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We have studied spin pumping in Pd/Fes001d ultrathin crystalline films prepared on GaAss001d by
ferromagnetic resonancesFMRd. FMR measurements show that the Pds001d overlayers lead to an
appreciable attenuation of the spin current, which was generated by the precessing magnetization of
Fe. Pd overlayers thicker than about 10 nm act as perfect spin sinks. It is argued that the loss of spin
coherence in Pd is caused by scattering with spin fluctuations. ©2005 American Institute of
Physics. fDOI: 10.1063/1.1853131g

I. INTRODUCTION

Tserkovnyaket al.1 showed that a precessing magnetiza-
tion can generate a spin current into an adjacent normal-
metal sNMd layer. The pumped spin current at the interface
between the ferromagneticsFMd layer and NM is given by

j spin=
q

4p
g↑↓n 3

]n

]t
, s1d

wheren is the unit vector along the magnetic momentM ,
andg↑↓ is the interface mixing conductance per unit area in
units of e2/h.1 For interfaces with some degree of diffuse
scatteringg↑↓ is close to the number of transverse channels in
NM, Sm,ndm,n, see Refs. 2–4. In simple metals with a spheri-
cal Fermi surface this sum is given by

g↑↓ =
kF

2

4p
< 0.85SN
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D2/3

, s2d

wherekF is the Fermi wave vector andN is the density of
electrons in NM. Equations2d is valid in the limit that the
mean free path in the NM film is larger than its thickness. In
magnetic double layers FM1/NM/FM2 the spin current in-
jected by FM1 into NM can be absorbed by the ferromag-
netic layer FM2. The transverse component of the spin cur-
rent in NM is entirely absorbed at the NM/FM2 interface.5,6

Consequently, the spin current results in an interface Gilbert-
like damping for the ferromagnetic layer FM1. For small
precessional angles the spin currentj spin is almost entirely
transverse. For good spin sinks, the Gilbert damping is given
by the conservation of the total spin momentum and is equal
to

a = gq
g↑↓

4pMs

1

d1
, s3d

whereg is the gyromagnetic ratio,Ms is the saturation mag-
netization, andd1 is the thickness of the ferromagnetic layer

FM1. The inverse dependence of the Gilbert damping on the
film thickness clearly testifies to its interfacial origin. In this
case the layer FM1 acts as a spin pump and the layer
FM2 acts as a spin sink. The spin pump and spin sink
effects have been thoroughly quantitatively studied in
Au/Fe/Au/Fe/GaAss001d structures, see, e.g., Refs. 7 and
8. The quantitative comparison with spin pumping theory is
very good.8 The strength of spin pumping at RT was found to
be only 14% lower than that predicted by theory, and it was
in excellent agreement at He temperatures. This is an impor-
tant result. In magnetic double layer structures spin dynamics
studies can be carried out with a perfect spin sink, allowing
one to determine the full strength of spin pumping.

The spin pump effect can also be observed in single FM
films surrounded by NM layers, provided that the pumped
spin current is transported away from the FM/NM interface.
Interface damping was studied in NM/Py/NM sandwiches by
Mizukami et al.,9 where NM=Pt, Pd, Ta, and Cu. The NM
layers were 5 nm thick. No interface damping was observed
with the Ta and Cu layers. Tserkovnyaket al. explained the
lack of interface damping insTa,Cud /Py/sCu,Tad structures
by long spin-diffusion lengths in Cu and Ta. The 5-nm-thick
Cu and Ta do not provide effective spin sinks. However, a
substantial interface damping was observed in both the Pt
and Pd layers. The results by Mizukamiet al. were obtained
on samples prepared by sputtering. Since Pd and Pt have a
strong tendency to intermix with 3d transition elements it is
interesting to compare the results obtained from samples pre-
pared by sputtering with samples prepared by molecular-
beam epitaxysMBEd techniques. The purpose of this paper is
to study the spin pump effect in Pd overlayers using crystal-
line epitaxial Pd/Fes001d structures which were prepared by
MBE, where the intermixing between the Fe and Pd is
known to be minimal.10

