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INTRODUCTION

Research on judgment and decision making has produced two
classes of theories, i. e., descriptive theories which specify
how humans actually make decisions, on the one hand, and
prescriptive theories on the other hand. Prescriptive theories
are formal procedures which one supposedly ought to apply to
determine the best decision under some well defined conditions.
Such conditions are usually specified by a relatively small
number of facts or variables. Prescriptive rules are based upon
rationality principles such as consistency, transitivity of
choices, or the maximization of subjective utility (Edwards,
1984).

For example, a decision task may be characterized by a set
of alternative actions or alternatives, which we shall represent
by the set {..%, y, z..}. Furthermore, it is assumed that every
alternative x is described by its features x; on some n
attributes or dimensions, which are considered relevant.
Presumably some subjective (utility) value v(xj) can be assigned
to every feature x; of every alternative x on each dimension i.
Each dimension i is furthermore given some importance weight
w(i). The particular alternatives, the relevant dimensions, the
importance weights as well as the values v(x;) may all be
subjectively specified by an individual. The multi-attribute
utility (MAU) principle (Keeney, 1982) would then prescribe to
maximize the subjective utility by selecting an alternative for
which

n n
T ow(i) * v(xy) 2 = w(i) * v(yj) for all alternatives
i=1 i=1

VY E {.X, ¥, Z..}.

Many years of research have shown that such prescriptive
models do not adequately describe the cognitive decision process
of humans in general nor of human experts in particular (Slovic,
Fischhoff, & Lichtenstein, 1977). Instead, the empirical
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research of human information processing yielded the
specification of descriptive theories of decision making. This
research shows that contrary to prescriptive models humans use
heuristics in decision making which yield violations of
rationality principles and result in a number of biases
(Kahnemann & Tversky, 1972). Supposedly, such heuristics are
employed rather than prescriptive procedures because of
processing limitations of the human mind. Let us consider, for
example, the processing effort required to apply the multi-
attribute utility rule in a simple binary choice situation, in
comparison to some selective information processing rule.

EFFORT-QUALITY RELATIONS FOR COMPLETE AND SELECTIVE INFORMATION
PROCESSING

Specification of binary choice task: Assume that the
alternatives x and y are described by n dimensions. With respect
to these n dimensions every alternative is described by the
respective n features, x = (xl,... Xireoe xn) and y = (Yl"'
Yir+++ ¥Yn). The attractiveness of every feature shall be
specified by a positive integer v € [a, b]. With r: =b - a, a
decision maker distinguishes r + 1 different attractiveness
values.

For reason of simplicity it is assumed w(i) = 1 for all
attributes i. Without loss of generality it may furthermore be
assumed that by the MAU-rule

n n
XBpY & I Vv(xy) 2 Z v(yy)-
i=1 i=1

For such binary choices the effort and quality of a decision
can be defined in a rather simple way.

Definition. If the MAU-rule determines x % y, then the
quality Q of a decision procedure p with respect to the choice
pair (x,y) shall be given by

0 if p determines x Xy,

Q(p) = (1)
1 if p determines x ) y.

If the MAU-rule determines x gy and x » y, then Q(p) 1
with respect to the choice pair (x,y) for all decision procedures
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p. A choice which coincides with the choice of the MAU-rule will
be termed an optimal choice. It is postulated that the
processing of every feature requires a constant processing effort
e. Since it is assumed that every feature is processed at most
once, the decision effort for the application of some procedure p
is:

E= 2*%¢*e (2)

where ¢ is the number of decision criteria considered. Thus for
the MAU-rule E = 2 * n * e,

Decision procedures with reduced processing effort. We will
consider two rules for reducing decision effort. For both rules
it is assumed that the decision criteria are ordered with respect
to the given choice situation, and the features of the choice
alternatives are processed in the order of importance of the
respective dimensions.

An effort reduction may simply be achieved by processing
fewer dimensions, i. e., applying the MAU-rule only for ¢ < n
criteria. 1In other words, a decision maker would process only
the ¢ most important dimensions for deriving a decision. Since a
decision would thus depend upon the constant number of
dimensions, which a decision maker has specified for making a
decision, this procedure will be termed dimension-dependent
processing or DD-processing. While DD-processing may
substantially reduce the decision effort, it cannot guarantee
that the choice of the MAU-rule will be obtained.

