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Abstract

We study the asymptotic behaviour of the perturbative series in the heavy quark effec-
tive theory (HQET) using the 1/Nf expansion. We find that this theory suffers from
an ultraviolet renormalon problem, corresponding to a non-Borel-summable behaviour
of perturbation series in large orders, and leading to a principal nonperturbative am-
biguity in its definition. This ambiguity is related to an infrared renormalon in the
pole mass and can be understood as the necessity to include the residual mass term
δm in the definition of HQET, which must be considered as ambiguous (and possibly
complex), and is required to cancel the ultraviolet renormalon singularity generated by
the perturbative expansion. The formal status of δm is thus identical to that of conden-
sates in the conventional short-distance expansion of correlation functions in QCD. The
status of the pole mass of a heavy quark, the operator product expansion for inclusive
decays, and QCD sum rules in the HQET are discussed in this context.
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1 Introduction

The past few years have witnessed considerable progress in understanding the decays
of hadrons containing a single heavy quark in the kinematical regime, where the heavy
quark is almost on-shell. This progress has mainly been achieved through the imple-
mentation of an effective field theory, which eliminates the heavy quark as a dynamical
degree of freedom [1, 2, 3]. In the infinite mass limit, the effective theory unravels new
symmetries of QCD [4], while providing a systematic approach to treat corrections to
this limit, which are suppressed by inverse powers of the heavy quark mass mQ. The
number of independent form factors governing the decays of heavy hadrons is greatly
reduced by these symmetries, which allows to relate the width and spectra of various
decays. A peculiar property of heavy quark effective theory (HQET) is that each ef-
fective quark field is labelled by the velocity four-vector vµ of the heavy quark, which
is conserved by the strong interactions in the limit of an infinitely heavy quark. Deep
connections have been pointed out [5] between HQET and the dynamics of Wilson loops
[6–11], related to the infrared behaviour of perturbative QCD and the factorization of
soft divergences.

Given the importance of HQET for different branches of phenomenology, it is in-
structive to investigate its status as a quantum field theory. Thus the leading order
effective Lagrangian,

Leff = h̄viv · Dhv + Llight (1.1)

where v labels the velocity of the heavy quark and Llight denotes the Lagrangian for the
light degrees of freedom, has been proven to be renormalizable to all orders in perturba-
tion theory [12] (see also [7–11]). The main objective of this paper is to investigate the
nonperturbative properties of the theory defined by the Lagrangian in eq.(1.1), which
show up in the asymptotic behaviour of perturbation theory. To this purpose we study
the structure of singularities of correlation functions in HQET in the complex plane
of the Borel transform with respect to the strong coupling, an approach that has been
pioneered in [13] in its application to QCD. Our main finding is that apart from the
usual sequences of infrared (IR) and ultraviolet (UV) renormalons, which one expects
to be inherited from QCD, the HQET suffers from an additional series of UV renor-
malons, which are non-Borel-summable. Thus the Lagrangian Leff as it stands does
not define a respectable theory, since it is plagued by an ultraviolet renormalon problem
in the same way as, e.g., QED [14], albeit for different reasons1. In other words, the
high momentum region of internal integrations in Feynman diagrams renders the per-
turbative expansion of Green functions so badly divergent in large orders as to obstruct
their unambiguous definition beyond perturbation theory.

At this point it is helpful to keep in mind that despite the sophisticated terminol-
ogy prevailing the field of large-order perturbation theory, the physics reflected in the
emergence of renormalons is usually simple and can be understood without recourse
to the asymptotics of perturbation theory. In QED, for instance, the UV renormalons

1Ultraviolet renormalons appear in QCD as well, but since they are Borel-summable in this case,
they are usually not considered as a “problem”.
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appear as a disguise of the good old Landau ghost. Whereas thus the UV renormalons
are presumably fatal for QED as a viable theory (unless it becomes embedded in a
larger nonabelian group), this is of course not so for the heavy quark limit of QCD,
since the leading effective Lagrangian, eq.(1.1), has to be supplemented by a tower of
nonrenormalizable interactions, suppressed by inverse powers of the heavy quark mass,
as well as renormalization of their coefficients taking into account the QCD interactions
on scales above mQ. It is precisely this separation of effects on different distance scales
into coefficient functions and matrix elements that introduces infrared renormalons into
the coefficient functions and ultraviolet renormalons into the matrix elements of com-
posite operators at the same position in the Borel plane, since the virtual particles
inside the loops do not respect the constraint k > mQ, k < mQ, respectively, on their
internal momentum. This phenomenon is well-known from the short-distance expan-
sion of correlation functions in QCD or the O(N)-nonlinear sigma model [15], though
to our knowledge it has never been made explicit in any calculation. However, this
observation alone is not sufficient to cure the UV renormalon disease in the HQET.
The crucial point is that the leading order effective Lagrangian, eq.(1.1), extracts the
correct dependence on the heavy quark mass of the Green functions in full QCD only
after subtraction of a term that scales with mQ (consider, to be definite, the inverse
heavy quark propagator as in [2]). This implies a choice of mQ that coincides with
the pole mass of the heavy quark to all orders in perturbation theory, but arbitrary
otherwise. Here the subtleties arise.

In a confining theory like QCD the S-matrix elements have no poles corresponding
to a physical quark and therefore there is no natural choice of the expansion parameter
mQ. Indeed, the mass of the lightest meson containing the heavy quark flavour would
serve this purpose as well as any other parameter that differs from the meson mass by
an amount exponentially small in the coupling. This obvious ambiguity has been known
from the very beginnings of HQET and prompted the authors of [16] to introduce the
concept of a residual mass term, −δmh̄vhv, to be added to the Lagrangian of eq.(1.1).
The residual mass term, being of order Λ, where Λ is a characteristic low energy scale of
QCD, will enter the expressions of HQET, once one leaves the framework of perturbation
theory. The predictions of HQET must be independent of the choice of mQ. Indeed, it
has been shown [16] that the residual mass term enters the matrix elements of HQET
through the combination Λ̄−δm only, where mP −mQ = Λ̄+O(1/mQ) is the difference
between the mass mP of the meson under consideration and the heavy quark expansion
parameter in the infinite mass limit. This combination is clearly invariant under the
choice of mQ, thus apparently justifying the choice δm = 0 implicit in most works on
HQET. This conclusion is incorrect. As will be seen in the subsequent sections, the pole
mass develops an IR renormalon, which, when subtracted in the construction of HQET,
necessitates the inclusion of a residual mass term as a “remnant” of this IR renormalon.
If we insist on a formal expansion in α(mQ) and Λ/mQ, the residual mass term must be
considered as ambiguous (and possibly complex) and this ambiguity is required to cancel
the UV renormalon in the matrix elements of operators in the HQET. To express this
statement in a different way: though Λ̄−δm is invariant under the choice of mQ, it is not
invariant under the choice of a summation prescription for the divergent perturbative
expansions in the HQET. We wish to note here that the inherent ambiguity of the
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quantity Λ̄ − δm has been conceptually realized in [17], where some of our results are
anticipated. The formal status of Λ̄− δm is thus identical to that of condensates in the
conventional short-distance expansion of correlation functions in QCD.

This analogy may be pursued further. It has been known for a long time that the
computation of dimensionful parameters like condensates is a very difficult task for lat-
tice gauge theories, due to mixing with lower dimensional operators, which manifests
itself in power divergences in the lattice spacing, as the latter is taken to zero [18, 19].
The power divergences require a nonperturbative regularization procedure, which is
essentially equivalent to fixing a specific summation prescription for the perturbative
expansion. This connects power divergences in lattice gauge theory to renormalons in
the continuum theory, where we might note in addition that mixing between operators
of different dimension occurs in the continuum precisely through the appearance of
renormalons. Our observation that Λ̄ − δm (and similar parameters in higher orders
of the 1/mQ-expansion) is ambiguous is therefore completely consistent with the ob-
servation of power divergences in the lattice version of HQET that have been reported
in [20], and which turn out to be an obstacle to the determination of HQET matrix
elements on the lattice starting at order 1/mQ.

The study of the asymptotics of the perturbative series in HQET is a rather formal
subject, but allows to draw several immediate conclusions of practical importance. The
first of them concerns inclusive B-decays, which are receiving much attention presently.
It has been shown [21, 22] that nonperturbative corrections to total inclusive widths can
be studied using the operator product expansion technique, and are suppressed by two
powers of the large b-quark mass. It is widely believed that O(1/mb) corrections to the
total widths are absent, provided the latter are expressed in terms of the pole b-quark
mass, see [23] for the clearest presentation of this conviction. The nonperturbative 1/m2

b

corrections turn out to be very small in reality, and this result has already triggered
attempts to determine the b-quark pole mass from the data on the total decay rates [24].
Our results show that the absence of 1/mb corrections is illusory. Different prescriptions
for the summation of the perturbative series defining the pole mass introduce a principle
uncertainty in the predictions for the decay rates. The data on the total inclusive widths
can not be used to determine the pole mass, but rather to define it. This definition is
not worse, but also not better than any other phenomenological definition, e.g. from the
QCD sum rules for the B-mesons or Υ family, see [25, 26, 27]. The existing estimates
for the value of the b-quark pole mass fall in the range mb = 4.55−4.85 GeV, indicating
that possible uncertainty is of order a few hundred MeV. We find very similar values
for the intrinsic uncertainty in the pole mass from our results on the ambiguity in the
summation of the perturbative series.

Second, we address the QCD sum rule technique [28], which has been used to obtain
quantitative estimates for Λ̄ and other observables in HQET (see [29] for a review).
Our analysis suggests that the residual mass term should be included as an additional
phenomenological parameter (like the condensates) into the expansion of correlation
functions in the HQET. The effect of this parameter is, however, very specific. We show
that, loosely speaking, the renormalons associated with the residual mass term can be
“summed up” and result in an ambiguity in the momentum scale of the correlation
function, so that quantities like the B-meson decay constant fB and the heavy quark
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kinetic energy [30] are formally not affected.
The most important question is whether this ambiguity is important numerically.

Again, we might appeal to the more familiar situation of the short-distance expansion
of correlation functions in QCD, where the gluon condensate, e.g., has been determined
despite its ambiguity, observing that its actual value is “large” in the sense that the
IR renormalon of perturbation theory may be ignored. It is however very important to
recall that this can be justified only a posteriori by the very success of the sum rules.
There is no guarantee that the same conclusion applies to the parameters of the heavy
quark expansion.

The further presentation is organized as follows. In Sect. 2 we find it useful to
recapitulate some facts on the operator product expansion and IR renormalons of the
correlation function of light quark currents. This will also allow us to introduce the
basic notions in dealing with large-order perturbation theory that will be needed later
on. In Sect. 3 we study in detail the perturbative expansion of the inverse propagator
of a massive quark in QCD and its matching onto the heavy quark expansion. New
IR and UV renormalons will be seen to emerge in this limit. Calculations to all orders
in perturbation theory are performed in an expansion in 1/Nf , with Nf the number of
light flavours. We move to the consideration of the correlation function of heavy-light
currents in Sect. 4, where the analytic properties of its Borel-transform are obtained
and discussed. Sect. 5 is devoted to applications of our results to the practice of QCD
sum rule calculations and in Sect. 6 we present a summary and conclusions.

Two appendices deal with some more technical issues. In App. A we show, how
the renormalization of the Borel transform proceeds in the leading order of the 1/Nf

expansion. For simplicity of notations, the explicit derivation is given for the self-energy
of the heavy quark. In App. B we compute the scalar two-loop integral with arbitrary
power of the propagator of the interchanged scalar. The singularity structure of this
integral is required to obtain the analytic structure of the Borel-transformed correlation
function discussed in Sect. 4.

2 IR renormalons and the short-distance expansion

of light quark current correlation functions

The best studied (see e.g. [31, 32] for two recent expositions) and most transparent
quantity to exhibit the relation of the IR asymptotics of perturbation series to the
short-distance expansion is provided by the correlation function

Πµν(q) = (qµqν − q2gµν)Π(Q2) = i

∫
d4x eiqx 〈0|T{j†µ(x)jν(0)}|0〉 Q2 = −q2 (2.1)

of two vector currents jµ(x) = q̄(x)γµq(x) of light, i.e. massless, quarks. It is useful
to recall this relation in detail, since the same concepts will recur in the more intricate
context of the heavy quark expansion. We hope that the yet inevitable sketchiness of
our presentation does not appall the more rigorous minded readers.
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Let us first focus on the perturbative expansion of Π(Q2/µ2, α(µ)) in the strong
coupling. One may easily identify one source of divergence of this expansion in large
orders. To this end, one investigates the diagram of Fig. 1 with the gluon line dressed by
a chain of fermion, gluon and ghost loops, summation of which is essentially equivalent
to placing the running coupling g(k) at the vertices, where k is the momentum which
flows through the gluon line2. Since we are interested in the contribution from soft
gluons, k ≪ Q, after performing all other integrations, we expand in k2/Q2 and obtain

Π

(
Q2

µ2
, α(µ)

)

∋

λ∫
dk2

k2

(
k2

Q2

)m

α(k) =
∑

n

α(Q)n+1

λ∫
dk2

k2

(
k2

Q2

)m(

β0 ln
k2

Q2

)n

, (2.2)

where m is a natural number, “∋” denotes a contribution to the asymptotic behaviour,
which need not be the dominant one, and λ regularizes the UV divergence introduced
through the expansion in k2/Q2. The first coefficient of the β-function, β0, is negative in
our definition. The logarithmic behaviour of the running coupling drives the gluon line
to increasingly softer momentum, k ∼ Qe−n/(2m), as n becomes large. At the same time,
the logarithm is large in this regime, no matter what (fixed!) renormalization scale one
chooses (we have taken µ = Q for convenience). As a result a factorial divergence of
the perturbative expansion

Π

(
Q2

µ2
, α(µ)

)

≡
∑

n

Πn

(
Q2

µ2

)

α(µ)n+1 ∋
∑

n

(
−

β0

m

)n

n!α(Q)n+1 (2.3)

arises3. We may still make progress and define the Borel-transform of Π by

Π̃

(
Q2

µ2
, t

)

≡
∑

n

Πn

(
Q2

µ2

)
tn

n!
. (2.4)

In favourable circumstances [33], Π can be recovered despite its divergent expansion
from the integral representation

Π

(
Q2

µ2
, α(µ)

)

=

∞∫

0

dt e−t/α(µ) Π̃

(
Q2

µ2
, t

)

. (2.5)

However, from eq.(2.3) one infers that the Borel transform Π̃ has (IR renormalon)
singularities at t = −m/β0 on the integration contour. The naive Borel summation
fails in QCD and does not define Π unambiguously. As a measure of this ambiguity
one may take the difference between the contour prescriptions above and under the real
axis in the complex Borel plane. One then concludes that within perturbation theory
we can account for the infrared domain only up to terms of order

2This statement is strictly true only in QED. In QCD, dressing of a gluon by a chain of bubbles
is not a gauge-invariant procedure and one must leave the framework of bubble summation to obtain
the correct coefficient β0 in front of the logarithm in eq.(2.2).

