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Abstract

It is proved that under a technical condition the étale cohomol-
ogy groups H1(OK [1/S], Hi(X̄,Qp(j)), where X → SpecOK [1/S] is
a smooth, projective scheme, are generated by twists of norm com-
patible units in a tower of number fields associated to Hi(X̄,Zp(j)).
This confirms a consequence of the non-abelian Iwasawa main conjec-
ture. Using the “Bloch-Kato-conjecture” a similar result is proven for
motivic cohomology with finite coefficients.

Introduction

One of the most astonishing consequences of the equivariant Tamagawa
number conjecture is the twist invariance of the zeta elements, which
implies that all motivic elements should be twists of norm compatible
units in (big) towers of number fields. More precisely one expects that
for a Zp-lattice T in a motive with p-adic realization V the image of
the twisting map (see 1.1.2 below)

(lim←−
n

H1(OKn [1/S],Zp(1)))⊗ T (j − 1) → H1(OK [1/S], T (j))

generates a subgroup of finite index. Here the inverse limit runs over
the number fields Kn := K(T/pn) obtained from K by adjoining the
elements T/pn. Moreover, the image of this map should have a motivic
meaning, that is the elements should be in the image of the p-adic
regulator from motivic cohomology. (This is explained in [Hu-Ki2] and
builds on ideas of Kato [Ka1]).

The philosophy of twisting originates from work of Iwasawa, Tate
and Soulé, who considered twisting with the cyclotomic character. This
already lead to many interesting results. Here Kato’s work [Ka2] on
the Birch-Swinnerton-Dyer conjecture is the most spectacular exam-
ple. Earlier Soulé used this idea in the case of Tate motives in his
investigations about the connection of K-theory and étale cohomology
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for number rings [So1]. He also pointed the way to applications to
CM-elliptic curves [So4].

The goal of this paper is to show that the above twisting map has for
j >> 0 indeed finite cokernel assuming the very reasonable condition
that the Iwasawa µ-invariant of the number field K vanishes. In the
second part of the paper we consider the statement, that the resulting
elements are in the image of the regulator from motivic cohomology.
Our results in this direction give a weak hint that the elements obtained
as twists of units are motivic. Using the “Bloch-Kato-conjecture” for
all fields (as announced by Voevodsky), we prove that there is a twisting
map for motivic cohomology compatible with the one for étale coho-
mology under the cycle class map.

The second author likes to thank J. Coates for useful discussions
and for making available the results of [Co-Su] before their publication.
The authors are indebted to T. Geisser for insisting to use motivic co-
homology with finite coefficients instead of K-theory in the formulation
of the results in the second part.

1 Non-commutative twisting in étale cohomology

In this section we describe the étale situation. All cohomology groups
in this paper are étale cohomology groups unless explicitly labeled oth-
erwise.

1.1 The twisting map in étale cohomology

Let K be a number field with ring of integers OK . Fix a prime number
p > 2 and a finite set of primes S of OK , which contains the primes
dividing p. As usual let GS := Gal(KS/K) be the Galois group of
KS/K, where KS is the maximal outside of S unramified extension
field in a fixed algebraic closure K̄ of K. Let T be a finitely generated
Zp-module with a continuous GS-action

ρ : GS −→ AutZp(T ).

We will consider T also as étale sheaf on OK [1/S] (see e.g. [Fo-Pe,
p. 640] using the fixed embedding into K̄ as base point) and write
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V := T ⊗Zp Qp for the associated GS-representation and Qp-sheaf. Let
G := im ρ be the image of ρ. If we define finite groups

Gn := im
{
ρn : GS −→ AutZ/pnZ(T/pnT )

}

then we also have G ∼= lim←−n
Gn. Note that G is a p-adic Lie group. The

Iwasawa algebra of G is by definition the continuous group ring

Λ(G) := lim←−
n

Zp[Gn] ∼= lim←−
n

Z/pn[Gn].

We denote by K∞ the field fixed by the kernel of ρ and by Kn the field
fixed by the kernel of ρn, so that K∞ = ∪nKn and Gal(K∞/K) ∼= G.
Note that OKn [1/S] is finite and etale over OK [1/S].

Example: To make the above definitions more concrete, consider the
following important example. Let E/K be an elliptic curve without
complex multiplication and TpE := lim←−n

E[pn] its Tate-module. We

have Kn := K(E[pn]). It is a well-known result of Serre that the image
of the Galois group GS in AutZp(TpE) has finite index and is equal to
AutZp(TpE) for almost all p. If we assume the latter case, we have in
the above notation Gn

∼= Gl2(Z/pn) and G ∼= Gl2(Zp).
The following proposition for the étale cohomology should be well-

known. For convenience of the reader and to explain the normalizations
of the action in detail, we give the proof in an appendix.

Proposition 1.1.1. (see appendix B) There are canonical isomor-
phisms of compact finitely generated Λ(G)-modules

H i(OK [1/S], Λ(G))⊗Zp T
∼=−→ H i(OK [1/S], Λ(G)⊗Zp T )

and

lim←−
n

H i(OKn [1/S], T/pn) ∼= lim←−
n

H i(OKn [1/S], T ) ∼= H i(OK [1/S], Λ(G)⊗ZpT )

(limit over the corestriction maps). Here the Λ(G)-module structure on
T is induced by the action of G and the one on Λ(G) is via multiplication
with the inverse.

