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Abstract

Contrary to what is consistently assumed in the literature, the return function cannot be hump-

shaped in the Stiglitz-Weiss (1981) model. This has important consequences for the possible oc-

currence of credit rationing and redlining. With a single class of borrowers, banks offer credit in

two stages. Demand possibly exceeds supply in stage one, but not in stage two. With several ob-

servationally distinguishable borrower classes, the firms in a borrower class are redlined only under

circumstances which imply that they would not get credit in a perfect capital market either.
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In one of the ground-breaking papers in financial economics, Joseph Stiglitz and Andrew Weiss (1981)

analyze several models of “Credit Rationing in Markets with Imperfect Information”. When Stiglitz

was awarded the Nobel Prize in Economics in 2001, together with George Akerlof and Michael Spence,

this article was mentioned implicitly in the press release and explicitly in the advanced information (see

http://nobelprize.org/economics/laureates/2001/press.html). The most prominent of these models,

used in many subsequent research papers and reproduced in many textbooks and survey articles, is

the one with a continuum of borrower types endowed with projects with identical expected internal

rates of return and with non-observable riskiness. In this paper, we re-examine this model. Stiglitz

and Weiss (1981, pp. 394, 397) and the contributors to the strand of the literature originating from

their seminal work derive several propositions using the assumption that the return function (i.e.,

the relation between the interest rate charged and the resulting expected rate of return on lending)

is hump-shaped, with a unique interior maximum. Our point of departure is the observation that,

actually, the return function cannot be hump-shaped. It is not necessarily monotonic, but it attains

its global maximum at the maximum interest rate beyond which there is no demand for credit. In view

of this, it is curious to see how the hump shape has been making its way into articles and textbooks

ever since the publication of Stiglitz and Weiss (1981). Even so, this flaw would not be very remarkable

if the hump shape assumption served expositional convenience only, while the substance of the analysis

were unaffected. We proceed to show that this is not so. With a single class of borrowers, equilibrium

credit rationing can occur with a hump-shaped return function. Taking into account the fact that

the return function is not hump-shaped, banks offer credit in two stages. In equilibrium, there may

be excess demand in stage one, but not in stage two. The question of whether credit rationing then

prevails becomes a semantic issue. Moreover, having introduced observationally distinguishable classes

of firms to their model, Stiglitz and Weiss (1981, pp. 406-407) emphasize the possible prevalence of

“redlining” (i.e., entire classes of firms being excluded from the credit market). We show that given

that the classes’ return functions attain their global maxima at the respective maximum interest rates,

a class can only be redlined if their projects’ expected internal rate of return falls short of the rate

of return required by suppliers of capital. In this instance, they would not get credit in a perfect

capital market either. It goes without saying that the aim of our re-examination is not to deny the

crucial importance of asymmetric information in understanding how financial markets work. Rather,

we intend to fill some still existing gaps in our understanding of how one of the most important models

we use to analyze these markets works.

Section I briefly repeats the assumptions of the Stiglitz-Weiss (1981) model. The fact that the return

function cannot be hump-shaped is proved in Section II. Section III introduces some technical assump-

tions needed to give a clean characterization of the credit market equilibrium in Section IV below.
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The model with distinguishable borrower classes is the object of Section V. Section VI concludes.

I Model

In this section, we briefly recapitulate the assumptions of the Stiglitz-Weiss (1981) model. We do not

modify or extend the model and employ the notation introduced by Stiglitz and Weiss (1981).

The model covers two time periods. There is a continuum of length N of firms of different types, θ.

G(θ) is the distribution of firm types and has support [0, θmax]. In period 1, each firm has access to one

indivisible investment project with uncertain payoff, R (≥ 0), in period 2. The distribution of returns to

the projects of type-θ firms is denoted as F (R|θ). All types of projects have the same expected return,

R̄ (> 0): ER(R|θ) = R̄. It is assumed that if θ′ > θ′′, the distribution F (R|θ′) is a mean-preserving

spread of F (R|θ′′): ∫ x
0 F (R|θ′)dR ≥ ∫ x

0 F (R|θ′′)dR for all x ≥ 0. In this sense, the higher θ, the riskier

the projects. Each project requires a capital input, B (0 < B < R̄). There is asymmetric information:

firms observe their own type, θ, while other agents do not. Banks channel funds from lenders to firms.

