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WITT MOTIVES, TRANSFERS AND DEVISSAGE

BAPTISTE CALMES AND JENS HORNBOSTEL

INTRODUCTION

In this paper we define transfer maps between Witt groups with respect to proper
morphisms and establish the base change and projection formulae for those. Then
we use this to define the cateory of Witt motives. We also deduce a dévissage
theorem. In forthcoming work, these results together with the computations of
Grothendieck-Witt and Witt groups of representation categories of split reductive
algebraic groups (see [5, section2]) will hopefully lead to the computation of Witt
groups of twisted flag varietes.

Let us fix a base field F' of characteristic different from 2. In his paper [16], Panin
computes the K-groups of twisted flag varietes, generalizing results of Quillen on
Brauer-Severi varieties and of Swan on quadrics. To this purpose, he constructs
a category of Kyp-motives with nice properties. This allows him to reduce the
computations to K-groups of finite-dimensional separable F-algebras and to K of
representation categories of split reductive algebraic groups.

This paper is part of an attempt to apply the techniques of Panin to Grothendieck-
Witt groups GW and Witt groups W instead of the Grothendieck group and higher
K-groups. As usual, the Grothendieck-Witt group GW(A) of an abelian category
with duality (A, *) is defined as the Grothendieck group of isomorphism classes of
symmetric spaces (and identifying metabolic spaces with the associated hyperbolic
spaces if A is not semi-simple. Identifying the hyperbolic spaces with zero yields
the Witt group W(A). Two examples we are interested in are the categories of
vector bundles over a smooth F-schemes (Vect(X), Homo, ( ,Ox)) and of finite-
dimensional representations (Rep(G), Homp( ,F)) of a reductive algebraic group
G. If X = Spec(F) = G, these to examples coincide and yield the classical Witt
group of the field F.

The situation for Witt groups is more complicated than for K-groups. In par-
ticular, it is much harder to construct reasonable transfer (or norm) morphisms
between Witt groups of schemes with a given dualizing complex and with respect
to proper morphisms. This is what this paper is about. Some very special cases
of morphisms have been treated in [8] and [22]. Once these transfers along with
some basic properties are established, we are able to construct the category of Witt
motives. More precisely, the second section contains a construction of W-motives
reminiscent to Panin’s Ky-motives. As for K, the construction of this category re-
lies heavily on the existence on transfers having good properties such as base change
and the projection formula. For coherent Witt groups, we prove (see Lemma 2.15,
Corollary 2.22 and Proposition 2.24)

Theorem 0.1. Let f : X — Y be a proper map of relative dimension d between
smooth varieties and L a line bundle on Y. Then we can construct a transfer map
of degree —d

o WYX, L R0y wx) — WY, L ®o, wy)
1
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which satisfies the base change and projection formula with respect to flat mor-
phisms.

This is a consequence of a more general result (see Definition 2.12 and Theorem
2.21). Observe the twists and shifts that show up. The construction of the transfer
map is more tricky than one might expect as one has to keep track carefully of the
dualites and isomorphisms between objects and their biduals involved. Moreover,
one has to keep track of the signs and and all kind of compabilities between the
triangulated structure, the duality and the monoidal structure. This is carried out
in the first section. We show that the natural isomorphism from the identity to the
bidual and various other isomorphisms can be constructed from an internal Hom
adjoint to some tensor product. We also show that this and other constructions
related to the adjointness of Lf*, Rf, and f' can be carried out in a compatible
way, and moreover compatible with the various sign conditions of Balmer and Gille.
These verifications - though not very surprising except maybe that there is a nice
choice of sign conventions - are rather long, but there is no way of avoiding them.
We have presented them in a general framework. As long as possible - namely the
entire section 1 - we stay in this general framework rather than appealing to known
results or arguments related to varieties, dualizing complexes and Witt groups.
This has at least two advantages. First, it emphasizes which of the results are
formal and which depend on the special case of Witt groups and varieties. Second,
section 1 may be applied to other areas of mathematics, for instance other “motivic”
categories or stable homotopy theory.

Theorem 0.1 allows us to construct the category of W-motives (see section
4.3) which are more complicated but similar in spirit to Panin’s Ky-motives (and
Manin’s classical motives). We then construct a graph functor and explain the usual
structures (pseudoabelian completion, tensor product) as well as an involution on
this category of W-motives.

