where the mor-
phisms [p] — [g] are the strictly increasing maps. A strict (co)simplicial object
in a category € is a (covariant) contravariant functor AS*" — %. Thus, a strict
simplicial object is a “simplicial object without degeneracies”. In particular,
every simplicial object gives a strict simplicial object simply by restricting to
the subcategory ASY. See the appendix A.2 for facts on the cohomology of

strict simplicial spaces.
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For any strict simplicial variety X, one can inductively construct an open
immersion j : Xo < X, into a proper!) strict simplicial variety X, such that
the complement D,, := Yp — X, is a divisor with normal crossings for each p
[Sou89, 1.2]. Again we call j a good compactification.

Exactly as in [Del74, (8.1.19)] (note, that (8.1.12), (8.1.13) and Théoréme
(8.1.15) of loc. cit. work equally well in the strict simplicial context) one
constructs a functorial mixed Hodge structure on H*(X,,Z), which is in-
dependent of the chosen good compactification (cf. loc. cit. (8.3.3), in fact
the verifications are even easier in the strict case).(?) The Hodge filtration
is again given as the image of the (injective) map H* (Y.,Q%T:(log D,)) —
H* (X, Q*Y. (log Ds)) = H*(X,, C) and may be computed as the cohomology
of the complex Tot Fil".o7* (X, log D,).

To simplify notation we will often simply write Fil".o7*(X,,log D,) and it
will be clear from the context if this denotes the cosimplicial complex or the

associated total complex.

Note, that we have natural maps Q%n(log D,) — 3*9)2(:1 These induce mor-

phisms
H*(X., 02" (log D)) = Fil" H*(X,, C) — H*(X.,Q3"),
which are obviously injective.

Remark 2.1. — In the study of Chern character maps on higher K-
theory, there naturally occur simplicial schemes of the form X, = X ® 5,
where X is a variety and S a simplicial set. These are in general not of
finite type. Nevertheless, they admit a good compactifiaction X, defined
as X ® S, where X — X is a good compactification, and we can still
consider the map H*(Y.,Q%j(logD.)) — H"(X,,Q%,) = H*(X,,C). It

Mj.e. each X, is proper over Spec(C)

If j : X, «— X, is a morphism of simplicial varieties, this mixed Hodge structure (MHS)
obviously coincides with the one constructed in loc. cit.. Hence they also coincide for general
simplicial varieties (which might not admit a simplicial good compactification), as one sees
considering a proper hypercovering p : Z¢ — X, as in loc. cit. (8.3.2) and noting that p* is
a bijective morphism of MHSs for both possible MHSs on H* (X, Z).
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follows from (an analogue of) lemma 3.5, that Hk(Y.,Q%’f(log D,)) =
D, 4—r Hom(H,(S), HI(X, Q=" (log D))) and similar for H*(X,,C), and
one sees, that the above map is still injective. We will denote its image by
Fil" H*(X,, C) also in this case.

Convention. — By a good compactification we will always mean a good
compactification in the strict simplicial sense. Also, if no confusion can arise,

we will denote the complement of any good compactification by Ds,.

2.2. Chern classes of algebraic bundles

Let E be an algebraic GL,(C)-bundle on the simplicial variety X, i.e. a mor-
phism of simplicial varieties g : Xo — BeGL,(C). Since E may be viewed
as a holomorphic bundle, we have the classes Ch,(FE) € H2”(X.,Q)Z{:) con-
structed using Chern-Weil theory. On the other hand, one may also construct
Chern (character) classes in Fil"H?"(X,,C) in the style of Grothendieck
and Hirzebruch. We recall the construction, and show that these are (up
to a sign) mapped to our classes under the natural map Fil"H?*"(X,,C) —
H™ (X, 037).

2.2.1. The first Chern class of a line bundle. — Let X be a complex
manifold, or more generally a simplicial complex manifold. The group of iso-

morphism classes of holomorphic line bundles on X is H'(X, 0%).

Definition 2.2. — The first Chern class ¢; : HY(X, 0%) — H*(X, Qil)
is the map on cohomology induced by the morphism of complexes dlog :
0% -1] — 03"

Lemma 2.3. — If £ is an algebraic line bundle on the variety X, then
o (&) € Fil'H?(X,C) C H2(X, Q%).

Proof. — By lemmata 1.14 and 1.15 (keeping in mind, that a bijective mor-
phism of mixed Hodge structures is an isomorphism) we may assume, that

X = X, is a simplicial variety and that . is classified by a morphism of
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simplicial varieties ¢(® : X, — BeG;,(C). Then gV e I‘(Xl,ﬁ;‘(l) repre-
sents a class in H'(I™(X,, 0%,)), whose image in H'(X,, 0%,) is the class
of £ (cf. remark 1.16). Thus ¢ (Z) € H2(X.,Q§1) = H?*(TotFill.er*(X,))
is the class represented by (dlog(¢))) @ 0 e [(X1,Q%,) @ I'(Xo,0%,)
Fille7' (X1) @ Fil'e7?(Xy). Let X be any good compactification of X7, then
g, being algebraic, is meromorphic along X; — X;, hence d log(g(l)) €
Fille7 (X1, log(X1 — X1)). O

With the above normalization, the first Chern class is the negative of the first

Chern character class constructed in section 1.3:

Lemma 2.4. — Let Xo be a simplicial complex manifold and £ a holomor-

phic line bundle on Xo. Then
Chl(g.) = *Cl(g.)
m HQ(X., Qzl).

Proof. — Again, we may assume that %, is classified by a holomor-
phic morphism of simplicial manifolds ¢(®) : X, — B,G,,(C). Then
Chi(%,) can be computed explicitely: We equip the G,,(C)-bundle L

classified by ¢(*) with the standard connection, given by the family of

Ep) = >r a:k(g,(fz))*ldgg) = > xkdlog(gg)), where the no-

tations are as in section 1.3. The curvature is then given by Rgp ) =
Dok dxkdlog(g,(f;)) + Dk xkxldlog(g,g))dlog(gl(f)). This form does not de-
pend on i, and the first Chern character form Chy(L) of L in Fil' A%2(X,) is
given by the family (Ch;(L)p)p>0 = (Rgp))pzo.
The isomorphism H?(Fil'A*(X,)) — H?(Fill.er*(X,)) = H?(X,, Q;&) is given
by w = (wp)pz0 — (Ja1 w1, [nowo) € Fil'e/1(X1) & Fil' #%(X).

Since ggf) is the constant map 1, dlog(gg)) =0forallp>0,i=0,...p and
in particular Ch;(L)o = 0. Next, Chy(L); = Rgl) = dxodlog(g&)), and hence

Jar Chi(L); = —dlog(g(()ll)) = —dlog(¢")). Comparing with the computation

matrices T’

in the proof of the last lemma, this concludes the proof. O
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2.2.2. Higher Chern classes. — These are constructed in the style of
Grothendieck using the splitting principle.

We begin with the case of holomorphic vector bundles on arbitrary complex
manifolds. Thus let & be a holomorphic vector bundle of rank r on a com-
plex manifold X. Denote by 7 : P(&) — X the associated projective bundle
and by €(1) the tautological line bundle on P(&). Write £ := ¢1(0(1)) €
H(B(£), Q5 (£)).

Lemma 2.5. — The map

r—1 r—1
P Oue: PE (X, 03" - H™(B(8), 05 y)
=0 1=0

is an isomorphism.

Proof. — By abuse of notation, we still denote by & the image of ¢1(0(1))
in Hl(P(éa),Qllp,(éa)) = H'(X, RW*Q]%M)). In the derived category DT (X) of

bounded below complexes of abelian sheaves on X we have the isomorphism

r—1 )

i . DIz T (ug
P o) T2 j0r
=0

[Ver74, Théoreme 2]. Thus we have isomorphisms @;:& HI(X, Qg(_i) =N
H1(P(&), Qﬁ( g,)). On the other hand, we have the hypercohomology spectral
sequences

BY = HO(B(&), (O0F),)))) = B (B(6),05;)  and

Effi,qfi _ Hq—i (X, (Q)Z(n*i)p—i) — Hp+q—2i (X, QZn—i)'

Similar as in the proof of [Gil81, Sublemma 2.5], one shows, that the map in
the statement of the lemma is the abutment of a map of spectral sequences

(after suitable reindexing), which on the Fj terms is the isomorphism

r—1
Q_% HYH(X, (")) S HUP(E), (5 0)P),

and thus is an isomorphism, too. O
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By a spectral sequence argument as in [Gil81, Lemma 2.4] this extends to
simplicial complex manifolds:

Lemma 2.6. — Let X, be a simplicial complex manifold and & a holomor-

phic vector bundle of rank r on Xo. Then the map

r—1 r—1
Z T* (7) U 57/ . @HW—QZ(X., Q)Z(?_Z) — HW(P(éD.), 1%(72«7.))
i=0 =0

s an isomorphism.

Now assume that X, is a simplicial variety and that &, is an algebraic vector
bundle on X,. Then ¢ = ¢;(0(1)) € Fill H2(P(&,), C) and we have

Lemma 2.7. — The map

r—1 r—1
Y mue PFIIH™ (X, C) — Fil"H™(P(&), C)
=0 1=0

is an isomorphism.

Proof. — As before, the simplicial case follows from the classical case. Hence
let & be an algebraic vector bundle on the variety X. Then £ = ¢;(0(1)) =
AP(6(1)) in H2(P(&),C) (see below), where ¢;P(6(1)) € H*(P(&),Z(1)) is
the first topological Chern class of ¢'(1). Then & may be seen as a morphism
of mixed Hodge structures Q(—i) — H*(P(&), Q) [Del74, Corollaire (9.1.3)].

Thus the classical Leray-Hirsch isomorphism

r—1 r—1
S r(ues @HHX, Q)@ Q(—i) = H™(P(6),Q)
=0 =0

is a morphism of mixed Hodge structures and the result follows by looking at
Fil™. O

The higher Chern classes ¢, (&) € Fil"H?"(X,,C) are now defined by the

equation
D 7 (ermi(8) Uer(Opiay (1) = 0
i=0

and the condition ¢, (&) =0 if n > r, ¢o(&,) = 1.
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As usual, one defines Chern character classes: Let N, € Z[Xq,...,X,] be
the n-th Newton polynomial, defined by N, (o1,...,0,) = Y* +--- + Y7,
where o; denotes the i-th elementary symmetric function in the indeterminates
Y1,...,Y,. If now &, is an algebraic vector bundle on the simplicial variety X,

as above,
— 1
Chy (&) := — No(c1(&), .-, en(b)) € Fil"H?"(X,, C).
mn.

The theory of Chern classes and Chern character classes obtained in this way
has the usual properties. In particular they are functorial and the Whitney

sum formula holds [Gro58].

Proposition 2.8. — Let &, be an algebraic vector bundle on the simplicial
variety Xo. The natural morphism Fil"H?*"(X,,C) — HQ”(X.,Q)Z(T) maps
Chn (&) to (—1)"Chy(&).

Proof. — Repeated use of the projective bundle construction gives a mor-
phism of simplicial varieties 7 : Qe — X,, such that 7*&, has a filtra-
tion, whose subquotients are line bundles, and such that both maps «* :
Fil" H?"(X,,C) — Fil"H>(Q.,C) and 7* : H*(X.,0%") — H™(Q.,Q5")
are injective (lemmata 2.6 and 2.7).

By the Whitney sum formula it is thus enough to show, that for a line bundle
L, 6?1”(92”.) maps to (—1)"Ch,(%,). But &n(z.) is just Le1(Z4)" and
similarly Chy, (%) = 4 (Chi(Z))". Indeed, for the Chern character classes
(A]En this follows from the explicit form of the Newton polynomials and the
fact that ¢;(-Z,) = 0 if 4 > 1, while for the classes Chy, (%) it follows directly

from the construction. Hence the claim follows from lemma 2.4. OJ

In particular we see, that the Chern character classes Ch,,(&,) of an algebraic
vector bundle indeed lie in Fil" H?"(X,, C) C H?>"(X,, Q)Z(:l)

2.3. Relative Chern character classes

In this section we construct refinements of the secondary classes constructed
in Proposition 1.36 for algebraic bundles together with a trivialization of the

associated topological bundle, which take the Hodge filtration into account.
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Let E be an algebraic GL,(C)-bundle on the simplicial variety X, classified
by g : Xe — BeGL,(C). Define the principal bundle E, LR X, associated with
FE by the pullback diagram

E, E.GL,(C)
X. B.GL,(C).

Choose a good compactification j : X, — X, of strict simplicial varieties
and write D), = Yp — X,. We define the complex Fil”A*(Y.,log D,) as the
quasi-pullback of the diagram

A*(Xe)

qisl[

Fﬂnd*(yh log D) - (X)),

see Appendix A.l. Then the natural projection Fil"A*(X,,logDs) —
Fil".o7*(X,,log D,) is a quasiisomorphism and the diagram

Fil" A*(X., log Da) —> A*(X,)

qis \L qis l I

—_ L
Fil"o/* (X, log D) —> o/*(X.),
is commutative up to canonical homotopy.

Definition 2.9. — Define relative cohomology groups

HEZ* (X, n) = H* (Cone(Fil”A*(Y.,log D,) proa, A*(E.))) and

rel

H*,(Xa,n) = H* (Cone(Fﬂ"A*(Y., log D) 45 A* (X.))) .

rel

Note, that H (Xe,n) = H*(X,, C)/Fil"H*(X,,C). As for the Hodge fil-

tration one shows that this definition is (up to isomorphism) independent
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of the chosen good compactification.(®) Obviously there is a morphism p* :
H*

1(Xen) — H, E’*(X., n), which yields a morphism of long exact sequences

rel

E,i—1 . ; ; Ei
.= HEN (X, n) > Fil"H!(X,,C) - H'(E,,C) - H%(X,,n) -

rel

d dB
= Y (X,,n) — Fil"H{(X,,C) - H(X,,C) = H' (Xe,n) = -+

(2.1)

Let f :Ye — Xo be a morphism of simplicial varieties and F/X, as before.

Given good compactifications X, — X, and Y, — Y,, we may construct

inductively (similar as in [Sou89, 1.2]) a good compactification Y, together

with a morphism of compactifications Yo — Y., such that f extends to a

morphism Ye — X.. Hence we can define pullback maps f* : H*,(Xe,n) —

H,(Ys,n) and f*: Hrb;l’*(X.,n) — Hlf:lE’*(Y.,n)

Proposition 2.10. — There exists a class Gflzel(E) € Hfg_l’E(X., n), which

is mapped to the n-th Chern character class Ch,(E) in Fil"H*"(X,, C), and

which is functorial in X. Moreover, the assignment E +— éTlZEI(E) is uniquely

determined by these two properties.

Proof. — Consider the universal situation: Since H*(E,GL,(C), C) = 0 for all
i > 0 by the following lemma, the natural map ngmv’%*l(B.GLr(C), n) —
Fil" H?"(B,GL,(C), C) is an isomorphism by the exactness of the top line in
(2.1), and the proposition follows. O
Lemma 2.11. — LetY be any complex manifold. Define the simplicial man-

ifold EY by E,Y =Y x---xY (p+1 factors) with faces and degeneracies
as in (1.10) and (1.11). Then

H"(E,Y,C)=0, ifn>0, H°E,Y,C)=C.

®)To get canonically defined groups one should denote the groups in the definition by
H;(Xe,n)%, and define H, (Xe,n) = lims Ho (Xe,n)%,, where the limit runs over the

directed family of all good compactifications of X,.



2.3. RELATIVE CHERN CHARACTER CLASSES 51

Proof. — We have a spectral sequence
EYM(EY) = HY(E,Y,C) = H""(E,Y,C),

where the differential d; : H1(E,Y,C) — H(E,11Y, C) is given by the alter-
nating sum dy = >_¢_,(—1);.

Choose a point e € Y. For p > 0,7 = 0,...,p, define h; : E,Y — E,1Y,
(Yos---,Yp) — (Yo,...,¥i,e,...,e). Then the h;’s satisfy the formal proper-
ties defining a simplicial homotopy between the constant map e (given by
(Yo, ---,Yp) — (e,...,e)) and the identity [May67, Definitions 5.1], in partic-

ular

doho = €, 0p11hy = idg,y,

Oih; = hj_10;, if 1 < 7,
Ojv1hjr1 = Ojahy,

Oihj = hjdi1, i+ 1.

The h; induce maps on the Ej-term of the above spectral sequence satis-
fying dual properties. Hence we get a chain homotopy s between the iden-
tity and e* on the complex (E}?(E.Y),d;) for any q > 0 by setting s(z) =
Zf;ol(—l)ihf(x), r € FY(EY) = H(E,Y, C) (cf. [May67, Proposition 5.3]).
It follows, that e : ¥+ — E4Y, where * is the one point constant simplicial man-
ifold, and F.Y — * induce homotopy inverse chain homotopy equivalences
E7YE)Y) S EP(x). Hence EYY(E,Y) = ED(x).

But obviously EVI(x) = 0, if ¢ > 0, and ET’O(*) is the complex C Lo
cd. .. , i.e.

C, ifp=q=0,

ESN(E.Y) = E3l(x) = _
, else.

Now the claim follows. O
Definition 2.12. — If X, is a simplicial variety and E/X, an algebraic GL,-

—~rel
bundle, the class Ch,, (E) € H-~""(X,,n) is called the n-th refined Chern

character class of E.
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Now assume, that the algebraic bundle E/X,, classified by g : Xo —
B,GL,(C), admits a topological trivialization o : T — E, i.e. a topological
morphism «a : X ~» FGL,(C), such that poa = g. Since E, is the pullback of
E,GL,(C) along g, a induces a topological morphism « : X ~» F,, such that

poa=idy,. Hence we can also define a map o* : H=*(X,,n) — H*,(X.,n)

rel rel

left inverse to p*.

Definition 2.13. — Let E be an algebraic bundle on the simplicial variety
Xo and « a trivialization of the underlying topological bundle. Then we define

—~rel

Chyy (T, E,a) = —a"Chy, (E) € H2 ™} (X.,n) = H>""\(X,, C)/Fil".

rel

More generally, we also allow X, to be of the form X ® S with a variety X

and a simplicial set S.

el
Proposition 2.14. — The class Ch:j (T,E,«) is mapped to the class
Ch*Y(T,E,a) by the natural map H?*'(X,,C)/Fil"H?*"'(X,,C) —
H?" (X, Q%7).

Proof. — Abbreviate GL,(C) to G. Let g : Xo¢ — BlG be the classifying
map of E and choose compatible good compactifications B,G — B,G and
X, — X,.

Choose any representative ¢ of Ch,(E") in Fil".&/?"(B,G,log Ds). Then
Ly(c) € @?(BeG) lies in Fil".o7?"(B,G) and represents Ch,(E"™Y) con-
sidered as a class in Hzn(B.G,Qg?G). But this class is also represented by
the form I(Ch,,(I'"")), where '™V denotes the standard connection on the
universal bundle. Hence there exists n € Fil".o7*"~!(B,G) such that dn =
Ly (e) — I(Chy(T"V)) and chy, = (¢, Ch,(I'™),7n) is a representative for
Ch,,(E"™V) in Fil" A?"(B,G, log D,). With this choice we have p*(14(chy)) =
p*Ch,, (T"™Y) = —dCh™""V  where the form Ch'™V was defined before
proposition 1.37. Hence the universal refined class is represented by the cycle
(Chy, —Chiebuniv),

Let ¢’ : B4 — FEoG be the map induced by g on the principal bundles.
Then (AJEZGI(E) is represented by (g*chn, —g"*Chreb™vV) and 6?1;61(T,E,a)
is represented by (—g*chy,,a*g*ChihuY) = (_g*ch,,, o Chiehuniv)
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(—g*chy,, ChEYTT TF o)), where on the left we view o as a morphism
X¢ ~ E,, in the middle as a morphism X, ~ E,G, I'" and T'F denote the

standard connections, and we used proposition 1.37. Now the natural map

rel

HYy(Xe,n) = H (cone(Fﬂ"A*(X., log D) 4 A*(X.)))
— H(Xa, QF7) = H*(A*(X.)/Fil" A" (X.))

LA

is induced by the morphism of complexes Cone(Fil"A*(X,,logD,) -
—~ rel

A*(X,)) — A*(X,)/Fil"A*(X,), (w,n) — n. In particular Chi;e (T,E,«a) is

mapped to the class represented by Ch*/(T'7, T, o), that is to Ch'*Y(T, E, a).

O

2.4. Chern classes in Deligne-Beilinson cohomology

Here we recall the definition of Deligne-Beilinson cohomology and Chern
classes in Deligne-Beilinson cohomology. For the comparison with the relative
Chern character classes in the next section, it is essential to have complexes
computing Deligne-Beilinson cohomology of a simplicial variety, which behave
well with respect to topological morphisms (in the appropriate sense). These

are constructed in the first subsection.

2.4.1. Definition of Deligne-Beilinson cohomology. — Let A be a sub-
ring of R and write A(n) := (2mi)"A C C. Let X, be a simplicial algebraic
variety and choose a good compactification j : Xo — X,.

The Deligne-Beilinson cohomology H7,(Xe, A(n)) of X, is by definition

H* (Y., Cone (Rj*A(n) ® Fil'Q%_(log Da) < ]Rj*Q}_) [—1]) .

This definition is independent of choices (cf. the definition of the mixed Hodge

structure on H*(X,,Z)).® Since Deligne-Beilinson cohomology is constructed

(M As for the Hodge filtration, one could also define Deligne-Beilinson cohomology using

simplicial varieties and suitable proper hypercoverings. This is the definition in [EV88, §5].
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from a cone, we have long exact sequences

- — HE(X,, A(n)) — H*(X., A(n)) ® Fil"H*(X,,C) =% H*(X,,C)
— HYY (X, A(n)) — ...

We need a concrete complex computing Deligne-Beilinson cohomology. First
some notation. For an arbitrary manifold Y and an abelian group G we denote
by €*(Y,G) the complex of smooth singular cochains with coefficients in G.
The Theorem of de Rham asserts, that the natural map «7*(Y) L, @ (Y, C),
which sends a differential n-form w to the singular cochain sending any smooth
c: A" =Y to [,, c*w, is a quasiisomorphism (see e. g. [Dup78, theorem 1.15]).
For A C R as above, we define the complex of modified differential forms
J(Y, A(n)) to be the quasi-pullback of the diagram

(Y

qis J/ B4
incl

G (Y, A(n)) 2 g (Y, ©).

Now let X, be a simplicial manifold. Let €*(X,, G) be the total comlex asso-
ciated with the cosimplicial complex [p] — €¢* (X}, G). Then we have a natural
isomorphism H*(X,,G) = H*(¢*(X.,Q)).

As in the case of de Rham cohomology, H*(X,, G) may also be computed using
compatible singular cochains: We define the complex of compatible singular

cochains C*(X,, G) in analogy with that of simplicial differential forms:

C™(Xe, G) := {(op)p>0 | op € €™ (AP X X, G),
(6 x id)*op = (id x 0;)*0op_1,i=0,...,p,p > 1}
There is a natural quasiisomorphism ® : C*(X,,G) — €*(X.,G) given as
follows (cf. [Sou89, 2.1.3]): For a compatible n-cochain o = (0})p>0, define
O(0)pn—p € €"P(X,,G) to be the cochain that sends a singular (n — p)-

simplex f : AP — X, to o,(idar X f) € G. Here x denotes the cross

product® of singular chains, and idar : AP — AP is the canonical singular

) defined using the shuffle-map, see e.g. [Lam68, Kap. V, 5.8]
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p-chain. Using the above compatibility condition and standard properties of

the cross product, it is easy to see, that ® is a chain map.

Lemma 2.15. — Integration over simplices induces an integration map & :
A*(X,o) — C*(X,, C) fitting in a commutative diagram

A*(X.) — 2 c*(X.,C)

& |

Z*(Xy) —Z= ©*(X., C).

Proof. — The map & : A*(X,) — C*(X,, C) is just given by applying the
de Rham integration map .# component-wise. It is clearly well defined, and
we have only to check, that the diagram commutes. Thus let w = (wp)p>0 €
A™(X,) be a simplicial n-form and let f : A"P — X, be a singular n — p-
simplex of X,,. Then the singular chain idar X f is given by ) 4 sgn(p)(idar X
f)ou, where p runs over all (p, n—p)-shuffles and p also denotes the n-simplex
o A" — AP x A™P corresponding to the shuffle u. On the right hand side
of the formula idar X f means just the cartesian product of maps.

Hence ®o.# (w) sends the singular simplex f to 3, sgn(y) Jan w5 (idar X f)*wp.
But since the signed sum over all (p, n — p)-shuffles corresponds to a oriented
decomposition of AP x A™P in n-simplices (cf. [EML53, Section 5]), this last
sum is equal to [\, an—p(idar X f)*wp = [nn—p [*([ar wp), which is also the
result of applying .# o I(w) to f. O

As before we define modified complexes A*(X,, A(n)) resp. szf\;(X., A(n)) as
the quasi-pullbacks of the diagrams C*(X,, A(n)) — C*(X,,C) < A*(X,)
resp. ¢*(Xe, A(n)) — €¢*(X,, C) < o*(X).