3For completeness, we note that a similar, but sign-alternating divergence proportional to (β0/m)nn!
is present by the same reasoning, applied to the ultraviolet region, k ≫ Q.
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δΠIR(Q2) ∋ exp

(
m

β0α(Q)

)
∼

(
Λ2

Q2

)m

. (2.6)

This deficiency of pertubation theory has a profound reason. In the real world, quarks
and gluons are confined into hadrons and one does not expect this phenomenon to
occur as a mere consequence of summation of the perturbative series and analytic
continuation to the physical region. If QCD is to have any significance for the real world,
perturbation theory must be incomplete and the IR renormalons are just a reminder
that nonperturbative terms must be added. Moreover, the location of singularities on
the positive real Borel axis traces the order of magnitude of these effects.

In case of correlation functions at deep euclidean momentum, the framework for
a systematic incorporation of nonperturbative effects is the short-distance expansion
(SDE) of the operator product jµ(x)jν(0), which leads to the improved expression [28]

Π

(
Q2

µ2
, α(µ)

)

=
∑

n

pn

(
Q2

µ2

)

α(µ)n+1 + CGG

(
Q2

µ2
, α(µ)

)
1

Q4
〈0|

α

π
GG|0〉(µ) + O

(
1

Q6

)
,

(2.7)

where the new input is given by the gluon condensate and its Wilson coefficient function
and higher power-suppressed terms involve the vacuum expectation value of higher
dimensional operators. This representation is supposed to yield an unambiguous answer
for Π, including all nonperturbative effects up to terms of order 1/Q6. How is this
possible in view of the above ambiguities inherent to the perturbative contribution
due to IR renormalons? This question can be answered from a formal and a practical
position and we choose to begin with the first.

The nonperturbative definition of condensates is indeed a delicate problem. We
may pick a physical cutoff, in which case the operator α/πGG can mix with lower di-
mensional ones, the unit operator in particular. In order to define the normal product,
one must subtract these contributions, which is an ambiguous procedure due to the
occurence of renormalons in their series in the limit, when the cutoff is removed. To
fix an exponentially small in α term like 〈0|α/πGG|0〉, one must first give a meaning
to the divergent perturbative expansions in lower dimensional operators, which may
be complex, depending on the contour prescription for the singularities in their Borel
representation. Without this specification, we are thus led to the notion of ambiguous
(and possibly complex) condensates4, although by no means this implies that the cor-
relation function Π is ambiguous (or complex). To the contrary, this imaginary part is
correlated with the summation prescription for the IR renormalon divergence in such
a way, that the final answer for Π is real and unambiguous. There are two messages to

4 A beautiful illustration of this phenomenon has been given in [15] within the 1/N -expansion of
the O(N)-nonlinear sigma model. Within this expansion dimensional regularization provides a non-
perturbative regularization method. Power divergences are then seen to appear as poles at dimensions
depending on the order of perturbation theory. To all orders, they accumulate at d = 4, forcing the
limit d → 4 to be taken through the upper or lower complex d-plane, with a different (and complex)
result, depending on how the limit is taken.
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be taken from these considerations: First, perturbation theory “knows” about nonper-
turbative effects through the singularities of the Borel transform on the positive axis5.
Second, once these effects are identified, they yield strong constraints for the nature of
the IR renormalon singularities [34, 35, 36]. Thus, from the absence of a dimension-
two condensate in eq.(2.7) one excludes the existence of a singularity at t = −1/β0,
which according to eq.(2.6) would call for a 1/Q2-term. In addition, the condensates
(and therefore their ambiguity) satisfy renormalization group equations, which deter-
mine the α-dependence of the ambiguity. This must match the ambiguity in the Borel
representation of the perturbative series, thus fixing the nature of the corresponding
singularity.

We want to emphasize that the appearance of imaginary parts in exponentially small
components added to a divergent series is far more general than the SDE, and is just
an example of the so-called Stokes-phenomenon [37], which generically arises in asymp-
totic expansions with fixed-sign divergence. It is important to realize that the Stokes
discontinuities are formal: After proper summation of all terms, one obtains an ana-
lytic function, and, paradoxically, the Stokes discontinuities occur, because the function,
which is represented by the asymptotic expansion, is analytic. It is the most economic
way for an asymptotic expansion to keep up with the analyticity of the function over a
finite phase range of the expansion parameter.

Miraculously, the formal complexities, which we have just reviewed, have never been
an obstacle to the practice of QCD sum rules, where, for instance, the gluon condensate
is added with some definite value to a few low-order terms of the perturbative expansion.
To understand this better, we observe that, although eq.(2.7) gives the correct asymp-
totic expansion of Π, it is not quite the implementation of Wilson’s operator product
expansion program. This is not designed to separate perturbative and nonperturba-
tive effects into coefficient functions and matrix elements, respectively, an intrinsically
ambiguous procedure. Instead it disentangles the physics on different distance scales.
Thus one should introduce the factorization scale µ < Q properly, i.e. cut out the
region k < µ from the momentum integrations in the Feynman diagrams contributing
to the coefficient functions and attribute it to the condensates as a non-universal piece.
Although this is extremely awkward in practice – see [38, 39] for illustrative examples –,
one may guess conceptually, how eq.(2.7) is modified. The first perturbative coefficients
are not significantly affected, because they are contributed by internal momenta k ∼ Q.
As one progresses towards higher orders, there is a factorially large contribution from
momenta k ∼ Qe−n, which eventually is eliminated by the constraint k > µ on the
internal integrations. The IR renormalons disappear from all Wilson coefficients. In
turn the condensates develop a complicated dependence on α. An asymptotic expan-
sion in α reveals the IR renormalon as a perturbative contribution to, e.g., the gluon
condensate6:

5Clearly, perturbation theory does not know about all nonperturbative effects. For example, in the
finite mass case a quark condensate term, m〈q̄q〉, appears in eq.(2.7), which is not seen as a renormalon,
because the operator q̄q can not mix with lower dimensional ones, owing to its transformation properties
under chiral symmetry. We shall check this explicitly in Sect. 4.

6The asymptotic behaviour of the perturbative contribution is universal. To connect to the formal
position, note that c′ should formally be considered ambiguous and carries the Stokes discontinuity.
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〈0|
α

π
GG|0〉(µ) = cµ4

∑

n

(
−

β0

2

)n

n!n−2β1/β2

0 α(µ)n+1+c′µ4e2/(β0α(µ))α2β1/β2

0 (1+O(α)) (2.8)

The whole point of the QCD sum rules relies on the fact that this perturbative con-
tribution is small compared to “anomalously” large, genuine nonperturbative effects in
the infrared, and can be neglected [40]. From the theory point of view this “rule of
discarding the perturbative piece of condensates” remains one of the mysteries of QCD.
It could not have been guessed in advance and is justified only by the empirical fact
that the sum rules work. In particular, it is far from obvious that the IR renormalons
are irrelevant outside the context of the SDE.

Though the existence of renormalons can hardly be doubted on physical grounds,
a literal proof does not exist even for the scalar Φ4 theory in four dimensions7 due to
the failure of continuum field theory in providing a nonperturbative definition of the
theory. For this reason, various forms of 1/N expansions have become the state-of-
the-art approach to renormalons. In QED and, for lack of anything more appropriate,
also in QCD, one chooses 1/Nf as an expansion parameter, where Nf is the number
of massless fermions. To organize this expansion, define a = αNf and expand in 1/Nf

at fixed a. In order 1/Nf , where the renormalons appear first, one has to calculate
all diagrams with an arbitrary number of fermion loops inserted into the gluon line
of the two-loop diagrams such as in Fig. 1. Since all the dependence on the order in
a resides in the number of fermion bubbles, the summation of these diagrams can be
taken directly on the gluon propagator, see Fig. 2. The (untruncated) sum of n bubbles
is given by

DAB
µν,n(k) = iδAB kµkν − k2gµν

(k2)2
(−π0(k

2))n (2.9)

where the Landau gauge has been assumed and renormalization of the fermion bubbles
is already understood. Thus

π0(k
2) = −

a

6π

(

ln
−k2

µ2
+ C

)

(2.10)

with a scheme-dependent finite renormalization constant C. In the MS-scheme C =
−5/3. It is then easy to find that the Borel-transformed correlation function to order
1/Nf is simply obtained by replacing the usual gluon propagator by

DAB
µν (k, u) =

∞∑

n=0

1

n!
DAB

µν,n(k)

(
t

a

)n

= iδAB

(
eC

µ2

)−u
kµkν − k2gµν

(−k2)2+u
. (2.11)

We have defined u ≡ −β0t with t the Borel parameter. This propagator includes the
renormalization of the fermion bubbles, which is equivalent to renormalization of the
coupling in the exponent of eq.(2.5). In this order of the flavour expansion, gluons do not

7The intrepid reader is referred to ref. [41], which comes closest to a proof.
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contribute to the β-function and β0 = 1/(6π). Unfortunately, we lost the asymptotic
freedom property and QCD is identical to QED to this order! In particular, the IR
renormalons move to the negative real axis in the Borel plane. Despite its obvious
inadequacy to describe the dynamics of QCD, the 1/Nf expansion has nonetheless
proven successful in detecting the position of renormalons, once we substitute for β0

its full value β0 = 1/(6π) − 11/(4πNf). The reason is of course the intimate relation
of renormalons to the scale dependence of the effective coupling. Thus, tracing the
fermionic contribution to the β-function, we get the remaining part – i.e. the gluon
and ghost bubbles and whatever else is needed to restore gauge invariance – for free.
As an illustration consider the remarkably simple expression for the Borel transform of
the correlation function of two vector currents to order 1/Nf [42]8 (see also [43]):

Π̃

(
Q2

µ2
, u

)

= −
8

3π3Nf

(
Q2

µ2
eC

)−u
1

1 − (1 − u)2

∞∑

k=2

(−1)kk

(k2 − (1 − u)2)2
(2.12)

It exhibits the expected UV renormalons at negative integers (the singularity at u = 0
must be killed by renormalization or by taking one derivative with respect to Q2) and
the IR renormalons at u = 2, 3, . . .. As required there is no IR renormalon at u = 1,
i.e. t = −1/β0, which would correspond to a dimension-2 operator in the SDE, and the
IR renormalon at t = −2/β0 can be shown to be a simple pole as a consequence of the
vanishing one-loop anomalous dimension of the gluon operator α/πGG [32, 42]. The
1/Nf expansion can not detect all singularities of the Borel transform that should be
present in QCD. Instanton singularities produce effects that scale as exp(−4πNf/a) and
will not be seen to any order in 1/Nf . As far as renormalons are concerned, however,
all present knowledge supports the assumption that the 1/Nf expansion is relevant,
provided we substitute β0 by its full value.

We will employ the 1/Nf expansion in the ensueing sections because of its trans-
parency in displaying directly the singularities in the Borel plane, but wish to stress
again that this expansion does not contain more information than what can already be
extracted from an asymptotic expansion of the Feynman integrands of the low-order
diagrams. Indeed, this is just the way to obtain the coefficient functions of higher
dimensional operators in the SDE.

3 The heavy quark expansion: Matching to all or-

ders

The starting point for HQET, which may be borrowed from nonrelativistic QED, is
that the heavy quark spinor splits into a large and a small component, when the heavy
quark is almost on-shell. One therefore introduces an effective heavy quark field

hv(x) =
1+ 6v

2
eimQ(v·x) Q(x) (3.1)

8Compared to ref. [42], the sign in the definition of u has been changed and the overall coefficient
adjusted to the QCD case.
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by projecting on the large component and removing a phase. v is the four-velocity of
the heavy quark and mQ is usually referred to as the “heavy quark mass”. In this way
one arrives at the effective Lagrangian eq.(1.1). The effective propagator reads

1+ 6v

2

i

v · k
(3.2)

and the quark-gluon vertex is −igvµT
A
ab (provided one multiplies by (1+ 6 v)/2 for each

external heavy quark line), which reveals immediately the flavour and spin independence
of the effective theory.