In the last section, we use the transfers and the base change theorem to prove
a devissage theorem (Theorem 3.1) for Witt groups. As a corollary, we obtain a
localization exact sequence (Corollary 3.2)

s WYX =2, 0) LWz, L) o wrx, L) D W (X -2, L) % Wt (Z, f'L) — ...

which is useful for computations, of course. We believe there will be other applica-
tions of the transfers constructed in this paper.

Except the short section on dévissage which is new, this paper contains essentially
section 4 and the appendix of the long preprint [5] which contains more results in
the first three sections aiming at the computation of Witt groups of twisted flag
varieties and a discussion of remaining difficulties. For instance, it remains to be
checked that the category of Witt motives generalizes well to the H-equivariant
setting for H an algebraic group, and that one can enlarge this category with
respect to semisimple algebras as Panin does for Ky (compare Remark 2.31). We
hope to settle these issues in forthcoming work.

Ch. Walter has computed the (Grothendieck-)Witt groups of projective bundles
in [21] by different methods, and there is work in progress by him on quadrics.
Pumpliin [17] has some partial results about the classical Witt group of Brauer-
Severi varieties, and very recently Nenashev [15] obtained some partial results about
the Witt group of the standard hyperbolic quadric. It seems that the methods of
Pumpliin and Nenashev do not generalize to obtain results about Witt groups of
twisted flag varieties in general.

We thank Bruno Kahn for discussions about and around Grothendieck-Verdier
duality and Stefan Gille for useful comments on earlier drafts.
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1. DUALITY FORMALISM AND CLASSICAL ADJUNCTIONS

In this section, we obtain formal consequences of adjunctions of the type ®-
H, f*-f. and f,.-f' in tensor-triangulated categories that are useful for Balmer’s
theory of higher Witt groups. They will be applied in section 2. We present
them in a general axiomatic framework which allows to distinguish between the
geometric input and the formal arguments concerning adjunctions in triangulated
categories. Moreover, we believe that the abstract frameworks and the results we
prove about it do apply to different examples (e.g., other motivic categories or the
stable homotopy category). For this reason, we have presented some aspects in
slighty greater generality and provided some more results than we actually need for
our applications in section 2.

Our philosophy is to exhibit a minimal axiomatic setting which can be verified
without too much work in the examples of interest and from which everything can
be deduced in a formal way. The example of a triangulated category to keep in
mind for this paper is of course the derived category D%(X) of bounded complexes
of Ox-modules with coherent cohomology on a separated noetherian scheme X.

This section is rather long, and reading it might seem very unpleasant at first
glance. Don’t get discouraged: writing it and checking all the details one is tempted
to believe anyway was even more unpleasant. Of course, you can trust us (in the
spirit of [10, pp. 117-119]) and stop reading this section now. If you don’t, here
is a survey of its subsections. After reviewing some generalities on triangulated
categories (1.1), we refine the notion of a triangulated category with duality in
1.2. In 1.3, we axiomatize the derived tensor product, the derived Hom and the
adjunction between them. Then we use this to construct dualities on triangulated
categories in 1.4. Section 1.5 studies functors f*, f, and f' with adjunctions f*-
f. and f.-f' and discusses in which sense these have to be compatible with the
tensor-triangulated structure. The projection formula appears in 1.6. Combining
everything yields to the general Theorems 1.31 and 1.32 in section 1.7 about the
existence of exact functors between triangulated categories which we then may
apply in section 2 (see Proposition 2.7 and Theorem 2.10). In fact, before applying
this to Witt groups some details remain to be checked (see 1.8.2). In particular,
we prove that there is a particular nice choice of signs. Don’t forget that choosing
correct signs is very important, as one wrong sign transforms the Witt group of
symmetric forms to the Witt group of skew-symmetric forms.

1.1. Generalities in triangulated categories. We recall a few basic notions
that we need in triangulated categories. Let C and D be triangulated categories,
with translation functors T¢ and Tp.

