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Nano-structuring is a promising way to improve 
the efficiency of light emitting diodes (LEDs): 
two-dimensional photonic crystals can help 
to extract light from LEDs with the option of 
shaping the emission pattern, but can also in-
crease the internal quantum efficiency in com-
bination with surface plasmon polaritons. Both 
concepts are investigated theoretically in order 
to quantify for the first time their benefit in com-
parison to standard state-of-the-art LEDs. The 
impact of the photonic crystal design is investi-
gated in depth along with the importance of the 
LED’s layer stack. Additionally, the value of pho-
tonic crystal LEDs for the application in étendue-
limited systems is discussed.
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1 Introduction 
After the first observation of electroluminescence in 1907 [1] and some early work on this 
topic twenty years later [2] by an almost forgotten Russian scientist, Oleg V. Losev, the LED 
experienced robust progress in efficiency since 1962 [3] and became a hot favourite in the 
race of the most efficient light sources. Compared to the traditional light source, the light 
bulb, with its approximate efficacy of 12lm/W the LED offers a great potential in energy 
savings according to its nowadays efficacy of ~100lm/W and its expected efficacy of 
150lm/W. Even compared to CFLs (compact fluorescence lamps) with 60lm/W, the LED 
shows superior performance. In [4] the potential savings of green house gas emission by 
replacing all incandescent lamps and all CFLs by LEDs are estimated. In 2005 all buildings 
worldwide emitted 8.3Gt of CO2 and 15% stemmed from lighting. For a comparison, the 
emission from buildings is roughly 70% higher than that of the whole road transportation 
sector worldwide, while the lighting used in buildings generated approximately half as much 
CO2 as all light-duty vehicles (passenger and commercial vehicles with weight <3.5t) 
worldwide. Aggressively enforcing the replacement could save more than 400Mt of CO2 
emissions per year in 2030 and additionally save more than 300€ per emitted ton of CO2 
compared to a business-as-usual scenario. Hence, there is a great potential in reducing green 
house gas emission by using LEDs and pushing their efficacy further. Apart from the savings 
in green house gas emission the high efficiency leads to a reduced consumption of primary 
energy sources, like petroleum, natural gas, coal, and nuclear power while keeping our 
standard of living. Of course, to reach this goal a drastic reduction of the LEDs’ costs have to 
be accomplished. 

By now, LEDs are widely used as backlighting for LCD monitors in mobiles and 
notebooks, in automotive interior and exterior lighting, traffic lighting, video walls, 
architectural lighting, in pocket projectors and many more. For this huge variety of 
application fields the commercial applicability of the wide band gap material system InGaN 
(Indium Gallium Nitride) for generation of UV, blue, and green light was decisive. The main 
challenge was to achieve sufficient crystalline quality and high p-type doping of GaN layers. 
After achieving this breakthrough [5] white LEDs are realized in two ways [6] nowadays. The 
first way is to group the three colours red, green and blue (and sometimes additional colours 
like amber for better colour rendering) obtained from individual LED chips. The human eye 
recognizes the superposition as white light. InGaN with varying Indium content is used for 
blue and green. For red the quaternary system AlInGaP is widely adopted (also for yellow and 
orange; the AlGaAs system covers the range from red into the near IR). Fig. 1.1 shows 
external quantum efficiencies for different emission wavelengths and material systems along 
with the sensitivity of the human eye. In the second approach, which is most widely used 
today, a blue chip is used in combination with a phosphor that partially down converts the 
blue to yellow light. Also in this case the superposition is experienced as white light. Due to 
its key role in the field of LEDs the main focus of the current scientific work is on InGaN 
based ones.  
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Fig. 1.1: External quantum efficiencies in 2009 for the InGaN and AlGaInP material system as a function of the 

emission wavelength. Data taken from datasheets of Diamond Dragon LEDs  [7]. The grey solid curve indicates 

the eye sensitivity. Even though most of the visible spectral region is covered by nowadays LEDs, the green 

colour lacks efficient solid state light sources. 

In general, in order to enhance the efficiency of LEDs two quantities have to be 
improved: the efficiency of light generation and the efficiency of light extraction from the 
LED chip. In relation to white light generation additional issues like colour temperature and 
colour rendering have also to be taken into account for the application [6]. The progress in 
light generation efficiency was dominated by a reduction of defects owing to improved 
material quality and by the introduction of heterostructures. With the latter a proper band 
engineering became possible. To enhance the extraction efficiency of LEDs, geometrical 
solutions have been suggested to overcome total internal reflection, like hemispherically 
shaped chips [8], the so-called Weierstrass sphere [9] or the truncated-inverted pyramid [10]. 
In 1993 Schnitzer et. al [11] reported on high efficiencies obtained from LEDs with a mirror 
at the back and a random surface structuring on the opposite side. 

The value of controlled nano-structuring for the efficiency of LEDs was first 
investigated in [12]. Simulations revealed almost 100% extraction efficiency [13] from a 
so-called PhC slab with a complete photonic band gap, i.e. a thin semiconductor slab 
perforated with a periodic, two-dimensional arrangement of holes where the lateral 
propagation of light is inhibited. However, the practical realization of an electrically driven 
band gap PhC LED is hardly achievable [14]. Therefore, most PhC LEDs incorporate only 
shallow etched PhCs at the semiconductor-to-air interface. Here, the PhC diffracts light out of 
the LED into air [15]-[33]. In this regime, extraction enhancements for the AlGaInP material 
system as high as 2.6 [15] and in the InGaN system of 2.5 [16] compared to unstructured 
LEDs have been realized. Moreover, it has been shown that PhCs also have an impact on the 
radiation characteristics of the LED [17][18]. The latter is of great interest for so-called 
étendue limited applications, where only the light emitted into a specific solid angle can be 
used [34][35]. Nano-structured metallic surfaces additionally allow to enhance the efficiency 
of light generation owing to surface plasmons [36][37]. 

The present work and the related studies were carried out at Osram Opto 
Semiconductors GmbH in Regensburg, Germany. Due to its close relation to industry the 
main focus of this thesis is on diffracting PhCs, as they are most important for the application. 
The key question to answer is, what are the critical parameters determining the extraction 
efficiency of PhC LEDs and to derive the limits of this concept if there are any. Moreover, we 
will compare PhC LEDs with standard, commercial LEDs with respect to the application in 
order to quantify the benefit from using PhCs. As an example structure we use a green 
emitting InGaN LED because green LEDs are often the limiting factor for the performance of 
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RGB systems, like projectors, due to their low efficiency, see Fig. 1.1. Besides, the 
conclusions can readily be extended to blue due to the similarity of the LED structures.  

We start with a summary of basic properties of LEDs that determine the overall 
efficiency using as an example the world record white LED announced by OSRAM in July, 
2008 [38]. The factors that determine the internal quantum efficiency and the extraction 
efficiency are discussed in more detail. In addition, we summarize the concept of the étendue 
as it is a crucial quantity for the performance of specific applications in combination with the 
far field shape of the LED. 

Thereafter, the impact of PhCs on the dispersion relation of light is discussed and its 
benefit for light extraction from LEDs is derived. Furthermore, we point out why band-effects 
owing to the periodicity of the PhC can be neglected in LEDs with PhCs as a surface 
structure. 

Based upon these conclusions we present a perturbative model that describes the 
diffraction process of light by the PhC while taking into account the relevant properties of 
both the PhC and the LED. Besides, we summarize two well established methods that serve as 
verification tools. The first is a transfer matrix method that takes into account source 
distributions [39][40] and is capable of determining the extraction efficiency and the emission 
pattern of co-planar layer stacks without surface structuring. In this context, also the possible 
source distributions within LEDs are discussed. The other method is the finite-difference 
time-domain (FDTD) algorithm [41] that provides a general solution of Maxwell’s equations 
for arbitrary three-dimensional geometries. 

In the main part of the work we investigate the different parameters of the PhC and the 
vertical layer stack of the LED in order to derive their impact on the extraction of light. We 
separate the whole problem into two parts. The first part covers the properties of the PhC, i.e. 
the pitch, the lattice type and the filling fraction. In the second part we determine the role of 
the LED’s layer stack and the resulting distribution of the generated light for the light 
extraction mechanism. We use geometrical considerations and the diffraction model to give a 
clear insight into the physics of PhC LEDs. For every parameter we additionally verify our 
conclusion with results from the FDTD method. Furthermore, the impact of the PhC on the 
far field shape is explained. In the end, experimental results are presented and compared to the 
diffraction model. 

Thereafter, surface plasmon mediated light generation in LEDs is studied in detail 
with the help of the FDTD method in order to, firstly, quantify results from [42] based on a 
perturbational theory. Secondly, it is possible to give further conclusions on the applicability 
of surface plasmon polaritons in LEDs and the use of metallic PhCs in general. 

In the last chapter, we compare PhC LEDs with standard LEDs in terms of overall 
efficiency and with respect to étendue limited applications. Here, we quantify the benefit from 
PhC LEDs. 
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2 LED Basics 
In this section the basic principles determining the efficiency of an LED are summarized. 
Along with these also the radiometric and photometric quantities are given that are essential 
for the performance of LED-based applications. Thereafter, we introduce the étendue that 
determines the efficiency of light sources within applications with a limited acceptance angle. 
We close this chapter with a summary of aspects special to the InGaN material system. 

Fig. 2.1 shows a general setup of a white LED. Here, the primary blue emission from a 
nitride based LED chip is partially down converted to yellow. A phosphor embedded within a 
silicone matrix absorbs the blue light and re-emits it in the yellow spectral range. A proper 
superposition of the directly emitted blue light and the converted yellow light is experienced 
as white light by the human eye. The semiconductor slab of the LED chip itself consists of an 
active region sandwiched between an n-doped and a p-doped semiconductor and defines the 
pn-junction. Nowadays commercial LEDs consist of ternary (InGaN, AlGaAs) or quaternary 
(AlGaInP) material systems that are grown by metalorganic vapour phase epitaxy (MOVPE) 
on a growth substrate. The layer thickness depends on the functionality of the specific layer 
and ranges from a few nm, e.g. the quantum wells of the active region, up to several µm, e.g. 
the cladding layers. For current injection metallic pads (not shown in Fig. 2.1) are used in 
direct contact to the n-type and p-type cladding layers, respectively. In order to generate light 
sufficient voltage V has to be applied, V>∆E/e, where ∆E is the band gap energy of the 
quantum well. The injected electrons and holes have the chance to recombine in the vicinity 
of the pn-junction through a direct transition from the conduction band to the valence band 
and a photon with wavelength according to the band gap is emitted. In the case of InGaN 
LEDs the band gap of the quantum wells is determined by their Indium content. The 
surrounding semiconductor consists of GaN. Since different semiconductors are combined, 
 

 
Fig. 2.1: Schematic setup of a white LED with down converting phosphor (dark spots within the silicone matrix 

in light grey). The reflecting package is shown in dark grey, the InGaN LED chip is white. Solid (dashed) arrows 

indicate blue (yellow) light. The close-up on the LED chip illustrates the vertical layer stack and gives typical 

values for the layer thickness. 
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the epitaxial layer stack is called a heterostructure. By tuning the Indium content the emission 
wavelength of the quantum wells can be varied; e.g. for blue (green) emission of 450nm 
(520nm) typical Indium contents of ~17% (~30%) are used [43]. 

Apart from the LED’s pure efficiency that is discussed in the upcoming section, also 
radiometric quantities and their photometric analogies are crucial for the performance of LED 
applications. An example discussed in detail in section 7.2 are projection based devices, 
where only light emitted within some limited external angle can be used. In these 
applications, besides the total radiant flux also the radiant emittance, the radiant intensity and 
the radiance have to be taken into account. The radiant flux per source area determines the 
radiant emittance. The radiant intensity describes the radiant flux per unit solid angle. The 
emitted power per unit solid angle and seen source area is called radiance. By weighting the 
radiometric emission with the sensitivity of the human eye, as given in Fig. 1.1, the 
photometric quantities are derived. 

 

Radiometry Unit Photometry Unit Description 

Radiant flux [W] Luminous flux [lm] Emitted power 

Radiant emittance [W/m2] Luminous emittance [lm/m2]=[lx] Emitted power per source area 

Irradiance [W/m2] Illuminance [lm/m2]=[lx] Power per area 

Radiant intensity [W/sr] Luminous intensity [lm/sr]=[cd] Power per solid angle 

Radiance [W/sr /m2] Luminance 
[lm/sr /m2]= 

[cd/m2] 
Power per solid angle and 

projected source area 

Table 2.1: Summary of radiometric and photometric quantities. The latter are calculated by weighting the 

former with the sensitivity of the human eye. Lumen per area are called Lux [lx], lumen per solid angle give 

Candela [cd]. 

2.1 White LED Efficiency  
The overall power conversion efficiency or wallplug efficiency ηWall of an LED is given by 
the ratio of radiant flux with respect to electrical input power and depends on several loss 
mechanisms 

StConvPack

EQE

extrIQEelWall     
[W]power input  electrical

[W]flux  emitted
ηηη

η

ηηηη
43421

== , (2.1) 

with ηel the electrical efficiency and ηEQE the external quantum efficiency given as the product 
of the internal quantum efficiency ηIQE and the extraction efficiency ηextr. The conversion of 
blue light within the package additionally introduces the package efficiency ηPack, the 
conversion efficiency ηConv and the Stokes losses ηSt. The efficiencies and their origin will be 
discussed in the following. Fig. 2.2 shows the values of the different loss channels for a 
record 136lm/W white LED [38] consisting of a blue emitting InGaN LED with peak 
wavelength of 431nm and a yellow-green emitting phosphor consisting of a Yttrium 
Aluminium garnet doped with Cerium (YAG:Ce). The wallplug efficiency of LEDs is also 
often given in lm/W in order to take into account the sensitivity of the human eye and is 
called efficacy. 
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Fig. 2.2: Loss mechanisms for a record 136lm/W white LED realized with down conversion at 350mA. 

On their way to the active region only a fraction of the charge carriers gets through. 
Under driving conditions, ohmic losses owing to the resistance of contacts and the epitaxial 
layers imply an electrical efficiency ηel<1. Here, also the losses associated with the barriers 
due to piezoelectric fields in the nitride material system are included. According to a peak 
wavelength of the blue emission of 431nm≈2.88eV for the record white LED in Fig. 2.2 the 
theoretical lower limit of the applied voltage in order to generate photons is at least 2.88V. 
From the actually applied 3.25V at 350mA the electrical efficiency can be estimated to be 
2.88/3.25≈89%. 

But even if the charge carriers reach the active region neither every electron generates 
a photon (internal quantum efficiency, ηIQE) due to competitive recombination processes nor 
every photon can be extracted from the structure (extraction efficiency, ηextr) due to 
absorption. Both efficiencies will be highlighted in the next two sections. For the actual 
device an extraction efficiency of ηextr=85% is obtained from simulations. By measuring the 
blue LED chip without phosphor but silicone encapsulation the external quantum efficiency 
can be determined as the ratio between emitted photons to injected electrons, ηEQE=64%. 
Consequently, the internal quantum efficiency can be estimated from the ratio between ηextr 
and ηEQE, ηIQE=75%. 

After light generation and its escape from the structure, the blue light is partially down 
converted to yellow light. The associated efficiency is the conversion efficiency ηConv of the 
phosphor, i.e. the quantum efficiency of the phosphor. Typical phosphors used nowadays for 
yellow light generation have efficiencies of higher than 90%.  

Apart from the losses of photons during the conversion process, energy is also lost due 
to the mismatch in energy between the blue and the yellow light. This Stokes loss ηSt cannot 
be avoided and is given by the ratio between the average photon energies of the phosphor 
emission and the LED’s blue emission. In the above example, ηSt≈81%. 

As blue light is scattered at the phosphor particles and yellow light is generated 
isotropically, both propagate in any direction within the silicone matrix. Therefore, part of the 
light hits the chip and the package and needs to be reflected efficiently. Thus, the absorption 
of the package has to be as low as possible and mainly contributes to the package efficiency 
ηPack. Additionally, depending on the geometry and the area fraction of the LED chip within 
the package, the reflectivity of the LED chip also has to be taken into account. For the 
package used for the LED of Fig. 2.2 a package efficiency of ηPack≈95% has been estimated. 

In summary, 42% of the injected electrical power is converted into white light; the 
remaining 58% contribute to heating of the device. Thus, the heat management of the package 
is crucial as almost 0.66W have to be carried away from an area of 1mm2. The corresponding 
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heat flux at this rather moderate driving currents is approximately 10 times higher than that of 
a conventional hotplate during cooking.  

2.2 Internal Quantum Efficiency 
Two processes are commonly assumed to determine the internal quantum efficiency ηIQE of an 
LED, the injection of electrons and holes into the quantum wells and their recombination. 

The probability of capturing the charge carriers in the quantum wells determines the 
injection efficiency. Depending on the possible electronic states the electrons or holes 
possibly can fly directly towards the opposite contact without contributing to light generation. 
Consequently, the injection efficiency and the overall efficiency of the device is worse than 
100%. But even if they occupy states within the quantum well, they can gather thermal energy 
and leave the quantum well again, what is typically called thermal escape. The corresponding 
probability necessarily depends on the temperature but also on the potential characteristics 
defining the well. 

Inside the quantum wells of the LED, the desired recombination process of an electron 
with a hole results in a photon. This radiative recombination process depends on the overlap 
of the wave functions of electrons and holes and competes with non-radiative recombination 
processes, that generate phonons rather than photons and thus, lead to heating of the LED 
chip. In general, the associated efficiency can be written as the ratio of radiative processes 
over all possible processes and determines the internal quantum efficiency ηIQE in 
combination with the injection efficiency ηinj 

nradrad

rad
injIQE

ΛΛ

Λ
ηη

+
= , (2.2) 

with Λrad the radiative recombination rate and Λnrad the rate summarizing all non-radiative 
recombination processes per unit time. 

Non-radiative recombination for instance is caused by defects of the semiconductor 
crystal [44][45], as shown in Fig. 2.3 (left). Electrons jump from the conduction band into 
energy levels in the band gap offered by these defects. The energy is transferred to phonons 
instead of photons. During the subsequent recombination of the electron with a hole 
additional phonons are generated. Thus, this so-called Shockley-Read-Hall (SRH) 
recombination is non-radiative. As only a finite number of defects exist, the SRH 
recombination mainly contributes to the internal quantum efficiency at low current densities 
as long as the defects are not saturated. 

Another non-radiative recombination process is the Auger recombination [46], as 
sketched in Fig. 2.3 (right). Here, an electron recombines with a hole, but the energy is 
transferred to another electron or hole rather than a photon. The second electron (hole) is 
pushed into high conduction (low valence) band levels and relaxes back to the band edge 
while its energy is transferred to phonons. As three charge carriers are necessary for this 
process, the Auger recombination mainly contributes to the internal quantum efficiency at 
high current densities in the active region. In the case of InGaN LEDs the decreasing 
efficiency at high current densities is called efficiency droop – the maximum efficiency is 
typically achieved at ~10A/cm2 whereas common current densities at driving conditions 
range from 30 to 100A/cm2. Even though still under investigation, the Auger recombination 
seems to be most likely to cause this effect [47][48]. Other explanations for the droop favour a 
thermal escape from the quantum wells and hence a reduced injection efficiency [49]. 
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Fig. 2.3: Sketch of different recombination processes in ascending order according to their occurrence with 

increasing current density. (Left) Shockley-Read-Hall recombination through impurities, (middle) radiative 

recombination resulting in a photon with energy EC−EV, (right) Auger recombination. The conduction band is 

labelled EC, the valence band EV and the energy level of a defect ED. 

The radiative recombination involves two charge carriers and hence dominates the 
recombination process at intermediate current densities compared to SRH and Auger. 
According to Fermi’s Golden Rule the radiative recombination rate is given by 

)()(
2

),(
2

rad ωρ
π

ωΛ rEdr ⋅=
h

 (2.3) 

with d the electric dipole moment corresponding to the electron-hole transition, E(r) the local 
electric field amplitude and ρ(ω) the density of final photonic states. Thus, not only a proper 
design of the conduction and the valence band structure which particularly offers a good 
overlap between electron and hole wavefunction ensures a high radiative recombination rate. 
Also the optical environment significantly impacts Λrad through E(r) and ρ(ω), what is known 
as the Purcell effect [50]. The Purcell factor FP is given by the radiative rate Λrad stemming 
from the actual optical environment and the radiative rate Λrad,0 of a dipole in a homogeneous 
one 

rad,0

rad
P

Λ

Λ
F = . (2.4) 

Since the dispersion relation ω=ω(k) is a function of the wave vector, the radiative rate, in 
general, is direction dependent. 

In order to investigate the impact of the Purcell factor on the internal quantum 
efficiency, we assume the injection efficiency to be close to unity and neglect it throughout 
the further analysis. The intrinsic radiative rate Λrad,0 of an emitter in a homogeneous optical 
environment is only determined by the electron-hole transition and yields an intrinsic ηIQE,0 in 
dependence of the non-radiative recombination rate Λnrad according to (2.2). With (2.4) the 
internal quantum efficiency of the actual optical structure reads  



 

 - 11 - 

0 20 40 60 80 100

ΗIQE,0 @%D

0

20

40

60

80

100

Η
IQ

E
@%
D

FP = 0.25

FP = 0.8

FP = 1

FP = 1.2

FP = 4

0 20 40 60 80 100

ΗIQE,0 @%D

0

1

2

3

4

Η
IQ

E
�Η

IQ
E

,0

FP = 0.25

FP = 0.8

FP = 1

FP = 1.2

FP = 4

aL bL

 
Fig. 2.4: Internal quantum efficiency ηIQE in dependence of the intrinsic internal quantum efficiency ηIQE,0 

according to (2.5) for ηinj=1 and different Purcell factors: FP=1 (solid black line), FP=4 (dashed black line), 

FP=0.25 (dash-dotted black line), FP=1.2 (dashed grey line) and FP=0.8 (dash-dotted grey line). Only in the 

limit of high non-radiative rates and thus low intrinsic internal quantum efficiency the Purcell factor fully 

contributes to an increase in internal quantum efficiency. 
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Hence, in the case of negligible non-radiative recombination rates and thus, high ηIQE,0, the 
Purcell factor has hardly any effect on the internal quantum efficiency. The radiative 
recombination dominates the processes anyway. In contrast, for high non-radiative 
recombination rates (low ηIQE,0), the Purcell effect fully contributes to the enhancement of the 
internal quantum efficiency. This can also be seen by taking the limits ηIQE,0→0 and 
ηIQE,0→1. The former yields ηIQE≈FPηIQE,0, the latter ηIQE≈1. Fig. 2.4 shows the internal 
quantum efficiency as a function of the intrinsic internal quantum efficiency for different 
Purcell factors along with the resulting enhancements. 

Thus, highly efficient emitters are effected less by a modified optical environment 
compared to low efficient ones. In co-planar layer stacks typical Purcell factors are of the 
order of 1. In order to obtain significant enhancement for poor emitters photonic crystals 
[51][52] or surface plasmon polaritons [36][37] as described in section 6 can be used. 

2.3 Extraction Efficiency 
In this chapter, first of all the fundamental problem of light extraction from LEDs is sketched. 
Afterwards, common solutions are explained. 

2.3.1 Total Internal Reflection 

The extraction efficiency of an LED is mainly limited by the high refractive index contrast 
between the semiconductor and the ambient medium as illustrated in Fig. 2.5. For GaN based 
LEDs the refractive index of the semiconductor in the green spectral range is roughly 
nSC=2.4, for the AlGaInP or AlGaAs material systems the refractive index is about nSC=3.5 at 
the corresponding emission wavelengths. From Snell’s law of refraction, 
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Fig. 2.5: Illustration of Snell’s Law of refraction. Light with in-plane k-vector β>nambk0 or equivalently θSC >θc 

cannot escape from the structure. The projection of the k-vectors into the kx-ky-plane reveals the ring of guided 

light with nambk0<β<nSCk0 and the extraction disk with β<nambk0. 

ambambSCSC sin sin θnθn = , (2.6) 

the critical angle of total internal reflection is θc≈24.6° (16.6°) for the nitrides 
(phosphides/arsenides) and extraction to air, namb=1. Here, namb is the refractive index of the 
ambient medium, θSC (θamb) is the angle between the propagation direction within the 
semiconductor (ambient medium) and the surface normal. Snell’s law is equivalent to the 
conservation of the in-plane k-vector length β. This can be seen by multiplication with the 
vacuum wave number k0=2π/λ0. Thus, only light within the extraction disk, i.e. 
β<nSCk0sinθc=nambk0, radiates into the ambient medium; light with β>nambk0 is evanescent 
and thus non-propagative in the ambient medium as the corresponding angle θamb is purely 
imaginary. This light never escapes from the flat LED chip and is called guided light. The 
conservation of the in-plane k-vector is a direct consequence of the translational symmetry 
parallel to the interface of such a layer stack. The k-vector k and the in-plane k-vector β are 
related to each other by k

2=β2+γ2 or equivalently β=ksinθ, with γ the k-vector component 
perpendicular to the semiconductor-to-ambient interface, γ=kcosθ. 

With the critical angle in mind, the extraction efficiency for an isotropic source from a 
high-index material to a low-index material reads 

∫=
c

0

SCSCextr  sin )(
2

1
θ

SC θdθθTη  (2.7) 

with T(θSC) the polarization-averaged Fresnel transmission at the incident angle θSC. Fig. 2.6 
 



 

 - 13 - 

1.0 1.5 2.0 2.5 3.0 3.5

namb

0

10

20

30

40

50

Η
e

x
tr
@%
D

nSC = 3.5nSC = 2.4w�o Fresnel

with Fresnel

 
Fig. 2.6: Dependence of the extraction efficiency on the refractive index of the ambient medium with (grey) and 

without (black) Fresnel reflection at the interface. The solid (dashed) line corresponds to extraction from 

nSC =2.4 (nSC=3.5). 

shows the efficiency of extracting light according to (2.7) from a nitride-based LED and a 
phosphide-based LED as a function of namb with and without Fresnel losses. For namb=1, 4% 
for the nitrides and 2% for the phosphides of the total generated light can be extracted when 
Fresnel reflection at the boundary is neglected, i.e. a perfect anti-reflection coating is 
assumed. This value rises up to 50% in both cases if the refractive index of the ambient 
medium reaches the refractive index of the semiconductor. However, 100% light extraction is 
not possible as half of the light is emitted downwards, i.e. away from the 
semiconductor-to-ambient surface. Nevertheless, an increased refractive index of the ambient 
medium significantly boosts the extraction efficiency. An early idea for taking advantage of 
this was to encapsulate the LED within a high index spherical dome [8]. In this case, light hits 
the encapsulant-to-air interface under normal incidence in any case. In commercial devices, 
typically silicone with n=1.4 is used as an encapsulant as it remains transparent over the LED 
lifetime and can easily be processed. But still a significant amount of light is totally internally 
reflected and the extraction efficiency limits the external quantum efficiency to <10%. 