Denote by ε : Λ(G) → Zp the augmentation map.
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Definition 1.1.2. The twisting map

TwT : H i(OK [1/S], Λ(G))⊗Zp T −→ H i(OK [1/S], T )

is the composition of the isomorphism of proposition 1.1.1 with the map

ε : H i(OK [1/S], Λ(G)⊗Zp T ) → H i(OK [1/S], T )

induced by the augmentation ε.

Our goal is to show that the twisting map is surjective in certain
cases after tensoring with Qp. In particular it allows to construct ele-
ments in H i(OK [1/S], T ) starting from (corestriction or norm compat-
ible) elements in

H i(OK [1/S], Λ(G)) ∼= lim←−
n

H i(OKn [1/S],Zp).

We will apply this in the case where T = Hr(X ×OK [1/S] K̄,Zp).

1.2 The conjectured ranks of the étale cohomology

For the convenience of the reader, we recall the conjecture of Jannsen
[Ja] about the ranks of the étale cohomology.

Let X be a smooth, projective scheme over OK [1/S] and denote by
X̄ := X ×OK [1/S] K̄ the base change to the algebraic closure.

Conjecture 1.2.1. (Jannsen) For i + 1 < j or i + 1 > 2j one has

H2(OK [1/S], H i(X̄,Qp(j))) = 0.

As a consequence one obtains (for p 6= 2) the following formula for
the dimension of the H1: for i + 1 < j

dimQp H1(OK [1/S], H i(X̄,Qp(j))) = dimRH i(X ×Q C,R(j))+,

where “+” denotes the invariants under complex conjugation, which
acts on X ×Q C and on R(j) = (2πi)jR.

Moreover in analogy with Beilinson’s conjecture that the regulator
from K-theory to Beilinson-Deligne cohomology is an isomorphism for
i + 1 < j, Jannsen also conjectures that the Soulé regulator

rp : H i+1
mot(X,Z(j))⊗Z Qp → H1(OK [1/S], H i(X̄,Qp(j)))

is an isomorphism for i + 1 < j. It is shown in [So4] that for p-adic
K-theory the above regulator is surjective if j >> 0. This should be
compared with the result in 2.2.4.
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1.3 Another description of the twisting map

To make the similarity with the twisting map in motivic cohomology
and in p-adic K-theory more apparent, we describe the twisting map
at finite level.

Fix an integer n > 0. We have by Shapiro’s lemma

H i(OK [1/S],Z/pnZ[Gn]) ∼= H i(OKn [1/S],Z/pnZ)

using the identification as explained in appendix B. As T/pnT is a
trivial sheaf over OKn [1/S], we have T/pnT ∼= H0(OKn [1/S], T/pnT )
and the cup product gives an isomorphism

H i(OKn [1/S],Z/pnZ)⊗ T/pnT
∪−→ H i(OKn [1/S], T/pnT ).

Together with the corestriction (=trace map in étale cohomology)

H i(OKn [1/S], T/pnT ) → H i(OK [1/S], T/pnT )

we get a map

(1) H i(OK [1/S],Z/pnZ[Gn])⊗ T/pnT → H i(OK [1/S], T/pnT ).

Observe that by Mittag-Leffler we have lim←−n
H i(OK [1/S], T/pnT ) ∼=

H i(OK [1/S], T ).

Lemma 1.3.1. The inverse limit with respect to the trace map and
reduction on the coefficients of the maps (1) coincides with the twisting
map in definition 1.1.2.

Proof. Straightforward. ¤

1.4 Tate twist

Let Kcyc := ∪nK(µpn) be the field K with all the p-th power roots of
unity µp∞ adjoined. We will assume that K∞ contains Kcyc. If this is
not the case it can be achieved by considering Kn(µpn) instead of Kn.
Let Γ := Gal(Kcyc/K), then we have a map G → Γ and we denote its
kernel by H. This map induces a surjection

(2) Λ(G) → Λ(Γ).
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The cyclotomic character induces an inclusion of Γ in Z∗p and the asso-
ciated free Zp − Γ-module of rank 1 is denoted by Zp(1). As usual let
Zp(j) := Zp(1)⊗j and T (j) := T ⊗ Zp(j).

We will consider the following important variant of the twisting
map, given by combining Definition 1.1.2 and Proposition 1.1.1 for
T = Zp(1) and T (j − 1):

(3) H i(OK [1/S], Λ(G)(1))⊗Zp T (j − 1)
TwT (j−1)−−−−−→ H i(OK [1/S], T (j)).

Note that H1(OK [1/S], Λ(G)(1)) = lim←−n
H1(OKn [1/S],Zp(1)) and that

by Kummer theory we have an exact sequence
(4)
0 → OKn [1/S]∗⊗Z/pn → H1(OKn [1/S],Z/pn(1)) → Cl(OKn [1/S])[pn] → 0.

Here Cl(OKn [1/S])[pn] is the pn-torsion subgroup of the class group of
OKn [1/S]. Taking the limit over n we get

(5) lim←−
n

OKn [1/S]∗ ⊗ Zp
∼= lim←−

n

H1(OKn [1/S],Zp(1)).

We have a twisted variant of Lemma 1.3.1. Namely, the map
TwT (j−1) of (3) is again given by taking cup products H i(OKn [1/S],Z/pn(1))⊗Zp

T/pn(j − 1) and passing to the limit, using again Proposition 1.1.1.