In the following subsections we study in detail the heavy quark expansion of the
inverse propagator in QCD to all orders in perturbation theory, its matching onto
the HQET, the pole mass of the heavy quark in QCD and the role of the expansion
parameter mQ. As it turns out, the inverse propagator is not only the simplest, but
also the most instructive object to consider. We consider the theory with one heavy
and Nf massless quarks and expand in 1/Nf .

3.1 The self-energy of a heavy quark

The full propagator in the effective theory can be written as

1+ 6v

2
iSeff (vk) S−1

eff (vk) ≡ vk − Σeff (vk) . (3.3)

The Borel transform of the self-energy is obtained from the diagram depicted in Fig. 3,
where the gluon line represents the summation over an arbitrary number of renormalized
fermion bubbles as explained in Sect. 2. Using eq.(2.11), we are left with a single
integration over the gluon momentum with the result (CF = 4/3)

Σ̃part.ren
eff (vk, u) =

CF

4πNf
vk

(
−

2vk

µ

)−2u

e−uC (−6)
Γ(−1 + 2u)Γ(1 − u)

Γ(2 + u)
. (3.4)

All calculations have been performed in dimensional regularization. It turns out that
at generic u the result is finite and one can actually put d = 4 as done in eq.(3.4). The
only renormalization that has still to be done is to account for the overall subtraction
of the whole diagram. As shown in App. A, this simply amounts to subtracting the
pole of the Borel transform at u = 0 and eq.(3.4) is corrected to

Σ̃eff (vk, u) = Σ̃part.ren
eff (vk, u) +

CF

4πNf
vk

(
−

3

u
+ RΣeff

(u)

)
. (3.5)

The function RΣeff
(u) is entire in the Borel plane, if a renormalization scheme with

analytic counterterms is chosen (such as MS) and can be neglected in the discussion of
singularities. More on the issue of scheme-dependence can be found in App. A. From
the definition of the Borel transform in eq.(2.4) one can read off that the coefficient
pn of the perturbative expansion of the self-energy can be recovered from an expansion
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of the Borel transform in u. More precisely, to obtain the coefficient of an+1 in the
expansion in the coupling, one has to take n derivatives at u = 0:

pn

(
vk

µ

)
= (−β0)

n dn

dun
Σ̃eff (vk, u)|u=0 (3.6)

In particular, the large-n behaviour is dominated by the pole closest to the origin u = 0
of the Borel plane.

Let us now scrutinize the singularities of Σ̃eff(vk, u). We find IR renormalons at
positive integer u (i.e. t = −n/β0 on the positive Borel axis9) and UV renormalons
at u = 1/2,−1/2,−1,−3/2,−5/2, . . .. To ascertain the UV or IR nature of a given
singularity, one either has to inspect the diagram explicitly or to observe the general
rule that whenever u occurs with a positive sign in the argument of the Gamma-function
in the numerator of a Borel transform, it is UV and with a negative sign it is IR. We
are hardly surprized to find IR renormalons on the positive axis, since the effective
theory must coincide with QCD in the infrared. The disturbing novelty is an ultraviolet
renormalon at positive u = 1/2, which is not Borel-summable and indicates an intrinsic
nonperturbative ambiguity of HQET that can not be remedied by any nonperturbative
effect. The Lagrangian eq.(1.1) as it stands must therefore be abandoned as a sensible
quantum field theory beyond perturbation theory.

It is easy to clarify the origin of this UV-renormalon. The first order correction to
the self-energy is proportional to

∫
d4p

(2π)4
1

p2(vp + vk)
, (3.7)

which is linearly divergent. The emergence of a linear divergence at this point is phys-
ically very transparent. A very heavy quark interacts with its environment only as a
static, point-like colour source. The self-energy is then simply given by the energy of the
Coulomb field of the source, α(r)/r, which is linearly divergent for a point-like object.
The divergent part must be included into the renormalization of the mass of the source.
As a consequence of this linear divergence, the series of UV renormalons starts from
u = 1/2, extending to u = −∞, and not from u = 0 to u = −∞, as usual. Whereas the
standard (dimensional) renormalization of logarithmic divergences subtracts the pole
at u = 0, it does not subtract the linear divergences. This procedure is legitimate as
long as one stays within perturbation theory, where a distinction between powers and
logarithms is meaningful. Beyond perturbation theory the linear divergences can not
be ignored. One could therefore think of introducing a physical, dimensionful cutoff λ.
Inevitably, one induces a counterterm λh̄vhv, which can not be absorbed into the pa-
rameters of the effective Lagrangian, eq.(1.1). This reasoning suggests that the HQET
may be rescued at the price of introducing an additional parameter that appears as a
mass term. Note the similarity with massless Φ4 theory in four dimensions. We en-
counter a similar kind of fine-tuning, which is very familiar from the scalar theory, in
HQET, where the natural mass of the effective heavy quark is mQ, the UV cutoff of

9As mentioned previously, we always abstract from the 1/Nf expansion and restore the full β0,
which is negative.

11



HQET. This will spoil the heavy quark expansion, since the Lagrangian in eq.(1.1) has
been constructed precisely to eliminate the mQ-dependence. To avoid this problem one
must impose a renormalization condition on the two-point function that fixes the mass
to zero, which is automatically achieved by dimensional renormalization. This does
not prevent the appearance of a mass term beyond perturbation theory and, indeed,
this is what occurs automatically, when the heavy quark limit is constructed with an
expansion parameter which is well-defined beyond perturbation theory.

3.2 Renormalon singularities in the pole mass

To explain our previous assertion, we digress in this subsection from HQET and deal
with the pole mass in QCD. To this end, consider the self-energy of a massive quark.
The full propagator is defined by

iS(p,m) =
i

6p − m − Σ(p,m)
(3.8)

Σ(p,m) = m Σ1(p
2,m) + (6p − m)Σ2(p

2,m)

The diagram analogous to the one in Fig. 3 but with a quark of finite mass yields the
Borel transforms:

Σ̃1(p
2,m, u) =

CF

4πNf

(
m2

µ2

)−u

e−uC 3Γ(1 − u)Γ(u) 2F1

(

u, 1 + u, 2;
p2

m2

)

+ Σ̃2(p
2,m, u) +

CF

4πNf

(
−

3

u
+ RΣ1

(u) − RΣ2
(u)

)
(3.9)

Σ̃2(p
2,m, u) =

CF

4πNf

(
m2

µ2

)−u

e−uC
(
−

3

2

)
uΓ(1 − u)Γ(u) 2F1

(

u, 2 + u, 3;
p2

m2

)

+
CF

4πNf
RΣ2

(u)

Here m denotes the renormalized mass (in the scheme specified by C and the functions
RΣ1

(u) and RΣ2
(u)) at the normalization point µ and 2F1 is the hypergeometric func-

tion. Let us pause for a glance at the singularities of the self-energy. If the potential
singular point p2 = m2 of the hypergeometric function is avoided, the UV renormalons
occur at negative integers and the IR renormalons at positive integers, just as expected
in QCD from the considerations of Sect. 2. The IR renormalon at u = 1 is not in
conflict with the short-distance expansion, which for the inverse propagator contains
gauge-variant operators of dimension two like AµAµ, where Aµ is the gluon field.

Next we move to the pole mass, which not only is the key quantity in the derivation
of the HQET, but also has a considerable interest in itself, as it appears in many
phenomenological applications. Then it is important to keep in mind that the concept
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of a pole mass has no natural extension beyond perturbation theory10. Thus we have
to find the solution to

6p − m − Σ(p,m)|p2=m2

pole
= 0 (3.10)

in the form of a series expansion

mpole

(
m

µ
, a

)
= m

(

1 +
∞∑

n=0

rn

(
m

µ

)
an+1

)

. (3.11)

Keeping in mind that the self-energy is of order 1/Nf , we find

mpole = m

(

1 + Σ1(m
2
pole,m) + O

(
1

N2
f

))

. (3.12)

This is still a complicated implicit equation for mpole. A crucial simplification arises
from the observation that mpole = m + O(1/Nf), which eliminates mpole from the r.h.s.
to order 1/Nf . Taking the Borel transform of eq.(3.11) and the explicit expression
eq.(3.9) for Σ1, we obtain11

m̃pole

(
m

µ
, u

)
= m



δ(u) +
CF

4πNf




(

m2

µ2

)−u

e−uC 6 (1 − u)
Γ(u)Γ(1 − 2u)

Γ(3 − u)
−

3

u
+ RΣ1

(u)







 .

(3.13)

The scheme dependence residing in m cancels the scheme dependence of the expression
in brackets up to terms of order 1/N2

f , and mpole proves to be scheme-invariant, as it

must be. In the MS-scheme one finds (following the procedure of App. A) RΣ1
(u) =

−5/2 + 35u/24 + O(u2) and

rMS
0

(
m

µ

)
= m−1 × m̃pole

(
mMS

µ
, u = 0

)
=

CF

4πNf

[

4 + 3 ln
µ2

m2
MS

]

(3.14)

reproduces the well-known relation between the pole mass and the MS-mass to lowest
order (r0 is the coefficient of a = αNf).

It is seen immediately from eq.(3.13) that the on-shell limit created new singularities
in the Borel transform! The pole mass has an infrared renormalon at u = 1/2, implying
a stronger divergence of the series, eq.(3.11), than for the expansion of the self-energy at
the non-singular points p2 6= m2. Without any reference to HQET this tells us, that the
pole mass can only be defined up to terms of order ΛQCD, unless some ad hoc definition
is employed12. To make this precise, one may attempt Borel summation and take half

10There might still be a pole in the propagator, when it is defined in a nonperturbative way. Corre-
sponding to a coloured object, it is however alien to our world.

11If a constant term is present, it is useful to include it into the Borel-transform with a δ-function,
which preserves the form of the inverse Borel transform, eq.(2.5).

12Or, to make contact with one of our previous footnotes: The pole of the nonperturbatively defined
propagator can be obtained from eq.(3.11) only by adding terms proportional to ΛQCD.
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the difference of the values obtained from the contour prescription above and below the
IR renormalon pole as a measure of the inherent uncertainty of the pole mass,

δmpole =

∣∣∣∣∣∣
1

2

∫

C′

dt e−t/a(µ) m̃pole

(
m

µ
,−β0t

)∣∣∣∣∣∣
, (3.15)

where the contour C ′ wraps around the positive real axis with the origin excluded. This
results in

δmpole =
CF

2Nf |β0|
e−C/2 m(µ = m) exp

(
1

2Nfβ0α(m)

)

(3.16)

=
CF

2Nf |β0|
e−C/2 ΛQCD

(

ln
m2

Λ2
QCD

)β1/(2β2

0
)

,

where β1 = −1/(4πNf)
2×(102−38Nf/3) is the second coefficient of the β-function (for

the rescaled coupling a = αNf ) and we have indicated the renormalization point explic-
itly. Note that e−C/2 ΛQCD is scheme-independent [45, 46] and the remaining scheme-
dependence is suppressed by 1/ ln(m2/Λ2

QCD). An alternative (but scheme-dependent)
estimate of δmpole can be obtained from the minimal term of the perturbative expan-
sion and differs from the above by a factor (4Nf |β0|α(m)/π)1/2 ≈ 0.5. For a numerical
estimate we use an average and obtain

δmpole ≈ (170 − 280)MeV . (3.17)

The numerical values are given for the bottom quark and four light flavours. We have
varied ΛQCD ≈ (200−300) MeV and mb(mb) ≈ (4.5−5.3) GeV [44]. We emphasize that
this is a crude numerical estimate for three reasons: First, the ambiguity of the Borel
sum or the minimal term of the series can only give an indication of the size of the
expected nonperturbative effects. Second, the numerical coefficient receives corrections
of order 1/N2

f . Third, the 1/Nf expansion does not provide us with the correct nature
of the IR renormalon singularity in general – e.g., to all orders in 1/Nf one expects the
pole to turn into a branch point. Therefore we do not control factors of α(mb) on the
r.h.s. of eq.(3.17), which can produce a substantial change. Nevertheless, the range
of values quoted in eq.(3.17) should give the right order-of-magnitude estimate for the
ambiguities inherent to the concept of the pole mass. The most important, but maybe
not too surprizing statement [17], is that this ambiguity is of order ΛQCD and not, say,
Λ2

QCD/m.
There are a number of simple conclusions to be drawn from the presence of the

IR renormalons in the pole mass which still warrant a discussion. A matter of direct
relevance is the calculation of total inclusive widths of B-hadrons, which is receiving
a lot of attention in the literature. Within perturbation theory the total decay widths
are given simply by the total widths for the free quark decay, expressions for which can
be taken over from QED studies of the muon decay
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Γ(B → Xqlν̄l) =
G2

F |Vbq|
2m5

b, pole

192π3
(1 + perturbative series) . (3.18)

The result of principal interest, which triggered all later discussions, is the observation
[22] that the leading nonperturbative effects in the total widths are expressed in terms
of the expectaion values of dimension five operators of the kinetic energy and the chro-
momagnetic interaction, and are down by two powers of the b-quark mass compared
to the perturbative contribution. Within the operator product expansion there is no
way to obtain corrections of order 1/mb, and it is widely believed (see, e.g., [23]) that
perturbation theory is accurate to 1/m2

b accuracy for the total widths, provided the
mass parameter which factors eq.(3.18) coincides with the pole b-quark mass. More-
over, the 1/m2

b corrections prove to be quite small. In this situation it is appealing to
try to determine the pole mass from the experimental data on the total widths, a task
undertaken for instance in [24].