II. SAMPLE GROWTH AND FMR MEASUREMENTS

Metallic nPd/16Fes001d films were grown on
GaAss001d by MBE using epi-ready GaAss001d semi-adElectronic mail: bheinric@sfu.ca
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insulating templates, see details in Ref. 11.n was between 3
and 200. The integers represent the number of monolayers
sML d. All films were covered with Au for protection in am-
bient conditions. Pd has a lattice mismatch of 4.4% with
respect to Fe and 4.9% with respect to Au, and therefore
samples with a sufficient thickness of Pd are affected by the
relaxation of lattice strain. The presence of a self-assembled
network of misfit dislocation half loops was observed by
plan view transmission electron microscopysTEMd.12 Above
a Pd thickness of 100 ML the network of self-assembled
misfit dislocations leads to strong two magnon scattering.
Therefore, the study of intrinsic damping had to be carried
out for the Pd films thinner than 100 MLs20 nmd.12 The
damping was investigated by ferromagnetic resonance
sFMRd at 24 and 36 GHz.

III. RESULTS AND DISCUSSION

The role of Pd in the propagation of a spin current was
investigated by monitoring the FMR linewidth as a function
of the Pd overlayer thickness innPd/16Fe/GaAss001d struc-
tures. The FMR linewidth has two contributions:sad the in-
trinsic Gilbert contribution corresponding to the Fe film bulk
damping andsbd the contribution from the pumped spin cur-
rent, which is dissipated in the Pd layer and thus contributes
to the Fe interface damping. The additional Gilbert damping
arising from spin pumping is shown in Fig. 1.

For comparison some results with Au, Ag, and Cu over-
layers are shown. Clearly, Pd is different than the noble met-
als. For the Pd layers thicker than 10 nms50 MLd the addi-
tional Gilbert damping saturates, i.e., Pd acts as a perfect
spin sink. For the Au, Ag, and Cu overlayers the contribution
from spin pumping remains so small that it is within the
accuracy of our FMR measurements. Au, Ag, and Cu in this
thickness range behave as spin accumulators, not spin sinks.
Spin pumping from the Fe layer increases the spin momen-
tum in Cu, Ag, and Au, and the resulting backflow of spin
current nearly compensates the spin pumping, resulting in a
zero interface current and a negligible additional damping.

In order to discuss the spin pumping contribution in Pd it
is informative to first estimate the momentum electron
mean free path. The sheet resistance of the two samples
20Au/50Pd/16Fe/GaAss001d and 20Au/16Fe/GaAss001d
was measured by means of the van der Pauw technique. The

sheet resistances were found to be 9.6V /h and 19.9V /h.
Since the Pd layer contributes in parallel to the overall sheet
resistance one can conclude that the sheet resistance for the
50-ML-thick Pd film is approximately 18.7V /h. This sheet
resistance leads to the resistivity%=18.2mV cm. This value
is about two times bigger than that of bulk Pd,rPd

bulk

=10.8mV cm.13 The measured resistivity allows one to esti-
mate the mean free pathlm using a simple formulasvalid
only for a spherical Fermi surfaced

1

r
=

e2Nlm

m* vF
, s4d

wheree is the elementary charge,m* is the electron effective
mass,N is the density of electrons, andvF is the Fermi ve-
locity. The number of conduction electronssG-centered elec-
tron sheetd per Pd atom was found to be 0.37.14 This results
in the carrier densityN=231015 cm−3. The effective mass
of the conduction electrons ism* ,2m, wherem is the free-
electron mass and the Fermi velocity is
vF=5.63107 cm/s.14 This results inlm.9 nm. One should
realize that the sheet resistance in the Pd thin film is mostly
determined by diffuse scattering at the interfaces. Therefore,
lm=9 nm significantly underestimates the mean free path in-
side the Pd film. A similar behavior was found for the Au
thin films grown on Fe/GaAss001d.15 Since the momentum
mean free path in our Pd overlayers is larger than the film
thicknesses the spin-diffusion theory16 is not applicable in
the interpretation of our results.

