Universität Regensburg Mathematik

Biextensions of 1-Motives by 1-Motives

Cristiana Bertolin

Preprint Nr. 10/2004

Biextensions of 1-motives by 1-motives

Biextensions de 1-motifs par des 1-motifs

Cristiana Bertolin ${ }^{\text {a }}$
${ }^{\text {a }}$ NWF I -Mathematik, Universität Regensburg, 93040 Regensburg, Germany

Abstract

Let S be a scheme and let $G_{i}(i=1,2,3)$ be an extension of an abelian S-scheme A_{i} by a S-torus $Y_{i}(1)$. We first sketch the proof of the following result: In the topos $\mathbf{T}_{\text {fppf }}$, the category of biextensions of $\left(G_{1}, G_{2}\right)$ by G_{3} is equivalent to the category of biextensions of $\left(A_{1}, A_{2}\right)$ by $Y_{3}(1)$. Using this result, we define the notion of biextension of 1 -motives by 1 -motives. If $\mathcal{M}(S)$ denotes what should be the Tannakian category generated by 1-motives over S (in a geometrical sense), as a candidate for the morphisms of $\mathcal{M}(S)$ from the tensor product of two 1-motives $M_{1} \otimes M_{2}$ to another 1-motive M_{3}, we propose the isomorphism classes of biextensions of (M_{1}, M_{2}) by M_{3}.

Résumé

Soient S un schéma et $G_{i}(i=1,2,3)$ une extension d'un S-schéma abélien A_{i} par un S-tore $Y_{i}(1)$. On esquisse la preuve du résultat suivant : dans le topos $\mathbf{T}_{\mathrm{fppf}}$, la catégrie des biextensions de (G_{1}, G_{2}) par G_{3} est équivalente à la catégorie des biextensions de $\left(A_{1}, A_{2}\right)$ par $Y_{3}(1)$. En utilisant ce résultat, on définit la notion de biextension de 1-motifs par des 1-motifs. Si $\mathcal{M}(S)$ désigne ce que devrait être la catégorie tannakienne engendrée par les 1-motifs sur S (en un sens géométrique), on propose comme candidat pour les morphismes de $\mathcal{M}(S)$ du produit tensoriel de deux 1-motifs $M_{1} \otimes M_{2}$ vers un 1-motif M_{3}, les classes d'isomorphismes de biextensions de (M_{1}, M_{2}) par M_{3}.

Version française abrégée

Soient S un schéma et $G_{i}(i=1,2,3)$ une extension d'un S-schéma abélien A_{i} par un S-tore $Y_{i}(1)$. Dans le topos $\mathbf{T}_{\mathrm{fppf}}$, la catégrie des biextensions de $\left(G_{1}, G_{2}\right)$ par G_{3} est équivalente à la catégorie des biextensions des S-schémas abéliens sous-jacents $\left(A_{1}, A_{2}\right)$ par le S-tore sous-jacent $Y_{3}(1)$. En utilisant ce résultat, on définit la notion de biextension de 1-motifs par des 1-motifs. De plus, si $\mathcal{M}(S)$ désigne ce que devrait être la catégorie tannakienne engendrée par les 1-motifs sur S (en un sens géométrique), on

Email address: cristiana.bertolin@mathematik.uni-regensburg.de (Cristiana Bertolin).
propose comme candidat pour les morphismes de $\mathcal{M}(S)$ du produit tensoriel de deux 1-motifs $M_{1} \otimes M_{2}$ vers un 1-motif M_{3}, les classes d'isomorphismes de biextensions de (M_{1}, M_{2}) par M_{3}. Dans le cas où $S=\operatorname{Spec}(k)$ avec k un corps de charactéristique nulle, cette définition est compatible avec la notion correspondante de morphisme dans la catégorie des systèmes de réalizations. En généralisant, on obtient, modulo isogénies, la notion de morphisme de $\mathcal{M}(S)$ d'un produit tensoriel fini de 1-motifs vers un autre 1-motif.

1. Introduction

Let S be a scheme and let G_{i} (for $i=1,2,3$) be an extension of an abelian S-scheme A_{i} by a S-torus $Y_{i}(1)$. We first see that in the topos $\mathbf{T}_{\text {fppf }}$, the category of biextensions of $\left(G_{1}, G_{2}\right)$ by G_{3} is equivalent to the category of biextensions of the underlying abelian S-schemes $\left(A_{1}, A_{2}\right)$ by the underlying S-torus $Y_{3}(1)$. Using this result, we define the notion of biextension of 1-motives by 1-motives.

