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QCD sum rules in the effective heavy quark theory 
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We derive sum rules for the leptonic decay constant of a heavy-light meson in the effective heavy quark theory. We show that 
the summation of logarithms in the heavy quark mass by the renormalization group technique enhances considerably radiative 
corrections. Our result for the decay constant in the static limit agrees well with recent lattice calculations. Finite quark mass 
corrections are estimated. 

I .  In this paper  we give a consistent  f ramework for the construct ion of  Q C D  sum rules [ 1 ] for heavy- l igh t  
quark systems in the heavy quark l imit  ( H Q L ) ,  which in that  approach has first been discussed by Shuryak [ 2 ] 
and has been further s tudied by several authors  [ 3,4 ]. Although for the heavy quark mass mQ below 10 GeV 
both the logar i thmic and nonlogar i thmic  contr ibut ions  are numerical ly  of  the same size, for the consistent  treat-  
ment  o f  the l imit  mQ~oV it is necessary to sum all correct ions of  the type [as (mQ) lnmQ]  n, 
as (m o)  [ as  (mQ) In mQ ] n, etc. by the renormal iza t ion  group technique.  This  "mass  fac tor iza t ion"  has become 
one o f  the most  act ively discussed topics in the l i terature,  and we f ind it impor tan t  to formulate  the sum rule 
approach in such a way that  all the scaling laws inherent  to the heavy quark expansion ( H Q E )  are automat ica l ly  
fulfilled. This task is interest ing for several reasons. First ,  the sum rules formula ted  in this way exhibit  explicit  
I sgur -Wise  symmetr ies  [ 5 ] and  so do the physical  quanti t ies  extracted as their  output .  Second, quant i ta t ive  
est imates can be made  for the finite heavy quark mass corrections.  In addi t ion,  such a formulat ion o f  sum rules 
facili tates the compar ison  to the results o f  latt ice calculat ions [6,7 ]. 

A convenient  f ramework for systematical ly factorizing out  the large-mass physics is p rov ided  by the effective 
field theory [ 5 ]. The key issue there is the in t roduct ion  o f  a separate heavy quark and ant iquark  field h ~ for 
each four-velocity v in order  to implement  the velocity superselect ion rule: the velocity o f  the heavy quark 
cannot  be changed by the radia t ion  o f  gluons since it would correspond to infini tely large m o m e n t u m  transfers 
8pu = m o ~v~. Hence, the part  of  the lagrangian associated with heavy quarks becomes 

f d3v (ih-f~+ v~ DUh + - i h ~  v~ DUh~ ) ( 1 ) ~heavy: ~ ~U 0 
h=c,b 

from which Feynman  rules can be der ived  for the heavy quark propagator  i ( 1 + ~ ) / ( 2 v k )  and the heavy q u a r k -  
gluon vertex - i g v u t  a. For  each composi te  opera tor  o f  the full theory we can write an expansion in operators  o f  
the effective theory (see refs. [5,8] ) ~ 
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O,(mQ = ~ , # ) C , ( ~ . q _ ,  a d # ) )  , (2) JA(mQ)~"lA(rnQ=OO'g)c(-m---)'Ots(g))+ ~ (mQ)" 

where J~ (mQ) is the axial-vector current. The matrix element of J~ (mQ) between the vacuum and a covariant 
normalized hadron state defines the physical decay constant fv: 

(01Ju A IP(P) )  =ifr, Pu. (3) 

Likewise, J~ = qT'u ;'5 h, is the quark current in the effective theory, built of a light antiquark field q and a (prop- 
erly normalized) heavy quark field h~ [ 5 ]. Changing to a noncovariant normalization of hadron states [ 9 ], we 
define the decay constant in the static limit by the relevant matrix element of the effective current .7~: 

i 
(O[Y~ I /~(v))= -~Zt~tv u . (4) 

The coefficient function C(rnQ/g, as(#) )  in (2) is determined by the matching condition that the effective 
theory reproduces the results of the full theory at g = mQ. One finds #2. 
C( 1, a d m Q )  ) = 1 --2ots(mQ)/3n, which in turn implies 

1 ( 2 0 ~ s ( m p ) ' ~  , m " 
f p ( m p ) = ~  1 3 ~ ) J s t a t t g =  p ) + O ( 1 / m Q ) .  

Hereafter we take m o to be the scale-invariant pole mass, defined as 

g2 mQ(p2=m~,=m~-g(g)[l+°ts(ffz)(~+lnm----~s)]. 