The banking sector does not use resources other than financial capital and is perfectly competitive. So

the depositors’ expected rate of return is equal to the expected rate of return on lending, ρ. The only

financial instruments banks use are standard credit contracts. Because of non-observable borrower

types, the interest rate(s) charged, r, cannot be made contingent on borrower types, θ. Each firm that

receives credit posts an exogenous amount C (0 < C < B) as collateral. (All results derived in this

paper also hold true if C is used as internal finance, so that the amount borrowed is B − C.) Both

firms and lenders are risk-neutral. As for banks, one can alternatively assume that the amount of funds

lent by each single bank is so large that diversification eliminates risk. Firms apply for credit if the

expected return on their investment project is non-negative. The supply of capital, LS(ρ), is assumed

to be an increasing function of the expected rate of return, ρ (LS(ρ) can be thought of as the solution

to a two-period utility maximization problem with given levels of income in period 1 and non-interest

income in period 2).

II The return function cannot be hump-shaped

In this section, we show that the return function, which relates ρ to r, attains its unique global

maximum at the maximum interest rate beyond which there is no demand for capital. The implications

of this finding will be elaborated in subsequent sections.

Firms’ profit is π(R, r) = max{R − (1 + r)B,−C}. Riskier projects have a higher expected profit,

ER[π(R, r)|θ] = R̄ − (1 + r)B +
∫ (1+r)B−C
0 F (R|θ)dR. Firms apply for credit if ER[π(R, r)|θ] ≥ 0.
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This condition can be rewritten as θ ≥ θ(r), where θ(r) is defined by ER[π(R, r)|θ(r)] ≥ 0 and

ER[π(R, r)|θ] < 0 for θ < θ(r) (i.e., ER[π(R, r)|θ(r)] = 0 if F (R|θ) and, hence, ER[π(R, r)|θ] are

continuous in θ, see Stiglitz and Weiss, 1981, Theorem 1, p. 396). This shows that there is adverse se-

lection, in that only sufficiently risky projects are realized. Obviously, the critical value, θ(r), increases

as r rises (see Stiglitz and Weiss, 1981, Theorem 2, p. 396). That is, increases in the interest rate aggra-

vate the adverse selection problem. Or, put differently, as r rises, firms with a lower value of θ cease to

demand loans earlier. Let rmax denote the interest rate at which the riskiest firms (those of type θmax)

cease to demand funds: θ(rmax) = θmax. Interest rates r > rmax are economically irrelevant because

the demand for capital is zero. The repayment a bank receives is min{(1+ r)B, R+C} = R−π(R, r).

Since banks cannot distinguish between firms of different riskiness, θ, but know that only firms with

θ ≥ θ(r) apply for loans, the expected repayment is R̄ − ER,θ[π(R, r)|θ ≥ θ(r)]. Perfect competition

in banking thus implies

ρ =
R̄ − ER,θ[π(R, r)|θ ≥ θ(r)]

B
− 1. (1)

This equation assigns a unique expected rate of return, ρ, to each interest rate, r, and thus deter-

mines the return function, ρ(r). Clearly, ρ(r) is not necessarily monotonically increasing. As r rises,

the adverse selection effect (θ(r) rises) may outweigh the direct positive effect of higher contractual

repayments (see Stiglitz and Weiss, 1981, p. 397).

Stiglitz and Weiss (1981, pp. 394, 397) used a hump-shaped return function in order to demonstrate the

possible existence of equilibrium credit rationing. This hump-shaped return function has subsequently

made its way into numerous articles and textbooks. Curiously, it has gone unnoticed for more than

two decades that the return function cannot be hump-shaped (see the upper panel of Figure 1):

THEOREM 1: The return function, ρ(r), attains its unique global maximum at the maximum interest

rate, rmax.

Proof: As shown above, ER[π(R, r)|θ] ≥ 0 for all θ ≥ θ(r). The inequality is strict for θ = θmax for all

r < rmax. Therefore, ER,θ[π(R, r)|θ ≥ θ(r)] > 0 and, from (1),

ρ <
R̄

B
− 1, for all r < rmax. (2)

Now let r → rmax from below. As all but the riskiest group of investors cease to demand capital,

ER,θ[π(R, r)|θ ≥ θ(r)] → ER[π(R, r)|θmax] as r → rmax.