2.3.2 Redistribution of Light 

Fig. 2.7 shows commonly used solutions to overcome the problem of total internal reflection. 
In a first approach, five of six facets of the LED chip are used for light extraction, see Fig. 
2.7 a. In the case of thick, highly transparent window layers the extraction efficiency to air 
roughly can be enhanced to 20% for InGaN LEDs and 10% for AlGaInP LEDs. However, the 
efficiency is still limited by the rectangular cross-section of the LED chip. Thus, light totally 
internally reflected at a semiconductor-to-ambient interface cannot change its incidence angle 
upon any of the facets and will be absorbed while propagating inside the chip. A 
geometrically shaped LED chip as shown in Fig. 2.7 b changes the angle of guided light and 
therefore, light totally internally reflected on one facet has the chance to escape from the chip 
as its incident angle on another facet is different. With this solution high extraction 
efficiencies of up to 50% for GaN-based LEDs [53] and 55% for AlGaInP based ones [10] 
have been realized. However, two main drawbacks arise. Firstly, the overall chip size is 
limited as the light redistribution by the tilted facets enhances the extraction only if the light 
has the chance to hit the opposite facet before being absorbed. Secondly, the light output is 
spread over the whole chip surface. This implies a volume-emitting light source with 
pronounced side-emission. Special packaging is required in order to redirect this light into the 
forward direction. 
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Another possibility to circumvent total internal reflection and the formation of guided 
light is shown in Fig. 2.7 c. By incorporating a scattering mechanism into the top surface of 
the LED light gets redistributed after every incidence on this surface. By additionally 
incorporating a mirror at the bottom of the LED, the light has several chances to escape from 
the LED chip after reflectance [11][54]. Furthermore, light gets partially extracted regardless 
of its incidence angle as it is randomly scattered. The processing of these so-called thin-film 
LEDs requires bonding the epitaxial layers to a second substrate, like Ge, Si or GaAs, after 
deposition of the mirror, like Ag, Al or Au. Afterwards, the growth substrate is removed and 
light is emitted into the ambient through the layer grown first (flip-chip device). In the GaN 
system laser lift-off is used for removal of the sapphire substrate [55][56]. In the case of 
AlGaAs or AlGaInP the substrate is removed by wet-etching [57]. With encapsulated 
thin-flim LEDs high extraction efficiencies of up to 85% for GaN-based LEDs (see section 
2.1, [58] and [59]) and 50% external quantum efficiency for AlGaInP based ones [60] have 
been achieved. Another advantage of thin-film LEDs as compared to volume-emitting LEDs 
is that the light is extracted only through the top surface. Thus, from the optical point of view 
no limitations for the lateral dimensions of thin-film LEDs exist as the redistribution takes 
place at the top surface and these LEDs can be arbitrarily scaled. In practice, the largest chips 
are 1-2mm² as the production yield and the resulting costs per chip are the main limiting 
factor. A further positive aspect is that light escapes from a significantly smaller surface area 
and the radiant emittance increases compared to volume-emitting LEDs. This is of great 
interest for étendue-limited applications, where as much light as possible is required from a 
surface as small as possible (see section 2.4 and 7.2). In the case of GaN the rough scattering 
surface can be obtained from a wet-etching process that reveals pyramids with hexagonal base 
as shown in Fig. 2.7 c [62]. 

A setup not shown in Fig. 2.7 combines the surface roughening and the idea of tilted 
facets by incorporating buried micro-reflectors within the LED chip [60][61]. Similar to this, 
the use of a patterned substrate for GaN LEDs on sapphire breaks the guidance of light within 
the semiconductor slab due to the refractive index contrast between GaN and sapphire [63]. 

 
Fig. 2.7: Typical solutions for overcoming the low extraction efficiency of LEDs owing to total internal 

reflection along with images from devices under operation. (a) Through the use of thick window layers five 

facets contribute to the extraction of light. The image shows a GaN LED grown on SiC-substrate. (b) Tilted 

sidewalls redistribute the internally guided light. The image is taken from a GaN LED grown on SiC substrate. 

(c) Sketch of the thin-film principle: light is extracted partially regardless of its incident angle and redistributed 

randomly at the rough surface. Due to the bottom mirror the light has several chances to escape from the LED. 

The image shows an InGaN thin-film LED along with an SEM image of the typical rough surface structure. The 

contact grid for current injection is visible as black lines. 
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In any case the redistribution of the internally guided light enhances the extraction 
efficiency. The overall extraction efficiency is determined by the amount of light extracted 
per unit length compared to the amount of light absorbed within the same length 

ΓααΓ

Γ
η

/1

1
extr

+
=

+
=  (2.8) 

with Γ the extraction and α the absorption coefficient. Therefore, regardless of the type of 
redistribution process complete light extraction is obtained only in the absence of absorption. 
Hence, high-performance devices are achieved by decreasing the absorption losses while 
extracting the light as fast as possible. 

To illustrate this relation, Fig. 2.8 shows the extraction efficiency for a LED in 
thin-film configuration. The absorption coefficient is altered by changing the mirror 
reflectivity and the value of bulk absorption in the semiconductor with nSC=2.4. By 
calculating the extraction into air or into silicone the extraction coefficient is also changed. An 
isotropic light generation is assumed along with a perfect Lambertian redistribution of the 
light at the random surface texture. The distance between the mirror and the surface is 3µm. It 
has been further assumed that all light within the critical angle escapes from the structure, i.e. 
no Fresnel losses. Thus, the extraction efficiency reads 
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+=  (2.9) 

with Aiso (ALam) the amount of light with an isotropic (Lambertian) angle distribution that is 
not absorbed during a single pass through the semiconductor. RLam (TLam) is the power of light 
with a Lambertian angle distribution reflected (transmitted) at the semiconductor-to-ambient 
surface. RM accounts for the mirror reflectivity. A detailed derivation of (2.9) is given in the 
appendix. 

The extraction efficiency depends strongly on the mirror reflectivity and increases 
significantly for highly reflective mirrors. However, both high extraction coefficient and high 
absorption coefficient decrease this dependency as the light bounces less times between the 
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Fig. 2.8: Extraction efficiency as a function of the mirror reflectivity for a GaN-based thin-film LED with the 

assumption of an isotropic light generation and perfect Lambertian redistribution for extraction to air (black 

lines) and silicone (grey lines). The solid lines correspond to zero absorption in the semiconductor, the dashed 

lines correspond to an absorption coefficient of 10cm
-1

 and the dash-dotted lines are calculated for 100cm
-1

 

absorption. The distance between the mirror and the scattering surface is 3µm. 
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mirror and the top surface. Hence, absorption at the mirror has less impact on the extraction 
efficiency. For extraction to silicone roughly two times more light per round-trip can be 
extracted compared to extraction to air as can be seen by the extraction efficiencies for 
vanishing mirror reflectivity. The reason is the ratio between the extracted in-plane k-vector 
section and that of all in-plane k-vectors, compare Fig. 2.5. In the case of extraction from 
GaN to air and a Lambertian distribution of light, only 1/2.42

≈0.17 of the internally 
propagating light can escape when incident on the semiconductor-to-air interface, whereas 
this fraction is 1.42 /2.42

≈0.34 for silicone. 

2.3.3 RCLEDs 

In contrast to the techniques presented so far that rely on light redistribution in order to 
enhance the extraction effciency, in so-called resonant cavity LEDs (RCLEDs) light 
generation within the extraction cone is enforced based on interference effects [64][65][66]. 
This is realized by embedding the active region into a semiconductor slab sandwiched 
between two mirrors. The latter form a micro-cavity, i.e. the distance of the two mirrors is on 
the order a few wavelengths. These mirrors can be metallic, distributed Bragg reflectors 
(DBRs) or the bare semiconductor-to-air interface. According to this Fabry-Perot setup 
resonances of the optical field occur depending on the position of light generation, its 
wavelength and emission angle. 

For illustration, in Fig. 2.9 a a basic example of an emitter placed in front of a metallic 
mirror is sketched. Depending on the distance between the active region and the mirror 
constructive and destructive interference occurs at different angles. Fig. 2.9 b shows the 
radiant intensity as a function of the angle for two distances of an isotropic emitter with 
wavelength of 520nm in front of a mirror. The values are obtained from the method described 
in section 4.1. In the case of a distance between the source and the mirror of d=110nm, 
constructive interference takes place for angles below the critical angle. Hence, higher radiant 
intensities are obtained compared to a distance of d=160nm. Consequently, according to 
Fermi’s Golden Rule (2.3) more light is generated within the extraction cone for  d=110nm 
compared to d=160nm due to a higher electric field amplitude for emission angles below the 
critical angle. In sum, the extraction efficiency is as high as 13.4% for 110nm, whereas it is 
only 4.4% for 160nm. 
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Fig. 2.9: (a) Interference of generated and reflected light. The horizontal dashed line indicates the position of 

the active region within the semiconductor. The mirror is shown in grey. The arrows indicate the propagation 

direction of the two interfering plane waves. (b) Radiant intensity for an isotropic emitter placed d=160nm 

(solid line) and d=110nm (dashed line) above a mirror. The semiconductor refractive index is 2.4 and the 

wavelength 520nm. The vertical line indicates the critical angle θc. The calculations are done with the algorithm 

presented in section 4.1. 
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Fig. 2.10: (a) Extraction efficiency to air (solid line and left y-axis) and Purcell factor FP (dashed line and right 

y-axis) as a function of the distance d between the isotropic source with emission wavelength of 520nm and the 

silver mirror. The semiconductor slab is 3µm thick and its refractive index is nSC =2.4. (b) Analogous to (a) for a 

distance d=160nm and varying wavelength. The oscillations of both quantities stem from the interference 

between the source and its mirror image. The horizontal dash-dotted line indicates the extraction efficiency 

according to (2.7) without Fresnel losses and doubled owing to the mirror. 

In order to obtain an even stronger interaction of the source with the surrounding 
cavity, the second mirror can be used. In this case, extraction efficiencies of up to 22 % in the 
InGaN material system [67], 23 % from encapsulated AlGaInP chips [68] and 30 % with 
AlGaAs have been realized [69]. Consequently, also the far field pattern can be changed by 
tuning the cavity properly [68] but on the expense of overall extraction efficiency. However, 
in any case these values cannot compete with extraction efficiencies obtained from the 
redistribution techniques of the former section. 

In general, the micro-cavity effect as shown in Fig. 2.9 is present in any LED if the 
distance between the source and one of the mirrors is small. In this case, the internal light 
generation can be optimised for best interaction with respect to an extraction scheme, e.g. 
surface structuring. This will be discussed in detail in section 5.2.3 with PhCs as a surface 
texture. Additionally, apart from the extraction efficiency also the overall radiative rate or the 
Purcell factor can be altered as shown in Fig. 2.10 a [70]. The corresponding structure 
emitting isotropically at 520 nm consists of a 3µm thick LED with refractive index nSC=2.4 
and a silver bottom mirror. The semiconductor-to-air interface is left un-structured.  

The oscillations of the Purcell factor arise from two facts. Firstly, the interference 
between the source and its mirror image occurs at different angles as the distance between the 
source and the mirror changes, see Fig. 2.9. Secondly, large angles (e.g. 70°<θSC<90°) offer 
more photonic states in k-space compared to smaller ones as the latter cover a smaller area in 
k-space, see Fig. 2.5. Thus, if the interferences coincide with large angles, the Purcell factor 
increases according to the larger number of photonic states. In contrast, if light is dominantly 
emitted into small angles, the Purcell factor decreases. 

However, apart from the angle of incidence and the distance between the source and 
the mirror the wavelength itself impacts these interferences. Thus, in order to benefit from an 
optimised design, the emission spectrum has to be kept constant. For instance, heating of the 
LED chip typically causes a shift of the emission to longer wavelength as the band gap 
decreases [71]. The resulting de-tuning between the surrounding optical environment and the 
emission worsens the extraction efficiency, see Fig. 2.10 b. In the nitride material system, the 
blue shift of the emission due to screening of the internal piezo-electric fields with increasing 
current density has similar impact. 
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2.4 Étendue 
In contrast to the efficiencies discussed so far the étendue is not a property specific to LEDs 
but comes into consideration if the emission of a light source has to be coupled into an optical 
system. Examples for such applications are projectors [34][35], automotive headlamps [35] or 
simply coupling the light into an optical fibre. 

In general, the étendue E defines the phase space volume of light that can pass an 
optical element and is given by1 

θAnπE
22 sin  =  

(2.10) 

with n the ambient refractive index. The area A (the angle θ with respect to the optical axis) 
defines the area (angle), where light can pass through the optical element. 

Consider for instance the simplified system as sketched in Fig. 2.11. Light is generated 
within an area AL, passes some optics (in this case a lens) and hits the target area AT. In the 
case of projectors, the target is the imager, e.g. a DMD (digital mirror device), LCoS (liquid 
crystal on silicon) or LCD (liquid crystal display). We will investigate the DMD example in 
the following. Here, micro mirrors, that are mechanically adjustable, are used to generate the 
image [72], where every mirror represents a single pixel on the screen. The tilt angle of the 
mirror relative to the optical axis determines the on and off state of the pixel. Typically, the 
full angle between on and off state is 24°. Hence, for proper operating of the DMD only light 
within ±12° relative to the optical axis should hit the imager. These 12° determine the target 
angle θT in our example. The target area is simply given by the total area of all micro mirrors 
and is AT=93.7mm2 for a 0.55” DMD. According to (2.10) the phase space of light that can 
pass the DMD and is projected onto the screen is ET=12.7mm2sr with n=1. In the case of a 
non-scattering, loss-free optical systems, the optical element with the smallest étendue defines 
the overall throughput of the system. Only light within this phase space can pass the whole 
system. If we assume that the optics can be chosen without limitations regarding their size or 
functionality, the limiting element in projectors is the imager. 

 
Fig. 2.11: Sketch of an étendue limited system. Light generated within the area AL is projected by the lens (grey 

oval) onto the target area AT. According to étendue matching the acceptance angle of the target θT determines 

the acceptance angle θL of the system for the light source at given areas AL and AT. A larger fraction of the 

emission is projected onto the target area in the case of a light source with pronounced forward emission (grey 

line) compared to standard (Lambertian) emission characteristic. 

                                                 
1 The definition of the étendue in (2.9) is valid for rotational symmetries. In general, the étendue is 

defined by its differential form, dE=n
2cosθdΩdA, with n the refractive index, θ the polar angle with respect to 

the optical axis, dΩ the solid angle and the surface area dA. 
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From this limitation the following consequences arise for the design of the light 
source. If the source emits light beyond the phase space of the imager, i.e. EL>ET, light will 
be wasted as it cannot be projected onto the imager. On the other hand, if the phase space of 
light emission is too small, i.e. EL<ET, we do not exploit the possible phase space. 
Consequently, less light will be projected onto the imager compared to a case, where the 
étendue of both systems match. Therefore, if the complete emission of the light source is 
collected, θL=90° with an optics as described in [35], the maximum applicable source area for 
the 0.55” imager is 4mm2 (EL=ET). Larger source areas will not project more light onto the 
imager. The only way to accomplish this is to enhance the radiant emittance from the source, 
i.e. increasing the light output from the same area. One might think, that encapsulating the 
LED chip enhances the amount of light coupled into the target’s étendue as it results in higher 
extraction efficiencies and thus in an increased radiant emittance. However, according to the 
spherical encapsulation the ambient medium of the LED is not air but the encapsulant. Hence, 
the étendue of the light source is increased by the squared refractive index of the encapsulant 
corresponding to (2.10). Therefore, light is emitted into a larger phase space compared to 
extraction into air and the enhancement in extraction efficiency does not necessarily 
overcome this penalty in étendue. 

The condition of étendue matching EL=ET in general also holds for systems with a 
limited acceptance angle θL<90°. In this case, the source area has to be increased according to 

L
2

T
L sin θπ

E
A =  (2.11) 

in order to occupy the phase space provided by the imager. Fig. 2.12 gives the required source 
area as a function of the acceptance angle θL per target étendue ET. In the case of LEDs, this 
source area is achieved by grouping several chips. Large chips are favourable in order to 
reduce the area between the individual chips2. However, large source areas increase the costs 
of the system as more chips have to be used. The optics get more bulky and more expensive, 
too. Hence, in terms of costs the reduction of the target étendue is preferable as fewer chips 
have to be used and the imager gets cheaper. This is only possible at the expense of flux on 
the screen if the useful radiant flux cannot be enhanced. 
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Fig. 2.12: Required source area AL per target étendue ET as a function of the acceptance angle θL under the 

condition of étendue matching EL=ET. 

                                                 
2 Reducing the spacing between the chips also improves the homogeneity of the radiant emittance over 

the whole source area. 
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In order to achieve the optimum flux on the target the phase space volume should be 
“filled” with as much light as possible, i.e. the emitted flux from the source within that 
étendue should be as high as possible. As sketched in Fig. 2.11 a more collimated far field is 
preferable for θL<90° as a larger fraction of the total flux is emitted into the target’s étendue 
and projected onto the imager. However, apart from the far field shape also the radiant flux 
contributes to the radiance and thus, the amount of flux on the imager. A quantitative 
discussion regarding these issues is given in section 7.2 for the comparison between PhC 
LEDs and roughened thin-film LEDs. The prior have the possibility to shape the emission 
pattern, while the latter are the benchmark due to their high extraction efficiency. 

In general, the local radiance, i.e. the local radiant emittance in combination with the 
local radiant intensity, has to be considered over the whole chip area [73] in order to 
determine the total radiant flux emitted into the target’s étendue. For instance, in the vicinity 
of the electrical contacts more light is generated compared to areas far away from the 
contacts. Hence, a different amount of flux is emitted in both cases. Also the emission profile 
may differ from location to location, e.g. due to shadowing by the contacts. Thus, both the 
radiant emittance and the radiant intensity are not uniform across the LED chip. However, for 
the sake of simplicity we will neglect these issues during this work and consider the radiance 
as homogenous over the complete chip area. 

2.5 InGaN Material System 
Some peculiarities of the InGaN material system compared to the traditional material systems, 
like AlGaInP or AlGaAs, have to be mentioned that define the parameter space for the 
“photonic” optimisation. 

As briefly addressed above, the growth of GaN is already challenging. The main 
reason for this is that the best suited growth substrate, GaN itself, is far too expensive by now. 
Therefore, alternative substrates have to be used. The most popular is sapphire (Al2O3) as it is 
cheap and reasonable results are achieved. However, the lattice mismatch between sapphire 
and the GaN layers grown on it causes a rather high density of dislocations within the GaN 
layers. In order to achieve sufficient quality and to reduce the number of defects several µm 
thick buffer layers are grown before the crucial part, the active region, is deposited, see Fig. 
2.13. This results in a typical LED thickness of several µm. The only way to thin these layers 
while maintaining high crystalline quality is to etch these layers after epitaxy down to the 
desired thickness. However, this is not favourable in terms of processing costs and processing 
time. 

Also the growth of the active layer is subject to restrictions. The colour range of 
InGaN LEDs is accomplished by different Indium contents within the active region. The more 
Indium the smaller the band gap and consequently the longer the emission wavelength. 
However, due to its large atomic radius Indium tends to nucleate in clusters. Thus, no 
homogeneous Indium concentration in lateral direction is achieved and the growth of the 
following layers suffers from poor quality of the active layer especially in the case of high 
Indium content (typically green and above). Furthermore, owing to the Wurtzite structure of 
the GaN crystal piezoelectric fields occur at hetero interfaces, e.g. between GaN and InGaN. 
These piezoelectric fields firstly implicate a separation of the electron and the hole wave 
function. Hence, recombination rates, both radiative and non-radiative, that rely on the 
overlap of these two wave functions are decreased [74]. Secondly, the screening of these 
fields by an applied voltage increases the band gap between conduction and valence band. 
Therefore, the emission wavelength of GaN based devices shifts to shorter wavelength with 
increasing current [75]. 
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Fig. 2.13: Sketch of an InGaN LED in thin-film configuration. The left arrow indicates the growth direction. The 

LED is already bonded onto a second substrate after mirror deposition and the initial growth substrate, 

sapphire, has been removed. The arrows inside the LED indicate the flow of charge carriers from the n-contact 

and the p-contact towards the pn-junction. 

Typically, the growth of InGaN LEDs is closed with the nucleation of the p-type GaN 
layers. Here, the p-type doping with Mg has to be paid attention to. In the first instance, the 
doping indeed enables the GaN based LED but the current spreading is fairly poor. Hence, the 
injected carrier tend to flow vertically through the layer stack rather than spreading laterally. 
In order to achieve homogeneous carrier injection into the active region the current spreading 
on the p-side is done by a metallic contact, i.e. the mirror in the case of thin-film LEDs. In 
addition, with increasing thickness of the p-GaN layer the activation of the dopand becomes 
less efficient. Therefore, the thickness of the p-GaN layer is typically only 100-300nm in 
order to limit additional ohmic losses and thus, achieve sufficient electrical efficiency. 
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3 Photonic Crystals 
In analogy to solid-state physics, the aim of photonic crystals is to control the propagation 
behaviour of light. The propagation of electrons within a crystal depends on the periodic 
arrangement of the crystal’s atoms. In electromagnetism the periodic arrangement of materials 
with different refractive index has the same impact on the possible photonic states as the 
periodic potential within a crystal on the electronic states. The periodicity in both cases has to 
be of the order of the corresponding wavelength, i.e. the de Broglie wavelength in the case of 
electrons and the optical wavelength in the case of photons. Thus, a one-, two- or 
three-dimensional periodic arrangement of materials with different refractive indices is called 
a photonic crystal (PhCs).  

The counterpart to Schrödinger’s equation describing the electrons in quantum 
mechanics are Maxwell’s equations in electromagnetism. In general, Maxwell’s equations 
read 
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with D=ε0E+P the electric displacement field, ε0 the electric constant, E the electric field, P 
the polarisation, B=µ0(H+M) the magnetic induction, µ0 the magnetic constant, H the 
magnetic field, M the magnetisation density, ρ the charge density, and J the current density. 
In the case of isotropic, non-magnetic, linear materials without macroscopic charges (3.1) 
becomes 
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where a harmonic time dependence H(r)~E(r)~exp(-iωt) with ω the frequency of light and a 
relative permeability of µ=1 has been assumed. Furthermore, the electric displacement field 
and the magnetic induction are given by D=ε0ε(r)E and B=µ0H, respectively. The refractive 
index n(r) is related to the relative permittivity ε(r) by n2=ε and the vacuum speed of light is 
given by c2=1/ε0µ0. 

In order to determine the allowed photonic states for a refractive index distribution, the 
so-called master equation [76] is utilized. It is obtained by dividing the last equation of (3.2) 
by ε(r), taking the curl afterwards and using the third equation 
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The eigenvalue of this equation is the square of frequency. In quantum mechanics the 
eigenvalue is the energy. From the solution of (3.3) the electric field amplitude is derived with 
the help of the third equation of (3.2). Alternatively, the corresponding equation to (3.3) for 
the electric field reads 
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In the case of a periodic refractive index n(r)=n(r+R) with R=m1a1+m2a2+m3a3 and aj the 
primitive lattice vectors (mj an integer), the electric and magnetic field can be written as 
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which is known as Bloch’s Theorem. Owing to this periodicity the master equation has to be 
solved only within the finite sized reciprocal unit cell. This solution determines the dispersion 
relation of light and consists of several continuous bands ωn=ωn(k), with n the band index. 
These bands relate the allowed frequencies to the corresponding k-vectors. Hence, they enable 
light propagation through the photonic crystal despite the strong scattering of photons at the 
periodic refractive index structures. However, also the contrary can occur, no light can 
propagate at a given frequency in any direction. This is called a complete photonic band gap. 

Solving (3.3) is challenging in the case of PhC LEDs consisting of a vertical layer 
stack with a lateral distribution of holes as shown in Fig. 3.1 a and offers only little insight 
into the underlying mechanisms. Thus, in order to understand the propagation behaviour of 
photons in such a structure, we first of all treat a simplified uncorrugated slab. Afterwards an 
artificial periodicity is introduced and the formation of the dispersion relation is described. 
Finally, a corrugated slab is investigated and the role of the PhC in typical PhC LEDs is 
highlighted. Here, two regimes of PhC LEDs, a weakly coupled PhC LED and a strongly 
coupled one, can be distinguished. 

 
Fig. 3.1: (a) Typical setup of a PhC LED in thin-film configuration. Layers with different refractive indices are 

sketched along with the active region (dashed line). (b) Uncorrugated slab for the discussion in section 3.1. (c) 

PhC slab as discussed in section 3.2 and 3.3. The slab thickness is labelled L.  
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3.1 Dispersion Relation: Uncorrugated Slab 
In general, the dispersion relation ω=ω(k) relates the propagation direction of light to the 
allowed frequencies. In the cases treated throughout this work it is convenient to describe the 
dispersion relation as a function of the in-plane k-vector β as the invariant of a system with 
translational invariance.  

For a simple slab as sketched in Fig. 3.1 b with two refractive indices, namb=1 and nSC, 
three regimes can be distinguished, as depicted in Fig. 3.2. The boundaries between them are 
given by the so-called light line, ω=βc, and the semiconductor light line, ω=βc/nSC. The first 
regime corresponds to photonic states that propagate in air and in the semiconductor, 
β<ω /c=k0. All of these states lie within the extraction disk and the light line is equivalent to 
the critical angle. The second regime summarizes guided light, that can propagate within the 
semiconductor but is evanescent in air, k0<β<nSCω /c=nSCk0. The third is typically neglected 
as it describes photonic states that are evanescent even within the semiconductor and hence, 
carry no energy. This is valid as long as there is no material present with n>nSC or no surface 
states like surface plasmons exist, see section 6. 

For a semiconductor slab with finite thickness only a finite number of confined states 
exists, so-called guided modes. This is equivalent to the allowed electronic states within a 
quantum well with finite depth. However, in electromagnetism two polarization states can be 
distinguished, the TE-polarisation (transverse electric) and the TM-polarisation (transverse 
magnetic). In the case of TE-polarized (TM-polarized) light, the electric (magnetic) field 
amplitude is perpendicular to the plane of incidence. The incoming k-vector and the normal to 
the layer interfaces determine the plane of incidence. A general solution to obtain the guided 
modes of a layer stack is given in [77] and is also briefly discussed in section 4.2.1. For the 
case of a symmetric slab as in Fig. 3.1 b the solution can also be found in [78]. In Fig. 3.2 the 
dispersion for the two fundamental guided TE-polarized guided modes is shown.  

As Maxwell’s equations are invariant under scaling, it is convenient to use the reduced 
frequency u=ωa/2πc=a /λ. As a consequence of the scaling invariance, two systems with the 
same ratio a/λ behave exactly the same. Of course, not only the length a has to be scaled but 
also all other lengths of the system, e.g. the slab’s thickness L. 
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Fig. 3.2: Dispersion relation of the two fundamental TE-polarized guided modes (black and grey line) for a slab 

as shown in Fig. 3.1 b with namb=1 and nSC=2.4. The parameter a is the pitch of the lattices used in the 

upcoming two sections and is chosen a=2.5L with L the slab thickness. The vertical line indicates the position of 

the first Brillouin zone edge in ΓM direction for the lattice defined in the upcoming section. The dashed lines 

indicate the light line and the semiconductor light line, respectively. 
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3.2 Dispersion Relation: Artificial PhC Slab 
Before investigating the dispersion relation of a PhC slab as shown in Fig. 3.1 c, we have a 
look at the impact of the periodicity itself on the dispersion of the guided modes. For this 
reason, the refractive index contrast that defines the lattice is assumed to be infinitely small. 

In contrast to the laterally homogeneous slab of section 3.1, now the in-plane 
propagation directions have to be distinguished. In the case of a hexagonal lattice – that will 
be examined in the majority of cases in this work – a six-fold symmetry of the Brillouin zone 
is observed as shown in Fig. 3.3. Additionally, each of these segments is mirror inverted with 
respect to the ΓK direction. This defines the irreducible Brillouin zone. The reciprocal lattice 
of a hexagonal lattice with pitch a is set up by the primitive reciprocal lattice vectors 
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π
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4
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The real space primitive lattice vectors read 

 
Fig. 3.3: A hexagonal lattice (left) and its representation in reciprocal space (right). The grey hexagon around 

the Γ-point indicates the Brillouin zone, the small triangle with the corners labelled Γ, M and K indicates the 

irreducible Brillouin zone. The dashed lines are a guide for the eye highlighting the six-fold symmetry. 
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In this context, the filling fraction F of a PhC is defined as the area of holes within the unit 
cell with respect to the area of the unit cell and reads in the case of a hexagonal lattice 

2

2

 3

 2

a

rπ
F = , (3.9) 

where r is the hole radius. 
Due to the symmetry and due to Bloch’s Theorem it is convenient to describe the 

propagation of light along the irreducible Brillouin zone as the main directions of the lattice. 
The dispersion relation as shown in Fig. 3.4 builds up as follows. For in-plane k-vector 
lengths β<G0 /2 the Brillouin zone completely encloses the guided mode and thus, the 
dispersion relation is the same as for the uncorrugated slab. As soon as β>G0 /2 the dispersion 
is folded at the Brillouin zone edge since guided modes with origin in the neighbouring 
Brillouin zones enter the first one. In ΓK direction the in-plane k-vector has to be larger than 
β>G0 /31/2. By consecutively following the intersections of the guided mode circles with the 
irreducible Brillouin zone edges the dispersion relation is obtained. 