Definition 1.1. (see for example [9, § 1.1]) Let F': C — D be a covariant (resp.
contravariant) functor. Let @ : FTo — TpF (resp. 6 : T"'F — FT) be an
isomorphism of functors. We say that the pair (F, ) is d-exact (0 = £1) if for any
exact triangle
ASB-L 0oL TA
the triangle
FAXLS FB % po 2228 1R A
respectively
Fe L pp I pa TP ppe

is exact.

The following is a well-known lemma, but we include here a complete proof for
lack of reference.
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Lemma 1.2. Let (F, f) be a covariant (resp. contravariant) 0-exact functor from
C to D, such that F admits a right adjoint R on the level of the underlying additive
categories. Then there is a canonical way to define an isomorphism of functors
r: RTp — TcR (resp. v : TR — RT) such that (R,r) is §-exact. The same is
true for a left adjoint.

Proof: We prove the lemma in the contravariant case, for a right adjoint and
for 6 = 1. The other cases are proved alike. The morphism r4 : RTA — TRA is
the image of Idrra by the chain of isomorphisms

Hom(RTA, RTA) — Hom(FRTA, T A) — Hom(FTT~'RTA, TA)
N
U Hom(TFT~'RTA,TA) — Hom(FT 'RT A, A) — Hom(T~'RTA, RA)
— Hom(RT A, TRA).
Its inverse is obtained from Idr4 by the chain

Hom(RA, RA) — Hom(FRA, A) - Hom(TFRA,TA)

t
L Hom(FTRA,TA) — Hom(TRA, RTA).
It is easy to check (using the standard procedure as e.g. in Proposition 1.14) that

these two elements are inverse to each other. We now have to show that the pair
(R,r) is exact. Let

AL B0 %TA
be an exact triangle. We want to prove that the triangle
RA - RB %> RC "™°B" TRA
is exact. We first complete RA —— RB as an exact triangle
RA - RB - ' ™. TRA

and we prove that this triangle is in fact isomorphic to the previous one. To do so,
one completes the uncomplete morphism of triangles

FRA-E% prp FRS por L2 rppa
RN |

Y
A—r—>B—>C T4

Looking at the adjoint diagram, we see that ad(h) : C' — RC is an isomorphism
by the five lemma for triangulated categories. O

1.2. Weak duality. We now explain the notion of triangulated category with weak
duality. It is obtained from Balmer’s definition of a triangulated category with
duality by weakening the axiom DT = T~!D for the contravariant endofunctor
(called duality functor) D on C of [3, definition 2.2]. Namely, we just assume that
we have an isomorphism of functors

d:T7'D — DT.

such that the (contravariant) pair (D,d) is J-exact, for some § € £1. By the
definition of a morphism of functors and composition of those, we have the formula

dd = (dT~'DoT 'Dd) = (DTd o dDT)

for the natural isomorphism dd : T"*DDT — DTT~'D. Asin [9, Remark 1.1], we
also get iterated versions (d(?) # dd)

dD . 77D — DT"
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for all 4 € Z which e. g. for i > 0 is given by d¥) = dT"' o T=1d~ (or equiva-
lently d®) = d0~DT o T=(=1d). One easily checks that if (D,d) is d-exact, then
(T'DT?,T'dT7) is (—1)"J§-exact.

We also assume that we have an isomorphism of functors
w:Id — D?
with the usual compatibility formula
DwowD =idp
and the modified usual compatibility formula

TdT Do DdowT = Tw.

Definition 1.3. We say that (C,D,d,w) is a triangulated category with weak
d-duality if all the above conditions are satisfied. If T7!D = DT and d = id,
we recover Balmer’s usual definition (subsequently called strict duality, not to be
confused with the condition w = id).

Definition 1.4. Let (C, D¢,dc,wc) (resp. (D, Dp,dp,wp)) be a triangulated
category with weak d¢-(resp. dp-) duality. Let (F, ) be a 1-exact pair from C to D
and let p : FD¢ — DpF be an isomorphism of functors. We then say that the triple
(F,0,p) is a duality preserving functor if the following diagrams are commutative:

(1) F—"" FD.De
wDFl ipDc
DpDpF —> DpFDe
Dpp
FTedeT ! 77!
(2) FTeDe ~——C— FDI — 5 DpFT;?
(6669)6DCL lDDTDIOTcl
TpFDc ——— TpDpF <————— DpTy'F
Top TpdpTy'F

Note that the first condition is the classical one (see for example [9, Definition
1.8, 1.]), and that the second is just a refinement of [9, Definition 1.8, 2.] where the
special case of a strict duality is considered. The proof of the following proposition
is straightforward.