Furthermore, by the definition of rmax,

ER[π(R, r)|θmax] → 0 as r → rmax.
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Figure 1: Return function and credit market equilibrium

Together with (1), it follows that

ρ → R̄

B
− 1 as r → rmax. (3)

Equations (2) and (3) prove that the return function attains a unique global maximum at r = rmax;

it cannot be hump-shaped. Q.E.D.

The intuition for this result is straightforward. The return on investment is divided between borrowers

and lenders. As long as there are borrowers who make a strictly positive expected profit, the return

on lending, ρ, falls short of the investment projects’ expected internal rate of return, R̄/B − 1. Since

whenever other firms are still active, firms in the highest risk group, θmax, make a strictly positive

expected profit, the only way to “squeeze” all the profits out of the borrowers is to set the interest rate

at the level which makes the highest risk group, θmax, just indifferent between realizing their projects

or not.

III Demand and supply

In this section, we describe demand and supply in the credit market (see the lower panel of Figure 1).

Other than usual in the literature, we specify the parameters and functions involved in such detail that

in the subsequent sections we shall be able to give a complete characterization of the credit market
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equilibrium, rather than merely provide examples. Obviously, this level of rigor is indispensable if we

want to rule out certain properties of credit market equilibria.

The demand for capital is LD(r) = NB{1 − G[θ(r)]}. The supply of funds is LS [ρ(r)]. In order to

abstract from existence problems, we make the following continuity and boundary assumptions.

ASSUMPTION 1: F (R|θ), G(θ), and LS(ρ) are continuous.

The continuity of F (R|θ) implies that ER[π(R, r)|θ] and, hence, θ(r) are continuous. Together with

the continuity of G(θ), it follows that LD(r) is continuous. Since ER[π(R, r)|θ], θ(r), and F (R|θ)
are continuous, so is ρ(r). Together with the continuity of LS(ρ), it follows that the supply of loans,

LS [ρ(r)], is continuous.

ASSUMPTION 2: LS(0) ≤ 0 and LS(R̄/B − 1) > 0.

We have ER[π(R, 0)|θ] = R̄ − B +
∫ B−C
0 F (R|θ)dR > 0. This implies that if r = 0, all firms de-

mand capital (θ(0) = 0, LD(0) = NB), and the expected return to banks is negative (ρ(0) =

−Eθ[
∫ B−C
0 F (R|θ)dR]/B < 0). From the first inequality in Assumption 2, it thus follows that

LS [ρ(0)] < LD(0). As r → rmax from below, LS [ρ(r)] → LS(R̄/B − 1) > 0 (from Theorem 1)

and LD(r) → 0. So the second inequality in Assumption 2 implies LS [ρ(r)] > LD(r) as r → rmax

from below. Jointly the continuity requirements in Assumption 1 and the boundary conditions in

Assumption 2 imply the existence of a market-clearing interest rate, r.

IV Equilibrium and credit rationing

Equipped with the results from the previous section, we are now able to give a complete characteriza-

tion of the credit market equilibrium. We show that “pure” credit rationing occurs only if one assumes

that lending is a one-stage process. This assumption renders the question of why firms do not bid a

higher interest rate contingent on being credit-rationed meaningless, however. If, following Stiglitz and

Weiss (1981, p. 398) one allows for two-stage credit allocation, demand equals supply in stage two.

To begin with, we focus on one-stage credit allocation:

ASSUMPTION 3: Banks offer all the funds at their disposal at a single interest rate, r.

THEOREM 2: Suppose Assumptions 1 to 3 are satisfied. Then there exists a unique market equilibrium.

The market equilibrium is characterized by either market clearing or credit rationing.

Proof: Assumptions 1 and 2 ensure the existence of a market-clearing interest rate. Let rm denote

the lowest market-clearing interest rate (rm = min{r |LD(r) = LS [ρ(r)]}). Two cases have to be

distinguished.
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First, supposing ρ(r) does not possess a local maximum with ρ(r) ≥ ρ(rm) at an interest rate r < rm,

then rm is the equilibrium interest rate. This is because supply equals demand, and there is no way

to make a higher expected return with a lower interest rate.