As an example all contributing circles are drawn in Fig. 3.5 for a reduced frequency of 
u=0.66. These circles stem from a shift of the original one centred at the Γ-point by reciprocal 
lattice vectors G=m1G1+m2G2 with mj an integer. Hence, they fulfil the Bragg condition 

Gββ += id  (3.10) 

with βd the diffracted in-plane k-vector resulting from diffraction of an incident k-vector βi. 
As soon as βd=|βi+G |<k0 the formerly guided mode is folded above the light line and 

radiates into air. Thus, more light is extracted and the extraction efficiency enhances. In the 
above example the fundamental guided mode is diffracted into air for reduced frequencies 
u>0.41. Interestingly, if u>2/3 or equivalently G0<31/2

k0, all guided modes are diffracted into 
air as the Brillouin zone fits completely within the extraction disk. The actual amount of 
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Fig. 3.4: Dispersion relation of the slab in Fig. 3.2 c with an artificial hexagonal lattice, where a=2.5L as in 

Fig. 3.2. The dash-dotted horizontal line indicates the reduced frequency corresponding to Fig. 3.5. 
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Fig. 3.5: In-plane contribution determining the intersections of the guided mode circles with the irreducible 

Brillouin zone at a reduced frequency u=0.66; in Fig. 3.4 the dotted horizontal line indicates this reduced 

frequency. For better visibility only the fundamental guided mode of the slab shown. The Brillouin zones are 

indicated by black lines, the irreducible Brillouin zone by thick grey lines. The black dashed circle encloses the 

extraction disk, β=k0. 

extracted light on the one hand depends on the absorption within the slab, see Fig. 2.8. On the 
other hand, the PhC pattern has to be optimised for best extraction. This will be discussed in 
detail in section 5. 

3.3 Dispersion Relation: PhC Slab 
For a real refractive index contrast ∆n=n2−n1>0 between the material with n=n2 and the hole 
with n=n1 we can again draw our conclusions in analogy to quantum mechanics. Two modes 
contribute to the degeneracy for instance at the M-point, one with origin at the Γ-point, the 
other shifted by G1. Both have the same in-plane periodicity β=G0 /2, but their intensity 
profiles differ from each other in terms of their offset with respect to lattice. In the case of a 
one-dimensional potential in quantum mechanics this situation is sketched in Fig. 3.6 for the 
corresponding electronic states at the Brillouin zone edge. 

As the electrons with the upper distribution are mainly located at the position of the 
ion cores, this distribution is related to lower energy compared to the distribution at the 
bottom where the electrons are mainly located between the atoms. Thus, a band gap opens up 
at the edge of the Brillouin zone. In electromagnetism the band gap comes into existence as 
the modes “see” different averaged refractive indices <n> due to their mode profiles. The 
refractive index profile is the counterpart to the potential in quantum mechanics. The mode 
mainly located within the high index material has lower energy compared to the mode mainly 
located within the low index material [76], since ω=βc/<n>. 

In Fig. 3.7 a the dispersion relation is shown for the PhC slab of Fig. 3.1 c with n2=2.4 
and n1=2.2. Thus, a band gap for instance at the M-point opens up. The dispersion is only 
shown for TE-like polarized modes. As these modes are not exclusively TE-polarized but 
with a portion TM-polarisation [79], the term “TE-like” is used. However, for thin slabs they 
are mainly TE-polarized. As the index contrast ∆n increases, the band gap widens and 
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Fig. 3.6: Illustration of the probability density of electrons in a one-dimensional array of ion cores. Both have 

the same periodicity related to the edge of the Brillouin zone, i.e. k=π /a. The upper density function heaps the 

electrons at the position of the ion cores and thus, lowers the related energy compared to freely propagating 

electrons. In contrast, the bottom probability favours electrons between the atoms and thus, the related energy is 

higher. The difference in energy defines the band gap. In electromagnetism, the position of the ion cores 

corresponds to the high index material (dark rectangles) with refractive index n=n2. The low index material 

(white spaces) has refractive index n=n1. 

overlaps with the other band gaps around the Γ and the K-point. For air holes, n1=1, a 
complete band gap is obtained for TE-like modes, as shown in Fig. 3.7 b, i.e. light with 
frequency inside the complete band gap cannot propagate within the PhC slab. Hence, 
emission only takes place into radiative modes and the extraction enhances [14]. Simulations 
of these structures reveal almost 100% extraction efficiency [13]. 

Apart from the band gaps that prohibit propagation of light at this frequency into a 
specific direction, a second important phenomenon arises from the band bending. As the 
refractive index contrast pushes the bands away from each other, the bands become more flat, 
especially at the edges of the band gaps. Flat bands offer a higher number of photonic states in 
k-space within a certain frequency range compared to steeper ones. Thus, the photonic density 
of states increases and consequently, with Fermi’s Golden Rule (2.3) in mind, the radiative 
rate and the Purcell factor, respectively. From photoluminescence measurements [51] Purcell 
factors of up to 2 have been reported along with an external quantum efficiency of >50% if 
the emission is adjusted to flat bands above the light line. In contrast, the available photonic 
states in the case of a complete photonic band gap dramatically decrease resulting in a very 
 

 
Fig. 3.7: (a) Dispersion relation of the TE-like polarized modes for a PhC slab with n2=2.4, n1=2.2, a=2.5L 

and hole radius r=0.35a. (b) The same as (a) except n1=1. 
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low radiative rate [13][14]. Therefore, it is more preferable to provide additional photonic 
states along with efficient diffraction instead of inhibiting the spontaneous emission into 
guided modes [51] even though the latter could provide 100% light extraction. 

3.4 Conclusions for PhC LEDs 
From the previous sections the question arises, how important are band bending effects in 
typical PhC LEDs with shallow two-dimensional PhCs. According to the considerations so 
far, the average index <n> seen by the modes is the deciding factor for the band bending. 
Apart from the real index contrast also the overlap of the modes with the PhC region 
determines <n>. If we assume a material with refractive index n that is perturbed with a 
refractive index shift δn in some region, the associated shift in frequency that causes band 
bending can be estimated in first order to be [80] 
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with ω the frequency and E the electric field amplitude of the mode without the perturbation. 
Thus, two regimes of PhC LEDs can be distinguished: 

i) Band-bending can be neglected as the refractive index contrast is low and/or 
the PhC covers only a small volume within the LED, e.g. is only shallow 
etched. In this case, the dispersion relation of Fig. 3.4 is still valid and the 
PhC can be thought of as a diffraction grating. This will be referred to as 
weakly coupled PhCs and we deal with this regime throughout this work. 

ii) The PhC covers a significant volume of the LED and the index contrast is 
large. Here, band gaps and an altered density of photonic states play an 
important role for light generation. Hence, the PhC is strongly coupled. 

In order to determine the operating regime of a given PhC LED structure, spectrally 
resolved far field measurements have been proposed [21]. The far field contains the 
dispersion relation above the light line since the angle is related to the in-plane k-vector by  
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with φ the azimuthal angle. Fig. 3.8 a shows experimental data for a 1µm thick InGaN/GaN 
LED with a >400nm deeply etched hexagonal PhC, a bottom mirror and a 130nm thick 
transparent conductive oxide cover layer [33]. The far field was collected in the ΓM direction 
of the lattice. The dispersion relation is similar to the one shown in Fig. 3.4 around u=0.575. 
Hence, the four lines intersecting at u=0.495 stem from the same guided mode diffracted 
from different neighbouring Brillouin zones. The lines crossing the y-axis at u=0.515 indicate 
another guided mode. Also the azimuthally resolved emission pattern taken at a reduced 
frequency of u=0.592 as shown in Fig. 3.8 b can be understood with Fig. 3.5 in mind. Since 
band gaps are hardly observed, this LED operates within the weak coupling regime. As an 
alternative to the far field measurement the dispersion relation above the light line can also be 
gathered by spectral reflectometry [81]. 
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Fig. 3.8: (a) Measured dispersion relation of a GaN-based LED with overall thickness of ~1µm, a >400nm 

etched PhC with pitch a=274nm, a bottom mirror and an ITO cover-layer. The band intersection at u=0.495 

qualitatively agrees with the bands in Fig. 3.4 at u=0.575. (b) Azimuthally resolved far field for u=0.592 

revealing a Star-of-David shaped pattern similar to the one shown in Fig. 3.5.  
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4 Theoretical Methods 
In this chapter the simulation methods used throughout this work are summarized. First of all, 
a widely used method is presented that handles co-planar layer stacks and yields the 
extraction efficiency of LEDs along with the Purcell factor. Even though this method can be 
extended to structures with surface texturing [29][82][83], it is limited to periodical surfaces 
and to single frequency calculations. Afterwards we describe two methods for structured 
LEDs. The first one is applicable to shallow etched PhC LEDs since a perturbational 
treatment of the PhC is utilized. With this diffraction model a clear insight into the basic 
mechanisms of PhC LEDs is possible. Besides the detailed discussion regarding PhC LEDs in 
chapter 5 is based upon this model. The second one is the finite-difference time-domain 
(FDTD) method that solves Maxwell’s equations fully vectorial in three dimensions [41]. Due 
to the tremendous demand in computational time and resources along with the huge parameter 
space of PhC LEDs a general optimisation of these is not possible with FDTD. However, as 
this method handles any surface structuring it will be used for a quantitative comparison 
between PhC LEDs and standard thin-film LEDs with random surface texture in chapter 7. 
Furthermore, we will verify our conclusions and results obtained from the diffraction model 
with FDTD. 

4.1 Transfer Matrix with a Dipole Source 
The aim of the method described here is to calculate the extraction efficiency of co-planar 
layer stacks along with the Purcell factor and the angular emission distribution while taking 
into account the interference effects within the layer stack stemming from reflections at the 
layer interfaces (RCLED effect). 

In order to determine the main principles of this method consider for instance the three 
layer stack as shown in Fig. 4.1. For a given frequency and in-plane k-vector two propagating 
plane waves contribute to the electric field in layer 1 as no coupling of different in-plane 
k-vectors is possible: firstly, light generated upwards and secondly, light generated 
downwards and reflected at the interface between layer 2 and layer 3, similar to Fig. 2.9 a. The 
transmission of this superposition gives the electric field E1 in the upper layer 1 [40] 
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with A± the source distribution in ±z-direction and tj (rj) the amplitude transmission 
(reflection) coefficients including phase factors corresponding to the propagation of light from 
the source position towards the layer interfaces. The denominator determines the confinement 
of the fields within the cavity between layers 1 and 3. For reflectivities r1 and r3 approaching 
unity highly confined modes are obtained; the lower the product the less confined is the 
corresponding mode. For the electric field in layer 3 E3 and the field within the source layer  
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Fig. 4.1: Sketch of a three layer system. The source is embedded within layer 2. Along with the electric field in 

layer 1 and 3 also the source amplitudes A± are depicted. The reflection and transmission coefficients rj and tj 

include both the pure Fresnel reflection coefficient between two layers and phase factors owing to the 

propagation of light from the source position towards the layer interface. 

E2 similar expressions to (4.1) can be derived [39] and [40]. From this it is possible to 
determine the impact of the cavity on the source. We already used this method for the 
calculation of the extraction efficiency and the Purcell factor as shown in Fig. 2.9 b and the 
emission distribution in Fig. 2.10. 

At this point, two issues remain open: the source distribution and the generalization of 
the three layer system to a system with an arbitrary number of layers. 

4.1.1 Source Distributions: Bulk, Quantum Wells, and Wurtzite Structure 

The source distribution A± itself depends on the electron-hole-recombination process. 
Classically, this recombination can be described by an isotropic source with its separation into 
a vertically (v) oriented dipole only radiating TM-polarisation and two horizontally (h) 
oriented dipoles, one for TE and the other for TM-polarisation [40] 
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with θ2 the propagation angle of the plane wave inside layer 2 and k2 the corresponding 
k-vector. By replacing the propagation angle with the in-plane k-vector it is possible to 
include the evanescent fraction, β>k2, of the dipole emission into the calculations. Thus, also 
the coupling of an emitter with surface plasmons, see section 6, can be considered 
quantitatively. The coefficients ensure the correct weighting of each dipole. For instance, the 
emitted radiant intensity for an isotropic emitter is then given by  
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The weighting of the horizontal (vertical) fraction of the radiant intensity Ih (Iv)  with 2/3 (1/3) 
accounts for the decomposition of an isotropic source into two horizontally (one vertically) 
aligned dipole, i.e. one for each spatial direction. 

However, the assumption of an isotropic emission being used up to now only holds for 
spatially homogeneous crystal structures, like bulk GaAs with its Zinc-Blende structure. In 
this case, no preferential direction exists and thus, no preferred dipole orientation. In contrast, 
for quantum wells the direction perpendicular to the well significantly differs from the 
in-plane directions due to the heterostructure. For transitions between confined conduction 
bands and heavy hole valence band states, which usually are the fundamental transitions, the 
dipole oriented perpendicular to the well is suppressed and thus only horizontal dipoles exist. 
A similar break in spatial symmetry occurs in semiconductors with an intrinsic preferential 
direction resulting from the crystal structure. For example in the case of GaN with its 
Wurtzite structure the c-axis defines a preferred direction. For GaN grown along the c-axis the 
dominating electron-hole recombination process can be described by horizontal dipoles. 
Hence, throughout this work only in-plane oriented dipoles will be taken into account as all 
LEDs under investigation are GaN-based and/or have quantum wells. The issues related to the 
dipole orientation and the electronic transition matrix element with a special focus on GaN are 
discussed in more detail in [24]. 

4.1.2 Transfer Matrix 

Even though the three layer stack as sketched in Fig. 4.1 is a very simple system it already 
includes the extension to an arbitrary LED layer stack. The only information we need to know 
about layer 1 and 3 are their reflection and transmission coefficients in relation to layer 2. 
Thus, in a general structure one simply replaces the layer stack above and below the active 
region with an artificial layer with the same properties in terms of reflection and transmission. 
The latter serve as an input for e.g. (4.1). 

In order to derive r and t of an arbitrary layer stack the same mathematics is applied as 
in the case of electron tunnelling through a potential barrier, for instance. The following 
results hold for TE-polarized light (similar expressions for TM), i.e. the electric field is 
oriented in the x-direction. The electric field ξj in each layer j is assumed as a superposition of 
upward and downward propagating plane waves 
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with 
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the k-vector component perpendicular to the layer interfaces, nj the refractive index of the j-th 
layer and zj the position of the interface between layer j−1 and layer j. The amplitudes Aj and 
Bj are determined by the electromagnetic boundary conditions between two layers that in 
general read  
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with ez the unit vector in z-direction. The surface charge σs and the surface current density js 
are neglected in the following. Due to the third and the last equation of (4.6) the tangential 
components of both the electric and the magnetic field are continuous across the interface. 
Thus, in the case of TE-polarisation the amplitudes Aj, Bj, Aj+1 and Bj+1 of two adjacent layers 
are related to each other by  
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as H=(0,Hy ,Hz) and Hy~∂E/∂z owing to the third equation of (3.2). From (4.7) the 
amplitudes of the next layer j+1 can be calculated from the amplitudes in layer j by the matrix 
Tj 
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with the thickness dj=zj+1−zj of the j-th layer. Consequently, the amplitudes in the last layer of 
an N layer stack are derived from the first by the transfer matrix T 
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Hence, the reflection coefficient r and the transmission coefficient t for an arbitrary layer 
stack can be calculated by 
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Since this transfer matrix has the drawback of being numerically unstable as small 
numerical errors within the exponential functions build up rapidly, we used the so-called 
scattering matrix. Instead of linking the fields on the bottom of the stack with the fields on top 
as is the case for the transfer matrix, the scattering matrix S links the incoming waves A1 and 
BN to the outgoing waves AN and B1 [84] 
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The reflection and transmission coefficient ensue from 
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4.2 Diffraction Model 
Based upon the conclusions from section 3.4 we now derive a simulation method for PhC 
LEDs that handles the PhC as a perturbation of the co-planar LED layer stack. Hence, first of 
all the modes of the LED are calculated. Afterwards coupled mode theory is applied in order 
to obtain the amount of diffracted intensity between modes. The PhC enters the mode 
calculation by its average dielectric function εPhC, that is given by εPhC=Fεair+(1−F)εSC. Fig. 
4.2 shows a general setup of a PhC LED along with a guided and a radiative mode.  

mirror

PhC

air

z

x,y

 
Fig. 4.2: General setup of a PhC thin-film LED along with field amplitude profiles of a guided and a radiative 

mode. 

4.2.1 Eigensolutions of a Co-Planar Layer Stack 

The method to determine the eigensolutions of an arbitrary co-planar layer stack described in 
the following is given in detail in [77] for TE-polarized, i.e. E=(E ,0,0), guided modes. 
Hence, only a brief summary is presented and extended to the calculation of radiative modes. 

In the case of a co-planar layer stack as depicted in Fig. 4.3 the master equation for the 
electric field (3.4) reads 
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, (4.13) 

where Em is the m-th eigensolution. In order to derive (4.13) the Grassmann3 identity has been 
applied along with the assumption ∇ · (εE)=ε∇ · E=0. The latter is justified, even though ε is 
z-dependent, as the discontinuities are handled by the boundary conditions (4.6) between two 
adjacent layers.  
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Fig. 4.3: Sketch of a co-planar stack with N layers. The first layer corresponds to the ambient medium, the last 

to the mirror in the case of thin-film LEDs. Apart from the layers also the field amplitudes in the first and the 

N-th layer are depicted in the case β>n1k0 and β>nNk0. A mode is confined to the stack if A1=BN =0. 

Due to the homogeneity of the slab in x and y, the eigensolutions of (4.13) can be 
separated into a vertical field profile Um(z) and a plane wave in lateral directions 
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with r||=(x ,y) and the vertical field profile 
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with N the number of layers and 



 ≤<

= +

else0

1
)( 1jj

j

zzz
zΘ . (4.16) 

For better readability the field inside each layer ξj and the vertical k-vector component γj are 
not labelled with the mode index m. The vertical mode profile is normalized according to [85] 

∫ = mk
m

0
k

*
m

  2
 )( )( δ

β

µω
dzzUzU . (4.17) 

With the help of the transfer matrix (4.9) the eigensolutions of (4.13) can be found, 
since an eigensolution is confined to the layer stack when the field decays exponentially 
outside the stack, i.e. βm>n1k0 and simultaneously βm>nNk0. Thus, the normal k-vector 
components γ1 and γN are purely imaginary. Consequently, the amplitudes A1=BN=0 have to 
vanish in order to avoid an exponential growth of the fields in layer 1 and N in direction away 
from the stack, see Fig. 4.3. For A1=0 and B1=1 guided modes are determined by the roots of 
the T22 component of T 
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as BN=0 in this case. The only unknown in (4.18) is the in-plane k-vector length β. It should 
be mentioned here, that an infinite number of modes correspond to the eigenvalue βm 
according to (4.14), each having different in-plane propagation direction βm/βm. Wherever it 
simplifies the treatment this degenerate set of modes is referred to as a single mode. The 
imaginary part of the eigenvalue determines the absorption coefficient αm of the guided mode  

)Im( 2 mm βα =  (4.19) 

However, when referring to the eigenvalue or the in-plane k-vector length only the real part is 
taken into account. 

In contrast to guided modes, radiative modes are not confined to the layer stack and 
hence, cannot be calculated with (4.18). Furthermore, an infinite number exists as they extend 
into free space. In order to allow for the numerical treatment of these modes, the ambient 
medium is truncated to a layer with finite thickness. For the results presented in this work, the 
thickness of this layer is 200 times the emission wavelength in order to create a 
quasi-continuum of radiative modes. The calculation of the radiative modes itself is carried 
out by solving for standing waves within this extended layer stack. Since the power flux of 
standing waves in z-direction has to be zero, the amplitudes within the ambient layer are 
assumed to be A1=−B1. The condition BN=0 still holds for thin-film LEDs as the radiative 
modes are confined by the mirror. Thus, according to (4.18) radiative modes obey 
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Although the above method is derived for LEDs in thin-film configuration, it can readily be 
extended to LEDs with transparent or absorptive substrates.4 

In order to obtain all guided and radiative modes supported by a layer stack, the 
following criterion is used. Two modes can be distinguished by the number of roots of their 
field profile. The lowest order guided mode has zero roots, the next higher order guided mode 
has one root, etc. Hence, a complete set of guided modes is obtained, if every possible number 
of roots up to some maximum number Nmax is determined. The maximum number Nmax for 
guided modes is calculated from a test field profile with β=(n1+δn)k0 with δn=10−15. For 
radiative modes the maximum number of roots is determined from a test field profile with 
β=0. 

4.2.2 Coupled Mode Theory 

Due to the perturbation of the co-planar layer stack by the PhC, the modes of the slab get 
coupled to each other according to Bragg’ law (3.10). In order to derive the relevant 
properties of the modes, firstly coupled mode theory [86] is applied to a one-dimensional 

                                                 
4 The numerical implementation of the mode search was based upon the derivation given in [77]. Here, 

the normal k-vector component is defined by 2
0

2
j

2
j kn−= βγ and the electric field within the j-th layer by 

( ) ( )jjjj

jj)( zzzz

j eBeAz
−−−

+=
γγ

ξ . Thus, the transfer matrix differs and the condition for guided modes requires 

AN=0 or T11=0 and for radiative modes T11=T12 in contrast to (4.18) and (4.20), respectively. For the numerical 
determination of the complex eigenvalue β the built-in function FindRoot of Mathematica 5.2 is used. 
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grating and modes propagating perpendicular to the grooves. Afterwards the results are 
extended to the two-dimensional case. 

By adding the perturbation ∆ε(x,z) due to a one-dimensional PhC the unperturbed 
equation (4.13) assumes the form 
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where the solution E(x,z) is taken as a superposition of both guided and radiative modes of the 
unperturbed layer stack 
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After multiplying (4.21) with the complex conjugate of the k-th mode and integrating over the 
transversal direction z one obtains by additionally applying the unperturbed equation (4.13) 
and the orthonormality condition (4.17) 
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The second derivative has been neglected owing to the slowly varying amplitude 
approximation ∂2

am/∂x2<<βm∂am/∂x.  
At this point it is helpful to introduce the Fourier transform of the periodic dielectric 

function [87] 
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with ΘPhC(z)=1 for vertical positions inside the PhC layer and zero elsewhere. Since the 
average dielectric function of the PhC is already included into the mode calculation the 
fundamental Fourier amplitude vanishes, i.e. ∆εG=0=0. Inserting the Fourier transform 
(4.24) into (4.23) results in 
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where the integral κkm is only taken over the PhC layer and determines the coupling strength 
of the modes k and m within the PhC. Integration of (4.25) in x-direction up to some length L 
yields 
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with ∆=βm−βk−G and the assumption ak(0)=0. Furthermore, the coefficient am(x)=am has 
been assumed constant as the coupling is supposed to be weak. Incoherently summing (4.26)  
up after taking the squared modulus enables to replace the last factor in (4.26) by the Bragg 
condition ∆=0 in the limit of large L 
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Thus, the diffraction rate Γk into the k-th mode is obtained as 
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In order to extend these results to the calculation of two-dimensional PhCs, every 
in-plane propagation direction has to be taken into account. Thus, the diffraction rate from a 
mode propagating with in-plane direction βm/βm into another one propagating in direction 
βk/βk is given by 
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Hence, the overall diffraction rate Γm→amb of a guided mode βm into the ambient medium is 
obtained by considering every in-plane propagation direction βm/βm of the guided mode and 
every radiative mode along with its propagation direction 
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From (4.30) the amount of diffracted intensity Id is calculated by multiplying the 
diffraction rate with the amount of spontaneous emission Bm into each mode 
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the overlap of the mode profile with the active region. In analogy, we can define the overlap 
of the mode profile with the PhC layer by 
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According to (4.33) it is evident that a large amount of intensity is diffracted from one mode 
to another when the initial mode gains a lot of spontaneous emission and the two modes 
couple significantly with each other. Additionally, the corresponding reciprocal lattice vector 
should support a high Fourier intensity. 

The azimuthally averaged far field pattern Id(θ) resulting from diffraction of guided 
modes into the extraction cone is then given by summation over every in-plane direction of 
every guided mode and summation over every diffraction process resulting in the same 
radiative mode βk 
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with sinθk=βk /kamb. 
According to Fig. 4.4 diffraction of a guided mode βm results only in radiative modes 

with in-plane k-vector |G−βm |<βk<kamb. Thus, the explicit sum over every possible in-plane 
direction in (4.32) and (4.36) can be replaced by a sum over every reciprocal lattice vector 
length G supported by the PhC along with a sum over every in-plane k-vector length of the 
radiative modes obeying the above condition. Therefore, the overall diffraction rate Γm→amb 
(4.32) is given by 
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and the azimuthally averaged far field pattern Id(θ) transforms into 
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where the total Fourier intensity of reciprocal lattice vectors with equal length is given by 
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Fig. 4.4: Ewald-like construction according to Fig. 3.5 showing every possible diffracted k-vector (black solid 

circle) resulting from diffraction of a guided mode (black dashed circle) with eigenvalue βm  by a reciprocal 

lattice vector G. Bragg’s law is shown for one in-plane propagation direction βm. The diffraction process within 

the extraction disk only results in diffracted k-vectors with length |G−βm |<βk<kamb (light grey area). 
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In general, if light is diffracted from mode βm to mode βk the reverse direction is also 
possible. However, as we are interested in diffraction from guided modes into radiative 
modes, the diffraction from the latter into the former can be neglected. As discussed in [19], if 
the confinement of the radiative modes within the cavity is small compared to the guided 
modes, extraction of light is more rapid than back-diffraction. In the case of GaN-to-air 
(AlGaInP-to-air) the reflectivity of this interface is as low as 17% (31%) and hence, only 
weak confinement of the radiative modes is expected. In contrast, guided modes are per 
definition absolutely confined to the stack, as they obey total internal reflection. Therefore, a 
net power flow arises from the guided mode into the radiative mode. 

At this point, a general remark regarding the diffraction coefficient Γm→air and the 
extraction efficiency ηextr,m of the same guided mode should be made. The diffraction 
coefficient itself does not determine the extraction efficiency solely as also the absorption 
coefficient αm has to be taken into account according to (2.8). For instance in the case of no 
absorption, 100% extraction efficiency is obtained regardless of the actual diffraction 
coefficient as long as Γm→air>0. Only in the case of heavy absorption a change in diffraction 
coefficient causes the same amount of change in extraction efficiency5. In general, the 
extraction efficiency of a single guided mode reads 
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Due to the coupling integral the diffraction coefficient varies depending on the in-plane 
propagation angle φ and may sometimes be even zero if diffraction from this particular 
propagation direction to ambient is not possible. Therefore, the extraction efficiency has to be 
calculated for every in-plane propagation direction of the guided mode and averaged 
afterwards. However, all these issues conceal the view on the pure diffraction properties of 
the PhC and hence, we will investigate PhC LEDs based upon the diffraction coefficient and 
discuss the consequences for the extraction efficiency separately. Additionally, calculating the 
latter within the model would cause significantly longer computation runs as the in-plane 
directions have to be discretised appropriately.  