Instead of processing some predetermined number of
dimensions, decision effort could also be reduced by allowing the
number of processed dimensions to depend upon the particular
choice pair. For example, only as many decision criteria may be
processed as are necessary for yielding some predetermined
overall attractiveness difference k between every two
alternatives. A choice would thus depend upon some criterion k.
Therefore, this decision procedure will be termed criterion-
dependent processing, or CD-processing. For a given k and some
choice pair (x, y), jy dimensions will be processed, where

3
min { J : | T v(xq) - Vv(yj) | 2ki Jj<n}

]
[

'jk:
(3)

n else.
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It is clear that small k values reduce decision effort while
large k values ensure decision quality. However, it remains to
be examined whether some k reduces decision effort, while
guaranteeing the quality of a decision as well. 1In order to
investigate this issue, we will first examine the conditions for
which a certain k may yield a choice, which differs from the
choice of the MAU-rule. Assume that alternatives x and y can be
evaluated by n dimensions and that the attractiveness evaluation
of a feature yields one of r + 1 different attractiveness values.
For example, v € [1,7). Non-optimal choices with j processing
steps and a criterion value k, must satisfy the following
conditions: 1In order to produce a choice at the barrier k

j*r > k, (4)

and for yielding the optimal choice with the MAU-rule if
processing were to be continued up to the n-th dimension:

(n-j) * r > Xk+1. (5)
Therefore, if
(n=j) * r < k+1 (6)

a binary choice must be identical to the choice of the MAU rule,
even when less than n dimensions have been processed. 1In other
words, if the accumulated attractiveness difference on r
dimensions between x and y is very large, the direction of the
difference cannot be changed by processing the remaining
dimensions.

Theorem. For barriers k > ¢ = n/2 * r, the CD-processing
rule guarantees choices which coincide with the choices of the
MAU-rule, while up to 50 percent of the decision effort may be
saved.

Proof. From Eg. (4) and (6), we obtain j * r = (n-j) * r,
and j = n/2. Inserting into Eq. (4) yields ¢ = n/2 * r. Thus,
for k > n/2 * r, the quality of a choice is guaranteed.

For example, when n = 20, for the choice pair with

k
v(xq) - V(¥i)
1

n/2 * r and jp = n/2 (7)

9.

i
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a 50 percent reduction of processing effort will be saved. For
choice pairs which do not satisfy Eq(7), but rather

k
v(x4) = v(yy) 2n/2 *r and jp =n/2 +1 (8)
1

N -

i

a ((n/2-1)*100)/n) percent reduction of processing effort will be
achieved, and so on. Finally, for choice pairs with j, = n-1,
(100/n) percent processing effort will be saved.

For more realistic versions of the MAU-rule, where the
attractiveness differences .of a dimension are weighted by the
importance of that dimension, processing effort may be reduced by
an even larger amount. For example, consider CD-processing with
the weighted MAU-rule: For a given k and a choice pair (x,y), Iy
dimensions will be processed, where

min { J : I

= 1

3
Bow(i) * (v(xg) - v(yy) ) | 2k j<n }

1

.
=

(9)

n, else.

Furthermore, assume that the importance weight of dimension
1 is defined by:

w(l) = n; w(i+l) = w(i) - 1. (10)

By this processing rule optimal choices are guaranteed by k-
values which satisfy the following restrictions:

3

T w(i) *r > k, (11)
i=1

n

T w(i) *r < k+ 1. (12)
i=9+1

We determine the lower boundary of the k-values, for which
an optimal choice is guaranteed by:
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w(i) * r T w(i) *r
1 i=j+1

I o <.

i
By insertion of Eq. (10):

J*(n+n-73+1) *r (n-3)* (n-3+1) *r

2 2

which yields:

j=1/2 % (2n + 1 - I2n2+2n+l.

(31
For k> £ w(i) * r, the resulting choices necessarily
i=1
coincide with the choices obtained by the MAU-rule. For example
with n = 20, k > 105 * r guarantees an optimal choice.
Therefore with n = 20, in. the best case only 6 dimensions must be
processed.

Although the possible range of effort reduction was
specified by Theorem 1, the expected effort-reduction for a
sample of choice pairs depends upon the characteristics of the
particular sample. In order to inspect how much effort reduction
may be achieved on an average, under the assumption that the r +
1 attractiveness values are uniformly distributed between the
two alternatives and among the n dimensions, we will calculate
the expected effort reduction for some examples.

For instance, assume that a person distinguishes only
between unattractive and attractive features. Unattractive
features shall receive a value of 1 and attractive features shall
receive a value of 2. Thus v € [1,2]. If the (unweighted) MAU-
rule is used and the alternatives are described by n=2
dimensions, a k=1 guarantees an optimal choice.

