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Abstract:
We propose a simple method to calculate the pion form factor at not very large momentum
transfers, which combines the technique of the QCD sum rules with the description of the
pion in terms of the set of wave functions of increasing twist. This approach allows one to
calculate the soft (end point) contribution to the form factor in a largely model-independent
way. Our results confirm existing expectations that the soft contribution remains important
at least up to the momentum transfers of order 10 GeV2, and suggest that it comes from
the region of relatively small transverse separations of order 1 GeV−1.
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1. Hard exclusive processes in QCD [1] are attracting continuous interest for already
two decades. In difference to inclusive reactions, like the deep inelastic scattering, exclu-
sive processes are selective to the partonic content of the participating hadron. Apriory,
one could consider two different possibilities to transfer a large momentum to a hadron.
One is the so-called Feynman mechanism, in which large momentum transfer selects the
configuration, in which one parton carries almost all the momentum of the hadron. The
transverse size of the remaining “soft” cloud remains in this case arbitrary. The second is
the hard rescattering mechanism, in which large momentum transfer selects configurations
with a small transverse size and a minimal number of Fock constituents. In this case the
momentum fraction carried by the interacting parton (quark) remains an average one. The
hard rescattering mechanism involves a hard gluon exchange, and can be written in the
factorized form [2].

It has been proved [2] that the hard rescattering mechanism is the leading one at asymp-
totically large Q2, and yields the pion form factor

Fπ(Q2) =
8

9
παs

f 2
π

Q2

∣

∣

∣

∣

∣

∫ 1

0

du

1 − u
φπ(u)

∣

∣

∣

∣

∣

2

. (1)

Here φπ(u) is the pion wave function of the leading twist, which describes the distribution
of the valence pion constituents in the longitudinal momentum. Note that convergence of
the integral in (1) requires that the pion wave function decreases at u → 1, and the crucial
point in establishing the formula in (1) was the proof [2] that at asymptotically large Q2

the wave function is given by the simple formula

φ(as)
π (u) = 6u(1 − u) . (2)

The results in (1),(2) belong to the most important and most rigorously proved statements
in QCD.

At large but finite momentum transfers there might be a number of corrections to the
hard rescattering formula in (1), and till now there was a much more moderate progress in
understanding whether available energies could be treated as asymptotic ones. An attempt
to describe the data for the pion form factor starting from Q2 ≥ 3 GeV2 by the contribution
of hard rescattering alone, implies that the low energy pion wave function must be very
different from its asymptotic form, an issue which has been put to fore and studied in detail
by Chernyak and Zhitnitsky [3]. Using the QCD sum rule approach they have shown that
the pion wave function at a low scale is wider than the asymptotic one, and proposed a
model

φ(CZ)
π (u, µ ∼ 500 MeV) = 30u(1 − u)(2u− 1)2 , (3)

which has a peculiar “humped” profile, with a zero in the middle point, corresponding
to the symmetric configuration where the quark and the antiquark carry equal momenta.
However, there exists a number of arguments that force to doubt the assertion about the
dominance of the hard-scattering mechanism in the region of available Q2 ∼ 1 − 10 GeV2.
The well known point of Isgur and Llewellyn-Smith [4] is that the wave functions of the type
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suggested in [3] strongly emphasize the contribution of the end-point region of large u in (1),
where the virtuality of the gluon is not enough to justify the perturbative treatment. This
contribution of large u, 1−u ∼ m2/Q2 (where m2 is a certain hadronic scale) corresponds to
the Feynman mechanism to transfer the large momentum, and should be treated separately.
At present, there is an increasing evidence that this contribution is numerically important
up to very high Q2, although it is down by an extra power 1/Q2 in the asymptotics.

Using the QCD sum rule approach [5] it has been shown [6, 7] that the pion form factor at
Q2 ∼ 1−2 GeV2 is practically saturated by the Feynman-type contribution. Unfortunately,
this method in its standard form cannot be applied for higher values of Q2, since it involves
the expansion in the contributions of vacuum condensates, which coefficients appear to be
enhanced by increasing powers of Q2. Thus, at sufficiently large momentum transfers the
expansion breaks down. In attempt to cure this problem Radyushkin and collaborators
[8, 9] have suggested to resum the series of power corrections by introducing the nonlocal
extension of the concept of the vacuum condensates, which takes into account the final
correlation length in the QCD vacuum. Results of [9] indicate the dominating role of the
soft contribution at least up to Q2 ∼ 10 GeV2.