Let $\mathcal{M}(S)$ be what should be the Tannakian category generated by 1-motives over S in a geometrical sense: objects are sub-quotients of sums of finite tensor products of 1-motives and their duals. We know very little about this category $\mathcal{M}(S)$. If $S=\operatorname{Spec}(k)$ with k a field of characteristic 0 embeddable in \mathbb{C}, we know something more about $\mathcal{M}(k)$: in fact, identifying 1-motives with their mixed realizations, we can identify $\mathcal{M}(k)$ with a Tannakian sub-category of an "appropriate" Tannakian category $\mathcal{M} \mathcal{R}(k)$ of mixed realizations (I 2.1 [8] or $1.10[6]$). However this identification furnishes no new concrete information about the geometrical description of objects and morphisms of $\mathcal{M}(k)$!

Using our definition of biextensions of 1-motives by 1-motives, we propose as a candidate for the morphisms of $\mathcal{M}(S)$ from the tensor product of two 1-motives $M_{1} \otimes M_{2}$ to a third one M_{3}, the isomorphism classes of biextensions of $\left(M_{1}, M_{2}\right)$ by M_{3} :

$$
\begin{equation*}
\operatorname{Hom}_{\mathcal{M}(S)}\left(M_{1} \otimes M_{2}, M_{3}\right)=\operatorname{Biext}^{1}\left(M_{1}, M_{2} ; M_{3}\right) \tag{1}
\end{equation*}
$$

If $S=\operatorname{Spec}(k)$ with k a field of characteristic 0 , our definition is compatible with the corresponding notion of morphisms in the category $\mathcal{M R}(k)$ of mixed realizations (theorem 10).

Following Deligne's philosophy of motives described in 1.11 [6], our definition (1) furnishes the geometrical origin of the morphisms of $\mathcal{M} \mathcal{R}(k)$ from the tensor product of the realizations of two 1-motives to the realization of another 1-motive. For example, if M is a 1-motive over k, the valuation map $e v_{M}$: $M \otimes M^{\vee} \longrightarrow \mathbb{Z}(0)$ of M (which expresses the duality between M and its dual M^{\vee} as objects of $\left.\mathcal{M}(k)\right)$ is the twist by $\mathbb{Z}(-1)$ of the Poincaré biextension \mathcal{P}_{M} of M, which we see as morphism $M \otimes M^{*} \longrightarrow \mathbb{Z}(1)$ of $\mathcal{M}(k)$. Therefore $e v_{M}=\mathcal{P}_{M} \otimes \mathbb{Z}(-1): M \otimes M^{\vee} \longrightarrow \mathbb{Z}(0)$ is the geometrical origin of the corresponding morphism $\mathrm{T}(M) \otimes \mathrm{T}\left(M^{\vee}\right) \longrightarrow \mathrm{T}(\mathbb{Z}(0))$ in $\mathcal{M} \mathcal{R}(k)$ which can therefore be called a motivic morphism (cf. 1.11 [6]).

It would be great to have a description of the Tannakian category $\mathcal{M}(S)$ like the one given in [7] for the Tannakian category of mixed Tate motives, but it seems to the author that for the moments we don't have enough mathematical results for such a construction. We recall that if k is a field of characteristic 0 , in [4] Brylinski has constructed a Tannakian category generated by 1-motives in term of (absolute) Hodge cycles.

The idea of defining morphisms through biextensions goes back to Grothendieck, who defines pairings from biextensions (cf. [10] Exposé VIII §2). Generalizing Grothendieck's work, in [5] §10.2 Deligne defines the notion of biextension of two complexes of abelian groups concentrated in degree 0 and -1 (over any topos \mathbf{T}) by an abelian group. Applying this definition to two 1 -motives M_{1}, M_{2} over \mathbb{C} and to \mathbb{G}_{m}, he associates to each isomorphism class of such biextensions, a pairing $\mathrm{T}\left(M_{1}\right) \otimes \mathrm{T}\left(M_{2}\right) \longrightarrow \mathrm{T}\left(\mathbb{G}_{m}\right)$ in the category $\mathcal{M} \mathcal{R}(\mathbb{C})$.

We can extend definition (1) to a finite tensor product of 1-motives: modulo isogeny, a morphism from a finite tensor product of 1-motives to a 1-motive can be described geometrically as a sum of isomorphism classes of biextensions of 1-motives by 1-motives (Theorem 11).