1.5 The cokernel of the twisting map

To study the cokernel of the twisting map, we factor the augmentation
into Λ(G) → Λ(Γ) → Zp using (2) and get:

(6) H i(OK [1/S], Λ(G)⊗Zp T (j)) → H i(OK [1/S], Λ(Γ)⊗Zp T (j)).

The analysis of the cokernel of the twisting map TwT (j−1) will proceed
in two steps. The first is to investigate the cokernel of (6). The second
step treats then the cokernel of the map induced by the augmentation
Λ(Γ) → Zp:

(7) H i(OK [1/S], Λ(Γ)⊗Zp T (j)) → H i(OK [1/S], T (j)).

Lemma 1.5.1. There is a spectral sequence

Er,s
2 = TorΛ(G)

r

(
Hs(OK [1/S], Λ(G)⊗Zp T (j)), Λ(Γ)

)

⇒ Hs−r(OK [1/S], Λ(Γ)⊗Zp T (j)).
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Proof. The projection formula (see e.g. [We, Exercise 10.8.3]) in the
derived category gives

RΓ(OK [1/S], Λ(G)⊗Zp T (j))⊗LΛ(G)Λ(Γ) ∼= RΓ(OK [1/S], Λ(Γ)⊗Zp T (j)).

Taking cohomology gives the desired spectral sequence. ¤

Corollary 1.5.2. There is an exact sequence

H1(OK [1/S], Λ(G)(1))⊗ZpT (j−1)
TwT (j−1)−−−−−→ H1(OK [1/S], Λ(Γ)⊗ZpT (j))

→ Tor
Λ(G)
1

(
H2(OK [1/S], Λ(G)⊗Zp T (j)), Λ(Γ)

)
.

Proof. As p > 2 the cohomological p-dimension of OK [1/S] is 2 and the
result follows from the spectral sequence and the fact that the twisting
map factors through

H1(OK [1/S], Λ(G)⊗ZpT (j)) → H1(OK [1/S], Λ(G)⊗ZpT (j))⊗Λ(G)Λ(Γ).

¤

Lemma 1.5.3. The canonical isomorphism Λ(G)⊗Λ(H)Zp
∼=Λ(Γ) in-

duces isomorphisms for all r:

TorΛ(G)
r

(
H2(OK [1/S], Λ(G)⊗Zp T (j)), Λ(Γ)

) ∼=
TorΛ(H)

r

(
H2(OK [1/S], Λ(G)⊗Zp T (j)),Zp

)
.

In particular, one gets from corollary 1.5.2 an exact sequence

H1(OK [1/S], Λ(G)(1))⊗ZpT (j−1) → H1(OK [1/S], Λ(Γ)⊗ZpT (j)) →
→ Tor

Λ(H)
1

(
H2(OK [1/S], Λ(G)⊗Zp T (j)),Zp

)
.

Proof. The isomorphism Λ(G)⊗Λ(H)Zp
∼=Λ(Γ) can be checked at finite

level as Zp is a finitely generated Λ(H)-module. Then Zp[Gn] ⊗Zp[Hn]

Zp
∼= Zp[Gn/Hn] and the claim is obvious. In particular, for finitely

generated Λ(G)-modules M is the functor M 7→ M ⊗Λ(G) Λ(Γ) isomor-
phic to M 7→ M ⊗Λ(H) Zp. ¤
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From this lemma and the factorization of the twisting map it is
clear that the cokernel of the twisting map is controlled by

Tor
Λ(H)
1

(
H2(OK [1/S], Λ(G)⊗Zp T (j)),Zp

)

and by Tor
Λ(Γ)
1

(
H2(OK [1/S], Λ(Γ)⊗Zp T (j)),Zp

)
. To say something

about these groups we need some results of Coates and Sujatha on the
finiteness of the H2’s involved.

1.6 Finiteness conditions for H2

This section contains only slight modifications of results of Coates and
Sujatha [Co-Su]. We thank them very much for making these results
available to us before their publication. One should also compare this
section with the appendix B in Perrin-Riou [Pe] prop. B.2.

Let Lcyc (resp. L∞) be the maximal unramified abelian p-extension
of Kcyc (resp. K∞), in which every prime above p splits completely.

Proposition 1.6.1. (Coates-Sujatha [Co-Su]) Assume that G = Gal(K∞/K)
is a pro-p-group, then the following conditions are equivalent:

i) Gal(Lcyc/Kcyc) is a finitely generated Zp-module

ii) Gal(L∞/K∞) is a finitely generated Λ(H)-module

iii) H2(OK [1/S], Λ(Γ)⊗Zp T ) is a finitely generated Zp-module

iv) H2(OK [1/S], Λ(G)⊗Zp T ) is a finitely generated Λ(H)-module.

In particular, if these equivalent conditions are satisfied, the Λ(Γ)-
module H2(OK [1/S], Λ(Γ)⊗Zp T ) is torsion, i.e., the weak Leopold con-
jecture is true.

Remarks: The first condition is equivalent to the famous µ = 0
conjecture of Iwasawa (see [NSW] Ch. XI thm. 11.3.18), which is
known to be true for K/Q abelian.

Note also that the statements i) and ii) in the proposition are in-
dependent of the Galois representation T .