Next, suppose to the contrary that ρ(r) has one or more local maxima with ρ(r) ≥ ρ(rm) at interest

rates r < rm (see the lower panel of Figure 1). In this case, we can apply Theorem 5 in Stiglitz and Weiss

(1981, p. 397). There is no equilibrium with market clearing, since banks can offer credit at a lower

interest rate without making a lower expected return. Of the interest rates below rm which maximize

ρ(r) locally, let r∗ denote the one that yields the highest expected return: r∗ = arg maxr{ρ(r) | r < rm}
(the lowest if the maximum is not unique). From the fact that LD(r) and LS [ρ(r)] are continuous (by

Assumption 1), LD(0) > LS [ρ(0)] (by Assumption 2), and that r∗ is less than the lowest market-

clearing interest rate, rm, it follows that there is excess demand for credit at r∗: LD(r∗) > LS [ρ(r∗)].

Nonetheless, r∗ is the equilibrium interest rate. The equilibrium interest rate cannot be lower than r∗.

This is because excess demand for credit would be even greater, so that banks could raise the interest

rate and, hence, their expected rate of return. Interest rates, r, higher than r∗, would have to yield

expected returns ρ(r) > ρ(r∗) (according to Theorem 1, such interest rates exist). By construction, this

requires r > rm. Taken together, it follows that LS [ρ(r)] ≥ LS [ρ(r∗)] ≥ LS [ρ(rm)] = LD(rm) ≥ LD(r).

If at least one inequality is strict, r is not an equilibrium interest rate because there is excess supply.

If none of the inequalities is strict, r clears the market, but is not an equilibrium interest rate because

there is a lower market-clearing interest rate, viz. rm. Q.E.D.

This is “pure” credit rationing in the sense of Stiglitz and Weiss (1981, p. 394-395): “among loan

applicants who appear to be identical, some receive a loan and others do not, and the rejected applicants

would not receive a loan even if they offered to pay a higher interest rate” (emphasis added). A drawback

of the analysis so far is that the reason why the rejected firms do not get credit at a higher interest rate

is that this is ruled out by the assumption of one-shot credit allocation (Assumption 3). So, following

Stiglitz and Weiss (1981, p. 398), we proceed to check whether rejected firms still do not get credit if

one considers the following two-stage credit allocation process:

ASSUMPTION 4: Banks give credit in two stages. They collect funds by depositors. In stage one, they

lend part or all of the funds at their disposal to borrowers at a given interest rate, r1. In stage two,

they lend the remainder at a higher interest rate, r2 > r1, to firms that have not received capital in

stage one. Firms cannot make a commitment not to apply for funds in stage two.

Assumption 4 is less restrictive than Assumption 3 in that it does not exclude the possibility that

banks lend all of the funds at their disposal in stage one. Clearly, if the return function were hump-

shaped, with an interior global maximum at the “bank-optimal” interest rate, r∗, this is what banks
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would do. So Stiglitz and Weiss (1981, p. 398) discuss two-stage credit allocation process in the context

of a return function with several modes. This is an unnecessary restriction, since, by our Theorem 1,

there exist interest rates, r, which yield returns, ρ(r), in excess of ρ(r∗) anyway. The following result

shows that this has profound implications for the occurrence of credit rationing in equilibrium.

THEOREM 3: Suppose Assumptions 1 and 2 are satisfied. If the equilibrium is market-clearing under

Assumption 3, the same allocation is the unique equilibrium under Assumption 4. If the equilibrium is

characterized by credit rationing under Assumption 3, then, generically, there is a unique equilibrium

with two-stage credit allocation and demand equal to supply in stage two under Assumption 4.

Proof: As in Theorem 2, if ρ(r) does not possess a local maximum with ρ(r) ≥ ρ(rm) at an interest

rate r < rm, then rm is the equilibrium interest rate, all funds are lent in stage one, and supply equals

demand.