The approach of [9] clearly demonstrates the origin of difficulties in the standard QCD
sum rule calculations, but may receive objections concerning its theoretical accuracy, since
not all high-order contributions can consistently be taken into account in this way, and
also the parametrization of the nonlocal condensates is essentially model-dependent. In
this letter we suggest an alternative approach to the calculation of the pion form factor
at not very large values of Q2, which seems to be free from both the difficulties of the
standard QCD sum rule method, and the ambiguities involved in its extension in [8, 9].
Our method essentially follows earlier works [10]–[15], where the QCD sum rule approach
has been modified to incorporate the operator product expansion in powers of the deviation
from the light-cone (in contrast to the short distance expansion in [5]).

2. The idea is to combine the standard technique for the study of hard exclusive
processes and the QCD sum rule method. To this purpose, we consider the correlation
function

Tµν(p, q) = i
∫

dx exp(iqx)〈0|T{j5
µ(0)jem

ν (x)}|π+(p)〉 , (4)

where j5
µ = d̄γµγ5u and jem

ν = euūγνu + edd̄γνd is the electromagnetic current. At large
Euclidian momenta (p− q)2 and q2 this correlation function can be calculated in QCD, in
the precise analogy with the calculation of the πγ∗γ∗ form factor (for different virtualities
of photons), [3]. The leading contribution is written in terms of the pion wave function of
the leading twist

Tµν(p, q) = 2ifπpµpν

∫ 1

0
du

uφπ(u)

(1 − u)Q2 − u(q − p)2
+ . . . , (5)

where fπ is the pion decay constant, Q2 = −q2, and the ellipses stand for the contributions
of other Lorentz structures. On the other hand, the dispersion relation over (p− q)2 relates

2



the correlation function (4) to the pion form factor:

Tµν = ifπ(p− q)µ
1

m2
π − (p− q)2

2Fπ(q2)pν + . . . , (6)

where the dots stand for higher resonances and the continuum contributions. Matching
between the representations in (5) and (6) at no-so-large Euclidian −(q − p)2 ∼ 1 GeV2,
we obtain a sum rule for the pion form factor.

To this end, we use the standard concept of duality, which tells that the pion occupies
the “region of duality” in the invariant mass of the q̄q pair, up to a certain threshold
s0 ∼ 0.7 − 0.8 GeV2. Note that the formula in (5) can be rewritten as the dispersion
relation in (p− q)2, with s = (1−u)Q2/u being the mass of the intermediate state. To pick
up the contribution of the pion, we cut the dispersion integral at s = s0, which translates
to a low bound for the integral over u: umin = Q2/(s0 +Q2). Following [5], we also use the
Borel transformation to convert the power suppression of higher mass contributions in the
dispersion integral to the exponential suppression

u

(1 − u)Q2 − u(q − p)2
→ exp

{

−
(1 − u)Q2

uM2

}

,

1

m2
π − (q − p)2

→ exp

{

−
m2

π

M2

}

, (7)

where M2 is the new variable (the Borel parameter). In what follows we put the pion mass
to zero.

Thus, the sum rule arises

Fπ(Q2) =
∫ 1

0
du φπ(u) exp

{

−
(1 − u)Q2

uM2

}

Θ

(

u−
Q2

s0 +Q2

)

, (8)

which should be satisfied at the values of the Borel parameter M2 of order 1 GeV2. The
pion wave function in (8) should be taken at a low normalization scale, of order of the Borel
parameter.

In what follows we shall complement the sum rules in (8) by contributions of higher
twist. Before doing this, and before going over to the numerical analysis, let us study the
behavior of the sum rule in the limit of large momentum transfers Q2 → ∞.