Lemma 2.16. — Let X, be a simplicial variety and Xo =N X. a good com-
pactification. The Deligne-Beilinson cohomology H?,(X., A(n)) is naturally

isomorphic to the cohomology of the complexes
Cone (Z*(X., A(n)) @ Fil"A*(X,, log D) <=5 A*(X.)) 1] or

Cone (Ja?;(X., A(n)) @ Fil"or* (X, log Dy) =% ﬂ*(X.)) [—1].
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Proof. — Using the fact, which follows from the constructions, that the dia-

gram

A*(Xs, A(n)) ® Fil"A*(X,, log Do) — A*(X,)

| ;

— E—1t

* (X, A(n)) @ Fil"or*(X,,log Dy) — & (Xo)

commutes up to canonical homotopy, one constructs a map from the first com-
plex to the second, which is a quasiisomorphism, since it is a quasiisomorphism
on both components of the cone.

Furthermore, in the derived category D™ (Ab) there are natural isomor-
phisms fof\;(X., A(n)) ~ RI'(X.,A(n)) ~ RI(X.,Rj.An)), F*(X,) =~
RT (X, Rj, %) and Fil".o/*(X,,log D) ~ RF(Y.,Q%f(log D,)). Compar-
ing with the definition of Deligne-Beilinson cohomology and using the long

exact sequence of the cohomology of a cone, the claim follows. O

Remark 2.17 — These complexes are also defined for simplicial schemes of
the form X ® .S with an algebraic variety X and a simplicial set .S, and we use

them to define the Deligne-Beilinson cohomology in this situation.

The advantage of this description of the Deligne-Beilinson cohomology of sim-
plicial varieties is, that we may define a pullback map o : A*(X,, A(n)) —

A*(Y., A(n)), whenever a: Y, ~ X, is a topological morphism:

Lemma 2.18. — Let a : Yy ~ Xo be a topological morphism of simplicial
manifolds. Then there is a well defined pullback map o : A*(X,, A(n)) —
A*(Ya, A(n)). It is compatible with the natural maps A* — A*.

Proof. — By definition A*(X,, A(n)) is the quasi-pullback of the diagram
C*(Xe, A(n)) — C*(X,, C) < A*(X,). Obviously, a* is well defined on each
of the three complexes (cf. remark 1.18) and we only have to check, that it

is compatible with the maps between them. This is is clear for the left hand
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map. For .# this follows from the commutativity of the diagram

(idap,ap)*

A" (AP x X))

s

G (AP x X,, C)

(AP X Y),)

|7

(AP X Yy, C)

(idApvap)*

which is established as follows: Let w € &/™(AP x X)) and 7: A" — AP x Y],
be a smooth simplex. Then (idar,a;)* I (W)(7) = [yn((idar, ap) 0 T)*w =
San TH((idar, op)*w) = I ((idar, ap)*w)(T). O

2.4.2. Chern classes in Deligne-Beilinson cohomology. — There ex-
ists a theory of Chern (character) classes in Deligne-Beilinson cohomology for
algebraic vector bundles on simplicial varieties (see [EV88, §8]). We recall the
relevant facts. To fix the normalizations we first of all recall the defintion of

Chern classes in singular cohomology.

Definition 2.19. — Let X be a (simplicial) complex manifold. The first

P

Chern class ctlo in singular cohomology (for holomorphic line bundles) is the

connecting homomorphism
AP HY(X, 0%) — H*(X,Z(1))

associated with the short exact sequence of sheaves on X

exp

0—-%Z(1) - Ox — 0% — 0.

Remark 2.20. — One can also use the sequence 0 — Z — Oy M

0% — 0 to get integer valued Chern classes. This normalization for the
first Chern class is also often used by algebraic geometers (e.g. [GH78, Ch.
I §1]). It differs from ours by the factor 2mi. On the other hand topolo-
gists sometimes use yet another normalization: If cllwﬂnor'StaSheﬁ denotes the
classical integer valued first Chern class as constructed e.g. in [MS74], then
CEOP = —QWiC%Ailnor'StaSheff. This follows e.g. from [MS74, Appendix C, Theorem
(p. 306)] together with [GH78, Ch. I §1, Proposition (p. 141)].

For later reference we note, that Burgos [BG02] uses topologists’ normalization

for his integer valued Chern classes b; and defines the “twisted Chern classes”
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Burgos
c; eos . —

(27i)%b;. In fact, the construction in [BG02, section 4.2] is exactly
the same as that in [MS74, §14] (alternatively, one may look at the Chern-Weil
theoretic approach in [BG02, Proposition 5.27]). In particular, ¢}°P = —cllgurgoS
and we have corresponding signs for the higher Chern and Chern character

classes.

The splitting principle also holds for singular cohomology and higher Chern
classes cyP(&) € H?*'(X,,Z(n)) and Chern character classes Ch'P(&) e
H?"(X,,Q(n)) for holomorphic vector bundles & are constructed as in section
2.2.2.

Remark 2.21. — 1t is easy to see, that the diagram

o HAXZ(1))

1// \

HY(X, 0%) H?(X,C)
X /

H2(X, Q%)

commutes. In particular, if & is an algebraic vector bundle, the higher Chern
(character) classes ci’P (&) resp. Ch'P(&) are mapped to ¢, (&) resp. Chy (&) €
Fil" H?"(X, C) under the natural map H?>"(X,Z(n)) — H*"*(X,C).

The only thing we need to know (which is in fact easy to see using the
long exact sequence of Deligne-Beilinson cohomology of BeGL,(C)) is: Chern
character classes Ch? (&) for algebraic vector bundles & on (simplicial) va-
rieties X in Deligne-Beilinson cohomology HZ'(X,Q(n)) are uniquely de-
termined by the conditions, that they are functorial and compatible with

the Chern character classes in singular cohomology under the natural map
HZ'(X,Q(n)) — H*(X,Q(n)) [EV8S, Prop. 8.2].
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2.5. Comparison of relative and Deligne-Beilinson Chern character

classes

Let X, be a simplicial algebraic variety and A a subring of R. There are

natural morphisms

H* Y (Xe,n) = H (X, C)/Fil"H* ! (X,,C) — H}(X., A(n))

rel

induced on the defining cones by the maps in the commutative diagram

Fil” A*(X., log D)

incl. i l —id

A*(X., A(n)) @ Fil"A* (X, log Dy) —> A*(Xa).

Now let E/X, be an algebraic GL,(C)-bundle, which may be viewed as an
algebraic vector bundle, and « : T' — E a trivialization of the associated
topological bundle. Then we have the characteristic classes &Zel(T,E,a) €
H*"Y(X,,C)/Fil"H*""!(X,,C) and Ch/(F) € H2*(X.,Q(n)) and we may

compare them by the above homomorphism.

—~rel 7
Theorem 2.22. — Ch,, (T,E,«) is mapped to (—1)""'ChZ(E) under the
natural map H*"~'(X,, C)/Fil"H*"~!(X,,C) — HZ'(X.,Q(n)).

Proof. — Let X, <, X, be a good compactification and denote by FE, 2, X
the principal bundle associated with E. Define

HE*(X,,Q(n)) ==

* <C0ne (Z*(E., Q(n)) @ Fil" A*(X., log D) =2, A*(E.)> [-1]) .

Similar as in the case of relative cohomology groups, we have a natural map
p*: H;(X,,Q(n)) — Hg* (Xe,Q(n)) and a left inverse a* of p* for a topolog-

ical trivialization « of E. Moreover, there is a natural map Hrgl’*fl(X., n) —
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H 5’*(X,, Q(n)) fitting in a commutative diagram (in the obvious sense)

" (Xo,n) — Hy" (X., Q(n))

rel

A o)

HyoH(Xe,n) —— Hy(Xe, Q(n)).
We claim, that the refined class é\l/ljlel(E) is mapped to p*ChZ(E) by the
upper horizontal map. Since both classes are functorial, it suffices to treat the
case of the universal bundle E"™"/B,GL,(C). Write G := GL,(C). Since the
cohomology of F,G vanishes in positive degrees and the cohomology of B,G
vanishes in odd degrees, we have the following commutative diagram with

exact rows:

0 — HEuniv’2n(BOG7 Q(n)) - o FllnH2n(B.G, C)

9
p* T pray T

0 —= HZ(BuG, Q(n)) —= H'(B.G.Qm)SFI"H2 (B.G,C) —= H?(B,G, C).

By definition, Ch?(E"™V) is mapped to Ch!°P(E"™Y) in H?"(B,G,Q(n)).
Since e(ChiP(EWV)) = (—1)"(Ch, (E"™Y)) (cf. proposition 2.8), it follows
from the above diagram, that p*Ch?(E"™Y) is mapped to (—1)"Ch,,(E"™W)
in Fil" H?"(B,G, C). From the defining property of the refined classes and the

commutativity of the diagram

HE™ 2 (B,GL )

T T

HE™2"(B,G,Q(n)) —= Fil"H>(B,G, C),

it follows, that éiffl(EuniV) is mapped to (—1)"p*ChZ(E"Y), whence our
claim.

But then al;el(T,E, a) = —a*(fj\fl;el(E) is mapped to (—=1)"'a*p*Ch?(E) =
(-1)""'ChZ(E). O



2.5. COMPARISON OF CHERN CHARACTER CLASSES 61

Remark 2.23. — Obviously, the theorem remains true in the case, where X,

is of the form X ® S and this is the case we will be interested in.






CHAPTER 3

RELATIVE K-THEORY AND REGULATORS

Let X = Spec(A) be a smooth affine scheme of finite type over C. Then the
algebraic and topological K-theory of X resp. its underlying complex manifold

are given (for i > 0) by
Ki(X) = m(BGL(A)T) resp. KL (X)=m(BUY)

and there is a natural morphism BGL(A)* — BUYX in the homotopy category
of spaces (section 6 of Gillet’s article in [LPLG192]). We define the relative K -
group K!*'(X) as the i-th homotopy group of the homotopy fibre of this map.
The goal of this chapter is to construct relative Chern character maps Chquli :
K'*(X) — H?*~1(X,C)/Fil"H?*~~1(X, C) and to compare these with the
Chern character in Deligne-Beilinson cohomology. The construction is roughly
as follows: We have the Hurewicz morphism from the relative K-groups to
the homology of a certain space and we construct a simplicial set .% (sections
3.1 and 3.2), whose geometric realization admits a natural acyclic map to this
space, hence has the same homology. By construction, there will be a canonical
topologically trivialized bundle on the simplicial variety X ® .%, whose relative
Chern character class induces the desired map on the homology of .# (section
3.3). Using Jouanolou’s trick we will extend the relative Chern character to
non affine varieties in section 3.5. The comparison with the Deligne-Beilinson
Chern character is done in section 3.4. In the last section, we will apply this
to the case X = Spec(C) to get a new proof of Burgos’ theorem [BG02], that

Borel’s regulator is twice Beilinson’s regulator.
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Throughout, we work in the category of compactly generated Hausdorff spaces.
All constructions (in particular (fibered) products) are carried out in this

category.

3.1. Topological K-theory

Our first task is to give an adequate simplicial model for the topological K-
groups of a manifold X in terms of smooth maps AP x X — GL,(C) in order
to be able to apply our theory of topological bundles.

Let X be a finite dimensional CW complex. By the topological K -theory of X

we mean the representable complex K-theory of X, i.e.

Ky (X) = m(BUY) = [X,,2BU] = [Si(X,.), BU],

top

where BU is a classifying space for the infinite unitary group U = lim,U (r),
BUX is the space of continuous maps from X to BU with the compact-open
topology, X, is the union of X with a disjoint basepoint, X is the i-fold
reduced suspension, ) the loop space and [.,.] means based homotopy classes

of based continuous maps.

Lemma 3.1. — The natural map lii)nrm(BU(r)X) — mi(BUX) is an isomor-

phism.

Proof. — The classifying space BU may be realized as the direct limit of
Grassmannians BU = liL>nTBU(7“) = liigrli_r)nnG,«(C”) where G, (C™) denotes
the Grassmannian of complex r-planes in C™. It has the structure of a CW
complex with only finitely many cells in each dimension (cf. [MS74, Corollary
6.7 and Problem 6-C]). In particular, every skeleton lies already in some BU (r).
Using the cellular approximation theorem, it follows, that any element of
m;(BUX) = [¥¥(X,), BU] may be represented by a map X¢(X,) — BU(r)
for a suitable r, thus showing the surjectivity.

Given two maps f, g : (X, ) — BU(r) and a homotopy between the induced
maps f,g: ¥ (X,) — BU, the same argument shows, that there is an s > r
and a homotopy between the induced maps f,g : ¥(X,) — BU(s), proving
injectivity. [
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This lemma reduces the description of topological K-theory to the description
of the homotopy groups m;(BU(r)*) = m;_1(U(r)¥). Note, that the inclusion
U(r) — GL,(C) is a homotopy equivalence.

For any topological space Y, we denote by Se(Y") the simplicial set of singular
simplices in Y. This is a Kan complex (a fibrant simplicial set). The functor S
is right adjoint to the geometric realization functor | . | from simplicial sets to
spaces. The natural map [Se(Y)| — Y is a weak equivalence. If S, is any Kan
complex, there is a natural isomorphism 7;(S,) = mi(|Se|). In particular, we
have canonical isomorphisms 7;(Se(Y")) = i (|Se(Y)]) = mi(Y). See [May67,
§16] for the proofs.

Now assume that Y is a smooth manifold. Then it is well known, that there
is also a homotopy equivalence S°(Y) = So(Y), where S°(Y) denotes the
simplicial set of smooth singular simplices. We want to extend this result to
spaces of mappings between smooth manifolds.

Thus let X and Y be smooth manifolds. There is a natural homeomorphism
(YX)A” = yAPXX "hence any singular p-simplex o of YX may be viewed as a
map AP x X — Y and we call o smooth, if this last map is smooth. Denote

by S°(YX) the simplicial set of smooth singular simplices in Y~.

Proposition 3.2. — The natural inclusion i : SZ(YX) < S4(YX) is a ho-

motopy equivalence.

We have to approximate every singular simplex by a smooth one, in a com-
patible way. This is done in the following lemma (cf. [Lee03, Lemma 16.7]).
We denote by I the unit interval [0, 1].

Lemma 3.3. — For each singular p-simplex o : AP — Y X there exists a

continuous map Hy : I x AP — YX such that the following properties hold:

(i) Hy is a homotopy from o = H,(0, .) to a smooth p-simplex o = H,(1, .).
(ii) For any increasing ¢ : [q] — [p] we have Hy«x = Hy o (id; X ¢a), where
as usual pa 1 A1 — AP s the map induced by ¢.

(iii) If o is smooth, then H, is the constant homotopy.
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Proof. — Note that it is enough to fulfill (ii) for the face and degeneracy
operators. The H, are constructed by induction on the dimension of o. If
o : X — Y isa0O-simplex, we choose any homotopy H, to asmootho : X — Y,
constant if ¢ is already smooth.

Now suppose that we have constructed H,: for any ¢’ of dimension < p, and
let 0 : AP — YX be a p-simplex. It may uniquely be written as ¢ = ¢*r =
T o ¢a, where ¢ is surjective and 7 is non-degenerate [Lam68, Satz 3.9]. If o
is smooth, we let H, be the constant homotopy. If ¢ is degenerated, ¢ # id
and 7 is of dimension strictly less than p. Clearly ¢a is smooth and we define
H, := H; o (id; x ¢a). Note, that, since ¢a has a smooth section, if o is
smooth, so is 7, so that H, is well defined.

If 0 : AP — YX is non-degenerate (i.e. ¢ = id,7 = o) and not smooth, we
construct H, as in [Lee03, Lemma 16.7] viewing o as a map AP x X — Y.
Everything goes through word by word.

Condition (ii) is checked in loc. cit. for the face maps. By our construction,
it is also satisfied for the degeneracies (use the unicity of the representation
o= ¢'T). O

Proof of the proposition. — We define s : So(Y*) — S®(YX) by ¢
H,(1,.). Condition (ii) of the lemma ensures that this is a morphism of
simplicial sets, and by (iil) s 07 = idgee(yx).

We construct a simplicial homotopy ¢ o s ~ idg,yx) using the H,: For i =
0,...,plet o : APY1 — T x AP be the affine singular simplex sending ey —
(0,e0),...€ei — (0,€;),ei41 — (1,€i),...epy1 — (1,€p), where e, ..., ept1 is
the standard basis of RP*2 (this is just the standard decomposition of I x AP
in (p+ 1)-simplices), and define h; : Sp(YX) — Sp11(Y™X) as hi(0) = Hy 0 .
Again it follows from condition (ii) of the lemma and the computations (16.10)
— (16.12) in [Lee03], that the h; form a simplicial homotopy i o s ~ idg, (yx)
in the sense of [May67, Definition 5.1]. O

We apply this proposition in the case Y = GL,(C). Obviously, S°(GL,(C)¥)
and Se(GL,(C)¥X) are simplicial groups. Define Gy = liigrS‘,’o(GLr(C)X) and
let BoG be its classifying space (Appendix A.3). We have the following chain



3.2. RELATIVE K-THEORY 67

of natural isomorphisms

1

7i(BaGla) = i1 (Ga) 2 limy 1 (S2°(GL(C)Y))
lim, 7,1 (Se(GL, (C) ) 2 lim, 7,1 (GL,(C))
lim, m,(BU (1))

I

lim, i1 (U(r)¥) =

i (BUY) = Kt (X),

- top

where we used the fact, that BU(r)¥ is a classifying space for U(r)X (cf.
the argument in the proof of the lemma in section 6.1 of Gillet’s article in
[LPLG192]), and lemma 3.1, and BeG, is our simplicial model for the topo-
logical K-theory of X.

3.2. Relative K-theory

Now let X = Spec(A) be a smooth affine scheme of finite type over C. By
abuse of notation, we denote the associated complex manifold by the same
letter. Note, that X has the structure of a finite dimensional CW complex, so

our above description of the topological K-theory of X applies.

The map from algebraic to topological K -theory. — There are natural contin-
uous homomorphisms A — ¢°°(X) — % (X) from the ring of algebraic func-
tions on X to that of smooth resp. continuous complex valued functions on X,
where A is equipped with the discrete topology, ' (X) with the compact-open
topology and ¢°°(X) with the induced topology. These induce GL,(A4) —
GL,(¢*(X)) — GL.(¢ (X)) = GL,(C)X. Note, that the simplicial set of sin-
gular simplices of GL,(A) is just the constant simplicial group GL,(A). Thus
we have natural morphisms of simplicial groups GL,(A4) — S (GL,(C)%X)
and, taking the limit 7 — 0o, GL(A) — Ge = lim, S3°(GL,(C)*). Hence we
get a map on the classifying simplicial sets BeGL(A) — BeGl.

The geometric realization |BoGL(A)| is a classifying space for the discrete
group GL(A). Its fundamental group is 71 (| Be GL(A)|) = GL(A) with maximal
perfect subgroup the commutator subgroup GL(A)" = [GL(A),GL(A)]. The
algebraic K -groups of X are by definition

Ki(X) = m(|B.GL(A)[*),  i>0,
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where |[B¢GL(A)|T denotes Quillen’s plus-construction with respect to GL(A)'.
Up to homotopy equivalence, |B¢GL(A)|T is uniquely determined by the fact,
that there is an acyclic cofibration f : |BsGL(A)] — |BsGL(A)|" with
ker(mi(f)) = GL(A)" [Ber82, Theorem (5.1)]. Now 71 (|BeGe|) = K;)%)(X)
is abelian, hence the image of GL(A)" under the map induced from
|BeGL(A)] — |BeGe| on fundamental groups vanishes. By loc. cit. (5.2)
|BeGL(A)| — |BsGl| factors up to homotopy uniquely through |B¢GL(A)|.
On homotopy groups this gives the desired map
Ki(X) = m(B.GLIA)T) = m(|BGal) = Koy

top

(X)), i > 0.

Remark 3.4. — It is easy to see, that this is the same map as defined e. g.
in section 6 of Gillet’s article in [LPLGT92].

Relative K -theory. — We define F' and F by the following pull-back diagrams:

F F |EeG|

R T

[BeGL(A)| — [BsGL(A)[" —— [B.G,|

Since p : FeGe — BeG, is a Kan fibration (Appendix A.3), the realization |p|
is a Serre fibration and so are the other two vertical arrows induced by |p|.
Then, since |ByGL(A)| — |B.GL(A)|T is acyclic, so is F — F [Ber82, (4.1)].
Since |EoG,| is contractible (lemma A.4), F is homotopy equivalent to the
homotopy fibre of the map |BsGL(A)|" — |BsGs| and we define the relative
K -groups

K*NX) :=m(F), i>0.

By construction we have a long exact sequence

o= Kt;i;l(X) — Kfel(X) — K;j(X) — Kt;;

(X)—....
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We also need the following simplicial description of the homology of F'. Define
F by the following pullback diagram of simplicial sets:

LO%-\ E.G.

L)

B.GL(A) —> B.G.

Since the realization functor | . | commutes with finite limits [GZ67, Theorem
in Ch. I11.3], the natural map |.%| — F is a homeomorphism, and, since F — F

is acyclic, we have isomorphisms in homology

H.(7.,2) = H,(|F|,Z) = H.(F,Z) = H.(F,Z).

3.3. The relative Chern character
Let X = Spec(A) be as before. We define relative Chern character maps
Cue : KI°Y(X) — H*""1(X, C)/Fil"H*""}(X,C)

as follows: By definition, K!*(X) = mi(F), and we have the Hurewicz map
K'*(X) — H;(F,Z) =~ H;(#,Z). It is thus enough to construct a homomor-
phism H;(F,Z) — H27""(X,n) = H*~~}(X, C)/Fil"H*~"1(X, C). We

will use the following

Lemma 3.5. — Let S be a simplicial set and X an algebraic variety. Form
the simplicial variety Xo := X ® S as in Example 1.11. Then we have natural
isomorphisms

erl(X.,n)g GB Hom(H,(S,Z), H'(X,C)/Fil"H(X, C)),

ptq=k
HE(X.,Q(n)) = @) Hom(H,(S,Z), H,(X,Q(n))).
pt+q=k

Proof. — The proof is the same in both cases and we restrict to the first
one. Choose a good compactification X < X. This induces a good com-
pactification X, — X ® § =: X, and H},(X,.,n) is the cohomology of
the (cosimplicial) complex 4*(X,) := Cone(Fil".o7*(X,,log Ds) — o7*(X,)).
Let ¢4*(X) be the complex Cone(Fil"&/*(X,log D) — «/*(X)). Obviously,
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GUXp) = Iloes, 9%(X) = Hom(ZSp, 99(X)) where ZS, is the free abelian
group generated by S, and Hom is in the category of abelian groups. We form
the chain complex ZS, with the usual differential Y~ (—1)%0;, the 9;’s denoting
the face operators of S. Its homology is by definition H,(S,Z). Then the total
complex of ¥*(X,) is just the total Hom complex Homz(ZS,, 9" (X)) [Wei94,

2.7.4] and there is a short exact sequence

0~ @D Exth(Hy(S.2), H(Y" (X)) — H*(Homz(ZS.,,%"(X))) —
p+qg=k—1
& Hom(H,(S,Z), H(%*(X))) — 0
ptg=k

(loc. cit. Exer. 3.6.1). Since the HY(¥4*(X)) =2 HY(X,C)/Fil"H%(X,C) are

Q-vector spaces, the Ext term vanishes and the claim follows. ]

Remarks 3.6. — (i) Now it follows, that the relative cohomology H¥ (X,,n)
is identified with H*(X,, C)/Fil"H*(X,,C) also in the case Xo = X ® S.

(ii) A similar statement also holds for the group HF(X,, Q}:‘), which is com-
puted by the complex A*(X,)/Fil"A*(X,). We have a commutative diagram

H*(X,,C)/Fil"H*(X,, C) H*(X., Q57

| |

Hom(H,(S, Z), H*~?(X, C)/Fil") — Hom(H,(S, Z), H*?(X, Q"))

and the right vertical arrow is given explicitely as follows: A class in
Hk(X.,Qf(:l) may be represented by a form w € A¥(X,), closed modulo
Fil"A*+1(X,). The simplicial form w is given by a family of k-forms on
A? x (X ® S)4, ¢ > 0, and in particular we can consider the restriction o*w
of w, to the copy of AP x X corresponding to o € S,. Integration along AP
gives the (k — p)-form [ w = [,,0*w € &"P(X). By linearity this extends
to a map ZS, — #*7P(X), ¢ — [,,0*w, which induces a well defined
homomorphism H,(S,Z) — H*P(o/*(X)/Fil"/*(X)) = H*P(X,Q%").
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We return to our smooth affine C-scheme of finite type X = Spec(A). To
construct the relative Chern character map on K-theory we thus have to con-
struct classes in H>"" (X ® %, C)/Fil"H?*"~1(X ® #, C). This is achieved as
follows. First write Gy.e := S3°(GL,(C)¥), so that Ge = lim, Gy.e, and define

%, by the cartesian diagram of simplicial sets

97- EOGT‘7.

l , lp (3.2)

BeGL,(A) —— BeGye.
Then 7 = lim, 7, H(7,Z) = lim, H.(%;,Z) and by the lemma
H*(X © .7,C)/Fil" = lim, (X ® %, C)/Fil".