Turning to the opposite case, where ρ(r) has one or more local maxima with ρ(r) ≥ ρ(rm) at interest

rates r < rm, we proceed in several steps. Let L̄ denote the amount of funds lent in stage one. To

begin with, we argue that r1 = r∗ in a credit market equilibrium. To see this, suppose, to the contrary,

that r1 �= r∗. If r1 < r∗, then L̄ = 0, since L̄ > 0 would mean that banks could increase expected

return by raising the interest rate to r∗. So the stage-two credit market behaves like the one-shot

credit market under Assumption 3. From Theorem 2 and the case distinction made, r2 = r∗ > r1.

Thus, there is excess demand at r1 in stage one, which induces firms to increase r1 to r∗, contradicting

the supposition r1 < r∗. If, on the other hand, r1 > r∗, we must have ρ(r1) > ρ(r∗), since otherwise

banks could attract borrowers without a decrease in expected return with the lower interest rate r∗.

However, from the definition of r∗, this implies r1 > rm. So it would be possible to underbid r1 with

the market-clearing interest rate rm. This proves r1 = r∗ and, hence, ρ(r1) = ρ(r∗).

The next step is to show that ρ(r2) = ρ(r∗). If ρ(r2) < ρ(r∗), then no lending takes place in stage

two, and in stage one, the credit market behaves like the one-shot credit market under Assumption

3. According to Theorem 2 and the case distinction made, there is excess demand in stage one. This

is not an equilibrium, because a bank could keep a small amount of loanable funds for stage two and,

according to Theorem 1, make expected return ρ(rmax) = R̄/B−1 by lending to rejected borrowers at

the interest rate r2 = rmax. If, on the other hand, ρ(r2) > ρ(r∗), then no lending takes place in stage

one, and the credit market in stage two behaves like the one-shot credit market, so that ρ(r2) = ρ(r∗),

a contradiction. This proves ρ(r2) = ρ(r∗) (= ρ(r1)). Loan supply is thus LS [ρ(r∗)].

We proceed to demonstrate that LS [ρ(r∗)] > L̄. That is, some lending activity takes place in stage two.

This is an important step in the proof, as it implies that the equilibrium allocation under Assumption

3 is not an equilibrium here. Supposing that LS [ρ(r∗)] = L̄, the one-shot credit rationing equilibrium
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arises in stage one. As explained above, Theorem 1 implies that a bank can make expected return

ρ(rmax) = R̄/B − 1 by lending a small amount of funds to rejected borrowers at r2 = rmax in stage

two. So LS [ρ(r∗)] = L̄ is inconsistent with credit market equilibrium.

We are now in a position to prove that a credit market equilibrium with r1 = r∗, ρ(r2) = ρ(r∗),

LS [ρ(r∗)] > L̄, and market clearing in stage two exists. As shown in the proof of Theorem 2, there is

excess demand at r1 = r∗: LD(r∗) > LS [ρ(r∗)]. Together with the finding that LS [ρ(r∗)] > L̄, it follows

that a positive fraction, 1 − L̄/LD(r∗) > 0, of the firms that demand capital do not receive funds in

stage one. Because of the non-observability of borrower types, these firms are chosen randomly from

the pool of credit applicants. Demand for credit in stage two is thus [1 − L̄/LD(r∗)]LD(r2), and the

relative frequencies of borrower types in stage two are the same as in stage one, so that ρ(r) continues

to give the expected return on lending. Competition enforces that r2 = r∗∗, where r∗∗ is the lowest

interest rate, r2, greater than r∗ which satisfies ρ(r2) = ρ(r∗). Theorem 1 and the continuity of the

return function, ρ(r), implied by Assumption 1, ensure the existence of a solution. This is the crucial

property of the return function exploited by Stiglitz and Weiss (1981, p. 398) in the proof of their

Theorem 6, which we adapt now to our purposes. By construction, r∗∗ ≥ rm. Equality of loan demand

and supply in stage two requires [1 − L̄/LD(r∗)]LD(r∗∗) = LS [ρ(r∗)] − L̄. Let L̄∗ denote the solution

to this equation:

L̄∗ =
LS [ρ(r∗)] − LD(r∗∗)
LD(r∗) − LD(r∗∗)

LD(r∗).