Because of the Θ-function, the integration region in (8) is restricted to values 1 −
u < s0/(s0 + Q2) → 0. Thus, the form factor is sensitive to the wave function in the
highly asymmetrical configuration, where the scattered quark carries almost all the pion
momentum. According to the general analysis in [2, 3] the behavior of the pion wave

function in this region coincides with the asymptotic behavior in (2), φπ(u)
u→1
∼ 1 − u.

Thus, asymptotically, the sum rule in (8) yields

Fπ(Q2) ∼
φ′

π(0)

Q4

∫ s0

0
s2ds e−s/M2

, (9)
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where φ′
π(0) = (d/du)φπ(u)|u=0. (We have made use of the symmetry φπ(u) = φπ(1 − u)).

For the asymptotic wave function (2) φ′
π(0) = 6. For the model suggested by Chernyak

and Zhitnitsky (3) φ
′(CZ)
π (0) = 30, and thus it gives rise to a much bigger soft contribution

to the form factor. This is in agreement with the observation by Isgur and Llewellyn-Smith
[4] that “realistic” model wave functions, which allow for the description of the data on pion
form factor at virtualities of order a few GeV by the hard rescattering mechanism alone, in
fact greatly enhance the soft contribution coming from the end point region.

3. Now we are in a position to take into account the corrections to the sum rule
in (8), induced by the pion wave functions of the nonleading twist 4. These corrections
correspond to the contributions to the correlation function in (4), which are suppressed by
an extra power of the large momentum (p−q)2 or q2. Physically, these corrections have two
sources. One of them is the transverse momentum of quarks in the leading order diagram
in Fig. 2a. The second source are contributions of higher Fock states in the pion wave
function — containing gluon fields in addition to the quark and antiquark ones. In fact,
these two effects are indistinguishable thanks to the equations of motion, which allow one
to eliminate all transverse degrees of freedom at the cost of introducing the higher Fock
components. In this letter we cannot give all the details of the calculation, which becomes
rather technical. A suitable formalism for the operator product expansion of the correlation
functions beyond the leading twist has been developed in [16].

The complete contribution of the diagram in Fig. 1a to the twist-4 accuracy reads

Π(2a) = 2ipµpνfπ

∫ 1

0
du

{

−
uφπ(u)

(q − up)2
− 4u

g1(u) +G2(u)

(q − up)4
+ 2u2 g2(u)

(q − up)4

}

+ . . . ,(10)

where we have introduced the pion wave functions of twist 2 and 4 defined by the matrix
element [17]

〈0|d̄(0)γµγ5u(x)|π(p)〉 = ifπpµ

∫ 1

0
du e−iupx(φπ(u) + x2g1(u) +O(x4))

+ fπ(xµ −
x2pµ

px
)
∫ 1

0
du e−iupxg2(u) + . . . , (11)

and all logarithmic dependence on x2 is implicitly included in the wave functions. The
function G2 in (10) is defined as g2(u) = −(d/du)G2(u). The diagram shown in Fig. 1b
produces an additional contribution (α3 = 1 − α1 − α2)

Π(2b) = 2ifπ

∫ 1

0

u du

(q − up)4

∫ u

0
dα1

∫ ū

0
dα2

{

Ψ‖ + 2Ψ⊥

α3

+
1 − 2u+ α1 − α2

α2
3

(Φ‖ + 2Φ⊥)

}

, (12)

where we have followed [17] in the definition of three-particle wave functions of twist 4:

〈0|d̄(−x)γµγ5gGαβ(vx)u(x)|π(p)〉 = pµ(pαxβ − pβxα)
1

px
fπ

∫

DαΦ‖(αi)e
−ipx(α1−α2+vα3)
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+

[

pβ(δαµ −
xαpµ

px
) − pα(δβµ −

xβpµ

px
)

]

fπ

∫

DαΦ⊥(αi)e
−ipx(α1−α2+vα3) . (13)

The wave functions Ψ‖ and Ψ⊥ are defined similar to (13), with the substitution (γ5gGαβ) →