By construction, a p-simplex in the simplicial group G, e is a smooth map
AP x X — GL,(C), and a p-simplex in E,G,, may be viewed as a smooth
map AP x X — E,GL,(C). On the other hand, every p-simplex in B,GL,(A)
may be seen as a morphism of varieties X — B,GL,(C). As in example 1.20

the above diagram (3.2) then gives rise to a commutative diagram

E.GL,(C)

et
X ® F, — B,GL,(C),

where g, is a morphism of simplicial varieties.

Phrased differently, if we denote by E, the algebraic bundle classified by g, :
X ® #, — B4sGL,(C) and by T, the trivial GL,(C)-bundle, we have the triv-
ialization «,. : T, — E, of the underlying topological bundles and correspond-
ing relative Chern character classes équl(Tr, E.a.) € H Y X @ Fpyn) =

H (X ® %, C)/Fil"H* (X ® Z,,C). We claim, that these classes are

compatible for different r.

—~—rel —~rel
Lemma 3.7. — The class Chne (Tr41, Erg1, 0py1) maps to Chne (T, Er, )
under the natural map H*" "1 (X @ Fri1,n) — HYX @ F,,n) induced by

rel rel

the inclusion j, : GL,(C) — GL,4+1(C) in the upper left corner.
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Proof. — By abuse of notation, we write j for all the morphisms induced by

j. Then we have a,41 0 j = j o a, and hence we get a commutative diagram

Fri1,2n—1 J* By 2n—1
H "TN(X ® Fpy1,n) — H_; "X ®F,n)
0‘:+1\L

|«
j*
o N X ® Fry1,n) H* Y X ® %, n).

rel

By construction it then suffices to show, that the refined class al;el(E,«H) €
Hrbejlr“’%_l(X ® Fry1,n) is mapped to &;GI(ET) by j*. By functoriality
it is enough to show this for the universal bundles E'Y/BoGL,41(C) and
E™Y /B,GL,(C). But under the identification HE™ 201 B,GL,(C),n)
Fil" H?>"(B,GL,(C), C) the n-th universal refined Chern character class “is”
the n-th universal Chern character class Ch,(E™Y) and j*Ch,(EMY) =
Ch,(j*EMY) = Chy(EM™Y @ Ty) = Chy,(EM™Y), since j : ByGL,(C) —
BoGL,11(C) classifies the bundle E'™V ¢ T} and the higher Chern classes of

the trivial bundle 77 vanish. O

Definition 3.8. — According to the preceding lemma, the family
—~rel
(Chn (TTa ET’a ar))rZO

defines a class in H>" (X ® .#,C)/Fil"H**"1(X ® #,C). By lemma 3.5
this class gives morphisms H;(.#,Z) — H*"~~}(X,C)/Fil"H*~*~}(X, C),
i =0,...,2n — 1. We define the relative Chern character Chff;li on K'*(X) to

be the composition

Chel : KiY(X) = my(F) M, g,(F,Z) = Hy(F,Z) —

— {7 X, C)/FiI"H X, C).

Remarks 3.9. — (i) For the construction of regulators, it would suffice to
develop a theory of bundles, connections and characteristic classes only for
simplicial varieties of the type Spec(A)® .S with a simplicial set S. In this case
a GL,-bundle on X ® S corresponds to a GL,(A)-fibre bundle on the simplicial
set S. These bundles are the ones studied by Karoubi in [Kar87]. To compare

the relative Chern character with the Chern character in Deligne-Beilinson
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cohomology however, it is necessary to extend the theory to general simplicial
varieties.

The idea to use relative Chern character classes (of bundles on simplicial sets)
for the construction of a relative Chern character on K-theory is completely

due to Karoubi.

(ii) We want to mention the relation to Karoubi’s relative Chern character
([Kar87], [CK88], see also example 1.20). There the setup is a little bit different
from ours. Let A be a complex Fréchet algebra and define the simplicial ring A,
as €°(A®*)®A. Then K.\ (A) is by definition 7;(BsGL(A,)) and KI*/(A) is
by definition the i-th homotopy group of the homotopy fibre of | BsGL(A)|T —
| Be GL(A,)|.

Let Q.(A) be the differential graded algebra of non-commutative differential
forms [CK88, 2.1]. The non-commutative de Rham homology H.(A) is the
homology of the complex Q.(A) := Q. (A)/[Q(A), Q(A)], where we divide by
the submodule generated by the graded commutators.(!)

Let S be any simplicial set, and E/S a GL,(A,)-fibre bundle on S [Kar87,
5.1]. Define Q*(S, A) to be the complex of de Rham—Sullivan forms on S with
coefficients in Q,(A)?). Thus an n-form in Q*(S, A) is a compatible family of
n-forms (w,)ses, where for each p-simplex o the form w, lives in Q"(o; A) :=
DBrsr 7 (A B (A).

Connections and curvature are defined as in our geometric situation using non-
commutative differential forms. For example a connection is given by a family
of matrices I';(0) € Mat,(Q(0;A4)),0 € Sp,i = 0,...,p, satisfying similar
relations as in definition 1.21. Then one constructs Chern character classes
Chy(E) € H*™(Q*(S, A)) = @}, 1o, Hom(H},(S), H;(A)) in the same way as
we did [Kar87, 5.28].

W, (A) = ker(HC,(A) 2 Hny1(A, A)), where HC denotes reduced continuous cyclic

homology, H. (A, A) is continuous Hochschild homology and B is Connes’ B-operator [CK88,

2.4]. Hence everything that follows, may also be formulated in terms of cyclic homology.
If A = € (X) for a manifold X, this is a non-commutative analogue of Dupont’s complex

A (X ® S).
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Since each Q*(o; A) is by definition the total complex associated with a double

complex, the same is true for Q*(S, A). Hence we can filter Q*(S, A) with

respect to the second index.

If £ now is a GL,(A)-fibre bundle on S, it is easy to see, that it has

well defined Chern character classes Ch,(E) € H?*(Fil"Q*(S,A)) =

EBkJ%l:lgn Hom(Hy(S), H;(A)) @ Hom(H,(S), Z,(A)), where Z,(A) denotes
<

the cycles of degree n in Q,(A).(3)

In the same way as we did in section 1.4, one can then construct secondary
classes Ch'(E, F,a) € H> 1(Q*(S, A)/Fil") for triples (E,F,«), where
E, F are GL,(A)-fibre bundles on S and « is an isomorphism of the induced
GL,(A.)-bundles.

In [Kar87] Karoubi uses a geometric interpretation of K;(A) and KI®!(A)
in terms of “virtual” GL(A)-bundles on i-spheres to define Chern character
maps Ch,,; on K;(A) and relative Chern character maps Chﬁili c KFl(A) —
Hon-1-i(A), if i > n, and Ch}), : KI(A) — Q,_1(A)/Bn_1(A), By_1(A)
denoting the boundaries in degree n —1 [Kar87, 6.21, 6.22]. Note, that one can
write this in the following uniform way: Ch;e’li  Kre(A) — H2"_i_1(§<n(A)),
1=0,...,2n—1, where ﬁ<n(A) denotes as usual the truncated complex. It is
not hard to see (cf. [Kar87, 5.17], [CK88, Théoreme 3.4]), that this construc-
tion is “the same” as the one we used via the Hurewicz map.

Now assume, that A = €°°(X) is the ring of smooth functions on a man-
ifold X. Since the algebra of smooth complex-valued differential forms
on X, @/*(X), is a differential graded algebra with &/°(X) = A, there
is a unique morphisms of DGAs Q,(4) — &*(X), which is the identity
in degree 0. Hence Karoubi’s relative Chern character induces morphisms
K ($>®(X)) — H?"=1(&/<"(X)). Insofar, our relative Chern character is

analogous to Karoubi’s one.

() Karoubi uses another subcomplex %*(S, A) instead of Fil"Q*(S, A), which nevertheless

has the same cohomology in degree 2n.
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If X is a smooth separated scheme of finite type over C, one can construct
a natural map K'*(X) — K®(€>°(X)). Moreover, the relative Chern char-
acter Ch;"“}i  KY(X) — H*~=1(X,C)/Fil" may be composed with the nat-
ural maps H*"~"~1(X,C)/Fil" — H*"~1(X,Q5") — H* " 1(X,o") =

H?"~=1(g7/<"(X)), and it is clear from the constructions, that the diagram

Ki(X)
Chig, l l Chig,

H2n7i71 (X, C)/Flln s H2n7i71 (ﬂ<n(X))

K ((X))

commutes.

3.4. Comparison with the Chern character in Deligne-Beilinson co-

homology

The Chern character in Deligne-Beilinson cohomology is constructed in exactly
the same way as the relative Chern character above:

Let X = Spec(A) be a smooth affine C-scheme of finite type as in
the previous section. We have again the natural morphisms of simpli-
cial varieties X ® BoGL,(A) — B.GL,(C). Call the corresponding al-
gebraic bundle G,. As in the relative case the Chern character classes
Ch/(G,) € HY¥(X ® BJGL,(A),Q(n)) are compatible with respect to the
maps H2"(X ® ByGL,41(A), Q(n)) 2 H2'(X ® BJGL,(A), Q(n)) and thus
yvield a well defined class in H2'(X ® BoGL(A),Q(n)). This class in turn
yields maps H;(B,GL(A),Z) — sz"_i(X, Q(n)) and, for i > 0, we define the

Chern character maps Chi ; on K-theory to be the composition

B0 Hy(|BJGL(A)[*, Z) =

~ H;(B.GL(A),Z) — HZ'(X,Q(n)).

ChY; : K;(X) = mi(|BsGL(A)[")

Remark 3.10. — This is the construction used by Soulé [Sou86, 2.3]. It is
just a down to earth version of the more general constructions of Chern char-
acters in [Sch88, §4] or [Gil81].
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Theorem 3.11. — The diagram

K(X) Ki(X)
l (1)~ lChl i ChZ,;
H==1(X,C)/FilI"H* " 1(X,C) — H2' (X, Q(n))
commautes.
Proof. — This is now an easy consequence of theorem 2.22 and the construc-
tions.

We use the notations of the last two sections. Then E,/X ® .%, is just the
pullback of G, /X ® BeGL,(A) by the morphism X ® %, — X ® B4GL,(A). It
follows from theorem 2.22 and functoriality, that (—1)”_1&:1(Tr, E, ap) €
H*Y(X®.%,,C)/Fil" and Ch?(G,) € HZ'(X®Bl.GL(A), Q(n)) are mapped
to the same class in H2"(X ® %, Q(n)), namely to Ch?7(E,). It follows, that

we have commutative diagrams

—~—rel

(_1)nilchn (TT7E7‘7a7")

Hi(Z:,7Z) H*~1(X,C)/FiI"H*""1(X,C)
l ChZ (E,) J/
H,;(B.CGL,(A)), Z HZ(X, 7
( (A)),Z) Py o (X,Q(n))

where the arrows are induced by the specified classes. Going to the limit r — oo

and using the commutativity of diagram (3.1) the claim follows. O

3.5. Non affine varieties

Using Jouanolou’s trick, we may extend the definition of the relative Chern
character to all smooth separated schemes of finite type (= varieties) over C
(cf. section 6.2 of Gillet’s article in [LPLG192]).

A Jouanolou torsor over a scheme X is an affine scheme W together with an
affine map W — X such, that, for some vector bundle E over X, W is a torsor
for E. According to Jouanolou and Thomason, every smooth separated scheme

of finite type over a field admits a Jouanolou torsor [Wei89, Proposition 4.4].
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Let X be a variety over Spec(C) and fix a Jouanolou torsor 7 : W — X.
Since X is smooth, so is W, and Quillen’s algebraic K-theory of locally free
ﬁ?gg—modules of finite rank K, (X) is isomorphic to the K-theory of coherent
ﬁ;}lg—modules K[ (X) [Qui73, §7.1]. By loc. cit. §7 Proposition 4.1 7% : K.(X) =
K, (X)— K.(W) = K,(W) is an isomorphism.

On the other hand 7 : W — X is a homotopy equivalence!®, hence it also

(X) S Ki (W).

induces an isomorphism in topological K-theory 7* : K top

top

Definition 3.12. — Let X be a variety over Spec(C). We define the relative
K-theory K!(X) for i > 1 by

Kj{(X) = Kj*'(W),

where W is any Jouanolou torsor over X. The map K!*(X) — K;(X) is given
*\—1
by the composition K*(W) — K;(W) =), K;(X) and the map K;(X) —
. * . *)—1

Kiop(X) is given by the composition K,(X) = Ki(W) = Kon(1V) =,
Kiop(X).

Of course, this is only well defined up to isomorphism: If 7’ : W/ — X is a sec-
ond Jouanolou torsor, the fibre product W” = W x x W’ is again a Jouanolou

(=23

torsor over X and we have isomorphisms K, (W) = K.(W" = K.(W’)

~

and similar for topological K-theory. By the five lemma, also K™(W) «—
K (w") = K(W'). Moreover, the map K;(X) — K,;);(X) is well defined.
Since 7 : W — X is a homotopy equivalence, it induces an isomorphism
H*(X,Z) =H *(W,Z). This is a morphism of mixed Hodge structures, hence
an isomorphism of mixed Hodge structures. In particular 7* also induces
isomorphisms Fil"H*(X,C) — Fil"H*(W,C), H*(X,C)/Fil"H*(X, C) =
H*(W,C)/Fil"H*(W,C) and H(X,Q(n)) — H%(W,Q(n)), which we use
to define the relative Chern character and the Chern character in Deligne-
Beilinson cohomology (this is the method used by Schneider in [Sch88, §4]).

If & denotes the sheaf of € *-sections of the underlying vector bundle E of W, then
H'(X,&) =0, since & is fine. Hence, topologically, W is a trivial torsor, i.e. W = E over X.
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Definition 3.13. — The Chern character in Deligne-Beilinson cohomology
Chgi : Ki(X) — H2'"(X,Q(n)) is given by the composition

(ﬂ_*)—l

* Ch?i . .
Ki(X) = K;(W) —5 HJ' /W, Q(n)) —— HJ' (X, Q(n)).
Similarly, the relative Chern character Chff}i : K{el(X) — H?=1(X C)/Fil"
is given by the composition

rel _ gorel Chileali 2n—i—1 an rr2n—i—1 ()t
K*(X)=K*W)——H (W,C)/Fil"H (W,C) ——

H*~ =YX, C)/Fil"H*""" (X, C).

From the constructions it is clear that theorem 3.11 remains valid in this

situation:

Theorem 3.14. — The diagram

Kr(X) Ki(X)
l (—1)n—1Chel i Ch7;
H>=i=1(X, C)/Fil"H*"~~1(X,C) — H2'*(X,Q(n))
commautes.

Remark 3.15. — Note, that, if X is smooth and projective, then for ¢ > 0
the map K;(X) — Kt;;(X) has torsion image (cf. [LPLGT92, 6.3]). Hence
the map K!/(X) — K;(X) is rationally surjective and thus the relative Chern
character is in some sense the interesting part of the Deligne-Beilinson Chern

character.

3.6. The case X = Spec(C): The regulators of Borel and Beilinson

In this section we apply the above comparison result in the case X = Spec(C)
and obtain as a corollary a new proof of Burgos’ theorem, that Borel’s reg-
ulator is twice Beilinson’s regulator. We first give a different description of
the homotopy fibre of BGL,(C)® — BGL,(C) and use it to give an explicit
cocycle for the relative Chern character. This cocycle may then be compared

with a representative of Borel’s regulator in Lie algebra cohomology using the
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explicit description of the van Est isomorphism due to Dupont. At this point
one sees how well-suited the Chern-Weil theoretic description of characteristic
classes is for the computation of regulators.

Here and in the following we denote by GL,(C)° the group of invertible com-

plex n X n-matrices equipped with the discrete topology.

3.6.1. An explicit cocycle. — In the notations of the previous sections
we fix A = C, X = Spec(C). In particular, we have the simplicial groups
Gre = S3°(GL,(C)), whose realization is equivalent to GL,(C) with the usual
topology, and the simplicial set .%,, defined by diagram (3.2) and homotopy
equivalent to the homotopy fibre of B4GL,(C) — BeG).. Recall that by
construction the relative Chern character factors through the homology of the
simplicial set & = li_n)lrL%«.

In the present situation there is another model for .%,, that will be useful for

us, see Appendix A.3(): We have a commutative diagram of simplicial sets

Br

Ty

T Qr

/ T l . ip

GL,(C)\Gre —> ByGL,(C)® —> BuGr,

where 3, is given in degree p by 8,(c) = (c(eo) lo,...,0(ep)"to) and the
map 7,, induced by [, and p,, is a weak homotopy equivalence (lemma A.6).
Here e; denotes the i-th standard basis vector (0,...,1,...,0) and o(e;) is also
the same as 7°c with 7 : [0] — [p],0 — 4. This translates into a commutative

diagram of topological morphisms of simplicial manifolds
E.GL.(C)
Br ’/j/r/f/’ i
p
Nr gr
X® GLT(C)\GT,. —— X ®.%, — B,GL,(C).
®) Actually, in the Appendix GL,(C)\Gr. is replaced by the isomorphic simplicial set

G, /GL,(C), the isomorphism being induced by ¢ +— ¢~ '. This is due to different con-

ventions in the cited literature and I hope, it will not cause too much confusion.
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Proposition 3.16. — The composition

—~rel
Ch;e (T’f‘vE’I‘va’l‘)
—n VP

Hop—1(GLy(C)\Gye, Z) = Hop_1(Fr, Z) H°(X,C)/Fil" = C

s given by the cocycle

((21:1__11))" Tr /A?n—l (ot do)? 1,

o~ (=1)"
Remark 3.17 — Hamida obtained a similar result [Ham06].

Proof. — Since r is fixed, we drop the subscript r in the following. Since
X is proper, it makes no difference if we work with é\fl;el(T, E,«) or with
Chffl(T, E,a). It is clear from the commutativity of the above diagram,
that the composition in the statement of the proposition is induced by
Ch™/(T,n*E, B). This class can be computed explicitely: Since X is a point,
the standard connection on the bundle n*E is given by the zero matrix (cf.
the formula in example 1.22). Then the pullback to the trivial bundle via
B is given by f; Ydp; (see remark 1.25 (i)). B; is given on the p-simplex
o € GL.(C)\G,, by the matrix o(e;) o € G, = €°°(AP,GL,(C)), hence
B, 1d8; = o7 'do on the simplex o. We denote the corresponding simplicial
form simply by o~ ldo.

By construction Ch'*/(I'T, I"F B) is given by fol (i9/5:Chn(T))dt, where T' is
the connection given by T; = (1 — ¢)3;'dB3; = (1 — t)o~'do on the trivial
GL,(C)-bundle on (X ® (GL,(C)\Gr.)) x C, t denoting the coordinate on C.

The curvature of I' is given by

R; =dl; +T? = —dt(c'do) — (1 — t)(o " do)? + (1 — t)* (0 do)?
= —dt(o'do) + (t* — t) (0" do)?.
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Hence R = (12 — t)"(o 1 do) 2" — ndt(t2 — t)" (0~ do) 2"~ and

. I
Ch;el(Fle‘\p E?ﬁ) = ﬁ 0 Za/atTI'(R:L)dt
1
= —n‘Tr/ (2 — )" (o~ do) " Ldt
n. 0
1 o 1 17 \2n—1
= —— t“— )" dt)T “do) T
([ @ =0 (o )
_ n (n—1! —-17 \2n—1
= (-1 mTr (0™ 'do) ).
Here we used that fel(t2 — ) lat = (—1)"! fol 11— Hldt =
n— n—1IT'(n)I'(n n—1 ((n—=1)!)2 .
(-1) 1B(”7”) = (=1 L 1£(7)L+1(1)) = (1) 1(5211_%))! , where B is Eu-
ler’s Beta function [Car77, section 4.2]. Now the claim follows from remark
3.6. O
3.6.2. An explicit description of the van Est isomorphism. — Con-

sider GL,(C) as a real Lie group with maximal compact subgroup U(r). De-
note the corresponding Lie algebras by gl,. resp. u,. If V' is a finite dimensional

real vector space with a continuous GL,(C)-action, the van Est isomorphism
H*(g[ra Ups V) = H:ts<GL7’(C)7 V)

relates relative Lie algebra cohomology with continuous group cohomology.
Recall, that in general, if G is a connected Lie group and K C G a sub-
group with Lie algebras g and € respectively, and V' a trivial G-module, the
relative Lie algebra cohomology H*(g,€; V) is the cohomology of the com-
plex &*(G/K; V)% of smooth V-valued differential forms on G/K, that are
invariant under the left action of G (see e. g. [BG02, Example 5.39]).

To compare Borel’s regulator with the relative Chern character, we need the

following description of the composition of the van Est isomorphism with

the natural map H (GL,(C),V) — Hj, (GL,(C),V) = H*(B,GL,(C)°,V)

from continuous to discrete group cohomology.
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Proposition 3.18. — We have a commutative diagram

H2y(GL(C), V) —= H*(BJGL,(C)’, V) = H*(GL.(C\Gya, V),

van Est T = /
¢

H*(gl,,u; V) H*(gl,; V)

where ¢ is induced by the chain map ¢ sending a left invariant form w to the

simplicial cocycle

CL(C\SX(GL,(C)) 50— | o*w. (3.3)
AP

Proof. — The proof is based on the explicit description of the van Est isomor-
phism by Dupont in [Dup76, Proposition 1.5] and [Dup78, (proof of) Propo-
sition 9.10].

First of all (3.3) is well defined, since w is left invariant, and ¢ is a chain map
by Stoke’s theorem.

In the following, we use the abbreviations G := GL,(C), K := U(r), Ge :=
Gre = S°(GL,(C)) and write G° when we consider G = GL,.(C) as a group
with the discrete topology.

Consider the simplicial manifold F,G? x G/K = B4(G°;G/K) (the bundle
GS

with fibre G/K associated with the principal bundle E,G° — B,G°). It is
given in degree p by B,(G%;G/K) = B,G° x G/K with face operators

(927"'7gp7gK)7 ZZO?
ai(gl?""gp%gK): (91;---79i9i+17---79p79K)7 0<Z<p7
(gla'” 7gp—17gpgK)a Z:p

Denote by p the canonical projection Be(G% G/K) — BeGY. Since G/K is
contractible, p induces an isomorphism in de Rham cohomology (cf. [Dup78,

proof of proposition 9.10]).
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On the other hand, we have a commutative diagram
B, (G G/K)

i

G\G. B.GY,

where the topological morphism v is given in degree p by AP x G\G, —
By(GHGIK), (o) — (o(eo) o(er),....olep1) " o(ey),olep) ot K,
and p was defined in the previous subsection.

If now w is a left invariant V-valued differential form, its pullbacks along the
projections AP x B,,(G%; G/K) — G/K give a well defined simplicial V-valued
form on Be(G% G/K), where V-valued simplicial forms are defined similar as
in section 1.1. Thus we get a natural map of complexes prj : &*(G/K; V)¢ —
A*(Bo(G% G/K); V).

On cohomology we have the commutative diagram

H (G V)E) 25 B (A (Bu(GG/E): V)

’7*
'ﬁ* TE \

H* (gl 1,3 V) H*(A*(BJG%; V) ——= H*(A*(G\G4: V)

Il’\' [l"’
p*

H*(B.G% V) H*(G\Ga; V).

Here I is the isomorphism of theorem 1.2 (with V-coefficients) in the special
case of a simplicial set considered as a simplicial manifold and is given by
integration over the standard simplex.

It follows from the explicit description of the van Est isomorphism in [Dup76,
Proposition 1.5] and [Dup78, Proposition 9.10 and the remark following it],
that the composition I o (p*)~! o pr} is the same as the composition of the
van Est isomorphism with the natural map from continuous to discrete group
cohomology.

Hence the composition H*(gl,.,u,; V) — H*(G\G,.; V) we are looking for is
given by I o~y*oprs. Since pryo-y is given in degree p by AP x (G\G)) — G/K,
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(t,0) — o(ep) to(t)K, an invariant form w is sent by I o ~y* o pr} to the

simplicial cocycle

o [ Lproaro= [ ow,
AP P AP

where — by abuse of notation — we still denote by o the composition of o with

the natural projection G — G/K and L, denotes the left translation with g.
Now it is obvious, that I o y* o prj factors through the map ¢ as claimed. [J

3.6.3. Comparison of the regulators. — First we give the definitions of

the regulators we use.

Definition 3.19. — The Beilinson regulator is by definition the Chern char-

acter with values in real Deligne-Beilinson cohomology:

2
Chn,?nfl

TBe : Kon—1(C) Hé(Spec(C), Q(n)) — ng(Spec(C),R(n)).

Here H},(Spec(C), R(n)) is the cohomology in degree 1 of the complex R(n) —
C, hence canonically isomorphic to C/R(n) which in turn is isomorphic to
R(n — 1) via the projection m,_1 : C — R(n — 1), z — (2 + (—1)""12), and

we will view rge as a map with values in R(n — 1).

