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1. The deep inelastic lepton-hadron scattering at large momentum transfers Q2

and not too small values of the Bjorken scaling variable x = Q2/2pq is studied in much
detail and presents a classical example for the application of perturbative QCD. The
celebrated factorization theorems allow one to separate the Q2 dependence of the structure
functions in coefficient functions Ci(x, Q2/µ2, αs(µ

2)) in front of parton (quark and gluon)
distributions of leading twist Pi(x, µ2, αs(µ

2))

F2(x, Q2) = ΣiCi(x, Q2/µ2, αs(µ
2)) ⊗ Pi(x, µ2, αs(µ

2)), (1)

where

C(x) ⊗ P (x) =
∫ 1

x

dy

y
C(x/y)P (y), (2)

the summation goes over all species of partons, and µ is the scale, separating ”hard” and
”soft” contributions to the cross section. At µ2 = Q2 the coefficient functions can be
calculated perturbatively and are expanded in power series in the strong coupling

C(x, 1, αs(Q
2)) = C0(x) +

αs(Q
2)

π
C1(x) +

(

αs(Q
2)

π

)2

C2(x) + . . . (3)

whereas their evolution with µ2 is given by famous Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi equations. Going over to a low normalization point µ2 ∼ 1GeV , one obtains the
structure functions expressed in terms of the parton distributions in the nucleon at this
reference scale. The parton distributions absorb all the information about the dynamics
of large distances and are fundamental quantities extracted from the experiment. Pro-
vided the parton distributions are known, all the dependence of the structure functions
on the momentum transfer is calculable and is contained in the coefficient functions Ci.
Corrections to this simple picture come within perturbation theory from the parton distri-
butions of higher twists and are suppressed by powers of the large momentum Q2. These
higher-twist contributions are relatively well understood theoretically, and, unfortunately,
very poorly experimentally. I have nothing to say about them in this talk.

The picture described above presents a part of the common wisdom about hard pro-
cesses in the Quantum Chromodynamics, and in a more or less detailed presentation can
be found in any textbook. Less widely known, is the fact that from the theoretical point
of view this picture is not complete. An indication that some contributions may be miss-
ing, comes from the asymptotic nature of the perturbative series in (3). This series is
non-Borel-summable, which means that any attempt to attribute a quantitative mean-
ing to the sum of the series in (3) would produce an exponentially small imaginary part
∼ i exp{−const · π/αs(Q

2)}, which is to be cancelled by the imaginary part coming from
nonperturbative contributions. Thus, separation between perturbative and nonperturba-
tive pieces in the cross section as the ones which contribute to the coefficient function
and the parton distribution, respectively, cannot be rigorous. A modern discussion of the
asymptotical properties of the perturbation series in QCD can be found in [1, 2].

In addition to imaginary exponential corrections which must cancel identically against
the corresponding nonperturbative contributions, the coefficient functions may acquire
also real exponential corrections, which potentially produce observable effects. In this
talk I shall report on recent results by I. Balitsky and myself [3, 4], indicating that these
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corrections are indeed present. We have found that the deep inelastic cross section indeed
possesses exponential contributions of the form F (x) exp[−4πS(x)/αs(Q

2)], where S(x),
F (x) are certain functions of Bjorken x, which we are able to calculate in a certain
kinematical domain. Since the experimental data are becoming more and more precise, it
is of acute interest to find a boundary for a possible accuracy of the perturbative approach,
which is set by nonperturbative effects. Our study has been fuelled by recent findings
of an enhancement of instanton-induced effects at high energies in a related problem of
the violation of baryon number in the electroweak theory [5, 6]. In the case of QCD the
instanton-induced effects could turn out to be numerically large at high energies, despite
the fact that they correspond formally to contributions of a very high fractional twist
exp(−4πS(x)/αs(Q

2)) ∼ (Λ2
QCD/Q2)bS(x).