The presence of the IR renormalon in the pole mass invalidates this program. It
implies that the ambiguity in the perturbative series defining the pole mass inevitably
induces an uncertainty of order ΛQCD/mb for the decay widths. The lesson which should
be learnt from the operator product expansion approach of ref. [22] is that the difference
in the total decay widths of different B-hadrons is a O(1/m2

b) effect, while the question
of the absolute normalization is left open. In fact, one could hope that the uncertain-
ties in the summation of the perturbative series in eq.(3.18) compensates exactly the
uncertainties in the pole mass, rendering the perturbative prediction unambiguous (up
to 1/m2

b accuracy) when expressed in terms of the running renormalized quark mass at
the scale mb

13. This question deserves further study.
Thus, the data on the total decay widths can not be used to determine the pole

b-quark mass, but rather can provide one with a one more definition of it (using the
truncated series in eq.(3.18)). In this respect, this definition is as good as any other
phenomenological definition, e.g. coming from the studies of B-mesons or mesons of the
Υ family in the framework of the QCD sum rules [25, 26, 27]. The existing estimates
for the b-quark mass span the range mb = 4.55 − 4.85 GeV, and there has been much
debate on which of these values should be preferred. In view of eq.(3.17) a difference of
δmpole ≈ few hundred MeV can easily be attributed to the ambiguity of the definition of
a quantity, called “pole mass”, beyond perturbation theory. Thus, any claim for mpole

with better accuracy should be considered as hazardous, unless the precise meaning of
this quantity is specified.

3.3 Matching and the residual mass term

The self-energy of a massive quark contains powers of logarithms of the type ln(m2 −
p2)/m2 (times factors of (m2 − p2)/m2), which are large, when the quark is heavy

13 V.B. is grateful to N.G.Uraltsev for a discussion of this point. We understand that a detailed study
of this issue will be presented in the work [47], and we gratefully acknowledge receiving a preliminary
version of this paper prior to its publication.

15



and near mass shell, p2 − m2 ≈ mΛQCD. HQET is designed to deal with these large
logarithms. To this end, one introduces a factorization scale µ and writes

ln
p2 − m2

m2
= ln

p2 − m2

mµ
+ ln

µ

m
. (3.19)

The first logarithm is small near mass shell, when µ ≈ ΛQCD is taken and the machinery
of renormalization group techniques can then be applied to sum the large logarithms of
the type ln(m/µ). Remarkably, this factorization can be achieved for the Borel trans-
forms, eq.(3.9), using an identity that relates hypergeometric functions with argument
z and 1 − z. We obtain

Σ̃1(p
2,m, u) =

CF

4πNf
e−uC 3

{(
m2

µ2

)−u
Γ(u)Γ(1 − 2u)

Γ(2 − u)
2F1

(

u, 1 + u, 2u; 1 −
p2

m2

)

+

(
m2 − p2

m2

)(
m2 − p2

mµ

)−2u
Γ(1 − u)Γ(−1 + 2u)

Γ(1 + u)
2F1

(

2 − u, 1 − u, 2 − 2u; 1 −
p2

m2

)}

+ Σ̃2(p
2,m, u) +

CF

4πNf

(
−

3

u
+ RΣ1

(u) − RΣ2
(u)

)
(3.20)

Σ̃2(p
2,m, u) =

CF

4πNf
e−uC (−3u)

{(
m2

µ2

)−u
Γ(u)Γ(1 − 2u)

Γ(3 − u)
2F1

(

u, 2 + u, 2u; 1 −
p2

m2

)

+

(
m2 − p2

m2

)(
m2 − p2

mµ

)−2u
Γ(1 − u)Γ(−1 + 2u)

Γ(2 + u)
2F1

(

3 − u, 1 − u, 2 − 2u; 1 −
p2

m2

)}

+
CF

4πNf
RΣ2

(u) .

In the heavy quark limit 1 − p2/m2 ≈ ΛQCD/m (provided m is chosen judiciously,
see below) and the series expansion of the hypergeometric function realizes directly
the heavy quark expansion. At each order, expansion of the Borel transform in u
produces two series containing logarithms of either m2/µ2 or (p2−m2)/(mµ) only, thus
completing the factorization to all orders in the heavy quark expansion and to all orders
in perturbation theory in a (but to leading order in 1/Nf). Before we can construct the
matching explicitly, we have to discuss the choice of the expansion parameter.

In a heavy meson most of its momentum p is carried by the heavy quark, thus
write p = mQv + k. Fixing the velocity v of the heavy quark (thereby selecting a
sector in the Hilbert space of the effective theory once and forever), we are still left
with some freedom to choose mQ. We do not want the residual momentum k to scale
with the heavy mass, so intuitively we guess that mQ should be a “physical” mass. In
perturbation theory, it does not matter, whether we take the pole mass or the meson
mass, but if we want to do better and account for terms of order ΛQCD/mQ consistently,
a precise definition of mQ must be given. For the time being, we satisfy ourselves with
the observation, that after this is done, we could expand mQ in a double series in the
coupling and ΛQCD/m, where m is the renormalized mass, of the form
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mQ = m

(

1 +
∑

n

sna(m)n+1

)

− δm + O

(
Λ2

QCD

m

)

. (3.21)

This fixes the parameter mQ once and forever and different choices of mQ define different
heavy mass expansions. We call

δm = Cme1/(2β0α(m))α(m)b
′

(1 + O(α)) = CΛQCDα(m)b(1 + O(α)) (3.22)

the residual mass term and C, b (b′) are constants that depend on the definition of mQ

(in particular, they could be zero)14. With these definitions at hand, we can continue
and expand the self-energies, given in eq.(3.20), in k/mQ. To be precise, we will consider
the inverse propagator, see eq.(3.8), sandwiched between two projectors (1+ 6v)/2, and
define

1+ 6v

2
S−1

P (vk,mQ) =
1+ 6v

2
S−1(p,m)

1+ 6v

2
. (3.23)

After a little algebra, we arrive at the following expression for the Borel transform of
the inverse propagator:

S̃−1
P (vk,mQ, u) = m̃Q

(
m

µ
, u

)

−m



δ(u) +
CF

4πNf




(

m2
Q

µ2

)−u

e−uC 6 (1 − u)
Γ(u)Γ(1 − 2u)

Γ(3 − u)
−

3

u
+ RΣ1

(u)









+ vk

[

δ(u) −
CF

4πNf
e−uC

{(
m2

Q

µ2

)−u

6 (−1 + u2)
Γ(u)Γ(1 − 2u)

Γ(3 − u)

+

(
−

2vk

µ

)−2u

(−6)
Γ(1 − u)Γ(−1 + 2u)

Γ(2 + u)

}

−
CF

4πNf
RΣ2

(u)

]

+ O

(
(vk)2

mQ
,

1

N2
f

)

(3.24)

≡ m̃Q

(
m

µ
, u

)
− m̃pole

(
m

µ
, u

)
+ C̃

(
mQ

µ
, u

)
⋆ S̃−1

eff (vk, u) + O

(
(vk)2

mQ
,

1

N2
f

)

Here

C̃

(
mQ

µ
, u

)
= δ(u) −

CF

4πNf
e−uC

(
m2

µ2

)−u

6 (−1 + u2)
Γ(u)Γ(1 − 2u)

Γ(3 − u)

+
CF

4πNf

(
−

3

u
+ RΣeff

(u) − RΣ2
(u)

)

S̃−1
eff (vk, u) = vk δ(u) − Σ̃eff (vk, u) , (3.25)

14 Taking δm to be of order ΛQCD anticipates eq.(3.28). Here it is only important to note that, if
δm is non-zero, it is exponentially small in α.
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and m̃pole and Σ̃eff have been defined in eqs.(3.13) and (3.5). The “⋆” denotes the con-
volution product15. Finally m̃Q stands for the Borel transform of the series in eq.(3.21).
The residual mass term is exponentially small in the coupling and therefore not seen
in the “perturbative” definition of the Borel transform, which we use throughout this
paper. Therefore including possible terms of order ΛQCD from the definition of mQ, we
recover the inverse propagator through

S−1
P (vk,mQ, a) =

∞∫

0

dt e−t/a S̃−1
P (vk,mQ,−β0t) − δm + O

(
Λ2

mQ

)

. (3.26)

Eq.(3.24) is crucial for understanding the structure of renormalon singularities in the
heavy quark limit and is worth being discussed in great detail. Assume first that
the expansion parameter mQ equals the renormalized mass m, i.e. m̃Q = mδ(u) and
δm = 0. Let us list the following observations:

(1) In perturbation theory u should be considered as infinitesimal and factors like
(m2

Q/µ2)−u turn into a series in ln(m2
Q/µ2), when S̃−1

P is expanded in u to yield the

perturbative expansion of S−1
P in a. Eq.(3.24) has a very simple structure: The first

two lines scale with mQ and are given by m̃Q − m̃pole. The term proportional to vk has
a factorized form and can be written as the product of a coefficient function C̃, that
contains all the (logarithmic) dependence on mQ, and the effective inverse propagator,
which is mQ-independent. These terms appear as a sum and not as a product in
eq.(3.24), because we neglect terms of order 1/N2

f , cf. eq.(3.25). It is evident from
eq.(3.20) that this factorization holds true in higher orders in the 1/mQ-expansion,
where to order (vk)2/mQ it matches onto the kinetic and magnetic energy contribution
to the self-energy of a heavy quark.

(2) The term porportional to vk is finite at u = 0 as it must be for the renormal-
ized inverse propagator. However, the two terms in curly brackets – corresponding to
coefficient function and effective propagator16 – have poles at u = 0 separately. Factor-
ization has introduced UV divergences into coefficient functions and matrix elements.
By subtracting and adding a term (−3)/u + RΣeff

(u) to the expression in curly brack-
ets as indicated in eq.(3.25), one chooses a particular factorization scheme. As known
from many other examples there is an arbitrariness in the separation of contributions
to coefficient functions and matrix elements, which here is represented by the arbitrary
function RΣeff

(u). In the language of HQET, a particular factorization scheme corre-
sponds to a particular wave function renormalization of the effective heavy quark field
hv.

(3) Consider now eq.(3.24) at finite u. In this way we probe the asymptotic be-
haviour of the perturbative expansion (in u or, equivalently, in a) and explore the
nonperturbative effects which are seen by the renormalon singularities. In view of our
previous discussion, we are mainly interested in the point u = 1/2, but the effect of

15f̃ ⋆ g̃ is the Borel transform of f · g and is given by (f̃ ⋆ g̃)(u) =
u∫

0

du′f̃(u′) · g̃(u − u′) .

16In a slight abuse of language, we shall refer to the effective quantities that depend on vk also as
“matrix elements”.
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factorization on renormalons is quite general: it introduces new infrared renormalons
into the coefficient functions (from Γ(1− 2u)) and ultraviolet renormalons into the ma-
trix elements (from Γ(−1 + 2u)), which are not present in the non-expanded inverse
propagator. Thus these singularities must cancel each other, just as the singularity at
u = 0 does, and indeed they do, but the cancellation takes place among different orders
in the 1/mQ-expansion. For example, the IR renormalon in the pole mass at u = 1/2
cancels the UV renormalon at u = 1/2 in S̃−1

eff and similarly, the singularity in C̃ cancels
an UV renormalon in the matrix elements in the next order in 1/mQ. At u = 3/2 the
cancellation takes place over three orders in 1/mQ. Of course, the pole at u = 1 is not
fully eliminated, since it is present in S̃−1

P as mentioned previously.
(4) Factorization thus affects the structure of renormalons in a very similar way as

we are used to in finite orders of perturbation theory (a small neighbourhood of u = 0)
with the difference that the divergences are related over different orders in the expan-
sion parameter mQ. It is tempting to introduce a factorization scheme for renormalon
poles in general, just as one usually does in perturbation theory, i.e. regarding the
“renormalon” pole at u = 0 in particular. For instance, the replacements

m̃pole

(
m

µ
, u

)
−→ m̃pole

(
m

µ
, u

)
+ µ

CF

4πNf

4

1 − 2u

S̃−1
eff (vk, u) −→ S̃−1

eff (vk, u) + µ
CF

4πNf

4

1 − 2u
(3.27)

will eliminate the divergence coming from u = 1/2 from the perturbative expansions
of the pole mass and the effective self-energy without affecting S̃−1

P . Technically, this
can be achieved within dimensional regularization by subtraction of the poles at d = 3.
However, such a substitution messes up the 1/mQ-expansion, since it introduces powers
of the scale µ. In fact, it acts analogously to a hard cutoff in the Feynman integrals,
which removes the contribution to the pole mass from the IR region and from the UV
region to the self-energy. We recognize that the present discussion of the heavy mass
expansion parallels the discussion of the short-distance expansion in Sect. 2 and indeed
the renormalons appear for the very same reason, that, e.g. for the coefficient functions,
diagrams with a large number of bubbles are dominated by internal momenta smaller
than µ. Quantitatively, the crucial difference to the SDE is that the infrared effects
appear at order ΛQCD/mQ (take µ = mQ) and not at order Λ4

QCD/Q4.
After these remarks on the heavy mass expansion in general, we are in the position to

consider the construction of HQET. The effective Lagrangian, eq.(1.1), is independent
of mQ and supposed to extract the correct dependence of the Green functions on mQ

to leading order. From eq.(3.24) it follows that this purpose cannot be accomplished
with the renormalized mass as the expansion parameter, but one must choose mQ such
that it coincides with the pole mass to all orders of perturbation theory,

m̃Q

(
m

µ
, u

)
= m̃pole

(
m

µ
, u

)
, (3.28)

in order to cancel the term that scales with mQ. This results in17

17It is sometimes understood that the coefficient function for the propagator is unity. This can be
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S̃−1
P (vk,mQ, u) = C̃

(
mQ

µ
, u

)
⋆ S̃−1

eff (vk, u) + O

(
(vk)2

mQ
,

1

N2
f

)

. (3.29)

The price to pay for the elimination of all terms scaling with mQ in perturbation theory
is, however, that the renormalon singularity at u = 1/2 is no longer cancelled. With
S̃−1

P of eq.(3.29) inserted into eq.(3.26), the Borel integral is no longer well-defined up to
u = 1 as it was with the non-expanded inverse propagator (or the choice mQ = m). We
have introduced a spurious renormalon into the construction of HQET, which renders
the Borel integral ambiguous by terms of order ΛQCD! This is not a big surprize, because
the Borel integral for mQ is itself ambiguous by terms of this order, see eq.(3.28), and
the discussion of the previous subsection. It is now high time to return to the definition
of mQ, eq.(3.21).