Proof. The proof of the proposition can be found in Coates and Sujatha
[Co-Su] in the case of the Tate module for an elliptic curve. The case
for an arbitrary Galois representation T is the same. More precisely,
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the equivalence i) ⇐⇒ ii) is lemma 3.7., i) ⇐⇒ iii) is thm. 3.4. in
loc. cit. To prove iii) ⇐⇒ iv), we have from the spectral sequence in
lemma 1.5.1 and the vanishing of étale cohomology for s > 2 that

H2(OK [1/S], Λ(G)⊗Zp T )⊗Λ(H) Zp
∼= H2(OK [1/S], Λ(Γ)⊗Zp T )

and the claim follows from Nakayama’s lemma. ¤

Example: Let E/Q be an elliptic curve over Q and F/Q be an abelian
extension such that Ep∞(F ) 6= 0. Then it is easy to see (cf. [Co-Su]
cor. 3.6.) that F (E∞

p )/F (µp) is a pro-p extension. Thus these ellip-
tic curves provide examples where the above proposition 1.6.1 applies.
More specific examples are E : y2 + xy = x3− x− 1 and F = Q(µ7) or
E : y2 + xy = x3 − 3x− 3 and F = Q(µ5) (see loc. cit. 4.7. and 4.8.).

1.7 Étale cohomology classes as twists of units

Recall that Lcyc is the maximal unramified abelian p-extension of Kcyc,
in which every prime above p splits completely, and that we have an
isomorphism H1(OK [1/S], Λ(G)(1)) ∼= lim←−n

OKn [1/S]∗ ⊗ Zp by Propo-

sition 1.1.1 and (5).

Theorem 1.7.1. Suppose that Gal(Lcyc/Kcyc) is a finitely generated
Zp-module, then there exists a J ∈ N such that for all j ≥ J the twisting
map

H1(OK [1/S], Λ(G)(1))⊗Zp T (j − 1)
TwT (j−1)−−−−−→ H1(OK [1/S], T (j))

has finite cokernel. In particular, for j ≥ J all elements in H1(OK [1/S], V (j))
(where V = T ⊗Zp Qp as before) are “twists” of norm compatible units
in

H1(OK [1/S], Λ(G)(1)) = lim←−
n

H1(OKn [1/S],Zp(1))

with a basis in the lattice T (j − 1).

Remark: The choice of the twist 1 in H1(OK [1/S], Λ(G)(1)) and
hence of the group of norm compatible units instead of any other twist
is just for esthetic reasons. For the application to Euler systems and
the construction of p-adic L-functions the units are certainly the most
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interesting case. In particular, we see this theorem as a strong confir-
mation of the philosophy explained in [Hu-Ki2], that all p-adic prop-
erties of motives in connection with L-values should be encoded in the
associated tower of number fields.

It is an interesting question to investigate H2(OK [1/S], T (j)) with
the above methods and to compare this with the results by McCallum
and Sharifi [Mc-Sh].

Proof. It follows from proposition 1.6.1 that under our conditions

Tor
Λ(H)
1

(
H2(OK [1/S], Λ(G)⊗Zp T (j)),Zp

)

is a finitely generated Zp-module. Indeed H2(OK [1/S], Λ(G)⊗Zp T (j))
is a finitely generated Λ(H)-module and thus the groups

TorΛ(H)
r

(
H2(OK [1/S], Λ(G)⊗Zp T (j)),Zp

)

are also finitely generated Zp-modules by standard homological algebra.
The exact sequence 1.5.2 implies that the cokernel of

H1(OK [1/S], Λ(G)⊗Zp T (j))⊗Λ(G)Λ(Γ) → H1(OK [1/S], Λ(Γ)⊗Zp T (j))

is a Λ(Γ)-module, say M(j), which is finitely generated as a Zp-module,
hence torsion as Λ(Γ)-module. By the classification of torsion Λ(Γ)-
modules, the coinvariants of M(j)⊗Λ(Γ)Zp are finite for sufficiently big
j. We get an exact sequence

H1(OK [1/S], Λ(G)⊗Zp T (j))⊗Λ(G) Zp →
H1(OK [1/S], Λ(Γ)⊗Zp T (j))⊗Λ(Γ) Zp → M(j)⊗Λ(Γ) Zp → 0.

To get the twisting map we have to compose with the first map in the
following exact sequence (which is similar to Corollary 1.5.2)

H1(OK [1/S], Λ(Γ)⊗Zp T (j))⊗Λ(Γ) Zp →
H1(OK [1/S], T (j)) → Tor

Λ(Γ)
1

(
H2(OK [1/S], Λ(Γ)⊗Zp T (j)),Zp

)
.

By our condition and proposition 1.6.1 H2(OK [1/S], Λ(Γ) ⊗Zp T (j))
is also a finitely generated Zp-module and thus Λ(Γ)-torsion. As Γ is

cyclic (G and hence Γ is pro-p), the Tor
Λ(Γ)
1 term identifies with the

Γ-invariants of H2(OK [1/S], Λ(Γ) ⊗Zp T (j)). Again for j big enough
these are finite. ¤
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Remark: In fact, if M is the p-adic realization of a motive (say
M = Hn(X×K K̄,Qp) for X/K smooth, projective), one should expect
that the Λ(Γ)-module

Tor
Λ(G)
1

(
H2(OK [1/S], Λ(G)⊗Zp T (j)), Λ(Γ)

)⊗Λ(Γ) Zp

is finite for all j ≥ n+1. Compare this with Jannsen’s conjecture 1.2.1
about the vanishing of H2(OK [1/S], Hn(X×K K̄,Qp(j))) for j ≥ n+1.