A special case of definition (1) was already used in the computation of the unipotent radical of the Lie algebra of the motivic Galois group of a 1-motive defined over a field k of characteristic 0 (cf. [1]).

In this paper S is a scheme.

2. Biextensions of some extensions

Let $\mathbf{T}_{\mathrm{fppf}}$ be the topos associated to the site of locally of finite presentation S-schemes, endowed with the fppf topology. If P, Q and G are S-group schemes in the topos $\mathbf{T}_{\mathrm{fppf}}, \operatorname{Biext}(P, Q ; G)$ (resp. $\operatorname{Biext}^{0}(P, Q ; G)$ and $\left.\operatorname{Biext}^{1}(P, Q ; G)\right)$ denotes the category of biextensions of (P, Q) by G (resp. the group of automorphisms of any biextension of (P, Q) by G and the group of isomorphism classes of biextensions of (P, Q) by $G)$.

Theorem 1 Let G_{i} (for $i=1,2,3$) be a an extension of an abelian S-scheme A_{i} by a S-torus $Y_{i}(1)$ with cocharacter group $Y_{i}=\underline{\operatorname{Hom}}_{S}\left(\mathbb{G}_{m}, Y_{3}(1)\right)$. We have the following equivalence of categories

$$
\operatorname{Biext}\left(G_{1}, G_{2} ; G_{3}\right) \cong \operatorname{Biext}\left(A_{1}, A_{2} ; Y_{3}(1)\right)
$$

Proof: We will prove the following equivalences of categories:

$$
\begin{gather*}
\operatorname{Biext}\left(G_{1}, G_{2} ; Y_{3}(1)\right) \cong \operatorname{Biext}\left(A_{1}, A_{2} ; Y_{3}(1)\right) \tag{2}\\
\operatorname{Biext}\left(G_{1}, G_{2} ; G_{3}\right) \cong \operatorname{Biext}\left(G_{1}, G_{2} ; Y_{3}(1)\right)
\end{gather*}
$$

For the first equivalence, remark that by [9] Exposé X Corollary 4.5, we can suppose that $Y_{3}(1)$ is $\mathbb{G}_{m}^{\mathrm{rk} Y_{3}}$ (if necessary we localize over S for the étale topology). Since the categories $\operatorname{Biext}\left(G_{1}, G_{2} ; \mathbb{G}_{m}\right)$ and $\operatorname{Biext}\left(A_{1}, A_{2} ; \mathbb{G}_{m}\right)$ are additive categories in the variable \mathbb{G}_{m} (cf. [10] I Exposé VII 2.4), it suffices to prove that $\operatorname{Biext}\left(G_{1}, G_{2} ; \mathbb{G}_{m}\right) \cong \operatorname{Biext}\left(A_{1}, A_{2} ; \mathbb{G}_{m}\right)$ and this is done in [10] Exposé VIII (3.6.1).
According to the homological interpretation of the group $\operatorname{Biext}^{i}(i=0,1)$ (cf. [10] Exposé VII 3.6.5 and (3.7.4)), from the exact sequence $0 \rightarrow Y_{3}(1) \rightarrow G_{3} \rightarrow A_{3} \rightarrow 0$, we have the long exact sequence

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Biext}^{0}\left(G_{1}, G_{2} ; Y_{3}(1)\right) \rightarrow \operatorname{Biext}^{0}\left(G_{1}, G_{2} ; G_{3}\right) \rightarrow \operatorname{Biext}^{0}\left(G_{1}, G_{2} ; A_{3}\right) \rightarrow \\
& \rightarrow \operatorname{Biext}^{1}\left(G_{1}, G_{2} ; Y_{3}(1)\right) \rightarrow \operatorname{Biext}^{1}\left(G_{1}, G_{2} ; G_{3}\right) \rightarrow \operatorname{Biext}^{1}\left(G_{1}, G_{2} ; A_{3}\right) \rightarrow \ldots
\end{aligned}
$$

Hence in order to prove the second equivalence of categories of (2), it is enough to show that $\operatorname{Biext}\left(G_{1}, G_{2} ; A_{3}\right)=0$ and this is done in [2].

Remark 2 Let B be a biextension of $\left(A_{1}, A_{2}\right)$ by $Y_{3}(1)$. The biextension \mathcal{B} of $\left(G_{1}, G_{2}\right)$ by G_{3} corresponding to B, through the equivalences of categories (2), is $\iota_{3 *}\left(\pi_{1}, \pi_{2}\right)^{*} B$ where, for $i=1,2,3, \pi_{i}: G_{i} \longrightarrow A_{i}$ is the projection of G_{i} over A_{i} and $\iota_{i}: Y_{i}(1) \longrightarrow G_{i}$ is the inclusion of $Y_{i}(1)$ over G_{i}.

