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2.1 Introduction 

Monocytes are the common "precursor" of the different types of macro­
phages which are distributed ubiquitous in all tissues. Monocytes and 
granulocytes both originate from committed progenitor cells in the bone 
marrow (colony-forming unit granulocyte-macrophage, C F U - G M ) . 
Glycoprotein hormones termed colony-stimulating factors [CSF; mac­
rophage C S F ( M - C S F ) , granulocyte-macrophage C S F ( G M - C S F ) ] or 
interleukin-3 (IL-3; mul t i -CSF) regulate the differentiation of this stem 
cell into monoblasts which then differentiate into promonocytes-(Met-
calf 1991). The promonocyte divides and gives rise to monocytes which 
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Fig. 1. Schematic description of human macrophage ontogeny 

are released into the periphery and circulate for about 2-3 days in the 
blood stream. Then, upon the action of so far uncharacterized signals, 
the monocyte leaves the circulation and migrates into tissues and body 
cavities where it matures into the different types of macrophages, for 
example, alveolar macrophages in the lung, Kupffer's cells in the liver, 
and osteoclasts in the bone. Apart from a continuous reconstitution of 
the various organ subpopulations monocytes also enter infected or ma­
lignant tissues as part of the inflammatory response of the host defense 
system. Here they transform to different forms of reactive histiocytes 
present, for example, in inflammatory lesions and rejected organ trans­
plants. 

O f particular interest and of special importance to the immune sur­
veillance is the ontogeny of tumor-associated macrophages (Mantovani 
et al. 1992). Here a pivotal role of macrophages becomes evident which 
is determined by the monocyte to macrophage differentiation process: 
This results in the generation either of cytotoxic kil ler cells or of "hel­
per" macrophages appearing as the physiological constituents of the 
tumor stroma supporting invasive tumor growth and metastasis. A sche­
matic representation of the monocyte differentiation process is shown in 



Fig . 1. The signals controlling this second step in the differentiation 
process are unknown. In addition to this classical pathway of macro­
phage generation, macrophages can divide in tissues and thereby also 
renew their population. The signals controlling macrophage prolifera­
tion are not defined but M - C S F seems to play a crucial role. In addition, 
monocytes and macrophages are important effector cells. They produce 
a variety of cytokines [e.g., IL-1 , IL-6, IL-8, IL-10, tumor necrosis 
factor-a ( T N F - a ) , C S F s , and numerous other factors such as enzyme or 
reactive oxygen metabolites (Nathan 1987). Other important functions 
are cytotoxicity against tumor cells, phagocytosis of micro-organisms, 
and antigen presentation (Johnston and Zucker-Franklin 1988; Unanue 
and A l l e n 1987). Most of these functions are dependent on the differen­
tiation and activation stage of monocytes/macrophages. 

2.2 Mechanisms Generating Macrophage Heterogeneity: 
Monocyte Subpopulations and/or Microenvironment 

Every tissue has its own type of macrophage; because of the similar 
morphology and their origin from common precursor cells they are 
summarized as the "mononuclear phagocyte system". Besides the s imi­
larity there are many differences between tissue macrophages (Dough­
erty and M c B r i d e 1984). The question is: how is this heterogeneity 
generated? One possible explanation is the existence of monocyte sub-
populations in the blood dependent on clonal variation of myeloid 
progenitor cells. Different monocyte subpopulations have been de­
scribed by several groups. Passlick et al. (1989) discriminate between 
two populations by the expression of the antigens C D 14 and C D 16 and 
their different cytokine production (Ziegler-Heitbrock et al. 1992). Sub-
populations have also been determined by size and functional activity 
(Arenson et al. 1980; Wang et al. 1992), H L A - D R expression (Raff et 
al. 1980), Fc receptor expression (Zembala et al. 1984), and peroxidase 
activity (Akiyama et al. 1983). However, these differences are more 
likely explained by different maturation stages of blood monocytes, 
depending on the circulation time in the blood stream. 

Another way of generating different types of macrophages is the 
dependence on signals in the microenvironment of the tissue. In vitro it 
has been shown that different types of macrophages are generated from 



monocytes depending on the culture conditions (Munn and Cheung 
1990; Ruppert and Peters 1991; Kreutz et al. 1992). Most l ikely both 
mechanisms are responsible for macrophage heterogeneity (Rutherford 
e ta l . 1993). 

