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Abstract. This paper presents a knowledge-based analysis of a number
of multi-agent systems. The analysis is based on the knowledge level
hypothesis of Newell and Clancey. We claim that the models of problem
solving which we obtain constitute descriptions of global coherence in
multi-agent systems. We contrast the results of this analysis with the
conventional views of coherence.

1 Introduction

One objective in the design of multi-agent systems (MAS) is for an agent to coor-
dinate its actions with other agents in a coherent way. The concept of coherence
has been studied both formally [24] [11] [26] and empirically [1]. In this paper
we propose a knowledge-based analysis of coherence in distributed systems in
which the resulting models can be formally specified.

The formal approaches typically combine two intentional attitudes: an infor-
mation attitude and a pro-attitude (a definition of these terms and an intro-
duction to the various formal approaches can be found in the review chapter
of this volume). There are two objectives in the formal specification of multi-
agent systems. Firstly, formalisation increases our understanding of multi-agent,
interactions by making intuitive concepts such as common knowledge and group
intention more precise and revealing new relationships between them. Secondly,
the ability to verify the behaviour of a real multi-agent system requires the exis-
tence of a formal model against which it can be compared. Achieving the second
objective also entails being able to describe existing MAS in terms of the lan-
guage and concepts of the formalism, this, however, can be problematic. One
example is the concept of common knowledge [11] which can be shown to be
prerequisite for agreement among agents, but which defines a situation which
cannot be achieved in practice. 3
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An empirical analysis [1] of existing multi-agent systems concludes that co-
herence has a number of dimensions including solution quality and efficiency.
The efficiency or minimality of the multi-agent solution is also emphasised in
[26], and the sharing of pro-attitudes (goals, plans etc.) specified in some formal
models can be compared with the mechanism of meta-level communication found
in a number of implemented systems. Relating the formal models of coherence
to the empirical analysis in a rigorous way is task which, in many cases, has yet
to be undertaken. A number of criticism of the empirical approach are developed
later in this paper, however, we share the objectives of Bond and Gasser [1] in
that we aim to gain a better understanding of existing distributed Al systems.

This paper presents an analysis of multi-agent systems which attempts to
clarify the concept of global coherence from the knowledge-based perspective.
The analysis is based on the knowledge level hypothesis. The central feature of
knowledge level (KL) characterisations is their focus on rational activity based
on a functional notion of knowledge. This provides the theoretical background
which we use to characterise a number of existing systems, and specifies an ap-
proach which abstracts away from implementational details to show the essential
problem solving actions of the distributed system. While the resulting charac-
terisations are generic, they can easily be related to the information states of the
agent system and therefore this approach bridges the gap between theory and
practice. We believe that our analysis increases our understanding of existing
DAI systems and that it will aid the design of future, more capable, systems and
encourage the reuse of models of multi-agent problem solving.

The knowledge level analysis is presented in Section 2. We first describe the
KL hypothesis as proposed by Allen Newell [19], and discuss the modified KL
theory proposed by William Clancey [3]. A logical notation for the knowledge
level is introduced. The methodology is applied in Section 3 to a number of DAI
systems whose architecture is currently influential. In Section 3.4 a conventional
DAI description of the concept of global coherence is presented, analysed and
contrasted with the knowledge level view. In Section 4 we discuss some related
work and some conclusions are drawn in Section 5.

2 The Knowledge Level Analysis

This section restates the knowledge level hypothesis, highlighting the concept of
agency in Newell’s and Clancey’s theories [19][3]. Subsequently, some notation
is defined for the purpose of formalising knowledge level characterisations.

2.1 The knowledge level hypothesis

The knowledge level is defined by Newell [19] as a computer systems level lying
immediately above the symbol level. This level is characterised by knowledge
as the medium and the principle of rationality as the law of behaviour. Newell
refers to the notion of agency in the definition of the principle of rationality:
“If an agent has knowledge that one of its actions will lead to one of its goals
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then the agent will select that action”. The concept of an agent also appears
in Newell’s definition of knowledge: “Knowledge. Whatever can be ascribed to
an agent, such that its behaviour can be computed according to the principle
of rationality.”. The concept of an agent is a simple one: “an agent is composed
of a set of actions, a set of goals and a body”. An agent is then a delimited
computational process to which we can ascribe goals, knowledge and actions.
For Newell, agency, rational behaviour and knowledge are bound together.