2 Twisting for motivic cohomology with p-adic co-
efficients

In this section X will always be a smooth and projective scheme over
D = OK [1/S].

The goal in this section is to study the twisting map in motivic
cohomology with finite coefficients. The general assumption is that the
“Bloch-Kato-conjecture” for motivic cohomology holds as announced
by Voevodsky in [Vo2] (do not confuse this with the Tamagawa number
conjecture). This implies, using the Beilinson-Lichtenbaum conjecture,
that we have to deal with étale cohomology of X.

2.1 Review of motivic cohomology with finite coefficients
over Dedekind domains

For a variety X smooth over a Dedekind ring D, we define motivic
cohomology groups as the hypercohomology of Bloch’s cycle complex
Z(j). As usual, ∆s

D := Spec(D[t0, ..., ts]/
∑

i ti − 1) denotes the stan-
dard algebraic s-simplex.

For a variety X smooth over a Dedekind ring D, let zj(X, i) be the
free abelian group on closed integral subschemes of codimension j on
X ×D ∆i

D which intersect all faces properly. The associated complex
of presheaves (with zj(X, 2j − i) in degree i) is denoted Z(j), and
Z/n(j) := Z(j) ⊗L Z/n. The complex Z(j) (and thus also Z/n(j)) is
a complex of sheaves for the étale topology [Ge, Lemma 3.1], and we
write Z/n(j)et resp. Z/n(j)Zar when considering it as a complex of
étale resp. Zariski sheaves.
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Definition 2.1.1. (compare [Ge, p. 5]) The motivic cohomology of X
is the hypercohomology

(8) H i
mot(X,Z/n(j)) := H i(X,Z/n(j)Zar).

Calling this motivic cohomology is justified by Voevodsky’s [Vo1]
theorem HomDMeff,−(K)(M(X),Z(j)[i]) =: H i

mot(X,Z(j)) ∼= CHj(X, 2j−
i) if D = K is a field. In this case, higher Chow groups are defined by
taking just cohomology and not hypercohomology. By [Ge, Theorem
3.2] both definitions coincide not only over a field but still if the base
D is a discrete valuation ring.

Observe [Ge, section 3] that H i
mot is covariant for proper maps (with

degree shift) and contravariant for flat maps. The latter applies in
particular to the structural morphisms pn : Xn → Dn.

The étale cycle class cl factors through the étale sheafification Z/n(j)et

via the map Z/n(j)Zar → Rπ∗Z/n(j)et induced by the morphism of
sites π : (Sm/D)et → (Sm/D)Zar.

For us the most important consequence of the Bloch-Kato conjec-
ture is the truth of the Beilinson-Lichtenbaum conjecture:

Theorem 2.1.2. (Geisser [Ge, Theorem 1.2 (2)(4)]) Assume that X
is a smooth scheme over a Dedekind domain D with n ∈ D× and that
the “Bloch-Kato-conjecture” holds.

1) For all i and j there is an isomorphism

H i(X,Z/n(j)et) ∼= H i(X,Z/n(j))

of the étale hypercohomology of Z/n(j)et with the étale cohomol-
ogy.

2) The étale cycle class map induces isomorphisms for 0 ≤ i ≤ j

H i
mot(X,Z/n(j)) ∼= H i(X,Z/n(j))

of motivic with étale cohomology.

2.2 The geometric twisting map

We are going to define a geometric twisting map, which will allow
to relate our results for étale cohomology with motivic cohomology.
The main difficulty is that the cup-product is not compatible with
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corestriction maps. We use the compatibility of the Hochschild-Serre
spectral sequence with cup-product to overcome this and to reduce to
an observation due to Soulé.

In this section we consider X → SpecOK [1/S] smooth and proper.
We denote by X̄ := X × K̄ and let T := H i(X̄,Zp). This is a Galois-
module and finitely generated Zp-module. As in section 1.1 this defines
a tower of number fields Kn and a p-adic Lie group G := Gal(K∞/K).
Let

Xn := X ×OK [1/S] OKn [1/S].

To construct a twisting map for motivic cohomology we use the pull-
back

H1(OKn [1/S],Z/pn(1)) → H1(Xn,Z/pn(1))

and the cup-product with H i(Xn,Z/pn(j−1)). This produces elements
in H i+1(Xn,Z/pn(j)). The Hochschild-Serre spectral sequence

Ep,q
2 = Hp(OKn [1/S], Hq(X̄,Z/pn(j))) ⇒ Hp+q(Xn,Z/pn(j))

allows to relate these elements with H1(OKn [1/S], H i(X̄,Z/pn(j))) as
follows: Let

H i+1(Xn,Z/pn(j))0 :=

ker
(
H i+1(Xn,Z/pn(j))

γ−→ H0(OKn [1/S], H i+1(X̄,Z/pn(j)))
)

be the kernel of the edge morphism γ. As the Hochschild-Serre spectral
sequence is compatible with cup-products, we get a map
(9)
H1(OKn [1/S],Z/pn(1))×H i(Xn,Z/pn(j − 1)) → H i+1(Xn,Z/pn(j))0.

As E1,i
2 = E1,i

∞ we have a surjection,

(10) H i+1(Xn,Z/pn(j))0 → H1(OKn [1/S], H i(X̄,Z/pn(j))),

which we compose with the corestriction map
(11)

H1(OKn [1/S], H i(X̄,Z/pn(j)))
cores−−→ H1(OK [1/S], H i(X̄,Z/pn(j))).