4.3 FDTD Method 
The finite-difference time-domain method (FDTD) was first presented in [88] and probably 
has become one of the most popular algorithms in electromagnetics by now. The solution of 
Maxwell’s equations (3.1) is accomplished by approximating the partial differential equations 

                                                 
5 This is equivalent to the discussion regarding the Purcell factor as shown in Fig. 2.4. The radiative 

(non-radiative) rate is analogous to the diffraction (absorption) coefficient and the Purcell factor accounts for 
variations of the radiative rate. 
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by finite differences, both in time and in space. The time derivatives of  the coupled 
Maxwell’s curl equations – the latter two equations in (3.1) – are used in order to obtain an 
evolution of the fields in time. The electric field distribution for the next time step t+∆t is 
derived from its current distribution at time t and from the spatial derivation of the magnetic 
field distribution at an intermediate point in time t+∆t/2. The latter has been calculated from 
the magnetic field distribution at time t−∆t/2 and a spatial derivation of the electric field 
distribution at time t. Hence, by alternately calculating the new electric and magnetic field 
distributions the fields evolve. Moreover, as both fields are used the solutions are more robust 
than using only one of them [41]. The unique spatial discretisation scheme via so-called Yee 
cells allows to approximate both the space and the time derivatives by central-difference 
finite-differences that are second-order accurate. In general, the strength of this approach 
relies on the fact that almost arbitrary structures can be calculated as long as the spatial grid is 
dense enough and the computational domain can be stored within the available computer 
memory. Additionally, as the method is time domain based, one simulation run yields the 
response of the system within a broad frequency range through a frequency analysis of the 
temporal field evolution, see for instance section 4.3.5. 

In the upcoming section the simulation setup is described. Also the determination of 
the extraction efficiency and the Purcell factor is briefly discussed along with requirements on 
the computational domain in order to obtain reliable far field patterns. Afterwards the 
procedure for calculating dispersion relations with FDTD is summarized. In the last section 
the model for the metallic mirror is presented that has been used in FDTD in order to obtain 
the correct material dispersion. 

We worked with the commercial software tool FDTD Solutions 5.2 from Lumerical 
[89] on a Linux 64bit multiprocessor machine with 16 cores (four AMD Opteron 8354 Quad 
Core 2.2GHz 2MB) and 128GB RAM. 

4.3.1 Simulation Setup 

A few things should be kept in mind that have to be met by the simulation setup in order to 
get the correct physics. First of all, as the diffraction process differs with respect to the 
in-plane directions, see e.g. Fig. 3.8 b, the three-dimensional problem cannot be reduced to 
two-dimensions by just calculating a vertical slice through the PhC LED. Secondly, dipole 
sources are best suited for excitation as the electron-hole-recombination can classically be 
represented by a dipole, see 4.1.1. Furthermore, a large number of them should be randomly 
distributed at the position of the active region as all possible orientations of the dipoles with 
respect to the surface structure should be considered, see Fig. 4.5 a. However, as FDTD 
intrinsically is a coherent simulation method the use of several dipoles within one simulation 
run results in an unphysical interference pattern representing the source. This interference 
pattern significantly influences the simulation results, especially the far field pattern. For the 
same reason, it is not convenient to use periodic boundary conditions, as shown in Fig. 4.5 b, 
even though the periodicity of the PhC tempts to apply them. Due to the periodic continuation 
of the computational domain every embedded dipole is also replicated and interferes with its 
counterparts. 

Therefore, we will use a single dipole source within a computational domain enclosed 
by absorbing boundary conditions (perfectly matched layers; PMLs), as depicted in Fig. 4.5 c. 
We have proven by test simulations that different dipole positions and orientations have only 
negligible impact on the results if the dipole is rather far away from the surface structure 
(distance >1µm). For LED structures with a smaller distance different dipole positions are 
taken into account that are shown in Fig. 4.5 d. In general, the extraction efficiency and the 
Purcell factor are less dependent on the dipole position than the far field pattern, especially for 
angles close to surface normal. In order to reduce the impact of the finite sized area on the  
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Fig. 4.5: Possible FDTD simulation setups; the grey area indicates the mirror and the dark grey area the active 

layer. (a) Randomly positioned and oriented dipoles define the active layer. (b) Periodic boundary conditions 

continue the structure, but also any dipole within the simulation volume. Thus a) and b) suffer from an 

unphysical interference pattern generated by the coherent dipoles and their relative position to each other. (c) 

Simulation setup we used during this work to calculate the extraction efficiency, Purcell factor and far field 

radiation patterns of surface textured LEDs. The shaded areas indicate planes used for calculating the power 

flux emitted by the source (cube around the dipole) and the extracted power flow (plane above the LED); the 

latter is calculated by integrating over disks with varying radius as depicted. L denotes the lateral dimension of 

the simulation setup. (d) Different dipole positions and orientations with respect to the hexagonal lattice taken 

into account in the simulations when the distance between the PhC and the dipole is small (distance <1µm). 

simulation results large simulation volumes are used. Here, the computational time sets an 
upper limit on the lateral area, as it exhibits quadratic growth depending on the lateral area. 
Therefore, the lateral dimensions were set to 60µm by 60µm. Since the dipole is placed in the 
middle of the simulation volume light interacts 30µm with the PhC before being absorbed at 
the PMLs. Typically, computational times of 9h up to 40h are necessary before reaching the 
shutoff criterion (electromagnetic energy has decreased to 10-5 of its peak value) depending 
on the extraction capability and the absorption of the structure.  

4.3.2 Extraction Efficiency 

Even though relatively large computational domains are used, entire LED structures cannot be 
modelled. Small LEDs still have lateral dimensions of 250µm by 250µm (approximately 6.5d 
of computing in the best case). Additionally, it became evident that complete light extraction 
cannot be achieved within 30µm propagation distance for typical LED structures (e.g. LED as 
shown in Fig. 4.5 c with thickness of 3µm and 300nm deeply etched PhC). Therefore, a 
scheme was set up for extrapolating the extraction efficiency of entire LEDs. The basic idea is 
to obtain extraction efficiencies from several simulation runs with the same LED structure but 
different lateral dimensions. In each case, the extraction efficiency is calculated from the 
power flux extracted from the structure with respect to the overall emitted power from the 
source, see Fig. 4.5 c, 
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with Pz,out the power flow integrated over a plane above the LED structure and Px,y,z,in the 
integrated power flux through the planes normal to x, y or z enclosing the source. The + and – 
sign indicate power flow parallel or anti-parallel to the corresponding axis. Hence, we obtain 
a series of extraction efficiencies ηextr,j for every lateral dimension Lj. The extraction 
efficiency for arbitrarily large LEDs is extrapolated from these values by fitting 
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As the light propagates inside the LED it undergoes two phenomena. Firstly, it is extracted 
due to the PhC. This is taken into account by the extraction coefficient η. Secondly, it suffers 
from absorption (denoted by the absorption coefficient α). The term in brackets describes the 
fraction of light either absorbed or extracted after the propagation distance x. The ratio of 
coefficients η /(η+α) defines the amount of extracted light. Hence, the extraction efficiency as 
a function of the propagation distance can be calculated. The amount of light extracted from 
the LED without the help of the PhC, i.e. light generated within the extraction disk, is taken 
into account by the offset η0.  

Unfortunately, running several simulations is extremely time consuming. But it is also 
possible to obtain the dependency of the extracted power flow on the lateral dimension from a 
single simulation. To mimic increasing lateral simulation dimensions Lj the extracted power 
flow is not integrated over the entire plane above the LED but over a disk with increasing 
radius. Hence, almost any number of lateral lengths can be obtained up to the maximum of 
30µm. We calculated the extracted flux and hence the extraction efficiency in steps of 1µm. 
However, regarding the extrapolation of this data it has to be mentioned that both the 
extraction and the absorption coefficient as introduced in (4.43) are average values over a 
large number of guided modes, each with individual coefficients. Hence, modes with e.g. high 
extraction coefficients will contribute significantly to the extraction efficiency at short 
propagation distances whereas they negligibly impact the values at large x as they are almost 
completely extracted. At large distances rather slow processes determine the extraction 
efficiency. To illustrate the impact of fast processes on the extrapolation, Fig. 4.6 exemplarily 
shows results for the extraction efficiency (grey symbols) along with three different fits. 
Firstly, as can be seen, the calculated extraction efficiencies do not saturate within 30µm and 
total light extraction from the PhC LED is not achieved. But this lateral dimension is large 
enough for a reasonable extrapolation of the data with the first 9 points neglected (solid black 
line). For the dashed black line only these 9 points are taken into account. This extrapolation 
yields significantly lower extraction efficiencies compared to the prior case as the 
contributing extraction process stem from high extraction coefficients. Hence, these points 
should not be taken into account for extrapolating the extraction efficiency. In contrast, 
neglecting more than 9 points, e.g. the first 14 points (dotted black line), has only negligible 
impact on the extrapolated extraction efficiency. Thus, the extrapolated values for the 
extraction efficiency given in this work are obtained by neglecting the first 9µm. The 
dash-dotted line indicates the extraction efficiency of the unstructured reference LED 
obtained from FDTD simulations. A comparison of this value with the corresponding one 
from the transfer-matrix method of section 4.1 reveals a deviation of the FDTD simulations of 
less than 10%. 
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Fig. 4.6: Example for the extrapolation of the extraction efficiency; grey symbols represent the extraction 

efficiency calculated from the simulation by increasing the integration radius; the black solid (dotted) line is a fit 

to these values according to (4.43) while neglecting the first 9 (14) points. The dashed black line is obtained 

from a fit that only takes into account the first 9 points. (b) is a close-up to the data shown in (a). 

The data are obtained from a green emitting LED as sketched in Fig. 4.5 c with 
nSC=2.4, namb=1, a silver bottom mirror (see section 4.3.6), a 300nm deeply etched hexagonal 
PhC with pitch a=600nm and filling fraction F=0.5. The distance between the source and the 
mirror is 160nm, the peak wavelength is 520nm and a FWHM of 30nm of the Gaussian 
emission spectrum is taken into account by calculating the extraction efficiency at 71 different 
wavelengths in the interval [470nm;570nm]. 

4.3.3 Purcell Factor 

The calculation of the Purcell factor is analogous to the derivation given in [90]. From its 
definition (2.4) the Purcell factor is the ratio between the radiative decay rate Λrad in the 
system under study with respect to the decay rate Λrad,0 in bulk material with the same 
refractive index as the active region. It can now be shown [90] that the ratio of the quantum 
mechanically given decay rates is equivalent to the ratio of the corresponding power fluxes 
from dipole sources 

tot,0
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rad,0

rad

P

P

Λ

Λ
FP ==  (4.44) 

with Ptot the total power flux emitted from a dipole in the system under study 

−+−+−+ +++++= inz,inz,iny,iny,inx,inx,tot PPPPPPP , (4.45) 

and Ptot,0 the total emitted power flux from a dipole located in a homogeneous optical 
environment. For the calculation of the Purcell factor the function transmission() of FDTD 
Solutions was used. In general, the calculation of the Purcell factor puts least demand on the 
computational setup. 

4.3.4 Far Field Radiation Pattern 

A major objective of this work is to study the emission patterns of PhC LEDs in order to 
clarify their applicability for étendue limited systems. Therefore, the lateral dimensions have 
to be large enough to ensure negligible impact of the finite sized simulation volume on the 
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Fig. 4.7: Azimuthally averaged far field patterns for a LED similar to the one used in Fig. 4.6 except the overall 

thickness is ~6µm and the pitch is a=470nm (a), a=310nm (b), and a=260nm (c). The darker the 

corresponding solid line the larger the simulation dimensions, ranging from L=10µm up to L=50µm. The 

dashed line represents a Lambertian far field pattern with I(θ)=cosθ. 

radiation pattern. Fig. 4.7 shows azimuthally averaged far field patterns for the LED already 
used in Fig. 4.6 except for the overall thickness being ~6µm and the pitch being 260nm, 
310nm and 470nm, respectively. Depending on the simulation dimensions different far field 
shapes are obtained for the same LED structure. For a pitch of a=470nm the earliest 
convergence is achieved for a length of L=20µm. For smaller pitches of a=310nm and 
a=260nm lengths greater than L≥30µm and L≥40µm are necessary, respectively. 

We used the farfield3d() command of FDTD Solutions for the calculation of the far 
field patterns from the electric and magnetic field distribution within the plane that the 
extracted power flow is calculated from, see Fig. 4.5 c. Additionally, a Gaussian averaging 
according to the emission spectrum as described in section 4.3.2 has been carried out to obtain 
the results as presented in Fig. 4.7. 

4.3.5 Calculating Dispersion Relations 

Apart from power fluxes and far field radiation patterns FDTD is also capable of calculating 
the dispersion relation of arbitrary periodic structures. For these calculations so called Bloch 
boundary conditions and “white” dipole sources are used. 

According to Bloch’s theorem (3.5) the different eigensolutions of the master equation 
(3.3) or (3.4) can be distinguished by their k-vector and their frequency. For every value of k 
discrete values of ωn(k) exist corresponding to the different bands of the dispersion relation. 
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Fig. 4.8: (a) Example of a temporal intensity evolution for a single value of the in-plane k-vector. (b) The 

corresponding frequency analysis. Only the values above a certain threshold (dashed line) are collected for the 

dispersion relation.  
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In order to obtain every frequency eigenvalue for a given in-plane propagation direction 
several dipole sources each with a very sharp emission pulse in time are located within the 
computational domain. Hence, a broad frequency range is excited. Even though coherent, 
more than one dipole source has to be used as every possible mode profile has to be launched. 
The Bloch boundaries select the k-vector of interest as they only allow field distributions of 
the corresponding Bloch modes. According to the periodicity of the Bloch modes, a 
simulation volume enclosing one unit cell is sufficient, e.g. as depicted in Fig. 4.5 b. The 
discrete frequency values ωn(k) are detected by a frequency analysis of the temporal field 
evolution as highlighted in Fig. 4.8; the peaks in this spectrum above a certain threshold value 
are collected. By running several simulations with different Bloch boundary settings, the 
k-space is sampled and the dispersion relations as shown in Fig. 3.7 are obtained. 

4.3.6 Model for Metallic Mirrors 

The correct representation of dispersive materials within multiple frequency FDTD 
simulations requires to describe the refractive index dispersion by analytical functions. In this 
work, dispersion is only taken into account for the silver mirror of the green InGaN LED. The 
parameters of the other materials are assumed constant, i.e. nGaN=2.4. The refractive index 
values of silver are taken from [91] and are shown in Fig. 4.9. The analytical function is 
obtained from a fit to these values based on a combined Plasma-Lorentz model [92] 
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with ε0=3.75, ωP=1.39 1016, νc=3.11 1013, εLo=1.17, ω0=1.71 1015, and δ0=3.52 1016. 
However, in most LEDs the reflectivity of the GaN-Ag interface obtained from these 

values is not as good as shown in Fig. 4.10 (black line) since thin, heavily absorbing layers 
are used in-between to ensure better adhesion of GaN and Ag. The accurate description of 
these thin layers in FDTD would require a huge computational effort. To circumvent this 
problem we instead increased the collision frequency νc of the Plasma part by a factor of 10 to 
decrease the reflectivity of this combined mirror down to reasonable values. 
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Fig. 4.9: Experimental dispersion of silver from [91] (black dots) and a fit according to (4.46) (grey solid line). 

(a) Real part of the dielectric function; (b) imaginary part. 
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Fig. 4.10: Reflectivity of GaN-Ag interface under normal incidence for material parameters as obtained from the 

fit Fig. 4.9 (black line) and for a 10 times higher collision frequency (grey line). 
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5 Weak PhC LEDs 
For the incorporation of PhCs in LEDs several possible implementations can be thought of 
[69][93] with the two basic configurations shown in Fig. 5.1. In the first instance, Fig. 5.1 a, 
the whole chip area is used for light generation as well as light extraction. Hence, the radiance 
is fairly homogenous across the chip and every part of the chip contributes to light generation. 
However, in this case etching through the active layer has to be avoided as an amount of light 
generation area equal to the area fraction of holes is lost. Consequently, at a given driving 
current the current density at the remaining active regions is increased and less radiant flux is 
emitted from the same chip area as the droop causes a decreased efficiency. Additionally, due 
to surface states at the walls of the holes the electron-hole pairs tend to recombine 
non-radiatively at the surfaces [14]. Therefore, the internal quantum efficiency is further 
reduced. However, it has been shown recently that an appropriate annealing step could heal 
the etch-induced damage [94] and that the surface recombination process is less pronounced 
in the case of green emission [95]. The second configuration is realized by separating light 
generation and light extraction, see Fig. 5.1 b. The patterned area should be larger than the 
propagation distance of the light before it is extracted and/or absorbed. Here, etching through 
the active area implies no penalties on the efficiency. But the radiance decreases 
exponentially with increasing distance from the light generation area. Furthermore, the active 
area is reduced as compared to the first case. As higher current densities have to be used, 
these devices are less efficient. Nevertheless, since the directly emitted light is spatially 
separated from the light diffracted from guided modes, these devices give a clear insight into 
the operation principle of PhCs [21][30]. 

In summary, for high efficiency devices a setup as shown in Fig. 5.1 a is preferred. 
Hence, we will investigate this case. For weakly coupled PhCs, i.e. if the etch depth of the 
PhC is small compared to the overall thickness of the LED, it is convenient to separate the 3D 
problem of a PhC LED into a 2D+1D problem. According to the diffraction model the 
two-dimensional part – represented by the Fourier transform |∆εG|2 of the lattice – includes 
the lattice pitch, the lattice type itself and the filling fraction. The one-dimensional part 
consists 
 

 
Fig. 5.1: Two possible PhC LED configurations. In (a) light generation and light extraction are obtained from 

the same area, whereas in (b) both regions are laterally separated. In order to achieve high efficiency devices 

with a homogenous radiant emittance, case (a) will be used in this work. 
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of the design of the vertical layer stack and the resulting mode distribution. Here, the amount 
of spontaneous emission Bm into each mode and the coupling integral κmk between modes 
have to be taken into account. The two parts are coupled to each other by the filling fraction 
of the PhC that influences the Fourier transform of the PhC on the one hand and determines 
the average refractive index of the PhC layer on the other hand. 

In the upcoming sections the properties of the lattice and the vertical layer stack are 
discussed. Along with geometrical considerations, the diffraction model is utilized to 
investigate the relevant mechanisms. Our conclusions will be confirmed by calculations with 
FDTD as a reference including the whole physics. As a sample structure we use a green 
emitting InGaN LED as shown in Fig. 5.2 because it exhibits a simple structure while still 
being relevant for applications. The refractive index profile within real InGaN LEDs varies 
negligibly so that the whole layer stack is assumed to have the same refractive index, 
nGaN=2.4. Even though the active region of these LEDs can consist of several quantum wells 
we only take into account a single well in order to reduce the computational effort for the 
FDTD simulations. Several quantum wells in varying distances from the mirror would require 
several simulation runs each with a different vertical position of the dipole. Consequently, in 
order to ensure good comparability between FDTD and the diffraction model, the active 
region in the latter is represented by a single 1nm thin layer with the same distance from the 
mirror as the FDTD dipole. The mirror has the refractive index function as presented in 
section 4.3.6 and air is taken as the ambient medium, kamb=k0.  

Unless stated otherwise during the upcoming chapters results are obtained for the 
following values of the LED structure. The emission spectrum is assumed to be Gaussian with 
a peak wavelength of λpeak=520nm and a FWHM of 30nm. The FDTD calculations include 
71 supporting wavelength points within the interval [470nm;570nm]. For the diffraction 
model calculations have been carried out in steps of 2nm ranging from 480nm to 560nm. The 
active layer is embedded into a 3µm thick GaN layer, where the PhC is 300nm deeply etched 
into. The distance between the active layer and the mirror is 160nm. The PhC itself consists 
of a hexagonal lattice with filling fraction F=0.5 and pitch a=600nm corresponding to a 
primitive reciprocal lattice vector G0=k0. The resulting PhC LED will be proven to yield high 
extraction efficiencies while the internal quantum efficiency and the electrical efficiency 
should remain unchanged compared to standard thin-film LEDs. 

mirror

PhC

air

active

region

I II III
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Fig. 5.2: Schematic of the sample LED used throughout this chapter. The thickness of the unetched GaN core is 

labelled t. Different mode profiles are sketched (I-III guided modes, IV and V radiative modes). The PhC layer’s 

dielectric constant is calculated according to the filling fraction, εPhC=F+(1−F)εGaN. 
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5.1 Lateral Part: Reciprocal Lattice Vector, Lattice Type and 
Filling Fraction 

In this section, first we focus on the impact of the pitch or equivalently the reciprocal lattice 
vector on the diffraction process. Afterwards, different lattice types are compared and the 
filling fraction is optimised. In order to derive the underlying principles the diffraction 
process of single guided modes is studied and the impact of additional modes is neglected. 
This will be discussed in section 5.2 as the vertical layer stack plays an important role here. 

5.1.1 Reciprocal Lattice Vector 

The impact of the reciprocal lattice vector G on the diffraction process is best seen by 
investigating the diffraction of a single guided mode according to Bragg’s law as shown in 
Fig. 5.3 by the solid black circle. 

In general, the diffracted k-vectors can be divided into three classes according to the 
light lines in the dispersion relation Fig. 3.2. The first one covers the segment of the solid 
black circle outside the ring of guided modes, βk>kSC. These states are neglected as they 
correspond to evanescent propagation within the LED. The second class contains diffraction 
from a guided mode into another guided mode, k0<βk<kSC. Here, owing to the finite number 
of guided modes only a finite number of diffraction processes redistributes the energy stored 
within the guided modes. On the one hand, light has an additional chance to escape from the 
structure after redistribution. On the other hand, it suffers from absorption losses. In contrast, 
an infinite number of diffraction processes is possible for case three: the guided mode is 
diffracted into the extraction cone, βk<k0, and the extraction efficiency improves. This 
process is possible if βm−k0<G<βm+k0 is fulfilled. 

In order to diffract as much different in-plane propagation directions βm/βm as possible 
into the extraction cone the reciprocal lattice vector has to be adjusted. Owing to the infinite 
number of radiative modes the possible diffraction processes to air scale with the arc length 
within the extraction disk Larc=2βmφ with the in-plane angle determined by the law of 
cosines, see Fig. 5.3, 
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k0kSC

j

G

Βm
Βk

 
Fig. 5.3: Geometrical construction in order to determine every possible diffracted k-vector according to Bragg’s 

law. The inner grey circle depicts the extraction cone, the outer one the maximum k-vector available within the 

LED. The in-plane angle 2φ determines the fraction of in-plane propagation directions that are diffracted into 

air according to the diffraction process βk=βm+G 
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For simplicity we first assume constant coupling of the guided mode to each radiative mode, 
κmk=const., and consider only a single reciprocal lattice vector. Fig. 5.4 shows the arc lengths 
for different guided modes according to (5.1). Evidently, each guided mode has a separate 
optimum reciprocal lattice vector for maximum extraction and is diffracted into air if 
|G−βm |<k0. Depending on the curvature of the mode circle the optimal reciprocal lattice 
vector length G has to be shorter than the in-plane k-vector length βm. In the case of the 
guided mode with βm=1.1k0 an almost 60% shorter reciprocal lattice vector compared to the 
guided modes’ eigenvalue yields best extraction. Furthermore, due to this curvature more 
in-plane propagation directions are extracted from guided modes with small βm compared to 
those with larger βm. Hence, guided modes with small βm are extracted more efficiently than 
guided modes with large βm. 

If we now expand our considerations towards the whole Fourier spectrum of the PhC 
as shown in Fig. 5.5 b, every possible G has to be considered. According to the diffraction 
model each diffraction process has to be weighted by the corresponding Fourier intensity 
|∆εG|2, i.e. the photonic strength of the lattice [23][29]. Thus, the diffraction coefficient for a 
guided mode can be approximated by the sum over every reciprocal lattice vector resulting in 
βk<k0 according to 
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Fig. 5.4: Length of the circle segment of the diffracted guided mode within the extraction cone for βm=1.1k0 

(solid line), βm=1.5k0 (dashed line), and βm=2.4k0 (dash-dotted line). Guided modes with short in-plane 

k-vector are diffracted more efficiently into the extraction cone due to the higher curvature of the circle. 

Furthermore, the optimum reciprocal lattice vector has to be shorter than the guided mode k-vector. 
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Fig. 5.5: (a) Hexagonal PhC lattice with F=0.4. (b) Corresponding Fourier transform; the disks’ radii account 

for the squared modulus of the Fourier amplitude |∆εG|
2
; for better visibility the square root of the Fourier 

peaks is taken. 

In Fig. 5.6 this diffraction coefficient is shown as a function of the primitive reciprocal 
lattice vector length G0 for a hexagonal PhC with F=0.4. Compared to the pure geometrical 
consideration in Fig. 5.4 now guided modes with large in-plane k-vector length are also 
extracted by reciprocal lattice vectors with G0<βm−k0 owing to high order diffraction 
processes, i.e. diffraction by G=31/2

G0, G=2G0 etc. in the case of a hexagonal lattice. The 
diffraction coefficient is rather low due to the low corresponding Fourier intensities |∆εG|2. 
In contrast, no diffraction is possible for G0>βm+k0 as the hexagonal lattice does not support 
any reciprocal lattice vectors with G<G0. The guided mode with βm=1.1k0 is diffracted even 
more efficient compared to the other modes due to the contribution of high order diffraction 
processes. These are favoured by the rather short optimum G0=0.3k0 that is roughly 70% 
shorter than the in-plane k-vector. Simultaneously, this optimum G0 ensures that the arc 
length related to diffraction by G=G0 with the highest Fourier intensity still is significant as 
can be seen in Fig. 5.4. 
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Fig. 5.6: Calculations of the diffraction coefficient considering the whole Fourier spectrum of the PhC with 

F=0.4 according to (5.2), i.e. κmk=const., for guided modes with βm=1.1k0 (solid line), βm=1.5k0 (dashed line), 

and βm=2.4k0 (dash-dotted line). Guided modes with short βm are diffracted even more efficient compared to 

Fig. 5.4 as high order diffraction processes also result in βk<k0. 
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Fig. 5.7: (a) Calculations from the diffraction model according to (4.37) for the LED as given in the introduction 

to chapter 5 but with F=0.4. This structure supports among others three TE-polarized modes at λ=558nm with 

βm≈1.1k0 (solid line), βm≈1.49k0 (dashed line), and βm≈2.4k0 (dash-dotted line). The inset sketches the 

diffraction process of βm≈1.49k0 by G0=βm. The different grey levels within the extraction disk indicate the 

varying coupling integral between the guided mode and the radiative modes. (b) The coupling integral κmk of the 

guided modes in (a) with each radiative mode. As the guided mode with βm≈2.4k0 has only tiny overlap with the 

PhC – mode I in Fig. 5.2 shows the corresponding mode profile – compared to the other modes its diffraction 

coefficient und coupling integral is multiplied by a factor of 3000. Due to the radial symmetry of the coupling 

integral the impact of the curvature of the guided modes’ circles on the diffraction coefficient vanishes and 

G0≈βm is a reasonable choice in terms of high diffraction coefficient. 

Before discussing results of the diffraction coefficient obtained from the diffraction 
model one should keep in mind that the guided mode’s profile plays an important role for the 
diffraction coefficient according to the coupling strength, see (4.30). For instance, the guided 
mode III in Fig. 5.2 probably will be diffracted more efficiently than modes I and II due to its 
potentially larger coupling integral with radiative modes. These issues will be discussed in 
section 5.2; now, we investigate the impact of the coupling integral on the choice of G0 for 
best diffraction of a single guided mode and will not compare Γm→air for different guided 
modes. From Fig. 5.7 a it can be seen that the asymmetry of the diffraction coefficient around 
G0=βm declines comüared to Fig. 5.6 when taking into account the coupling integral between 
the guided mode and the radiative modes. Owing to the radial symmetry of the coupling 
integral κmk, as depicted in the inset of Fig. 5.7 a, the impact of the curvature and higher order 
diffraction processes on the diffraction coefficient decreases compared to Fig. 5.6 and 
primitive reciprocal lattice vector lengths of G0=βm yield high diffraction rates. This effect is 
almost the same for each of the three modes under investigation regardless of the actual 
characteristics of the coupling integral that is shown in Fig. 5.7 b.  

In conclusion, for the efficient diffraction of a guided mode to air a PhC with primitive 
reciprocal lattice vector G0≈βm should be chosen. Higher order diffraction processes along 
with the curvature of the mode’s circle cause higher diffraction rates to air for guided modes 
with short in-plane k-vector length βm compared to highly guided modes with βm≈2.4k0. 