Next we shortly recall the construction of Borel’s regulator (see e. g. [BG02,
Ch. 9]).

Let G be GL,(C) viewed as real Lie group with maximal compact subgroup
K = U(r) with Lie algebras g = gl and ¢ = u, respectively. Let g = ¢ @ p
be the corresponding Cartan decomposition. If V' is a finite dimensional real
vector space with trivial G-action, there are canonical isomorphisms

H: (G V) = H'guV)=H(@yoV=(\p)reV

van Est

The right hand side is the complex of K-invariant alternating forms on p with
values in V. It is computed as follows.

The complexification of G = GL,(C) is G¢ = GL,(C) x GL,(C) and the
compact real form U of G¢ is U(r) x U(r) with Lie algebra u =t & ip C gc.
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Now we have a chain of isomorphisms

H* G, R(n)) = H*" (K,R(n)) since G/K is contractible
~ H*YU/K,R(n)) since K 2 U/K
~ g Hu,e;R(n)) since U is compact

= Home(/\"" (ip), R(n))

= Homg(/\zni1 p,R(n —1)) multiplication with 2" ~!
~ g (g, & R(n — 1))

~ > 1(G,R(n —1)) van Est

cts
and therefore natural maps

suspension
>

H*(B,GL,(C),R(n)) H* Y(GL,(C),R(n))

~ g*"~1(GL,(C),R(n — 1)) — H2"1(GL,(C),R(n — 1)).

cts grp

The image Bo,, of the n-th universal Chern character class Ch'P(E"iY) ¢
H?"(BsGL,(C),R(n)) in the group cohomology HZ~(GL,(C),R(n — 1))
then induces (for r large enough) the Borel regulator rg, via

Kon_1(C) 2 Hy_1(BoGL(C)®, Z) & Hypy—1(BuGL,(C)%, Z) 225 R(n—1).

We also denote by Bo,, the image of Ch{°P(E") in the relative Lie algebra
H?" (gl u,; R(n—1)). We need Burgos’ description of its image in absolute

Lie algebra cohomology:

Lemma 3.20. — The image of Bo,, in H*"1(gl.,R(n — 1)) is represented
by the left invariant differential form
(n—1)!

B 1o Tr((g tdg)? !

g~ tdg denoting the Maurer-Cartan form on GL,(C) and 7,_1 the projection
C—R(n-1).

Proof. — Obviously, the above form is left invariant. At the unit element the

Maurer-Cartan form is just the identity gl, — gl.. Hence the above form
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corresponds to the alternating form on gl,., that is given by

AR AN P —2((27;__11))!!%—1 Z sgn(7)Tr(z7 (1) Tr2n-1)) | -
TEG2,—1

where Gg,,—1 denotes the symmetric group on 2n — 1 elements.

It follows from [BG02, Proposition 9.26], that this represents the image of
Bo, in H*"!(gl.,R(n — 1)). Remark that Burgos’ cocycle differs from ours
by the factor (—1)". This is explained by the fact, that Burgos uses another
normalization of the Chern classes. His “twisted Chern character class” ch,, is
(—=1)"ChP, cf. remark 2.20. O

Theorem 3.21 (Burgos [BG02]). —
TBo = 27“]36.

Remark 3.22. — Beilinson [Bei84] proved, that both regulators coincide up
to a non zero rational factor. Many details of Beilinson’s proof were provided
by Rapoport [Rap88]. Dupont, Hain, and Zucker [DHZ00] conjectured that
the factor should be 2. This was proven by Burgos using Beilinson’s original

argument and making all the normalizations and identifications precise.

Proof. — Since the odd topological K-theory of Spec(C) vanishes, the map
K (C) — Ko, _1(C) is surjective. By construction of the regulators resp.
the relative Chern character and the comparison result of theorem 3.11 it then

suffices to show, that the diagram

*

Hyp1(GL,(C)\Gyoes Z) > Hop1(BoGL,(C)?, Z)

(—1)7L71Ch}:’12n71 l, %Bon
H(Spec(C), C)/Fil* — H},(Spec(C),R(n))
C C/R(n) — " ~R(n-1)

commutes. Note that by our constructions, the map C — C/R(n) is really

the projection.
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According to proposition 3.16, m,_; o ((—1)"*1Chff712n_1) is induced by the
cocycle o — —m,_1 (%Tr ngn,l(J*1d0)2”4>.
On the other hand, by lemma 3.20, the image of Bo, in H>"~!(gl.;R(n — 1))

is given by the invariant differential

n—1)! _ _
_2((271 — 1))'7rn_1 o Tr((gtdg)*"1).
Hence, by proposition 3.18, the composition %Bono Py is induced by the cocycle

(n—1)! / —13 \2n—1
no T, (0 AT

thus proving the theorem. O

GL,(C)\Gre 3 0 —
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THE p-ADIC THEORY






INTRODUCTION

As mentioned in the main introduction, the goal of this second part is to
construct a relative Chern character for smooth affine R-schemes of finite
type, where R is a complete discrete valuation ring with field of fractions K
of characteristic 0 and residue field k£ of characteristic p > 0, and compare it
with the p-adic Borel regulator in the case of the ring of integers in a finite
extension of Q,. Thus the structure of part II is parallel to that of part I.

Let us only mention the following points: Whereas in the complex situation
we had nice functorial complexes computing de Rham cohomology, namely
the complex of @°°-differential forms, this is not the case for dagger spaces.
The de Rham cohomology of a dagger space X, Hji(X/K) = H*(X,Q%),
equals the cohomology of the complex Q*(X) in general only, if X is acyclic
for the cohomology of coherent sheaves. Thus one can compute the de Rham
cohomology of a simplicial dagger space X, by simplicial differential forms in
the style of Dupont only, if each X, is acyclic for the cohomology of coherent
sheaves. For instance, this is the case, if each X, is affinoid or the dagger space
associated with an affine K-scheme, e.g. the classifying space B.GL; K or the
universal principal bundle E.GL; - This does not cause any problems for the
construction of Chern-Weil theoretic classes, but, for example, a pullback map
on de Rham cohomology for a topological morphism Y, ~~ X, is a priori only
well defined, if each X, is acyclic for the cohomology of coherent sheaves. Thus

everything works fine, if one restricts to the affine case, which is enough for the
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construction of regulators on K-theory, but things become more complicated
if one wants a nice general theory.

Next a few comments on the relation with the syntomic Chern character. For
simplicity let us assume, that R is the ring of integers in a finite unramified
extension K of Q. Let X be a smooth affine R-scheme of finite type. There
is a natural map from the algebraic de Rham cohomology of X to the rigid
cohomology of X and on the latter, there is a natural Frobenius ¢. The rigid
syntomic cohomology HZ,, (X, n) of X as developed systematically by Besser

[Bes00], is the cohomology of the complex
-5
Cone FilnRFdR(XK/K) — ]Rl“rig(Xk/K) [—1].

On the other hand, the generic fibre Xk of the weak completion of X (section
4.2) is a dagger space, whose de Rham cohomology is naturally isomorphic to
the rigid cohomology of Xj [GK99, Kap. 8]. If we define relative cohomology
(X,n) = H*(Cone(Fil"RI4g (X /K) — RT4r(Xx/K))), this en-
ables us to construct a natural map H;*(X,n) — HE,,(X,n) (induced by
the natural map Hip(Xg/K) — H (Xg/K) and 1 — p% P HE (X /K) —
Hp (X)/K)) and conjecturally (cf. Besser’s talk [Bes03]), the diagram

groups H*

rel

K}N(X) Ki(X)
cret i l oYt
H 7N (X n) —— H(Xon)

commutes (up to a sign).

One can try to prove this as in part I. What one has to prove is, that for
an algebraic GL,-bundle E on a smooth simplicial (affine) R-scheme X,,
whose induced bundle on the simplicial dagger space ()?.) K is topologi-
cally trivialized by «, the class éifl(T, E.a) € H2"'(X,,n) is mapped
to Chiy"(E) € HS%?H(X.,n). As in chapter 2 (see chapter 6 for precise

—~—rel _
definitions) one constructs refined classes Ch;e (E) € Hf;l’Z" Y(Xo,n)

and a pullback map o*: HE’2n71(X.,n) —  H> (X, n), such that

rel rel

—~rel —~rel E.x
a*Ch,, (E) = —Ch,, (T,E,«). One may also define the groups Hgy}, (X, n)
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(cf. the proof of theorem 2.22) and show, that in the diagram

HEQ’II—].(X.’ n) _— HSE};’nzn(X., TL)

rel

ol ) o]
4
Hr?erllil (X°’ n) HS2}771n (XO’ TL)

the refined class (’]Tl;el(E) is mapped to p*(Ch}Y"(E)) by the upper horizontal
map. Thus it would suffice to construct the dotted arrow, which has to be a
left inverse of p* and compatible with a* on the left hand side. It is not hard
to see, that one can construct a left inverse of p* on the right hand side, which
is induced by «, but I was not able to show the compatibility with o* on the
left hand side. The fundamental problem, which occurs, is that it is not clear,
that the Frobenius map on the rigid cohomology of the special fibre of X,
is compatible with the pullback by a topological morphism on the de Rham
cohomology of the generic fibre of the weak completion under the identification
mentioned above.

In the special case, where X = Spec(R), one can in fact use the above methods
to compare the relative Chern character with the syntomic Chern character,
but there the result also follows from the comparison of the relative Chern
character with the p-adic Borel regulator, which is achieved in section 7.4, and
the comparison of the p-adic Borel regulator with the syntomic regulator in
[HKO06].






CHAPTER 4

PRELIMINARIES

This chapter recalls the relevant definitions and facts about dagger spaces,

that will be used in the subsequent chapters.

4.1. Affinoid algebras

Let R be a complete discrete valutation ring with maximal ideal (7), perfect
residue field R/(w) = k of characteristic p > 0 and field of fractions K of
characteristic 0. We denote by | . | an absolute value on K.

We define the K-Tate algebra in n variables to be the algebra of power series

converging on the unit disc

[v]—oo

Ty =Kz, 20) ={) a2’ € Kfz1,...,2,]] | |ay| 0}.

Here v = (vy,...,v,) runs over the multiindices Nj and z* is by defini-
tion z7* ---z¥». This is a K-Banach algebra with respect to the Gauf norm

| >~ a,x”| = max, |a,|. The R-Tate algebra is the subalgebra

R(xi,...,xn) ={f € K{x1,...,2n) | |f| <1},

i.e. the algebra consisting of convergent power series with coefficients in R.
The K-Washnitzer algebra K({z1,...,x,)" is the subalgebra of the K-Tate

algebra consisting of overconvergent power series, i.e.

Wy = K(x1,...,2,) = {Zaya:” e K([z1,...,xm]] | 3p>1:au|p™ — 0}.
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Finally the R-Washnitzer algebra is the algebra of overconvergent power series

with coefficients in R:

Rizy, ...,z ={f e K(x,...,z,)" | |f| < 1}.

We will sometimes also use the algebras of power series converging on a disc

of radius p > 0

To(p) == {3 e’ € Kllai,....2a]l | |a|o 122 0)

with norm | Y~ a, 2|, := max, |a,|p/!. When we want to specify the names of
the variables, we will sometimes denote this algebra by K(p~1xq,...,p 1a,).
These are Banach algebras as well and the Washnitzer algebra (as an abstract

algebra) may be written as the direct limit W, = lim,\ 170 (p) = U, =1 Tn(p)-

A K- resp. R-affinoid algebra is a homomorphic image of a K- resp. R-Tate
algebra, a K- resp. R-dagger algebra is a homomorphic image of a K- resp. R-
Washnitzer algebra. R-dagger algebras are also called weakly complete, weakly
finitely generated R-algebras (wcfg-algebras for short). All these algebras are
Noetherian ([BGR84, 5.2.6. Theorem 1], [GK99, Korollar 1.3], [MW68, Theo-
rem 2.1]).

We also write z for the set of variables xi,...,x,. According to [BGR84,
5.2.7/8] resp. [GK99, Proposition 1.5] all ideals in K (z) resp. K (z)! are closed.
The same is true for T,,(p) [Ber90, section 2.1]. If A is K-affinoid, hence of the
form K (x)/I with an ideal I, then A may be equipped with the residue norm
of the Gaufl norm. In fact, all the norms arising in this way are equivalent
[BGR84, 6.1]. The corresponding statement for K-dagger algebras also holds
[GK99, Satz 1.9]. If A is an R-affinoid or an R-dagger algebra, then A :=
A®p K is a K-affinoid resp. K-dagger algebra.

Every ideal I in R(z) is finitely generated, hence m-adically separated and
complete. In particular, I is closed for the m-adic topology on R(x). Since the
m-adic topology on R(z) coincides with the topology induced by the Gaufl
norm, we see that every R-affinoid algebra A = R(x)/I equipped with the

residue norm is still an ultrametric Banach ring.
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By [GK99, Proposition 1.11] K-dagger algebras are weakly complete in the

sense that, if A is a K-dagger algebra and aq,...,a, are power bounded el-
ements of A, then the natural homomorphism K[z1,...,2,] — A,2; — a;,
admits a continuous extension to K (z1,...,z,)T — A.

Let A be a K-dagger algebra and choose a representation A = K (z)T/I.
then the completion A of A is the K-affinoid algebra K (z)/IK (z) [GK99,
Proposition 1.7]. Similarly, if A = R(z)!/I is an R-dagger algebra, its m-adic
completion is A = R(z)/IR(z).

If A is an R-algebra, its m-adic completion is A= lﬂlnA/ 7" A. If A is of finite
type, A is an R-affinoid algebra. The weak completion AT of A is by definition
the subalgebra of A consisting of all elements z € A having a representation
z= Z;’;Opj(yl, <eeyYn), Where y1,...,y, € A, p; € W R[z1,...,T,), and there
exists a constant ¢ such that degp; < c-(j+1) for all j [MW68, Definition 1.1].
A is called weakly complete if A — Al is bijective. The weak completion Af
is always weakly complete [MW68, Theorem1.2]. Explicitely, if A = R[z]/I,
then A" = R(z)T/IR(z)! C A = R(z)/IR(z).

Morphisms of R- resp. K-dagger and affinoid algebras are morphisms of alge-
bras. They are automatically continuous (clear for the R-case, [BGR84, 6.1.3.
Theorem 1] resp. [GK99, Proposition 1.8] in the K-case). All the four cor-
responding categories admit coproducts (cf. [BGR84, 6.1.1. Proposition 11],
[GK99, Satz 1.19]). E.g. if A = R{z)"/I and B = R(Y)T/.J are R-dagger alge-
bras, their coproduct is given by A ®JILL B := R{z,y)'/(I + J) (using [MWG6S,
Theorem 1.5] it is easy to check the universal property directly).

4.2. Dagger spaces, weak formal schemes

The general reference for dagger spaces is [GK99]. We do not recall all the
details of the definition [GK99, Kapitel 2], which is parallel to the case of rigid
spaces. If A is a K-dagger algebra, we denote by Sp(A) the set of maximal
ideals in A. This set is then endowed with a Grothendieck topology and a struc-
ture sheaf Og,(4), so that (Sp(4), Ogy(4)) is a locally G-ringed space [GK99,
Proposition 2.9], an affinoid K -dagger space. A general K-dagger space is then



98 CHAPTER 4. PRELIMINARIES

a locally G-ringed space (X, Ox), whose underlying Grothendieck topology is
saturated (i.e. satisfying (Gy), (G1), (G2) of [BGR84, 9.1.2.]), and which is

locally isomorphic to an affinoid dagger space.

There exists a “dagger analytification functor” (.)! from the category of K-
schemes of finite type to the category of K-dagger spaces [GK99, Korollar
2.18], more precisely: For any K-scheme X there is an associated dagger space
XT together with a morphism of locally G-ringed spaces XT — X which is
final in the category of all morphisms from a K-dagger space to X. It follows
from this universal property, that (.)" commutes with products.

If X is affine, XT may be described explicitely as follows (cf. [Bos05, 1.13]
for the rigid analogue and details of the proof): Choose a representation
A = K[z]/I and ¢ € K, |c¢| > 1. Define K{c"z)' to be the algebra of power
series, which are overconvergent on the disc of radius |c|", i.e. series ) a,z”
satisfying |a, |p!”! M=%, 4 for some p > |c|*. Each K(c "z)! may be identi-
fied with K (z)! via  + ¢" - 2, in particular is a K-dagger algebra. We have
natural inclusions K[z] C K (c~"*Dz)t C K(c¢~"z)" and hence

Kla]/T — - — K{c ") /(1) — K(e"a)T/(I) — - — K{2)T/(I)
inducing a sequence of inclusions as affinoid subdomains
Sp(K(2)"/(1)) — Sp(K (e a)' /(1)) — Sp(K (e ?x) /(1)) — ...,

whose union is XT.

Next we recall the definition and basic properties of weakly formal (R-)schemes
([GK99, Kapitel 3] and originally [Mer72]). Let A be an R-dagger algebra and
A= A/(r). Then D(f) — (As)T, where f € A is a preimage of f and (Ay)f
denotes the weak completion of the localization Ay, is a sheaf of local rings on
the topological space underlying Spec(A). The corresponding locally ringed
space is the affine weak formal R-scheme Spwf(A). A general weak formal
(R-)scheme is a locally ringed space, which locally is isomorphic to an affine

weak formal R-scheme.
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The weak completion of R-algebras of finite type induces a functor (/\) from

the category of R-schemes of finite type to that of weak formal schemes.

On the other hand, if A is an R-dagger algebra, then Ay = A®gr K is a
K-dagger algebra, and we get the generic fibre functor (.)x from weak for-
mal schemes to K-dagger spaces sending X = Spwf(A) to Xx = Sp(Ak).
Moreover, for any weak formal R-scheme X there exists a natural morphism

of ringed sites
sp: Xk — X, such that sp,Ox, = Ox ®g K,
called the specialization map.

If X is an R-scheme of finite type, there exists a natural morphism of dagger
spaces (X)x — (Xg)f, which is an open immersion if X is separated and an

isomorphism if X is proper over R (cf. [Ber96, Proposition 0.3.5]).






CHAPTER 5

CHERN-WEIL THEORY FOR SIMPLICIAL
DAGGER SPACES

In this chapter we formulate and prove the analogue of Dupont’s theorem 1.2
for simplicial dagger spaces and use it to develop Chern-Weil theory in this

setting. Fix R and K as in the previous chapter.

5.1. De Rham cohomology

Let X be a smooth K-dagger space (cf. [GK99, p. 40] for the definition of
smoothness) and O = Q% ssp(x) the locally free sheaf of 1-forms on X [GK99,
Lemma 5.3]. We denote its global sections simply by Q!(X). If U = Sp(4) C X
is affinoid, then Q4 (U) = Q},(U) = Q! (A) is the universally finite differential
module, i.e. d : A — Q!(A) is universal for K-derivations from A in finite
A-modules [GK99, Lemma 5.1].

We define the sheaf of n-forms as /\%X QL and get as usual the complex of

sheaves (15. The de Rham cohomology of X is by definition
Hip (X/K) = H(X, ).

As usual, if X, is a smooth simplicial dagger space, the sheaves Q}p on X,
p > 0, together with the pullback maps form a sheaf on the simplicial dagger
space X, and the de Rham cohomology of X, is by definition Hjg(Xe/K) :=
H* (Xa, 2, )-
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We need the analogue of Dupont’s theorem in the dagger context. The ana-

logues of the standard simplices are the affinoid dagger spaces

Ap::Sp( (xgy...,x T/Zmz—l p > 0.
Then QY(A?) = @, K%O’x xf dxl/(z dx;). In fact, it is easy to see, that
d: K{zo,...,vp)T/(, 2 — 1) — QYAP), f — ZZ e L dx;, is universal for
K-derivations of K (zq,...,x,)7/(3;#; — 1) in finite modules (cf. [BKKN67,
2.2.5)).
For any increasing map ¢ : [p] — [¢], we define ¢pp : AP — A7 by
K(zo,...,2zq)T /(X2 —1) 2 2 — 2 jot)=i Ti € K(zo, ... )t /(i — 1),
This map is well defined, since the elements ijﬁ(j):i z; have norm < 1,
hence are power bounded (cf. section 4.1). In particular, [p] — AP defines a

cosimplicial dagger space.

Definition 5.1. — A simplicial n-form on the simplicial dagger space X, is a

family of n-forms (wp)p>0, where w, € Q"(APx X)) and forallp > 0,7 =0,...p
(6" x 1)*wp = (1 x ;) wp—1 in Q"(AP™! x X,).

The space of simplicial n-forms is denoted by D"(X,). We get a commutative
differential graded K-algebra D*(X,) by applying the wedge product and the

exterior differential component-wise.

Remarks 5.2. — (i) Let X and Y be two dagger spaces and consider their
product X x Y with projections p; : X XY — X po: X XY — Y. Then there

is a natural isomorphism
1 _ . *x0l *1
Qxwy = P1ilx & pafly.

In fact, the question being local, it suffices to consider the case, where X and
Y are affinoid, and there the result follows as in [BKKNG67, 2.2.2.a)]. Hence

we get a decomposition

n k,l k * )l
Ny = @ Q%.y, where QXXy =pi0% Qpy .y P28y
k+l=n
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l k+1,1 kl+1
wy 1o Qy &Yy and

Obviously, the differential Q% 4, Q}J;IY sends Q’;(
we denote the two components of d by dx and dy respectively. Since dd = 0, it
follows, that dxdx = 0,dydy = 0,dxdy = —dydx. In other words, (0%, d)

is the total complex associated with the double complex (2 -, dx,dy). This

double complex is functorial in X and Y.

(ii) If X is a dagger space, the complex of global sections Q*(AP x X) is the
total complex associated with the double complex (Q**(AP x X),da,dx). It
follows, that if X, is a (strict) simplicial dagger space, then D*(X,) is the
total complex associated with the double complex (D**(X,),da,dx), where
D*!(X,) consists of those forms w = (w),>0, such that w, € QP (AP x X,)
for all p > 0.
We denote by Fil*D*(X,) the filtration of D*(X,) with respect to the second
index:

Fi'D*(X.)= @ D (X.).

kl=x,1>n

Our goal is to construct a filtered homotopy equivalence D*(X,) — Q*(X,)
given by integration along the standard simplices, similar to the classical case.
Here on the right hand side Q*(X,) denotes the total complex of the cosim-
plicial complex [p] — Q" (Xp) = I'(Xp, Q% ).
First we have to introduce some more notation: Let I := Sp(K(t)7). Then
QY (1) = K(t)tdt, Q*(I) = 0, if n > 1. If X = Sp(A) is affinoid, then I x X =
Sp(A(t)1), where A(t)T = A ®TK K(t)!. Explicitely, if A = K(z)T/I, then
AT = Kz, t)1/(I).

Lemma 5.8. — There exists a unique A-linear map fol Sdt AT — A,
that sends t* to k—il If f € A, its formal derivative with respect to t,

%{ c A(t), is well-defined and fol %{dt = f(1) — £(0).

This is the crucial point, where overconvergence and hence dagger spaces come

into play.

Proof. — We first consider the case A = W,, = K{z1,...,2,)7. Then A(t)T =
Whpi1 = K{xy,...,z,,t)1. If f € W,41, there exists p > 1, such that f €
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Tr+1(p) (see section 4.1). Write f = >0 git®, gr = ZueNg appx”. Then
clearly gi € T,,(p). Moreover

_ _ -k +k —k
|9kl = max lar|p! = p max lag | p"1HE < p7F| £,

Hence |ng}ﬂ|P < |k%r1| -p~ % |f|,- But \k%q\ - p~F tends to 0 as k tends to
infinity, hence Yoreo k—hgk converges in Ty,(p) € Wy,. We define fol fdt .=
> heo Thgk-

Clearly %t = S0k + 1)gr1t® € Wy is well-defined and % : Whar —
Wi41 is Wy -linear. The last formula of the assertion follows directly from the
constructions.

In general, A may be written as a quotient A = W,,/I. Then A(t)" = W,,41/1I-
Wpa1 and by linearity we have fol (I - Wyy1)dt C I. Hence, fol Sdt s Wy —
W, induces the desired map A(t)! — A. Similarly % induces the morphism
% c A(t)T — A(t)" and the last formula of the assertion follows from the case

of the Washnitzer algebra treated before. O

Remark 5.4. — For later reference we observe the following: Let p > 1 and
f =3 09kt" € Tni1(p) be as in the above proof. There exists a constant
C > 0, such that |k%i_1|p_k < C for all k € N. Hence |f01 fdt|, < C-|f|, and
fol dt : Try1(p) — Tn(p) is continuous.

Iterated application of the integration operator constructed in the lemma

1
.dxn
gives a K-linear morphism K(x1,... ,xn>T fo—x> K(zy,... ’xn_lﬁ SN
K and it follows from the above, that the induced map T),(p) — K, f —

fol . fol fdxy ...dz, is continuous.