If we compose the cup-product in (9) with this composition and using
again the compatibility of the spectral sequence with products we see
that the cup-product has to factor through the edge morphism

(12) H i(Xn,Z/pn(j − 1))
γ−→ H0(OKn [1/S], H i(X̄,Z/pn(j − 1))).
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Thus we get

(13) H1(OKn [1/S],Z/pn(1))×H0(OKn [1/S], H i(X̄,Z/pn(j − 1))) →
→ H1(OK [1/S], H i(X̄,Z/pn(j))).

It is an important observation by Soulé that, although the cup-product
in general is not compatible with corestriction, the map in (13) is com-
patible. To formulate the observation of Soulé properly we need:

Definition 2.2.1. A sequence of elements αn ∈ Hr(Xn,Z/pn) is norm
compatible if the restriction of the coefficients modulo Z/pn−1 of cores(αn)
is αn−1 for all n ≥ 2. The sequence {αn} is reduction compatible if
the reduction modulo pn−1 of αn is the pull-back of αn−1 for all n ≥ 2.

Note that the elements {αn} of any Zp-lattice T ⊂ H i(X̄,Qp(j)))
are reduction compatible. Soulé proves the following:

Lemma 2.2.2. If the sequence {αn} is norm compatible and {βn} is
reduction compatible, then {αn ∪ βn} is norm compatible.

Proof. This is just the projection formula, see [So4, Lemma 1.4]. ¤
Taking the projective limit over n in (13) gives:

Corollary 2.2.3. Cup-product gives a map

H1(OK [1/S], Λ(G)(1))⊗H i(X̄,Zp(j−1)) → H1(OK [1/S], H i(X̄,Zp(j))).

Combining this with theorem 1.7.1 and with the isomorphism of
motivic and étale cohomology from theorem 2.1.2 we obtain:

Corollary 2.2.4. Under the condition of theorem 1.7.1 there is an
integer m such that for all n ≥ m the cokernel of the cup-product map
in (9) composed with the maps in (10) and (11)

H1
mot(OKn [1/S],Z/pn(1))×H i

mot(Xn,Z/pn(j − 1)) →
→ H1(OK [1/S], H i(X̄,Z/pn(j)))

is annihilated by pm for all j ≥ J .

Remarks: a) More generally, the above construction is possible for
any theory A∗, which is covariant for proper maps, contravariant for
flat maps and satisfying the projection formula f∗(a∪f ∗(b)) = f∗(a)∪b
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for flat proper (or at least finite étale) maps f . We explain the case of
K-theory with finite coefficients in appendix A.

b) Soulé applies the above construction to get non-torsion elements
in the K-groups of rings of integers or elliptic curves with complex
multiplication. In these cases the schemes Xn are base changes of X
to the ring OKn [1/S], where Kn is defined by adjoining pn-th roots
of unity or pn-th division points of the elliptic curve. The towers of
fields are in these cases abelian. It is shown in the cyclotomic case in
[Hu-Wi] and [Hu-Ki1] (with another method) and in the case of CM-
elliptic curves in [Ki] that these twisted elements are in fact motivic,
i.e., are in the image of motivic cohomology.

2.3 Compatibility of cup products in motivic and étale co-
homology

The aim of this technical section is to establish the compatibility of
cup products in étale and motivic cohomology. The problem is that
the cup product for motivic cohomology over Dedekind rings is only
defined if one factor consists of equi-dimensional cycles (see definition
2.3.2 below). We will show that we have a commutative diagram
(14)

(D×
n ⊗ Z/pn)×H i

mot(Xn,Z/pn(j − 1))
∪mot◦φ×id //

φ×cl

²²

H i+1
mot(Xn,Z/pn(j))

cl
²²

H1(Dn,Z/pn(1))×H i(Xn,Z/pn(j − 1))
∪ //

1×γ

²²

H i+1(Xn,Z/pn(j))

γ̃

²²
H1(Dn,Z/pn(1))×H i((X̄,Z/pn(j − 1))

Tw // H1(Dn, H
i(X̄,Z/pn(j))

where Dn := Spec(OKn [1/S]), γ and γ̃ are the edge maps as before,
the vertical arrows cl are étale cycle class maps and the cup product
∪mot as well as the map φ are defined below. The commutativity of
the lower square follows from lemma 1.3.1 and the compatiblity of the
Hochschild-Serre spectral sequence with cup products. The commuta-
tivity of the upper square of (14) is discussed below; this generalizes the
classical result for the usual cycle class map (see e. g. [Mi, Proposition
VI.9.5]). Recall that by [Su, Corollary 4.3] we have an isomorphism
H i

mot(X̄,Z/pn(j)) ∼= H i(X̄,Z/pn(j)).
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Recall from [Le, section 1.7] that an irreducible scheme Z → D
is equi-dimensional if it is dominant over D. The relative dimension
dimD Z is then defined to be the dimension of the generic fibre. Now we
define the relative higher Chow group complex for our smooth X →
D as follows: zj(X/D, p) to be the free abelian group generated by
irreducible closed subsets Z ⊂ X ×D ∆p

D, such that for each face F of
∆p

D the irreducible components Z ′ of Z ∩ (X×F ) are equi-dimensional
over D and dimD Z ′ = dimD F +d−j. Note that we have an inclusion of
complexes zj(X/D, ∗) ⊂ zj(X, ∗). We define equi-dimensional motivic
cohomology H i

mot(X/D,Z(j)) to be the Zariski hypercohomology of the
complex which has in degree i the Zariski sheafification of the presheaf
U 7→ zj(U/D, 2j − i). To define H i

mot(X/D,Z/pn(j)) we use the same
complex tensored with ⊗LZ/pn.