From LD(r∗) > LS [ρ(r∗)] and r∗∗ ≥ rm, we have LD(r∗) > LS [ρ(r∗)] ≥ LS [ρ(rm)] = LD(rm) ≥
LD(r∗∗). This implies that the numerator is non-negative and the denominator is positive, so that

L̄∗ > 0. Furthermore, LD(r∗) > LS [ρ(r∗)] implies L̄∗ < LS [ρ(r∗)]. Banks cannot raise expected return

on lending in either stage one or stage two. This is because, by definition, ρ(r1) < ρ(r∗) for all r1 < r∗,

and ρ(r2) < ρ(r∗) for r∗ < r2 < r∗∗. So in order to raise expected return, banks would have to set

interest rates r1 > r∗ or r2 > r∗∗, respectively, which would not attract firms. They are indifferent

between lending in stage one or in stage two. So a credit market equilibrium prevails.

To prove generic uniqueness, it remains to show that given r1 = r∗, r2 = r∗∗, and LS [ρ(r∗)] > L̄,

generically, stage-one lending levels L̄ �= L̄∗ are not consistent with an equilibrium. To see this, notice

that for a given decrease in L̄, stage-two loan demand, [1− L̄/LD(r∗)]LD(r∗∗), increases less than one-

to-one (since LD(r∗) > LD(r∗∗)), while stage-two loan supply, LS [ρ(r∗)]− L̄, rises exactly one-to-one.

So if 0 < L̄ < L̄∗, there is excess supply in stage two. This is not consistent with an equilibrium in the

credit market, since competition would drive down r2 and, hence, expected return. If, on the other

hand, L̄∗ < L̄ < LS [ρ(r∗)], there is excess demand at r∗∗. If r∗∗ (i.e., the lowest interest rate greater

than r∗ which yields expected return ρ(r∗)) does not coincidentally maximize ρ(r) locally, banks can
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raise expected return with a higher interest rate, r2. This proves that, generically, r1 = r∗, r2 = r∗∗,

and L̄ = L̄∗ represent the unique credit market equilibrium. Q.E.D.

Theorem 3 makes it clear that paying attention to the fact that the return function cannot be hump-

shaped has a profound impact on the equilibrium analysis. In order to be able to check whether

rejected applicants would possibly receive a loan at a higher interest rate, r2, we have to replace

Assumption 3 with the less restrictive Assumption 4. Whether or not equilibrium “credit rationing”

can occur becomes a semantic issue, then. If there is an excess demand for credit in stage one of the

credit allocation process, rejected applicants do receive a loan at the higher interest rate r∗∗ in stage

two (except possible in the non-generic case that ρ(r∗∗ is a local maximum of ρ(r); see below). So the

above-mentioned definition of pure credit rationing put forward by Stiglitz and Weiss (1981, p. 394-

395) is not satisfied. Nonetheless, one could speak of credit rationing in stage one. Three concluding

remarks are in order. First, in order to substantiate the claim that credit rationing à la Stiglitz and

Weiss (1981, p. 394-395) cannot occur, it is essential that we give an exhaustive characterization of

the credit market equilibrium, rather than confine attention to examples. Second, the fact that firms

cannot make a commitment not to apply for funds in stage two (Assumption 4) is crucial. To see this,

notice that only “risky” firms, with θ ≥ θ(r∗∗), demand funds in stage two. Since LS [ρ(r∗)] > L̄∗,

firms with θ < θ(r∗∗) face a lower probability of getting finance than in the one-shot credit market

and, therefore, are in a worse position. Assumption 4 rules out the possibility that they signal that

they are “safe” by making a commitment not to apply for a loan at r2 in stage two. Third, turning to

the non-generic case that ρ(r∗∗) is a local maximum of the return function, let r′ denote the market-

clearing interest rate in stage two, given L̄: [1 − L̄/LD(r∗)]LD(r′) = LS [ρ(r∗)] − L̄. If ρ(r) > ρ(r∗) for

some r in the interval r∗∗ < r ≤ r′, banks can raise expected return with a higher interest rate, which

is inconsistent with credit market equilibrium. If this condition is not satisfied, then r1 = r∗, r2 = r∗∗,

and L̄ represent a credit market equilibrium with credit rationing in stage two (this is essentially the

situation described by Theorem 2 in the case of a flat loan supply function, LS(ρ)).