For the 2 attractiveness values and the 2 dimensions, 16
different choice pairs exist. For 11 of these pairs, the MAU-
rule yields x » y. For 4 of these pairs CD-processing according
to Eq. (3) yields a choice with j, = 1. On the average, a
processing reduction of 18 percent is thus achieved in the given
example. Similarly, for n = 3, k = 2 ensures an optimal choice
and a processing reduction of 9.5 percent is obtained. For n =
4, k = 2 ensures the optimal choice, and processing effort is
reduced by 29 percent on the average. In general, the number of
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choice pairs for which k = n/2 * r is surpassed after jx € [n/2,
n/2 + 1,..¢++., n = 1, n] dimensions have been processed, may be
specified by linear diophantine equations (Bose & Manvel, 1984).
Although at least in some cases a substantial effort reduction
may be achieved while preserving quality, a decision maker may
even like to further reduce decision effort.

Reducing decision effort at the cost of decision-quality.
Decision effort may additionally be reduced by further lowering
the k-value. Thereby, the average decision quality will possibly
also be decreased. Also, the DD-processing rule may be applied
for reducing decision effort. The relation between k and the
effort as well as the quality of a choice is specified by the
following definition:

Definition. Assume that for a choice pair (x, y), the MAU-
rule determines x > y. The decision effort E(k) of CD-processing
with parameter k is given by:

k —==> E(k): =2 % j * e

The quality Q(k) of the respective decision is defined by:

| 0 if ® v(xy) - v(yy) < -k
kK ===> Q(k) : 1 if T ov(xy) - v(yy) =2 k
1 if jg = n.
Furthermore, we define:
E : = { E(k); k=1 ...n}
ix
E” = { E(k): = v(x3) - vVv(y;) <-kik=1,...,n}
i=1
et : = E \ E7, and
1 if a e A
Q(k): =1, Ex), where 1 ,a): =
0 if a ¢ A

Fbr the DD-processing rule which assumes that some fixed j <
n dimensions are processed, quality and effort depend upon j.
Q(j) and E(j) shall be defined accordingly.
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While the mapping k =---> E(k) is monotonic for all pairs (x,
y), k =-=> Q(k) may violate monotonicity.

Proof: By definition ki < kg ==> E(k;) < E(k,).

For v(xl) = 2, v(xz)
v(y;) 1, v(yy)

1, Y(X3) = 6,
4, v(ys) 1, and k = 1:

Q(1) =1, Q(2) = 0, and Q(3) = 1.

Definition: Assume that for (%, y) the MAU-rule determines
X »y. Then it is said that ET has a gap at position k if there
exists a

k'> 0, k'< k: E(k') € E* and E(k) € E™;
= { k| E(k) € E7, and there exists k'< k so that
E(k') € ET)

It is assumed that a decision maker acquires information
about the features of the alternatives, during the choice when he
is processing these features. Since a decision maker does not
have any prior information about the particular alternatives
between which he is about to choose, the average quality and
effort of a sample of choices pairs may be more important
statistics than the respective values of a single choice pair.
For some sample S of pairs (x, y), we define the average effort
and the average quality as:

1

E(k):= Tz E(k),

Is| s
1

Q(E(k)):= — 3 Q(k),
[S] S

For a sample S the number ¢ of gaps for some given k is
defined by:

£(k) = 1, %
S

Lemma. Q(E(k)) is monotonically increasing iff for k < k':
e(k') < £(k).
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Conjecture. If (r+l) values are uniformly distributed
between the two alternatives and among the n dimensions in some
population of choice pairs, the mapping E (k) ---> Q(E(k)) is
monotonically increasing.

Evidence. As a first step a simulation was performed. For
n=11, v =[1,7)], and CD-processing by Eq(3), the results are
shown in Figure 1. For CD-processing according to Eg. (9) and
(10), the respective results are shown in Figure 2.

Effort-Quality Trade-off. A decision maker may desire to
reduce decision effort at the cost of decision quality up to the
point where the benefits of the effort reduction are smaller than
the negative consequences (costs) of the respective quality
reduction. Whether an effort-reduction is desirable at all, thus
depends upon the utilities which a decision maker attributes to
the various effort and quality levels as well as upon the
functional relation between effort and decision quality. For the
CD- and DD-processing rules, the functional relation between the
average effort and the average quality of a decision may be
characterized according to the following definition.