2.3 Cell Lines as Model for Monocyte Differentiation 

A model system for monocyte maturation is the differentiation of mono­
cytic cell lines. Differentiation of the promyelocytic leukemia cell line 
H L - 6 0 is induced by 1,25-dihydroxyvitamin D3 [ l ,25(OH)2D3] (Bar-
Shavit et al. 1983), retinoic acid (Breitmann et al. 1980), dimethylsul-
foxide (Coll ins et al. 1979), deprivation of essential amino acids ( N i ­
chols and Weinberg 1989), phorbolester (Cassileth et al. 1981), T N F - a 
(Weinberg and Larrick 1987), or combinations of these factors (Trin-
chieri e ta l . 1987). 

Another cell line, the monoblast leukemia line U937 is induced to 
differentiate in the presence of phorbolester (L iu and W u 1992), 
l ,25(OH) 2 D3 (Dodd et al. 1983), interferon-y (Ralph et al. 1983), or 
combination of those factors. The differentiation process is followed by 
the expression of antigens (e.g., C D 14), morphology, adherence, or 
functions such as phagocytosis or lysozyme secretion. These markers 
are, however, specific for normal monocytes, and therefore this dif­
ferentiation is comparable to that of monoblasts/promonocytes into 
monocytes rather than the terminal differentiation of monocytes into 
macrophages. 

2.4 Monocyte Differentiation Induced by Serum 

The in vitro differentiation of human blood monocytes might serve as a 
model for the in vivo maturation process of emigrating monocytes. 
Monocytes which are cultured for 7 days in the presence of human 
serum differentiate into macrophages (Musson 1983; Andreesen et al. 
1983a). In many respects, for example, morphology and functional 
activity, these cells resemble reactive histiocytes and steady state tissue 
macrophages. Figure 2a shows the morphology of freshly isolated 
mononuclear cells and F ig . 2b mononuclear cells cultured for 7 days in 





the presence of serum. Lymphocytes remain small during the culture 
period whereas monocytes differentiate into large macrophages. 

Besides serum as a differentiation stimulus, differentiation is also 
dependent on other parameters. C e l l purity of the monocyte preparation, 
which is dependent on the separation technique, is one important factor 
because contaminating lymphocytes can modulate the differentiation 
process. Lopez et al. (1993) have found that the addition of lymphocytes 
to monocyte cultures increases the cell yield compared to cultures of 
pure monocytes. O n the other hand, activated lymphocytes may disturb 
the differentiation process of monocytes (Zaiss et al. 1991). Another 
problem is the choice of the culture substrate. Monocytes are adherent 
cells, and many functions are modulated by cell adherence. Schumann 
et al. (1989) have described distinct morphology and antigen expression 
dependent on the culture substrate; Haski l l et al. (1988) have found the 
induction of m R N A for M - C S F after adherence to plastic. 

2.4.1 Characterization of Differentiation by Phenotype 

The serum-induced differentiation of human monocytes is accompanied 
by characteristic changes in the morphology, antigenic phenotype, and 
functional activity. The cell increases about tenfold in size, the nucleus: 
cytoplasm ratio decreases, and cells become multinucleated. From 
studies with time-lapse microcinematography three different types of in 
vitro differentiated macrophages can be distinguished: a small, fast-
moving type, an elongated, s low-moving type, and a round sessil type 
(von Briesen et al. 1992). 

In addition to the morphological changes, the antigenic phenotype 
differs between monocytes and macrophages (Andreesen et al. 1990a). 
Table 1 presents a summary of differentiation-associated antigens in 
human monocytes/macrophages. The low-affinity receptor for IgG 
(FcIII, C D 16) is expressed on only 2 % - 5 % of freshly isolated blood 
monocytes but is found consistently on in vitro differentiated macro­
phages and resident liver and spleen macrophages (Clarkson and Ory 
1988; Andreesen et al. 1990a). Endoglin, an arginine/glycine/aspartic 
acid ( R G D ) containing surface antigen, is also absent from peripheral 
blood monocytes but is detectable on monocyte-derived macrophages 
and interstitial macrophages in the red pulp of the spleen (Lastres et al. 