Once we want to use HQET beyond perturbation theory and include corrections of
order ΛQCD/mQ an unambiguous definition of mQ becomes imperative. Let us therefore
imagine a summation prescription for the divergent expansion in eq.(3.21) that defines
mQ as a function of a with certain analyticity properties. This fixes the exponentially
small in a terms, which are not seen in the perturbative expansion. We can accomplish
this with Borel summation, if we add a residual mass term δm of order ΛQCD as in
eq.(3.21) and understand that it is formally ambiguous and possibly complex. To
explain this, recall that one must give a prescription for the pole in the Borel integral
at u = 1/2. The Borel integral will differ whether one chooses to deform the contour
into the upper or lower complex plane and the residual mass term must cancel this
ambiguity, if mQ itself is unambiguous18. This residual mass term is obligatory and its
presence in eq.(3.26) cancels precisely the ambiguity from the spurious pole at u = 1/2
in the Borel sum. In this sense the status of the residual mass term is identical to
the status of the condensates in the SDE. Recall that the ambiguity in the definition
of condensates compensates the IR renormalons in the perturbative expansion. It is
important that δm is not a physical quantity. It is defined as a number only after
one has fixed a summation prescription for the perturbative expansion of the Green
functions in HQET (which, of course, should be done consistently). Apart from this
formal analogy, the residual mass term is very different from condensates in the SDE
and certainly can not be related to condensates in any way. It has no direct dynamical
origin, but it is through this ambiguous residual mass, that HQET remembers that the
concept of a “quark on mass-shell” is not physical, even if the quark is very heavy. The
modifications of the effective Lagrangian of HQET in the presence of a residual mass

achieved by a particular choice of the renormalization scheme in QCD via the function RΣ2
(u), see

eq.(3.24). Clearly, this requires a mass-dependent scheme with non-analytic counterterms (see App.
A). and for this reason we refrain from performing this step, when we discuss the singularities of the
Borel transform. It is not strictly necessary and will not be important for the following.

18 This tacitly assumes that an asymptotic expansion of mQ in a can be performed in a sector around
the positive real a-axis and that the fixed sign divergence for positive a is indeed correlated with a
Stokes discontinuity in the exponentially suppressed terms. We are far from proving such a statement,
which is, however, an underlying assumption in practically all works, which relate the asymptotic
behaviour of perturbation series to “nonperturbative terms” and single out the Borel summation and
its extensions to series with fixed sign divergence. It has been verified in model calculations [15], that
this gives the correct prescription, but is conjecture beyond.
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term have already been given in ref.[16]. If we understand the ambiguous nature of
δm, we can in fact copy all expressions given there. In particular, the leading order
Lagrangian, eq.(1.1), has to be modified in the obvious way

Leff = h̄viv · Dhv − δmh̄vhv + Llight . (3.30)

The appearance of an ambiguous quantity in the Lagrangian might seem peculiar. But
this Lagrangian arises as a remnant of QCD. Without fixing a specific summation
prescription for the Green functions in QCD before the construction of HQET, the
ambiguous residual mass appears in the above Lagrangian to render the Green functions
derived from this Lagrangian unambiguous and invariant under different summation
prescriptions.

To recognize the implications of an ambiguous residual mass term, define Λ̄ as the
difference of the heavy hadron and the heavy quark expansion parameter in the heavy
mass limit:

mP − mQ = Λ̄ + O

(
1

mQ

)

(3.31)

By construction, Λ̄ is well-defined, but it inherits the arbitrariness inherent in the
definition of mQ. It has been shown [16] that the matrix elements of HQET depend
only on the combination

λ̄ = Λ̄ − δm , (3.32)

which is invariant under redefinitions of mQ. It turns out to be an important quantity
for the parametrization of the matrix elements to order 1/mQ. For example, it is
the only unknown parameter governing the 1/mQ-corrections to the decays of a heavy
baryon, where the light quarks are in a spin zero state [48]. We conclude from our above
analysis that this quantity is theoretically ambiguous by terms of order ΛQCD and has
no physical meaning by itself. The “operational” definition, given in [16],

Λ̄ − δm =
〈0|q̄(iv·

←

D)Γhv |M(v)〉

〈0|q̄Γhv|M(v)〉
, (3.33)

where |M(v)〉 denotes a meson state, q a light quark field and Γ a Dirac matrix, is, in
fact, illusive. The matrix element is ambiguous. It can not be directly related to any
physical quantity and defining it requires a nonperturbative regularization, which can
not avoid the renormalon problem. If λ̄ were a physical quantity and could be unam-
biguously determined, this would provide us with a unique nonperturbative definition
of a heavy quark mass, mpole, through eq.(3.31) as is indeed widely maintained (see e.g.
[23, 29]). Unfortunately, this is not so. The decay of a Λb-baryon [48] may serve as an
illustration. The value of λ̄ enters the form factors of this decay at subleading order in
1/mQ. The leading order form factors receive perturbative corrections with a divergent
series expansion which is expected to have a renormalon at u = 1/2. Theoretically,
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corrections of order ΛQCD/mQ are well-defined only after the choice of a summation
prescription for this series. Unless this is done, λ̄ must be ambiguous. Practically, it
might still be useful to fit a value for λ̄ phenomenologically where, again, we appeal to
the analogy with the condensates in the SDE. But there can be no rigorous theoretical
determination of λ̄, as has already been observed on physical grounds in ref. [17], which
in fact has triggered our more formal investigation.

4 The correlation function of heavy-light currents

in HQET

While the quark propagator has been very useful to gain some insight into the structure
of the heavy quark expansion in large orders of perturbation theory, it is not a quantity
of particular physical interest. We devote this section to the study of the Borel transform
of the correlation function of heavy-light currents in HQET. Its spectral density contains
a heavy meson pole and the short-distance expansion of the correlation function provides
access to Λ̄ and the decay constant of the meson through the technique of the QCD
sum rules. To be definite, we consider the perturbative expansion to order 1/Nf of

Π5(ω) = i

∫
d4x eiω(v·x) 〈0|T{j†5(x)j5(0)}|0〉 j5(x) = h̄v(x)iγ5q(x) . (4.1)

The choice of the Dirac matrix turns out to be unimportant, since the pseudoscalar
and vector mesons are degenerate to leading order in the 1/mQ-expansion. The vari-
able ω = vq has the meaning of a frequency, and measures the off-shellness of the heavy
quark, provided that mQ has been unambiguously defined as explained in the previous
section and q is the residual momentum. We will not construct the full matching to
QCD as for the inverse propagator, which would require the calculation of the corre-
sponding correlation function in QCD with a massive quark to obtain the coefficient
function. Π5(ω) is quadratically divergent and the current product needs an additional
subtraction, which is a second-order polynomial in ω. This subtraction can be avoided
by taking three derivatives and we shall consider

D(ω) ≡ ω
d3Π5(ω)

dω3
(4.2)

in the following.
The SDE of the corresponding correlation function in QCD can be repeated in

HQET in a two-step procedure. First, the momenta larger than mQ are integrated out,
which results in a series in 1/mQ of correlation functions of operators in the HQET of
which Π5(ω) is the first term. Second, the products of effective operators are expanded
at short distances, that is ΛQCD ≪ ω < mQ. The SDE of Π5(ω) is given by [49]

D

(
ω

µ
,α(µ)

)
= −

3

π2

(

1 +
α(µ)

π

{
8

3
+

4π2

9
− 2 ln

(
−

2ω

µ

)}

+ O(α2)

)

(4.3)
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−
3

ω3
〈q̄q〉(µ)

(
1 + 2

α(µ)

π
+ O(α2)

)
+

15

4ω5
〈gq̄σGq〉(µ) (1 + O(α)) + . . . ,

where the omitted series of higher dimensional operators starts with four-quark oper-
ators. Since the heavy-light current acquires an anomalous dimension in the effective
heavy quark theory, the two-loop perturbative correction is now scheme-dependent in
contrast to the case of vector currents of light quarks, and the above result is given
in the MS-scheme. Note also that to leading order in the 1/mQ-expansion there is no
contribution from the gluon condensate.

As familiar by now, to order 1/Nf we are interested in the contribution from dia-
grams with an arbitrary number of light quark loops inserted into the gluon line of the
two-loop diagrams. The Borel transform of this class of diagrams can conveniently be
computed by inserting the Borel-transformed gluon propagator, eq.(2.11), see Fig. 4.
The remainder is technical. On the one hand the calculation is far less tedious than
in the light-quark case [42], since the spinor structure simplifies in the heavy quark
limit. On the other hand, the correlation function has an anomalous dimension and
one looses the Ward identity (which holds in QCD to order 1/Nf), which ensured that
all divergences cancel after one subtraction of the correlation function of light quark
currents. The correlation function of the effective heavy-light currents needs an explicit
renormalization and we refer again to App. A, where the procedure is outlined. It turns
out that only the diagram (c) in Fig. 4 has a pole at u = 0, which is eliminated in this
way. The most difficult part comes from the non-reducible scalar part of the diagram
(a). The details of its computation are given in App. B.

The result for the Borel transform of the correlation function is

D̃

(
ω

µ
, u

)
= −

Nc

π
δ(u) + D̃(a)

(
ω

µ
, u

)
+ D̃(b)

(
ω

µ
, u

)
+ D̃(c)

(
ω

µ
, u

)
+ O

(
1

N2
f

)

(4.4)

with the separate contributions (in the Landau gauge) from the three diagrams shown
in Fig. 4 given by (Nc = 3, CF = 4/3)

D̃(a)

(
ω

µ
, u

)
=

CF Nc

4π3Nf

[(
−

2ω

µ

)−2u

e−uC

{

2u(1 − 2u)(2 − 2u) [S(4, u) − S(4, 1 + u)]

+
Γ(−u)Γ(1 + 2u)

Γ(2 + u)

[
3 + 5u −

1 + u

1 − 2u

]}

+ R(a)(u)

]

D̃(b)

(
ω

µ
, u

)
=

CF Nc

4π3Nf

[(
−

2ω

µ

)−2u

e−uC 3
Γ(1 − u)Γ(1 + 2u)

(2 − u)Γ(2 + u)
+ R(b)(u)

]

(4.5)

D̃(c)

(
ω

µ
, u

)
=

CF Nc

4π3Nf

[(
−

2ω

µ

)−2u

e−uC 6
Γ(1 − u)Γ(−1 + 2u)

Γ(2 + u)
+

3

u
+ R(c)(u)

]

,

where

S(4, γ) = −Γ(1 − γ)Γ(2 − γ)Γ(γ − 1)2 (4.6)
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+2
Γ(1 − γ)Γ(2γ − 1)

Γ(γ − 1)

∞∑

n=0

1

γ − 1 + n

Γ(2γ − 2 + n)

Γ(3γ − 2 + n)

Γ(γ − 1 + n)

n!
,

(see eq.(B.10)). The R-functions are scheme-dependent and arbitrary in general apart
from being non-singular in a neighbourhood of u = 0. In MS-like schemes, they are
entire and their values at u = 0 can be found to be R(a)(0) = 0, R(b)(0) = −3/2,
R(c)(0) = 4. A check of our result is provided by the value of the Borel transform at
u = 0 (disregarding the δ-function), which must reproduce the two-loop perturbative
correction to D. With the help of the expansions collected in App. B, we find

D̃(a)

(
ω

µ
, 0

)
=

3CF Nc

4π3Nf

{
4

3
+

4π2

9

}

D̃(b)

(
ω

µ
, 0

)
= 0

D̃(c)

(
ω

µ
, 0

)
=

3CF Nc

4π3Nf

{
−

1

3
− C − 2 ln

(
−

2ω

µ

)}
, (4.7)

in agreement with eq.(4.3) in the MS-scheme (C = −5/3).
We now turn to the discussion of the renormalon singularities in the Borel plane.

A summary of this discussion is presented in Fig. 5, where the Borel plane for the
correlation function of heavy-light currents in HQET is compared with the situation
for light quarks in QCD.