5.1.2 Lattice Type: Omni-directionality 

As the in-plane k-vector length of a guided mode fulfils βm>k0 only a fraction of the possible 
propagation directions of a guided mode can be extracted by a single reciprocal lattice vector 
while the remaining are not extracted [19]. Fig. 5.8 a shows this fraction as a function of the 
in-plane k-vector βm of the guided mode under the assumption G=βm. The fraction drops from 
33% for βm=k0 down to 13% for βm=2.4k0. Thus, in the latter case 87% of the guided mode’s 
propagation directions are not diffracted to air by a single reciprocal lattice vector. 
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Fig. 5.8: (a) Fraction of all in-plane propagation directions diffracted into the extraction cone in dependence of 

the in-plane k-vector βm in the case G=βm. The dotted vertical line indicates the maximum available in-plane 

k-vector for GaN, βm=2.4k0. (b) Range of guided modes diffracted omni-directionally as a function of the 

reciprocal lattice vector length and the number of reciprocal lattice vectors having this length (the fading black 

indicates increasing number of G from 2 to 12). The dashed line indicates G=βm. The dash-dotted lines enclose 

the guided mode region that is diffracted into the extraction cone |G−βm |<k0. 

However, as can be seen in Fig. 5.5 b a hexagonal lattice supports not only a single 
reciprocal lattice vector with a given length but several, e.g. six G with G=G0. Each of these 
reciprocal lattice vectors acts on a different fraction of in-plane propagation directions of the 
guided mode. Consequently, all in-plane propagation directions can be diffracted to air if the 
number of reciprocal lattice vectors with the same length is high enough. In this case the 
lattice offers omni-directional diffraction. Fig. 5.8 b shows the range of in-plane k-vectors that 
are omni-directionally diffracted into the extraction disk by a given reciprocal lattice vector 
length G in dependence of the number of reciprocal lattice vectors G with |G |=G. We 
assumed these vectors to be evenly distributed on a circle with radius G. A finite number of 
reciprocal lattice vectors with the same length G hardly extracts all the guided modes with 
|G−βm |<k0 omni-directionally, as the shaded areas never cover the complete area between the 
dash-dotted lines. 

For six reciprocal lattice vectors, e.g. the reciprocal lattice vectors of a hexagonal 
lattice with G=G0, guided modes with in-plane k-vector lengths of k0<βm<2k0 are extracted 
omni-directionally by G=31/2

k0. For guided modes with βm>2k0 a higher number of 
reciprocal lattice vectors with the same length has to be used. In the case of a hexagonal 
lattice, second order diffraction processes, i.e. G=31/2

G0 and G=2G0, could be used as they 
have similar lengths and six reciprocal lattice vectors exist for each length. In the following 
we assume an average reciprocal lattice vector length of G=(2+31/2)/2G0=1.87G0 for the 
second order diffraction processes of the hexagonal PhC. With these second order processes it 
is possible to fold all in-plane propagation directions above the light line for guided modes 
with eigenvalues as high as βm=3.85k0. However, the whole range of guided modes 
k0<βm<3.85k0 is not diffracted completely, as the lower limit for omni-directional diffraction 
also increases. Hence, in the case of GaN twelve reciprocal lattice vectors extract every 
guided mode within the range k0<βm<2.4k0 completely, only if their length is in the range 
1.53k0<G<1.93k0. If both first and second order processes are taken into account, every 
guided mode is folded above the light line if G0<31/2

k0, since the first Brillouin zone fits 
completely into the extraction cone, see Fig. 3.4. In general however, the drawback of second 
order processes is their low Fourier intensity resulting in a poor diffraction coefficient 
compared to first order diffraction, see Fig. 5.6. 
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Fig. 5.9: Archimedean lattices with F=0.4: (a) hexagonal lattice with 7 holes per unit cell (grey hexagon); (b) 

hexagonal lattice with 13 holes per unit cell (grey hexagon). Left column shows the real lattices, right column 

the corresponding Fourier spectrum (same scaling as in Fig. 5.5 b). The reciprocal lattice vector with the highest 

Fourier intensity is labelled G0 for convenience.  

In order to accomplish omni-directional light extraction by first order diffraction 
Archimedean lattices have been proposed [20]. In Fig. 5.9 Archimedean lattices with 7 holes 
per unit cell (A7) and 13 holes per unit cell (A13) are depicted. Due to the higher complexity 
of one unit cell a higher symmetry of the Fourier spectrum is achieved compared to the 
hexagonal lattice. Advantageously, twelve reciprocal lattice vectors with highest Fourier 
intensity are observed. Thus, omni-directional light extraction is achieved for the same range 
of guided modes as in the case of second order diffraction by the hexagonal lattice but with 
higher photonic strength. However, the diffraction coefficient calculated according to the 
photonic strength (5.2) and the diffraction model (4.37) shows a slightly worse performance 
of the A13 lattice compared to the hexagonal lattice, see Fig. 5.10 a and Fig. 5.10 b, 
respectively. This is attributed to the fact that due to the spreading of the Fourier spectrum the 
total Fourier intensity |∆εG,tot|

2 for all reciprocal lattice vectors |G−G0|<0.1k0 of the A13 
lattice is ~20% smaller compared to the hexagonal lattice. By contrast, the hexagonal lattice 
extracts roughly only 82% of the guided mode with βm=2.4k0 by G=G0, whereas the A13 
lattice extracts every in-plane propagation direction. Thus, the hexagonal lattice empties the 
in-plane directions that it is capable of very fast according to its high Fourier intensities but 
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Fig. 5.10: (a) Diffraction coefficient according to the photonic strength (5.2) for the hexagonal lattice (black 

lines) and the A13 lattice (grey lines) and guided modes with βm=1.1k0 (solid line), βm=1.5k0 (dashed line), and 

βm=2.4k0 (dash-dotted line). The A7 has been proven to show the same dependency as the A13 and is not shown 

for clarity. (b) Diffraction coefficient according to the diffraction (4.37) for the LED as given in the introduction 

to chapter 5 but with F=0.4. This structure supports three TE-polarized modes at λ=558nm with βm≈1.1k0 

(solid line), βm≈1.49k0 (dashed line), and βm≈2.4k0 (dotted line). Even though the A13 offers omni-directional 

diffraction it does not outperform the hexagonal lattice in terms of diffraction coefficients due to its lower 

Fourier intensities corresponding to G=G0. 

leaves the others unextracted. These directions have to be redistributed firstly and are prone to 
absorption during this process, before they potentially get diffracted to air. The A13 on the 
other hand depletes the guided mode uniformly but with lower Fourier intensities. In sum, 
both lattices perform almost similarly in terms of overall diffraction coefficients. 

From these considerations, three regimes can be distinguished if we take absorption 
into account and the resulting in-plane dependency of the extraction efficiency of the guided 
modes, see (4.41): 

i) In the case of heavily absorbing LED structures, i.e. when the absorption 
length is much shorter than the extraction length, it is necessary to extract the 
light as fast as possible. Thus, the hexagonal lattice is a good choice due to 
its higher Fourier intensities. Especially, if no high order diffraction 
processes contribute to the diffraction, i.e. for large βm, the hexagonal lattice 
benefits from its high Fourier peaks of the primitive reciprocal lattice 
vectors. 

ii) For less absorbing LEDs the Archimedean lattices take advantage of their 
omni-directional diffraction behaviour. The decrease in Fourier intensity 
compared to the hexagonal lattice is less important as light can propagate 
over larger distances before being absorbed. 

iii) In the limit of vanishing absorption every diffraction process – even the 
higher ones – contribute similarly to the extraction. Hence, both lattice types 
offer omni-directional extraction behaviour and the hexagonal lattice catches 
up to the Archimedean lattices in terms of extraction efficiency. 

In order to verify the above conclusions, Fig. 5.11 shows FDTD results for two 
different main reciprocal lattice vectors G0=k0 and G0=2.3k0 of a hexagonal and an A13 PhC, 
both with F=0.5. In the case of short G0=k0 both lattices yield similar results as the 
diffraction coefficient is almost the same for every guided mode according to Fig. 5.10. This 
can also be seen from the almost parallel extraction characteristics. The slightly higher 
extraction of the A13 lattice is attributed to a larger range of guided modes diffracted 
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Fig. 5.11: FDTD simulation for the structure as given in the introduction to chapter 5 for two main reciprocal 

lattice vectors G0=k0 (solid line and boxes) and G0=2.3k0 (dashed line and triangles) of a hexagonal lattice 

(black lines and symbols) and a A13 lattice (grey lattice and symbols). (a) Extraction efficiency as calculated 

from the simulations; (b) the data from (a) along with the corresponding fits. The dash-dotted line gives the 

extraction efficiency of the unstructured LED. 

omni-directionally, see Fig. 5.8 b. By contrast, for large G0=2.3k0 a clear advantage of the 
A13 lattice is observed due to its omni-directionality. Thus, we can conclude that the 
presented LED operates in the intermediate regime (ii) with decreased absorption. The drop in 
efficiency for G0=2.3k0 compared to the short G0 that is observed for both lattices stems from 
numerous guided modes supported by that LED each having different coupling strength. This 
issue is discussed in detail in section 5.2.2. 

In conclusion, a hexagonal lattice only diffracts guided modes up to βm<2k0 
omni-directionally by first order diffraction. In the case of Archimedean lattices with their 
twelve-fold symmetry the guided modes in the range k0<βm<2.4k0 are folded entirely above 
the light line if 1.53k0<G0<1.93k0. In terms of diffraction coefficient both lattices perform 
equally regardless of the in-plane k-vector length with a slight advantage for the hexagonal 
lattice. However, the Archimedean lattices benefit all the more from their omni-directionality 
the lower the absorption of the LED structure is. 

5.1.3 Filling Fraction 

In order to derive the impact of the filling fraction on the diffraction behaviour we again 
utilize the photonic strength model. For each filling fraction the maximum diffraction 
coefficient was derived from a variation of the main reciprocal lattice vector, i.e. from a 
calculation as shown in Fig. 5.6. Fig. 5.12 a shows these maxima for three guided modes and 
two lattice types, hexagonal and A13. As the PhC itself vanishes in the limits F→0 or F→1 
the diffraction coefficient also decreases. The optimal filling fraction shifts with increasing 
in-plane k-vector length from F=0.5 down to F=0.4 for both lattices. As second order 
diffraction processes do not contribute to the extraction of the guided mode with βm=2.4k0, 
only the Fourier intensity of the main reciprocal lattice vectors is the decisive factor. 
According to Fig. 5.12 b the total Fourier intensity of all G with G=G0 is maximum for 
F=0.4. In contrast, if the guided mode is also diffracted by higher order diffraction processes, 
e.g. βm=1.1k0 or βm=1.5k0, the total Fourier intensity for all contributing G is maximum for 
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Fig. 5.12: (a) Maximum diffraction coefficient according to the photonic strength (5.2) as a function of the filling 

fraction for the hexagonal lattice (black lines) and the A13 (grey lines) and guided modes with βm=1.1k0 (solid 

line), βm=1.5k0 (dashed line), and βm=2.4k0 (dash-dotted line). (b) Total Fourier intensity according to (4.39) 

for all G with G=G0 (solid lines) and G≤2G0 (dashed lines). For decreasing in-plane k-vector length the 

optimal filling fraction shifts from 0.4 up to 0.5 as the Fourier intensity of higher order diffraction processes has 

to be taken into account. 

F=0.5. Therefore, the optimal filling fraction depends on the guided modes that should be 
extracted6. 

The FDTD simulations in Fig. 5.13 show the same fundamental behaviour as predicted 
by the above considerations. However, the impact of the filling fraction on the overall 
extraction efficiency of the LED is less pronounced. Several issues have to be taken into 
account in this case. Firstly, the competition between absorption and diffraction weakens the 
influence of an enhanced diffraction coefficient. Variations of the latter due to an altered 
filling fraction only contribute fully to the extraction efficiency in case of heavy absorbing 
structures, as discussed at the end of section 4.2.2. Thus, in the case of intermediate 
absorption the impact of the filling fraction causing a change of the diffraction coefficient is 
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Fig. 5.13: FDTD simulation for the structure as given in the introduction to chapter 5 with varying filling 

fraction. The dots indicate the different simulations. The dash-dotted line gives the extraction efficiency of the 

unstructured LED. The filling fraction plays a minor role for the optimisation of PhC LEDs. 

                                                 
6 We can also conclude from Fig. 5.12 that the three regimes of the former section regarding the 

absorption are valid for every filling fraction, as the hexagonal lattice always offers higher Fourier intensities 
compared to the A13. The omni-directionality, however, is independent of the filling fraction. 



 

 - 60 - 

less pronounced. Additionally, the LED under consideration supports numerous guided modes 
in the range k0<βm<2.4k0. Therefore, a distinct maximum is hardly to be expected. The high 
extraction efficiency for F=0.3 stems from the overlap of the guided modes with the PhC 
layer that varies for the different modes and filling fractions. This issue will be discussed in 
detail in the upcoming section. Thus, as long as the Fourier intensity of the main reciprocal 
lattice vectors is high (for filling fractions of F=0.3-0.5) the overall extraction efficiency is 
almost equal. 

In conclusion, the filling fraction has only small impact on the extraction efficiency of 
PhC LEDs as long as it is chosen around F=0.4. Hence, in terms of processing it is a less 
crucial parameter. 

5.2 Vertical Part: LED Layer Stack 
After this detailed discussion regarding the two-dimensional part of PhC LEDs it is now of 
great importance to derive the impact of the vertical LED layer stack on the performance of 
such LEDs. However, the optimisation of the layer stack has to account for several issues 
beyond the pure optical optimisation in order to provide high wall-plug efficiency. For 
instance, sufficient current spreading has to be ensured to avoid current crowding within the 
LED and to achieve lateral homogenously injected carriers. Otherwise, the high current 
density at some areas decreases the internal quantum efficiency, whereas the remaining area 
generates almost no light. Thus, the overall efficiency is low compared to a LED with smooth 
current distribution. Other issues are ESD (electro-static discharge) stability and the aging of 
the devices. 

In the upcoming section we restrict the discussion to considering a single guided mode 
and derive the relation between etch depth and diffraction coefficient. Afterwards, additional 
guided modes are included and the relevant distinctive factors are pointed out.  

5.2.1 Etch Depth and LED Thickness 

The etch depth of the PhC will be discussed for two reasons. Firstly and most important, its 
impact on the extraction efficiency will be investigated. Secondly, we will compare the 
diffraction coefficient of a single guided mode with an analytical expression found in [25]. 
Thus, we can give a verification of our model apart from the fully numerical FDTD 
simulations presented at the end of this section. 

In [25] a thorough analysis of the diffraction coefficient of guided modes with 
βm>nPhCk0 that are evanescent in the PhC, is given based upon Poynting flux considerations 
from [96]. By only taking into account the vertical field profile of the guided mode and the 
average refractive index of the PhC it is shown, that the diffraction coefficient is related to the 
remaining core thickness t by 

3
airm

−
→ ∝ tΓ . (5.3) 

In Fig. 5.2 mode I and II show corresponding mode profiles. In [25] this dependency is 
compared to results from a three-dimensional scattering matrix algorithm and exhibits very 
good agreement. Thus, we can compare our results indirectly with an additional method 
solving Maxwell’s equations without any assumptions. 

Fig. 5.14 shows the diffraction coefficient (black solid line) obtained from the 
diffraction model for two TE-polarized guided modes, one with no roots named TE0 (a) the 
other with 10 roots named TE10 (b) in their vertical mode profile. The calculations are 
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Fig. 5.14: Diffraction coefficient (black solid line, left y-axis) obtained from the diffraction model for guided 

modes with no roots (a), TE0, and 10 roots (b), TE10, in their vertical mode profile at λ=520nm and G0=2.4k0. 

The remaining core thickness t is equal to a total GaN thickness of 3µm less the etch depth. The diffraction 

coefficient is in good agreement with a fit according to (5.3) (dashed black line, left y-axis) as long as 

βm>nPhCk0 (black dash-dotted line, additional right y-axis). The fundamental characteristics of the diffraction 

coefficient are related to the overlap Cm of the vertical field profile with the PhC layer (grey solid line, right 

y-axis). 

obtained from a structure as described in the introduction to this chapter at λ=520nm but with 
G0=2.4k0 and increasing etch depth in order to realize decreasing core thickness t. As the 
distance between the mirror and the source is only 160nm we used a maximum etch depth of 
the PhC of 2800nm in order to leave the active region unperforated. 

First of all, we observe two different regimes that can be distinguished according to 
the eigenvalue (black dash-dotted line) of the TE10 guided mode [25]. On the one hand, as 
long as the mode is evanescent inside the PhC layer, βm>nPhCk0, a monotonically increasing 
diffraction coefficient is obtained apart from some oscillations. On the other hand, as soon as 
βm<nPhCk0 (mode III in Fig. 5.2) the diffraction coefficient shows fluctuating behaviour. We 
start our investigations with the first regime and expand them step by step to other properties 
of the guided mode, like absorption and spontaneous emission. Afterwards, the second regime 
is subject of our interest. In general, the dependency of the in-plane k-vector length of the 
guided modes on the remaining core thickness stems from a growing fraction of the low-index 
PhC while the high-index semiconductor gets thinner and thinner. Hence, the optical 
thickness of the layer stack given by (nPhCd+nGaNt)/λ with the etch depth d decreases. With 
diminishing optical thickness less guided modes are supported by the stack and the guided 
modes’ eigenvalues decrease. Before we close this chapter with results from FDTD 
simulations we briefly reconsider the filling fraction of the previous section as it links the 
lateral part to the vertical part of PhC LEDs. 
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Fig. 5.15: Intensity profiles (black lines) of the TE0 mode for different etch depths of the PhC (grey area) of 

20nm (a), 100nm (b) and 200nm (c). The in-plane k-vector length of the guided mode is βm≈2.4k0 and the 

attenuation length is 54nm in each case.  

Initially, we observe a very good agreement between Γm→air (black solid line) 
calculated from the diffraction model and a fit (black dashed line) according to the 
t
-3-dependency of (5.3) for both modes as long as βm>nPhCk0. The simulations with the 

scattering matrix algorithm in [25] also reveal oscillations similar to those in Fig. 5.14. These 
stem from the coupling of the guided mode with radiative modes. However, the fundamental 
contribution to the t-3-dependency can now be related to the overlap Cm (grey solid line) of the 
vertical guided mode profile with the PhC layer as indicated in Fig. 5.14. For small PhC’s 
etch depths <100nm, the attenuation length7 i/γPhC,m of the guided mode profile within the 
PhC layer is larger than the etch depth, see Fig. 5.15 a. Hence, a steep increase of both Γm→air 
and Cm is found until the mode profile negligibly penetrates into air as shown in Fig. 5.15 b. 
For etch depths >100nm, the diffraction coefficient grows since the guided mode is squeezed 
more and more between the mirror and the PhC layer and hence, the overlap with the PhC 
layer rises. This case is illustrated in Fig. 5.15 c. Right before the eigenvalue of TE10 in Fig. 
5.14 b (black dash-dotted line) drops below βm=nPhCk0 the diffraction coefficient reaches its 
maximum and further etching does not enhance the extraction of the guided mode anymore 
[25] even though Cm is very high. Hence, one might conclude that etching as deep as 
technologically possible is most preferable. 

However, the absorption has to be taken into account that is present in thin-film LEDs 
due to the mirror. As Cm increases also the overlap of the guided mode with the mirror grows 
simultaneously for the same reason. Thus, as can be seen in Fig. 5.16 no net effect arises for 
the extraction efficiency of the guided modes due to deeper etching apart from the sharp 
resonances. Here, we calculated the ratio (black solid line) between the absorption coefficient 
αm (4.19) and the diffraction coefficient from Fig. 5.14. The extraction efficiency cannot be 
calculated from this ratio as the in-plane diffraction behaviour has to be taken into account, 
see (4.41). However, it can be used as a measure for the extraction efficiency. Therefore, the 
extraction of a single guided mode is hardly enhanced due to deeper etching. 

By contrast, the resulting overall extraction efficiency of the whole LED might be 
enhanced nevertheless, as it takes into account the extraction efficiency of each individual 
mode along with the spontaneous emission distribution. As can be seen in Fig. 5.16 the 
spontaneous emission (grey solid line) into the modes changes in different manner with 
increasing etch depth. Consider for instance a case with two guided modes, the overall 
extraction efficiency depends on the extraction efficiencies η1 and η2 of the two modes and the 
amount of spontaneous emission B1 and B2 and is given by 

                                                 
7 Here, γPhC,m is the vertical k-vector component of the guided mode βm  inside the PhC layer, i.e. 

j=index of PhC layer in (4.5). 
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Fig. 5.16: Ratio (black solid line, left y-axis) between the absorption coefficient αm and the diffraction coefficient 

as shown in Fig. 5.14 for the TE0 (a) and the TE10 (b) guided mode at λ=520nm and G0=2.4k0. Due to the 

squeezing of the guided modes between the PhC and the mirror no net extraction enhancement is observed. 

Along with the in-plane k-vector length (black dotted line, additional right y-axis) is the overlap Bm of the guided 

mode with the active region shown (grey solid line, right y-axis). 
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From Fig. 5.17 it is evident, that a changed spontaneous emission distribution between guided 
modes significantly alters the overall extraction efficiency of the LED even though the 
extraction efficiency of each individual mode stays constant. In general, the overlap with the 
active layer is large as long as the guided mode is confined by the PhC and the mirror. As 
soon as βm<nPhCk0 the upper boundary of the cavity is the semiconductor-to-air rather than 
the semiconductor-to-PhC interface. Thus, the guided mode profile is spread over a larger 
spatial dimension and the overlap decreases. However, in typical LEDs this effect averages 
out owing to the large number of supported guided modes and due to shallow etched PhCs. 

Regarding the second regime, βm<nPhCk0, we focus on the TE10 guided mode shown in 
Fig. 5.14 b. In general, conclusions from the diffraction model have to be drawn with care as 
the overlap of the guided mode with the PhC is very large. Thus, we are about to leave the 
regime of weakly coupled PhCs. In the case of the dips in Cm the diffraction model should 
yield reliable results. These dips and the maxima in Γm→air can be identified with resonances 
of the guided mode’s vertical field profile within the whole layer stack as shown in Fig. 5.18 a 
(black and grey solid lines). The resonances are a result of the RCLED effect and stem from 
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Fig. 5.17: Extraction efficiency according to (5.4) for a two mode case as a function of the spontaneous emission 

distribution between the two guided modes. The different lines correspond to η2=η1 (solid line), η2=0.8η1 

(dashed line), η2=0.5η1 (dotted line), and η2=1.2η1 (dash-dotted line) with η1 =80%. 

the constructive interference of up- and downward propagating plane waves. Hence, if we 
neglect the evanescent parts of the guided mode within air and within the mirror, the 
corresponding interference term reads 

( ))( )(   cos)( mGaN,mPhC, dγtdγddf += , (5.5) 

with d the etch depth, d+t the overall LED thickness of 3µm in the above example and γGaN,m 
(γPhC,m) the vertical k-vector component of the m-th guided mode inside the GaN (PhC) layer. 
The vertical k-vector components are functions of the in-plane k-vector length and hence 
depend on the etch depth.  In the case of constructive interference the overall field amplitude 
within the vertical stack is higher compared to the case of destructive interference. Thus, even 
though the overlap with the PhC is low in the prior case, the coupling of the guided mode to 
radiative modes in general is high owing to the field enhancement. Therefore, the diffraction 
coefficient and the overlap with the active region Bm (black dashed line) follow these 
resonances. The former is additionally altered due to the coupling between the guided mode 
and the radiative modes. However, the absorption diminishes this benefit as it is also high in 
the case of constructive interference, see Fig. 5.18 b (black dashed line). From the overlap 
with the PhC we can infer, that in the case of constructive interference the guided mode is 
mainly located inside the unetched core rather than inside the PhC layer owing to the dips of 
Cm. Nevertheless, high diffraction rates are obtained along with high spontaneous emission 
rates. 

If we briefly summarize the findings made so far we can conclude that an optimum 
PhC LED consists of an unetched core that supports a single guided mode [25]. To ensure 
high spontaneous emission into that mode the active region should be embedded into this 
core. This, moreover, does not imply a loss of active area due to etching through the active 
layers. The PhC layer should be thicker than the attenuation length of the guided mode 
confined to the core. If this results in an overall thickness of the LED supporting more than 
one guided mode, the overall thickness and/or the position of the active layers should be 
adjusted for very low spontaneous emission into that additional mode. In this way, the PhC 
can be chosen for optimum diffraction of a single guided mode. However, to take advantage 
of the resonances a precise control over the layer thickness in the order of a few tens of nm is 
necessary. Furthermore, such a thin layer stack hardly provides reasonable current spreading. 
And apart from the active layer, also the functionality of current spreading layers is affected 
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Fig. 5.18: (a) Comparison of the diffraction coefficient from Fig. 5.14 b for the TE10 guided mode (black solid 

line and left y-axis) with the interference term (grey solid line) given in (5.5). The dashed line shows the overlap 

with the active region Bm (right y-axis). For the calculation of Bm the active region is placed 160nm above the 

mirror. (b) Corresponding overlap with the PhC Cm (solid black line and left y-axis) and absorption (dashed 

black line and right y-axis) in comparison to the interference term (5.5) (grey solid line). 

by etching as the perforation limits their lateral conductivity. Typically, transparent 
conductive oxides (TCOs) can be used in such cases [33] in order to guarantee sufficient 
current spreading. However, the introduced absorption has carefully to be considered. 
Another possible workaround is presented in [26][27]. Here, the PhC is embedded into the 
vertical layer stack rather than etched into the semiconductor-to-air interface. This is 
accomplished by the challenging task of lateral epitaxial overgrowth. Nevertheless, the PhC 
can be used to define the thin core that supports only a single guided mode while above the 
PhC current spreading layers may follow that are thick enough to ensure reasonable current 
spreading. The modes mainly located in these layers exhibit only poor overlap with the active 
region within the core and thus gather only small amounts of spontaneous emission. 

The last issue that remains open is the increasing absorption with decreasing core 
thickness due to the squeezing of the guided modes inside the unetched core. In order to 
separate the guided modes from the mirror, a non-absorbing layer with refractive index nlow 
well below that of GaN can be inserted between the mirror and the semiconductor. 
Consequently, the guided modes are pushed away from the mirror as long as they are 
evanescent inside the low index material, i.e. βm>nlowk0. As such layers are typically 
dielectrics and therefore isolating, electrical contact between the mirror and the 
semiconductor can be obtained by via holes through the low refractive index material filled 
with metal. Here, the lateral conductivity of the semiconductor puts an upper limit on the 
distance between the individual via holes. 
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Fig. 5.19: Attenuation length of guided modes that are evanescent inside the PhC layer, βm>nPhCk0, as a 

function of their in-plane k-vector length βm and the filling fraction of the PhC. Each line is labelled with the 

corresponding filling fraction. 

Before we verify our conclusions with FDTD let’s briefly re-investigate the results of 
the FDTD simulations for the filling fraction in Fig. 5.13. For decreasing filling fraction the 
refractive index of the PhC tends towards the refractive index of the semiconductor, 
nPhC→nGaN for F→0. Consequently, the guided modes that are evanescent inside the PhC are 
less confined to the remaining core, their attenuation length i/γPhC,m inside the PhC and their 
interaction with the PhC increases. Fig. 5.19 shows the attenuation length as a function of the 
in-plane k-vector length and the filling fraction. Hence, especially for the diffraction of 
strongly guided modes, βm≈nGaNk0, low filling fractions are preferable as long as the Fourier 
intensity of the first order is high. This contributes to the rather high extraction efficiency for 
a filling fraction of F=0.3 in Fig. 5.13. 