If X is a dagger space, let p : I x X — X denote the projection and i; :
X < I x X the inclusion induced by K(t) — K, t +— j, j = 0,1. We have
the pullback map 1} : Qf, v — (1j)+% and, applying px, 7 pQfx —
i) 2 = D

(I The valuation on Q induced by the valuation | . | on K is equivalent to the p-adic valuation

| . |p; hence there exists a constant ¢ > 0 such that |%+1| = |%+1|§, < (k+1)°.
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Lemma 5.5. — There is a natural Ox-linear morphism
K :pQf x — QT)L(_l
satisfying dK + Kd = 1] — 1.

Proof. — Let U = Sp(A) € X be open affinoid. Then p~1(U) = I x U =
Sp(A(t)t). We have

P} x (U) = QI x U) = Q™I x U) @ Q""" H(I x U)
= At)T @4 QU(A) @ Alt)Tdt @4 Q" 1(A).

We define K(U) : p.Q%, (U) — Q"1(U) to be equal to the zero map on the
first summand and fdt ® w +— ( fol fdt) - w on the second summand.

If V= Sp(B) C U is an admissible open affinoid, given by a morphism of
dagger algebras A — B, the maps K(U) and K (V) are clearly compatible
with respect to the restriction map. Hence we get a well defined morphism of
Ox-modules p, Q7 v — QS‘(_I. This map is clearly natural in X.

Finally, we show that
dK + Kdx =0, Kdr =] — 1. (5.1)

This in particular implies the last formula of the claim. Since (5.1) is local
on X, we may assume that X = Sp(A) is affinoid. Choose a presentation
A= K(zy,...,2,)1/I,i.e. aclosed immersion X «— Sp(K(z1,...,z,)7) = B".

By the naturality of K we have a commutative diagram

QI x BT) —s Q(I x X)

| |

anl(B'l’) I anl (X)

Y

where the horizontal maps are surjections. Hence it suffices to prove the claim
for X = B", where it can be checked by direct computation: An n-form on I x
B" is a sum of forms of the types g(z, t)dtdx;, ...dz;, , and f(z,t)dzj, ... dxj,
with g(z,t), f(z,t) € K{x1,...,2,,t)T. Let us check the first formula for
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w = g(z, t)dtdz;, ...dz;, , as an example. Write g(x,t) = >3, gx(z)t*. Then
dxw = —3%_1 > heo ag’“ tkaltdac]alajz1 ...dxz;, _, and hence

:17

1 39k
K(dxw) = Z Z P x]dxl-l codx,
7=1k=0

= Za% / x,t)dt)dxjdx;, ... dx;,

= —dK(w).
The remaining identities are shown similarly. O

Let X, be a simplicial dagger space. For each [ > 0 we can consider the cosim-

plicial group [p] — Q!(X,). The associated complex is denoted by (2*!(X,), ).

Theorem 5.6. — Let X, be a simplicial dagger space. For each | the two
chain complezes (D*'(X,),da) and (2 X,),8) are naturally chain homotopy
equivalent.

In fact, there are natural maps I : D*1(X,) = QFH(X,) : E and chain homo-
topies s : DM (X,) — DF1L(X,) such that

Toda=60l, Todx =dxol, (52
droE = E oS, Eody—dyoE,  (53)
[oE—id, (5.4)
Eol —id=sodpa+daos, sodx =dx os. (5.5)

In particular we get isomorphisms H*(Fil"D*(X,)) = H*(Q2"(X,)) and
H*(D*(X,)/Fil"D*(X,)) & H*(Q2<"(X,)) for any n > 0.

Remark 5.7. — In general, the natural map H*(Q"(X,)) — H*(X,, Q%) =
H3r(Xe/K) is not an isomorphism. However, this will be the case as soon as
each X, is acyclic for coherent sheaves [Del74, (5.2.3)], e.g. affinoid or a Stein
space, e.g. the dagger space associated with an affine K-scheme of finite type
(cf. [GK99] Lemma 4.3 and p. 25 for the definition of a Stein space).

Proof of the Theorem. — We adapt Dupont’s proof of Theorem 1.2 [Dup76,
Theorem 2.3].
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For any j = 0,...,p consider the morphism g; : I x AP — AP given on
dagger algebras by K (zq,...,zp) /(3 mi—1) = K{zg,...,2p, )T/, 2i—1),
xj — 0j; -t + (1 —t) - x4, where §;; is the Kronecker delta. This is well-defined
since the target elements are power bounded and ), (d;;t + (1 — t)x;) = 1 in
K(xo,...,2p,t)T/(3;x; — 1). Thus g; is a homotopy between idar and the
constant map e; : A? — AP given by x; — d;;.

For any dagger space Y we can now define the homotopy operator h;) to be

the composition

) W) ogn(r AP x v) K anl(ar x y).

hey : Q" (AP x Y
We have the analogue of [Dup76, Lemma 2.9]:
Lemma 5.8. — The operators hjy, j =0,...,p, satisfy

h(jyoda +da o hgy = (ej x idy)* —1id,
hjyody +dy ohijy =0
and fori=0,...,p
(6" x idy)* o hejy = hejy o (6" x idy)*, i > j,
(6" x idy)* o h(jy = h(j_1y 0 (6" x idy)*, i< j.
Proof. — Since everything follows by formal computation, we only check the
first statement. Thus take w € Q"(AP x Y'). Then
h(jyoda(w) +dao h(j)(w) =

K((g; x idy)"daw) + daK((g; x idy)*w)
K(drxa(gy x idy)*w) — K(da(g; x idy)"w) cf. (5.1)
K(

di(gj x idy)*w)
= (4] — ip)(g; x idy)*w by (5.1) again

= (e; x idy)*w — w.

Here we used the naturality of the double complex of remark 5.2 (i) and applied
the first formula of (5.1) with X = AP x Y only for the A-component da of
the differential daxy . ]
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We define the integration map I : D!(X,) — Q!(X}) as in the classical case:

I(w) = (—1)k(ek X idxk)*(h(k,l) o -0 hy)(wk)- (5.6)

Using the lemma and the compatibility condition of simplicial differential
forms one checks (5.2).

Similarly, F is defined by the same formula as in the classical case: If w €
QY X},), the simplicial form F(w) € D*!(X,) is given on AP x X, by 0, if
p < k, and else by

E(w)y, =

k

kY (W gy drso) A A dag) A Adaggy | A dxw.
¢:[k]—[p] \7=0

Note, that this really defines a (k + [)-form on the dagger space AP x X,,. It
is easy to see that E(w) defines a simplicial form on X, and that E satisfies
(5.3) and (5.4).

Also the homotopy operator s : D(X,) — DFL(X,) is defined by the
same formula as in the complex situation, which again gives a well-defined
differential form also in the dagger context. That s(w) really defines a simplicial
differential form and that s satisfies (5.5) follows again from the above lemma.
(Most of the computations are also carried out in [Dup78, proof of Theorem
2.16].) 0

Remark 5.9. — If Y is any dagger space, (5.6) defines an operator
I: QMAF xY) — QU*(Y), which we denote by [,,. It may also be
described as follows: Define a morphism ¢ : I¥ = Sp(K (ty,...,t;)) — AF =
Sp(K (o, ... ,:Kk>Jf/(ZZ x;— 1)) by x;—ty---t;(1 —tiz1), i =0,..., k, where
we let t,41 = 0.2) Tt follows directly from the definitions, that Jaw is simply

the composition
OM(AF x v) L gk vy B gnk ey,

(This is the analogue of the diffeomorphism [0,1]* — AR given by (s1,...,s%) — (1 —

S1, 51(1 - 82)75182(1 — 83), ey S10 Sk_l(]. — sk),sl s Sk).
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In particular we have the integration map [,, : Q"(A") — K. For later use,
we record the following continuity property of [ An-

Fix p > L and 1 < 5 < pn. Since [t (1 — tig1)]y < 0" < p = |z,
the morphism v above restricts to a continuous morphism of Banach algebras
K{p~tzg,....p o) /O x; — 1) — K(n~'t1,...,n7't,) (see section 4.1 for
the notations).

We have a natural map K (p~'z)/(>°; zi— 1)@k N @l e de’ — Q"(A™) and

by the above, the composition

A D, Kdx;
i — 1) Qg \ —&="—— > wr weK 5.7
(- e AT N (5.7

is equal to the composition

D, Kdx; v
Zl‘z_l ®K/\ Zodxlx w

K 't) @k /\ (@ Kdt,-) — o) 2L K.
K i=1

Using the continuity of ¥ and remark 5.4, it follows, that (5.7) is continuous

as well.

5.2. Simplicial bundles and connections

Let GLI x be the dagger space associated with the affine K-scheme GL; .

The following lemma is certainly well-known, but I could not find a reference.

Lemma 5.10. — If X is any dagger space, the morphisms of dagger spaces
X — GLIK are in one to one correspondence with the group GL,.(Ox(X)).

Proof. — By the sheaf property of GL,(Ox) and of the morphisms U —
GLi, x> U € X admissible open, it suffices to treat the case, where X = Sp(A)
is affinoid. Let C' = K{x;;,y]/(det(z;;) -y — 1) such that Spec(C) = GL, k. Fix
c € K with || > 1 and write C,, = K (¢ "x;j, ¢ "y)T/(det(z;;) - y — 1). Then
GLI,K = Un>05p(Cy) (cf. section 4.2).
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The set GL,(A) corresponds bijectively to the set of K-algebra homomor-
phisms C' — A. Given such a morphism o : C — A, choose n large enough,
such that |o(zij)|, |o(y)| < |c[™. Then the elements ¢ "o(x;j),c "o(y) € A
are power bounded and by the weak completeness of A and the fact, that
C C (), is dense, there exists a unique extension of ¢ to a morphism C,, — A
(cf. section 4.1). This in turn gives a well-defined morphism of dagger spaces
Sp(4) — Sp(Cy) € GL .

On the other hand, any morphism of dagger spaces Sp(A) — GL; Kk gives,
composed with the morphism of locally G-ringed spaces GLL x — GL. Kk, a
morphism of locally G-ringed spaces Sp(A) — GL, x = Spec(C') and on global
sections a morphism of rings C' — A, i.e. an element of GL,(A).

Using the uniqueness of the extension of o above it is now easy to see, that

both constructions are inverse to each other. O

Now the formalism of sections 1.2 and 1.3 carries over to the setting of sim-
plicial dagger spaces:

Let X, and Y, be simplicial dagger spaces. A topological morphism f : Xe ~
Y, is a family of morphisms of dagger spaces AP x X, — Y, satisfying a
compatibility condition for every increasing map ¢ : [p] — [¢] as in definition
1.17. A topological GL,-bundle on X, is a topological morphism g : Xe ~~
B.GL; i A morphism o : g — h of topological bundles on X, is a topological
morphism « : X¢ ~ E.GLI,’K satisfying - ¢ = h. An analytic GL,--bundle is

a morphism of simplicial dagger spaces X, — B.GL:[ K-

A connection in a topological GL,-bundle g : X, ~~ B.GL;[ ) 1s given by the
following data: For any p > 0 and any ¢ € [p] = {0,...,p} a matrix valued
1-form I'; = FEP) € Mat, (Q'(AP x X,,)) subject to the conditions

(i) (pa x id)*F;:]()i) = (id x ¢X)*F§p) for any increasing map ¢ : [p] — [q] and
(ii) T = g5;'dgji + 95, T;95i-
The notations are the same as in section 1.3. By the previous lemma we view

the morphism g;; : AP x X, — GLI’K as an element of GL,(Oarx x, (AP x X)),
hence dg;; € Mat,(QL(AP x X,)).
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A connection I' = {I';} on an analytic bundle is called analytic if T'; €
QUL(AP x X,) forallp > 0,i =0,...,p. For example, the standard connection

(example 1.22) on any analytic bundle is analytic.

The curvature of the connection {I';} is defined as the family of matrix valued

2-forms
2
Ry = RY .= ar'? 4+ (rgp)) € Mat, (Q2(A? x X)),
p>0,2=0,...p.

We define the n-th Chern character form Ch,(T") of the connection I' = {I';} to
n

be the family of forms %Tr ((Rl(p)) ) on AP x X, p > 0. According to lemma

1.26, this form does not depend on i. We have the analogue of proposition 1.28:

Proposition 5.11. — Let g : Xq ~ B.GLIK be a topological bundle and T’

a connection on g.

(i) Ch,(T) ds a closed 2n-form on X,, i.e. belongs to D*(X,) and
dCh,(T") = 0.

(ii) The cohomology class of Chy,(I") does not depend on the connection cho-
sen.

(iii) If the bundle g and the connection T are analytic, Ch,(T') € Fil"D?*"(X,).
Moreover, the class of Ch,(T') in H**(Fil"D*(X,)) does not depend on
the analytic connection chosen.

(iv) If h: Xo ~ B.GL;K s a second bundle, and o : h — ¢ is a morphism,
then Chy,(a*I") = Ch,(T").

(v) If f:Ye ~ Xq is a topological morphism, Ch, (f*I') = f*Ch,(T).

Definition 5.12. — If E/X, is a topological bundle and I" is any connection
on E, we write Ch,(E) for the image of the class of Ch, (") in H*"*(D*(X,))
under the natural map H?"(D*(X,)) — H3%(X./K). If E and T are analytic,
we still write Ch,,(F) for the image of the class of Ch,,(T') in H**(Fil"D*(X,))
under the natural map H?"(Fil"D*(X,)) — H?"(X,, Q?})

Also, we can construct Chern character classes of vector bundles as in the
complex case. Here we freely use some results of section 1.2, which were stated

there for complex manifolds, but which obviously carry over to the setting of
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dagger spaces with the appropriate modifications (e.g. the coverings considered
have all to be admissible):

Let &, be a vector bundle of rank 7 on the simplicial dagger space X, (definition
1.12). As in lemma 1.15 there exists a morphism of simplicial dagger spaces
Ues — X, such that each U, is a disjoint union ], 4 Up,a, where {Up a }aca is
an admissible open covering of X,,, and &, |y, is degree-wise trivial. Define X
to be the diagonal of the associated Cech nerve Nx, (Us). Then &, := &,|x; is
degree-wise trivial, too, hence corresponds to an analytic GL,-bundle E'/X].
Moreover X, — X, induces an isomorphism in cohomology. We define Ch,, (&)
to be the inverse image of Ch,,(E’) under the isomorphism H?" (X}, Q)Z(?) =
H2"(X,, Q)Zgj) As in the complex case one shows, that this class is well defined
and that the Whitney sum formula holds.

5.3. Secondary classes

Let again X, be a simplicial dagger space and let F, F' be two topological
bundles on X, with connection I'¥ and T'¥ respectively and o : ¥ — F' a mor-
phism. Recall that I = Sp(K (t)) and let 7: X, x I — X, be the projection.
We equip the bundle 7*E with the connection I' = t7*T'F + (1 — t)7*a*T'F
as in (1.12), which is obviously well-defined also in the present context. We

define the secondary form
Ch(TE,TF, o) = K(Ch,(T)) € D*"(X,)

using the homotopy operator K of lemma 5.5 componentwise. It has the same

formal properties as its complex counterpart (section 1.4).

Similar arguments as in the complex situation then show, that, if £ and F
are analytic bundles equipped with analytic connections, then Chfl(E, F,a)
gives a well-defined cohomology class in H?"~1(D*(X,)/Fil"D*(X,)) =
H?"1(Q<"(X,)), independent of the chosen analytic connections. Its image
in H*"~1(X,,Q%") is denoted by

Ch'(E, F, ).
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5.4. Chern character classes for algebraic bundles

We recall the construction of Chern character classes in algebraic de Rham
cohomology and compare them with the classes constructed via Chern-Weil
theory above. The construction is the same as in the complex case, only that
holomorphic differential forms are replaced with algebraic differential forms.
Let X, be a separated smooth simplicial K-scheme of finite type. Choose a
good compactification j : X, < X,, i.e. an open immersion of smooth strict
simplicial schemes of finite type over K, such that X, is proper over K and
each D, = X, — X, is a divisor with normal crossings. We have the loga-
rithmic de Rham complex Q% (log D,) C 7S, and H*(X,, Q*Y.(log D,)) =
H* (X, Q%,) = Hig(Xe/K) (cf. [Jan90, Lemma 3.4]). By definition, the Hodge
filtration on Hjy(X./K) is given by

Fil"Hz (Xe/K) = Im(H* (X, ngaog D,)) — H* (X, QX))

This is independent of the chosen good compactification, and it follows by the
Lefschetz principle and GAGA from the corresponding fact over C, that the
map H*(X,, Q%"(log D,)) — H* (X, Q%) is injective (cf. [Kat70, (8.7.2)]).

The first Chern class of line bundles ¢; : H(X,, ox,) — H?(X,, Q)zé) is again
induced from the morphism of complexes dlog : 0% [~1] — Qii, and one
checks as in the complex case, that the image in fact lies in Fil' H2 (Xe/K) C
H2( X, Q%))

Also, higher Chern classes and Chern character classes
Chy(&,) € Fil"H3 (X, /K)

for algebraic vector bundles &, on X, are constructed as in the complex case

using the splitting principle.

Denote by X1 the simplicial dagger space associated with X,. There is a
natural morphism of simplicial locally G-ringed spaces ¢ : X! — X,. We have
the following chain of morphisms in the derived category D (X,) of bounded

below complexes of abelian sheaves on X.:

Q%:‘(log Ds) — Rj.QF" — Rj*RL*Qi?
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and hence natural maps Fil" H3p (Xe/K) — H* (X!, Q)Z(?)
Let &/Xe be an algebraic vector bundle of rank r and denote the induced
vector bundle on X:r by @“’.T .

Proposition 5.13. — Gﬁn(éa-) is mapped to (—1)nChn(@mj) under the natural
morphism Fil" H3j (Xo/K) — H>'(X], Q2)).

Sketch of proof. — The proof is the same as in the complex case: First one
checks the case of the first Chern character class of a line bundle as in lemma
2.4. As in proposition 2.8 the general case is then reduced to the case already

treated using the splitting principle:

Lemma 5.14. — Let Xq be a smooth simplicial K-scheme of finite type, &
an algebraic vector bundle of rank r on Xe and P(&) I, X, the associated
projective bundle. Write ¢ = ¢1(0(1)1) € HQ(P(&)T,Q%&)T). Then

r—1 r—1

S owr(yue - PEmHX, Qi?_i) — H™(P(&)T, Q%&.)T)

i=0 i=0
is an isomorphism.

Sketch of proof. — By the same spectral sequence arguments as in the com-
plex situation (lemmata 2.5 and 2.6) one is reduced to show, that, if X is an
ordinary smooth K-scheme of finite type and & an algebraic vector bundle of

rank r on X, then

r—1 .

i g Dz (UE
Dot BT prn
=0

is an isomorphism in D*(XT). This in turn can be shown exactly as in the
complex analytic setting [Ver74, Théoreme 2]. One only has to use the fact,
that the GAGA-principle holds for the dagger analytification of proper K-
schemes [GK99, Korollar 4.5]. O

O

Remark 5.15. — According to [Kie67, Theorem 2.4] and [GK99, Korollar
4.6 together with Beispiel (iv) on p. 25|, the natural map Hjg(Xe/K) —
HjR(Xi /K) is an isomorphism. Hence it follows, that the morphism



5.4. CHERN CHARACTER CLASSES FOR ALGEBRAIC BUNDLES 115

Fil" Hip (Xo/ K) — H* (X, Q)Z(?’) is injective. In particular the Chern charac-
ter classes Chy,(E) of algebraic GL,-bundles indeed lie in Fil"H3%(X./K) C
H2(XE, 0=,

Xe






CHAPTER 6

REFINED AND SECONDARY CLASSES FOR
ALGEBRAIC BUNDLES

This chapter constructs refined and secondary classes for algebraic bundles in
analogy to the constructions in section 2.3. Due to the problems mentioned
in the introduction to part II, this is more complicated than in the complex
case and we restrict the construction of secondary classes to affine simplicial
schemes. This will be enough for the construction of Chern character maps on
K-theory.

There are several possible variants. The direct analogue of the secondary
classes of section 2.3 are secondary classes for algebraic bundles on a simplicial
K-scheme X, together with a topological trivialization of the induced bundle
on the simplicial dagger space X1. These classes are constructed in the first
section and then compared with the Chern-Weil theoretic secondary classes in
the second section. Since we will define topological and relative K-theory in
chapter 7 for R-schemes, the secondary classes needed for the construction of
the relative Chern character on K-theory are classes for algebraic bundles on
a simplicial R-scheme together with a topological trivialization of the induced
bundle on the generic fibre (X.) k of the weak completion of X,. These are

constructed in section 6.3.
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6.1. Construction

Let X, be a smooth separated simplicial K-scheme of finite type. We denote
the associated simplicial dagger space by X, Jand by ¢ the canonical morphism
L Xi — Xo.

Let E/X, be an algebraic GL,-bundle and Ef /Xi the associated analytic
bundle, classified by g : X! - B.GLZ, - Define the associated principal
bundle Ei ER X:r to be the pullback of the universal bundle E.GLL K 2,
B.GL;K along g':

Bl EOGLj«,K
p l J lp

glr i
X! BoGL, -

Remark 6.1. — Since EpGLi’K — BpGL;K X G:Li’K7 (9os---,9p) —
(gogfl, . ,gp,lgp_l, gp) is an isomorphism over BPGL:[,K’ we have an isomor-
phism
i~ f
El = X[ x GL! ..

Choose a good compactification j : Xo < X, and write D, = X, — X,. We

have natural morphisms

| |

R(J*L*)Q}i e R(j*b*p*)Q*EI-
Definition 6.2. — Define the relative cohomology groups

rel

HEZ* (X, n) = H*(X., Cone(Q%:(log D) — R(j*L*p*)Q*EI)) and

H* (Xe,n) := H*(X,, Cone(Q%"(logD.) — R(j*b*)Q}T)).

rel

Remarks 6.3. — (i) Here we represent R(j*b*)Q}I by j*L*I;I, where Q}T &

L]
I;{T is an injective quasiisomorphism of complexes of abelian sheaves on X.T
L]

and each I;T is injective (cf. Appendix A.2), and similarly for R(j*L*p*)Q*ET.
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Since py, the functor p~' being exact, maps injective sheaves to injectives,
there exists a morphism I;(I — p*I;T making the diagram

Q* p* *
X} > P+ E}

commute, and this morphism is unique up to homotopy under Q}T (cf. lemma

A.3). Hence we get a map R(j*b*)Q}I = j*L*I;{I — j*L*p*IEI = R(j*é*p*)Q*EI
> . X

and hence a map of the cones Cone(Q%j(log D,) — ]R(j*L*)QXI) —

Cone(Q%"(logD.) — R(j*b*p*)QET), which is well defined up to homo-

topy (cf. lemma A.2). We thus have a canonical morphism

p* H: (Xe,n) — HZ* (X4, n).

rel
This morphism fits in a long exact sequence
= Hy5' N (Xe,n) — Fil"Hig (Xe/K) — Hip(Bl/K) — H;'(Xe,n) —
]

o B (Xayn) —> P i (Xa/K) = i (XE/K) — Hig(Xe,n) — -
(6.1)

rel rel

(ii) As for the Hodge filtration of the de Rham cohomology one shows, that
the definition of the relative cohomology groups does up to isomorphism not
depend on the particular choice of the compactification X,. Since the family
of all good compactifications is directed, one could take a colimit over all good

compactifications to get a definition independent of choices.

(iii) By remark 5.15 H' (Xe,n) & Hig(Xe/K)/Fil" H! 3 (Xe/K) similar to the

complex case.

If f:Y, — X, is a morphism of smooth simplicial K-schemes of finite type

and E/X, as before, we can consider the pullback f*FE and the associated
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principal bundle f *El. Whereas in the complex case we had functorial com-
plexes defining the cone for the relative cohomologies, we have to be a little

bit careful with functoriality here.

Lemma 6.4. — There are well defined pullback maps f* : rel *(Xe,n) —
E x

Hlfel (Y n) and f* rel(X" TL) - Hrel(Y°7 TL)

Proof. — The proof is the same for both maps, and we restrict to the second

one. Given good compactifications Y, < Y, and X, < X,, whose complement
will as usual be denoted simply by D,, one can construct a good compactifi-
cation Y, — ?’, together with maps f : ?’. — X, and ?l, — Y, fitting in a

commutative diagram

Y, \ X
J f J
Yo ~— Y — X,.
Hence we may assume without loss of generality, that the given morphism f

extends to a morphism 7 :Ye — X, of the compactifications. Thus we have

a commutative diagram

Choose injective resolutions 2% . Ny * + and similarly for Y. Since fi maps
X X1

injective sheaves to injectives, the dotted arrow in the diagram

Q;(IC; I;‘(I

|

Hlay, — flry

exists and is unique up to homotopy under Q* . Applying (jx)«(tx)« and
composing with the natural maps Q (logD) — (jx)*(Lx)*Q}T resp.
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T*Q%T(log D,) — (jx)*(bx)*fig;j we get a morphism

Cone (3" (10g Da) = (jx).(1x)- Ly ) —
Cone (F.027(10g Do) = (jx)s(tx): FIT5; ), (62)

which is well defined up to homotopy (lemma A.2 again).
Choose an injective resolution Q%" (log Do) < J*. As before, the dotted arrow

in the diagram

A

| V

(jY)*(LY)*Q;.TC—> (jY)*(LY)*I;.T

exists and is unique up to homotopy under Q%n(log D,). This induces a quasi-

isomorphism

Cone (Q%?(logD.) — (jy)*(by)*I;j) < Cone (J* — (jY)*(LY)*I;.T> ;

where the complex on the right hand side is well defined up to homotopy
equivalence (cf. lemma A.3). Applying f,, we get the natural map

Cone (£,027 (log Da) = F.(iy st )Ty ) =
7. Cone (J* = (jy)*(by)*f;f) .
Composing this with (6.2) and noting that the last complex represents
Rf,Cone (Q%?(log D) — R((jy)*(Ly>*)Q;j), we get the desired map f* on

relative cohomology groups. Similar one shows, that the map on cohomology

does not depend on the choices of I;}T,I;’;T or J. O

Remark 6.5. — That there is a unique way of defining f* on H (X, n), is
clear from remark 6.3(iii). Later on we have to use this lemma also in a slightly

modified situation, where the conclusion of remark 6.3(iii) no longer holds.