Infrared renormalons. The IR singularities occur at positive integers starting from
u = 3 and, generically, are double poles. The poles at u = 1 and u = 2 are present
in every single diagram but cancel in the sum of all three. In general, a condensate
of dimension d in the SDE can be related to an IR renormalon at u = d/2. By
comparison with eq.(4.3) we find that the quark condensate and the mixed quark-gluon
condensate do not produce IR poles in the coefficient function of the unit operator.
This is physically clear, because the renormalons originate from a soft gluon line in
the diagrams of Fig. 4. More formally, the renormalons are linked to an ambiguity in
the definition of the vacuum expectation values of composite operators due to mixing
with lower dimensional operators in the sense that the definition of condensates in
principle requires a prescription for the sum of all perturbative series that appear in
lower dimensional terms. The operator q̄q can not mix with any lower dimensional
operator due to its different transformation properties under chiral symmetry19 and
its vacuum expectation value is unambiguously determined by the pion decay constant
[15] through the PCAC relation. The mixed quark-gluon operator gq̄σGq has no such
protection, but due to its chiral transformation properties mixes only with q̄q. For
this reason, the mixed quark gluon condensate is not seen as an IR renormalon in
the perturbative expansion, but should be related to an IR renormalon in the Borel
transform of the coefficient function of the chiral condensate at u = 1.

The cancellation of the IR renormalon at u = 2 can be directly attributed to the
absence of the gluon condensate in the SDE to leading order of the 1/mQ-expansion.
Thus, all IR renormalons in the correlation function are in complete agreement with
the SDE. The first singularity at u = 3 comes from four-quark operators not written

19Complications are bound to arise, if the regularization breaks chiral symmetry.
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in eq.(4.3). Since there are no IR renormalons at half integers, we conclude that odd
dimensional operators do not produce IR poles in the coefficient function of the unit
operator, which is again a consequence of chiral symmetry. If we assume that the
equation of motion has been used to reduce all operators with covariant derivatives,
then odd dimensional gauge-invariant operators must contain 4k + 2 (k = 0, 1 . . .)
quark fields and an arbitrary number of gluon field strenghts and a chiral-invariant
operator with this number of quark fields can not be constructed.

Ultraviolet renormalons. In contrast to the light quark case, UV renormalons appear
in the perturbative expansions in HQET at all negative half integers for the simple
reason that there is a dimension one parameter ω available. In addition, one finds a
non-Borel-summable UV renormalon at u = 1/2 on the positive axis, which, in fact,
stems only from the diagram (c). The pole at u = 1/2 in some terms of D̃(a) is spurious
and drops out in the full expression. This UV renormalon is a simple pole and can
be traced to the insertion of the self-energy of the heavy quark in the diagram (c),
which we have investigated in detail in Sect. 3, where the linear divergence of the self-
energy has been identified as the cause of this pole. Note that the correlation function
Π5(ω) is quadratically divergent and has UV poles at u = 1/2 and u = 1, which have
been eliminated by taking three derivatives. In a similar way the UV renormalon at
u = 1/2 is removed from the first derivative ∂Σ̃eff (vk)/∂(vk) of the self-energy, but
since Σeff (vk) and not its derivative is inserted into the Green functions of HQET,
there is no way to avoid the UV renormalon generated by the linear divergence of the
self-energy to pervade to all Green functions in HQET.

The emergence of non-summable singularities on the positive Borel axis signals
that perturbation theory is incomplete and points towards either inconsistency of the
theory or some nonperturbative phenomenon which in a formal language cures the
ambiguities of the Borel integral. For the IR renormalons in HQET this is provided by
the condensates just as in QCD and they account for the nonperturbative terms that
arise in the SDE of the correlation functions. The UV renormalon at u = 1/2 reminds
us of a nonperturbative effect of a very different nature, which can not be attributed
to short distances: HQET (without a residual mass term) is an effective theory for a
heavy on-shell fermion that does not exist in nature and the binding energy of a quark
in a meson is not a physical concept. Indeed, we have seen in Sect. 3 that one must
add a residual mass term δm to the effective Lagrangian, see eq.(3.30), which we have
omitted in our discussion so far. Since in the 1/Nf expansion δm counts as 1/Nf , to
order 1/Nf the term

Dδm

(
ω

µ
,α(µ)

)
=

Nc

π2

δm

ω
(4.8)

has to be added to eq.(4.3), which cancels the ambiguity of the Borel integral for D
due to the UV renormalon. We repeat that the residual mass term is formally of order
ΛQCD and serves two purposes: (1) It guarantees that the predictions of HQET are
invariant under the choice of the expansion parameter mQ [16], (2) it ensures that the
predictions of HQET are invariant under the choice of summation prescription for the
UV renormalon divergence of the correlation functions in HQET. In this respect, it acts
analogously as the condensate terms in eq.(4.3) with respect to the IR renormalons. To
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be precise, one could agree that all series should be summed by a contour of the Borel
integral through the upper complex plane, which would fix δm with an imaginary part
that ensures reality of the correlation functions and defines a particular mQ. One can
convince oneself that if this is accomplished for the self-energy, then it is automatic for
D, where it is an important consistency check that the diagrams (a) and (b) do not
produce a pole at u = 1/2. Superficially the presence of a residual mass leads to new
terms of order ΛQCD/ω in eq.(4.3), which can not be avoided because of the divergence
of perturbation series and which spoil the SDE, where it is assumed that all power
corrections can be accounted for by condensates. We shall show below that the power
corrections due to the residual mass are organized in a very particular way and can
effectively be summed up.

Let us first throw a glance beyond the 1/Nf -expansion. Consider the class of dia-
grams, where a second heavy quark self-energy is inserted into the heavy quark line of
the diagram (c) of Fig. 4 and with an arbitrary number of fermion loops in any of the
two gluon lines. Apart from factors these diagrams can be obtained by squaring the
series in α, implied by the diagram (c). The Borel transform is given by the convolu-
tion of diagram (c) with itself and develops an UV renormalon at u = 1/2 and u = 1.
Obviously, this process can be iterated and the diagrams with a chain of n self-energies
produce a Borel transform with UV poles at all half integers up to n/2, which are of
course related to n insertions of the residual mass term. We conclude that to all orders
in perturbation theory, the UV renormalons proliferate and spread over all half-integers
on the negative and positive Borel axis. Opposite to the situation with light quark
currents, where the leading order in 1/Nf gives a complete picture of the renormalons
in the Borel plane (as far as we know), see Fig. 5a, the Borel plane of the correlation
function of heavy-light currents in HQET becomes modified to all orders in 1/Nf . As
in QED, there is a series of UV renormalons on the positive axis, but it must be em-
phasized that their physical origin is so completely different that the common name is
hard to justify: In QED, the UV renormalons arise from the logarithmic increase of the
effective coupling in the UV region; in HQET all UV renormalons are generated by the
linear divergence of the heavy quark self-energy and there is no relation to the effective
coupling at all.

The effect of a residual mass term on the correlation function has an almost trivial
structure. To see this, let us for a moment ignore all the complexities of the residual
mass term and treat it as a number. Multiple insertions of δm into a heavy quark line
can be summarized by implementing δm on the Lagrangian level as already done in
eq.(3.30), which modifies the heavy quark propagator to

1+ 6v

2

i

vk − δm
. (4.9)

Call Π5(ω) the correlation function, computed from the Lagrangian, eq.(1.1), without
a residual mass term and Πδm

5 (ω) the same object, computed from the Lagrangian in
eq.(3.30). Then

Πδm
5 (ω) = Π5(ω − δm) , (4.10)
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i.e. the sole effect of a residual mass of the effective heavy quark is to produce a shift of
the momentum scale in the correlation function. The validity of eq.(4.10) is obvious on
physical grounds. Recall that ω is “measured” from the point mQ (if p is the physical
mometum of the meson, vp = mQ+ω). Thus different choices of mQ, leading to different
values of δm, simply shift the “zero point” of the momentum scale. If the predictions
of HQET are to be invariant under the choice of mQ, this can only result in a change of
the argument of the correlation function. Nevertheless a diagramatic proof of eq.(4.10)
might be useful. Let q denote the residual momentum of the heavy quark, let ω = vq
and consider an arbitrary diagram Γ that contributes to the perturbative expansion of
Πδm

5 (ω). Since all diagrams with heavy quark loops vanish identically, the only way
the heavy quark can appear in Γ is as a line that joins the two current insertions and
emitting an arbitrary number m−1 of gluons. Now label the independent loop momenta
of Γ such that the heavy quark propagators carry momentum ki + q, i = 1, . . . , m and
call pj the remaining loop momenta. With this assignment all other propagators are
independent of q and the diagram can be represented as

Γ =

∫ m∏

i=1

dki

∏

j

dpj

(
m∏

i=1

1

vki + ω − δm

)

× Γ̃(ki, pj) , (4.11)

where the remaining part Γ̃ of the diagram is independent of ω and δm. Therefore any
diagram depends only on the combination ω − δm, proving eq.(4.10).

Formally, the residual mass term is an ambiguous quantity and the terms propor-
tional to (δm/ω)n ∼ (ΛQCD/ω)n are present in eq.(4.3) to render Πδm

5 (ω) unambiguous
and well-defined. In practice, summation of perturbative expansions is never performed,
since only a few low order terms of the series are available. Eq.(4.10) tells us that
neglecting the UV renormalon divergences in the perturbative series can be equally in-
terpreted as an uncertainty of order ΛQCD in the momentum scale ω of the correlation
function. In this sense, we say that the UV renormalons can be “summed up” to pro-
duce an ambiguity of scale in the HQET. Indeed, this scale ambiguity captures most
concisely the physics reflected in these UV renormalons. Finally, their appearance can
be traced back to the attempt to split a nonperturbative residual momentum k of order
ΛQCD from the meson momentum, attributing the remainder to the momentum of a
“physical” quark. This is not an infrared safe procedure, as is clearly visible from the
IR renormalons in the pole mass.

At this point, comparison with the lattice formulation of HQET may help to clarify
the meaning of an ambiguous residual mass. The discretized version of the heavy quark
propagator has a linear divergence in the lattice spacing starting from first order in
perturbation theory [20], which comes from the presence of a dimensionful cutoff and
can be absorbed into a mass renormalization. The asymptotic behaviour of correlation
functions at large times is proportional to exp(−λ̄t), where λ̄ is the mass of the lowest
excitation of the theory (see eq.(3.31)). The presence of a linear divergence leads to the
conclusion [20] that the exponent λ̄ is not a physical quantity. It is evident that the UV
renormalons, the ambiguous residual mass term (and consequently λ̄, see Sect. 3.3) and
the scale ambiguity of correlation functions are in fact a reflection in the continuum of
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one and the same phenomenon that has been observed a long time ago on the lattice.

5 The status of QCD sum rules

The SDE of correlation functions has become an important tool to determine the various
nonperturbative parameters of HQET through the QCD sum rules method. In the
light of our results some of the common lore about the QCD sum rules, when applied
to HQET, needs to be revised. It is instructive to trace uncertainties induced by
the presence of UV renormalons in the SDE of correlation functions in HQET on some
particular sum rules. We start with the simplest one, which is for the B-meson coupling
in the static limit. An important result obtained from this sum rule is an estimate of
the quantity Λ̄ (or λ̄), a task which has never been accomplished on the lattice for the
reasons mentioned above.

In the QCD sum rule approach one takes the Borel transform of the SDE of the cor-
relation function with respect to 1/ω (not to be confused with the Borel transform with
respect to the coupling, which has been discussed in the previous sections), trading the
frequency ω for a new variable, the Borel parameter τ . This “theoretical” expression is
matched to the “phenomenological” part of the sum rule, which uses a dispersive repre-
sentation of the correlation function and saturation of the imaginary part by hadronic
states. The Borel transformation serves several purposes, and ensures that both higher
condensate contributions to the SDE and higher-mass contributions to the expansion
of the imaginary part in hadron states are suppressed. The matching is performed in a
certain intermediate region of the Borel parameter, where one hopes that both the SDE
and the hadron expansion work reasonably well. The effect of the UV renormalons on
the sum rule for the B-meson coupling (see, e.g., [49, 50]) can easily be seen by the use
of eq.(4.10). Indeed, since by virtue of the Borel transformation

1

(δm − ω)n
→ e−δm/τ 1

(n − 1)! τn
, (5.1)

the effect of the ambiguity in the scale ω transforms to an overall factor exp(−δm/τ)
in front of the “theoretical” side of the sum rule. Thus, to be concrete, the sum rule
for the correlation function Π5 in eq.(4.1) is modified to

f̂2
Be−Λ̄/τ = e−δm/τ

{
3

π2

∫ ω0

0
dω ω2e−ω/τ [1 + perturbative series]

− 〈q̄q〉(µ = 2τ) +
1

16τ2
〈gq̄σGq〉(µ = 2τ) + . . .

}

, (5.2)

where f̂B is the B-meson leptonic decay constant in the static limit (at a low scale
µ = 2τ), and ω0 is the duality interval for the lowest bound state. For simplicity, we
have discarded the radiative corrections, see [49] for the complete expression to two-loop
accuracy.