The effective current J ]  acquires a nontrivial anomalous dimension [ 10,8,11 ]: 
2 

( a s~  + ;'o = - 4  254 5 6 _ 2 _ L 2 0 .  as 
;'=;'o4n +;'l \~-~,/ .... , ;'1 = - - - ~ - ~ , ,  T ~ . f ,  

and hence the effective decay constant scales logarithmically as 

O~s(mp)--as(g) F )~ t a t (g  ) 
7t 

- .~o/2floz 
~tat(mp)=(°is(mp)) ( 1 +  

\ adg) / \ 

where 

;'O (;'l ill) 
8flo \ ; ' o  - f l o  -0 .23  

(5) 

(6) 

(7) 

(8) 

(9) 

and flo = 11 - 2 nr, fl~ = 102 - ~ nf. It is convenient to introduce the renormalization group invariant operator (to 
two-loop accuracy) and the corresponding scale-invariant decay constant 

3=.~(g) o~s ( g ) -  ~°/2#° ( 1 -  F a s ~ g ) ) ,  f=JTsstat(#)o~s(g)-y°/2#°(1-F°ts~g)). (10) 

We remind that in the HQL the Lorentz structure becomes unimportant, it is only parity that counts. 

2. We now derive the sum rule for the correlation function of scale-invariant effective currents with negative 
parity 

#2 This expression disagrees with the corresponding one in ref. [ 8 ], where the given answer forfD corresponds to the case of mesons with 
positive instead of negative parity. 
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t" 
D(to=vq) =i  J d4x exp(iqx) ( 0 l J ( x ) J * ( 0 ) 1 0 >  • ( 1 1 ) 

to two-loop accuracy. We calculate the correlation function ( 1 1 ) using the technique proposed in ref. [ 1 1 ] in 
order to evaluate the necessary two-loop integrals. The calculation turns out to be far less tedious than in the full 
theory. The zeroth order contribution to the correlation function (1 1 ) (i.e., the bare quark loop) contains 
termsoc¢o 2 In og//z which makes the renormalization group analysis of/~r rather cumbersome (cf. footnote on 
page 4 1 1 in ref. [ 1 ] ). To make the renormalization group improvement simpler we consider the third derivative 
of/~(09). This is sufficient since later on we shall Borel improve/~(w) .  The result is 

do.) 3 2as(--20.))  -~°/B° 1+ as(-2o))n ( ~ + ¼ ? ' o + ~ n : - 2 F )  

3 [  ot,(-2to) ( A?',~l+ 15 as (2to)  ,~,,,_2,o)/2 ~ 
-o9--q(93 1+ rt 2 - ~ o j j  ~ - C5, (12) 

where we have introduced the scale-invariant condensates 

4n 2flo \y-~S flo ' 

(95 = (t/trgGq) (/t) as(~)- '~"/2P° [ 1 -t-O(as) ] . (13) 

The leading-order anomalous dimensions are 7~ 3) = 2yo= - 8, y65) = 4 - 3, and A?'~ is the difference between the 
two-loop anomalous dimensions of the effective operator ] and the quark condensate: Ay~ = 27'1- ?'13) 704 
112rt2[11]. 

Throughout this paper we use the two-loop expression for ors with A-~s ) = 200 MeV, so that oq ( 1 GeV) = 0.34, 
ots(mB) ---0.18. The condensates are taken to be (#q)  (/~= 1 GeV) = ( - 240 MeV) 3, (glagGq) ( g =  1 GeV) =0.8 
GeV2x (#q)  (g = 1 GeV). We have not calculated the O (ors) correction to the mixed condensate contribution 
because the latter has little effect on the sum rules. Note that there is no contribution of the gluon condensate in 
the HQL. We have not shown the contribution of the four-quark condensate, which turns out to be completely 
negligible. 