Definition. The function Q is said to be negatively
(positively) accelerated at the point of some barrier k, if

Q(E(k)) - Q(M(k)) Q(i(k)) - QE(k))
> (13)
E(k) - M(k) (<) m(k) - E(k)
where M(k) = sup { E(¢) l E@) < E(x) } ,
¢
T(k) = inf { E(¢) l E(k) < E(8) } ,
4
E(0): = 0; Q(0) : = .5; and for E(k) =2 * n * e

the right side of Eq (13) is defined to be zero. If a function Q
is negatively (positively) accelerated in every single point
which is specified by a k-value, the function is said to be
negatively (positively) accelerated. For the DD-processing rule
negatively and positively accelerated is defined accordingly for

all values

jef[(r.. ., nl.
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Conjecture. If (r+l) values are uniformly distributed
between two alternatives and the n dimensions, the CD-processing
rule (Eq. 3) will produce a negatively accelerated function
Bep (Ecp (X)) -

Furthermore, if Eop, Epp > .50, Epp(3) < Egp (k) implies

Qpp(Epp(3)) < Qcp (Egp(k)),

for all j < n and k, where the indices DD and CD denote the
dimension-dependent and criterion-dependent processing
respectively.

Evidence. Simulation results with the CD- (Eq. 3), as well
as with the DD-processing rule are shown in Figure 3. Again, n =
11, v € [1,7])]. These results seem to indicate that the CD-
processing rule is superior for all decision efforts exceeding
some critical effort (say E = 50).

If utility is a linear function of processing effort and
decision quality, for a negatively accelerated function Q, an
optimal effort-quality trade-off would be achieved by the
parameter k, for which

Q(E(k)) - Q(M(k))
> 1, and
E(k) - M(k)
Q(m(k)) - QE(K))
< 1.
m(k) - E(k)

A decision maker, who attempts to achieve an operating
point, which is close to an optimal trade-off between the effort
and the quality of a choice, must therefore somehow determine the
respective k-parameters.

The approximate determination of a close to optimal k-
parameter over a number of decisions. Rather than postulating
that a decision maker would perform a formal decision analysis
for finding the optimal k-parameters, we assume that such
parameters are specified by the experience from previous
decisions. We assume that during the decision process the
dimension number j, at which the sum
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v(xi) - v(yj)
1

I 1

i

changed from a positive to a negative value or vice versa will be
remembered. We suppose that this information is used for
adjusting the k parameter for the next decisions. One possible
rule for adjusting the k parameter, which does not require any
feedback about the quality of a choice would be: 1Initial value K
=n * r, after every choice a new value x* is specified.

k t =k +1 if jk -J < Ny
* . . .
k : =k -1 if Jx = J 2 Ny
x* : =k else, where N; < N,, and k* denotes the new

k-value. By an adaptive procedure of this kind optimal k -
values could possibly be approximated (Treisman & Williams,
1984).

The conducted analysis shows that quite a substantial amount
of processing effort can be saved by selective information
processing without severely affecting choice quality. A number
of empirical results show that human decision makers apply
decision rules of the sort .described by the CD-processing rule
(Aschenbrenner et al. 1984; Busemeyer, 1985; Schmalhofer et al.,
1986; Schmalhofer & Schafer, 1986; Schmalhofer et al., 1987).

IMPLEMENTING PRESCRIPTIVE RULES WITH DECISION SUPPORT SYSTEMS

One possible reason why humans and human experts do not
conform to prescriptive rules may thus be that prescriptive rules
demand too much processing effort with respect to improvements in
choice quality. Since the processing which humans are not
willing to do could be performed by a computer the quality of
human decisions could be improved by having a computer process
all the information which is neglected by human decision makers.
Decision support systems such as MAUD (Humphreys & McFadden,
1980) may enhance human decisions in this way. MAUD allows its
user to enter any alternative as well as an arbitrary number of
alternatives for consideration into the decision process. These
alternatives may be characterized by whichever attributes a user
considers to be relevant. After specifying the (utility) wvalues
of the different alternatives on the various attributes as well
as importance weights for the attributes, a user is assisted by
MAUD in making a decision according to the MAU principle.
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Thereby, a number of rationality criteria such as consistency and
transitivity of preferences will be satisfied.

Thus MAUD compensates for drawbacks which arise from
selective information processing of humans, by performing a
number of analyses which usually are too demanding for the human
information processor. 1In summary it can thus be concluded, that
decision support systems such as MAUD allow the human decision
maker to derive a choice according to some prescriptive rule by
taking the burden of the actual calculations away from the user.
Decision support systems like MAUD thus derive decisions
according to prescriptive rather than descriptive models.
Prescriptive models rather than human information processing
characteristics are thus taken as the first principle of such
decision support systems.

According to this approach as well as according to the very
simple expert system discussed by Mumpower (1987), humans are
provided with assistance, so that they would adhere to certain --
sometimes quite general -- rationality principles.