Since lemma 2.11 applies equally in the dagger context, we have the analogue

of proposition 2.10:
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—~ rel
Proposition 6.6. — There exists a class Ch:te () € er?_l’E(X.,n), which

is mapped to the n-th Chern character class Ch,,(E) in Fil"H2%(X./K), and

—~ rel
which is functorial in X. Moreover, the assignment E — Chze (E) is uniquely

determined by these two properties.

Definition 6.7. — If X, is a smooth separated simplicial K-scheme and
—~rel

E /X, an algebraic GL,-bundle, the class Chne (E) € Hrze?_l’E(X., n) is called

the n-th refined Chern character class of E.

Assume, that the bundle ET induced by E on X1 admits a topological trivi-
alization a, i.e. there exists a topological morphism «: X3~ E.GLI} K+ such
that po o = ¢, the classifying map of ET. Then a induces a topological mor-
phism a: X!~ El right inverse to p : E} — XI. To define secondary classes
(Xe,n).

Again, this takes a little bit more work than in the complex analogue. For

as in section 2.3, we have to define a pullback o™*: Hrgl’*(X., n) — H*,
simplicity we restrict to the affine case (but see the remark below). This is

enough for the construction of regulators.

Lemma 6.8. — In the above situation assume in addition that Xe is affine.
Then o induces compatible left inverses a* of p* : HgR(Xi/K) — HgR(Ei/K)
and of p* : H* (Xe,n) — HZ* (X, n).

rel rel

Proof. — Using Theorem 5.6 « induces a section of p* : Q* (XI) — Q"‘(EI)7
defined in the notation of the Theorem as the composition I o a* o E/, which
we also denote by a*. Since Ej, = (X, x GL; k)T (cf. remark 6.1) is the dagger
space associated with an affine K-scheme, it is a Stein space and hence acyclic
for the cohomology of coherent sheaves. Hence Q*(EI) — RF(ELQ*ET) is a
quasiisomorphism and on de Rham cohomology o is induced by the. maps
RT(EL, Q) < O (ED 25 of(x)) = RI(X, ).

On relative cohomology groups a* is constructed as follows: Choose injective
Q}I & I;‘(I and Q%”(log D,) < J*. Then we get a

resolutions Q% . — I* .,
E} E}
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commutative diagram

Q%”(log D) —— J*L*Q;{I o JalapiS)

A | |

JE s > ]*L*I;I - ]*L*p*IZ,I

*
E}

Taking global sections we get the diagram

* * p* * *
A r (X.T,QXI) Lor (Ei,QEI)

. lw lw

(X, J*) —= F*(Xi,I;T) L r(EL I,

where I'* denotes the total complex associated with the obvious (strict) cosim-
plicial complex, and A* is defined by requiring that the left hand square is a
quasi-pullback. In particular the left hand square commutes up to canonical
homotopy, whereas the right hand square strictly commutes. Hence we get
quasiisomorphisms

Cone <A* — I*(EL, Q*ET)> ~, Cone (r*(Y., J*) — T*(E}, ;T)) ,

Cone (A* — (X, Q}Q) ~, Cone (F*(Y., J*) — (X1, ;T)) .
Note, that the upper complex on the right hand side, hence also the complex
on the left hand side, represents RT'(X,, Cone(Q%” (log De) — R( j*L*p*)QfET))
and similar for XJ. Clearly o* induces a section of p* : Cone(A* —
(X3, Q;(I)) — Cone(4* — T*(El, Q*EI), which gives the desired pull-
back on relative cohomology groups. This map is obviously compatible with

the morphism a* on de Rham cohomology constructed above. O

Remark 6.9. — One can extend this to the case of separated smooth sim-
plicial K-schemes of finite type as follows: Given such X, and an algebraic
GL,-bundle E/X,, topologically trivialized by « : XI s E.GLI,y K as before,
there exists a strict simplicial scheme U, — X4 such that each U, is a disjoint

union of open affine subschemes of X,,, which cover X),. Define X, , to be the
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Cech nerve of U, — X,. Since X, is separated, X;, is affine, too. Moreover,
the natural augmentation Xiy, — X, induces an isomorphism in cohomol-
ogy.) Now the pullback E’ L, of Bl to X!, is a bisimplicial Stein space and

£ L, — E induces an isomorphism in cohomology, too. By base change, «
induces a topological morphism(® Xeo = F i,., which, using the extension
of Dupont’s theorem 5.6 to the strict bisimplicial case, allows one to define
the desired map o* on the de Rham and relative cohomology groups as in the

lemma.

Definition 6.10. — Let X, be a smooth affine simplicial K-scheme of finite
type, F/X,o an algebraic GL,-bundle and « : Xi ~ E.GL:[ x a topological
trivialization of the induced bundle Ef / Xi. Then we define

—~rel —~rel
Ch,, (T,E,a) := —a*Ch, (E) € HX Y (X,,n).

6.2. Comparison with the secondary classes of section 5.3

We have to compare these classes with those already constructed in section
5.3. To do this, we give an alternative construction of the latter along the
above lines: If ET is an analytic GL,-bundle on the simplicial dagger space X!

with associated principal bundle E} 2 X] as above, we define

HE™(X],n) = H* (X}, Cone(Q2] — Rp.$2y;)) and

rel

(X3, m) o= B (X, Cone(@7 — 0,) = HI(X], 057).

rel
L]

As in proposition 6.6 there exists a unique way to assign to every analytic
GL,-bundle Et/X{ a refined class

Ch(ET) € HE "L (X] n),

which is functorial with respect to XlL and which by the natural morphism
HET’Qn_l(Xi, n) — ]H[Q”(Xi, Qi}l) is mapped to the class Ch,,(ET) constructed

rel

in proposition 5.11.

(DWe can not replace Xo o by the diagonal simplicial scheme, since the Theorem of Eilenberg
and Zilber fails for strict bisimplicial objects.
) defined similarly as in the simplicial case
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Now assume in addition, that Xi is Stein and that the bundle Ef has a topo-
logical trivialization o. As in lemma 6.8 we have a map a* : HET’*(XIL, n) —

rel
H*

rel
Lemma 6.11. — Ch'*(T,ET,a) = —a*Ch'®(E") in HQH—I(XLQ;;) ~
H2n—l (XL n)

rel

(Xi, n) and we claim:

Proof. — Since all the simplicial dagger spaces bl , ElL, B. GLI K E.GL; K are
Stein, we can work with the functorial complexes D*(.) resp. Fil"D*(. ). Then
the claim follows by an analogue (even easier) computation as in the proof of

proposition 2.14. ]

Now let X, be a smooth affine simplicial K-scheme with good compactification
J:Xe — X., whose complement we denote as usual by D,, and let X:r 5 X,
be the dagger analytification morphism. Since Q%” (log D) — Rj*]RL*Q}JT
factors through Rj*RL*Qi?, we get a natural map

H*(X.,n) — HY (X, n).

rel rel

If F is an algebraic GL,-bundle on X, and E' the associated bundle on XI,

there is also a natural map

HE’*(X.,TL) — Hi;’*(XI, n).

rel

— el
Lemma 6.12. — The refined class Ch;e (E) € HZ*""Y(X,,n) is mapped to

rel

Et2n—1 ;
Chffl(ET) c H " (X:r,n) by the above morphism.

rel

Proof. — This follows from the unicity and the defining property of the refined
classes (cf. proposition 6.6). O

Putting everything together we have now achieved the proof of

Proposition 6.13. — Let E be an algebraic GL,-bundle on the smooth
affine simplicial K-scheme Xo and o« a topological trivialization of the
associated analytic bundle E' on the simplicial dagger space X1, Then
—~rel

Ch,, (T, E,q) is mapped to ChX*((T, Et, o) by the natural map Hfgfﬁl(X., n) —
2n—1 _
HY(X1, n) =H2" 1(X.T,Q)<£).

rel
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6.3. Variant for R-schemes

For the construction of the relative Chern character on the relative K-theory
of a smooth affine R-scheme, we need the following variant of the classes
constructed above.

Let X, be a smooth simplicial R-scheme of finite type, X o its generic fibre,
X}Q. its associated dagger space, X, the weak completion of X, and ()?.) K
its generic fibre. Choose a good compactification j : Xx e < X e. Then we

have the following picture:

(Xok € Xeo ™ X L Ko
admissible
open
Let F/X, be an algebraic GL,-bundle classified by a morphism g : X, —
B.GL; r. Let E, 2, X, be the associated principal bundle, i.e. the pullback
of EqGL,; r — B.GL, r along g, and denote by (E,) K the generic fibre of the
weak completion of F,. Since weak completion and generic fibre commute with
base change, this is also the pullback of E.(éin R)K — B.(éin r)Kk along gg.
On the other hand, E induces analytic bundles Ex on (X,)x and E}( on
X};., which are classified by G : (Xo)x — B.(C/ﬁJT’R)K - B.GL:[,K and g}( :
X}Q. — B.GL; 5 respectively. If (Ex)e (resp. (E}().) denotes the principal
bundle associated with Eg (resp. E}{), then (E.)K G (Ex)e C (E}{). are
admissible open. The following picture, where we indicated the fibres of the

bundles, might help to clarify the situation:

c

N

(Eo)x (Ex)e (E))a
\ GLf lGLI K
(@T,R)K ’ ’
(X)x Xk,

We have natural morphisms of complexes of sheaves

>n . * p* . *
XK. (log Do) - R]*RL*Q(X.)K - RJ*RL*RP*Q(E.)K7
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where, by abuse of notation, the composition ()/(:.)K C X;r(. 5 Xk is still
denoted by ¢, and define

fa(Xo/Rm) o= B (K, Cone (021 (10 D) — RjRe g ).

E* o+ (v >n j *
HZ*(Xo/Ryn) = H (XK,., Cone (QYK’.(log D.) — RJ*RL*Q(E.)K>> .

The factorisations

>n . * >n . -

ke (log Do) S R]*RL*Q(X.)K e (log D.) - R‘]*RL*Q(X.)K
N 7 and . T
Rj*RL*Q(Z)l;.)K Rj*RL*Q}L .

induce natural maps

w(Xe/Ryn) = Hig(Xe)i,n)  and  Hig(Xi.e,n) = Hig(Xe/R.n)

rel

respectively. Similarly, we have a natural map

HES* (X g 0n) — HE (X /R, n)

rel rel

—rel
and in particular we can consider the image of the refined class Ch:le (Ek) in

—~rel
HE2"=Y(X, /R, n). It will be denoted by Ch,, (E/R).

rel

Remark 6.14. — Assume, that X, is a smooth proper simplicial R-scheme.
In this case all the different relative cohomology groups coincide: The natural
map (Xo)x — X}(. is an isomorphism (see section 4.2) and a good compact-
ification j of Xk o is given by the identity. Hence

H (XK,e,n) =H" <XK7., Cone(Q)Z(Z’. — R, Q4 .)>

rel
K,

and
* * > *
rel(X'/Ra n) =H (XK,O’ CODG(Q)?Z,. - RL*Q()?O)K))
are isomorphic. Moreover, the last group is isomorphic to
* v % « S .
Hrel((Xc)K; n) = rel(X}‘(,., n) =H <X;(’., COHQ(Q;{? — XT ))

Ko Ko

by the GAGA-principle [GK99, Korollar 4.5].
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Now assume, that X, is affine and that the bundle Ex admits a topological
trivialization « such that « : (X.) K~ E.GLI, K factors through the admissible

open subspace E.((/}ir, RrR)K C E.GLi i+ By base change, « induces a topologi-

cal morphism « : (Xe)x ~> (Fe)x. Similar as in lemma 6.8 (use the fact, that,
if U is an affine R-scheme, then U is an affinoid dagger space, hence acyclic for

coherent sheaves) we may then construct o* : H=*(Xo/R,n) — H*,(X4/R,n)

rel rel

left inverse to p*. Hence we can define

CL (T, E,a/R) = —a*Chs (E/R) € H*"Y(X+/R.n).

rel

We record the following properties:

Proposition 6.15. — Let E be an algebraic GL,.-bundle on the smooth affine
simplicial R-scheme Xo. We have induced bundles Ex on Xk e, E}L( on X}}.
and Er on (Xo)i. Assume, that o : (Xo)g ~» E.(éinR)K is a topological

trivialization of Ex as above.

——rel .
(i) Ch,, (T,E,a/R) is mapped to Ch'*(T,Eg,a) by the natural map
HZ Y (Xe/R,n) — H2 N ((Xe) K, n).

rel rel

(ii) If a extends to a topological trivialization ok : X}L( ~ E.GLiK of
—~—rel —~—rel
EI(, Chze (T, Ex, oK) is mapped to Ch;e (T, E,a/R) by the natural map
H2 Y X e,n) — H2 7 H(Xe/R,n).

rel rel

Proof. — (i) may be shown as the analogue proposition 6.13.

(ii) follows from the commutativity of the diagram

HES* (X 0n) — HZ* (X4 /R, )

rel rel

a;l la*

HY (XKe,n) — H} (Xe/R,n).

rel



CHAPTER 7

RELATIVE K-THEORY AND REGULATORS

In this chapter we finally construct the relative Chern character for a smooth
affine R-scheme®). First of all, we recall the definition of the topological K-
groups of ultrametric Banach rings due to Karoubi and Villamayor and show,
that one can similarly define topological K-groups for dagger algebras fitting
in the context of the previous chapters. Having done this, we can define relative
K-theory and the relative Chern character (sections 7.1 and 7.2) exactly as in
the complex case. The comparison with the p-adic Borel regulator is done in

section 7.4.

7.1. Topological K-theory of affinoid and dagger algebras

Let (A,|.|) be an ultrametric Banach ring, i.e. a ring A together with a map
| .|+ A — Rsgsuch that [z| = 0iff z = 0, || = | — z|, |zy| < |z||ly]
and |z 4+ y| < max{|z|,|y|}, and such that A is complete for the metric
(z,y) — |y — x|. For example, any K- or R-affinoid algebra with a chosen
norm is an ultrametric Banach ring. In [KV71] Karoubi and Villamayor define
topological K-groups Ki,;(A) for arbitrary Banach rings and sketch a par-
ticular approach for ultrametric Banach rings (using convergent power series
instead of absolutely converging power series, see below), studied further by

Adina Calvo [Cal85]. For unitary Banach rings it may be formulated as follows:

(U Since the dagger space associated with an affine K-scheme is not affinoid, I am not quite

sure what the “right” definition of topological K-theory of a K-scheme is.
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Define
Ay = Alxg, ..., zp le—l (7.1)
where
v [v|—o00
Alzg,...,xp) = {)_aya” € Allxo, ..., xp]] | lay| = 0}.
If ¢ : [p] — [¢] is an increasing map, we define ¢* : 4, — A, by z; —
> jelplé()=i Tj- This is well defined, since A(zo, ..., zp) is complete (w.r.t. the

Gauf norm) and the target elements are power bounded [BGR84, Proposition
1.4.3/1], and gives a simplicial ring A,.

Definition 7.1. — The topological K-groups of A are given by

K (A) := 7;(BsGL(A,)) = m;_1GL(A,), i>1.

top

Remarks 7.2. — (i) It is clear from the definition, that the topological K-
groups of an ultrametric Banach ring do not depend on the particular norm
chosen. In particular, the topological K-groups of an R- or K-affinoid algebra
are well defined.

(ii) For any simplicial group G, let Gp, := N!_; ker(9;) C G,,. Then (Gp, 8o)p>0
is a chain complex of (non abelian) groups, whose homology groups are the

homotopy groups of Go. Symmetrically, one can also use the chain complex
(= 1ker( 0;),0p) (see e.g. [May67, Proposition 17.4]).

(iii) The ring A, is additive contractible, i.e. the identity on A, is homotopic
to the zero map by a homotopy which is compatible with the abelian group
structure of As: The 1-simplex zg € A; corresponds to a map fg, : A[l] — A
such that f,,(0) = 91(x0) = 1, fuy(1) = 9o(x0) = 0, where 0 := §' and
1:= 6% € A[l]g = Homa([0], [1]) are the two vertices of A[1]®). The desired
homotopy is then given by Aes x A[l] — A,,(a,t) — fz,(t) - a. In particular,
the homotopy groups m,(As) vanish. More generally the simplicial ring of 7 x r

matrices Mat, (As) is additive contractible.

@For n > 0 A[n] denotes the simplicial set Homa(.,[n]) : A°® — Sets. Its geometric
realisation is the standard simplex A™ C R"*!. For any simplicial set X, there is a natural
isomorphism Hom(A[n], Xe) = X, (Yoneda lemma).
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(iv) We also need the following refinement of the last remark. Equip
A(xg,...,zp) with the GauB norm and A, with the residue semi-norm
and denote it by | .||. It is easy to see, that for any ¢ : [p] — [g], the induced
homomorphism ¢* : A, — A, is contractive, i.e. ||¢*(f)|| < | f]|. Write
AY = {f € Ap||If]l <1}. It follows, that A is a simplicial subring of A,.
The semi-norm on Mat,(Ay) is defined to be the maximum of the semi-
norms of the entries. Write Mat,(4,)% := {g € Mat,(4,)||lg]| < 1}. Then
Mat,.(A4e)% is a simplicial subgroup of Mat,.(As), which is moreover an AY-
module.

00

Since z9 € AY, the argument of the last remark shows, that Mat,(A4e)" is

additive contractible, too.

The definition given above is not the one given by Karoubi—Villamayor and
Calvo. Since the equivalence of both definitions is proved in the literature only

in the case of discrete Banach rings, we give a proof here.

Proposition 7.3. — The topological K-groups defined above coincide with
those defined by Karoubi-Villamayor and Calvo for i > 1.

Proof. — The agrument in the discrete case is due to Anderson [And73, Theo-
rem 1.6]. First we recall Calvo’s definition. It is best, to work in the category of
ultrametric Banach rings without unit. Let A be such a ring. Then GL,(A) is
by definition the group of r x r-matrices invertible w.r.t. the formal group law
(M,N)— M®N :=MN + M+ N.If Ahas a unit, this is clearly equivalent
to the usual definition via M +— M + 1. Denote by GL.(A) the subgroup of
GL,(A) generated by the topologically nilpotent matrices. Define GL(A) and
GL/(A) as the usual colimits. Then F_I(A) := GL(A)/GL/(A).

For any A as above, the path ring F'A is the kernel of pg : A(t) — A,t — 0,
ie. FA = tA(t), the loop ring QA is the kernel of p; : FA — A, “t — 17,
i.e. >, a;it" — 3", a;. These are again ultrametric Banach rings and the higher

Karoubi—Villamayor K-groups are defined by

K '(A) =K (@ 'A).
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A matrix M € GL,(A) is called null-homotopic, if there exists M € GL,(EA),
such that py (M) = M. Two matrices M, N are called homotopic, if MO N1 is
null-homotopic. Denote by GLY(A) = im (p; : GL,(EA) — GL,(A)) the group
of null-homotopic matrices and let GL°(A) = colim,GL2(A). Tt follows as
in [KV71, Appendice 3] that GL/(A) = GLY(A) (the arguments given there
and in the cited references for unitary rings also work in the non-unitary
context). In other words, p; : GL(EA) — GL(A) induces an isomorphism
GL(EA)/GL(QA) = GL/(A).

Now let A be an unitary Banach ring and form the simplicial Banach ring
Ao as in (7.1). Applying the above isomorphism to the simplicial Banach ring

' A,, we get an isomorphism of simplicial groups
CL(EQ'A,)/CL(Q A,) = GL/ (V' A,), i > 0. (7.2)

We claim, that GL(EQ'A,) is contractible. In fact, the ring morphisms h; :
EQY' A, = t(QQA)(t) — EQ Ay, j=0,...,n, given by the degeneracy s; on
Q'A,, and by h;(t) = t(xo + - -+ + x;) define a simplicial homotopy between
0 and idggiy, in the sense of [May67, §5]. Hence they induce a contracting
homotopy of GL(EQ!A,). By (7.2) we get isomorphisms

Tn(GL/ (W A4)) = mu_1 (GL(Q11A4,)), i>0,n> 1. (7.3)

Next, by definition we have an isomorphism of simplicial groups

GL(QA,)/GL (A, = K (QA,) (7.4)

and we claim, that this last group is a constant simplicial group. Since A, =
Alxg, ..., xn—1) it suffices to show, that for any Banach ring A the inclusion
A — A(z) induces an isomorphism on K~ '. Since this inclusion is split by
x +— 0, the induced map on K 'is an injection. Now consider h : A{x) —
Az)(t) = A(z,t), x — tx. Then pg o h(x) = 0,p1 o h(z) = x. Hence, any M €
GL(A(z)) is homotopic to M (0) € GL(A) C GL(A(z)), the null-homotopy for
M ® M(0)~! being given by h(M) ® M(0)~! € GL(EA(z)). Tt follows, that
F_I(A) — F_I(A<x>) is also surjective.

Hence we get from (7.4), that

7 (GL (Q'Ay)) = 7, (GL(Q°As)), i >0,n> 1.
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Combining this with (7.3), we get
Tn(GL(As)) = m,—1(GL(Q4,)) = ... &2 71p(GL(Q" As)),n > 0.

Since the left hand side is Kt_og_l(A) by definition, it suffices to show, that
m0(GL(Q"A,)) = K "'(A) = F_l(Q”A). We have isomorphisms A; =
Alzx),xg — z,x1 — 1 — 2z, and Ay = A,xg — 1, under which 0dy,d; are

given by po: x — 0,p1: x — 1 respectively. Hence by remark 7.2(ii)
To(GL(Q2" A,)) = coker (p1: ker(po: GL(Q"A(z)) — GL(Q"A)) — GL(Q"A4))
= coker(py: GL(EQ"A) — GL(Q"A))
= GL(Q"A)/GLY(Q"A) = K (Q"A).

Now let R be a complete discrete valuation ring with maximal ideal (), per-
fect residue field R/(w) = k of characteristic p > 0 and field of fractions K
of characteristic 0. We want to show, that the topological K-groups of affi-
noid algebras may also be computed using overconvergent power series. More
precisely: Define the R-dagger algebra R}, := Rz, ...,z,)/ (> ;i —1) and
similarly the K-dagger algebra KIL As above, we get simplicial R- resp. K-
dagger algebras Rl and K.

Definition 7.4. — Let A be an R-dagger algebra. We define the topological
K-groups

K—i

top

(A) := mi(B.GL(A®} RY)) = m_1(GL(A®L RY)), i>1.
If A is a K-dagger algebra, the definition is the same with R replaced by K.

Proposition 7.5. — Let A be an R- or K-dagger algebra, and A its comple-
tion, an R- resp. K-affinoid algebra. Then

KA = K(A), n>1.

top top

Remark 7.6. — In [Kar97] Karoubi states, that one can use “indefinitely in-
tegrable power series” to define the topological K-theory of ultrametric Banach
algebras and uses these for the construction of the relative Chern character.
The difference here is, that we do not use the full Banach algebra A, but only

the overconvergent part A of it.
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Proof of the proposition. — The proof is the same for R- and K-dagger alge-
bras and we restrict to the case of R-dagger algebras. Choose a representation
A= R(y)T/I and write A, := A®% Rl = R(y, z0,...,2,)1 (I, 2 — 1).

The completion of A is given by A = R(y)/(I) and the ring (A), appear-

~

ing in the definition of the topological K-theory of A is given by (A), =

(R)/(D) o, @a) [ (Tswi = 1) = Rly. o, ... aa) /(LY i = 1) = (An).
Since 7, (GL(As)) = lim, m,(GL;(As)), it suffices to show, that for any r > 1

the natural map m,(GLy(As)) — m(GL;(A,)) is an isomorphism.

We begin with the surjectivity. A class in m,(GL,(A,)) is represented by a
g€ GLT(AR) such that ;9 = 1,71 =0,...,n. By lemma 7.7 below, there is a
sequence of matrices gy € Mat, (A,) converging to g, where each gy satisfies
Oign =1,1=0,...,1. Since GLT(An) C Matr(fln) is open, gNy € GLT(An) for
N large enough, and by lemma 7.8 gy € GL,(A,,). We claim, that for N large
enough, [gn] = [¢] in mp(GL,(A,)), thus showing surjectivity.