3. The category of biextensions of 1-motives by 1-motives

In [5] (10.1.10), P. Deligne defines a smooth 1-motive $M=[X \xrightarrow{u} G]$ over a scheme S as
(i) a S-group scheme X which is locally for the étale topology a constant group scheme defined by a finitely generated free \mathbb{Z}-module,
(ii) an extension G of an abelian S-scheme A by a S-torus $Y(1)$, with cocharacter group Y,
(iii) a morphism $u: X \longrightarrow G$ of S-group schemes.

1 -motives are mixed motives of niveau ≤ 1 : the weight filtration W_{*} on $M=[X \xrightarrow{u} G]$ is $\mathrm{W}_{i}(M)=M$ for each $i \geq 0, \mathrm{~W}_{-1}(M)=[0 \longrightarrow G], \mathrm{W}_{-2}(M)=[0 \longrightarrow Y(1)], \mathrm{W}_{j}(M)=0$ for each $j \leq-3$. In particular, we have $\operatorname{Gr}_{0}^{\mathrm{W}}(M)=[X \longrightarrow 0], \mathrm{Gr}_{-1}^{\mathrm{W}}(M)=[0 \longrightarrow A]$ and $\mathrm{Gr}_{-2}^{\mathrm{W}}(M)=[0 \longrightarrow Y(1)]$.

Let $M_{i}=\left[X_{i} \xrightarrow{u_{i}} G_{i}\right](i=1,2,3)$ be a 1-motive over S. The following definition of biextension of $\left(M_{1}, M_{2}\right)$ by M_{3}, is a generalization of Deligne's definition [5] (10.2):

Definition 3 A biextension $\mathcal{B}=\left(\mathcal{B}, \Psi_{1}, \Psi_{2}, \Psi, \lambda\right)$ of $\left(M_{1}, M_{2}\right)$ by M_{3} consists of
(i) a biextension of \mathcal{B} of $\left(G_{1}, G_{2}\right)$ by G_{3};
(ii) a trivialization (= biaddictive section) $\Psi_{1}\left(\right.$ resp. $\left.\Psi_{2}\right)$ of the biextension $\left(u_{1}, i d_{G_{2}}\right) * \mathcal{B}$
(resp. $\left.\left(i d_{G_{1}}, u_{2}\right)^{*} \mathcal{B}\right)$ of $\left(X_{1}, G_{2}\right)$ by G_{3} (resp. $\left(G_{1}, X_{2}\right)$ by $\left.G_{3}\right)$ obtained as pull-back of the biextension \mathcal{B} via $\left(u_{1}, i d_{G_{2}}\right)$ (resp. $\left.\left(i d_{G_{1}}, u_{2}\right)\right)$;
(iii) a trivialization Ψ of the biextension $\left(u_{1}, u_{2}\right)^{*} \mathcal{B}$ of $\left(X_{1}, X_{2}\right)$ by G_{3} obtained as pull-back of the biextension \mathcal{B} by $\left(u_{1}, u_{2}\right)$, which coincides with the trivializations induced by Ψ_{1} and Ψ_{2} over $X_{1} \times X_{2}$ (i.e. $\left.\left(u_{1}, i d_{X_{2}}\right)^{*} \Psi_{2}=\Psi=\left(i d_{X_{1}}, u_{2}\right)^{*} \Psi_{1}\right)$;
(iv) a morphism $\lambda: X_{1} \times X_{2} \longrightarrow X_{3}$ of S-group schemes such that $u_{3} \circ \lambda: X_{1} \times X_{2} \longrightarrow G_{3}$ is compatible with the trivialization Ψ of the biextension $\left(u_{1}, u_{2}\right)^{*} \mathcal{B}$ of $\left(X_{1}, X_{2}\right)$ by G_{3}.
Let $M_{i}=\left[X_{i} \xrightarrow{u_{i}} G_{i}\right]$ and $M_{i}^{\prime}=\left[X_{i}^{\prime} \xrightarrow{u_{i}^{\prime}} G_{i}^{\prime}\right](i=1,2,3)$ be 1-motives over S. Moreover let $\left(\mathcal{B}, \Psi_{1}, \Psi_{2}, \lambda\right)$ be a biextension of $\left(M_{1}, M_{2}\right)$ by M_{3} and let $\left(\mathcal{B}^{\prime}, \Psi_{1}^{\prime}, \Psi_{2}^{\prime}, \lambda^{\prime}\right)$ be a biextension of $\left(M_{1}^{\prime}, M_{2}^{\prime}\right)$ by M_{3}^{\prime}.