In contrast with previous analyses of computer systems, the knowledge level
hypothesis focuses on the knowledge that can be attributed to a rational agent
from the point of view of an observer [3]. A knowledge level characterisation
is an abstraction made by an observer and hence is radically different from
characterisations based on architectural considerations (e.g. those of DAI). It
has been noted [3] that a knowledge level characterisation cannot be objective
as we must (as the theoretician-observer) consider the intensions of the observer
who makes the KL characterisation.

2.2 Clancey’s redefinition of the knowledge level

In [3] Clancey modifies the definition of the knowledge level, he views it as a
characterisation of a system of agents and not of an isolated agent.

“A KL description is about a situated system, not an agent in isolation. That
1s, the systems level being described is above that of individual agents. Therefore,
a knowledge-level description cannot be identified with (isomorphically mapped
to) something pre-existing inside an individual head, but rather concerns patterns
that emerge in interactions the agent has in some (soctal) world.

...A KL description is always ascribed by some observer, and so is relative
to the observer’s frame of reference and is inherently subjective.”[3]

This paper adopts Clancey’s view of the knowledge level as an ascribed and
idealised description of the rational behaviour of a system of (possibly) many
agents. In contrast with Newell’s definition, this alternative statement takes a
more ‘elevated’ view of the world where agents are now symbol level entities.

The two versions of the knowledge level hypothesis are valuable for explaining
different phemomena: the actions of an agent with respect to its knowledge and
goals - in the case of Newell’s definition, and the behaviour of a system of agents
in the case of Clancey’s definition.

As yet we have not defined exactly what is represented at the knowledge level.
We propose that knowledge in the form of a specific method of problem solving,
specified by its categorisations of knowledge, and the goal that is achieved define
the knowledge level. This approach is based on the idea of an inference structure
as proposed by Clancey [2]. However, we do not map this structure onto a single
agent, rather we view the inference structure as a characterisation of the coherent
problem solving activity of many agents.

The inference structure is an idealised description, but does not have the
problem of omniscience that is associated with a purely logical characterisation
of knowledge. It is interesting to note that this problem has arisen in knowledge
acquisition research, where the straightforward logical view of inference has been
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challenged, and also in agent modelling, where logics of restricted inferential
capability have been investigated [8][14].

2.3 Notation for knowledge level characterisations

The notation of the inference structure was introduced to describe heuristic
classification [2], a knowledge level characterisation of a problem solving method.
The nodes of the inference structure diagram stand for propositions describing
a class of objects e.g. Data Abstractions. The arcs are labelled with the name
of the inferential process by which the nodes are related e.g. Heuristic Match.
A similar notation is used in [25] where the nodes are called meta-classes and
describe the role of domain objects in the problem solving process. Knowledge
sources name the inferential step which relates the meta-classes. A knowledge
source carries out a primitive inference step to produce a new piece of knowledge.

In this paper we formalise the inference structure by defining sets of domain
terms, for example the set of symbols DA representing data abstractions, and
defining a predicate symbol to denote instances of this class of symbols. We
define the logical type a as instances of DA. We can now write that a; is a
data abstraction by the atomic formula Data-Abstraction(a,) if a; is of type a
(a1eDA).

Relations between classes of objects are denoted by logical implications.
These implications correspond to the arcs of the inference structure diagram.
The intention of the logical formalisation of the KL is to specify conditions of
consistency. That is, the sets of formulae presented in the following sections do
not predict the symbol level behaviour, but specify the knowledge level such that
we can determine whether or not the behaviour of the symbol level does indeed
correspond to it. This KL formalisation retains the desired features of denoting
the essential classes of domain knowledge, and their interrelation.