Table 1. Maturation-associated antigens on human macrophages 

Antigen 

CD16 

Endoglin 
CD51 

gp!75 
gp86 
gp64 

gp2(X) 

gP68 

Antibody Function Reference 

e.g., GRM1 

44G4, 8E11 
13C2, 23C6 

25F9 
M A X . l 

MAX.2 

MAX.3 

FcRIII 

Adhesion? 
Vitronectin receptor 
(a-chain) 
Man nose receptor 

gp 116/46/38 B 148.4 ? 
CD71 e.g., MEM-75 Transferrin receptor 
? MS-1 ? 

Clarkson and Ory 1988, 
Andreesen et al. 1990a 
Lastresetal. 1992 
Krissansen et al. 1990, 
Andreesen et al. 1990a 
Ezekowitz and Stahl 1988 
Zwadloetal. 1985 
Andreesen et al. 1986, 
1988a 
Andreesen et al. 1986, 
1988a 
Andreesen et al. 1986, 
1988a 
Anegon et al. 1993 
Andreesen et al. 1990a 
Goerdtetal. 1993 

1992). R G D is a recognition motif for adhesion receptors of the integrin 
family. A member of the adhesion receptor family, the vitronectin 
receptor, is also absent from the surface of monocytes but is expressed 
on macrophages (Andreesen et al. 1990a; Krissansen et al. 1990). This 
receptor may be involved in apoptosis induction. The mannose receptor, 
a lectin that mediates uptake and k i l l ing of micro-organisms, is ex­
pressed only on mature macrophages (Ezekowitz and Stahl 1988). This 
may explain the fact that macrophages are better effector cells than 
monocytes in the phagocytosis of micro-organisms. 

A n unknown 86-kDa protein is recognized by the mouse monoclonal 
25F9. Aga in , monocytes do not express this antigen, but it is found on 
tissue macrophages such as Kupffer's cells, alveolar macrophages, and 
monocyte-derived macrophages (Zwadlo et al. 1985). Another set of 
unknown proteins are recognized by the antibodies of the M A X series. 
These antigens are absent from monocytes and are expressed on exu­
date-macrophages from pleural and peritoneal cavity (Andreesen et al. 
1988a) and on in vitro differentiated macrophages (Andreesen et al. 
1986). The MS-1 antigen is also found on in vitro differentiated mono-



cytes/macrophages and on dendritic perivascular macrophages in situ 
(Goerdt et al. 1994). The opposite regulation is found for the human 
antigen B18.4, which is highly expressed on monocytes but is lost 
during the differentiation into macrophages (Anegon et al. 1993). A l l 
these antigens are expressed after in vitro differentiation of monocytes 
with serum and can therefore serve as maturation markers. C D 4 , an 
antigen which is involved in infection with the human immunodefi­
ciency virus (HIV) , also seems to be expressed at higher density on 
macrophages; this may explain the finding that macrophages are better 
targets for H I V than are monocytes (own unpublished results). Other 
antigens such as the C D 14 molecule are found on monocytes as well as 
on macrophages. The transferrin receptor, CD71 and I C A M - 1 (CD54) 
also are absent from monocytes. However these antigens are also in­
duced under serum-free culture conditions by means of adherence; 
therefore they are differentiation- but not serum-dependent antigens 
(Andreesen et al. 1984). 

2.4.2 Characterization of Differentiation by Functional Activity 

Morphology and antigen-phenotype are excellent parameters of the 
maturation process of monocytes into macrophages. In addition, mature 
macrophages are characterized by their functional activity. A wel l -
known activity of macrophages is the destruction of tumor cells. Three 
types of cytotoxicity have been described: antibody-dependent cellular 
cytotoxicity ( A D C C ) , direct contact-dependent cytotoxicity, and cyto­
toxicity mediated by soluble secreted molecules such as T N F - a . A l l 
three types of cytotoxicity depend on the differentiation stage of macro­
phages. M u n n and Cheung (1989) have found that cultivation of mono­
cytes with M - C S F increases A D C C and contact-dependent cytotoxicity 
against U937 increased during the maturation of monocytes into macro­
phages (Andreesen et al. 1983b, 1988b). A soluble mediator of cytotox­
icity, a newly described tumoricidal activity termed M C T - 1 7 0 , is se­
creted only by macrophages (Harwix et al. 1992). The capacity to 
secrete T N F - a is increased several-fold during the in vitro differentia­
tion of human monocytes; in contrast, the secretion of IL-1 (3 and IL-6 is 
decreased (Wewers and Herzyk 1989; Scheibenbogen and Andreesen 
1991). 