Definition 4 A morphism of biextensions $\left(F, \Upsilon_{1}, \Upsilon_{2}, \Upsilon, g_{3}\right):\left(\mathcal{B}, \Psi_{1}, \Psi_{2}, \lambda\right) \longrightarrow\left(\mathcal{B}^{\prime}, \Psi_{1}^{\prime}, \Psi_{2}^{\prime}, \lambda^{\prime}\right)$ consists of
(i) a morphism $F=\left(F, f_{1}, f_{2}, f_{3}\right): \mathcal{B} \longrightarrow \mathcal{B}^{\prime}$ from the biextension \mathcal{B} to the biextension \mathcal{B}^{\prime}. In particular, $f_{1}: G_{1} \longrightarrow G_{1}^{\prime}, f_{2}: G_{2} \longrightarrow G_{3}^{\prime}$ and $f_{3}: G_{3} \longrightarrow G_{3}^{\prime}$ are morphisms of groups S-schemes.
(ii) a morphism of biextensions $\Upsilon_{1}=\left(\Upsilon_{1}, g_{1}, f_{2}, f_{3}\right):\left(u_{1}, i d_{G_{2}}\right)^{*} \mathcal{B} \longrightarrow\left(u_{1}^{\prime}, i d_{G_{2}^{\prime}}\right)^{*} \mathcal{B}^{\prime}$ compatible with the morphism $F=\left(F, f_{1}, f_{2}, f_{3}\right)$ and with the trivializations Ψ_{1} and Ψ_{1}^{\prime}, and a morphism of biextensions $\Upsilon_{2}=\left(\Upsilon_{2}, f_{1}, g_{2}, f_{3}\right):\left(i d_{G_{1}}, u_{2}\right)^{*} \mathcal{B} \longrightarrow\left(i d_{G_{1}^{\prime}}, u_{2}^{\prime}\right)^{*} \mathcal{B}^{\prime}$ compatible with the morphism $F=$ $\left(F, f_{1}, f_{2}, f_{3}\right)$ and with the trivializations Ψ_{2} and Ψ_{2}^{\prime}. In particular $g_{1}: X_{1} \longrightarrow X_{1}^{\prime}$ and $g_{2}: X_{2} \longrightarrow$ X_{2}^{\prime} are morphisms of groups S-schemes.
(iii) a morphism of biextensions $\Upsilon=\left(\Upsilon, g_{1}, g_{2}, f_{3}\right):\left(u_{1}, u_{2}\right)^{*} \mathcal{B} \longrightarrow\left(u_{1}^{\prime}, u_{2}^{\prime}\right)^{*} \mathcal{B}^{\prime}$ compatible with the morphism $F=\left(F, f_{1}, f_{2}, f_{3}\right)$ and with the trivializations Ψ and Ψ^{\prime}.
(iv) a morphism $g_{3}: X_{3} \longrightarrow X_{3}^{\prime}$ of S-group schemes compatible with u_{3} and u_{3}^{\prime} (i.e. $u_{3}^{\prime} \circ g_{3}=f_{3} \circ u_{3}$) and such that $\lambda^{\prime} \circ\left(g_{1} \times g_{2}\right)=g_{3} \circ \lambda$.

Remark 5 The pair $\left(g_{i}, f_{i}\right)(i=1,2,3)$ defines a morphism from M_{i} to M_{i}^{\prime}.
We denote by $\operatorname{Biext}\left(M_{1}, M_{2} ; M_{3}\right)$ the category of biextensions of $\left(M_{1}, M_{2}\right)$ by M_{3}. It is a Picard category (we can make the sum of two objects). Let $\operatorname{Biext}^{1}\left(M_{1}, M_{2} ; M_{3}\right)$ be the group of isomorphisms classes of biextensions of $\left(M_{1}, M_{2}\right)$ by M_{3}.

Proposition [5] (10.2.14) furnishes a more symmetric description of 1-motives: consider the 7-uplet $\left(X, Y^{\vee}, A, A^{*}, v, v^{*}, \psi\right)$ where X and Y^{\vee} are two S-group schemes which are locally for the étale topology constant group schemes defined by finitely generated free \mathbb{Z}-modules; A and A^{*} are two abelian S-schemes dual to each other; $v: X \longrightarrow A$ and $v^{*}: Y^{\vee} \longrightarrow A^{*}$ are two morphisms of S-group schemes; and ψ is a trivialization of the pull-back $\left(v, v^{*}\right)^{*} \mathcal{P}_{A}$ via $\left(v, v^{*}\right)$ of the Poincaré biextension \mathcal{P}_{A} of $\left(A, A^{*}\right)$.