To be precise, in this talk I consider the contribution to the structure functions com-
ing from the instanton-antiinstanton pair. Contributions of single instantons are only
present for higher-twist terms in the light-cone expansion and are less interesting. A
Ringwald-type enhancement [5] of the instanton-induced cross sections at high energy
can compensate the extra semiclassical suppression factor exp(−2π/α) accompanying
instanton-antiinstanton contributions compared to single-instanton ones. In such case
the ĪI terms become the leading ones owing to a bigger power of the coupling in the
preexponent.

As it is well known, the instanton contributions in QCD are in general infrared-
unstable. In a typical situation integrations over the instanton size are strongly IR-
divergent. Our starting point is the observation that this problem does not affect cal-
culation of instanton contributions to the coefficient functions. Let us introduce for a
moment an explicit IR cutoff ΛIR to regularize the integrals over the instanton size. Then
the contribution of the instanton-antiinstanton pair to the cross section can be written
schematically as

Q2σ(Q2) ∼ (ΛIR/ΛQCD)2b + (ΛQCD/Q)2bS(x). (4)

The second term in (4) gives an IR-protected contribution. It depends in a nontrivial
way on the external large momentum and is identified unambiguously with a contribution
to the coefficient function. The first term contributes to the parton distribution. To be
precise, one should separate in the first term the contributions coming from instanton
sizes above and below the reference scale µ, and to add the contribution of small-size
instantons to the coefficient function. Schematically, one has in this way

(ΛIR/ΛQCD)2b = (µ/ΛQCD)2b +
[

(ΛIR/ΛQCD)2b − (µ/ΛQCD)2b
]

. (5)

However, this reshuffling of the Q2-independent contribution between the coefficient and
the parton distribution does not affect the observable cross section. It is analogous to
an ambiguity in the separation between contributions to the coefficient function and to
the parton distribution in perturbation theory, induced by possibility to use different
regularization schemes (e.g. MS instead of MS, etc.). Hence, we can concentrate on
contributions of the second type in (4), which are IR-protected.

2. The distinction between the instanton-induced contributions to the coefficient
functions, which are given by convergent integrals over the instanton size, and the con-
tributions to parton distributions, given in general by IR-divergent integrals, becomes
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Figure 1: The contribution of the instanton-antiinstanton pair to the cross section of hard
gluon-gluon scattering (a), structure function of a gluon (b) and of a quark (c,d). Wavy lines
are (nonperturbative) gluons. Solid lines are quark zero modes in the case that they are ending
at the instanton (antiinstanton), and quark propagators at the ĪI background otherwise.

especially transparent for an example of the cross section of hard gluon scattering from a
real gluon, see Fig.1a, considered in detail in [3]. This process is not directly physically
relevant (e.g., the cross section is not gauge invariant), but it serves as a good toy model.
Following Zakharov [7], we calculate the cross section by means of the optical theorem.
The trick is to evaluate the contribution to the functional integral coming from the vicin-
ity of the instanton-antiinstanton configuration in Euclidian space, and calculate the cross
section by the analytical continuation to Minkowski space and by taking the imaginary
part. Each hard gluon is substituted by the Fourier transform of the instanton field in
the singular gauge at large momentum, and brings in the factor [8]

AI
ν(q) ≃

i

g
(σν q̄ − qν)

{

8π2

Q4
− (2π)5/2 ρ2

2Q2
(ρQ)−1/2e−ρQ.

}

(6)

The first term in (6) produces a power-like divergent integral over the instanton size ρ.

σ ∼ 1

Q2

∫

dρσ(ρ), σ(ρ) ∼ ρb (7)

All dependence on the hard scale comes in this case through the explicit power of Q2 in
front of the divergent integral. This is a typical contribution to the parton distribution
— in the present case to the probability to find a hard gluon within a soft gluon. The
second term gives rise to a completely different behavior. The cross section is given in this
case by the following integral over the common scale of the instanton and antiinstanton
ρI ∼ ρĪ and over their separation R in the c.m. frame [9, 3]:

∫

ρ dρ
∫

dR0 exp

{

−2Qρ + ER0 −
4π

αs(ρ)
S(ξ)