The large radiative correction to the quark loop in (12) is mainly due ( ~ 80%) to one-gluon exchange be- 
tween heavy and light quarks (in Feynman gauge) and is likely to be the effect of  the classical Coulomb inter- 
action ~3. Putting all the numbers together this correction amounts approximately to 1 + 7c~s/zc (note that as has 
to be taken at the typical hadron scale of  1 GeV). Since the correction is nearly as large as the leading contribu- 
tion, one may fear an explosion of the perturbative series. In order to get some intuition and estimate semi- 
quantitatively the possible size of  coulombic effects we have investigated the Coulomb corrections in a nonre- 
lativistic potential model for the heavy-light quark system. We solve numerically the Schrtidinger equation for 
the system of a light and a heavy constituent quark and calculate the decay constant fp (which is proportional to 
the wave function at the origin) in three different ways: using the potential V(r) = 2 r - 4 o t s / 3 r  we evaluate the 
full decay constantfl,, the decay constant expanded to first order in a s , f  I~ 1) , and the constant without coulombic 
correction, f ~o). 

For a reduced mass of 400 MeV, a linear potential with slope 2=  0.2 GeV 2 and a Coulomb potential with 
ors= 0.3 the calculation y ie ldsf  ~,/fOp = 1.34 andfp/ f  ° = 1.38. We notice that the first order Coulomb correction 
to ( f  o)2 is large and of similar size as the radiative correction in the correlation function (12) which supports 
the potential model. Furthermore, the first order contribution yields already a very good approximation to the 

~3 The importance of  the coulombic corrections has also been stressed in ref. [ 12] in the framework of  the stochastic vacuum model. 
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exact result ~4. Thus this model  calculation gives some us confidence that the radiative corrections in (12) are 
under control, as uncomfortably large as they may seem at first sight. 

3. We proceed with the usual Q C D  sum rule technique [ 1 ] and match  the operator  product  expansion in ( 12 ) 
to the dispersion integral over  hadron states saturated by the lowest lying level and the continuum. As usual, we 
model  the cont inuum by the perturbat ive expression above some threshold to get 

f 2  1 i 1 (14) 
/~=  2 ( A m - t o ) - i ~  + ~ dto' I m / ~ m ( t o , )  to'------~ ' 

A s  

where Am is the difference between meson and quark mass in the HQL. Applying the Borel improvement ,  e.g., 
(to' - to) - I -~AM-  ~ exp ( - t o ' /AM) ,  we end up with the sum rule 

- - 3 2  aq(2AM)-r°/P° {2 (AM)3 ( 1 + cq(2AM) zt [ ~ + 47t2+ ½Y°~/(3) - 2 F ] )  

-idss2exp(--L~l)[l+as(2AM)(~+glr2-2F+½y°ln---L~l~l)]}rr 
A s  

[ ( 2.a2AM,,.,.,-2.o,,.o - I + a ~ ( 2 A M )  2 -  ~ +  
n Silo]_] 16(AM) 

A 

=.. SR (AM, As ) .  (15) 

Here ~u(3 ) = 3 _ YE is the logarithmic derivative of  the gamma  function, it comes f rom the Borel improvement  
of  the running coupling constant [ 14 ]. In the cont inuum contribution we have taken into account the imaginary 
part  o f  the running coupling o q ( - 2 t o ) ;  the te rm oclns/AM cones f rom the expansion of  [ots(2s) /  
oq(2AM) ] -~o/po to first order. 

In order to estimate the value of  Am we construct another  sum rule which is an immediate  consequence of  
(15): 

Am----_ (AM) z ( d / d A M ) S R  ( A M , ~  As) (16) 
SR(AM, As) 

In fig. I a we display the results of  that  sum rule as a function of  the Borel parameter  AM for different values of  
the threshold As. Apparently values of  Am ~ 0.4 GeV are somewhat  favoured, but also Am ~ 0.6 GeV shows 
acceptable stability in AM. It is tempting to assume that  the mass difference m a - m Q  is not changed much in 
going f rom the B-meson to higher masses, so we could insert Am_~ m a -  mb to improve  our accuracy. However,  
the two existing analyses of  mesons of  the "f-family by Voloshin [ 15 ] and Reinders [ 16 ] are contradictory and 
yield values of  the pole mass of  the b-quark differing by 200-250 MeV (rob = 4.8 and 4.55 GeV with small errors, 

#4 The situation is completely different for a system composed of two heavy quarks: in that case the zeroth order, i.e., the result in the 
linear potential, is of no significance, since the system is essentially determined by the Coulomb potential and the perturbative expan- 
sion made above is senseless. Indeed, it is known that the Coulomb effects in heavy quarkonia should be taken into account exactly 
[13]. 
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Fig. 1. (a) The sum rule (16) for the mass difference Am= 
me- m o as function of the Borel parameter AM with continuum 
thresholds As= 1.09, 1.23, 1.37 and 1.55 GeV, respectively• (b) 
The sum rule (15 ) for the scale-invariant decay constant f (see 
(10) ) as function of the Borel parameter AM for Am = 0.4 GeV 
and As=0.89, 1.09 and 1.29 GeV, respectively. 