Table 2. Comparison of functional activity in monocytes and macrophages 

Function Monocyte Macrophage Reference 

Cytotoxicity 
A D C C + +++ Munn and Cheung 1989 
Antibody independent + +++ Andreesen et al. 1988b 

Procoagulant activity - +++ Scheibenbogen et al. 1992 
secretion 

IL- ip +++ (+) Wewers and Herzyk 1989 
IL-6 +++ ++ Scheibenbogen 

and Andreesen 1991 
IL-8 ++ ++ Scheibenbogen 

and Andreesen 1991 
T N F - a + +++ Scheibenbogen 

and Andreesen 1991 
M-CSF + +++ Scheibenbogen et al. 1990 
G-CSF, G M - C S F + +++ Krauseetal. 1992 
Neopterin + +++ Andreesen et al. 1990b 
1,25 Vitamin D3 + +++ Kreutz etal. 1993 
24,25 Vitamin D3 +++ - Kreutz etal. 1993 
Fibronectin + +++ Yamauchi et al. 1987 

Phagocytosis + +++ Jungi and Hafner 1986 
Antigen presentation ++ + Peters etal. 1987 
Enzyme activities 

Nonspecific esterase ++ +++ Musson etal. 1980, 
Andreesen et al. 1983b 

Tartrate-resistant - +++ Andreesen et al. 1983b 
acid phosphatase 

Peroxidase +++ - Andreesen et al. 1983b 
Lysozyme + +++ Andreesen et al. 1983b 

Furthermore, the production of C S F s ( M - C S F , G - C S F , G M - C S F ; 
Scheibenbogen et al. 1990; Krause et al. 1992), neopterin (Andreesen et 
al. 1990b), fibronectin (Yamauchi et al. 1987), tissue factor (Scheiben­
bogen et al. 1992), and lysozyme (Musson et al. 1980; Andreesen et al. 
1983a) is increased during monocyte differentiation. Vitamin D meta­
bolites are also produced by monocytes/macrophages: 24,25-dihydrox-
yvitamin D3 is synthesized only by monocytes whereas macrophages 
release l ,25(OH)2D3 (Kreutz et al. 1993). Another important macro-



phage function is the processing and presentation of antigen to T - l y m -
phocytes. Schlesier et al. have described monocytes as good antigen-
presenting cells; however, this capacity decreases when monocytes 
mature into macrophages (Peters et al. 1987; Schlesier et al. 1992). In 
contrast, phagocytosis is improved during monocyte differentiation 
(Jungi und Hafner 1986). A l so , enzyme activities are changed during 
the differentiation of monocytes into macrophages. Peroxidase activity 
is lost, whereas tartrate-resistant acid phosphatase is induced during 
monocyte maturation; Nonspecific esterase activity remains constant 
(Andreesen et al. 1986). A summary of maturation-associated functions 
is shown in Table 2. 

2.5 Modulation of Serum-Induced Differentiation 

The serum-induced differentiation of monocytes into macrophages can 
be modulated by supplementing the serum with additional factors. Te 
Velde et al. (1988) have described phenotypical and functional changes 
in serum containing monocyte cultures supplemented with IL-4. IL-4 
induces H L A - D R expression and a decrease in the release of cytostatic 
and chemotactic factors compared to control cultures with serum alone. 
A s these features are normally regulated in the opposite way during 
differentiation, IL-4 seems to inhibit differentiation rather than to in­
duce it. IL-13, another factor produced by CD4-posi t ive T-lympho-
cytes, also increases H L A - D R expression and induces morphological 
changes of human monocytes (McKenz ie et al. 1993). 