Regarding the etch depths, Fig. 5.20 a shows the extrapolated extraction efficiency 
obtained from FDTD simulations for the LED configuration as described in the introduction 
to this chapter with varying etch depth from 50nm to 1000nm. As an alternative to achieve 
reduced core thickness the extrapolated extraction efficiency for decreasing LED overall 
thickness at constant etch depth is given in Fig. 5.20 b. As the investigated LED supports 
numerous guided modes, the interaction with the PhC, the spontaneous emission, and the 
absorption of each individual guided mode contributes in sum to the overall extraction 
efficiency. As we have seen during this section every mode reacts differently on an altered 
cavity and thus the net effect is hard to predict. However, we can identify the initial increase 
in extraction efficiency from 50nm to 100nm etch depth with the corresponding increase of 
the diffraction coefficient in Fig. 5.14 as long as the guided modes leak through the PhC layer 
into air. In contrast, as soon as the PhC layer is thick enough the extraction efficiency 
saturates as both the interaction of the guided modes with the PhC and the absorption at the 
mirror grow simultaneously. The slight increase for the 1µm thick PhC is attributed to a 
positive net effect owing to an altered distribution of guided modes and a reduced number of 
guided modes compared to the other cases. The deeper the PhC with its lower average 
refractive index is etched the less modes are guided by the layer stack. In general, it seems 
preferable to use PhCs on LEDs supporting only a low number of guided modes, as can be 
concluded from Fig. 5.20 b. By continuously reducing the overall thickness and thus the 
number of guided modes the extraction efficiency increases. Due to the discrete diffraction 
behaviour of the PhC it extracts light more efficiently if it is distributed over a low number of 
guided modes. In general, an altered guided mode distribution calls for a re-adjustment of the 
PhC that has not been carried out in Fig. 5.20. Hence, even more extraction enhancement can 
be expected by reducing the total number of guided modes. 
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Fig. 5.20: FDTD simulation for the structure as given on page 49 with (a) varying etch depth at constant overall 

thickness of 3µm and (b) varying overall thickness at constant etch depth of 300nm. The dots indicate the 

different simulations. Only the extrapolated extraction efficiencies are shown. The dash-dotted line gives the 

extraction efficiency of the unstructured LED. 

In conclusion, to ensure sufficient interaction of the guided modes with the PhC it 
should be etched deeper than the attenuation length of the modes within the PhC layer. 
Further etching enhances the diffraction coefficient as long as the guided mode is evanescent 
within the PhC layer. However, the absorption and the spontaneous emission of each mode 
have carefully to be considered in order to ensure high overall extraction efficiency of the 
LED. Also the impact of etching on the light generation area and consequently on the 
wall-plug efficiency owing to insufficient current spreading or perforation of the active region 
have to be taken into account while optimising a PhC LED. In general, thin vertical layer 
stacks are preferable due to a low number of guided modes. 

5.2.2 Multimode Case 

As the previous discussion suggested various quantities have to be taken into account in order 
to determine the optimum main reciprocal lattice vector length G0 for extracting as much light 
as possible from a multimode LED. Additionally, due to the discrete diffraction behaviour 
none PhC lattice extracts all guided modes reasonably. For instance in the case of GaN, only a 
small window 1.4k0<G0<2k0 diffracts every guided mode in the range k0<βm<2.4k0 into air. 
However, the diffraction coefficient for the different modes varies according to the mismatch 
between their in-plane k-vector length and the chosen main reciprocal lattice vector length. 
Consequently, the choice of G0 relies on the interaction of each guided mode with the PhC, 
the amount of spontaneous emission and the Fourier spectrum of the PhC. 

If we consider the usual sample LED and calculate the overlaps with the active region 
Bm and the PhC layer Cm – as a first approximation to the coupling integral in the case of 
shallow PhCs – we obtain Fig. 5.21. Due to the nearby located mirror and the resulting 
interference the overlap with the active region exhibits two distinct maxima in the case of 
TE-polarized guided modes. The second maximum in the case of TM-polarisation is less 
pronounced as only horizontal dipoles are taken into account. Thus, only the in-plane 
component of the guided mode’s electric field contributes to Fermi’s Golden Rule (2.3), i.e. 
determines the local electric field amplitude. Guided modes with βm<nPhCk0 are best suited 
for diffraction since they interact strongly with the PhC and gather a significant amount of 
spontaneous emission. This mode region is highlighted by calculating the overlap product 
BmCm. However, the resonance of Cm does not necessarily result in high diffraction 
coefficients according to the findings of the previous section. The radiative modes show 
 



 

 - 68 - 

0.0 0.5 1.0 1.5 2.0

Βm @k0D

 B
m

 C
m

C
m

B
m

x50

x150

x2300

TE

TM

 
Fig. 5.21: Overlap with the active region Bm, with the PhC layer Cm and the corresponding product BmCm at 

peak wavelength λpeak=520nm for TE-polarized guided (black triangles), TE-polarized radiative (black lines), 

TM-polarized guided (grey triangles), and TM-polarized radiative (grey lines) modes. The LED structure is 

described in the introduction to this chapter. The dashed vertical line indicates βm=nPhCk0. 

typical Fabry-Perot-like resonances due to the cavity formed by the semiconductor-to-air 
interface and the mirror. Their impact on the diffraction process is discussed in detail in 
section 5.3.2. 

In order to prove our forecast regarding the optimum mode region we calculate the 
overall diffracted intensity in air in dependence of the main reciprocal lattice vector length G0, 
as shown in Fig. 5.22 a. The overall diffracted intensity in air is obtained by summing up the 
diffraction coefficient Γm→air of every TE- and TM-polarized guided mode weighted with Bm. 
When G0=k0 (a=600nm) guided modes from the region with high overlap product are 
diffracted by first order diffraction and thus, high diffracted intensities are obtained. Even 
though the density of guided modes with βm>2k0 is high and these modes gather a large 
amount of the total spontaneous emission the extremely low interaction with the PhC 
suppresses efficient light extraction from these modes. Hence, the overall diffracted intensity 
in air drops when adjusting the PhC to this mode region, i.e. G0>2k0 or a<300nm. On the 
other hand, rather short G0<k0 cannot diffract the modes with βm≈1.7k0 sufficiently to air. 

A comparison of the results received from the diffraction model with full numerical 
FDTD simulation as shown in Fig. 5.22 b reveals an excellent forecast of the optimum G0. 
Also the characteristics of the extraction efficiency as a function of G0 correspond very well 
with the prediction of the diffraction model. The impact of absorption and of light that 
escapes the structure without the help of the PhC weakens the impact of reciprocal lattice 
vector as these are not included into the diffraction model. 

In conclusion, the main reciprocal lattice vector with its maximum Fourier intensity 
should be adjusted to the mode region exhibiting both high interaction with the PhC and high 
overlap with the active region. This ensures high diffracted intensities. The optimisation of the 
overall extraction efficiency, however, additionally has to include the absorption of the guided 
modes. 
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Fig. 5.22: (a) Total diffracted intensity Id in air obtained from the diffraction model for varying main reciprocal 

lattice vector length G0. Results include a Gaussian wavelength average for the LED as introduced on page 49. 

(b) Extrapolated extraction efficiency obtained from FDTD corresponding to (a). The dash-dotted line gives the 

extraction efficiency of the unstructured LED. The extraction efficiency is well predicted by the diffraction model 

even though absorption and directly emitted light are neglected. 

5.2.3 Spontaneous Emission Distribution 

As the last remaining parameter in this section we discuss different distributions of 
spontaneous emission between the guided modes. So far, only little attention has been paid to 
this issue in literature. According to the RCLED effect it is sufficient to change the distance 
between the active layer and the mirror in order to alter the spontaneous emission. Thus, all 
other parameters stay constant, namely the eigenvalues of the modes, the overlap with the 
PhC and the absorption of the guided modes. The impact of the semiconductor-to-air interface 
on the spontaneous emission distribution can be neglected as it is several wavelengths away 
from the active region. Fig. 5.23 shows the overlap with the active region of TE-polarized 
guided modes for different distances between the active layer and the mirror. The resonances 
due to the interference of the source with its mirror image shift towards larger in-plane 
k-vector lengths and additional resonances occur with increasing distance. For short distances 
<70nm surface plasmons play an important role for the spontaneous emission as described in 
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Fig. 5.23: Overlap with the active region of TE-polarized guided modes for different distances between the 

source and the mirror. The dot diameter is proportional to the overlap. 
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Fig. 5.24: (a) Overlap product of TE-polarized guided modes for different distances between the source and the 

mirror. The dot diameter is proportional to the overlap product. (b) Total diffracted intensity in air (solid line) 

and optimum G0 for varying distance between the source and the mirror. 

chapter 6. Hence, the results are only shown for completeness but not discussed in detail.  
For every distance we calculated the diffracted intensity in air as a function of G0, see 

Fig. 5.22 a, and collected the maximum along with the corresponding optimum main 
reciprocal lattice vector length Gopt in Fig. 5.24 b. The minima of the diffracted intensity at 
110nm and 240nm coincide with configurations revealing poor overlap product for every 
guided mode, see Fig. 5.24 a. The mismatch between the guided modes with high Bm and 
guided modes with high Cm causes the overall low overlap product. In contrast, when the two 
regions overlap, e.g. at 50nm, 160nm, and 290nm, a large amount of the generated light is 
diffracted efficiently to air. For increasing distance the difference between a maximum and 
the following minimum decreases as more and more resonances enter Bm, see Fig. 5.23. These 
resonances get sharper and consequently the mode region with high overlap product, too. 
Thus, only few modes are best suited to diffraction compared to shorter distances and the 
overall diffracted intensity in air diminishes. 

The fundamental relationship between the overlap product and the diffracted intensity 
to air is also reflected by the fact that the optimum G0 roughly follows the guided mode 
region with highest overlap product. For instance, at a distance of 130nm the guided modes 
around βm≈1.2k0 have maximum overlap product and Gopt=0.9k0. With increasing distance 
Gopt successively moves up to Gopt=1.2k0 at 240nm and the optimum overlap product shifts to 
βm≈1.7k0. 

The mismatch between Gopt and the in-plane k-vector length corresponding to the 
maximum overlap product stems from the discrepancy between the overlap product and the 
exact coupling integral κmk. In Fig. 5.25 Cm is shown along with κmk summed over every 
radiating mode βk<k0 according to 

∑
<

=
0k

mkm
kβ

κκ . (5.6) 

By calculating the overlap product with κm instead of Cm the resonance at βm≈1.7k0 vanishes 
in Fig. 5.24 a and the main contribution to the diffracted intensity results from guided modes 
around βm≈1.2k0. Nevertheless, the overlap Cm with the PhC layer is a practical 
approximation to the coupling integral. 
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Fig. 5.25: Overlap Cm with the PhC layer (black symbols; left y-axis) and summed coupling integral κm (grey 

symbols; right y-axis) for TE-polarized guided modes at peak wavelength of the LED described in the 

introduction to chapter 5. The lines are just a guide to the eye. 

 The results from FDTD simulations as shown in Fig. 5.26 confirm the basic 
characteristics derived from the diffraction model in Fig. 5.24 b. However, the main reciprocal 
lattice vector was not adjusted for every distance, but was kept constant at G0=k0. The 
enormous dependency of the diffracted intensity to air is weakened in the presence of 
absorption and directly emitted light. The slightly better extraction efficiency for a distance of 
140nm is attributed to a higher extraction efficiency of the directly emitted light compared to 
160nm, see Fig. 2.10 a. 

In conclusion, the major amount of the total emission should be gathered by guided 
modes with reasonable interaction with the PhC. Hence, it is not sufficient to only generate a 
guided mode region with high overlap product but this region should be as broad as possible. 
Here, the PhC defines an upper limit as it only diffracts guided modes with |G−βm |<k0 into 
the extraction disk. Furthermore, the guided modes in resonance with the PhC layer should 
not be chosen for diffraction, as the corresponding coupling integral is rather low. With regard 
to processing, the layer thicknesses have to be controlled within 20nm according to the 
diffraction model. However, owing to absorption and direct emission the impact of deviations 
is less crucial. 
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Fig. 5.26: Extrapolated extraction efficiencies obtained from FDTD simulations for constant G0=k0 around the 

maximum in diffracted intensity occurring at 160nm in Fig. 5.24 b. 
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5.3 Directionality 
After this detailed discussion regarding the parameter choice in order to obtain high extraction 
efficiency from PhC LEDs we now dedicate ourselves to the emission pattern. Of special 
interest in this regard is the ability of the PhC to collimate the far field, i.e. to extract the light 
primarily towards the surface normal. As discussed in 2.4 this is of great interest for étendue 
limited applications, when a larger fraction of the emitted light needs to be extracted into a 
limited numerical aperture of an optical system. The radiant flux emitted into this limited 
angle with respect to the overall emitted flux is referred to as directionality. Additionally, 
PhCs open the road to asymmetrical far fields by incorporation of one-dimensional gratings 
[32] or to generate flat far fields, so-called batwing shaped emission patterns. 

We start with basic geometrical considerations in order to derive some limitations for 
the beam shaping properties of the PhC. Afterwards, we also take into account the impact of 
the vertical layer stack on the directionality. Here, we firstly discuss the dependency of the 
directionality on the radiative modes. Secondly, the guided mode distribution is taken into 
account. Finally, the impact of the omni-directionality of the PhC lattice on the far field shape 
is investigated. 

5.3.1 Geometrical Considerations 

The limited numerical aperture in air corresponding to an acceptance angle θL translates into 
an in-plane k-vector length β=k0sinθL in k-space. Hence, we can distinguish the diffracted 
k-vectors within the extraction disk into two separate cases, see Fig. 5.27. Firstly, all 
k-vectors with k0sinθL<βk<k0 that are diffracted outside the limited acceptance angle and 
therefore, decrease the directionality. In contrast, the k-vectors with βk<k0sinθL enhance the 
directionality. The directionality resulting from the diffraction of a single guided mode is then 
given by the ratio between the diffracted intensity into the desired extraction cone and the 
total diffracted intensity. We will show that even for single-mode scattering it is not possible 
to achieve 100% directionality within acceptance angles θL<90° since simultaneously to 
diffraction within this angle diffraction outside of it takes place. 
In order to estimate the degree of directionality, we first assume constant diffracted intensity 
Id from every in-plane propagation direction βm/βm of the guided mode, i.e. κmk=const. If we 
further neglect the curvature of the mode’s circle by choosing βm>> k0 and G=βm, the 
directionality in this mono-mode case boils down to the ratio of two lengths 

kx

ky

k0 sinΘL

k0Βm G

 
Fig. 5.27: Illustration of the diffraction process. The inner grey circle depicts a limited acceptance angle θL in 

air. 
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Fig. 5.28: Directionality within different acceptance angles as a function of the mismatch between the in-plane 

k-vector length and the reciprocal lattice vector length for three guided modes with βm=1.1k0 (solid line), 

βm=1.5k0 (dashed line), and βm=2.4k0 (dotted line); fading black indicates different θL ranging from 10° to 90° 

in steps of 10°. The in-plane k-vector length has almost no impact on the resulting directionality. The latter is 

maximum for G=βm  and is reasonably represented by the mono-mode result from (5.7). The ticks of the right 

y-axis are drawn at the values of the directionality in the mono-mode case corresponding to the acceptance 

angles. 
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θD == . (5.7) 

The numerator (denominator) is the diameter of the circle corresponding to the limited 
acceptance angle (the diameter of the extraction disk). By contrast, a typical roughened 
thin-film LED has a Lambertian emission profile [59] with directionality DLam(θL)=sin2

θL, i.e. 
the directionality in this case is the ratio of two areas, the disk within the limited acceptance 
angle and the extraction disk. Hence, we can expect more enhancement for smaller acceptance 
angles, since the mono-mode case is by a factor of 1/sinθL more directional than a Lambertian 
emitter. For instance, the Lambert yields 25% (75%) directionality within an acceptance angle 
of θL=30° (θL=60°), whereas the mono-mode case has 50% (87%) and thus, is 2x (1.15x) 
more directional. 

Fig. 5.28 depicts the directionality as a function of the mismatch between the in-plane 
k-vector length βm and the reciprocal lattice vector length G. We used (5.1) to calculate the 
directionality, where k0 was replaced by k0sinθL. In contrast to the total arc length within the 
extraction cone as shown in Fig. 5.4 the curvature and the in-plane k-vector length have only 
negligible impact on the directionality within θL. Thus, the deviation from the mono-mode 
case can be neglected and maximum directionality is achieved for G=βm. 

In order to study the contribution of additional guided modes to the directionality 
consider for instance Fig. 5.29 a. Here, the diffraction of three guided modes is illustrated with 
in-plane k-vector lengths β1<β2<β3 by a single reciprocal lattice vector with G=β2. According 
to the above findings diffraction of β2 results in maximum directionality, whereas diffraction 
of β3 decreases the overall directionality as no diffracted k-vectors lie within the limited 
acceptance angle, βd=|β3−G |>k0sinθL. The resulting k-vectors from diffraction of β1 
contribute positively to the directionality. But they do not necessarily give an improvement 
compared to a Lambertian emitter as the fraction of diffracted k-vectors within the limited 
acceptance angle has to be larger than DLam(θL). The analogous conclusions can be drawn if 
more than one reciprocal lattice vector diffracts a guided mode into the extraction disk as 
sketched in Fig. 5.29 b. 
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Fig. 5.29: (a) Geometrical construction to determine the contribution of several guided modes to the 

directionality; the guided modes have β1=1.1k0, β2=1.5k0, and β3=2.4k0 and G=β2. (b) Analogous 

construction to (a) for a single guided mode βm=1.5k0 but three reciprocal lattice vectors with G1=1.1k0, 

G2=βm , and G3=2.4k0. Only if |βm−G|<k0sinθL the diffraction process improves the directionality within θL.  

A quantitative investigation of the directionality resulting from diffraction of two 
guided modes is given in Fig. 5.30 a where the overall directionality was calculated according 
to (5.1) for two modes. Since we have chosen G=β2 the second mode with in-plane k-vector 
length β1 contributes equally to the directionality for small differences β2−β1. For increasing 
mismatch between the two modes diffraction of the second mode decreases the overall 
directionality until a minimum is reached at |β2−β1 |=k0sinθL. Here, the arc length within the 
extraction cone but outside the limited acceptance angle is decisive. As the characteristics of  
the directionality are rather flat up to the vicinity of the minimum a large fraction of guided 
modes within the range |βm−G |<k0sinθL contribute similarly to the directionality. With 
growing |β2−β1 | the arc length of mode β1 diminishes and the overall directionality reaches 
the mono-mode maximum. Hence, guided modes with βm≈ |G±k0 | contribute negligibly to the 
directionality. The asymmetry of the overall directionality with respect to β2−β1=0 is up to 
the fact that due to the curvature the mentioned arc length is larger if β1>G  compared to 
β1<G for a given difference |β2−β1 |. For larger in-plane k-vectors this asymmetry vanishes 
since the curvature is less dominating. The same characteristics are observed in Fig. 5.30 b 
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Fig. 5.30: (a) Overall directionality within an acceptance angle θL ranging from 10° to 90° in steps of 10° 

(illustrated by different grey levels) resulting from diffraction of two guided modes with in-plane k-vector length 

β1 and β2 by a reciprocal lattice vector with G=β2. The solid/dashed/dash-dotted line corresponds to β2 =1.1k0, 

β2=1.5k0, and β2=2.4k0, respectively. (b) Analogous calculation for a single guided mode βm and two 

reciprocal lattice vectors with G1 and G2=βm. 
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Fig. 5.31: The dark grey area indicates the range of main reciprocal lattice vector lengths G0 that result only in 

first order diffraction of the guided mode with in-plane k-vector length βm into the extraction disk. In the narrow 

region between the dashed and the dash-dotted line also the second order process with G=3
1/2

G0 contributes to 

the diffraction. Below the dash-dotted line further high order processes cannot be avoided. Above the dark grey 

area the guided mode is not diffracted into the extraction disk. 

when a single guided mode βm is diffracted by two reciprocal lattice vectors G1 and G2 with 
G2=βm. Only the asymmetry is worse, as the curvature of the diffracted circle does not change 
owing to constant βm. In contrast, in Fig. 5.30 a the curvature decreases as β1 increases. 

Due to the discrete Fourier spectrum of a PhC only few different reciprocal lattice 
vector lengths occur. Consider for instance a hexagonal lattice with its main reciprocal lattice 
vector length G0 and the two second order diffraction processes with length Ga=31/2

G0 and 
Gb=2G0. The differences Ga−G0 and Gb−G0 are in general too large to result in diffracted 
k-vectors within the same acceptance angle. Consequently, in terms of directionality higher 
order processes should be avoided, i.e. the resulting k-vectors should lie outside the extraction 
disk, |βm−G |>k0 for G>G0. Fig. 5.31 illustrates the range of G0 that result only in diffraction 
processes by G0 within the extraction disk as a function of βm (dark grey area). Owing to their 
lower Fourier intensity the impact of higher order diffraction processes on the directionality is 
moderated, but they still should be eliminated. 

In conclusion, we have again seen that a mono-mode LED is most preferable to 
achieve highest directionality, too. Additional guided modes are only acceptable as long as 
they can be diffracted into the limited acceptance angle, i.e. |βm−G|<k0sinθL for a given G. In 
order to achieve an improved directionality compared to the Lambertian emitter, this range 
has to be further clipped as the fraction of the diffracted circle within the limited acceptance 
angle has to be larger than the corresponding fraction of the Lambertian. In any case, higher 
order diffraction processes should be avoided when targeting directionality, since they hardly 
diffract light into the same limited acceptance angle as the first order process. Furthermore, it 
is not possible to achieve 100% directionality within any acceptance angle θL<90° because 
along with diffraction into this angle diffraction outside cannot be omitted. 

5.3.2 Radiative Modes and Directionality 

For the derivation of the directionality in the mono-mode case (5.7) we assumed constant 
diffracted intensity from every in-plane propagation direction towards air or equivalently 
constant coupling of the guided mode with every radiative mode. This assumption, however, 
has to be proven as the coupling integral is hardly constant, see Fig. 5.7 b. For instance, the 
coupling integral with mode V in Fig. 5.2 is probably larger than with mode IV due to the 
different field intensities within the PhC layer. 
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Fig. 5.32: (a) Coupling integral for different etch depths as a function of the k-vector length of the radiative 

modes; the guided mode has βm=2.4k0 and the wavelength is 520nm. (b) Directionality resulting from 

diffraction of the guided mode in (a) with the coupling integral taken into account. The coupling integral 

drastically alters the directionality as derived from the mono-mode case. 

For a direct validation, we choose the fundamental guided mode βm=2.4k0 of the LED 
as described on page 49 but with G0=2.4k0 in order to observe only first order diffraction. 
Furthermore, the coupling integral is varied by changing the etch depth between 400nm and 
900nm, see Fig. 5.32 a. The directionality resulting from diffraction of this single guided 
mode is shown in Fig. 5.32 b for λ=520nm. By taking into account the coupling integral the 
directionality can significantly differ from the mono-mode case. For instance, at an etch depth 
of 730nm diffraction results in directionalities as low as 10% (73%) within 30° (60°). In 
contrast, for 590nm etch depth 60% (88%) within 30° (60°) are obtained. However, this effect 
varies within a few tenths of nm and therefore calls for a precise control of the layer 
thickness. 
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Fig. 5.33: (a) Overlap with the PhC of the radiative modes for different etch depths. The resonances determine 

the coupling integral. (b) Directionality for 590nm etch depth and different FWHM of the emission spectrum; 

the arrow indicates increasing FWHM=0nm, 5nm, 10nm, 15nm, and 30nm. The upper (lower) dashed line 

depicts the directionality for the mono-mode case (a Lambertian emitter). The dash-dotted line corresponding to 

the right y-axis shows the overlap of the radiative modes with the PhC. The resonances determine the leaps in 

directionality. 
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The sensitivity of the diffraction process on the etch depth can be related to the 
overlap of the radiative modes with the PhC that mainly determines the coupling integral for a 
given guided mode, compare Fig. 5.32 a and Fig. 5.33 a. As the resonances in the overlap with 
the PhC also depend on the wavelength, the directionalities as shown in Fig. 5.32 b are hardly 
reached. Fig. 5.33 b shows the directionality for 590nm etch depth at peak wavelength and for 
different FWHM of the internal emission spectrum taken into account. The steep increase in 
directionality coincides with the maxima of Ck. Due to the shift of these maxima with the 
wavelength the directionality drops for typical FWHM of 30nm to 35% (80%) within 30° 
(60°). 

In conclusion, for a single wavelength the directionality resulting from diffraction of a 
guided mode can be well beyond the mono-mode case due to a proper tuning of the radiative 
modes’ overlap with the PhC by accurately adjusting the vertical layer stack. However, as 
long as the contribution of these resonances can be neglected the mono-mode case still gives a 
practical limit for the directionality achievable from diffracting PhC LEDs. The impact of the 
resonances is the less the more of them exist, e.g. in sufficient thick LEDs. Besides, due to a 
broad emission spectrum the contribution of the individual resonances averages out. 
Furthermore, it should be mentioned, that the screening of the piezo-electric fields shifts the 
emission spectrum towards shorter wavelength in the InGaN material system. Thus, the 
resulting directionality is current dependent due to the varying mismatch between the 
emission spectrum and the cavity. The vertical layer stack has to be adjusted for a specific 
operational point in terms of driving current. In other material systems like AlGaInP or 
AlGaAs, a shift of the emission spectrum towards longer wavelength due to heating puts 
similar demands on the optimisation of the PhC LED. 

5.3.3 Multiple Guided Modes 

The basic contribution of additional guided modes to the directionality has been determined 
by a geometrical consideration as shown in Fig. 5.30 a. However, how much light actually 
gets diffracted obviously relies on the diffracted intensity from each guided mode. In order to 
investigate this issue we come back to the usual sample structure with the overlaps given in 
Fig. 5.21. Analogous to the overall diffracted intensity as a function of the main reciprocal 
lattice vector length, see Fig. 5.22 a, we calculate the directionality and the total diffracted 
intensity into different acceptance angles, see Fig. 5.34 a. For small acceptance angles high 
diffracted intensity and high directionality into that angle are obtained from the same G0. In 
this case, the guided modes with highest overlap product are diffracted symmetrically around 
the origin. The larger the acceptance angle the more shifts the optimum G0 for diffracted 
intensity towards smaller values while the optimum G0 for highest directionality stays almost 
constant. In the case of diffracted intensity the only criterion is to diffract as much light as 
possible within the desired acceptance angle. Therefore, the optimisation obeys the 
conclusions drawn in section 5.1 and 5.2 with a reduced target area due to the limited 
acceptance angle. As the guided modes best suited to diffraction have rather small 
eigenvalues the optimum G0 decreases in order to take advantage of the curvature of the 
guided modes’ circles according to Fig. 5.6. Additionally, more and more high order 
diffraction processes contribute to the diffraction. In contrast, high directionality is achieved 
when the optimum G0 is adjusted to the guided mode region best suited for diffraction, 
regardless of the acceptance angle according to Fig. 5.28. Furthermore, as the ratio between 
the diffracted light within the acceptance angle and the overall diffracted light in air should be 
maximized, the diffracted intensity outside the acceptance angle should be minimized by 
avoiding high order diffraction processes due to Fig. 5.31. Of course, the target for the 
application in an étendue limited device is the overall diffracted intensity into the numerical 
aperture rather than a highly collimated far field at the expense of radiant flux. Thus, 
depending on the acceptance angle the pitch of the PhC has to be adjusted. 
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Fig. 5.34: (a) Total diffracted intensity (dashed lines, left y-axis) and directionality (solid lines, right y-axis) into 

different acceptance angles ranging from 10° to 90° in steps of 10° (indicated by fading black lines). A mismatch 

in optimum G0 between directionality and diffracted intensity is observed due to the amount of diffracted 

intensity outside the desired acceptance angle. (b) Corresponding results for FDTD simulations; dashed lines 

indicate extrapolated extraction efficiency, solid lines directionality. The symbols indicate the various 

simulations. 

Apart from directional far fields also the contrary is possible by diffracting guided 
light by PhCs. For G0>1.7k0 the fraction of the emitted light between 60° and 90° is larger 
than the corresponding 25% of the Lambertian emitter. Flat far fields are obtained by 
diffracting the guided mode region with high overlap product into the vicinity of the 
extraction disk’s edges. However, as the arc length of the diffracted modes’ circles diminishes 
in this case, a reasonable enhancement of the extraction efficiency by diffracting PhCs is not 
very likely. 