The units D×
n we use for twisting are all equi-dimensional:

Lemma 2.3.1. The map

φ : D×
n→H1

mot(Dn,Z(1))

induced by sending u 6= 1 ∈ D×
n to the graph of the rational map

(
1

1− u
,

u

u− 1

)
: Spec Dn → ∆1

D

(i.e. to a cycle in Dn ×D ∆1
D) factors through H1

mot(Dn/D,Z(1)). The
induced map

D×
n ⊗ Z/pn → H1

mot(Dn/D,Z/pn(1))

is injective.

Proof. In [Le, Lemma 11.2] Levine constructs a map D×
n→CH1(Dn, 1)

using the graph of
(

1
1−u

, u
u−1

)
. Together with the natural map CH1(Dn, 1) →

H1
mot(Dn,Z(1)) this defines φ and hence a map

D×
n ⊗ Z/pn → H1

mot(Dn,Z/pn(1)).

If we compose this with the isomorphism in 2.1.2, we get a map

D×
n ⊗ Z/pn → H1

et(Dn,Z/pn(1)),

which is obviously (reduce to the case of a field) the map induced by the
Kummer sequence, hence injective. It remains to show that the map
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factors through H1
mot(Dn/D,Z/pn(1)). As the graph of

(
1

1−u
, u

u−1

)
is

an equi-dimensional cycle, this follows from the definition. ¤

Now we define the upper horizontal map ∪mot of (14).

Definition 2.3.2. For f : Xn → Spec(Dn) smooth, we define

∪mot : H1
mot(Dn/D,Z/pn(1))×H i

mot(Xn,Z/pn(j−1)) → H i+1
mot(Xn,Z/pn(j))

as the composition

H1
mot(Dn/D,Z/pn(1))×H i

mot(Xn,Z/pn(j − 1))
(f×id)∗◦∪r,s

Dn/D,Xn−−−−−−−−−−−→
→ H i+1

mot(Xn ×D Dn,Z/pn(j))
(id,pn)∗−−−−→ H i+1

mot(Xn,Z/pn(j)).

Here ∪r,s
Dn/D,X : zs(Dn/D, ∗) ⊗ zr(X) → zr+s(X ×D Dn) is the ex-

terior product with integral coefficients defined by Levine [Le, section
8]. The product of the complexes of presheaves induces a product of
complexes of sheaves and (using Godement resolutions as in [Ge-Le])
on the hypercohomology groups.

Now we return to the commutativity of (14). By definition of the
twisting map at finite level in 1.3, it is enough to consider the diagram

H1
mot(Dn/D,Z/pn(1))×H i

mot(Xn,Z/pn(j − 1))
∪mot //

cl
²²

H i+1
mot(Xn ×D Dn,Z/pn(j))

cl
²²

H1(Dn,Z/pn(1))×H i(Xn,Z/pn(j − 1))
∪ // H i+1(Xn ×D Dn,Z/pn(j)).

As pointed out in [Ge, p. 13], the proof of [Ge-Le, Proposition 4.7] for
the commutativity of the corresponding diagram of varieties over fields
carries over to Dedekind domains. The argument in the proof of [Ge-Le,
Proposition 4.7] that ∪ equals the product ∪′ of loc. cit. constructed
in a way compatible with ∪Dn/D,X is still valid over Dedekind domains.
Hence the commutativity of (14).

A Twisting in p-adic K-theory

In this appendix, we will reinterpret our results in terms of p-adic K-
theory.
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As usual, we can define K-theory with coefficients of the exact cat-
egory V ect(X) of vector bundles on X using Quillen’s Q-construction
and homotopy groups with finite coefficients:

Definition A.0.3. Let

Km(X,Z/q) := πm(ΩBQV ect(X),Z/q)

for r > 0 and K0(X,Z/q) := K0(X)/q. Moreover, we set

Kr(X,Zp) := lim←−
n

Kr(X,Z/pn).

and define Kr(X,Qp) := Kr(X,Zp)⊗Zp Qp.

Here we use that we have maps εn : Kr(X,Z/pn) → Kr(X,Z/pn−1)
given by reduction of coefficients. Applying lim←− to the short exact
sequence

0 → Kr(X)/pn → Kr(X,Z/pn) →pn Kr−1(X) → 0

shows that rkZKr(X) = rkZpKr(X,Zp), provided the groups Kr(X)
and Kr−1(X) are finitely generated as generally conjectured (“Bass
conjecture”) and proved if X = Spec(OK) by Quillen [Qu].

We assume as before that X is smooth over OK [1/S], of relative di-
mension d. Adams operations carry over to finite coefficients and their
eigenspaces are denoted by K(X,Z/pn)(j) as usual. By [So3, Proposi-
tion 6] the transfer maps (fn)∗ respect these eigenspace decomposition
(the hypothesis of loc. cit. is satisfied as the field extension Kn/Kn−1

is finite).