In this paper we adopt the terminology of Wielinga et al. [25] and use the
term ‘knowledge source’ to denote inference processes and the term ‘meta-class’
to refer to classes of domain terms.

3 Characterising DAI Systems

A number of distributed AI systems are now characterised at the knowledge
level. The systems include the contract net [23][17], a reactive planner [15] and
DVMT, a multiple-blackboard system [6].

3.1 The contract net

The contract net [4][22][23] is typically described in terms of the bidding process,
i.e. the issuing of a task announcement by a manager-agent, the response of
contractor-agents with bids, and the awarding of contracts to the bidders judged
most suitable. Agents can play the role of manager or contractor or both. Agents
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have pre-defined capabilities, which with their level of activity, determine their
response to task announcements.

The contract net is a framework in which decomposable tasks can be dis-
tributed among a group of agents in a flexible manner. Global coherence is to be
achieved through negotiation as a mechanism for interaction, task decomposition
and the common language shared by all agents [4]. However, it has been noted
that if tasks cannot be decomposed into independent subtasks then the synthe-
sis of results is problematic [1][17]. The synthesis of results is one dimension of
global coherence, and hence we must doubt whether the mechanisms identified
in [4] can guarantee global coherence.

The mechanisms of the contract net do not specify a particular solution
method or the major catagorisations of knowledge involved in solving the domain
problem, these mechanisms therefore lie entirely at the symbol level. A concrete
example of the use of the contract net for resource allocation is given in [17]. We
now present a knowledge level analysis of the same example and contrast the
results.

In the resource allocation problem, agents have resources which they require
and resources which they are prepared to trade. Resources can be exchanged by
a simple bidding process. This, however, does not lead to a globally satisfactory
solution as longer sequences of resource exchanges are not explored.

An inference structure which describes this process is defined in Figure 1.
The classes ResourceSet and RequirementSet contain the resources which are
available and the resources which are required. The classes Offer and Need define
a particular resource of the ResourceSet which is on offer, and an element of the
RequirementSet which is a resource needed by some agent. The inferences which
connect these meta-classes is selection in both cases. The final inference is called
assign. An assignment is made if an Offer matches a Need.

Type Description of set

a Set of symbols representing agent names
b Set of symbols representing resources
c axb

cx  Powerset of ¢

d Set of integers

ex  Powerset of bxd
Selection of Need

1 (Vz : c*)(RequirementSet(z) — (Jy : a)(3z : b) Need(y, z))
Selection of Offer

2 (Vz : cx)(ResourceSet(z) — (Jy : a)(3z : b)Of fer(y, z))
Assignment

3 (Vz : a)(Vy : b)(Vz : a)(Need(z,y) AOf fer(z,y) — Assignment(z,y))

Fig. 1. A formalisation of the inference structure for resource allocation

The symbol level description is mapped onto the knowledge level as follows.
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The decision of an agent to issue a request for a resource (as a task announce-
ment) corresponds to the selection inference, i.e. the selection of a need. This
is termed selection as if an agent has more than one resource which it requires
it must, necessarily, make a choice between the alternatives. The decision of
an agent to bid for the contract corresponds to the selection of an offer in the
knowledge level description. The acceptance of a bid by the agent who issued
the task announcement corresponds to the assignment inference.

The selection processes may simply be dependent on the order of elements
in the sets, and under this assumption the formalisation produces the behaviour
described in ([17] p301) for a simple contract net approach to the assignment
problem.

It has been observed [17] that the quality of the global solution is improved if
agents have information regarding the overall scarcity of resources. This requires
that agents should not make decisions on purely local information. The knowl-
edge of resource scarcity must be collected from all participating agents and a
manager agent can be introduced to perform this task [17]. From the knowlege
level point of view, the gathering of ‘market statistics’ represents a new type of
knowledge which plays a role in the solution process. The method of problem
solving is modified and we must redescribe the inference structure as a result.
In specific, a new inference is added which calculates the MarketStatistics, and
these statistics become a factor in the selection processes.