Within the assumptions of the diffraction model already discussed in section 5.2.2 a 
comparison with FDTD simulations reveals reasonable agreement also for the directionality. 
Additional information regarding the mismatch in directionality is given in the experimental 
section 5.4.1. 

A comparison of the maximum directionality from Fig. 5.34 a to the mono-mode case 
and a Lambertian emitter as a function of the acceptance angle is given in Fig. 5.35. As a 
large number of guided modes are diffracted into air the investigated LED has significantly 
worse directionality compared to the mono-mode case. However, due to the discrete 
diffraction behaviour of the PhC and a single guided mode region with high overlap product a 
reasonable enhancement compared to a Lambertian emitter can be achieved. The difference 
from both cases vanishes for increasing acceptance angles. 
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Fig. 5.35: Optimum directionality from the multimode LED in Fig. 5.34 a (solid black line, left y-axis) as a 

function of the acceptance angle in comparison to the mono-mode case (dash-dotted black line, left y-axis) and a 

Lambertian emitter (dashed black line, left y-axis). The right y-axis gives the ratio between the multimode LED 

in relation to the mono-mode case D(θL)/Dmono(θL) (dash-dotted grey line) and the Lambertian D(θL) /DLam(θL) 

(dashed grey line). 

In order to derive how important the existence of only one single guided mode region 
with high overlap product is, we utilize the variation of the distance between the source and 
the mirror of section 5.2.3. An altered spontaneous emission distribution can cause more than 
one guided mode region with high overlap product, see Fig. 5.24 a. For better visibility Fig. 
5.36 shows the overlap product calculated with κm according to (5.6) instead of Cm and 
normalized to the maximum value for each distance. 

Hence, we expect a drop in directionality for distances of 110nm and 240nm due to 
two distinct maxima of the overlap product. The maximum directionality for each distance 
and acceptance angle as shown in Fig. 5.37 a confirms this forecast for 240nm. From Fig. 
5.37 b it is evident that in this case a optimum G0=1.6k0 diffracts preferably the second 
maximum at βm≈1.65k0. However, the first one at βm≈1.05k0 is close nearby and hence 
decreases the directionality as it is diffracted outside the acceptance angle. In contrast, for a 
distance of 110nm the mode distribution favours a G0≈2k0 (depending on the acceptance 
angle) for highest directionality. Thus, the first maximum at βm=1.05k0 is 
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Fig. 5.36: Overlap product for increasing distance between the source and the mirror in dependence of the 

in-plane k-vector of the guided modes; the overlap product is calculated with κm according to (5.6) instead of the 

overlap Cm with the PhC layer. The data is normalized with the maximum for each distance. 
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Fig. 5.37: (a) Optimum directionality within several acceptance angles (indicated by fading grey levels) within 

the range from 10° to 90° in steps of 10° as a function of the distance between the source and the mirror. (b) 

Optimum main reciprocal lattice vector length Gopt corresponding to the directionality shown in (a). 

diffracted into the very vicinity of the extraction disk’s edge and hardly shapes the far field. In 
any other case, the overlap product defines a single guided mode region that determines the 
directionality of the far field. As the resonances of the overlap with the active region get 
sharper with increasing distance between the source and the mirror, see Fig. 5.23, also the best 
suited guided mode region narrows. Consequently, a tiny increase in directionality is observed 
between a distance of 70nm and 330nm. 

In conclusion, to achieve high directionality it is preferable to approximate the 
mono-mode case. The vertical layer stack should be designed to yield a single guided mode 
region with high overlap product. In this case also high diffracted intensities are obtained, see 
Fig. 5.24 b. However, the contribution of additional guided modes decreases the directionality 
compared to the mono-mode case. Possible solutions are very thin stacks that support only a 
small number of guided modes, e.g. the structures used in [22][26][31][32]. From the 
extraction efficiency point of view this is preferable since the whole spontaneous emission is 
squeezed into a few modes that can be extracted very well. On the other hand, the wall plug 
efficiency has to be kept in mind. 

5.3.4 Omni-Directionality and Directionality 

From section 5.1.2 an in-plane omni-directional diffraction behaviour is preferable in some 
cases in order to diffract all in-plane propagation directions of the guided modes and hence, 
achieve high overall extraction efficiencies. By contrast, the omni-directionality of 
higher-order crystals decreases the directionality of the emission pattern as shown in Fig. 5.38 
or experimentally demonstrated in [32]. 

Fig. 5.38 depicts the directionality within different acceptance angles from FDTD 
simulations for the A13 lattice and the hexagonal lattice as a function of the main reciprocal 
lattice vector length G0. Almost no variation of the directionality is observed in the case of the 
A13, whereas the directionality from the hexagonal lattice exhibits the expected 
characteristics. From the geometrical point of view as sketched in Fig. 5.29 a, the number of 
reciprocal lattice vectors with the same length cannot affect the directionality within a limited 
acceptance angle since every arc length appears equally often according to this number. 
However, if we consider the fraction of guided modes that are omni-directionally diffracted 
into the extraction disk by the two lattices according to Fig. 5.8 b a remarkable fact arises. The 
higher the symmetry the larger the fraction of guided modes diffracted omni-directionally, as 
 



 

 - 81 - 

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

G0@k0D

0

20

40

60

80

100

D
 HΘ

L
L @

%
D

 
Fig. 5.38: Directionality within different acceptance angles obtained from FDTD simulations for a hexagonal 

(dashed line, triangles) lattice and the A13 lattice (solid lines, boxes). The fading black indicates the different 

acceptance angles ranging from 10° to 90° in steps of 10°. The symbols indicate the simulation results, the lines 

are a guide to the eye. Almost no beam-steering properties for the high-symmetry A13 lattice are observed.  

already stated. Hence, with increasing omni-directionality more light is diffracted by first 
order processes outside the desired acceptance angle as this fraction expands almost 
symmetrically around G0. This is similar to the impact of higher order diffraction processes on 
the directionality. Moreover, the Archimedean lattices offer more different reciprocal lattice 
vector lengths than the hexagonal lattice, compare Fig. 5.5 and Fig. 5.9, i.e. the Fourier 
spectrum is more distributed. Consequently, the diffraction processes from a guided mode are 
more spread over the entire extraction disk. This reduces the directionality especially in the 
case of weak absorption when the Fourier intensity is less important and all of these reciprocal 
lattice vectors contribute to the extraction of the guided modes. Therefore, the choice of the 
lattice relies on a trade-off between directionality and extraction efficiency. 

In conclusion, the symmetry of the PhC plays an important role for the beam shaping 
properties of a PhC LED. From the limited variation in Fig. 5.38 it seems that better 
omni-directionality decreases the achievable directionality. As the extraction disk is more 
uniformly filled with the diffracted light from guided modes, the lower limit for the 
directionality in the case of high symmetry lattices is the Lambertian emission profile. The 
latter corresponds to constant intensity within the extraction disk. 

5.4 Experimental Results and Comparison 
In this section experimental results from [28] and [31] are summarized. The main challenge in 
fabricating PhC LEDs is the need for defining the PhC pattern with its features on a 
wavelength scale, i.e. hole radius of 100nm-1000nm for the visible spectrum. Commonly 
used lithography techniques like contact lithography are limited to feature sizes of about 1µm 
by the diffraction limit or are extremely expensive, like deep-UV lithography. 

On a R&D level e-beam lithography is widely used to define the PhC pattern into an 
appropriate resist. After the resist is developed it serves as an etching mask to transfer the 
pattern into the semiconductor. Even though e-beam is capable of fabricating feature sizes 
down to 20nm [97] along with arbitrary patterns, it is not applicable to mass production due to 
its extremely low throughput. 

A very promising patterning technique is the nano-imprint technology [98]. It could be 
thought of as Gutenberg’s book printing invention transferred to the nano-scale. Like in the 
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macroscopic world, firstly a stamp with the inverse pattern is fabricated, the so-called master. 
By pressure or capillary forces the pattern is printed into a resist already cast upon the LED 
surface. After heating and/or UV-curing the stamp is removed and the resist can act as an 
etching mask. The patterning process can be done on a wafer-scale and thus offers high 
throughput. As the master has to be fabricated first by conventional techniques, like e-beam 
lithography, it is less flexible compared to this method, however arbitrary patterns with 
feature sizes on the order of 10-20nm can be printed. The main challenge are impurities or in 
general topologies on the wafer surface, as the stamp can be damaged or the features are 
printed with insufficient quality. A possible solution to this problem are soft masters [99]. 

Other methods like laser-interference lithography [100] or self-organized lithography 
[101] are also used for fabricating PhC LEDs. However, they are limited to regular patterns, 
like hexagonal lattices, and require extremely sensitive experimental setups as in the case of 
the prior technique or suffer from a lack of long-range order and multiple layer stacking as in 
the case of the latter technique. 

The last method in this brief summary, the selective growth of nano-rods [102][103], 
actually is not a patterning technique by itself. Here, the vertical layer stack is only grown on 
a pre-defined patterned substrate and forms nano-pillars of semiconductor material. Hence, no 
material has to be removed by etching and the resulting structure is inverse to structures 
obtained by etching. Of course, the pattern has to be defined first by a method as mentioned 
above. Furthermore, the goal in this research area is mainly focused on the defect-free growth 
of the semiconductor rather than the realization of PhC LEDs. However, PhC effects should 
be observed in appropriate patterns. Now, if only the vertical layer stack is grown in the usual 
manner such a PhC LED suffers from a loss of active area equivalently to etching through the 
active layer. To address this issue so-called core-shell growth has been proposed [104]. Here, 
the pillars consisting for instance of n-doped semiconductor are grown on the pre-defined 
patterned as described above. Afterwards, the whole surface of the pillars is overgrown by the 
pn-junction. Thus, a huge active area could be obtained that could compensate the area loss 
due to the selective growth. 

5.4.1 Green InGaN Thin-Film LED 

The investigated InGaN PhC LED was processed as a thin-film LED. Thus, its vertical 
layer stack is similar to Fig. 5.2 with an overall LED thickness of 6.3µm and a distance of 
160nm between the active region and the Ag-based mirror. The hexagonal PhC was defined 
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Fig. 5.39: Azimuthally and wavelength averaged far field patterns of PhC LEDs with pitch a=260nm 

(G0 =2.3k0; black solid line), 370nm (G0 =1.62k0; black dashed line), and 470nm (G0 =1.28k0; black 

dash-dotted line). All patterns are normalized to 1W of radiant flux. The solid grey line indicates a Lambertian 

emission profile. 
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Fig. 5.40: Experimental directionality from PhC LEDs (symbols), a reference sample (dotted lines) and the 

diffraction model (solid lines) within different acceptance angles (indicated by fading grey levels). Additionally, 

the overall diffracted intensity (dash-dotted line; right y-axis) in air obtained from the diffraction model is 

shown. 

by e-beam lithography with pitches varying from 260nm (G0=2.3k0) up to 470nm 
(G0=1.28k0), a filling fraction of F≈0.5 and an etch depth of ~300nm. The emission 
wavelength is about 520nm with a FWHM of 30nm. The 250µm x 250µm chips have been 
mounted on TO18 headers for characterisation. 

Fig. 5.39 shows azimuthally and wavelength averaged far field patterns for three 
different pitches along with a Lambertian emission profile. The beam shaping properties of 
the PhC are clearly observed. The emission profiles are collected by an optical fibre mounted 
on an arm rotating around the sample in steps of ∆θ=3° and ∆φ=10°. 

Due to electrical shunts a quantitative evaluation of the PhC LEDs in comparison to 
the unstructured reference in terms of performance was not possible. However, an analysis of 
the far field patterns was performed and is shown in Fig. 5.40. Here, the experimentally 
obtained directionality (symbols) for the different samples is compared to calculations with 
the diffraction model (solid lines). Experiment as well as theory include an azimuthally and 
wavelength average according to the emission spectrum of the LED. In the case of high 
diffracted intensities to air (dash-dotted line; right y-axis) a reasonable agreement between the 
model and experiment is observed as the far field is mainly dominated by the diffracted light 
from guided modes. For decreasing diffracted intensity the experimental directionality shows 
an asymptotically behaviour. As the contribution from diffraction of guided modes is 
negligible in this case the light emitted directly from the LED, i.e. without the help of the 
PhC, defines the directionality. This directionality can be estimated by the corresponding 
value of the unstructured reference (dotted lines). As the diffraction model does not take into 
account the directly emitted light a poor agreement is observed. However, the diffracted 
intensity in air allows to qualitatively estimate the enhancement in extraction efficiency. 

Fig. 5.41 shows the azimuthally averaged radiant intensity obtained from the 
experiment and from the diffraction model for a main reciprocal lattice vector length of 
G0=1.27k0. As the diffracted light from guided modes mainly contributes to the far field 
shape, an excellent agreement between the model and the experiment is achieved over the 
whole angle range. 
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Fig. 5.41: Radiant intensity for the experimental PhC LED (grey solid line) and the diffraction model (black 

solid line) obtained from a PhC LED with G0 =1.27k0. A Lambertian emission profile (black dashed line) is also 

shown for reference. All far fields are normalized to 1W of radiant flux. 

5.4.2 Red AlGaInP LED 

The AlGaInP based LED with a refractive index profile as shown in Fig. 5.42 was also 
processed as a 250µm x 250µm thin-film LED. Five GaInP quantum wells with 
(Al0.5Ga0.5)0.5In0.5P barriers are embedded between 400nm thick AlInP confinement layers to 
ensure reasonable electrical confinement. Sufficient current spreading on the n-side is 
obtained from a 3.8µm thick Al0.6Ga0.4As layer and on the p-side by a Gold mirror covered 
with a transparent conductive oxide. The emission is centred at 658nm with a FWHM of 
18nm. The hexagonal PhC was defined by e-beam lithography and was etched into the 
n-AlGaAs. For two etch depths of 200nm and 800nm a series of pitches ranging from 220nm 
(G0=3.4k0) to 450nm (G0=1.7k0) has been realized. The LEDs were mounted on TO18 
headers and the overall emitted flux was measured at 10mA driving current in an integrating 
sphere. 

The obtained radiant fluxes for the different PhC LEDs are shown in Fig. 5.43 b with 
respect to the radiant flux of the reference sample. Enhancements of up to 1.45 are obtained 
for the 800nm deep PhC with G0=1.7k0. As the enhancement is due to diffraction of guided 
modes into the extraction disk the counterpart to the extraction enhancement in the modelling 
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Fig. 5.42: Refractive index profile of the AlGaInP thin-film LED with 200nm deeply etched PhC. The dashed 

line indicates the 800nm sample. 
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is the overall diffracted intensity in air, see Fig. 5.43 a. Since the diffraction model neglects 
the impact of absorption a quantitative comparison between the simulations and the 
experiments is not valid. However, the general dependency of the extraction efficiency on the 
main reciprocal lattice vector length and the etch depth is well predicted by the model. 
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Fig. 5.43 (a) Overall diffracted intensity in air obtained from the diffraction model for the 200nm (solid line) 

and the 800nm (dashed line) PhC as a function of the main reciprocal lattice vector length G0. (b) External 

quantum efficiency with respect to the unstructured reference for the 200nm (filled triangles) and the 800nm 

(open circles) deeply etched PhC. 
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6 Metallic PhCs: Surface Plasmon 
Polariton LED 

In general, one could also think of structuring the bottom side of a thin-film LED before 
deposition of the mirror in order to place the PhC on the opposite side. However, the issue 
with metallic PhCs is twofold. On the one hand, they could be used in the usual manner to 
diffract guided light into the extraction cone [19]. On the other hand, the coupling of the 
active layer with so-called surface plasmons forms surface plasmon polaritons that heavily 
influence the internal quantum efficiency of the LED due to a very large Purcell factor 
[36][37]. The latter clearly has to be addressed separately from the pure diffraction process 
and will be discussed in this chapter. 

First, the basics of surface plasmon physics is summarized and the quantities 
determining the light emission efficiency are pointed out. After a presentation of the FDTD 
simulation setup, we then use the simulation results to estimate the benefit of surface plasmon 
polaritons for a green InGaN LED. 

6.1 Surface Plasmon Polaritons: Basics 
A surface plasmon (SP) is a collective oscillation of the electron plasma at the surface of an 
extended metal film covered with a dielectric. If the permittivities of the two materials obey 
the following condition the photonic surface state forms a guided mode at the interface as 
depicted in Fig. 6.1 and is called a SP. 

)Re()Re( MD εε >− , (6.1) 

with εD (εM) the permittivity of the dielectric (metal). Hence, according to permittivity of pure 
silver as shown in Fig. 4.9 an interface between silver and GaN with nGaN=2.4 supports SPs  
 

 
Fig. 6.1: Illustration of a surface plasmon (solid black line) confined at the interface between silver and GaN. 

The horizontal black line indicates a possible position of the QW in order to benefit from the coupling to the SP. 
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for photon energies below 2.97eV or equivalently above a vacuum wavelength of 418nm. Ag 
is the best choice for blue and green emitting InGaN based LEDs as it absorbs weakly. In the 
case of GaN also Aluminium could be used, but Al introduces high losses. By contrast, Gold 
has no sufficient negative real part of its permittivity and thus supports no SPs on GaN. 
However, it could be used in combination with AlGaInP or AlGaAs and the corresponding 
emission wavelengths. The data presented in this chapter was obtained from the silver data as 
given in section 4.3.6 but without the extra factor for the collision frequency νc. 

Due to the confinement of the SP at the interface, its in-plane k-vector length βSP is 
larger than the k-vector in GaN βSP>nGaNk0. This fact is also reflected by the dispersion 
relation of the SP as shown in the left part of Fig. 6.2 because it is located right from the light 
line of GaN for photon energies below 2.97eV. The corresponding attenuation of the mode 
profile as given in the middle of Fig. 6.2 indicates that the SP is squeezed within a very 
narrow volume. The resulting high electric field amplitudes increase the spontaneous 
emission rate significantly according to Fermi’s Golden Rule (2.3) if the emitting layer is 
situated at the high local electric field amplitude, see e.g. Fig. 6.1. The additional contribution 
of the huge density of photonic states due to the flat characteristics of the dispersion relation 
results in extremely high Purcell factors; right part of Fig. 6.2. Therefore, high internal 
quantum efficiencies could be obtained by placing an emitter into the vicinity of the interface. 
The coupling of the photons with the SP forms the surface plasmon polariton (SPP). As the 
surface plasmon is a longitudinal surface wave only the TM-polarized part of the light 
emission couples to it. The distance between the emitter and the metal should be less than the 
attenuation length of the SP into the dielectric. In the case of Ag on GaN the attenuation 
length is ~30nm at 520nm. On the other hand, the confinement also causes very short 
propagation length LSP of the SP due to the absorption in the metal; right part of Fig. 6.2. 
Consequently, a highly absorbing adhesion layer between GaN and Ag would dramatically 
reduce the propagation length. Therefore, the data for pure silver was used instead of the data 
obtained from the higher collision frequency. 

However, the question arises how the light guided within the SP can be extracted and 
converted into “useful” light propagating in GaN before it is absorbed. Here, a periodic 
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Fig. 6.2 (left) Dispersion relation of a surface plasmon (solid line) at the GaN-Ag interface; the refractive index 

of GaN is kept constant at nGaN=2.4, the permittivity of Ag is taken from the fit as shown in Fig. 4.9. The dashed 

line indicates the light line of GaN. (middle) Attenuation length of the mode profile into GaN (black line) and Ag 

(grey line) with γSP according to (4.5). (right) Purcell factor (solid line) of a horizontal dipole placed at the 

position of the interface. The dashed line (upper x-axis) shows the propagation distance LSP of the SP. 



 

 - 88 - 

structuring offers a solution as it folds the dispersion relation above the light line. The 
extraction of light depends on the interplay between the absorption length and the extraction 
length due to the grating. Thus, apart from the boost in internal quantum efficiency due to the 
high Purcell factor also the re-extraction of light from the SP has to be taken into account 
when considering the efficiency of a SPP coupled LED [42]. The effective internal quantum 
efficiency can be written as 

4434421

IQE

nradradP

radP
radeff

η

ΛΛF

ΛF
ηη

+
= , (6.2) 

according to (2.2) and (2.4). The efficiency ηrad takes into account the extraction efficiency 
from the SP and the part of light that is generated without the help of the SP, i.e. light 
generation into guided, k0<βm<kGaN, and radiative modes, βm<k0. In conclusion, the 
extraction of light from the SP is the decisive quantity no matter how high the Purcell factor is 
[42]. 

6.2 FDTD Simulation Setup 
In order to quantify the effect of SP coupled emitters we utilized FDTD simulations that yield 
the important quantities, namely the Purcell factor FP and the radiative efficiency ηrad. The 
simulation was setup as shown in Fig. 6.3. Only the GaN-Ag interface is taken into account. 
The GaN-to-air interface was not included, as we wanted to focus on the coupling process. 
Since the coupling of the emitter to the SP depends on its relative position to the grating four 
positions of the horizontal dipole are used for spatial averaging, see Fig. 6.3 b. The emission 
of the source included wavelengths ranging from 480nm up to 560nm. 
The 2µm x 2µm x 0.5µm large simulation area was surrounded by PMLs. The Purcell factor 
and the radiative efficiency are calculated according to 

 
Fig. 6.3 (a) Sketch of the simulation setup used for calculating the Purcell factor and the radiative efficiency. 

The horizontal dipole source was placed within the GaN layer (light grey area) in increasing distances away 

from the structured mirror (dark grey area). The thick black lines indicate the planes for monitoring the power 

flux leaving the simulation volume into the PMLs. (b) Illustration of the four positions of the dipole relative to 

the hexagonal grating taken into account for spatial averaging. For each position a simulation was performed. 
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with P±x,y,z the Poynting flux in ±x-direction, ±y-direction, and ±z-direction, respectively, and 
Ptot,0 the overall emitted flux from a dipole in a homogeneous optical environement. For the 
hexagonal PhC we used a primitive reciprocal lattice vector length according to the in-plane 
k-vector length of the SP, i.e. G0=βSP=3.47k0 at peak wavelength of 520nm or equivalently a 
pitch of a=173nm. The filling fraction is F=0.5 and the etch depth is 40nm to ensure a large 
overlap of the SP mode with the PhC. 

In Fig. 6.4 the Purcell factor and the radiative efficiency obtained from FDTD 
simulations are compared to the results from the transfer matrix algorithm described in 4.1 for 
the unstructured reference and varying distance between the dipole and the mirror. All the 
calculations contain a Gaussian wavelength average according to a peak wavelength of 
520nm with a FWHM of 30nm. The agreement between the two methods is good; the slight 
discrepancies are caused by an insufficient spatial resolution of the FDTD grid. However, a 
further improvement in this regard would have resulted in very long simulation runs 
especially in the cases of the structured mirror. The latter requires a very dense computational 
mesh in lateral direction; much denser compared to the PhC LED computations of the 
foregoing sections. 
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Fig. 6.4: Purcell factor FP (black lines) and radiative efficiency (grey lines) from FDTD simulations (solid line 

with symbols) and the transfer matrix algorithm (T-Matrix) given in 4.1 (dashed lines) as a function of the 

distance between the source and the mirror.  

6.3 Green InGaN SPP LED 
According to the evanescent nature of the SP, it is evident that the coupling of the emitter 
depends on the distance between the source and the mirror as the electric field amplitude of 
the surface plasmon decays exponentially inside the GaN layer. The resulting drop in FP is 
well reflected by the FDTD simulations in both cases, the unstructured reference and the 
structured mirror, see Fig. 6.5. As soon as the dipole does not couple to the SP anymore, 
oscillations of the Purcell factor owing to the interference of the source with its mirror image 
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Fig. 6.5: Purcell factor FP (black lines) and radiative efficiency (grey lines) from FDTD simulations for the SPP 

LED (solid line with boxes) and the unstructured mirror (dashed lines with triangles) as a function of the 

distance between the source and the mirror. Due to the structuring the light generated into the SP with high FP 

can partially be extracted. However, the radiative efficiency at large distances is worse and thus, the mirror 

reflectivity is reduced compared to the pure unstructured silver mirror. 

are observed. The radiative efficiency at small distances for the reference calculation is very 
low, as most of the light is emitted directly into the SP and gets absorbed by the metal. The 
less the impact of the SP the higher becomes the radiative efficiency. In contrast, the PhC 
extracts light from the SP partially and enables usage of the high Purcell factor. However, at 
large distances the structured mirror absorbs some of the emitted light due to the coupling to 
the SP by the grating. Thus, the structuring reduces the reflectivity of the mirror. 

In order to estimate the benefit from SPP LEDs for the effective internal quantum 
efficiency, Fig. 6.6 a shows ηeff as a function of the ratio between non-radiative and radiative 
recombination rates according to (6.2) for a standard unstructured InGaN LED with 160nm 
distance and a SPP LED with structuring and a distance of 10nm. The high Purcell factor of 
the SPP LED weakens the impact of the non-radiative processes on the internal quantum 
efficiency compared to the unstructured reference. From the crossing point between the two 
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Fig. 6.6: (a) Effective internal quantum efficiency according to (6.2) for the SPP LED (black line) with 10nm 

distance between the source and the mirror and the reference LED (grey line) with 160nm. Owing to the 

moderate radiative efficiency the higher Purcell factor enhances the effective efficiency only for high 

non-radiative rates. (b) Calculations according to (a) with the extraction to air (solid lines) and silicone (dashed 

lines) taken into account. The benefit from the use of SPP coupled LEDs is limited to poor emitters or cases that 

are less dependent on the mirror reflectivity. The dotted line shows the results for a SPP LED without surface 

roughening. 
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graphs the efficiency of extracting light from the SP can be estimated to be 38%. Due to the 
low radiative efficiency a significant improvement is obtained only in the case of poor 
emitters, i.e. high non-radiative rates. The latter has already been derived by [42] based on a 
perturbational treatment of the coupling and could be quantified by these simulations. 

However, the light still propagates inside the LED and has to be extracted to the 
ambient medium. The extraction from a SPP LED with a bare semiconductor-to-air interface 
can be estimated from the same geometrical construction as has been utilized for the 
mono-mode case, see Fig. 5.27. The diffraction of the SP is an excellent approximation to the 
mono-mode case as almost all the light is emitted into a single mode with a given in-plane 
k-vector length. Therefore, the extraction efficiency is approximately 1/2.4≈42%. However, a 
comparison with a thin-film LED with rough surface but unstructured mirror limits the 
applicability of SPP LEDs to even less efficient emitters compared to the effective efficiency 
due to the lower extraction efficiency, see Fig. 6.6 b. The incorporation of the SPP LED into a 
thin-film LED is advantageous but the reduced reflectivity of the structured mirror limits the 
extraction efficiency of this LED. The extraction efficiencies for the thin-film LEDs with 
rough surface are taken from Fig. 2.8. The structured mirror device has an extraction 
efficiency to air (silicone) of 53% (74%), whereas the unstructured reference achieves 94% 
(97%) in the case of a pure silver mirror without enhanced collision frequency. To calculate 
these extraction efficiencies we used the radiative efficiency at a distance of 160nm in both 
cases as an upper estimate for the mirror reflectivity. Realistically, the mirror reflectivity 
should only be calculated from the light emitted towards the mirror. The radiative efficiency 
instead contains both the upward and downward emitted light, where the prior does not 
experience absorption at the mirror. This partially explains the extremely high extraction 
efficiency to air for the unstructured reference of 94%. But also the Ag-data assume a very 
pure Ag that is hardly achieved in reality. As the mirror reflectivity is less important in the 
case of extraction to silicone or in the case of absorption within the semiconductor the use of 
SPPs could be more beneficial in these cases. 