We will demonstrate below that the mean free spin de-
coherence length is less than the momentum mean free path
in our Pd samples. In this limit, the spin flow pumped by the
Fe layer is gradually attenuated in Pd before the momentum
of the electron is changed. The spin flow pumped by Fe into
Pd decays, preventing the net pumped spin momentum from
returning back to the Fe film after reflection at the outer Pd
interface. When the thickness of the sample is less than the
mean free path, the backflow of the spin current can thus be
described by

I s
back= I s

pumpe−2dPd
eff/ldec, s5d

wheredPd
eff is the effective thickness of the Pd film andldec is

the mean decoherence length.I s
pump is given by Eq.s1d. The

factor 2 in the exponent appears because the effective thick-
ness of the Pd film for the spin current making it back to Fe
is twice the film thickness. The effective Pd film thickness
dPd

eff is larger thandPd. The ratiodPd
eff /ldec can be estimated by

including the length of the electron path propagating under
an angleu with respect to the film normal. This calculation
includes only electrons at the Fermi surface participating in
spin pumping. For a spherical Fermi surface one can write

e−2dPd
eff/ldec=

1

pkF
2E

0

kF

2pkidkie−2dPd/cosuldec, s6d

where ki is the component of thek vector parallel to the
interface and cosu=f1−ski /kFd2g0.5. The net spin current
across the interface is then given by

FIG. 1. The additional Gilbert dampingaadd arising from spin pumping as a
function of the Pd film thickness. The Pd data are shown insPd. For com-
parison several points are shown for Aussd, Ag s.d, and Cus.d. The solid
line was obtained by fitting the Pd data using Eq.s8d. ldec was found to be
9 nm. 1 ML of Pd corresponds to 0.2 nm.
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I s = I s
pumps1 − e−2dPd

eff/ldecd, s7d

which leads to the enhanced Gilbert damping due to spin
pumping

aPd=
gqg↑↓

4pMsdFe
s1 − e−2dPd

eff/ldecd. s8d

The thickness dependence in Fig. 1 can be fit by two
independent parameters,g↑↓ and ldec. The resulting param-
eters areg↑↓=0.931015 cm−2 andldec=9 nm. When the Pd
layer is thicker than the momentum mean free path,
there might still be a backflow of electronIs

back/ Is
pump

,exps−2lm/ldecd. For lm=ldec gives Is
back/ Is

pump,0.1. The
backflow would lead to a smaller value of the measured spin
mixing conductance than that expected from the electron
band calculations. Realizing that the mean free path inside
the Pd layer is larger than the Pd layer thickness this correc-
tion is small in our samples.

From Eq.s2d one can estimate the spin mixing conduc-
tance, g↑↓=0.5 and 0.731015 cm−2 assuming
0.37G electrons/atom14 and 0.55s-p electrons/atom,17 re-
spectively. This is in reasonable agreement with the experi-
mentally required value of 0.931015 cm−2 considering that
the band structure of Pd is complex and Eq.s2d can be con-
sidered only a crude approximation. First-principles band
calculations are required to account for complexity of the Pd
band structure which can affect both the spin mixing conduc-
tance and Shavrin resistance.ldec is comparable to the mo-
mentum mean free path,lm=9 nm obtained from the crude
interpretation of the sheet resistance.

The mean free path of electrons in the Pd layer is larger,
see above; this implies that the spin decoherence happens on
the shorter length scale than the bulk momentum scattering.
A good exponential fit in Fig. 1 suggests that the interface
diffuse momentum scattering at the Pd/air interface does not
affect the spin decoherence in Pd. The spin current is ran-
domized mostly inside the Pd layer. Bulk Pd is known to
have strong spin electron-electron correlation effects having
a large Stoner enhancement factor resulting in enhanced
paramagnetic susceptibility compared to Ag, Au, and Cu.18

Associated local fluctuating magnetic momentssparamag-
nonsd are believed to make Pd suitable, under the right con-

ditions, for establishing a long-range ferromagnetic state.19

One can envision that paramagnons in Pd can lead to an
effective long-range decoherence of spin current. This means
that the direction of the pumped spin momentum gets ran-
domized by large spin fluctuations inside Pd; and, conse-
quently, the spin momentum backflow loses its net spin mo-
mentum and is unable to compensate the spin current
generated by spin pumping. The spin mixing conductance in
our samples is lower than that required to interpret the data
by Mizukami et al. Their measurements requireg↑↓=1.4
31015 cm−2 for 5-nm-thick Pd. This is by a factor of 1.6
bigger than that observed in our studies. The difference be-
tween these two experiments can be due to the difference in
sample preparation. The results by Mizukamiet al. suggest
that sputtering leads to an enhanced value ofg↑↓ and thus the
intermixing of FM and Pd increases the strength of spin
pumping.
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