}

. (8)
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Three important ingredients in this expression are: the factor exp(−2Qρ), which comes
from the two hard gluon fields, the factor exp(ER0), which is obtained from the standard
exponential factor exp[i(p + q)R], E2 = (p + q)2 by the rotation to Minkowski space,
cf. [7], and the action S(ξ) evaluated on the instanton-antiinstanton configuration. The
normalization is such that S(ξ) = 1 for an infinitely separated instanton and antiinstanton,
and ξ is the conformal parameter [10]

ξ =
R2 + ρ2

1 + ρ2
2

ρ1ρ2

. (9)

Writing the action as a function of ξ ensures that the interaction between instantons is
small in two different limits: for a widely separated IĪ pair, and for a small instanton put
inside a big (anti)instanton, which are related to each other by the conformal transforma-
tion. In the limit of large ξ the expansion of S(ξ) for the dominating maximum attractive
IĪ orientation reads [10]

S(ξ) =

(

1 − 6

ξ2
+ O(ln(ξ)/ξ4)

)

(10)

where the 1/ξ2 term corresponds to a slightly corrected dipole-dipole interaction. Thus,
the action S(ξ) decreases with the distance between instantons, so that the instanton and
the instanton effectively attract each other. This attraction results in the exponential
increase of the cross section — the effect found by Ringwald [5]. Further terms in the
expansion of the action can be obtained by the so-called valley method [11], and a typical
solution (conformal valley) [10] gives a monotonous function of the conformal parameter,
which turns to zero at R → 0. In the traditional language, the valley approach corre-
sponds to the summation of all so called ”soft-soft” corrections arising from the particle
interaction in the final state. Main problem is in the evaluation of ”hard-hard” corrections
[12], which come from particle interaction in the initial state. These corrections are likely
to decrease the cross section, and in physical terms must take into account an (exponen-
tially small) overlap between the initial state, which involves a few hard quanta, with the
semiclassical final state [13]. Thus, the instanton-antiinstanton action is substituted by
an effective ”holy grail” function, which determines the leading exponential factor for the
semiclassical production at high energies, and which received a lot of attention in recent
years. Unitarity arguments [14, 15] suggest that the decrease of the action will stop at
values of order S(ξ) ≃ 0.5. In a recent preprint [16] Diakonov and Petrov argue that
S(ξ) indeed decreases up to the value 1/2 at a certain energy of order of the sphaleron
mass, and then starts to increase, so that the semiclassical production cross section is
resonance-like. The question seems to us to be not settled finally. In this study, we have
taken the value S = 1/2 as a reasonable guess for the residual suppression, and assumed
that the behavior of the ”true” function S(ξ) for S(ξ) > 1/2 is close to that given by the
conformal valley [10]. The latter assumption is supported by numerical studies, e.g. in
[16].

To the semiclassical accuracy the integral in (8) is evaluated by a saddle-point method.
The saddle-point equations take the form [3]

Qρ∗ =
4π

αs(ρ∗)
(ξ∗ − 2)S ′(ξ∗) + bS(ξ∗) ,

5



Figure 2: The non-perturbative scale in deep inelastic scattering (instanton size ρ−1
∗ ),

corresponding to the solution of saddle-point equations in (11) as a function of Q and for
S(ξ∗) ∼ 0.5 − 0.6 (ξ∗ ∼ 3 − 4).

Eρ∗ = =
8π

αs(ρ∗)

√

ξ∗ − 2S ′(ξ∗) , (11)

where S ′(ξ) is the derivative of S(ξ) over ξ, and ρ∗, ξ∗ are the saddle-point values for the
instanton size and the conformal parameter, respectively.

Neglecting in (11) the terms proportional to b = (11/3)Nc−(2/3)nf , which come from
the differentiation of the running coupling (and produce a small correction), one finds

ξ∗ = 2 +
R2

∗

ρ2
∗

= 2
1 + x

1 − x
,

Qρ∗ =
4π

αs(ρ∗)

12

ξ2
∗

(12)

A numerical solution of the saddle-point equations in (11) for the particular expression of
the action S(ξ) corresponding to the conformal instanton-antiinstanton valley is shown
in Fig.2. Note that the difference between the hard scale Q2 and the effective scale for
nonperturbative effects ρ−2

∗ is numerically very large. This is a new situation compared
to calculations of instanton-induced contributions to two-point correlation functions, see
e.g. [8, 17, 18], where the size of the instanton is of order of the large virtuality. The effect
is that the instanton-induced contributions to deep inelastic scattering may turn out to
be non-negligible at the values Q2 ∼ 1000GeV 2, which are conventionally considered as a
safe domain for perturbative QCD.