The pull-back $\left(v, v^{*}\right)^{*} \mathcal{P}_{A}$ by $\left(v, v^{*}\right)$ of the Poincaré biextension \mathcal{P}_{A} of $\left(A, A^{*}\right)$ is a biextension of $\left(X, Y^{\vee}\right)$ by \mathbb{G}_{m}. We denote by $\left(\left(v, v^{*}\right)^{*} \mathcal{P}_{A}\right) \otimes Y$ the biextension of (X, \mathbb{Z}) by $Y(1)$ corresponding to the biextension
$\left(v, v^{*}\right)^{*} \mathcal{P}_{A}$ through the equivalence of categories $\operatorname{Biext}\left(X, Y^{\vee} ; \mathbb{G}_{m}\right) \cong \operatorname{Biext}(X, \mathbb{Z} ; Y(1))([10]$ Exposé VII 2.4). The trivialization ψ of $\left(v, v^{*}\right)^{*} \mathcal{P}_{A}$ defines a trivialization $\psi \otimes Y$ of $\left(\left(v, v^{*}\right)^{*} \mathcal{P}_{A}\right) \otimes Y$, and vice versa.

Using Theorem 1 and the more symmetrical definition of 1-motives, we can now give a more useful definition of a biextension of two 1-motives by a third one:

Proposition 6 Let $M_{i}=\left(X_{i}, Y_{i}^{\vee}, A_{i}, A_{i}^{*}, v_{i}, v_{i}^{*}, \psi_{i}\right)(i=1,2,3)$ be a 1-motive. A biextension $B=$ $\left(B, \Psi_{1}^{\prime}, \Psi_{2}^{\prime}, \Psi^{\prime}, \Lambda\right)$ of $\left(M_{1}, M_{2}\right)$ by M_{3} consists of
(i) a biextension of B of $\left(A_{1}, A_{2}\right)$ by $Y_{3}(1)$;
(ii) a trivialization $\Psi_{1}^{\prime}\left(\right.$ resp. $\left.\Psi_{2}^{\prime}\right)$ of the biextension $\left(v_{1}, i d_{A_{2}}\right)^{*} B\left(\right.$ resp. $\left.\left(i d_{A_{1}}, v_{2}\right)^{*} B\right)$ of $\left(X_{1}, A_{2}\right)$ by $Y_{3}(1)$ (resp. of $\left(A_{1}, X_{2}\right)$ by $Y_{3}(1)$) obtained as pull-back of the biextension B via $\left(v_{1}, i d_{A_{2}}\right)$ (resp. via $\left.\left(i d_{A_{1}}, v_{2}\right)\right)$;
(iii) a trivialization Ψ^{\prime} of the biextension $\left(v_{1}, v_{2}\right)^{*} B$ of $\left(X_{1}, X_{2}\right)$ by $Y_{3}(1)$ obtained as pull-back of the biextension B via $\left(v_{1}, v_{2}\right)$, which coincides with the trivializations induced by Ψ_{1}^{\prime} and Ψ_{2}^{\prime} over $X_{1} \times X_{2}$ (i.e. $\left.\left(v_{1}, i d_{X_{2}}\right)^{*} \Psi_{2}^{\prime}=\Psi^{\prime}=\left(i d_{X_{1}}, v_{2}\right)^{*} \Psi_{1}^{\prime}\right)$;
(iv) a morphism $\Lambda:\left(v_{1}, v_{2}\right)^{*} B \longrightarrow\left(\left(v_{3}, v_{3}^{*}\right)^{*} \mathcal{P}_{A_{3}}\right) \otimes Y_{3}$ of trivial biextensions, with $\Lambda_{\mid Y_{3}(1)}$ equal to the the identity, such that the following diagram is commutative

$$
\begin{array}{ccc}
Y_{3}(1) & = & Y_{3}(1) \tag{3}\\
\mid & \mid \\
\left(v_{1}, v_{2}\right)^{*} B & \longrightarrow & \left(\left(v_{3}, v_{3}^{*}\right)^{*} \mathcal{P}_{A_{3}}\right) \otimes Y_{3} \\
\Psi^{\prime} \uparrow \downarrow & & \downarrow \uparrow \psi_{3} \otimes Y_{3} \\
X_{1} \times X_{2} & \longrightarrow & X_{3} \times \mathbb{Z}
\end{array}
$$