Calculate market statistics
4 (VY : cx)(Vy : ex)(RequirementSet(z) A ResourceSet(y)
— (3z : ex)(MarketStatistics(z)))
Redefine selection of Need
I’ (Yw : ex)(Vz : ex)(Requirement Set(w) A MarketStatistics(z)
— (Jy : a)(3z : b)Need(y, z))
Redefine selection of Offer
2" (Yw : cx)(Ve : ex)(ResourceSet(w) A MarketStatistics(z)

— (Fy :a)(3z : b)Of fer(y, 2))

Concretely, the selection process now takes place under an ordering relation
defined by the market statistics. Scarce resources will now be traded for other
scare resources in preference to abundant resources (for the sake of simplicity
we have not specified exactly how this is done in the formalisation).

In [17], knowledge about resources is distributed among many agents and
agent activity occurs in four distinct phases; the calculation of the market statis-
tics being the first, and the bidding process is the final phase. Precisely how the
assignments are made is determined not only by the knowledge of the agents but
also by the bidding protocol and hence is dependent on the bidding strategies of
the agents (we have described only the simplest strategy). In [17] the improved
method is described as delegated negotiation and is seen as an improvement in
the organisation of the agents by the introduction of a manager agent. In con-
trast, the knowledge level characterisation focusses on the knowledge required
to solve the problem and identifies the improved performance as being due to a
new source of knowledge.
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In this section we have described an application of the contract net at both
the knowledge level and the symbol level. We have shown how the knowledge
level specification can be used to explain why different organisations of agents
produces different behaviours and differing qualities of solution.

3.2 A reactive planner

A reactive planner based on the RTA* algorithm [16] is described in [15]. The
application is the 8-puzzle. The goal of the planner is to derive a sequence of
moves which results in the goal state being reached, but the plan need not be
optimal. The planner can be configured to be reactive, that is, at each state
the best action is selected by calculating weights according to a simple distance
function. Past moves are recorded and the weights associated with actions are
modified if the state has been reached before. This prevents the planner from
entering a loop. If two actions have equal weights then a random choice is made.

The RTA* reactive planner has properties which are highly valued in DAI,
namely, that actions are executed based on local information only. This can be
contrasted with the deliberative planning approach where the space of possible
moves would be searched. There are a number of possible implementations of
the RTA* planner:

Option 1 As an off-line planner which returns a solution.

Option 2 As a real time planner which executes each action

when it is determined.
Option 3 As a system on n off-line planners working in parallel
Option 4 As a system of 8 agents each representing a square of the 8 puzzle.

Options 1-3 have been described in [15]. Option 3 is interesting as it makes
use of the property of the RTA* algorithm that running the algorithm several
times on the same problem results in a distribution of solution lengths. This is
due to the random choice of equally weighted actions, some choices turn out
to have been better than others. By running n planners in parallel, where n is
greater than about 10, the probability is high that one planner will find a short
solution, and this plan will be found first. There are great benefits in terms of
computation time in this approach [15]. Option 4 is similar to the proposal of
[5].

The distinctions of knowledge made in all of the above implementations are
characterised in Figure 2. We can distinguish the classes of the current state,
State, possible future states, FutureStates, the association of weights with future
states, HeuristicEstimate , and the immediately following state, i.e. the one with
the greatest weight, NeztState. Formulae 1-3 in Figure 2 characterise the selection
of one action in a specific state, in order to describe a sequence of actions we
could add a temporal argument to the predicates or use a temporal logic.

There are clearly many differences in where the knowledge of states, weights
etc. is represented at the symbol level. For example, in a single agent planner
all knowledge resides in that program. In a multi-agent system such as Option
4, knowledge of future states need only reside in agents which are capable of
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Type Description of set

a Set of symbols representing states
ax  Powerset of a
b Set of integers representing heuristic estimates

c The set a * b, ordered by the value of b
cx  Powerset of ¢
Generate possible future states
1 (Vz : a)(State(z) — (Jy : ax) FutureStates(y))
Estimate values for future states
2 (Vz : ax)(FutureStates(z) — (Jy : cx) HeuristicEstimate(y))
Select the state with the maximum estimate
3 (Vz : c*)(Vy : cx)(HeuristicEstimate(z) A Top(z) = y — NeztState(y))

Fig. 2. A formalisation of the inference structure for a reactive planner

moving, knowledge of actions executed in the past can be stored in the agent
which executed that action, but all agents need to know the current positions of
all squares (agents) as this is necessary for the weights to be correctly modified
when that global state has been visited before.