Proposition 1.5. If (C,D,d,w) is a triangulated category with weak §-duality,
then (C,TD,Td,—6(TdD) o w) is a triangulated category with weak (—9)-duality.
Tterating, we get that (C, T*DT?, T'dT7, (—1)0=D0=i+0/25i=5 (T TIid0)) o ) is
a category with weak (—1)=96-duality.

Definition 1.6. Following Balmer’s convention (see [3, Definition 2.8]), given a
triangulated category with weak d-duality (C,D,d,w), we define a triangulated
category with shifted (or translated) duality by

T(C,D,d,w)=(C,TD,Td,—6TdD o w).

Definition 1.7. For convenience, when (F, p) is a duality preserving functor from
(C,D¢,de,we) to (D, Dp,dp,ewp), € = £1, we say that it is a duality e-preserving
functor from (C, D¢, dc, we) to (D, Dp,dp,wp). The composition of such functors
trivially multiplies the signs.

Remark 1.8. As in the strict case, a duality e-preserving functor induces duality
e-preserving functors on the translated categories (same €).
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It is possible to define symmetric spaces as usual, and to extend Balmer’s defi-
nition of Witt groups to this more general setting with weak dualities.

1.3. The functors H and ®. We assume that the triangulated category C is
endowed with an internal Hom functor, denoted by H, and an internal tensor
product denoted ®. This will be used below to make C into a triangulated category
with duality.

We assume the H and ® functors satisfies the following axioms.
Compatibility of H with the translation T'.
(TH1) There is a functorial (in both variables A and B) isomorphism thy 4,5 :
H(TA, B) — T~ H(A, B).
(TH2) There is a functorial (in both variables A and B) isomorphism ths 4 p :
H(A,TB) — TH(A, B).
(TH1TH2) The following diagram is anticommutative.

H(TA,TB) "2 1944, TB)
ch,TA,B\L iT_lthQ,A,B
TH(TA, B) -———= H(A, B)

Compatibility of ® with the translation T .

(TP1) There is a functorial (in both variables A and B) isomorphism tp; 4,5 :
TARB — T(A®B).

(TP2) There is a functorial (in both variables A and B) isomorphism tps 4 p :
AQRTB — T(A@B).

(TP1TP2) The following diagram is anticommutative.

tp1,A,TB

TATB 22221 (A®TB)

tpszA,Bl thPZ,A,B

2

Adjunction of ® and H.
(ATH) We have a functorial (in A, B and C) bijection atha g ¢ : Hom(A®B, C) —
Hom(A, H(B,C)).

Let m : A — A’ be a morphism. For simplicity, and until Proposition 1.12, we
also denote by m the induced application from Hom(A’, B) to Hom(A, B) (resp.
from Hom(B, A) to Hom(B, A")).

Compatibility of the adjunction ath and the translation T'.
(TATH12) The following diagram is commutative.

Hom(TA®B,C) —*"~ Hom(T A, H(B, C))

T E

Hom(T(A®B),C) Hom(A, T~ H(B, C))

Hom(A®TB,C) Hom(A, H(TB,())
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(TATH23) The following diagram is commutative.

Hom(A®TB,C) Hom (A, H(TB,C))

Hom(T'(A®B),C) Hom(A, T~ H(B,C))

TT lT y

Hom(A®B,T~1C) ——> Hom(A, H(B, T~ 1y)

The following are consequences of the previous axioms.
(TATH13) The following diagram is commutative (combine (TATH12) and (TATH23)).

Hom(T A®B,C) Hom(T A, H(B,(C))

| Ir

Hom(T(A®B),C) Hom (A, T~YH(B,C))

Hom(A®B,T~1C) ——> Hom(A, H(B, T-1C))

(TATH12b) The following diagram is anticommutative (glue the diagram induced
by (TP1P2) on the left of (TATH12)).

Hom(T A®B,C) Hom(T A, H(B, C))

= Ir

Hom(T~YTA®TB),C) Hom(A, T-1H(B, C))

TltpT Tth

Hom(A®TB,C) — Hom(A, H(TB,C))

(TATH23b) The following diagram is anticommutative (glue the diagram induced
by (TH1H2) on the right of (TATH23)).