(igG̃αβ).
A systematic study of the higher twist wave functions has been done in the work [17],

and makes use of the expansion in representations of the collinear conformal group SO(2,1),
which is a subgroup of full conformal group acting on the light-cone. The asymptotic wave
functions are defined as contributions of operators with the lowest conformal spin. The
set of wave functions suggested in [17] includes also the corrections corresponding to the
operators with the next-to-leading conformal spin, which numerical values are calculated by
the QCD sum rule method. The results for twist 4 wave functions are (hereafter ū = 1−u):

Φ‖(αi) = 120εδ2(α1 − α2)α1α2α3 ,

Ψ‖(αi) = −120δ2α1α2α3

[1

3
+ ε(1 − 3α3)

]

,

Φ⊥(αi) = 30δ2(α1 − α2)α
2
3

[1

3
+ 2ε(1 − 2α3)

]

, (14)

Ψ⊥(αi) = 30δ2α2
3(1 − α3)

[1

3
+ 2ε(1 − 2α3)

]

,

g1(u) =
25

6
δ2ū2u2 + εδ2

[

ūu(2 + 13ūu)

+ 10u3(2 − 3u+
6

5
u2) lnu+ 10ū3(2 − 3ū+

6

5
ū2) ln ū

]

,

g2(u) =
10

3
δ2ūu(u− ū) ,

G2(u) =
5

3
δ2u2ū2 ,

δ2 ≃ 0.2 GeV2 , ε ≃ 0.5 .

Adding the higher-twist contributions in (10) and (12) to the sum rule in (8) we arrive at

Fπ(Q2) =
∫ 1

0
du exp

[

−
ūQ2

uM2

]{

φπ(u) −
4

uM2
(g1(u) +G2(u)) +

2

M2
g2(u) (15)

+
1

uM2

∫ u

0
dα1

∫ ū

0
dα2

[

Ψ‖ + 2Ψ⊥

α3

+
1 − 2u+ α1 − α2

α2
3

(Φ‖ + 2Φ⊥)

]}

Θ

(

u−
Q2

s0 +Q2

)

,

which presents our final result. Note that the higher-twist contributions are suppressed by
a power of the Borel parameter M2, as expected.

With the particular expressions (15) the integrals of the three-particle wave functions
can be taken analytically, yielding

∫ u

0
dα1

∫ ū

0
dα2

Ψ‖ + 2Ψ⊥

α3
=

10

3
δ2ūu(1 − 2ūu) ,

∫ u

0
dα1

∫ ū

0
dα2

1 − 2u+ α1 − α2

α2
3

(Φ‖ + 2Φ⊥) = −2g1(u) −
10

3
δ2ūu

(

1 −
15

2
ūu
)

. (16)
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Note that the term ∼ ūu in (16) cancel in the sum rule (16), and thus contributions of three-
particle wave functions turn out to be of order 1/Q6, i.e. are suppressed by an additional
power of 1/Q2. However, the twist 4 contributions still survive in the high-Q2 limit due to
the contribution of g2, which yields the same asymptotic behavior ∼ 1/Q4 as the leading
twist contribution in (9).

4. We turn now to the numerical analysis. Apart from the wave functions, the sum
rule in (16) depends on the value of the continuum threshold s0, and on the Borel parameter
M2. We take s0 = 0.7 − 0.8 GeV2 [5] and vary M2 in the interval 1 – 2 GeV2, which is
the expected stability region. The results are shown in Fig.2. In Fig. 2a we plot the value
of Q2Fπ(Q2) as a function of Q2 for s0 = 0.7 GeV2 and s0 = 0.8 GeV2 and for different
choices of the leading twist pion wave function φπ(u): asymptotic wave function (2) and
the Chernyak-Zhitnitsky model (3). Since this model in fact refers to a substantially lower
normalization point than the typical value of the Borel parameter in the sum rule, we give
the results also for the Chernyak-Zhitnitsky wave function rescaled to µ2 ∼ 1 − 2 GeV2

φ(CZ)
π (u, µ ∼ 1GeV) = 6u(1 − u)

[

1 + 0.44C
3/2
2 (2u− 1)

]

. (17)

The wave function in (17) corresponds to the value of the second moment 〈(2u−1)2〉 = 0.35
[12], which is to be compared to 〈(2u − 1)2〉 = 0.43 for (3). We remind that for the
asymptotical wave function 〈(2u− 1)2〉 = 0.2. The contribution of wave functions of twist
4 does not exceed 20%, and these wave functions are not far from their asymptotic form.
Thus possible inaccuracy in the model wave functions in (15) does not have any noticeable
effect. The stability of the sum rule (16) to the choice of the Borel parameter is illustrated
in Fig. 2b for several values of Q2.