The factor exp(−δm/τ) can be brought to the l.h.s. and combined with exp(−Λ̄/τ)
so that the sum rule depends on the combination Λ̄− δm only, as expected. Since this
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parameter is extracted from the sum rule by a fitting procedure, one may conjecture that
the effects of renormalons are completely eliminated. As stressed repeatedly above, this
conclusion is wrong. The presence of UV renormalons in the perturbative series on the
r.h.s. of eq.(5.2) indicates a principal ambiguity in its summation, which is expressed
in a shorthand form by the appearance of the ambiguous residual mass term. In other
words, if one calculated the corrections to the r.h.s. of the sum rule, eq.(5.2), from
large orders in the perturbative expansion (using some prescription to sum the series,
see above, which also fixes δm to a definite value), the main effect of these corrections
will be a change of the output value of Λ̄− δm by an amount of order ΛQCD. Note that

the coupling f̂B formally is protected from such corrections – the residue of the pole
in the correlation function does not depend (formally) on the position of this pole. In
practice, however, the values of Λ̄−δm and f̂B extracted from the sum rule are strongly
correlated (see e.g. the discussion in [49]), and an uncertainty of 100 MeV in Λ̄ − δm
induces an uncertainty of order 15% for the static decay constant.

The observation that the effect of the non-Borel-summable UV renormalons in
HQET can generally be ascribed to an ambiguous residual mass term, allows for a
back-on-the-envelope estimate of their importance in other sum rules, which have a
more complicated structure. As an example, let us consider the sum rule for the heavy
quark kinetic energy, which is defined by the expectation value of the operator of the
nonrelativistic kinetic energy in the meson state. In the presence of a residual mass
term it is given by

Kδm = −〈M(v)|h̄v(iD − δm)2hv|M(v)〉 , (5.3)

where the nonrelativistic normalization of states 〈M(v)|M(v)〉 = 1 is implied20. As λ̄,
this matrix element is in fact independent of δm. To derive the sum rule, one considers
the correlation function

i2
∫

dx

∫
dy eiω(v·x)−iω′(v·y)〈0|j†5(x)h̄v(0)(iD − δm)2hv(0)j5(y)|0〉 = TK(ω, ω′) . (5.4)

Assuming, as before, that the effect of ignoring the UV renormalon divergence in large
orders is equivalent to an ambiguity in the external momenta (frequencies) and repeating
a set of standard steps we arrive at the sum rule

f̂2
BKδme−(Λ̄−δm)/τ =

3

π2

∫ ω0

0
dω ω4e−ω/τ [1 + perturbative series]

+
1

4
τ
(
1 − e−ω0/τ

)
〈
α

π
GG〉 −

3

8
〈gq̄σGq〉(µ = 2τ) + . . . . (5.5)

Again, for simplicity we have discarded the radiative corrections calculated in [30].

20We have changed the sign in the definition compared to [30]. In the conventional notation [29]
K = −λ1.
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In eq.(5.5) we recognize the familiar source of ambiguity related to an uncertainty
in the position Λ̄ − δm of the ground state. However, an additional uncertainty is
present already in the definition of the matrix element in eq.(5.3) due to quadratic
and linear UV divergences, cf. ref. [20]. With respect to quadratic divergences it is
interesting to note that the corresponding IR renormalon in the pole mass at u = 1 is
absent, see eq.(3.13). In any case, the sum rule analysis in [30] has yielded a relatively
large value for K, of order 0.6 GeV2, which may indicate that the kinetic energy has
a large “genuinely nonperturbative” contribution, not related to renormalons, and in
this respect is similar to the gluon condensate.

To summarize, the QCD sum rule approach faces precisely the same difficulties in
defining the observables of HQET, which have been recognized in studies of HQET on
the lattice. However, there is also a difference. In lattice calculations one does not
distinguish betwen perturbative and nonperturbative contributions to the correlation
functions. Thus the renormalon problem is difficult to overcome, see [20]. In QCD sum
rules one isolates the “genuinely nonperturbative” contributions in a few parameters,
the vacuum condensates, which are determined from phenomenology. In spite of the
fact that such an approach can not be fully consistent theoretically – the condensates
can never be determined to arbitrary accuracy without running into the renormalon
problem or without the introduction of a “hard” factorization scale – it may nevertheless
be quite successful phenomenologically, as it has been in the application to light quarks.
A novel feature of the QCD sum rules in HQET is that the ambiguity in the separation
of the perturbative and nonperturbative contributions affects not only the values of
condensates on the “theoretical” side of the sum rule, but also the quantities that enter
the “phenomenological” side . In the HQET, the l.h.s. of sumrules like eq.(5.5) is
only fully defined after one has dealt with the UV renormalons in the perturbative
expansions on the r.h.s., though in practice one might hope to be as lucky as in QCD,
where the renormalons can be ignored, since the “true” nonperturbative contributions
to theoretically ambiguous quantities turn out to be large. Thus, for the practitioner,
the appearance of an ambiguous residual mass of order (100− 200) MeV, see eq.(3.17),
can serve as an error bar on the determination of quantities like Λ̄.

6 Conclusions

The investigation of the asymptotic behaviour of perturbative expansions in HQET
reveals that in addition to the IR renormalon divergence, which can be related to con-
densates in the SDE, the correlation functions possess non-summable UV renormalons.
These UV renormalons are not related to a Landau ghost as familiar from QED, but
rather indicate a fine-tuning problem of HQET. The natural mass of the effective heavy
quark is mQ (and not zero), a fact that is obscured by the use of dimensional regular-
ization, which does not introduce a dimensionful parameter, as long as poles at d = 4
only are subtracted. The UV renormalons reflect a linear divergence of the self-energy
of the heavy quark, which is seen already in perturbation theory, when a dimensionful
cutoff is employed. The absence of a dimensionful quantity in the leading effective La-
grangian of HQET is fake and if one attempts to go beyond perturbation theory, the
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residual mass arises necessarily as a second parameter in the Lagrangian. This is more
evident, when one does not consider HQET as a quantum field theory in its own right,
but embedded in QCD, whose heavy mass limit it is supposed to extract. To avoid the
UV renormalon problem, one can not use the standard dimensional renormalization,
which yields only an incomplete factorization of effects on different distance scales on
the level of logarithms. Technically, complete factorization can be achieved by a “hard”
cutoff, which is very awkward for practical calculations. As an alternative, we have
indicated a factorization procedure for renormalons, which on the level of the HQET
Lagrangian corresponds to a mass term proportional to the scale µ.

The fine-tuning problem of HQET has a very transparent interpretation, when it is
viewed from the perspective of full QCD. HQET (to leading order in mQ) is a theory
for light quarks in the field of a static colour source. In perturbation theory, this
notion does not present a difficulty. One may imagine the light quark removed to an
infinite distance from the source and include the energy of the field of the heavy quark
into a renormalization of its mass. In this way, the pole mass emerges naturally as
the parameter to be used in the heavy quark expansion. Beyond perturbation theory,
this operational definition looses its meaning due to confinement. The meson is an
indivisible entity (for QCD) and an unambiguous separation of an energy of the field
and a binding energy of the light quark in this field can not be performed. Remarkably,
perturbation theory knows about this problem and reveals it as an IR renormalon in
the pole mass. The position of this renormalon in the Borel plane fixes the inherent
ambiguity in the concept of a pole mass to be of order ΛQCD. From their physical origin,
it is clear that these IR renormalons are very different from the ones encountered in the
SDE and, in particular, they do not correspond to any condensate.

Nonetheless, the implications of these IR renormalons for the structure of the heavy
mass expansion are very close conceptually to their namesakes in the SDE. First, the
UV renormalons in the correlation functions of HQET reflect in fact one and the same
phenomenon as the IR renormalon in the pole mass. If we assume that the Green func-
tions of QCD can be reconstructed from an extended (and presumably very intricate)
Borel summation procedure – a conjecture, of course! – then it is very natural to rem-
edy the ambiguities of correlation functions in HQET from the UV singularities by the
inclusion of an ambiguous residual mass into the Lagrangian. This leads immediately to
the conclusion that parameters like Λ̄ (or λ̄, to be precise) or the kinetic energy K are
not physical quantities, but in fact ambiguous. This is indeed a necessity, because these
parameters arise in power-suppressed (in 1/mQ) terms of the heavy mass expansion,
whose leading term has a divergent perturbative expansion. In this respect the heavy
mass expansion is in complete analogy with the SDE, where the role of λ̄ etc. is played
by the condensates, whose theoretically ambiguous status has been realized a long time
ago. In this light the appearance of an IR renormalon in the pole mass at t = −1/(2β0),
which is closer to the origin of the Borel plane and implies a stronger divergence of per-
turbative series than in the SDE, is very natural, since 1/mQ-corrections are present in
the heavy quark expansion and are parametrized by λ̄.

Since the interpretation of the various quantities that appear in asymptotic expan-
sions with exponentially small (in the coupling) components such as the SDE or the
heavy quark expansion has caused confusions in the past (see the discussion of this

31



point in refs. [15, 38]), which are merely a problem of language, it might be useful to
recall that there are two attitudes concerning the renormalon problem, which already
have been alluded to in Sect. 2: First, one can interpret these expansions as asymptotic
expansions in the mathematical sense21. Then one faces the problem of divergent series,
their summation and the Stokes discontinuities in the exponentially small components,
which leads to the notion of formally ambiguous parameters. Second, one might follow
Wilson’s operator product expansion literally and introduce a hard factorization scale
µ. In this way, the divergence of perturbative expansions is eliminated at the price
of parameters that depend explicitly on the scale µ. Both approaches are of course
equivalent in their physical content: The quantities in the power-suppressed terms are
not physical in the sense that they can not be determined to arbitrary accuracy without
further specification. In the first approach this is a prescription to sum the divergent
series in the leading terms (a principal value prescription, for instance), in the second,
quantities like λ̄ in the heavy quark expansion and the gluon condensate in the SDE
depend power-like on the factorization scale. Both approaches are also impractical:
Neither can we sum perturbative expansions in view of the few low-order terms that
are generally available, nor can we calculate Feynman diagrams with an explicit cutoff.
Thus, although the second approach looks much more natural to phenomenology, where
one is prepared to fit the unknown quantities anyway, one has to rely in both cases on
the hope that “true” nonperturbative contributions turn out to be large. If nature likes
it different, the study of power-corrections is academic anyway and one should devote
oneself to the calculation of the next unknown order of perturbation theory.

We have chosen the first approach in the present paper because of the universality
of the UV renormalons in HQET. They arise only through the linear divergence of the
heavy quark self-energy. After we include the formally ambiguous mass, we can easily
trace the effects of the UV renormalons through the appearance of the residual mass
term in the matrix elements and operators of HQET.

The universality of the phenomenon is also important to recognize its phenomeno-
logical consequences. The inclusive B-decay widths are a prime example of practical
interest. The ambiguity of order ΛQCD in the pole mass implies that when parametrized
in terms of the pole mass, the theoretical prediction for the absolute widths can not be
better than terms of order ΛQCD/mb. However, the IR renormalon in the leading term
is universal for all B-hadrons and cancels in the difference of the widths, which indeed
scale with the heavy quark mass as Λ2

QCD/m2
b .

As a second example, the status of the pole mass itself warrants discussion. For phe-
nomenology, the most important question is how large the intrinsic uncertainty of the
pole mass could be numerically. Our estimate from the divergence of the perturbative
expansion suggests values in the range δmpole ∼ 170 − 280 MeV, but this can only be
an order-of-magnitude guess. There are various indications from phenomenology that
the actual ambiguity is indeed of this order or rather smaller. All existing phenomeno-
logical analyses of the b-quark pole mass fall in the range 4.55-4.85 GeV, a fraction of
which can well be ascribed to an inherent ambiguity of the concept “pole mass”. In
this context, it is interesting to note that the existing calculations of the quantity Λ̄ in

21Assuming, of course, that they are asymptotic to something.
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HQET give Λ̄ = 400 − 600 MeV [49, 50] with an uncertainty of the same order as for
the pole mass. Last but not least, it has been pointed out [51], that a meson with a
light and an infinitely heavy quark might provide a definition of the constituent quark
– one of the most mysterious objects in QCD. Indeed, the correlation function of two
heavy-light currents, eq.(4.1), may be rewritten as the vacuum expectation value of the
nonlocal operator [52]

〈0|q̄(x)Pexp[ig

∫ 1

0
duxµAµ(ux)]q(0)|0〉

x2→−∞
∼ exp[−Λ̄

√
−x2] , (6.1)

which gives a natural definition of the propagator of a constituent quark, so that Λ̄
may be interpreted as the constituent quark mass. The celebrated successes of non-
relativistic quark models (for light quarks) have not found any rational explanation so
far, but indicate rather strongly that the mass of the constituent quark is phenomeno-
logically stable and of order 350 MeV. This falls into the range of values quoted for
Λ̄ to 100 − 200 MeV accuracy. Combining these estimates from different branches of
phenomenology, we should conclude that there is a lot of indirect evidence, that the
difference between the hadron mass and the quark pole mass in the heavy quark limit
has a large “genuinely” nonperturbative contribution and the uncertainty of the con-
cept of the pole mass is likely to stay within 100 − 200 MeV.

Acknowledgements. It is a pleasure to thank V.I.Zakharov for many interesting
discussions related to the subject of this paper. M.B. wishes to thank M.Einhorn for an
instructive conversation. V.B. gratefully acknowledges discussions with N.G.Uraltsev,
which initiated this study, and our special thanks are to him for sending us a preliminary
version of ref. [47]. We acknowledge an overlap with some of the results and conclusions
of this paper.

33



A Renormalization of the Borel transform

In this appendix we prove that renormalization of the divergence associated with the
integration over the gluon momentum amounts to subtracting the pole term of the
Borel transform at u = 0 plus some finite terms which depend on the renormalization
scheme. As a by-product, we find the anomalous dimension of the heavy quark field to
leading order in 1/Nf . The derivation is given for the simplest case of the heavy quark
self-energy, but proceeds almost identically for a massive quark or the vertex function.