V Redlining

In Section IV of their seminal article, Stiglitz and Weiss (1981, p. 406) introduce observationally

distinguishable classes of borrowers to their model. The idea is elaborated upon by John Riley (1987)

and Stiglitz and Weiss (1987). This extension of the model allows it to distinguish (“type-a”) credit

rationing and “redlining” (“type-b credit rationing”). The latter is said to occur when an entire class

of borrowers is denied credit (see Stiglitz and Weiss, 1981, p. 395, 1987, p. 228). Both Stiglitz and
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Figure 2: Class i’s loan demand

Weiss (1981, p. 406) and Riley (1987, p. 225) assume explicitly that for each borrower class, the return

function is hump-shaped, such that there is an interior bank-optimal interest rate. They argue that

redlining is an important property of the extended model (see Stiglitz and Weiss, 1981, p. 407, 1987,

p. 230, and Riley, 1987, p. 226). In this section, we show that given the true shape of the return

function described in Theorem 1, borrower classes are redlined only if at the equilibrium expected rate

of return, they would not receive credit with perfect information either.

Suppose there is a discrete number, n (≥ 1), of borrower classes. We use the subscript i (∈ {1, 2, . . . , n})
to distinguish variables referring to different classes. Each class of borrowers is structured as described

in Section I. Banks can observe to which class, i, a borrower belongs. They know the distribution of

borrower types, Gi(θi), within this class. But they cannot observe the borrower’s risk group, θi. In

Assumption 2, it suffices if the condition LS(R̄i/Bi − 1) > 0 is satisfied for one borrower class, i.

Clearly, in a perfect capital market, banks would not finance projects with an expected internal rate

of return, R̄i/Bi − 1, that falls short of the rate of return paid to their depositors, ρ. The following

result shows that the same condition rules out redlining here:

THEOREM 4: Class i is redlined only if R̄i/Bi − 1 < ρ.

Proof: Since banks can observe to which class, i, a borrower belongs, they can set class-specific interest

rates, ri. For each class, i, banks calculate the return function, ρi(ri). Competition among banks

enforces that any expected rate of return, ρ, is obtained by means of the lowest possible interest rate,

ri. Let ri(ρ) denote the function that assigns this competitive interest rate to any feasible expected

rate of return, ρ:

ri(ρ) = min

{
ri

∣∣∣∣∣ ρ(ri) = ρ, 0 ≤ ρ ≤ R̄i

Bi
− 1

}
.

The crucial observation is that, by virtue of Theorem 1, ri(ρ) is well-defined for rates of return, ρ,

up to the projects’ expected internal rate of return, R̄i/Bi − 1, as R̄i/Bi − 1 can be achieved with
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Figure 3: Credit market equilibrium with distinguishable borrower classes

ri = rmax
i . Q.E.D.

Stiglitz and Weiss (1981, p. 407) stipulate that firms with high expected returns might be redlined

if they are especially risky, even though less profitable firms are not. This is not consistent with

Theorem 4. We proceed to analyze the credit market equilibrium. In doing so, we follow Riley (1987).

We investigate the conditions for credit rationing and redlining in a credit market equilibrium (i.e.,

with ρ determined endogenously).

As ρ increases, starting from ρ = 0, the function ri(ρ) rises continuously until r = rmax
i or a local

maximum of the return function, ρi(r′) say, is reached. As ρ rises above ρi(r′), the function ri(ρ) jumps

discontinuously to the level r′′ = arg minr{ρi(r) > ρi(r′)}. If there is another local maximum, ρi(r′′′),

with ρi(r′′′) > ρi(r′′) at an interest rate r′′′ > r′′, there is another discontinuity; and so on. Thus, ri(ρ)

rises monotonically, with discontinuities at those rates of return, ρ, that represent local maxima of the

return function, ρi(r), which exceed the values of local maxima of the return function at lower interest

rates. Class i’s loan demand as a function of ρ is

L̃D
i (ρ) =


 LD

i [ri(ρ)]; for ρ ≤ R̄i
Bi

− 1

0; for ρ > R̄i
Bi

− 1

(see Figure 2). Notice the following two properties of L̃D
i (ρ). First, the function is discontinuous at

those rates of return, ρ, where ri(ρ), displays a discontinuity. Second, the function is continuous at