respectively), which is just the range of  our uncertainty. Thus in the following we use Am = 0.4-0.6 GeV as input 
value for the sum rule for f, eq. (15) .  in fig. 1 b we show this sum rule for Am = 0.4 GeV and different values of  
the cont inuum threshold As. By requiring maximum stability, we fix As to be As = 1.09 GeV which yields f =  0.32 
GeV 3/2. Applying the same procedure with A m =  0.6 GeV, we find f =  0.43 GeV 3/2 for As=  1.37 GeV. 

From this we get the values off~t~t (5.28 GeV) a n d f  HQL by means o f  eqs. (5) and (8),  respectively (in our 
normalization f~ = 133 MeV):  

A m = 0 . 4  GeV:~tat =0 .47  GeV3/Z, fHQL= 195 M e V ,  

Am = 0.6 GeV: J~sstat ~ "  0.64 GeV 3/2, f HQL = 265 M e V .  (17) 

For these values we expect an accuracy of  about 10%. Our  value for~tat (5.28 GeV) agrees well with the result 
• " latt of  lattice calculauons,)r,ta, = 0.57 GeV 3/2, quoted in ref. [ 6 ]. 

4. The values o f f  HQL obtained above from the asymptotic expression do not include power 1/mQ corrections, 
which we estimate by applying the renormalization group improvement  to the sum rule for finite quark masses• 
To this end we consider the correlation function o f  two pseudoscalar currents J5 = ~ysQ: 

/-/5(q2) = i  f d4xexp(iqx) <Olrn~Js(x)m~J~(O)10> • (18) 
d 

The perturbative contribution to ( 18 ) is known to two-loop accuracy [ 17 ], and we have calculated in addition 
the O (as)-correct ion to the Wilson coefficient o f  the quark condensate. Retaining the leading contributions in 
the limit mQ-- ,~  we obtain #5 with the substitution q 2  m~-- ,2meto:  
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//5(oJ)= - 3m___~(.o~ 2 1+2 c~s lnTr ~ m Q  + 34 °~-Es (17~2+ 1 ) g  - - - "~( ( lq ) (u=mo , 1 + ~--~-] 

× [ l + O ( 1 / m Q ) ] .  (19) 

This expression should be compared to the correlation function of two effective currents J a t  the normalization 
point # = mQ, times the coefficient function C( 1, a (mQ)) squared. Combining eqs. (5), (10), (12), we obtain 

d 3 . 
C2(1, a (mQ))  ~-~w3t f d4xexp(iqx) (OIJ(X)Y*(O)IO)o,=mQ, 

3 ( c z s ( m Q ) ~ o / a o ( 4 a s ( - - 2 c o )  (~7r2+1)+ O~s(--2CO)--CZs(mQ)(~-2F)) 
= -~-~2 \a-~ ~ - ~ )  / 1+ 3 n 

_ __co 43 (#q),a=-2,o) (acz-~(mQ) )~°/a° ( _ - ~ - ~ )  1+ 2 as( - 2o~) + c~,( - 2co) -  c~(mQ) ( g 3  ~r 7r a - 2 F ) ) .  (20) 

Eqs. ( 19 ) and (20) indeed coincide up to the overall normalization factor m ~ to the expected accuracy O (O~s). 
This gives an independent check of the expression for the coefficient function C( 1, o~ (mQ)) in (5). 

Now we are in a position to write the sum rule for the decay constant including both the renormalization 
group improved contributions of"leading twist" and the finite mass corrections. To this end we make use of the 
standard technique for factorizing out the leading behaviour of amplitudes, familiar in the studies of hard pro- 
cesses in QCD [ 18 ]. We subtract (19) from the third derivative of the correlation function (18) which is 
available from ref. [ 19 ]. The remainder forms a "higher twist" contribution which is suppressed by a power of 
the heavy quark mass and gives rise after Borel improvement to a finite mass correction to the decay constant. 
On the other hand, we use the renormalization group improved expression in (20) for the leading twist part. 
This procedure yields the sum rule 

2 4 f pmp exp[ - (m~, - m ~ ) / M  2 ] = S R h t ( M  2, So, mQ) 