Hom(A®TB,C) Hom(A, H(TB,(C))

Hom(T(A®B),C) Hom(A, TH(TB,T~'C))

|

Hom(A®B,T~'C) —— > Hom(A, H(B

—~

/‘\%

Symmetric commutativity constraint of ®.
We assume that the following holds.

(CP) There is a functorial isomorphism c4 g : AQB — B®RA.
(SCP) The isomorphism c satisfies ¢ 4 0 ca.p = IdagB.
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(TCP) The following diagram is commutative.

CTA,B

TARB ——— BQTA

tpl,A,Bi itplB,A

T(A®B) —= T(B®A)
cA,B

1.3.1. Another possible definition of all this. It would have been possible to define
the morphisms above in a different way, which would make some axioms become
definitions. Suppose that the tensor product ®, tp; and tpy are given and that
they satisfy (TP1TP2). Assume H is also given, but not necessarily thy and ths.
Suppose an adjunction ath is given without any compatibility property. Then, one
can define thl using the diagram (TATH12) in the following way. Replace A in
the diagram by H(T'B, C'), and start with Idy(rp,cy in the lower right set. All the
morphisms but the lower right one are defined, we therefore get the image of the
identity in the middle right group by circling clockwise. This defines an element
thi B,c, and by definition, the diagram

Hom(TH(TB, C)®B, C) —“"> Hom(TH(TB, C), H(B, C))

T E

Hom (T (H(TB,C)®B),C) Hom(H(TB,C), T~ H(B,C))

Hom(H(TB,C)®TB,C) Hom(H(TB,C),H(TB,C))

ath

is commutative. Now it is easy to prove that (TATH12) is commutative for any A;
to do this, we use the following easy trick. We have to show that any element f
in Hom(A, H(T B, C)) is sent to the same element using both sides of the diagram.
Putting the above diagram under (TATH12) and sending Idyrp,c) to f by the
map composing by f we are done by functoriality.

Trick 1.9. Since the above proof can be applied to other commutative diagrams
involving morphisms obtained by adjunctions and can be adapted to all sorts of
similar versions (exchanging left and right, adding isomorphisms of functors, etc...),
each time we will need such a diagram, we will just refer to the previous proof, and
leave it to the reader to make the suitable modifications.

Of course, one can define thy by a similar technique using (TATH23) and that ¢p
and th; are already defined, considering A = T~'H (B, C). Thus the commutativity
of (TATH12) and (TATH23) is true by definition and trick 1.9. It is then easy to
show that thy and thy satisfy (TH1TH?2), using (TP1TP2).

Omne can use the same trick to define tpy starting with ¢p; using ¢ (symmetric)
and (TCP). This shows that one may just start with
d ®a tpl

°c
o H
e ath
and use them to define
e Ip2
[ ] thl
° thg
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such that all the constraints are satisfied.

1.3.2. Ewaluation morphism. Let A and K be objects of C. We define the evaluation
morphism

eva it H(A K)®A — K
as the image of the identity by the adjunction (ATH).
Hom(H(A, K),H(A, K)) ~ Hom(H(A, K)®A, K)
Proposition 1.10. The evaluation satisfies the equality
(EVTI) evark = T(eva, k) otpipa,k),a© (thea xk®Ida)

Proof: Consider the following diagram of isomorphisms
Hom(H(A, TK), H(A, TK)) <" Hom(H(A, TK)®A, TK)
th th

Hom(TH(A, K), H(A,TK)) <~ Hom(TH(A, K)®A,TK)

th tp
Hom(TH(A, K),TH(A, K)) Hom(T(H(A, K)®A),TK)

Hom(H(A, K), H(A, K))

Hom(H(A, K)®A, K)

at

which is commutative by the functoriality of the adjunction and (TATH13) ap-
plied to H(A, K), A and TK.