R̄i/Bi−1. To see this, recall from Theorem 1 that ρ = R̄i/Bi−1 is the unique maximum of ρi(ri) and

is reached by the maximum interest rate, rmax
i , at which the riskiest group, θmax

i , ceases to demand

capital. Consequently, ri(ρ) → rmax
i and L̃D

i [ri(ρ)] → NiBi[1 − Gi(θmax
i )] = 0 as ρ → R̄i/Bi − 1

from below. Aggregate loan demand is L̃D(ρ) =
∑n

i=1 L̃D
i (ρ). L̃D(ρ) is monotonically decreasing, with

L̃D(ρ) = 0 for ρ ≥ maxi{R̄i/Bi − 1 | i ∈ {1, 2, . . . , n}} and with discontinuities where any of the L̃D
i (ρ)

functions is discontinuous (an example with n = 2 is illustrated in Figure 3). Loan supply, LS(ρ)

increases with ρ. Two cases have to be distinguished.
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In the first case, the demand and supply curves intersect:

THEOREM 5: Suppose Assumptions 1 and 2 are satisfied and there is a ρ̃ such that L̃D(ρ̃) = LS(ρ̃).

Then there exists a unique market equilibrium. ρ̃ is the equilibrium interest rate, and the market

equilibrium is characterized by market clearing.

Otherwise, there exists a ρ̃ such that L̃D(ρ̃) > LS(ρ̃) and L̃D(ρ) < LS(ρ) for ρ > ρ̃ (i.e., the demand

curve “jumps” below the supply curve, as in Figure 3). Consider the borrower class, i, whose loan

demand function, L̃D
i (ρ) is discontinuous at ρ̃ (if more than one demand function is discontinuous

at ρ̃, the set of classes). By the same reasoning as in the proof of Theorem 2, if Assumption 3 holds

true, then ρ̃ is the equilibrium interest rate and there is credit rationing in that class, i. By the same

reasoning as in the proof of Theorem 3, if Assumption 4 holds true, banks offer loans at the interest

rates r∗i and r∗∗i and make loans worth L̄∗
i in period 1, where r∗∗i is the lowest interest rate greater

than r∗i with ρi(r∗∗i ) = ρi(r∗i ) and

L̄∗
i =

LS(ρ̃) − ∑n
j=1,j �=i L

D
j (ρ̃) − LD

i (r∗∗)
LD

i (r∗) − LD
i (r∗∗)

LD
i (r∗).

This proves:

THEOREM 6: Suppose Assumptions 1 and 2 are satisfied and there is not a ρ̃ such that L̃D(ρ̃) = LS(ρ̃).

Then there exists a unique market equilibrium. Under Assumption 3, ρ̃ is the equilibrium interest rate,

and the market equilibrium is characterized by credit rationing. Under Assumption 4, credit is allocated

in two steps, and demand is equal to supply in stage two.

The fact that, given Assumption 3, generically, one class, i, at most is credit-rationed is emphasized

by Riley (1987, p. 226). Redlining in equilibrium can now be ruled out quite generally:

THEOREM 7: Suppose ρ̃ < R̄i/Bi − 1 for all i ∈ {1, 2, . . . , n}. Then no borrower class is redlined in

equilibrium.

Proof: This follows immediately from Theorems 4-6. Q.E.D.

VI Conclusion

Contrary to what is consistently assumed in the literature, the return function cannot be hump-shaped

in the Stiglitz-Weiss (1981) model. This is not just a matter of expositional convenience. With a single

class of borrowers, banks offer credit in two stages. Demand possibly exceeds supply in stage one, but

not in stage two. With several observationally distinguishable borrower classes, a borrower class is

redlined only if the expected internal rate of return of their projects falls short of the rate required by
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the banks’ depositors, in which case they would not receive credit in a perfect capital market either.

Due to the misguided focus on a hump-shaped return function, these properties of the credit market

equilibrium have been going unnoticed ever since the publication of Stiglitz and Weiss’ (1981) seminal

work.
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