M 2 So - m +m~a~(rnQ)~O/#O( 1 oq(rnQ)zc (4 -2F) )SR(2- -mQ'  2--m-q ) '  (21) 

where SR (AM, As) is given by ( 15 ), and S R  h'c is the result of subtracting the leading twist terms from the full 
expression given in ref. [ 19 ]: 

SRh.t.(M 2, So, mQ) 
so 

4a-2 I n - -  3 -  _ 8 ~  23 mhdS (S-m~)3exPt-(s-m~)/MZls - 1 + 7  ~z m~ s-m~ 

m~ . s t: m~ +1n7_~._2")+ 2 m~ Li(m~'~ zc 2 s _ 9 ] }  
+ s - - m ~ l n ~ Q Q ~ + l  S--mQ/ s--m~ \ s ] 3 s-m~ 

m~ G2)_ m~ +2mq ~ (qq)~u="Q'exp(mQ/M2) Ei(-- --M-2) + m~ \~ 'ffM 5 ($agGq)~u=''Q) , (22) 

where we neglect contributions of four-quark condensates due to their smallness. 
The main result of the summation of leading and next-to-leading logarithms in the heavy quark mass turns 

~s Note that by taking the third derivative one eliminates contributions to the correlation function (18) coming from large internal 
momenta of the order of the heavy quark mass, which are not present in the correlation function of effective currents and should 
rather be taken into account separately as contributions of vacuum expectation values of local effective operators. 
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out to be that the strong coupling constant in the leading twist contribution to (21 ) must be evaluated at the 
hadronic scale ~ 1 GeV, rather than at the scale of the quark mass. For definiteness, in the finite mass correc- 
tions (22) we have taken ors at the scale of the Borel parameter M 2 divided by the mass of the heavy quark as in 
the leading twist terms. 

The result for the decay constant of the B-meson are 

fa (Am=0.48  GeV, mb =4.8 GeV) = 195 MeV (So =36 GeV 2) , 

f a (Am=0.68  GeV, mb =4.6 GeV) =245 MeV (So =38 GeV a) . (23) 

Our result forfB in (23) is significantly larger than the value obtained in ref. [ 19 ] using the same quark mass 
mb= 4.8 GeV and with the value of ors taken presumably at the scale of the heavy quark mass. We have shown 
that as must be taken at the hadronic scale ~ 1 GeV. This change of scale results in an increase offB, first directly 
owing to the larger radiative correction, and second because the continuum threshold is pushed to higher values. 
The increase of So with the rise of radiative corrections is expected, since the Coulomb interaction enhances 
orbital level splitting. Our value forfa with mb = 4.6 GeV lies within the range of values given in ref. [4 ]. 

The difference between the values offB given in (17) and (23) is the effect of power 1/mQ corrections. To 
visualize this explicitly, we have calculated the values of the decay constant from the sum rule (21 ) at different 
values of the quark mass under the assumption that the values of Am = m p - m Q  and As = x/~o-  mQ stay con- 
stant: As(Am=0.5 G e V ) =  1.23 GeV, As(Am=0.7 G e V ) =  1.55 GeV. The Borel parameter is taken to be 
M : =  m o × 1.5 GeV which is in the expected stability range. In fig. 2 we plot the decay constant, multiplied by 
the scaling factor 

f(mr'):=°ts(mv)6/2s( l+°ts(rnP)n ( ~ - F ) )  x f~efP  (24) 

as a function of the inverse meson mass. The points show the calculated values (at Am = 0.5 and 0.7 GeV). The 
curves present the fit with a quadratic polynomial in 1 Imp. Actually the contribution of the quadratic term 
constitutes less than 7% at the scale of the D-meson and the curves are nearly linear: 

f (mp)  = j ~ l -  (0 .8 -1 .1)GeV)  
mp ' (25) 

where the smaller slope corresponds to Am = 0.5 GeV and the larger one to Am = 0.7 GeV, respectively. Note 
that for meson masses around 1.5-2.0 GeV the sum rule becomes insensitive to the input value of Am. 

](rap) 

0.4 

0.3 

0.2 

0.i 

oll o12 o13 o14 o:5 ~/~IG~v-~ 

Fig. 2. The scaled decay constantf(mp ) [see (24) ] as function 
of the inverse mass of the pseudoscalar meson for Am = 0.5 and 
0.7 GeV, respectively. 
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