In order for the RTA* algorithm to operate correctly the estimation function
must not overestimate the value of an action [20]. When considering the multi-
agent implementation of Option 4 it is clear that each agent must have the same
weighting function and must always respect the outcome of any negotiation over
which agent can move. If these conditions are not met then the system will not
behave according to RTA*. In terms of the knowledge level characterisation, rule
3 will show a contradiction if the next state is not the top element of the set of
heuristic estimates.

In this section we have presented a knowledge level characterisation of a
reactive planner and discussed four symbol level implementations of it.

3.3 Multiple-blackboard systems

The basic idea of the blackboard model is that there are a number of knowl-
edge sources, viewed as experts, which contribute to the solution of a problem
by reading and writing data to a central data structure, the blackboard. Im-
plementational details can be found in [7], of relevance here is the hierarchical
organisation of the blackboard and the partitioning of domain knowledge ac-
cording to content into distinct knowledge sources. These features result from a
model-based view of problem solving [7] which includes an explict catagorisation
of domain knowledge. Therefore we can, in certain instances, associate the levels
of a blackboard with meta-classes and the knowledge sources of the blackboard
with knowledge sources in the KL sense.

In the distributed vehicle monitoring testbed (DVMT) of Durfee et al. [6]
each agent is a blackboard system. The DVMT consists of between 1 and 13
agents whose task is to identify the track of a vehicle from acoustic data sensed
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by a number of agents from adjacent or overlapping regions. Durfee et al. inves-
tigated the effect of communication policies and organisational structure on the
efficiency of resource utilisation. The use of planning and the exchange of meta-
information were also investigated with regards to improving the local control of
agent activity e.g. preventing agents from duplicating work and increasing the
priority of potentially rewarding tasks.

Each agent in the DVMT has the same architecture, a blackboard system.
More significantly from the knowledge level point of view, each agent has the
same global model of the problem solving task, namely the meta-classes and
knowledge sources (levels and knowledge sources) of the blackboard. This means
that the inferences performed by one agent, for example, one which adds infor-
mation to the meta-class (blackboard level) ‘vehicle location’, can be broadcast
to other agents who are able to interpret it correctly. This is possible because
all agents have the same blackboard levels. All agents share a global, knowledge
level view of the problem solving process and their activity is therefore globally
coherent by design. There is a marked difference between the contract net and
DVMT in this regard, as agents in the contract net have no global view. The ac-
tivity of DVMT agents may not be optimal as regards the use of computational
resources (this is termed ‘coherence’ in [6]).

The DVMT experiments can be characterised as assuming a global problem
solving model, shared by all agents, and investigating a number of symbol level
techniques for the assignment of functions to agents - lateral or hierarchical
agent organisation, and for the optimal guidance of search within agents, given
the global state of problem solving.

3.4 An alternative characterisation in terms of DAI concepts

Bond and Gasser ([1] pages 19-25) define the coherence of a multi-agent system as
having four dimensions: solution quality, efficiency, conceptual clarity of system
behaviour and graceful degradation . Coherence can be achieved by a number
of means, including the following:

O the assignment of roles to agents

O planning in order to align agent activity

O management of communication

0O management of resources

O data abstraction

O the use of meta level information

These mechanisms include agent roles - an attributed or conceptual property,
planning - a problem solving paradigm, and data abstraction - a problem solving
step common to a range of domains. This view of coherence is not a generalised,
analytical view, it is a documentation of what occurs in existing DAI systems.
This is unsatisfactory if we wish to gain a deeper understanding of DAI systems.
Bond and Gasser do not consistently identify these methods with the specific