4. Some morphisms of 1-motives

Definition 7 In the category $\mathcal{M}(S)$, the morphism $M_{1} \otimes M_{2} \longrightarrow M_{3}$ from the tensor product of two 1-motives to a third 1-motive is an isomorphism class of biextensions of $\left(M_{1}, M_{2}\right)$ by M_{3}. We define $\operatorname{Hom}_{\mathcal{M}(S)}\left(M_{1} \otimes M_{2}, M_{3}\right)=\operatorname{Biext}^{1}\left(M_{1}, M_{2} ; M_{3}\right)$.

Remark 8 Theorem 1 and more in particular the equicalences of categories (2) mean that biextensions satisfy the main property of morphisms of motives: they respect weights.

Remark 9 The definition 4 of morphisms of biextensions of 1-motives by 1-motives allows us to define a morphism between the morphisms of $\mathcal{M}(S)$ corresponding to such biextensions. More precisely, let M_{i} and M_{i}^{\prime} (for $\left.i=1,2,3\right)$ be 1-motives over S. If we denote b the morphism $M_{1} \otimes M_{2} \longrightarrow M_{3}$ corresponding to a biextension $\left(\mathcal{B}, \Psi_{1}, \Psi_{2}, \lambda\right)$ of $\left(M_{1}, M_{2}\right)$ by M_{3} and by b^{\prime} the morphism $M_{1}^{\prime} \otimes M_{2}^{\prime} \longrightarrow M_{3}^{\prime}$ corresponding to a biextension $\left(\mathcal{B}^{\prime}, \Psi_{1}^{\prime}, \Psi_{2}^{\prime}, \lambda^{\prime}\right)$ of $\left(M_{1}^{\prime}, M_{2}^{\prime}\right)$ by M_{3}^{\prime}, a morphism $\left(F, \Upsilon_{1}, \Upsilon_{2}, \Upsilon, g_{3}\right):\left(\mathcal{B}, \Psi_{1}, \Psi_{2}, \lambda\right) \longrightarrow$ $\left(\mathcal{B}^{\prime}, \Psi_{1}^{\prime}, \Psi_{2}^{\prime}, \lambda^{\prime}\right)$ of biextensions defines the vertical arrows of the following diagram of morphisms of $\mathcal{M}(S)$

$$
\begin{array}{ccc}
M_{1} \otimes M_{2} & \xrightarrow{b} & M_{3} \\
\downarrow & & \downarrow \\
M_{1}^{\prime} \otimes M_{2}^{\prime} \xrightarrow{b^{\prime}} & M_{3}^{\prime} .
\end{array}
$$

It is clear now why from the data $\left(F, \Upsilon_{1}, \Upsilon_{2}, \Upsilon, g_{3}\right)$ we get a morphism of $\mathcal{M}(S)$ from M_{3} to M_{3}^{\prime} as remarked in 5. Moreover since M_{i} and $M_{i}^{\prime}($ for $i=1,2)$ are sub-1-motives of the motives $M_{1} \otimes M_{2}$ and
$M_{1}^{\prime} \otimes M_{2}^{\prime}$, it is clear that from the data $\left(F, \Upsilon_{1}, \Upsilon_{2}, \Upsilon, g_{3}\right)$ we get also morphisms from M_{1} to M_{1}^{\prime} and from M_{2} to M_{2}^{\prime} as remarked in 5.

Theorem 10 Let M_{i} (for $i=1,2,3$) be a 1-motive over a field k of characteristic 0 embeddable in \mathbb{C}. We have that $\operatorname{Biext}^{1}\left(M_{1}, M_{2} ; M_{3}\right)=\operatorname{Hom}_{\mathcal{M R}(k)}\left(\mathrm{T}\left(M_{1}\right) \otimes \mathrm{T}\left(M_{2}\right), \mathrm{T}\left(M_{3}\right)\right)$.

Proof: see §10.2 [5] and [3].
We will denote by $\mathcal{M}^{\text {iso }}(S)$ the Tannakian category generated by iso-1-motives, i.e. by 1-motives modulo isogenies.