With the high directionality of the mono-mode case in mind, the SPP LED with bare 
semiconductor-to-air interface could also be a proper choice for étendue limited applications. 
A comparison of the effective external quantum efficiency into different acceptance angles is 
depicted in Fig. 6.7 for the bare SPP LED and a roughened thin-film LED without structured 
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Fig. 6.7 Ratio of the effective external quantum efficiency of the bare SPP LED and the standard roughened 

thin-film LED taken from Fig. 6.6 b into different acceptance angles. The decisive factor is the ratio in 

directionality between the mono-mode case and the Lambertian emitter, 1 /sin(θ). The horizontal dashed line 

indicates the value of break-even. 
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mirror. However, the bare SPP LED has only superior performance within very narrow 
acceptance angles. The larger the acceptance angle the higher non-radiative rates are required 
for a break-even. 

6.4 Conclusions on SPP LEDs 
As already concluded in [42] the FDTD simulations also reveal that the applicability of SP 
coupled emitters is limited to low internal quantum efficiencies. On the one hand, the high 
Purcell factors weaken the impact of the non-radiative processes. On the other hand, the 
effective internal quantum efficiency is restricted by the poor re-extraction of light from the 
SPs due to the absorption inside the metal. This tendency to poor emitters is even stronger, if 
the incorporation of the structured mirror into a thin-film LED is taken into account. The 
reduced mirror reflectivity inhibits efficient light extraction to the ambient medium from a 
roughened LED as the redistributed light is more prone to absorption. If the mirror reflectivity 
has less impact on the extraction efficiency, e.g. for high bulk absorption or extraction to 
silicone, a structured mirror implies less penalties. A similar effect is found for the application 
of a SPP LED without roughening if the higher directionality is taken into account. However, 
the main disadvantage of a SPP LED, the absorption of the metal, still remains in any case. A 
possible workaround could be to insert a thin low-refractive index material between GaN and 
Ag in order to pull the mode out of the mirror and consequently reduce the absorption. 
However, as the confinement of the SP is reduced, the Purcell factor decreases 
simultaneously. Thus, it is questionable, whether a positive net effect is achieved. Another 
possibility is to replace the holes filled with Ag by holes filled with a non-absorbing dielectric 
with low-refractive index, e.g. air. The low average refractive index of the PhC reduces the 
absorption losses of the SP. 

Based upon these results it is also possible to estimate the applicability of a metallic 
PhC for diffracting guided light from the semiconductor to air. From the diffraction point of 
view the metallic PhC should perform equally to a PhC at the semiconductor-to-air interface. 
However, the reduced mirror reflectivity will inhibit effective redistribution of light. Thus, a 
PhC that allows coupling between guided modes and SPs will have less extraction efficiency 
in any case compared to a PhC that allows no coupling. In the case of a PhC at the 
semiconductor-to-air interface this coupling is hardly possible as the coupling integral 
between guided modes and SPs vanishes due to the short attenuation length of the SP inside 
the semiconductor. 
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7 Comparison of PhC LEDs and 
Roughened LEDs 

In this chapter we focus on the fundamental question: Is a PhC LED as efficient as a 
roughened thin-film LED? And furthermore, how much enhancement could we expect for 
étendue limited applications? For this purpose we compare results obtained from FDTD 
simulations for the usual structure as mentioned at the beginning of chapter 5 with a thin-film 
LED with a rough surface as shown in Fig. 2.7. Thereafter, we present an optimised PhC LED 
and expand our investigations by taking into account the radiation pattern of the LEDs.  

7.1 Extraction Efficiency 
Before we study the FDTD results, we utilize the photonic strength model in order to derive 
the difference between a random surface structure and a PhC. 

7.1.1 Estimations from the Photonic Strength 

Fig. 7.1 a shows an approximation of a random surface structure with 924 randomly 
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Fig. 7.1: Illustration of the rough surface (a) and its Fourier spectrum (b) used for comparison with a hexagonal 

lattice. The area for the Fourier transformation is 1600a
2
, with a the pitch of the reference hexagonal lattice 

which the number of distributed holes is derived from. The filling fraction was chosen F=0.4. The dashed circle 

indicates the main reciprocal lattice vector length associated with this surface structure and corresponds to the 

primitive reciprocal lattice vector length of the reference hexagonal lattice. 
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Fig. 7.2 (a) Diffraction coefficient obtained from the photonic strength model (5.2) for the hexagonal lattice 

(black lines) and the rough surface (grey lines) and guided modes with βm=1.1k0 (solid line), βm=1.5k0 (dashed 

line), and βm=2.4k0 (dash-dotted line). Owing to the smooth distribution of the Fourier spectrum the rough 

surface has smaller diffraction coefficients than the hexagonal lattice but is less sensitive on the in-plane 

k-vector and offers omni directional diffraction for every guided mode. (b) Vertical (black) and horizontal (grey) 

slice through the Fourier spectrum for the rough surface as shown in Fig. 7.1 b. The dependency of the 

diffraction coefficient on G0 results from the high Fourier intensities around G0. 

positioned holes. The number of holes is equal to the number of holes that a hexagonal lattice 
offers within the same area. Therefore, the Fourier transform as shown in Fig. 7.1 b has the 
same overall “content” as the hexagonal lattice and can be compared to the corresponding 
Fourier spectrum of a hexagonal lattice. The filling fraction is F=0.4, the pitch of the 
reference hexagonal lattice is a  and the area used for the calculation of the Fourier transform 
is 40x40a

2. Clearly, no discrete features are observed in the Fourier spectrum but an even 
distribution over a disk slightly larger than G0. 

The washed out Fourier spectrum results in a diffraction coefficient – obtained from 
the photonic strength model (5.2) – that is less sensitive to the exact value of the main 
reciprocal lattice vector compared to a hexagonal lattice, see Fig. 7.2 a. This is of great 
advantage for thick LEDs supporting many guided modes and especially in the case of 
AlGaAs or AlGaInP-based LEDs. In these cases the guided modes are spread over a larger 
range of in-plane k-vectors owing to the refractive index at the corresponding emission 
wavelength of nSC=3.5. However, the maximum values of the diffraction coefficient are lower 
compared to the hexagonal lattice and therefore, less intensity is diffracted per unit length into 
air from a single mode. The same tendency has also been observed in the case of 
Archimedean lattices, Fig. 5.10. Therefore, the rough surface is expected to be less efficient 
compared to a hexagonal lattice with the same main reciprocal lattice vector length in the case 
of strongly absorbing structures. But the rough surface offers omni-directional diffraction 
similar to the Archimedean lattices and hence, it should be more efficient in the case of less 
absorbing structures. In contrast to Archimedean lattices with their discrete Fourier spectrum 
the rough surface supports a huge number of reciprocal lattice vectors with the same length 
|G|=G for almost every G. According to Fig. 5.8 b the omni-directionality of the Archimedean 
lattice is restricted at a given G by the twelve main reciprocal lattice vectors to a narrower 
range of guided modes compared to the rough surface that diffracts almost all the guided 
modes within the range G±k0. Consequently, no far field shaping effect is expected from a 
rough surface. In summary, the rough surface diffracts every in-plane propagation direction of 
every guided mode to air, whereas the PhCs with their discrete Fourier spectrum always leave 
some parts of guided modes un-extracted. These parts may only be recovered by prior 
redistribution of the light into extractable guided modes. The dependency of the diffraction 
coefficient for the rough surface on G0 is due to the crowding of high Fourier intensities 
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around G0 as can be seen in Fig. 7.2 b. Even though randomly positioned, the average distance 
between neighbouring holes causes this Fourier spectrum. 

7.1.2 FDTD: PhC LED vs. Rough LED 

For a quantitative comparison we now resort to FDTD simulations. The LED structure has a 
3µm thick GaN layer with a bottom Ag-based mirror and the active region located 160nm 
away from the mirror. In terms of extraction efficiency this configuration has been proven to 
be very efficient in section 5.2.3. The PhC is 300nm deep with a filling fraction of F=0.5 and 
a main reciprocal lattice vector of G0=k0. For a realistic representation of the roughening of 
GaN-based thin-film LEDs as shown in Fig. 2.7 c within FDTD randomly positioned 
pyramids along the surface of the LED are incorporated instead of the PhC. The etch depth of 
each pyramid is also chosen randomly up to a maximum of 1µm. The density of the pyramids 
was adjusted to avoid areas on the LED surface without pyramids. The angle of their 
sidewalls with respect to their base is 60°. In real LED chips this angle is obtained for GaN 
grown along the c-axis as the etching during the processing uncovers the {10-1-1} facets of 
the GaN crystal [105]. The only difference to real roughened surfaces is the base of the 
pyramids that is quadratic within the simulations instead of hexagonal. The results include a 
Gaussian average with a peak wavelength of 520nm and a FWHM of 30nm taken from data 
ranging from 470nm up to 570nm with 71 supporting wavelengths. 

The extraction efficiency given in Fig. 7.3 for both cases firstly reveals a superior 
performance of the roughened thin-film LED compared to the PhC LED. The prior (latter) is 
roughly 3.7 (2.8) times more efficient than the unstructured reference. However, a closer look 
at the extraction efficiency for integration radii <5µm exhibits a higher extraction obtained 
from the PhC LED compared to the rough LED. The PhC extracts the guided modes with 
high overlap product very fast due to its high diffraction coefficient. The remaining modes are 
extracted less efficiently as the discrete Fourier spectrum offers no reciprocal lattice vectors. 
In contrast, the rough surface extracts all guided modes omni-directionally. Thus, simply 
replacing the standard structuring with a PhC will hardly result in more efficient LEDs. 
According to the etch depth variation of the PhC LED as shown in Fig. 5.20 a almost no 
benefit arises for the PhC LED from etching the PhC down to etch depths of the pyramids. 
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Fig. 7.3: Extraction efficiency obtained from the FDTD simulations for a PhC LED (black line and symbols) and 

for a roughened thin-film LED (grey line and symbols). The dash-dotted horizontal line depicts the extraction 

efficiency of the unstructured reference sample. (b) is a close-up to the data from (a) on the values obtained from 

the simulations. Even though the PhC extracts light initially efficiently it cannot compete with the 

omni-directional diffraction properties of the random surface. 
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7.1.3 Optimised PhC LED 

Even though the PhC LED of the previous section is optimised regarding the PhC pattern in 
combination with the guided mode structure, the vertical layer stack can be improved. The 
main issue is to reduce the overall thickness of the LED in order to get rid of the high number 
of guided modes, see Fig. 5.20 b. From the reduced thickness ensues an increased interaction 
of the guided modes with the PhC, on the one hand. On the other hand, the absorption 
increases simultaneously according to the t-3-dependency. In order to enhance the extraction 
efficiency, a low-refractive index layer is inserted into the vertical layer stack between the 
GaN and the mirror. We use SiO2 for this layer as its refractive index is n=1.5, it is 
transparent and can easily be processed. Fig. 7.4 shows the refractive index layer structure. 

According to the thin overall thickness the stack supports only 14 guided modes. The 
resulting overlap with the active region Bm and the PhC layer Cm are shown in Fig. 7.5 at peak 
wavelength. As we deal with a very shallow etched PhC the overlap Cm is a very reasonable 
measure for the coupling integral. From the overlap product an optimum main reciprocal 
lattice vector length of G0=1.5k0 would be most preferable. However, if the absorption of the 
guided modes is additionally taken into account, see Fig. 7.6, a G0=k0 should be chosen in 
order to extract the most absorbed guided modes first. The remaining modes are extracted 
anyway by high-order processes that also offer in-plane omni-directionality as their aborption 
coefficient is at least almost two orders of magnitude smaller. The TM-polarized guided mode 
at βm=1.68k0 which does not have appreciable overlap neither with the active layer nor with 
the PhC but has high absorption is a surface plasmon mode guided at the SiO2-Ag interface. 
The vertical layer stack was primarily designed in regards of the radiative modes. In order to 
obtain only one dominating resonance of the radiative modes within the extraction disk a 
thickness in the micro cavity regime is chosen, i.e. the cavity formed by the mirror and the 
semiconductor-to-air interface is ~4λpeak thick. The position of the active region ensures high 
extraction of light within a limited acceptance angle of 30°. Calculations with the transfer 
matrix algorithm of section 4.1 including a Gaussian wavelength average reveal roughly 51% 
of directionality within 30°. Hence, the directly emitted light forms a very directional 
background. The overlap of radiative modes with βm<0.5k0 with the PhC layer results in 
preferred diffraction into the targeted acceptance angle of 30°. The fairly shallow etched PhC 
with a filling fraction of F=0.5 ensures on the one hand to stay within the weakly coupled 
regime. On the other hand, it is still thick enough to cover the largest attenuation length of 
~96nm within the PhC for the TM-polarized guided mode with βm=2.03k0. 
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Fig. 7.4: Refractive index profile of the optimised PhC LED. 
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Fig. 7.5: Mode distribution of the optimised PhC LED. Overlap with the active region Bm, with the PhC layer Cm 

and the corresponding product BmCm at peak wavelength λpeak=520nm for TE-polarized guided (black 

triangles), TE-polarized radiative (black lines), TM-polarized guided (grey triangles), and TM-polarized 

radiative (grey lines) modes. The vertical dashed line indicates the average refractive index of the PhC layer. 
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Fig. 7.6: Absorption coefficient for the guided modes of the optimised PhC LED. The vertical dashed line 

indicates the average refractive index of the PhC layer. Even though the overlap product as shown in Fig. 7.5 

favours a main reciprocal lattice vector length of G0=1.5k0, the absorption calls for a reduced G0. 

The FDTD simulations in Fig. 7.7 reveal an improvement in extraction efficiency 
compared to the thick PhC LED (the roughened LED) of the previous chapter of 53% (16%) 
for the PhC with G0=k0. In contrast, the PhC with G0=1.6k0 has less overall extraction 
efficiency, even though it extracts the guided mode with very large overlap product very 
efficiently. The latter causes the higher extraction efficiency of this lattice for small 
integration radii. The extraction efficiency of the PhC with G0=2.3k0 can be well explained 
by the lack of omni-directionality. 

 Of course, a roughened LED also benefits from a reduced absorption of the guided 
modes due to the mirror combination SiO2+Ag. Therefore, we replaced the Ag-based mirror 
in the roughened LED by this combined mirror but left the overall thickness of 3µm and the 
maximum etch depth of 1µm. As can be seen in Fig. 7.7 the reduced absorption losses of the 
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Fig. 7.7: Extraction efficiency from FDTD simulations of the optimum PhC LED from Fig. 7.4 with G0=k0 (solid 

black line, black diamonds), G0=1.6k0 (dashed black line, black triangles), and G0=2.3k0 (dash-dotted black 

line, black boxes). The solid grey line (grey boxes) depicts the results from a roughened LED with a combined 

SiO2-Ag mirror but 3µm overall thickness. 

guided modes enhance the extraction efficiency and the roughened LED with SiO2 catches up 
to the best PhC LED. Due to the lower interaction of the modes with the surface structuring – 
remember its thickness – and the spread Fourier spectrum the rough surface accomplishes its 
extraction efficiency after larger propagation distances. 

7.2 Étendue Limited Applications 
In this section, we focus on the implementation of PhC LEDs in an étendue limited 
application in comparison to a standard thin-film LED. For these systems the directionality in 
addition to the overall extraction efficiency is decisive for their performance as derived in 
section 2.4.  

0 10 20 30 40 50 60 70 80 90

farfield angle @°D

0.0

0.5

1.0

1.5

2.0

ra
d

ia
n

t
in

te
n

s
it
y
@n

o
rm

.D

opt. PhC LED  G0 = 1.6 k0

opt. PhC LED  G0 = k0

PhC LED  G0 = 1.3 k0

PhC LED  G0 = k0

Lambert

 
Fig. 7.8: Radiant intensities from FDTD simulations of the opt. PhC LED with G0=k0 (grey solid line), 

G0=1.6k0 (black solid line), the thick PhC LED with G0 =k0 (grey dashed line), G0=1.3k0 (black dashed line), 

and a Lambertian emission profile (black dash-dotted line) representing the roughened LEDs. The emission 

patterns are normalized to 1W radiant flux. 
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LED ηextr [%] D(30°) [%] D(60°) [%] Efficacy (lm/W) 
Opt. PhC LED G0=k0 70 25 83 119 

Opt. PhC LED G0=1.6k0 63 40 88 107 

PhC LED G0=k0 46 26 81 78 

PhC LED G0=1.3k0 42 34 81 71 

Rough TF LED 59 25 75 100 

Rough TF LED, SiO2 71 25 75 120 

Table 7.1: Summary of properties of the LEDs discussed in this chapter. The extraction efficiencies are obtained 

from extrapolated FDTD results. These FDTD simulations also yield the emission pattern and thus the 

directionality for the PhC LEDs. The emission profile of the rough LEDs is assumed Lambertian. The efficacy of 

the rough thin-film (TF) LED with standard mirror is set to 100lm/W. The efficacies of the other LEDs are 

calculated according to their extraction efficiencies. 

In Fig. 7.8 the far fields of the investigated LEDs are summarized and the relevant 
properties in Table 7.1. The optimised PhC LED with the highest extraction efficiency 
exhibits a rather flat emission pattern owing to high order diffraction. By adjusting the main 
reciprocal lattice vector to G0=1.6k0 the guided mode with highest overlap product is 
diffracted very efficiently towards the surface normal. Hence, a highly directional emission is 
gained at the expense of a small drop in efficiency. However, due to the diffraction along the 
guided modes’ circles the directionality of the initially emitted light is decreased from 51% 
down to 40% within 30°. The analogous optimisation of the main reciprocal lattice vector 
from G0=k0 to G0=1.3k0 for the thick PhC LED also reveals a stronger forward emission. For 
the roughened thin-film LEDs a Lambertian emission pattern is used according to the uniform 
Fourier spectrum and [59]. 

In order to compare these LEDs with respect to an étendue limited application we 
assume the following. The rough thin-film LED with standard mirror serves as the reference 
and its radiant flux is set to 100lm at 1W of electrical input power. We further neglect the 
potential impact of an altered vertical layer stack, as in the case of the optimised PhC LED, on 
the internal quantum efficiency or the electrical efficiency. Therefore, the difference between 
the different samples in terms of wall-plug efficiency or efficacy stems from the extraction 
efficiency alone. The values for the efficacy used throughout this chapter are given in Table 
7.1. The resulting emitted radiant flux within some limited acceptance θL is calculated 
according to the directionality within that angle multiplied with the overall emitted flux and is 
shown in Fig. 7.9. Despite its lower overall efficacy the optimised PhC LED with G0=1.6k0 
outperforms every competitor within an acceptance angle θL<54° due to its high 
directionality. 

For the performance analysis of an étendue limited application we utilize the DMD 
based projection system already introduced in 2.4. If the whole emission of the LEDs can be 
collected the largest feasible source area is 4mm2 corresponding to the étendue of the imager 
of Esys=12.7mm2sr. If we assume a chip size of 1mm2 of each LED with efficacies as 
summarized in Table 7.1, the roughened standard LED yields 400lm at the imager. Owing to 
the constant radiance of its Lambertian emission characteristics this amount of luminous flux 
stays constant for decreased acceptance angles if the source area AL is adjusted to match the 
étendue of the imager. Consequently, more chips have to be incorporated. According to the 
higher efficacy the system with the roughened LED with SiO2 projects constantly 480lm onto 
the DMD. In contrast, by incorporating PhC LEDs with high directionality and comparable 
efficacy up to 800lm can be generated on the imager by increasing the source area. However, 
this results in system efficacies of as low as 800lm/128W≈6lm/W. In general, the efficacy 
gets lower the smaller the acceptance angle becomes, since the light outside this angle is 
wasted regardless of the emission pattern of the LED. But even with moderate source areas of 
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Fig. 7.9: Radiant flux as a function of the acceptance angle θL for the opt. PhC LED with G0=k0 (grey solid 

line), G0=1.6k0 (black solid line), the thick PhC LED with G0=k0 (grey dashed line), G0 =1.3k0 (black dashed 

line), the roughened LED (black dash-dotted line), and the roughened LED with SiO2 (black dotted line).  

approximately 10mm2 (θL=40°) the thin directional PhC LED reveals 1.3 times more flux on 
the DMD compared to the system with the most efficient rough LED at the same electrical 
input power. This enhancement does not rely on the actual source area as only the total flux 
onto the imager does. Therefore, any system with a limited acceptance angle of θL<65° 
benefits from the incorporation of this thin PhC LED. Only for acceptance angles of 
54°<θL<80° the PhC LED with highest overall efficacy is applicable. In contrast, the 
standard PhC LED hardly achieves any reasonable enhancement compared to the standard 
thin-film LED due to its lower overall efficacy and a moderate forward emission. 
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Fig. 7.10: Flux onto a DMD with Esys =12.7mm

2
sr as a function of the acceptance angle θL  for the opt. PhC 

LED with G0 =k0 (grey solid line), G0 =1.6k0 (black solid line), the thick PhC LED with G0=k0 (grey dashed 

line), G0 =1.3k0 (black dashed line), the roughened LED (black dash-dotted line), and the roughened LED with 

SiO2 (black dotted line). The upper x-axis shows the required source area AL in order to match the étendue of the 

imager and to generate the flux on the imager as given on the left y-axis. 
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8 Conclusions 
The goal of this work was to clarify the benefit of nano-structuring for light-emitting diodes, 
namely photonic crystals for light extraction and surface plasmon polaritons for internal light 
generation. Even though considerable work already showed that the efficiency of as-grown 
LEDs can be enhanced by these mechanisms, the benchmark for the applicability are 
nowadays commercially available thin-film devices with surface roughening. These devices 
achieve extraction efficiencies as high as 85% with encapsulation and hence, there is only 
little room for improvement. However, certain applications or the internal quantum efficiency 
could profit from PhCs or SPPs. PhC LEDs in particular could improve the performance of 
étendue limited systems like projectors or automotive headlamps owing to their beam shaping 
properties. 

It turned out that the application of SPP LEDs is only attractive for LEDs with poor 
internal quantum efficiency. In this case, the enhanced Purcell factor due to coupling of the 
active region with the SP suppresses non-radiative recombination. However, the higher the 
internal quantum efficiency of an emitter gets, the lower is the impact of an increased 
spontaneous emission rate. On the other hand, the extraction of light from the SP is the main 
bottleneck for a significant enhancement because the competing process, i.e. absorption inside 
the metal, is strong. If the extraction of light from the semiconductor to air is additionally 
taken into account, the necessary structuring of the mirror results in a reduced reflectivity and 
consequently a decreased extraction efficiency to air owing to a mutual coupling of guided 
modes with the SP. Usually, the mirror reflectivity is less important in both limits, high 
absorption rates within or high extraction rates from the LED structure. In general, the 
absorption of the SP has to be reduced in order to extract the light from the SP and afterwards 
from the LED more efficiently. Nevertheless, a high level of the Purcell factor is still 
necessary. A further improvement of the Purcell factor as in the case of localized particle 
plasmons [106] hardly overcomes the penalty of metal absorption [107]. 

The major part of the work is dedicated to PhC LEDs. With respect to the overall 
efficiency of the LED shallow etched PhCs are preferable as they imply less penalties on the 
functionality of the perforated layers. In this regime, the dispersion relation of guided modes 
is almost not affected by the PhC as the difference in the average refractive index seen by two 
modes at the degeneracy points can be neglected. Therefore, the PhC acts as a diffraction 
grating and the dispersion is given by Bragg’s law of diffraction. Under these assumptions the 
PhC can be treated as a perturbation of the vertical layer stack that enables the coupling of 
guided modes with radiative modes above the light line. A model based upon coupled mode 
theory is proposed that allows to identify the important quantities on the way to high 
efficiency PhC LEDs. A scan over a wide variety of parameters can be carried out since the 
demand on computational resources for this diffraction model is low. Furthermore, a 
physically correct scheme within the FDTD method is established for the calculation of the 
absolute extraction efficiency and the far field radiation pattern of surface structured LEDs. 
Hence, it has been possible to verify the diffraction model. But even more striking, this 
enables a quantitative comparison between PhC LEDs and standard thin-film LEDs with 
surface roughening in terms of overall efficiency and with respect to applications that account 
for the radiation pattern. 
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Based upon these modelling tools the impact of the different parameters on the 
diffraction process and the extraction efficiency has been investigated. Apart from the PhC 
parameters, like pitch, filling fraction, or lattice type, also the vertical layer stack plays an 
important role for the optimisation of PhC LEDs. The LED should support guided modes that 
couple strongly to radiative modes and gather a large fraction of the spontaneous emission. 
For a given vertical layer stack the pitch of the PhC should be chosen in order to extract these 
guided modes into air by first order diffraction. It has been shown, however, that replacing the 
random surface structure of commercial devices by a PhC does not result in more efficient 
LEDs. Owing to its discrete diffraction behaviour and the large number of guided modes the 
PhC is inferior to the rough surface in the case of modest bulk absorption. Only if the 
structure contains no absorbing layers both surface structures should perform equally as both 
redistribute guided light. Increasing the omni-directionality of the lattice, i.e. “approximating” 
the rough surface, improves the extraction efficiency but limits the impact of the PhC on the 
far field. Therefore, the route for high efficiency PhC LEDs is to reduce both the number of 
guided modes and the absorption within the structure. Of course, the latter is also beneficial 
for common LEDs. Furthermore, the diffraction rate of the guided modes should be improved. 
In general, weakly guided modes interact sufficiently with the PhC as they are confined by the 
semiconductor-to-air interface and the mirror. In order to extract the strongly guided modes 
that are evanescent within the PhC the corresponding confining core should be as thin as 
technologically feasible. However, the absorption within the structure has to be taken into 
account and might even out the benefit from a decreased core thickness. A structure optimised 
in this respect showed an extraction efficiency competing well with that of commercial LEDs. 
The potential implications of an altered layer stack on the internal, injection and electrical 
efficiency have to be addressed separately. 

The performance of étendue limited applications can indeed be enhanced by the 
incorporation of PhC LEDs as a light source owing to their collimated emission pattern. This 
advantage only has any effect if a fraction of the LED’s total emission cannot be coupled into 
the optical system and this fraction is reduced by the beam steering properties of the PhC. 
However, a diffracting PhC cannot achieve complete collimation of the far field within a 
desired solid angle as diffraction outside simultaneously takes place. Hence, the efficiency of 
PhC LEDs has to be comparable to rough thin-film LEDs in order to obtain an absolute 
enhancement within the limited extraction cone. With the help of an optimised PhC LED it 
was possible to almost double the flux on the imager for narrow acceptance angles. Of course, 
in terms of system efficiency it is not advantageous to waste any light owing to a limited 
acceptance angle but to collect every quantum of light [35]. 

In conclusion, the extraction efficiency of a LED boils down to the two numbers: 
extraction and absorption coefficient. The lower the latter, the more efficient is the LED. 
Hence, progress in chip technology in terms of absorption reduction does not only increase 
the extraction efficiency of common LEDs. Additionally, PhCs along with their ability to 
control the light emission become more and more applicable. However, complete control of 
the light emission can only be achieved in the case of strongly coupled PhC where advantage 
of band-bending can be taken [52]. Here, achievements in material science, like core-shell 
growth of nano-rods, could overcome the main drawback of a reduced active area. 
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9 Appendix 
Fig. 9.1 shows a schematic sketch of a thin-film LED with its rough surface and bottom 
mirror. For the derivation of (2.9) in section 2.3.2 light propagation is assumed completely 
incoherent. Hence, only the intensities are taken into account and bounce between the surface 
and the mirror. 

For an isotropic source distribution Is(θ)=1 the amount of light I1 incident on the 
surface for the first time reads 

M
isoiso

1 22
R
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I +=  (9.1) 

with RM the reflectivity of the mirror and Aiso the amount of light not absorbed after 
propagation through the semiconductor with absorption coefficient α and thickness t 
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The surface is assumed to scatter the light perfect Lambertian and thus, the amount of light 
transmitted into the ambient medium is given by 
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Fig. 9.1: Isotropic light generation and Lambertian redistribution at the rough surface within a thin-film LED. 

The distance between the surface and the mirror is t. 
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∫=
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Hence, the intensity RLam=1−TLam is reflected back into the LED chip. After propagation 
through the chip, reflectance at mirror and again propagation, this light gives rise to the 
second transmission 
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Thus the extraction efficiency after N incidences on the surface is determined by 
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and the overall extraction efficiency for N→∞ 
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