In the case of hard gluon-gluon scattering it is easy to collect all the preexponential
factors (to the semiclassical accuracy). The result for the scattering of a transversely
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polarized hard gluon from a soft gluon reads [3]

2E2σ⊥ =
4

9
d2 (1 − x)2 + x2

x2(1 − x)2
π13/2

(

2π

α(ρ∗)

)21/2

exp

[

−
(

4π

αs(ρ∗)
+ 2b

)

S(ξ∗)

]

. (13)

It is expressed in terms of the saddle-point values of ρ and ξ. Here d ≃ 0.00363 (for
nf = 3) is a constant which enters the expression for the instanton density

d =
1

2
C1 exp[nfC3 − NcC2)], (14)

C1 = 0.466, C2 = 1.54, C3 = 0.153 in the MS scheme.
Note that the preexponential factor in (13) is calculated to the leading semiclassical

accuracy, i.e. in the limit x → 1, while in the exponential factor exp{−(4π/αs +2b)S(ξ∗)}
we used the expression for S(ξ) suggested by the valley method, which is likely to be
a good approximation provided S(ξ) > 1/2, alias x > 0.25 − 0.3, cf. (12). With this
restriction, and at αs(ρ∗) ≃ 0.3 − 0.4, the expression on the r.h.s. of (13) reaches values
of order 10−2 − 100, which means that at Q2 ∼ 100 − 1000GeV 2 and x < 0.25 − 0.40 the
nonperturbative contribution appears to be significant.

3. Similar contributions are present in the structure functions of deep inelastic
lepton-hadron scattering, but the calculation turns out to be much more involved [4].
The situation proves to be somewhat simpler for the case of deep inelastic scattering from
a real gluon. To this purpose we need to evaluate

Tµν = i
∫

dx eiqx〈Aa(p), λ|T{jµ(x)jν(0)}|Aa(p), λ〉

Wµν =
1

π
Im Tµν = (15)

=

(

−gµν +
qµqν

q2

)

FL(x, Q2) +

(

pµpν

pq
− pµqν + qµpν

q2
+ gµν

pq

q2

)

F2(x, Q2)

There are two technical problems to be solved. First of all, the separation of the finite
contribution to the coefficient function under the background of a divergent contribution
to the parton distribution is no longer given by a simple formula in (6). Instead, we
extract the contribution of interest by making an analytic continuation of integrals over
the instanton size ρ from negative values of ρ2. For a typical integral we write down, e.g.

∫ ∞

0
dρ2 (ρ2)µ+n−1Γ(λ)

(T 2 + ρ2)λ
=

Γ(λ)

2i sin[π(λ − µ − n)]

∫ 0

−∞
dρ2 (−ρ2)µ+n−λ−1

×




(

ρ2 + iǫ

T 2 + ρ2 + iǫ

)λ

− c.c.



 =
Γ(λ − µ − n)Γ(µ + n)

(T 2)λ−µ−n
(16)

The second, and main complication, comes from the necessity to consider the quark
propagator in the ĪI background, see the diagram in Fig.1b. Neglecting corrections of
order ρ2/R2 in the preexponential factor, we can make use of the cluster expansion [8],
and keep the first nontrivial term only:

〈x|∇−2
IĪ
∇̄IĪ |0〉 =

∫

dz 〈x|∇−2
1 ∇̄1|z〉σξ

∂

∂zξ
〈z|∇̄2∇−2

2 |0〉.
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Here and below the subscript ’1’ refers to the antiinstanton with the size ρ1 and the
position of the center xĪ = R + T , and the subscript ’2’ refers to the instanton with
the size ρ2 and the center at xI = T . We use conventional notations ∇ = ∇µσµ and
∇̄ = ∇µσ̄µ, etc, where σαα̇

µ = (−iσ, 1), σ̄µα̇α = (+iσ, 1), and σ are the standard Pauli
matrices. The expressions for quark propagators at the one-instanton (antiinstanton)
background are given in [19].