We start ab initio and compute the regularized coefficient of the heavy quark self-
energy in order an+1. We use dimensional regularization in d = 4 + 2ǫ dimensions. A
straightforward calculation of the diagram of Fig. 6a yields

preg
n (d) =

CF

4πNf
vk βn

0

1

(n + 1)ǫn+1
G(d, (n + 1)ǫ) , (A.1)

where β0 = 1/(6π), CF = 4/3 and G(d, s) is given by

G(d, s) =

(
1

4π

)s (
−

2vk

µ

)2s
[

−6ǫ
Γ(−ǫ)Γ(2 + ǫ)2

Γ(4 + 2ǫ)

]s/ǫ−1

(−2s) (3 + 2ǫ)
Γ(−1 − 2s)Γ(1 + s)

Γ(2 + ǫ − s)
.

(A.2)

For later use we collect the definitions

G(d, s) =
∞∑

j=0

Gj(d)sj , G0(d) =
∞∑

j=0

gjǫ
j (A.3)

with

G(d, 0) = G0(d) = −
1

6
(3 + 2ǫ)

Γ(4 + 2ǫ)

Γ(1 − ǫ)Γ(2 + ǫ)3
= −3 − 4ǫ + O(ǫ2) ,

G(4, s) =

(
−

2vk

µ

)2s

es (γE−5/3−ln 4π) (−6s)
Γ(−1 − 2s)Γ(1 + s)

Γ(2 − s)
. (A.4)

γE denotes the Euler-Mascheroni constant. The limits d → 4 and s → 0 do not commute
in the general case (although they do for the heavy quark self-energy considered here).

The diagram in Fig. 6a consists of two basic renormalization parts: The fermion
bubble and the diagram itself. The counterterm for a fermion bubble is given by
−β0(1/ǫ+finite). We use first the minimal subtraction scheme and comment on other
renormalization schemes later. Thus we do not subtract finite terms. Take now the
diagram in Fig. 6b, where k bubbles have been replaced by their counterterms. Since
the only dependence on n on the r.h.s. of eq.(A.1) originates from the number of fermion
loops, substitute n → n − k and multiply by (−β0/ǫ)

k for each of the k counterterms.
Finally account for a combinatorical factor n!/(k!(n − k)!) according to the number
of ways, k bubbles can be picked from the n bubbles available. As a result of these
manipulations a partially renormalized coefficient, incorporating the renormalization of
the coupling a, is obtained:
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ppart.ren
n (d) =

CF

4πNf
vk βn

0

n∑

k=0

1

ǫn+1

(−1)k

n + 1 − k

(
n

k

)

G(d, (n + 1 − k)ǫ)

=
CF

4πNf
vk βn

0

n+1∑

j=0

Gj(d)

ǫn+1−j

n∑

k=0

(−1)k
(

n

k

)

(n + 1 − k)j−1 + O(ǫ) (A.5)

The sum over j is truncated at n+1, because we are not interested in terms that vanish,
when ǫ is taken to zero. The sum over k can be taken. It is non-zero only for j = 0
and j = n + 1, a simplification that was first observed in [53]. Thus

ppart.ren
n (d) =

CF

4πNf
vk βn

0

[
(−1)n

n + 1

1

ǫn+1
G0(d) + n!Gn+1(4) + O(ǫ)

]
. (A.6)

In the next step we account for the subtraction for the whole diagram and then take
ǫ = 0. It is gratifying that only the finite terms of ppart.ren

n (d) depend on vk/µ, as it
must be. The renormalized coefficient in the MS scheme is then given by

pn =
CF

4πNf
vk βn

0

[
n!Gn+1(4) +

(−1)n

n + 1
gn+1

]
. (A.7)

It is easy to see that the gn do not diverge factorially, because G0(d) is analytic at
d = 4. Finally, we go over to the Borel transform of the renormalized self-energy and
find

Σ̃eff (vk, u) =
∞∑

n=0

pn
tn

n!
=

CF

4πNf
vk

[
G(4,−u) − G0(4)

(−u)
+ R(u)

]
(A.8)

=
CF

4πNf
vk

[(
−

2vk

µ

)−2u

e−u (γE−5/3−ln 4π) (−6)
Γ(−1 + 2u)Γ(1 − u)

Γ(2 + u)
−

3

u
+ R(u)

]

,

where

R(u) =
∞∑

n=0

1

(n + 1)!
gn+1u

n =
3

u
+

G̃0(u)

u
(A.9)

is an entire function. G̃0 denotes the Borel transform of G0 given in eq.(A.4). As
promised, the renormalized self-energy differs from the partially renormalized one, ob-
tained from insertion of the Borel-transformed gluon propagator, eq.(2.11), only by
subtraction of the pole at u = 0 and scheme-dependent finite terms.

Let us dwell more on the issue of scheme-dependence. Eq.(A.8) is easily generalized
to arbitrary minimal subtraction-like schemes such as MS. These schemes have iden-
tical renormalization group functions and differ only by a global scale change. To the
order of the 1/Nf -expansion considered here, the difference resides in the finite term C
of the fermion bubble. Observing that in the MS scheme C = γE − 5/3 − ln 4π, we
obtain eq.(A.8) in an arbitrary MS-like scheme by the replacement
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e−u (γE−5/3−ln 4π) −→ e−uC . (A.10)

The function R(u) is the same for all MS-like schemes. In principle, the finite renor-
malizations and therefore R(u) can be chosen arbitrarily. In momentum subtraction
schemes the finite terms are factorially divergent and R(u) is no longer an entire func-
tion. This introduces a divergence into the perturbative expansion of the renormal-
ization group functions, which hides part of the divergence of the perturbative series
in the definition of the renormalized parameters of the theory. For this reason the
choice of such schemes is disfavoured, when one considers large orders in perturbation
theory [36]. We will always assume that a scheme is chosen, where the counterterms
are analytic in α near α = 0, in which case the function R(u) is entire in the Borel
plane and the renormalized parameters are unambiguously defined in terms of the bare
parameters. In the general situation of the self-energy of a massive quark R can also
depend on the mass. We restrict ourselves to mass-independent schemes.

We conclude this appendix with the anomalous dimension of the heavy quark field in
MS-like schemes. The bare field is related to the renormalized one through h0

v = Z1/2hv.
From eq.(A.6) we get

Z−1 = 1 +
a(µ)

4πNf
CF

∞∑

n=0

(β0a(µ))n
(−1)n

(n + 1)ǫn+1
G0(d) + finite + O

(
1

N2
f

)

. (A.11)

The anomalous dimension of the field is defined by

γ(a) ≡ µ2 ∂Z

∂µ2
= lim

ǫ→0
β(ǫ, a)

∂Z

∂a
. (A.12)

Recalling β(ǫ, a) = ǫa + β0a
2 + O(1/Nf), a short calculation yields

γ(a) =
a

4πNf
CF G0(4 − β0a) + O

(
1

N2
f

)

. (A.13)

We remind the reader that the anomalous dimension is gauge-dependent and the result
is given in the Landau-gauge. However, one may easily check that to order 1/Nf only the
O(a)-coefficient is gauge-dependent. As expected in MS-like schemes, the anomalous
dimension has a finite radius of convergence in a. Comparison with eq.(A.9) shows that
the finite renormalizations in a given scheme are essentially the Borel transform of the
anomalous dimension.

B The scalar two-loop intergal

The aim of this appendix is to find an expression for the scalar integral

36



S(d, γ) =
(4π)d

4 (2ω)2d−6−2γ

∫
ddk

(2π)d
ddp

(2π)d

(
−

1

k2

)(
−

1

p2

)(
−

1

(k − p)2

)γ ( 1

vk + ω

)(
1

vp + ω

)

(B.1)

with arbitrary complex γ, which is suited to extract its analyticity properties. The
prefactor is chosen for later convenience. The first step is to rewrite this integral in
coordinate space and to apply the Gegenbauer polynomial technique [54]. Following
the by now standard procedure, we arrive at

S(d, γ) = 2
Γ(d/2 − 1)Γ(d/2 − γ − 1)Γ(6 + 2γ − 2d)

Γ(d − 2)
P (d, γ) , (B.2)

P (d, γ) =
1

Γ(γ)

∞∑

n=0

(−1)n

n!
Γ(d − 2 + n)

×

1/2∫

0

du

(
1

n + γ
u2+2γ−d+nū2−d−n +

1

γ − d − n + 2
unū2γ−2d+4−n

)
(B.3)

with ū ≡ 1 − u. The summation can be taken at the price of another integration and
yields

P (d, γ) =
Γ(d − 2)

Γ(γ)

1/2∫

0

du

1∫

0

dt
td−3−γ

(1 − ut̄)d−2

{
(tu)2−d+2γ − ū2−d+2γ

}
. (B.4)

Next, the denominator is expanded, which allows to perform the t-integration:

P (d, γ) =
∞∑

n=0

1

3 − d + 2γ + n

(
1

2

)3−d+2γ+n Γ(d − 2 + n)

Γ(n + γ + 1)

−
Γ(d − 2)

(d − 2 − γ)Γ(γ)

1/2∫

0

du ū2−d+2γ
2F1(d − 2, 1, d − 1 − γ;u) , (B.5)

where 2F1 is the hypergeometric function. Now we do some juggling with the hyper-
geometric function in order to replace the hypergeometric function in this equation
by hypergeometric functions with the argument ū. When this is done, part of the u-
integrals can be done. Further, we note that 2F1(1 − γ, d − 2 − γ, 1 − γ; ū) = u2−d+γ

and obtain

P (d, γ) =
∞∑

n=0

1

3 − d + 2γ + n

Γ(d − 2 + n)

Γ(n + γ + 1)
− Γ(d − 2 − γ)

1/2∫

0

du (uū)2−d+γ . (B.6)

The integral is elementary and the sum can be expressed in terms of the generalized
hypergeometric function 3F2. Thus
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P (d, γ) = −
1

2

Γ(1 − s)Γ(s)2

Γ(2s)
+

Γ(γ + 1 − s)

(s + γ)Γ(γ + 1)
3F2(γ+1−s, 1, s+γ; γ+1, γ+1+s; 1) , (B.7)

where s ≡ 3 − d + γ and the series definition of the 3F2-function is

3F2(a, b, c;α, β; z) =
∞∑

n=0

Γ(a + n)

Γ(a)

Γ(b + n)

Γ(b)

Γ(c + n)

Γ(c)

Γ(α)

Γ(α + n)

Γ(β)

Γ(β + n)

zn

n!
. (B.8)

The series, when applied to eq.(B.7), converges for γ > d − 3 only, which is not yet
sufficient for our purpose. We therefore use the identity [55]

3F2(γ +1−s, 1, s+γ; γ +1, γ +1+s; 1) =
Γ(γ + 1)Γ(γ + 1 + s)

s Γ(γ + 1 − s)Γ(2s + γ)
3F2(s, 2s, s; s+1, 2s+γ; 1) ,

(B.9)

which provides a representation that converges for any γ, as long as d > 2. The final
answer for S(d, γ) is

S(d, γ) =
Γ(d/2 − 1)Γ(d/2 − γ − 1)

Γ(d − 2)

{

− Γ(1 − s)Γ(s)2

+2
Γ(s + γ)Γ(2s)

s Γ(2s + γ)
3F2(s, s, 2s; s + 1, 2s + γ; 1)

}

. (B.10)

In four dimensions S(4, γ) is meromorphic with poles at all integers, negative half-
integers and γ = 1/2. Useful expansions about some of the singularities in four dimen-
sions are:

S(4,−1/2 + δ) = −
1

3δ2
+ O

(
1

δ

)
S(4, δ) =

1

2δ2
+

1

2δ
+ O(1)

S(4, 1/2 + δ) = −
1

δ2
+ O

(
1

δ

)
S(4, 1 + δ) =

π2

3δ
+ O(1)

S(4, 2 + δ) =
1

δ2
+ O(1) S(4, 3 + δ) =

1

2δ2
−

2

3δ
+ O(1)

S(4, 4 + δ) =
1

3δ2
+

3

10δ
+ O(1) (B.11)
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Figure Captions

Fig.1 Two-loop diagram for the correlation function of vector currents.

Fig.2 Definition of the Borel-transformed gluon propagator. Renormalization of the
fermion loops is implied.

Fig.3 Diagram for the Borel transform of the self-energy of a heavy quark in HQET.

Fig.4 Diagrams for the Borel transform of the correlation function of heavy-light cur-
rents in HQET. The shaded circle stands for an insertion of the current with momentum
q, the double line denotes the effective heavy quark propagator.

Fig.5 Singularities in the Borel plane to order 1/Nf for (a) the correlation function
of vector currents in QCD and (b) the correlation function of heavy-light currents in
HQET.

Fig.6 (a) Diagram with n fermion loops contributing to the self-energy to order an+1.
(b) Counter-diagram with k bubbles replaced by counterterms.

42



This figure "fig1-1.png" is available in "png"
 format from:

http://arXiv.org/ps/hep-ph/9402364v2

http://arXiv.org/ps/hep-ph/9402364v2


This figure "fig1-2.png" is available in "png"
 format from:

http://arXiv.org/ps/hep-ph/9402364v2

http://arXiv.org/ps/hep-ph/9402364v2


This figure "fig1-3.png" is available in "png"
 format from:

http://arXiv.org/ps/hep-ph/9402364v2

http://arXiv.org/ps/hep-ph/9402364v2