It is seen that the soft contribution to the pion form factor clearly dominates at Q2 ∼
1− 3 GeV2 and constitutes about 15–30% of the experimental value at Q2 ≃ 10 GeV2 (for
the asymptotic wave function). For the Chernyak–Zhitnitsky model, the soft contribution
increases substantially.

Within our approach, the hard gluon exchange contribution originates from the radiative
correction to the contribution of the leading twist, see diagram in Fig. 1c. This contribution
is not restricted to the end-point region, and thus has no power-like 1/Q2 suppression. Its
explicit calculation goes beyond the tasks of this letter. As a rough estimate, one can
use the expression in (1), yielding Q2Fπ(Q2)hard ≃ 0.15 and Q2Fπ(Q2)hard ≃ 0.3 for the
asymptotic wave function and the Chernyak–Zhitnitsky model, respectively. One sees that
the full answer for the pion form factor, given by the sum of the soft and hard contributions,
is likely to overshoot the data, if one uses the Chernyak–Zhitnitsky model.

Main lesson to be learnt from our calculation is that the soft contribution to the pion
form factor decreases very slowly withQ2 and is important in the whole region of momentum
transfers, which are available at present. This conclusion is in full agreement with the results
of [4, 9], although our argumentation is different.

5. The method described above is quite general, and can be applied to different
form factors as well. As a one more example, we calculate here the soft contribution to the
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transition form factor γπρ. For the |λ| = 1 ρ - meson (ρ⊥ hereafter) the transition form
factor is defined as

〈ρ⊥(p1)|j
em
µ |π(p2)〉 = εµνλσp

λ
1p

σ
2ε

ρ
⊥Fπρ(Q

2) , (18)

where Q2 = −(p1 − p2)
2 and ερ

⊥ stands for the polarization vector of the ρ. This process is
clearly due to non-leading twist effects [3] as long as it is related with the helicity flipping.
As a result, the hard rescattering diagram yield the asymptotic behavior Fπρ(Q

2) ∼ 1/Q4

[3]. As we will show, the soft contribution exhibits the same asymptotic dependence 1/Q4,
and is of the same order, therefore, as the hard contribution (up to the Sudakov suppression,
which is unlikely to be important at moderate values of Q2).

We consider the correlation function

A(p, q) = i
∫

dxeiqx〈0|T{d̄(0)σξνu(0)jem
µ (x)}|π(p)〉

= (εµνλσqξ − εµξλσqν)qλpσΠ(q2, (p− q)2) + ... (19)

which contains a contribution of interest of the ρ⊥-meson

Π(q2, (p− q)2) = fT
ρ

Fπρ(Q
2)

m2
ρ − (p− q)2

. (20)

Here fT
ρ is the ρ⊥-meson decay constant:

〈0|d̄(0)σξνγ5u(x)|π(p)〉 = i(ε⊥ξ pν − ε⊥ν pξ)f
T
ρ . (21)

Calculation of the diagram in Fig.1a yields in this case

Π(q2, (p− q)2) = −(eu + ed)
fπm

2
π

3(mu +md)

∫ 1

0
du

ϕσ(u)

(q − up)4
, (22)

where ϕσ(u) is the pion wave function of twist 3 [17]

〈0|d̄(0)σξνγ5u(x)|π(p)〉 =
ifπm

2
π

6(mu +md)
(pξxν − pνxξ)

∫ 1

0
due−iupxϕσ(u) . (23)

It has been shown in [17] that the wave function ϕσ(u) is close to its asymptotic form
ϕσ(u) = 6u(1 − u).