We use remark 7.2(iv). Choose N large enough, so that gyg=! — 1 €
MatT(An)OO. Since Mat,q(fl.)oo is contractible, there exists h € Matr(flnﬂ)oo,
such that dg(h) = gng ! — 1, 8;(h) = 0, i > 0. Since ||h]| < 1, 1+ h €
GL,(Ap41). Moreover, dg(1 4+ h) = gng~! and 9;(1 + h) = 1 for i > 0, hence

[gng~ '] = [1] and [gn] = [g] as claimed.

Next we prove the injectivity. Thus let ¢ € GL,(A,) with 0;(g) = 1, i =
0,...,n, and assume that there exists h € GLT(A,LH), such that dy(h) = g,
0i(h) = 1if i > 0. As in remark 7.2(iii) 7.(Mat,(As)) = 0. Hence there exists
a matrix h € Mat,(Ap41) such that 9o(h) =g, B;(h) =1, i=1,...,n+ 1.
Now we can apply lemma 7.7 to h — h to obtain a sequence of matrices hy €
Mat, (An41) converging to h — h and satisfying Oi(hy)=0fori=0,...,n+1
and all N. Then hy + he Mat, (Ap+1) converges to h € GLT(ARH), hence
hn +he GL,(Ap41) for N large enough, again by the openness of GLR(AnH)
and lemma 7.8. Moreover 0y(hy +h) = g, (hy +h) =1, i =1,...,n+1,
hence [g] = [1] in 7, (GL,(A4.)). O

Lemma 7.7. — We use the notations of the above proof. Let g € Mat,(A;)

be such that 0;9 = 0, ¢ = 0,...,n. There exists a sequence of matrices gy €
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Mat,(A,), N > 0, which converges to g in Mat,(Ay) and satisfies d;gn = 0,
fori=20,....,n and all N.

Proof. — As in remark 7.2(iii) 7. (Mat,(A,)) = 0. Hence there exists h €
Mat, (A, 1), such that dg(h) = g, 8;(h) =0, i > 0.

We have an isomorphism A, = R(y,x1,...,2,)/(I) given by zg — 1 —
2121 i, x; — 24,1 > 0, and similar AnJrl = R{y,r1,...,2n11)/(I) . In terms
of these isomorphisms 0;, ¢ > 0, is given by z; — z;, if j < i, ; — 0 and
xj =z, if § > .

Represent h by a power series

h= Z ay(y)ayt - € Mat (R(y, @1, . . ., Tpt1)),

VENS“Ll

where a,(y) € Mat,(R(y)). Let i > 0. Since

7 Vi v;
alh — E ay(y)xlfl e $iillxil+l . :vanﬁ’l

I/EN3+1 s ;=0

represents J;h = 0, a,(y) has entries in (I) € R(y) as soon as v; = 0 for one
i, and we may assume without loss of generality, that a,(y) = 0 for those

v. Now let hy € Mat,.(R[y, 21, ...,Zn+1]) be the polynomial arising from h
by deleting all terms of total degree greater than N and denote by hy its
image in Mat,(A,;1). By construction, we have d;(hy) = 0, if i > 0, and for
N — oo the hy converge to h. Hence also Oi(hny) = 0 for ¢ > 0 and the hy
converge to h in Matr(flnﬂ). Now define gy := 0y(hy) € Mat,(Ay). Then
the gy converge to dp(h) = g, and 9;(gn) = 0;00(hn) = 0p0i+1(hn) = 0,

1=0,...,n. O

Lemma 7.8. — Let g € Mat,.(A,,) be a matriz, whose image in Mat,(A,) is

invertible. Then g itself is invertible.

Proof. — Equip R(y, z) with the Gaufl norm and A,,, A, Mat,(A,,), etc., with
the induced norms.

Let h € GLT(An) be the inverse of g. Since A, is dense in A, we may ap-
proximate h by matrices hy € Mat,(A4,). Then hy - g N0 in Mat, (Ay),

and, for N large enough, ||1 — hng|| < |7| (recall that 7 is a uniformizer
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for R). Then we can represent 1 — hyg by a matrix of power series fy in
Mat, (R{y,z)"), with || fx| < |7|. Then fy = 7fj, where fi is a matrix of
power series with ||fi| < 1. Since R(y,z)! is weakly complete (cf. section
4.1), the series Y 32 TF ()" = Y52, X converges in Mat, (R(y,z)") and
defines an inverse of 1 — fy. Hence its image ey in Mat,(A,) is an inverse of
1—(1—=hynyg) =hng. Then ey - hy is a left inverse of g in Mat,(A,). By the
same argument applied to 1 — ghy, g also possesses a right inverse, hence is
invertible in Mat, (Ay,). O

Proposition 7.9. — Let A be an R-affinoid or R-dagger algebra and assume,
that A/mA is reqular. Then

Kih(A) = K (A/rA), n>1.

Proof. — This follows from Calvo’s Proposition 2.1 [Cal85] and Gersten’s re-
sult, that Karoubi—Villamayor theory for discrete noetherian regular rings
coincides with Quillen’s K-theory [Ger73, Proposition 3.14]. In fact, similar
methods as above show that m,_1(GL(As)) = m,—1(GL((A/7wA).)), where
(A/mA)y, = (A/TA)[z0,...,20]/O_x; — 1), and the right hand side is the
Karoubi-Villamayor K-group K~ "(A/mA). O

7.2. Relative K-theory

Let R be as before. Let X = Spec(A) be an affine R-scheme of finite type.
Let A denote the m-adic completion of A, an R-affinoid algebra, and AT C A
the weak completion of A, an R-dagger algebra. We define the topological
K-groups of X to be

Kb(X) = Kb (A) = Kb (A7) = m(BJ.GL(AT @, RT)), i>1.

top

Recall that K;(X) = m;(| B«GL(A)|*). Since m1(B.GL(A" ®F, Rl)) = Kl (A)
is abelian, the natural morphism |B¢GL(A)| — |BsGL(AT ®}% RY)| factors up
to homotopy uniquely through [BeGL(A)| — |BsGL(A)|T. We abbreviate the

simplicial group GL(Af ®E Ri) by Ge. As in the complex case (cf. section 3.2),
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we define the space F and the simplicial set .%# by the pullback diagrams

ﬁ ‘EoGo’ F EOG.
l 4 ipl l 4 ip
|BeGL(A)|T —— |BeGl, B,GL(A) —— B,G,.

Again there is an acyclic map |.Z| — F. We define the relative K -groups

K*(X) = m(F), i>1.

7.3. The relative Chern character

Let X = Spec(A) be a smooth affine R-scheme of finite type. Recall, that
Xx = Sp(Af @ K) denotes the generic fibre of the weak completion of X.
The relative cohomology groups H}, (X/R,n) are defined as in the simplicial
case (section 6.3).

We want to construct relative Chern character maps

Chysy  Ki(X) — H ™' (X/R,m).

rel

This is done as in the complex case: First of all, define the simplicial set %,

by the pullback diagram

Z, E.CL, (AT 1, Rl)
J \LP (7.5)
BJGL,(A) — B.GL,(A" @}, R]),
so that % = lim,.%,.
—
Lemma 7.10. — Any matriz g € GL,.(Af ®E R;r,) induces a morphism of

dagger spaces
AP x XK — (éir,R)K-

Proof. — First of all (G/’rTJnR)K = Sp(K (zij, )T /(det(zij)y — 1)) and X =
Sp(AT ®x K). The matrix g is determined by a morphism of R-algebras

Rlxij, yl/(det(zij)y — 1) — Af ®J§~2 RIT)'
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Since Af (X)]LRR;T7 is an R-dagger algebra as well, this morphism extends uniquely

to a morphism
Riwij, )t/ (det(wij)y — 1) — AT @, R]
[MW68, Theorem 1.5], which in turn induces a morphism of dagger spaces
Sp((AT @ RY) ©r K) = Sp(K (wij, )"/ (det(zij)y — 1)),

that is,
XKXAPH(@nR)K. ]

Hence the above diagram (7.5) gives rise to a morphism of simplicial R-schemes
gr: X ®F — BeGL; R,

together with a commutative diagram

Eo(@r,R)K
R
p
A (gT)K —~
XKk ® F, Bo(GLr,R)K

of topological morphisms of dagger spaces. Thus we are exactly in the situation
of section 6.3 and have relative Chern character classes
—~—rel
n

Ch, (T, E,,a,/R) € H" Y(X ® .%./R,n),®

rel

where we denote by 7T, the trivial GL,-bundle and by FE, the algebraic GL,.-
bundle classified by g,. Similar as for the complex analogue one shows, that

these classes are compatible for different r:

—~rel
Lemma 7.11. — The class Ch;e (Tr41, Ers1, 041/ R) is mapped to the class
—~rel
Chne (T;, E,,a,/R) by the natural map H""Y(X ®.Z, 1 /R,n) — H 1 (X ®

rel rel

Fr|R,n) induced by the inclusion j : GL, < GL,41 in the upper left corner.

The other input we need for the definition of Chern character maps is

() Here we tacitly extended the definition of relative cohomology to the case of simplicial

schemes of the form X ® S, which obviously does make sense.
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Lemma 7.12. — Let X be a smooth separated R-scheme of finite type and S

a simplicial set. Then we have natural isomorphisms

HYy(X ® S/R,n) = @ Hom(H,(S), HL (X/R,n)).
pt+g=k
Proof. — Choose a good compactification j : Xx < X with complement

D. This induces a good compactification j : Xg ® S «— X g ® S. Denote the
natural morphisms X kK — Xk and X Kk®S — Xg®S by ¢. Choose a complex
* of injective sheaves on X  representing Cone(Q (log D) — RjRe, % )
Thus I'(X g, I*) is a complex computing H,(X/R, n)
In an obvious way, I* induces a complex of sheaves I* ® S on the simplicial
scheme X ¢ ® S, which represents Cone( ;7; (log D®S) — RjRe, % ®S)
since Rj, R, Q% X mg Can be computed “degree-wise” [Del74, (5.2.5)]. Moreover,
each IY® 95, is an injective sheaf on X g ®S,, and hence the relative cohomology
i,
the cosimplicial complex [p] — I'(X g ® Sp, [* ® Sp) = Haesp "Xk, I*). Now

the claim follows as in lemma 3.5. O

(X ® S/R,n) is just the cohomology of the total complex associated with

Putting everything together, we can now define:

Definition. — Let X = Spec(A) be a smooth affine R-scheme of finite type.

The relative Chern character

Chel  K7N(X) — H2 " Y(X/R,n)

is given by the composition

KIN(X) = my(F) ™% Hy(F,Z) = H(7,Z) =

— rel
li_r>r1TCh;e (T, Er,ar/R)

lim, H(%,,Z) 2 Y X /R, n).
Remark 7.13. — The construction of the relative Chern character for ul-

trametric Banach algebras is also due to Karoubi [Kar83, Kar97]. Instead of
overconvergent power series he uses indefinitely integrable power series and in
contrast to our construction his relative Chern character takes values in the

cohomology of the truncated de Rham complex of the rigid space Sp(/lK).
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That is, he does not take logarithmic singularities or overconvergence into

account.

7.4. The case X = Spec(R): Comparison with the p-adic Borel regu-

lator

In this section we study in more detail the situation X = Spec(R), where R is
the ring of integers in a finite extension of Q,. This will be used to compare
the relative Chern character with the p-adic Borel regulator. Thus, throughout
this section we fix a finite extension K of Q, with ring of integers R C K,
uniformizer w € R and residue field k.

Similar as for the relative Chern character for Spec(C), the Chern-Weil the-
oretic description of secondary classes yields an explicit cocycle defining the
relative Chern character on the simplicial set GL(R})/GL(R) (the homotopy
fibre of B4GL(R) — B,GL(R!)). Since the explicit description of the Lazard
isomorphism due to Huber and Kings describes the map from locally analytic
group cohomology to Lie algebra cohomology (in contrast to Dupont’s descrip-
tion of the van Est isomorphism) and since the p-adic Borel regulator is defined
by a Lie algebra cocycle, we could take a locally analytic cocycle on BeGL(R),
which induces the relative Chern character on GL(Ri) /GL(R), and then check,
that it is mapped to the Lie algebra cocycle defining the p-adic Borel regula-
tor by the explicit Lazard map. Since it is not so easy, to find such a locally
analytic cocycle, we use the following approach. The Lazard isomorphism fac-
tors through the locally analytic group cohomology of U(R) := ker(GL(R) —
GL(k)). We construct a section v of the map GL(Ri)/GL(R) — Bl.GL(R),
which is only defined on B,U(R) C B.GL(R), and show, that it induces a
surjection v, : Hy(B.U(R),Q) — H,(GL(R!)/GL(R),Q). This is done by
showing, that the map H,(GL(R})/GL(R), Q) — H.(B.GL(R), Q) is in fact
an isomorphism (section 7.4.1). Via v our explicit cocycle for the relative Chern
character gives a group cocycle on U(R) and we show in section 7.4.3, that it
is in fact locally analytic. Hence we can apply the Lazard map and show that

this cocycle is (up to a constant) mapped to the Lie algebra cocycle defining
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the p-adic Borel regulator (section 7.4.4). By the surjectivity of v, this implies

the desired comparison.

7.4.1. The homology of the fibre of B,GL(R) — B,GL(R}).— We pro-
ceed as in the complex case. We abbreviate the simplicial group GL, (Ri) =:
Ghr.e, GL(Ri) = Go = lim,G;e. Again we have a homotopy equivalence
Nt Gre/GLy(R) — F = BeGL,(R) XB,q,.. FeGre of two models for the
homotopy fibre of the map BeGL,(R) — B4G; e (lemma A.6).

Theorem 7.14. — The natural map
p« : H(Ge/GL(R),Q) — H.(BsGL(R),Q)
s an isomorphism.

The proof uses the Serre spectral sequence for the homotopy fibration
Ge/GL(R) — B4GL(R) — B.GL(RJ.r). We have to study this in more detail.
Write G := Gy = GL(R). By lemma A.6 we have a diagram

GG —2" " GG P BoG,
incl. T ~ / (76)
Ge/G — L~ F.G/G = B.G

where the inclusion E4G/G — FE.G,./G is a homotopy equivalence and the left
square commutes up to homotopy. Since E¢Go/G 5 B.G, is a Kan fibration
with fibre Go /G, we have the associated Serre spectral sequence [Lam68, Kap.
VI, §6]

E? = Hy(BsGe, #;(p, Q)) = Hpq(EuGa /G, Q). (7.7)

Here 7 (p, Q) denotes the ¢g-th homology local system of the fibration p with

rational coefficients.

Lemma 7.15. — The action of m1(BeGa) on Hy(Ge/G, Q) is trivial for ev-
ery q > 0.

All the simplicial sets occuring have natural base points represented by 1 €

Go = G or the single element in BgGy. They will all be denoted by the same
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symbol 1 and all constructions depending on base points (like fibres) are made

with respect to these without further reference.

Proof. — Recall the operation Hy(Go/G,Q) x 1 (BsGs) — Hy(Go/G,Q):
Denote by A[1] the simplicial set Homa (., [1]) with vertices 0 := §! and
1 := 0% € A[l]y. Any class [g] in 71 (BeG) is represented by a l-simplex
g € B1G,., which corresponds to the unique morphism g : A[l] — BeG,
sending id;) € A[1]; to g. Consider the diagram

G./G

joReNle:

7

(id,0) h P (7.8)

G./G x Al 22 B.G,

where ¢ is the inclusion of the fibre of p induced by o +— (o, ..., 0). The dotted
arrow exists by the homotopy lifting property for Kan fibrations [Lam68, Kap.
I, Satz 6.5]. The restriction of h to Go/G x 1 factors through the fibre Go/G,
and hence induces a map § : Go/G — Go/G. Now the action of [g] € 71 (BeGo)
on Hy(Ge/G, Q) is given by the homomorphism H,(§) [Lam68, Kap. VI, 5.3].
We want to make this explicit. Since Go/G is obviously connected, the nat-
ural map 7 (BeG) = G — m1(BeG,) is surjective. Thus we may choose the
representative g in G C Gi. Consider (1,g7!) € E1Ge = G1 x G1. Then
p(1,g7Y) =g,00(1,9g7) =g ! and 01(1,¢g7 ) = 1. Hence (1,¢~!) corresponds
to a morphism § : A[l] — E.G, sending 0 to 1 and 1 to g~! and such that
pog=g.

Recall that F4G, is a simplicial group which operates from the left on E4Go/G
and the projection p is equivariant for this action. Then it makes sense to
consider the map h : Go/G X A[l] — E4G4/G defined as h = (gopry)-(¢opr;).
We claim that h makes the above diagram commutative. First poh = (g o
pry) - (pogopry) =(gopry) -1 =pogopry = gopry, ie. the lower triangle
commutes. Next, for o € G),/G we have h(c,0) = §(0)-¢(0) = 1-¢(0) = ¢(0),

i.e. the upper triangle commutes.
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On the other hand, h(o,1) = §(1) - ¢(c) = g~ - ¢(0) = (g7 0,...,g710) =
¢(g~ o) and hence the action of the class [g] on Hy(Ge/G, Q) is induced by the
map § : Go/G — Go/G,0 — g~ 'o. We want to show that this map induces
the identity map on homology.

Recall that G, . = GLT(Ri) and li_r)nTGn. = G, and hence H,.(G./G,Q) =
lim, H,(Gr.e/GL(R), Q). For r big enough we have g € GL;(R) and it clearly
suffices to show that § : Gy e/GLy(R) — G2r4/GL2r(R), 0 — (9_1" 1), is

homotopic to the identity and hence induces the identity on homology. But

1
g

multiplication by (9_1 g>. By the Whitehead lemma (see e.g. [Ber82, (1.9)])

this matrix is a product of elementary matrices. An elementary matrix is a

since ( ) is an element of GLg,(R), this last map is the same as the left

matrix of the form e;;(a), i # j, with 1’s on the diagonal and @ € R in
the (i, j)-slot. Clearly, every elementary matrix is homotopic to the identity
matrix, more precisely e;j(azxi) € GLQT(RI) = Gor1 satisfies Ope;j(axi) =
eij(a),O1e;j(ax1) = 1. It follows, that there exists a matrix H € Go,1 such
that OgH = (9_1 g>, O1H = 1. Again, H corresponds to a morphism H :

A[l] — Gore such that H(0) = 1, H(1) = (9_1 g). The required homotopy
Gr.e/GLr(R) X A[l] — Goy.e/GLar(R) is now given by (o,7) — H(r)-0. O

Corollary 7.16. — In the spectral sequence (7.7)

pq

E2 HQ(G'/Ga Q)a pr = O,

0 else.

Proof. — Since m1(BeG,) acts trivially on H,(G./G, Q) and we are working

with rational coefficients, we have an isomorphism
Ej o = Hy(BuGa, #4(p, Q) = Hy(B.Gh, Q) ©q Hy(Ga/G, Q)

[Lam68, Kap. VI, 8.1].

Recall that k denotes the residue field of R, and define the simplicial
ring ke by k, = klzo,...,zp]/(>°; i — 1) with the usual structure maps.
Then 7,(BeGL(ks)) is the Karoubi-Villamayor K-theory of k. The geomet-
ric realization of the natural map BeGL(k) — BeGL(ke) factors through
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|BeGL(k)|", which gives the isomorphism between Quillen’s K, (k) and the
Karoubi-Villamayor K-groups of k.

With proposition 7.9 it follows, that we have weak equivalences |BeGe| =
IBoGL(RL)| = |BsGL(ks)| <~ |B.GL(K)|". Hence we get isomorphisms
H.(BsGo,Q) = H.(B.GL(K),Q) = Ilim, H.(BsGL:(k),Q). But since
H,(B,GL,(k),Q) is just group homology of the finite group GL, (k) with
rational coefficients, it vanishes in positive degrees and equals Q in degree 0.

Now the claim follows. O

Proof of the theorem. — It follows from the corollary, that the edge morphism
Eg’q = H,(G./G,Q) — Hy(E.G./G,Q) is an isomorphism. By [Lam68,
Kap. VI, 6.7 b)|, this is just the homomorphism induced by the inclusion
Ge/G — EoG4/G. Since the inclusion BeG = E,G/G — EG,./G is a homo-
topy equivalence and diagram (7.6) is homotopy commutative, it follows, that

p: Ge/G — BeG also induces an isomorphism in rational homology. O

Define U,(R) := ker(GL,.(R) — GL,(k)) = 1 4 7nMat,(R) and U(R) =
lim, Uy (R) = ker(GL(R) — GL(k)).

Lemma 7.17. — There is a natural map of simplicial sets v : BeU,(R) —

Gr.e/GL,(R), fitting in a commutative diagram

/ gm

Gre/GL (R —>B GL,(

Explicitely v is given in degree p by

g:(glwuagp Z$zgz+1

Going to the limit r — oo we get a map BU(R) — Go/GL(R), that induces
a surjection

H.(B.U(R),Q) — H.(G+/GL(R), Q).

Proof. — First of all we have to show, that the above formula for v(g) really
defines an element in GLT(R;Q). Thus, take g = (g1,...,9p) € BpUr(R). Write
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hi :==1—git1---gp. Since g; € U,(R) for all i, we have h; € TMat, (R). Define
h = >"*  xih; € Mat,(R[zo,...,zp|) and denote its image in Matr(R};) by
the same letter. Then v(g) =7 jx;(1 —h;)) =1—hin Matr(R;).

Choose 1 < p < |r|7! and consider the Banach algebra T,.1(p) in the
variables x,...,x, with the p-norm |.|, (see section 4.1). Define the norm
|.|p on Mat,(Tp+1(p)) to be the maximum of the p-norms of the entries.
Then Mat,(Tp+1(p)) obviously becomes a Banach algebra as well and |h|, <
max; |z;hil, < p-|m| < 1 by definition of the p-norm and since h; € TMat,(R).
Hence > 3%, h* converges in Mat,(T,4+1(p)) C Mat,(K(zo,...,zp)"). Obvi-

ously, all the coefficients lie in R, hence )7, h* defines in fact an element

in Mat,(R(zo,...,7,)1). Its image in Matr(R;L) clearly gives an inverse of
v(g)=1—h.

It is easy to check, that v is a morphism of simplicial sets. For ex-
ample, v(Dp(g1,---,9p) = YhogTiGit1 - Gp1 = Do Tigir1 Gy =

Bp((g1s-- - gp)) in GL(R!_)/GL.(R).
Recall, that p is given by o — (o(eg)o(e1)™,...,a(ep—1)o(e,)1). Clearly
v(g9)(ei—1)v(g)(e;)~! = g; and hence pov : BU,(R) — BeGL,(R) is just the

-1

inclusion.

Since k is finite, U,(R) has finite index in GL,(R). Since H.(BsU.(R),Q)
is just group homology with rational coefficients, H.(B.U.(R),Q) —
H,(B.GL;(R),Q) is surjective by the usual restriction-corestriction ar-
gument. Going to the limit r — oo, Hy(B.U(R),Q) — H.(B.GL(R),Q) is
surjective. Since H.(Go/GL(R),Q) — H.(B.GL(R),Q) is an isomorphism
by theorem 7.14, the claim follows. O

7.4.2. The p-adic Borel regulator. — Here we recall the construction of
the p-adic Borel regulator and the explicit description of the Lazard isomor-
phism.

As before, K denotes a finite extension of Q, with ring of integers R and
uniformizer 7. Recall, that U,(R) = 1+ mMat,(R) C GL,(R). Denote by gl,
the K-Lie algebra of GL,(R), viewed as a locally K-analytic Lie group, and
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by 0'*(X) the ring of locally analytic functions on a locally K-analytic man-
ifold X. We denote by H}' (GL.(R), K) the locally analytic group cohomology
defined as the cohomology of the complex associated with the cosimplicial
K-vector space [p] — 0'%(B,GL,(R)) = 0'*(GL,(R)*P). Recall, that the Lie
algebra cohomology H*(gl,., K) is the cohomology of the complex A* glY with
differential induced by the Lie bracket (see e.g. [Wei94, Corollary 7.7.3]), where
glY denotes the K-dual of gl,.

Huber and Kings prove the following version of Lazard’s theorem:

Theorem 7.18 (Lazard, Huber—Kings). — There are isomorphisms
Y (GLy(R), K) = H{(Ux(R), K) = H(gl,. K).

On the level of cochains the map to Lie algebra cohomology is induced by the

map
k
®: 0™ (GL.(R)**) — Al

which is given on topological generators by fi®---® fi — dfi(1) A---Adfi(1),
where df (1) is the differential of f at the unit element 1 € GL,(R).