Theorem 11 Let M and M_{1}, \ldots, M_{l} be 1-motives over S. In the category $\mathcal{M}^{\text {iso }}(S)$, the morphism $\otimes_{j=1}^{l} M_{j} \longrightarrow M$ from a finite tensor product of 1-motives to a 1-motive is the sum of copies of isomorphism classes of biextensions of $\left(M_{i}, M_{j}\right)$ by M for $i, j=1, \ldots l$ and $i \neq j$. We have that

$$
\operatorname{Hom}_{\mathcal{M}^{\mathrm{iso}}(S)}\left(\otimes_{j=1}^{l} M_{j}, M\right)=\sum_{\substack{i, j \in\{1, \ldots, l\} \\ i \neq j}} \operatorname{Biext}^{1}\left(M_{i}, M_{j} ; M\right)
$$

Proof: Because morphisms between motives have to respect weights, the non trivial components of the morphism $\otimes_{j=1}^{l} M_{j} \longrightarrow M$ are the one of the morphism $\otimes_{j=1}^{l} M_{j} / \mathrm{W}_{-3}\left(\otimes_{j=1}^{l} M_{j}\right) \longrightarrow M$. Since "to tensorize a motive by a motive of weight 0 " means to take a certain number of copies of the motive itself, using the following Lemma we can conclude.

Lemma 12 Let l and i be positive integers and let $M_{j}=\left[X_{j} \xrightarrow{u_{j}} G_{j}\right]$ (for $j=1, \ldots, l$) be a 1-motive defined over S. Denote by M_{0} or X_{0} the 1-motive $\mathbb{Z}(0)=[\mathbb{Z} \longrightarrow 0]$. If $i \geq 1$ and $l+1 \geq i$, the motive $\otimes_{j=1}^{l} M_{j} / \mathrm{W}_{-i}\left(\otimes_{j=1}^{l} M_{j}\right)$ is isogeneous to the motive

$$
\begin{equation*}
\sum\left(\otimes_{k \in\left\{\nu_{0}, \ldots, \nu_{l-i+1}\right\}} X_{k}\right) \bigotimes\left(\otimes_{j \in\left\{\iota_{0}, \ldots, \iota_{i-1}\right\}} M_{j} / \mathrm{W}_{-i}\left(\otimes_{j \in\left\{\iota_{0}, \ldots, \iota_{i-1}\right\}} M_{j}\right)\right) \tag{4}
\end{equation*}
$$

where the sum is taken over all the $(l-i+1)$-uplets $\left\{\nu_{0}, \ldots, \nu_{l-i+1}\right\}$ and all the $(i-1)$-uplets $\left\{\iota_{0}, \ldots, \iota_{i-1}\right\}$ of $\{0,1, \cdots, l\}$ such that $\left\{\nu_{0}, \ldots, \nu_{l-i+1}\right\} \cap\left\{\iota_{0}, \ldots, \iota_{i-1}\right\}=\emptyset, \nu_{0}<\nu_{1}<\ldots<\nu_{l-i+1}, \iota_{0}<\iota_{1}<\ldots<\iota_{i-1}$, $\nu_{a} \neq \nu_{b}$ and $\iota_{c} \neq \iota_{d}$, for all $a, b \in\{0, \ldots, l-i+1\}, a \neq b$ and $c, d \in\{0, \ldots, i-1\}, c \neq d$.

Proof: see [2].
Acknowledgements I want to thank the referee of my paper [1]: the study of biextensions of 1-motives by 1-motives started with the attempt of generalizing Definition [1] (1.3.1).

References

[1] C. Bertolin, Le radical unipotent du groupe de Galois motivique d'un 1-motif, Math. Ann. 327 (2003).
[2] C. Bertolin, Biextensions of some extensions, in preparation (2004).
[3] C. Bertolin, Realizations of biextensions, in preparation (2004).
[4] Brylinski J.-L., 1-motifs et formes automorphes (théorie arithmétique des domaines de Siegel), Publ. Math. Univ. Paris VII, 15, (1983).
[5] P. Deligne, Théorie de Hodge III, Pub. Math. de l'I.H.E.S 44 (1975).
[6] P. Deligne, Le groupe fondamental de la droite projective moins trois points, Galois group over \mathbb{Q}, Math. Sci. Res. Inst. Pub. 16 (1989).
[7] P. Deligne and A. Goncharov, Groupes fondamentaux motiviques de Tate mixte, preprint (2003).
[8] U. Jannsen, Mixed motives and algebraic K-theory, LN 1400 (1990).
[9] SGA3 II: Schémas en groupes, LN 152 (1970).
[10] SGA7 I: Groupes de Monodromie en Géométrie Algébrique, LN 288 (1972).