It is easy to check that the diagram of Fig.1b does not contribute to the Lorentz structure
of interest. Then, to the twist 3 accuracy, we arrive at the very simple sum rule

Fπρ(Q
2) = (eu + ed)

2〈ψ̄ψ〉

3fπfT
ρ

em2
ρ/M2

M2

∫ 1

0
du e−

ūQ2

uM2
ϕσ(u)

u2
Θ(u−

Q2

s0 +Q2
) , (24)

in which we have replaced the factor appearing in the normalization of the wave function
φσ (23) by the quark condensate 〈q̄q〉 ≃ −(250 MeV)3. Following [5, 3] we use the values
s0 = 1.5 GeV2 and fT

ρ ≃ 200 MeV for the continuum threshold in the ρ-meson channel, and
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the ρ-meson coupling, respectively. The results are shown in Fig. 3. Using them we obtain
an estimate for the Ψ → γ → π0ω decay rate (Fπω(Q2) = 3Fπρ(Q

2) due to the isospin
symmetry)

Br (Ψ → γ → π0ω /Ψ → e+e−) =
9

32
(MΨFπω(M2

Ψ))2 ≃ (4 ± 2) × 10−4 . (25)

A relatively large error is due to a poor stability of the sum rule in this case. The number
in (25) appears to be in good agreement to the experimental number (4.2±0.6)×10−4 [18].

The contribution to this form factor of the hard rescattering has been calculated by
Chernyak and Zhitnitsky [3], using the leading twist pion wave function in (3), and three-
particle wave functions of the ρ-meson of nonleading twist. It has the same functional
dependence ∼ 1/Q4, and approximately the same numerical value as the soft contribution
which we have calculated here. A simple patching them together would yield the branching
ratio Ψ → π0ω several times above the data. To our opinion, the hard contribution to this
decay given in [3] is strongly overestimated.

6. In this letter we have suggested a simple method to calculate the pion form
factor in the region of intermediate momentum transfers, which is essentially a hybrid of
the standard QCD sum rule approach and the conventional expansion in terms of the pion
wave functions. Its value is in the possibility to estimate the soft (end point) contribution
to the form factor in a model independent way, which is a problem of acute interest. The
main advantage compared to the standard QCD sum rule calculation [6, 7] is that the
“light-cone sum rules” suggested in this paper remain well-defined in the limit Q2 → ∞,
and is related to the fact that the parameter of the expansion in our sum rules is the
twist of relevant operators, but not their dimension as in the standard sum rules. In this
way contributions of various local operators are resummed in the set of wave functions of
increasing twist, the end-point behavior of which is known from general arguments. In effect,
explicit factors ∼ Q2 which may appear in the calculation of higher twist contributions will
be compensated by factors ∼ 1/Q2 originating from a more fast decrease of higher twist
wave functions at u → 1 compared to the leading twist ones. The physical reason for
disappearance of the contributions enhanced by powers of Q2 is in our approach the same
as in the calculation involving the nonlocal condensates in [9]. However, our method is
practically model-independent.

Our main result is the calculation of the soft contribution to the form factor, which
turns out to be large at least up to Q2 ∼ 10 GeV2. In agreement to [4] we find that this
contribution depends strongly on the shape of the pion wave function. Patching together
the contribution of hard rescattering and the soft contribution, we find that the model by
Chernyak and Zhitnitsky is likely to overshoot the data. Combining this result with the
criticism in [8, 12], we conclude that there is increasing evidence, coming from different
calculations, that the true low energy pion wave function is not that much different from
its asymptotic form, as proposed in [3].

On the evidence of an impressive calculation of Sudakov-type double-logarithmic cor-
rections to the contribution of the hard rescattering, it has been argued in [19] that the
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end-point contribution to the pion form factor is strongly suppressed already at moderate
Q2 ∼ 10 GeV2. Radiative corrections to the correlation function in (4) can involve loga-
rithms of the type ln(q2/(q − p)2), but not ln(Q2/Λ2