Proof. — This is proven in [HKO06, Theorems 1.2.1. and 4.7.1]. See also
[HKN09, Theorem 4.3.1]. O

Definition 7.19 ([HK06] Definitions 0.4.5 and 1.2.3)
For n < r the (primitive) element p, = p,, € H?*" !(gl,,K) is the class
represented by the cocycle

((n — 12

Xi Ao AN Xop—

> sen(0)Te(Xo) - Xo@n-1))-
0€G2n_1

Here G3,_1 denotes the symmetric group on 2n — 1 elements. Define b, , €
H?""Y(GL,(R), K) to be the image of p,, under the composition

H* Y(gl,, K) & H?"Y(GL,(R), K) — H*""'(B,GL,(R), K),

T

where the right hand map is the canonical map from locally analytic to discrete

group cohomology. Obviously, the b, , are compatible for different r.
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The p-adic Borel requlator is the composition

limybn,r

rp: Kop—1(R) ™% Hyp, 1 (GL(R), Q) = lim, Hzp,—1(GL(R), Q) ——— K

For later use, we record the following alternative description of the map &
in the theorem above. Consider GL,(R) as a K-Lie group and let exp be the
exponential map of GL,(R) defined on a neighbourhood of zero in gl,. For a
locally analytic function f € O(GL,(R)**) we define Af € A" gl¥ by

AF(X1,. X)) =
dk
E Sgn(a)mf(exp(thgl), . ,eXp(tho—k)) .

E——
g€y ! "

If f is of the special form f = f; ® --- ® fi, one has

d
T Xo1)y oo o =
dtif(exp(tl 1) exp(tp Xok)) im0

= fi(exp(t1Xo1)) - - - dfi(1)(Xos) - - - fr(exp(tp Xor))

and therefore

Af(Xi X0 = Y sen(@)dfi(1)(Xo1) - dfe(1) (Xon)

A<IGTR
= dfi(H)A--- ANdfe(1)(X1,..., Xk) = P(f)(X1,..., Xg).

The vector space 0'*(GL,(R)*) carries a natural locally convex topology
[Sch08, §12]. Using proposition 12.4 of loc. cit., it is easy to see, that both, ®
and A, are continuous for this topology. Since moreover the functions of the
form f; ® -+ ® fi are topological generators of O'(GL,(R)*¥), we get:

K)

Ty

Corollary 7.20. — The Lazard isomorphism Hf (GL,(R), K) = H*(gl
is induced by A : O(GL,.(R)*¥) — AFglY.

The same description applies for U, (R) instead of GL,(R).



148 CHAPTER 7. RELATIVE K-THEORY AND REGULATORS

7.4.3. Local analyticity of the relative Chern character. — Re-
call that the relative Chern character Chifyl%,l . KX (Spec(R)) —

HY (Spec(R)/R,n) = K is determined by a compatible family of homo-
morphisms Ho,—1(%#,,Z) — K and that we have a natural homotopy
equivalence 7, : Gyo/GLy(R) — %,. Similar as in the complex situation we

have:

Proposition 7.21. — The composition

—~rel
Chy (Tr,Er o)
i UreBniar)

H2n71(GT,O/GL7"(R)7 Z) i H2n*1(3?7"’ Z) K

s given by the cocycle

St [ o

Proof. — Write X = Spec(R). For the proof note the following: The morphism
——rel
Hop 1(Fr,Z) — HY(X/R,n) is induced by the class Ch,, (T}, E,,a,/R) €

~

oY (X ®.F,/R,n). By remark 6.14 this group is isomorphic to H>1~((X) xk®

— rel
Zr,n) and by proposition 6.15 the class Ch;e (T, Er, a;r/ R) corresponds under
this isomorphism to the class Ch'®{(7, (Er) K,y ), where (ET) K is the bundle

o (=1t

~

induced by E, on (X)x ® %,. Hence we may work with this class constructed
via Chern-Weil theory and there the same (up to a sign) computation as in

the complex case (proposition 3.16) applies. O

Next recall, that we constructed maps of simplicial sets v : BoU,(R) —
Gr.e/GL;(R), which induce a surjection H,(B,U(R), Q) — H.(G+/GL(R), Q).
The composition
v Chirhn
Hon-1(BoUr(R), Q) = Hi(Gre/GLr(R), Q) ——— K
is then given by the cocycle

Un(R)* Y — K,

n—1

e N R )

g= (915, 92n-1) = (1) m

where v(g) = Zf:al ZiGit1 " Goan—1-
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We want to show, that this cocycle is locally analytic, hence may be compared
with the Lie algebra cocycle defining the p-adic Borel regulator using the
Lazard isomorphism.

Let p > 1 and consider the Banach algebra T},.1(p) = K(p~txg,...,p " a,).
Write Q"(A"), = K{p~'a)/(3; 25 — 1) @k Nix S5 (cf. remark 5.9).
This is a K-Banach space and we have a natural mai) QrA™), — QM (A™),

which may be composed with the integration map [,,: Q"(A") — K.

Lemma 7.22. — Let M be a locally K-analytic manifold and F : M —
Q" (A™), a locally analytic function. Then
M>uw— F(u) e K
An
1s also locally analytic and will be denoted by fAn F.
If dF (u) : T,M — Q"(A"™), denotes the differential of F' at w € M and v is a

tangent vector to M at u, we have

d( [ F)ww= [ @rwoe,

Note, that the “d” is the differential on M and has nothing to do with the
differential on Q*(A™).

Proof. — As noted in remark 5.9 the composition Q"(A"), — K,w — [y, w
is continuous. Hence u — [, F(u) being the composition of a bounded linear
map with a locally analytic map is locally analytic as well. The second assertion

is simply the chain rule. O

If F: M — Mat,.(Q"(A"),) is a locally analytic function with values in
the Banach space of r x r-matrices with coefficients in Q"(A"),, we get the
locally analytic function [, F' with values in Mat,(K) applying the integral

component-wise.
Lemma 7.23. — The cocycle (7.9) is locally analytic.

Proof. — We introduce some more notation. For any K-Banach space (V,]|.||)
and ¢ > 0 we denote by F.(K™,V) the K-Banach space of e-convergent

power series in m variables with coefficients in V', i.e. formal power series
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>, vpa?, such that ||v, ! Hzee, 0, equipped with the norm || > v, 2" |. =
max,, ||v|| - €. If A is a K-Banach algebra, then F.(K™, A), equipped with
the usual multiplication of power series, becomes a K-Banach algebra as well.
We show, that v~ : U.(R)*®* 1) — GLT(REn_l) C Matr(K;rn_l), g —
> xigit1 - - gan—1) ! factors through a locally analytic map UT(R)X(Q”_I) —
Mat,.(Ton(p)) for any 1 < p < |7| 7L

Thus fix 1 < p < |7|~!. Consider the locally analytic function

hi: Up(R)*®"=Y — rMat,(R) C Mat, (K),

(91,5 92n-1) — 1 — giy1- - gon—1.

Then h := Y2 'ahi: U(R)*®*D — Mat,(Ta,(p)) is also locally
analytic and v(g)~' is the image of Y 3, h(9)® € Mat,(Ton(p)) in
Matr(Kgnfl) (cf. the proof of lemma 7.17). Hence we have to show, that

2 ohF U (R)*(2n=1) — Mat,(T,(p)) is locally analytic. We have the
chart Up(R)*(2"=1 % rMat, (R)*@*=D C Mat, (K)*@»—1) = gr*@n-1)
whose inverse is given by (M, ..., Mop_1) — (1 + Mi,...,1 4+ My,_1). Then
ho~! is given by

(Ml, .. .,Mgnfl) — Z{L‘Z (1 — (1 + Mi+1) s (1 + Mgnfl)) .

This map is clearly given by a power series F' (in fact a polynomial) in
Fix| (KTZ(Q"_I),Tgn(p)) with ||[F||jz| < p-|7| <1 [Note that here the z;’s are
the coefficients, and the M;’s are the variables. Since 1 — (1 + M;41)--- (1 +
Mys,—1)) has no constant term and only integral coefficients, we have ||[1 —(1+
Mit1) - (1+ Ma2p—1)) ||z < |7|. On the other hand |z;|, = p.]. Consequently
o2y F* converges in Fix| (K r?@2n-1) Tgn(p)> to a power series representing
(2o hf) oyt ie. Yop2, A” is locally analytic.

Since sums and products of locally analytic functions with values in Tb,(p)
are again locally analytic, it follows, that (dv - v=1)?*=1 : U.(R)*(»=1 —
Mat, (Q22"~1(A?"~1) ) is locally analytic hence the cocycle (7.9) is locally an-
alytic by lemma 7.22. O
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7.4.4. Comparison of the p-adic Borel regulator and the relative
Chern character. — According to lemma 7.23 the cocycle (7.9) defines a

class in Hé"_l(UT(R), K) and we have:
Theorem 7.24. — The class of the cocycle (7.9) is mapped to %pn by

the Lazard isomorphism H"'(U,(R), K) % H? (gl K).
Here p,, denotes the primitive element of definition 7.19.
Proof. — Denote the cocycle (7.9) by f. We show that A(f) = (—1)"ﬁpn.

Write 0; instead of %. We have

A (X1, ... Xopq) = (=1 E (n - 1>!! > sgn(0)d: ... Oan t

(2n - 1) 0€Gan—1

Tr /A2 71(dy v exp(t1 Xp1), - - ,exp(tan—1Xp(2n-1)))-

1=-=0

By lemma 7.22 we may interchange differentiation and integration. Let us first
consider the ¢ = 1 summand. Write

2n—1

wi= Y dzjexp(ti1Xit1) - exp(tan—1Xon_1),
i=0
2n—1

W= Z 2 exp(tit1Xiq1) - - - exp(ton—1Xon—1).
i=0

Then
(dv - V_I)Q"_l(exp(thl), coexp(ton—1Xon-1)) = (w- w'_1)2"_1.

Note, that w|¢, =...—t,, ;=0 = 212261 dz; = 0. It follows, that when we calculate
O ... Oop—1(w *1)2”*1 using the Leibniz rule repeatedly and then set all the

t; equal to zero, we get

81 e agn,l(ww'_l)%_l

t1=-=top_1=0

Z 87'(1) (wwlil) T 87.(2”,1) (wwlil)

==ty 1=0
T€EG2n-1 "
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On the other hand, using w"tl:_” =Yg =1 we get

0; (ww’fl) } = (8jw)w/71|t1:m:0 + w(9w’ 1)|t1:“: =

7j—1
w)‘tlz...zo = dez - X
1=0

t1=---=0

Alltogether we obtain

81 e agn,l(ww’_l)% 1

t1=-=top_1= -0
7(1)—1 2n 1)—1
= Z Z dz; - X ) dz; - X7(2n-1)
TEG2, 1 =0
(1)-1 r(2n—1)—1
Z X1y Xr@2n-1) ( dr; | -~ Z dx;
TE€EG2, 1 1=0 1=0
= sgn(7)X Xr@n—1ydzodzy ... dro, 2.

TEGQn 1

It follows that

Z sgn(a)al e 6271,1

0€G2n_1

(dl/ ' V_l)Qn_l(eXp(thcrl)a s 7eXp(t2n71X0'(2n—1)))

t1=-=tonp_1=0
= Z Sgn(U) Z Sgn(T)XO'T(l) e XUT(2n—1)d$0dxl oo dTon 2
€62, 1 T€EG2n—1
=(2n-1)! Z sgn(0) Xy (1) -+ Xo2n—1)dT0dT1 . . . dTop 2.
0’66271—1
Because

/ dl’o e dCEQn,Q = — / dxgnfld.fl e dCL‘Qn,Q
A2n—1 A2n—1

1
_ dzy ... dzon 1 = —
/M_l N T b

by a direct computation, we finally obtain
(n—1)!

A(f)( Xy, ..., Xop—1) = (—1)nm

Z sgn (o) Tr(Xo1 - Xo2n-1));

0€G2n_1
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that is A(f) = %pn. O
Corollary 7.25. — The diagram

K5 | (Spec(R)) Kon—1(Spec(R))

rel —_1)n
Chh K %r”

commutes.

Remarks 7.26. — i) That there should be a direct connection between the
p-adic Borel regulator and the relative Chern character was mentioned by
Karoubi.

ii) A formula for the relative Chern character similar to (7.9) has also been
obtained by Hamida [Ham06].

iii) In connection with the work of Huber and Kings [HKO06] this result implies
the comparison of the syntomic Chern character with the relative Chern char-
acter in the case X = Spec(R). Another strategy for the proof of a general
comparison result was given by Besser in his talk [Bes03].

iv) Note, that the horizontal map in the above diagram has finite kernel and
cokernel. This follows from the long exact sequence connecting relative, alge-
braic and topological K-theory together with the fact, that Kt;l(fn_l)(R) =
Ko, —1(k) for n > 1, hence is finite by Quillen’s computation of the algebraic
K-theory of finite fields.

v) The factor % shows up, since the construction of the relative Chern
character uses Chern character classes, whereas the construction of the p-adic
Borel regulator in [HKO06] uses Chern classes. One could define a renormalized
version of the p-adic Borel regulator using Chern character classes instead
and then the factor would disappear (cf. the different normalizations of the
primitive element p, in [HK06, Definition 0.4.5] and [BG02, Example 5.37]).
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Proof of the corollary. — By construction of the two regulators it suffices to
show, that the diagram

o

Hyn_1(Ge/GL(R), Q) Hy,—1(B.GL(R), Q)

Cm ((n%l)l’,)llrp
K

commutes. By lemma 7.17 we have a surjection Ha,_1(BsU(R),Q) —
Hy,—1(Ge/GL(R), Q) and it follows from the last theorem and the definition
of the p-adic Borel regulator, that the two possible compositions agree on
Hy,—1(BsUr(R),Q) for any r, hence they agree on Ha,—1(BsU(R), Q) and

the claim follows. O
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A.1. Some homological algebra

Let A, B, C be three (cohomological) complexes in an abelian category. Given
morphisms f : A — C and g : B — C, we define the quasi-pullback AXcB to

be the complex
Cone(A® B 1=% ¢)[-1].
We have the short exact sequence
0— C[-1] —» Ax¢B PA%PE, 4o B — 0.

Lemma A.1. — The diagram

~ PA
AXCB — A

|- g lf

B C

commutes up to canonical homotopy. If f is a quasiisomorphism, so is pg.

Proof. — The homotopy h : (AxcB)"® — C™ ! is given explicitely by
(a,b,c) — c. The short exact sequence above yields the following exact

sequence of cohomology groups

Hi—l(A) @Hi—l(B) f—g Hi_l(C’) R Hi(AQCB) PA®DPB

— Hi(A) o HY(B) =% HI(0)
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and by a little diagram chase it follows, that if f is an isomorphism on coho-

mology groups, so is pp. O
Lemma A.2. — Suppose given a commutative diagram of complexes

A—>B

v el

A ——B

and a homotopy h between gy and g1 under A, the two maps Cone(A —
B) = Cone(A’ — B') induced by go and g1 respectively are homotopic.

Proof. — The induced maps on the cones are given by (a,b) — (f(a), gi(b))
i = 0,1, and a homotopy between them is given by (a,b) (0,h(b)). I
fact, (dh + hd)(a,b) = d(0, h(b)) + h(—da,db— «(a)) = (0,dh(b)) + (0, h(db) —
h(e(a))) = (0, dh(b) +h(db)) = (0,90(b) = 91(b)) = (f(a), go(b)) — (f(a), 1.(b))-
O

—
—

Lemma A.3. — Let A, I,J be non-negative complexes in a Grothendieck
abelian category'® and assume that I and J consist of injective objects. Let
A ST be an injective quasiisomorphism and f : A — J any morphism. Then

the dotted arrow in the diagram

f
A——J
J A
|

exists and is unique up to homotopy under A.

Assume, that go and g1 are two morphisms I — J making the above diagram
commute. The choice of a homotopy between gy and g1 under A determines a
quasiisomorphism Cone(gg) — Cone(gy). This quasiisomorphism does up to

homotopy not depend on the chosen homotopy between gy and g;.

Mie. h(a(a)) =0Va € A
@)a cocomplete abelian category satisfying AB5) and admitting a generator
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Proof. — The first part simply follows from the fact, that the non-negative
cochain complexes in a Grothendieck abelian category form a model category,
where the weak equivalences are the quasiisomorphisms, the cofibrations are
the injections and the fibrations are the morphisms, which are surjective in
positive degree, and have degree-wise an injective kernel (cf. [Hov99, Theo-
rem 2.3.13] for an explicit description in the case of R-modules and [Bek00,
Proposition 3.13] in the general case), and general facts on model categories.
For the second part, note that with I and J also Cone(g;), ¢ = 0,1, is fibrant
(w.r.t. to the aforementioned model structure) and that we have a commuta-
tive diagram

Cone(f) == Cone(g;)

T /

Cone(gop).

Again by general facts on model categories, the diagonal arrow is a homotopy

equivalence, which is well defined up to homotopy (under Cone(f)). O

A.2. Cohomology on strict simplicial (dagger) spaces

Recall, that A" denotes the subcategory of A with the same objects, but
with morphisms the strictly increasing maps [p] — [q], and that a strict
(co)simplicial object in a category % is a co- resp. contravariant functor
AStT @

The sheaf theory on strict simplicial spaces is essentially the same as in the
simplicial case (cf. [Fri82, §51 and 2], [Del74, §5]).

Let Xo be a strict simplicial (dagger) space. Let T(X,) denote the category,
whose objects are (admissible) opens U C X, for some p > 0, and whose
morphisms are pairs (U — V,¢), where U C X,V C X, ¢ : [¢] — [p] and
U — V C X, is the restriction of ¢x : X, — X, to U. An (admissible)
covering of U C X, is a usual (admissible) covering {U;}icr of U. This defines
a Grothendieck topology on T'(X,).

By abuse of language we say “(abelian) sheaf on X,” instead of “(abelian)

sheaf on T'(X,)”. Explicitely, a sheaf .# on X, is given by a family {.%,},>0
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of sheaves .%, on X,, together with morphisms ¢% : qﬁ)_(lﬂq — #, for any
¢ : [q] = [p], which are compatible in an obvious sense [Del74, (5.1.6)].

As for any Grothendieck site, the category of abelian sheaves on X, is a
Grothendieck abelian category [Art62, Theorem 2.1.4] and in particular has
enough injectives. A sequence .#' — F — #" of sheaves on X, is exact, if
and only if each sequence #;, — %, — F, on X, is exact [Fri82, proof of
proposition 2.2].

Let .% be a sheaf on X,. Its global sections are by definition

8*
[(X., 7) = ker(D(Xo, Fo) = D(X1, 7).
a7
If 7 is an abelian sheaf, then I'(X,, #) = Homapgn(x,) (%, F ), where Z is the

constant abelian sheaf Z, as one easily checks, and
H'(X,,.F) = RT(Xe, ) = Extiysnx.)(Z, F)-

We have the usual spectral sequence (the proof of [Fri82, Proposition 2.4] also

works in the strict case)
EP = H1(X,, %,) = H'T1(X,, 7).

The recipe [Del74, (5.2.7)] for the computation of the hypercohomology of a
complex of abelian sheaves on X, carries over to the strict case. Note, that the
Godement resolution Deligne uses, which is not available for dagger spaces, is
not needed, since we can clearly take injective resolutions instead.

If I is an injective sheaf on X,, each I, on X, is also injective [Fri82, proof of
proposition 2.4].

Now let X, be a simplicial space and X5% the associated strict simplicial
space. Obviously, the natural functor U : AbSh(X,) — AbSh(X5") is exact.
If .7 is an injective abelian sheaf on X,, each I, on X, is injective and the
cochain complex associated with [p] — # (X)) is acyclic (cf. the remark after
proposition 2.4 in [Fri82]). By the arguments of that remark, the same is
true for U(#) and hence U(.¥) is an acyclic sheaf on X5 Since I'(X,, .) =
[(X5™,U(.)), we get, that the natural map H*(X,, #) — H*(X5",U(%)) is

an isomorphism for all abelian sheaves % on X,.
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A.3. Simplicial groups

For any group G, we define the simplicial sets FoG and B,G as in definition
1.6. Now let G4 be a simplicial group. We define E,G, to be the diagonal of
the bisimplicial set ([p],[q]) — E,G,. Note, that E,G, is itself a simplicial
group, the multiplication being defined component-wise, and in particular is

a Kan set [Lam68, Kap. I, Folgerung 9.6].
Lemma A.4}. — E.G, is contractible.

Proof. — For i = 0,...,p define h; : E,G, — Ep11Gpy1 by (g0...,9p) —
(si(g0),---,si(gi),1,...,1). It is easy to see, that these define a simplicial ho-
motopy between the constant map 1 and the identity in the sense of [May67,
§5]. O

We define B,G, to be the diagonal of the bisimplicial set ([p],[q]) — B,Gj.
Recall, that G4 acts from the right on FeGe and the map

E.G. - B.G., (905 e 7gp) = (9091_17 cee 7gp—1g;1)

induces an isomorphism FEeGe/G, =N B.G,. By [Lam68, Kap. I, Satz 9.5
EeGe — EoeGo/Ge = BoG, is a Kan fibration, hence Bo,G, is a Kan set by
loc. cit. Kap. I, Folgerung 6.3. From the contractibility of FeGe and the long

exact sequence of the fibration EFeGe — Be(Ge we get isomorphisms
Ti(BeGa) = mi_1(Ga), > 1,

where all simplicial sets occuring are equipped with the natural base point
1. The same conclusion holds for B4G, replaced by the quotient of any con-
tractible Kan set by a free Ge-operation, and we will call any such simplicial
set a “classifying space” for G,.

Next let G = G considered as a constant simplicial subgroup of G,. We want
to study the homotopy fibre of the natural map BeG — BeGe. With (G4 also
G operates freely from the right on FeGe, hence EoGo — EoGo/G is a Kan
fibration and EeG./G is a model for the classifying space of G.

Lemma A.5. — The projection EeGe/G — EoGe/Ge is a Kan fibration.
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Proof. — Here we use the fact, that simplicial sets form a model category
with fibrations the Kan fibrations, cofibrations the monomorphisms and weak
equivalences the maps, which become weak equivalences after geometric real-
ization [GJ99, Theorem 1.11.3]. A Kan fibration is by definition a morphism
satisfying the right lifting property with respect to the (trivial) cofibrations
A}<=A", where A} is the k-th n-horn (loc. cit. p. 6), and (as in any model
category) has the right lifting property with respect to all trivial cofibrations.
Choose any vertex * € A}. Then * — A} is a trivial cofibration. Now the

claim follows as pictured in the following diagram:

E. G.

o N\

A} —= E,G./G |

Y

A" —— > ByG.

The upper dotted arrow exists, since EoGe — FoGo/G is a fibration, and then

the lower dotted arrow exists, since FeGoe — Eo(Ge/Go is a fibration. O

In the following we use the standard notations to denote fibrations (—),
cofibrations (<) and weak equivalences (—). There is a natural inclusion
B.G = E,G/G — E,G./G, which is a weak equivalence as follows from the

following morphism of fibre sequences

G E.G¢ —> E,G./G

)]

G—— E,G — E,G/G.
Next we have a commutative diagram

E.G./G

NJA\

B.G = E.G/G e E.G./G. = B.GO7
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and hence the homotopy fibre of BeG — Be(G,e can be taken to be the fi-
bre of the map FeGe/G — FEeGe/Ge, that is Go/G. Here Go4/G is embed-
ded in F.G./G diagonally ([o] — [(o,...,0)]). Pulling back the fibration
EeGe/G — FEo(Ge/Ge = BeGe along FEoeGe — BeG,, we get the fibration
EeGe/G XB,c, FeGe — E4G,. Since the base of this fibration is contractible,
the inclusion of the fibre Go/G — FoGo/G Xp,G, EeGe, which is given by
[o] — ([(o,...,0)],(1,...,1)), is a weak equivalence.

Next, the inclusion F,G — FoG, induces a weak equivalence BoG X pg,q,

EoGe = EoGe /G X B, FeGe as follows from the morphism of fibre sequences

GoeC—> EeGo/G XB,G, EeGe —>= E4G,4/G

| |

G.C—> B.G X BeGe E.G. B.G.

Hence we have weak equivalences

Ge/G S EaGe/G X BoGu EsGe <= BeG X B,ct. FoGl.

For 0 € G, write o(e;) := 770 € Gy = G, with 7 : [0] — [p],0 — 1,
i = 0,...,p. Then we define a map 7 : Go/G — BeG Xp,c, FeGe by
o ((o(eg)a(er)™ ... a(ep—1)a(ep)™h), (a(eg)o™t, ... a(ep)a™t)).

Lemma A.6. — The diagram

Ge/G—"> E,G./G Xp,c. EaG.

n

G./G BeG XB,c., FeGe

18 homotopy commutative. In particular, n is a weak equivalence, too.

Proof. — (Cf. [Kar87, proof of proposition 6.16]) Define x : Go/G — FEo¢Ge by

1 ... o0(ep)™1). Since E4G, is contractible, y is homotopic to

o+ (oo(eg)”
the constant map 1. Recall, that E.G, is a simplicial group, which acts from
the left on FoGe/G and on FeG4/Ge and, since all projections are equivariant

for this action, also on FeGe/G X B,G, FeGe.
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The composition Ge/G 5 BeG X, FeGe < FoGe/G xp.c. EaGe
is given by o — ([(o(ep),...,0(ep))],0(e0)o™ L, ... 0(ep)o™t). Multiply-
ing this composition from the left with x, we get the homotopic map
o ([(o,...,0)],1,...,1), which is precisely the upper horizontal map in the

diagram. O
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