We have found that to the leading accuracy in the strong coupling the instanton
contribution in Fig.1b comes from the following integration regions in the coordinate
space:

z2 ∼ (z − x)2 ∼ x2

(x − R − T )2 + ρ2
1 ∼ T 2 + ρ2

2 ∼ x2

(z − R − T )2 + ρ2
1 ∼ (z − T )2 + ρ2

2 ∼ x2/αs

T 2 ∼ R2 ∼ ρ2
1 ∼ ρ2

1 ∼ x2/αs (17)

We remind that all the calculation is done in Euclidian space, and the evaluation of
integrals by means of the analytical continuation effectively corresponds to the integration
over negative values of ρ2, see (16).

Hence the integration over z in the cluster expansion of the quark propagator can be
done in the ”light-cone” approximation:

∫

dz
F (z)

(x − z)4z4
=

π2

x4

∫ 1

0
dγ

F (γx)

γ(1 − γ)
+ O(

√
αs), (18)

where F (z) is an arbitrary function containing all other possible denominators like (z −
R − T )2 + ρ2

1 etc. This is a major simplification compared to the general case.
After a considerable algebra, we obtain the following answer for the ĪI contribution

to the structure function of a real gluon:

F
(G)
1 (x, Q2) =

∑

q

e2
q

1

9x̄2

d2π9/2

bS(ξ∗)[bS(ξ∗) − 1]

(

16

ξ3
∗

)nf−3

×
(

2π

αs(ρ2
∗)

)19/2

exp

[

−
(

4π

αs(ρ2
∗)

+ 2b

)

S(ξ∗)

]

(19)

where the expressions for ρ∗ and ξ∗ coincide to the ones given in (12). To our accuracy, we
find that the instanton- induced contributions obey the Callan-Gross relation F2(x, Q2) =
2xF1(x, Q2).

The expression in (19) presents our main result. It gives the exponential correction to
the coefficient function in front of the gluon distribution of the leading twist in (3). The
exponential factor is exact to the accuracy of (10). The preexponential factor is calculated
to leading accuracy in the strong coupling and up to corrections of order O(1 − x). The
corresponding contribution to the structure function of the nucleon is obtained in a usual
way, making a convolution of (19) with a distribution of gluons in the proton at the scale
ρ2
∗.
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In the language of the operator product expansion, the answer in (19) can be rewritten
as the exponential nonperturbative contribution to the high n ∼ π/αs moment of the
structure function

M
(G)
1 (n, Q2) =

∫ 1

0
dx xnF

(G)
1 (x, Q2) (20)

Taking n = n̂ · 4π/αs(ρ∗) with n̂ of order unity, one can evaluate the integral in (20) with

F
(G)
1 (x, Q2) given in (19) by the saddle point method. The saddle-point equation reads,

approximately
n̂ = S ′(ξ∗)(ξ

2
∗ − 4)/4 (21)

where ξ∗ is related to the saddle-point value of x by (12). The lowest possible value ξ∗ ≃ 3,
corresponding within the valley-method approximation to S(ξ∗) ≃ 1/2, S ′(ξ∗) ≃ 0.27, thus
yields n̂ ≃ 0.3. Hence the expression in (19) is applicable to the evaluation of instanton-
induced corrections to the coefficient functions in front of local operators starting from
n ≃ 10 − 12.

Leading contribution to (19) in the perturbation theory is due to the mixing with the
flavor-singlet quark distribution and is given by the box graph:

F
(G)
1 (x, Q2)pert =

∑

q

e2
q [x

2 + x̄2]
αs(Q

2)

2π
ln

[

Q2x̄

µ2x

]

, (22)

where in order to compare to the instanton contribution in (19) one should choose the
scale µ to be of order ρ∗.