Apart from the regulation of monocyte generation in bone marrow, 
C S F s also play a role in the further differentiation process of monocytes 
into macrophages. Addi t ion of M - C S F and G M - C S F to serum results in 
a better survival rate and stimulates the capacity for antibody-dependent 
and antibody-independent cytotoxicity (Suzu et al. 1989; Young et al. 
1990; M u n n and Cheung 1990; Eischen et al. 1991). In addition, both 
C S F s regulate the expression of the maturation-dependent vitronectin 
receptor (Nichi lo and Burns 1993). G M - C S F has also been shown to 
induce C D 1 expression on monocytes, a marker which is normally 
found on thymocytes and Langerhans' cells. This indicates a differentia­
tion in the direction of accessory cells (Kasinrerk et al. 1993). 



l ,25(OH)2D3, known to induce the differentiation of monocytic cell 
lines, also supports the serum-induced differentiation of monocytes. 
Provvedini et al. (1986) have reported an accelerated differentiation, in 
terms of increased activity of lysosomal enzymes and enhanced ad­
herence, when monocytes were cultured in the presence of 
l ,25(OH)2D3. In mouse bone marrow macrophages l ,25(OH)2D3 and 
immunoglobulins increased the expression of the maturation-associated 
mannose-receptor (Clohisy et al. 1987; Schreiber et al. 1991). 

2.6 Differentiation Under Serum-Free Conditions 

It is difficult to identify differentiation-inducing signals when serum is 
used as medium supplement because serum alone is sufficient to induce 
maturation of human monocytes. Therefore serum-free culture condi­
tions, for example, serum-free media have been developed by several 
investigators (Helinski et al. 1988; Voge l et al. 1988; Vincent et al. 
1992). Most of those serum-free media contain albumin. In contrast, 
Ak iyama et al. (1988) found no positive effect of albumin on monocyte 
differentiation, but reported that immunoglobulins can induce differen­
tiation in terms of increased 5' nucleotidase activity and decreased 
peroxidase activity. l ,25(OH)2D3 alone as well as in combination with 
immunoglobins and albumin is also able to induce monocyte differen­
tiation under serum-free conditions (Kreutz and Andreesen 1990; 
Kreutz et al. 1992). These cells express differentiation-associated 
antigens of the M A X series and show functional features of mature 
macrophages, i.e., high release of T N F - a and neopterin. However, the 
effect is dependent on the culture substrate; in Teflon culture the addi­
tion of immunoglobulin/albumin or M - C S F / a l b u m i n is necessary to 
promote cell survival. Other investigators have also found a positive 
effect of M - C S F or G M - C S F on cell survival in Teflon cultures (Brug-
ger et al. 1991; Lopez et al. 1993). However, also M - C S F also improve 
the survival rate on plastic surfaces (Becker et al. 1987). A s endogenous 
M - C S F induction is dependent on cell adherence, monocyte survival in 
Teflon culture may be diminished because of the weak adherence, for 
example, an unsufficient induction of endogenous M - C S F . 



2.7 Inhibition of Monocyte Differentiation 

Differentiation in monocytic cell lines can be induced by cell activators 
such as interferons and phorbolester. In contrast, the serum-induced 
differentiation process of blood monocytes is inhibited by activation 
signals. Interferon-y, a typical inducer of monocyte/macrophage activa­
tion, suppresses monocyte differentiation antigens and increases H L A -
D R expression (Firestein and Zvaifler 1987; Andreesen et al. 1990a). 
T w o other T-lymphocyte derived cytokines, IL-4 and IL-13, have been 
reported to induce monocyte differentiation in terms of increased H L A -
D R expression. In addition, cells cultured in the presence of IL-4 are 
less cytotoxic than control cells, indicating inhibition rather than induc­
tion of monocyte differentiation. Therefore, lymphocytes seem to play a 
crucial role in regulating monocyte differentiation and activation. A n ­
other macrophage activator, lipopolysaccharide, is also shown to inhibit 
monocyte differentiation (Brugger and Andreesen 1991). This indicates 
that monocyte activation and differentiation seem to be two, noncom-
patible, mutually exclusive processes. 

2.8 Summary 

Differentiation of human monocytes into macrophages is the central 
step in the generation of the heterogenous cell family that constitutes the 
mononuclear phagocyte system. The in vitro maturation of monocytes is 
a model only for a complex process which involves (a) signals leading 
to the migration of the monocyte into tissues and (b) signals which 
determine the characteristic sunpopulation of macrophage given for a 
given tissue. Furthermore, cells other than monocytes/macrophages or 
cytokines released by these cells may contribute to the differentiation 
process. Certainly not all signals which interfere with monocyte dif­
ferentiation are known; the knowledge of all differentiation-modulating 
substances would allow the "design" to generate a special type of 
macrophage in vitro, for example, for tumor cytotoxicity or antigen 
presentation, for cl inical purposes. 
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