* It should be noted that the analysis of DAI systems in [1] is of much greater scope
than that presented here.
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dimensions of coherence that they define, and this detracts further from clarity.
They do refer to the specific DAI systems which utilise planning etc. but do not
consistently refer to the domain problem, hence the problem solving context is
lost. The theoretical generalisations based on this method are weak: coherence
is related to resource management and communication, resource management is
related to communication, communications can be planned etc. The problem is
that the mechanisms of DAI are analysed outwith their context in the solution
of problems. The division of the knowledge level from the symbol level proposed
in this paper is an attempt to clarify the purpose of the multi-agent system as a
whole and in doing so, to distinguish the various roles of the symbol level func-
tions. Such distinctions can play a useful role in the design of distributed systems,
as they have done in the model-based design of knowledge-based systems.

4 Related Work

It is noted by Gasser [9] that DAI has taken the agent as the focus of analysis.
Two attempts to break from the agent-centered approach are the Open Informa-
tion Systems (OIS) Semantics of Hewitt [12] and the six principles for social-DAI
outlined in [9]. Gasser proposes the existence of multiple actors as a fundamen-
tal concept in a ‘more social’ DAI. The social perspective entails grounding DAI
principles in the group rather than the individual agent. The social perspective
does not view the autonomy of agents as a concept which is completely divorced
from group concepts. Presumably, it should not focus on the mechanisms within
agents, but rather on the joint activity of a system of agents.

When we consider the proposals for a ‘more social DAI’ then it appears that
the KL analysis satisfies some of the goals of this enterprise by proposing a global
model of behaviour. This model is above the agent level (which we consider to
be the symbol level) and this type of characterisation is radically different from
the conventional DAI viewpoint(s).

In contrast with [13] we have not sought to add a layer above Newell’s knowl-
edge level in order to account for cooperative problem solving. Instead, we have
used Clancey’s redefinition of the knowledge level to provide the basis of our
analysis. This view appears to be consistent with the situated view of knowledge
as advocated in [21] as the knowledge level description need not be reflected in
specific structures at the symbol level. The analysis of this paper does not lead
us to conclude that reasoning about knowledge [11] or planning are necessary
features of a knowledge level description. However, in agreement with [13] we do
hypothesise a common agent goal which persists through an episode of problem
solving. Finally, we acknowledge the importance of planning and reasoning about
knowledge as mechanisms for guiding agent activity i.e. as sophisticated control
mechanisms. Constructing a plan may also be the purpose of agent activity, in
which case we would expect to find knowledge level models of planning. These
models may be reactive or deliberative.

The problem of designing the interaction between a knowledge-based system
and the user, i.e. a two agent system, from an inference structure is described in
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[10]. The method we outline generalises this approach, making use of Clancey’s
recent review of the knowledge level hypothesis. The problem of implementing a
KL description in a blackboard architecture has been addressed in [18] in practi-
cal terms. Thus, there are examples which suggest that the analytical approach
we advocate can also be used as a basis for the design of multi-agent systems.

5 Conclusions

This paper has presented characterisations of a number of distributed systems
at the knowledge level. The systems we have considered have been of a restricted
range, distributed knowledge-based systems, and we have emphasised the prob-
lem solving domains and solution methods of these systems.

The separation of the knowledge level from the symbol level entails a clear
delineation of the roles of symbol level processes and of the concept of agency.
Our analysis shows that the global coherence of a number of existing systems can
be understood by this analysis. Therefore, we conclude that the knowledge level
analysis is a valuable addition to our understanding of distributed information
processing systems.

Our conclusions are that the concept of global coherence is best understood as
the idealised, rational behaviour of a system of agents. This can be described in
terms of the deduction of new knowledge units within a model of problem solving.
The model need not specify an optimal solution, nor the intentional attitudes of
the agents. It is required that by following the model some solution is identified,
and for global coherence, all participating agents must act consistently with
the model. It is not necessary that the model be represented within the agents
themselves, however, this could produce a flexible exchange of roles among agents
by enabling agents to reason about their own role and that of others.
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