The instanton-antiinstanton contribution to the structure function of a quark contains
a similar contribution shown in Fig.1c. The answer reads

F
(q)
1 (x, Q2) =





∑

q′ 6=q

e2
q′ +

1

2
e2

q





128

81x̄3

d2π9/2

bS(ξ∗)[bS(ξ∗) − 1]

(

16

ξ3
∗

)nf−3

×
(

2π

αs(ρ2
∗)

)15/2

exp

[

−
(

4π

αs(ρ2
∗)

+ 2b

)

S(ξ∗)

]

(23)

However, in this case additional contributions exist of the type shown in Fig.1d. They
are finite (the integral over instanton size is cut off at ρ2 ∼ x2/αs), but the relevant
instanton-antiinstanton separation R is small, of order ρ. This probably means that the
structure of nonperturbative contributions to quark distributions is more complicated.
This question is under study. The answer given in (23) presents the contribution of the
particular saddle point in (12).

4. The instanton-induced contribution to the structure function of a gluon in (19)
is shown as a function of Bjorken x for different values of Q ∼ 10−100GeV in Fig.3. The
contribution of the box graph in (22) is shown by dots for comparison. The low boundary
for possible values of Q is determined by the condition that the effective instanton size
is not too large. At Q = 10 GeV we find ρ∗ ≃ 1 GeV −1, cf. Fig.2. This value is
sufficiently small, so that instantons are not distorted too strongly by large-scale vacuum
fluctuations. Another limitation is that the valley approach to the calculation of the ”holy
grail” function S(ξ) is likely to be justified at S(ξ) ≥ 1/2, which translates to the condition

9



Figure 3: Nonperturbative contribution to the structure function F1(x,Q2) of a real gluon (19)
as a function of x for different values of Q (solid curves). The leading perturbative contribution
(22) is shown for comparison by dots. The dashed curves show lines with the constant effective
value of the action on the ĪI configuration.

that x > 0.3−0.35. Numerical results are strongly sensitive to the particular value of the
QCD scale parameter. We use the two-loop expression for the coupling with three active
flavors, and the value Λ

(3)

MS
= 290MeV which corresponds to Λ

(4)

MS
= 240MeV [20]. The

corresponding value of the coupling at the scale of τ -lepton mass is αs(mτ ) = 0.29. The
new ALEPH data [21] indicate a somewhat higher value αs(mτ ) = 0.33± 0.05. Since the
dependence on the coupling is exponential, the 20% increase of αs(ρ∗) induces the increase
of the cross section by an order of magnitude! Together with uncertainties in the function
S(ξ) and in the preexponential factor, this indicates that the particular curves given in
Fig.3 should not be taken too seriously, and rather give a target for further theoretical
(and experimental?) studies to shoot at.

To summarize, we have found that instantons produce a well-defined and calculable
contribution to the cross section of deep inelastic scattering for sufficiently large values of
x and large Q2 ∼ 100−1000GeV 2, which turns out, however, to be rather small — of order
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10−2 − 10−5 compared to the perturbative cross section. This means that the accuracy
of standard perturbative analysis is sufficiently high, and that there is not much hope
to observe the instanton-induced contributions to the total deep inelastic cross section
experimentally. However, instantons are likely to produce events with a very specific
structure of the final state, and such peculiarities may be subject to experimental search.
The dominating Feynman diagrams in our calculation correspond to 2π/α(ρ∗) ∼ 15 gluons
and 2nf − 1 = 5 quarks in the final state, with the low virtuality of order ρ−1

∗ ∼ 1 GeV ,
and which are produced in the S-wave in the c.m. frame of the colliding partons. It
is not likely that these can be resolved as minijets, and we rather expect a spherically
symmetric production of final state hadrons. The effect is likely to be resonance-like, that
is present in a narrow interval of values of Bjorken x of order 0.25–0.35 (in the parton-
parton collision). In any case, finding of an instanton-induced particle production at high
energies is a challenging problem, and further theoretical efforts are needed to put it as a
practical proposal to experimentalists.

5. I would like to thank Ian Balitsky for a very rewarding collaboration. It is a
pleasure to acknowledge also useful discussions with M. Beneke, M.A. Shifman and V.I.
Zakharov.
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