QCD), since it is IR-protected. Hence
the corrections to the sum rule can only be accompanied by logs like ln(Q2/s0), ln(Q2/M2)
which never become large (at moderate momentum transfers). Thus, the Sudakov expo-
nential suppression is not likely to occur in our sum rules. To our opinion, the significance
of Sudakov corrections is overestimated in [19]. The reason is that the effective transverse
momentum, generated by the Sudakov suppression, should be compared not to the Comp-
ton wave length of the pion, of order 1/200 MeV, but to the average transverse separation
of the quark and antiquark in the particular configuration which dominates the soft con-
tribution to the form factor. Note in this respect, that the quark-antiquark separation in
a “free” pion does not have any physical meaning beyond the leading twist accuracy, since
effects of transverse degrees of freedom can be rewritten in terms of higher Fock components
in the wave function thanks to the equations of motion. For the particular hard process,
however, the question of relevant transverse distances is well-defined. In the case of the
correlation function in (4), the characteristic transverse separation between the quark and
the antiquark is given by the deviation from the light-cone x2 ∼ (q − up)2, as can easily
be checked by an explicit calculation in light-cone coordinates in the position space. After
the Borel transformation, (q − up)2 goes into uM2, so that the characteristic transverse
separations yielding the form factor in Fig. 2 are of the order

x2
⊥ ∼

1

uM2
. (26)

Note that 1/(uM2) is exactly the expansion parameter in our calculation, which controls
the size of higher-twist corrections, and in the working region of the sum rule is of order
1/s0 ∼ (0.2−0.3 fm)2. To our opinion, it is this scale rather than ΛQCD which should serve
as the IR cutoff in the calculation in [19]. Since the average value of u under the integral
in the sum rule increases slightly with Q2, one may speculate that the relevant transverse
size and the importance of higher twist contributions are slightly decreasing.

Thus, the soft contribution to the pion form factor comes from configurations with a
much smaller transverse size than the poin electromagnetic radius ∼ 0.65 fm, which is
dominated by contributions of multiparton states. At distances ∼ 0.2 − 0.3 fm the strong
coupling is already not large, and the application of perturbation theory to the calculation
of the contribution of the hard gluon exchange can be justified. However, this contribution
must be complemented by the contribution of Feynman type, coming from the end-point
region. Our conclusions essentially support the picture described in [20].

We gratefully acknowledge stimulating discussions with L.L. Frankfurt and
A.V. Radyushkin on the number of subjects related to this study. Our special thanks are
due to V.M. Belyaev for pointing out an error in the preliminary version of this paper.
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Captions

Fig. 1 Leading contributions to the expansion of the correlation function in (4) in powers
of the deviation from the light-cone.

Fig. 2 The soft (end point) contribution to the pion electromagnetic form factor for the
asymptotic pion wave function and for the Chernyak–Zhitnitsky model as a function
of Q2 (a) and in dependence on the Borel parameter M2 in the sum rule (b). The
solid and dashed curves in Fig. 2a correspond to the calculation with s0 = 0.8 and
s0 = 0.7 GeV2, respectively, and the value of the Borel parameter M2 = 1.5 GeV2.
The curves in Fig. 2b are calculated using s0 = 0.8 GeV2 and the asymptotical wave
function. Among the pairs of curves marked “CZ” the upper ones correspond to the
calculation using the Chernyak-Zhitnitsky wave function at the scale µ = 500 MeV,
and the lower ones at µ = 1 GeV, see (3) and (17), respectively.

Fig. 3 The transition form factor γρπ as a function of the momentum transfer.
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Figure 1: Leading contributions to the expansion of the correlation function in (4) in
powers of the deviation from the light-cone.
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Figure 2: The soft (end point) contribution to the pion electromagnetic form factor for
the asymptotic pion wave function and for the Chernyak–Zhitnitsky model as a function
of Q2 (a) and in dependence on the Borel parameter M2 in the sum rule (b). The solid
and dashed curves in Fig. 2a correspond to the calculation with s0 = 0.8 and s0 = 0.7
GeV2, respectively, and the value of the Borel parameter M2 = 1.5 GeV2. The curves in
Fig. 2b are calculated using s0 = 0.8 GeV2 and the asymptotical wave function. Among
the pairs of curves marked “CZ” the upper ones correspond to the calculation using the
Chernyak-Zhitnitsky wave function at the scale µ = 500 MeV, and the lower ones at µ = 1
GeV, see (3) and (17), respectively.
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Figure 3: The transition form factor γρπ as a function of the momentum transfer.
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