ANALYZING EXPERTS FOR DEVELOPING BETTER DECISION PROCEDURES

As Hammond (1987) has pointed out, the field of artificial
intelligence (AI) takes quite a different approach. Despite the
real or seeming inadequacies of human expert decisions AI
researchers assume that expert systems are best designed by
studying how human experts function. Rather than reducing a
decision problem to some specification with a small number of
variables, which can consequently be handled by some prescriptive
rule, AI researchers assume decisions to be made on the ground of
a large knowledge base.

Therefore, the question is whether the normative rules which
have been studied in the judgment and decision literature should
be used as "best procedure" or whether the information processing
of human experts should be taken as guideline for developing
expert decision systems. The relation between the JDM-approach
and the AI-approach is shown in Figure 4.

JDM-research considers prescriptive rules from which they
have found human behavior to deviate to be the best decision
procedure. Al-researchers, on the other hand, analyze the
behavior of human experts to develop expert systems, which they
may then consider to be the best procedure. As Hammond has
pointed out and as Figure 4 shows, the views of AI and JDM
researchers disagree with one another.
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Some doubts may be raised whether prescriptive rules really
are the best decision procedure:

1. As the paper of Milton (1987) has again demonstrated,
decision analyses which are based on prescriptive rules are only
marginally successful or not successful at all in real decision
domains.

2. Prescriptive rules do not agree with the decision rules
of experts.

3. But, experts are rather successful in that they are
respected as such and are paid accordingly for their job
(Shanteau, 1987)

Contrary to the conclusions of Hammond, it may thus appear
that the prescriptive rules analyzed by JDM-researchers are only
optimal with respect to the artificial circumstances, which,
however, do not exist in real life decision problems.

It may be suspected that some decision biases as well as
other non-optimal behaviors of experts may have a functional
value in natural environments. In order to reveal such
functional values, we will consider two of the most prominent
violations of prescriptive rules. On the one hand, decision
makers are known to ignore relevant information, and on the other
hand, it is also known that irrelevant information affects
decisions. What are possible functions of this seemingly non-
optimal behavior. It has already been pointed out that selective
information processing may reduce processing effort by a great
deal without deteriorating choice quality. In addition,
selective information processing will yield a simpler
justification for a choice than an all encompassing decision. A
decision is thus easier to communicate.

Oon the other hand, irrelevant information may be processed
in order to adjust to changes in the future. For example,
consider a physician who has to decide which patient should be
given an organ for transplantation. Furthermore assume that the
particular type of organ transplantation would still be in an
experimental phase. Under these conditions, transplantation of
an organ may only be considered as an ultima ratio. Criteria
such as age and projected life expectancy would thus be
considered irrelevant because an organ transplantation should
only be performed if the patient would die otherwise.

As the medical skills are further developed, however, organ
transplantations should be performed earlier when the respective
patient is still healthy, thereby improving the success rate.
Criteria which have been considered irrelevant may now become
relevant. An expert who processes irrelevant information may
thus just be processing information which will be considered
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relevant in the future. Again such a choice can be justified
more easily in the future, when everybody uses the new criteria.

The example may demonstrate that the prescriptive rules are
much too simple and too static to capture all the complexities of
expert decisions:

Rather than selecting the alternative, which maximizes the
(subjective) utility, expert decisions should agree with the
large body of expert opinions. 1In addition it must be possible
to explain a decision in terms of the expert knowledge rather
than quoting some prescriptive rule. An expert must also be
capable of justifying a decision for the many different
viewpoints which people may use for interrogating his decision.
Consequently, expert decisions must be knowledge-based and cannot
be reduced to the consideration of values.

Unlike human decision makers, prescriptive rules do not
provide such adaptiveness and flexibility. Therefore, human
decisions cannot be replaced by some prescriptive rule. Quite to
the contrary, in order to assist human decision making, it seems
advisable to emulate the dynamic decision processes of experts in
computer systems. The best decision procedure should thus not
only produce the same decisions as the human expert, but should
derive the decision in the same way. In other words, an expert
system should be a cognitive model (Schmalhofer & Wetter, 1987)
of the human expert, so that the system is adjusted to the human
user rather than the human user being required to adapt to an
arbitrary artificial system. By adjusting the information
processing of expert systems to the actual cognitive processes of
humans, expert systems can be employed as a cognitive tool, which
assists the human rather than replacing his competence by some
"prescriptive model."

Expert systems which are designed as cognitive tools for a
human user should receive a much higher acceptability than the so
called prescriptive systems. If an expert system processes
information similar to a human, a human user will be better able
to understand, accept, and also justify the decisions which are
derived with the assistance of the system.
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