Thomason constructs an algebraic Bott element β ∈ K2(X,Z/pn)

and proves that there is an isomorphism K∗(X,Z/pn)[β−1]
∼=→ Ket

∗ (X,Z/pn)
[Th1, Theorem 4.11], that φj : Kj(X,Z/pn) → Ket

j (X,Z/pn) is an

epimorphism if j ≥ N and βN annihilates ker(φj) for all j ≥ 0,
where N = 2/3(d + 2)(d + 3)(d + 4) [Th2, Corollary 3.6]. Multyply-
ing the short exact (for j ≥ 2N) sequence ker(φj) → Kj(X,Z/pn) →
Ket

j (X,Z/pn) with βN and applying the snake lemma, we get a split-
ting Kj+2N(X,Z/pn) → ker(φj+2N) and thus étale K-theory is a nat-
ural direct summand of K-theory in these degrees. So if 2j − i − 2 ≥
(8/3)(d + 2)(d + 3)(d + 4), we obtain a pairing

Ket
1 (OKn [1/S],Z/pn)×Ket

2j−i−2(Xn,Z/pn) → Ket
2j−i−1(Xn,Z/pn)
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which is a direct summand of the corresponding pairing in algebraic
K-theory with finite coefficients. Concerning the first factor, we even
have an isomorphism between K1 and Ket

1 by [Dw-Fr, Proposition 8.2].

Remark: For p = 2, the bounds for j such that Kj(X,Z/pn)
∼=→

Ket
j (X,Z/pn) have been improved by Kahn [Kah, Theoprem 2] pro-

vided X is “non-exceptional”. He shows that it is an isomorphism if
j ≥ cd2X − 1 As he points out [Kah, p. 104], these improved bounds
will carry over to odd p (without the non-exceptional restriction) as-
suming the Bloch-Kato conjecture for K holds.

The next step is to observe that the étale Atiyah-Hirzebruch spectral
sequence degenerates (E2 = E∞) provided p > (cdpX/2) + 1 where
cdpX is the p-cohomological dimension of X, which is at most 2d + 3
(see [SGA4, Exposé X]). Moreover, the Adams filtration on K-theory
and the weight filtration on étale cohomology coincide in a certain
range [So2, Theorem 2], so that the left hand side of the above pairing
for Ket is isomorphic to

H1(OKn [1/S],Z/pn(1))⊗H i(X̄,Z/pn(j − 1))

provided p ≥ (j + cdpX + 3)/2. As H i(X̄,Z/pn(j − 1)) is a trivial
OKn [1/S]-sheaf, the twist of Definition 1.1.2 yields an isomorphism

H1(OKn [1/S],Z/pn(1))⊗H i(X̄,Z/pm(j−1)) ∼= H1(OKn [1/S], H i(X̄,Z/pn(j))).

It is now possible to construct elements having property R and N for
algebraic K-theory, and to proceed as in the previous section. The
p-adic cycle class map has to be replaced by the p-adic regulator (take
the inverse limit of [Gi, Definition 2.22, Example 1.4.(iii)])

rp : K2j−i−1(X,Zp)
(j) → H i+1(X,Qp(j))).

B Calculation of the inverse limit of Galois coho-
mology

Here we give the proof of proposition 1.1.1. Let G := GS and H ′ ⊂
H ⊂ G subgroups defining Kn and Km, so that G/H ′ ∼= Gm and
G/H ∼= Gn (hence H/H’ is finite).

By Shapiro’s lemma we have

H i(OKn [1/S], T ) ∼= H i(OK [1/S], HomH(G, T )),
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where HomH(G, T ) denotes the continuous maps f : G → T such that
f(hg) = hf(g). The group G acts on this via (gf)(x) := f(xg). The
corestriction on the left hand side

cores : H i(OKm [1/S], T ) → H i(OKn [1/S], T )

is induced on the right hand side by the map

tr : HomH′(G, T ) → HomH(G, T )

f 7→ {g 7→
∑

h∈H/H′
hf(h−1g)}

A straightforward calculation shows that this is well-defined. Consider
now T/pn so that the G action factors through Gn. Define gf(x) :=
gf(g−1x). Then because H ⊂ G is a normal subgroup this defines
another G action on HomH(G, T/pn) where H acts trivially. Consider
the G-isomorphism

φ : HomH(G, T/pn)
∼=−→ Zp[Gn]⊗Zp T/pn

f 7→
∑
x∈Gn

(x)⊗ f(x−1).

Then we have gf 7→ ∑
x∈Gn

(gx) ⊗ f(x−1) and gf 7→ ∑
x∈Gn

(g−1x) ⊗
gf(x−1). If we put all this together we obtain that the corestriction is
induced by

π ⊗ pr : Zp[Gm]⊗Zp T/pm → Zp[Gn]⊗Zp T/pn

where π : Zp[Gm] → Zp[Gn] is the canonical surjection (integration
over the fibers) and pr : T/pm → T/pn the canonical projection. This
proves that

lim←−
n

H i(OKn [1/S], T ) ∼= H i(OK [1/S], Λ(G)⊗Zp T ).

The G action on Λ(G)⊗Zp T is only via the first factor so that

H i(OK [1/S], Λ(G)⊗Zp T ) ∼= H i(OK [1/S], Λ(G))⊗Zp T.

Note that the Λ(G) action is induced by the G action on T and is by
multiplication with the inverse on Λ(G). This proves the proposition.
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