Start with the identity in the top left set. It is sent to the identity in the bottom
left set (this is completely formal, solely due to the fact that 7" is a functor). These
identities are respectively map to ev4 rx in the upper left corner and ev4 i in the
lower left corner. Now the result follows from the right column. O

Proposition 1.11. The evaluation satisfies the equality
(EVT2) evrakx = eva ko (tpir—19a,k),4) " otP2,r—15(a,k),4° (th1,4,k @Idr )

Proof:  Similar to the previous proof, but replace (TATH13) by (TATH12)
applied to T'H(A,K), A and K. O

1.3.3. Bidual morphism. We now define what we call the bidual morphism
wakx: A—HHAK),K)
as the image of the evaluation ev 4 g under the chain of bijections
Hom(H(A, K)®A, K) ~ Hom(A®H(A, K), K) ~ Hom(A, H(H(A, K), K)

where the first one is induced by c¢y(4,x),4 and the second one is the adjunction.

In most applications, K will be chosen so that this morphisms is an isomorphism
for all A, but formally, it has no reason to be so.

Proposition 1.12. The bidual morphism wy i satisfies the formula

(le) WTAK = H(thl,A,K, K) (e} Tthl,T’IH(A,K),K o TWAJ(.
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Proof: We consider the following diagram.
Hom(H(T A, K)®TA, K) —— Hom(TA®H(T A, K), K) — "~ Hom(T A, H(H(T A, K), K))
th th th

Hom(T~'H(A, K)®TA, K) ——> Hom(TA®T'H(A, K), K) —* Hom(T A, H(T~'H(A, K), K))

tp tp Tth
Hom(T(T~'"H(A, K)®A), K) —— Hom(T (AT~ "H(A, K)), K) Hom(TA, TH(H(A, K), K))
tp tp T
Hom(H(A, K)®A, K) ————— Hom(A&H(4, K), K) ———— Hom(A, H(H(A, K), K))

We have already seen in the proof of Proposition 1.11 that the left column send
eva ik to evra x. The top and bottom rows send respectively evra g and evg g
to wra,kx and wy i, by definition. Following what happens in the right column,
we thus just have to show that the outer diagram is commutative. In fact, each
inner diagram is commutative:

the two bottom left squares because of (TCP),

the bottom right rectangle because of (TATH12),

the top left square because of the functoriality of the morphism c,

the top right square because of the functoriality of the adjunction ath.

This proves the stated equality. O

Proposition 1.13. The bidual morphism wa ik satisfies the formulas:

(wT2a) wark =H(thearx, TK)o thl_,%-((A,K),TK o Tﬁlth;}_‘(A’K)yK O WA K
(wT2b) warkx =—H(the,ax, TK)o thQ_é“H(A,K),K o Tthl_,%-((A,K),K O WA K

Proof: To get the first formula, we proceed as for the previous proposition

with the following diagram of isomorphism. The commutative rectangle involved
is (TATH23).

Hom(H(A, TK)®A, TK) —> Hom(A®H (A, TK), TK) —*"~ Hom(A, H(H(A, TK), TK))
th th th

Hom(TH(A, K)®A, TK) —%— Hom(A®TH(A, K), TK) —*“"> Hom(A, H(TH(A, K),TK))

tp tp th
Hom(T(H(A, K)®A), TK) — Hom(T(A®H(A, K)), TK) Hom (A, T"'H(H(A, K),TK))
T T T 'th

Hom(H(A, K)®A, K) Hom(A®H(A,K), K) Hom(A, H(H(A, K), K))

C

ath

The second formula is then a trivial consequence of the first one, using (TH1TH2).
O

Proposition 1.14. The bidual morphism wa i satisfies the formula:

(wD) H(wa,x, K)o wnar),x = Idya k)
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Proof: Consider the following diagram, in which all vertical maps are isomor-
phisms. Let f: F — F’. We use the notation f* : Hom(F’,G) — Hom(F,G) and
f¢ : Hom(G, F) — Hom(G, F’) for the maps iduced by f.

(H(wa,Kk,K))
AR

Hom(H(A, K), H(A, K)) Hom(H(A, K), H(H(H(A, K), K), K))

athya k), A, K athy(a K), H(H(A,K),K), K

-
Hom(H(A, K) @A, K) < Hom(H(4, K)H(H(A. K). K). K)

CAH(A,K) CH(H(A,K),K),H(A,K)

Hom(A®H(A, K), K) Hom(H(H(A, K), K)®oH(A, K), K)

(a4, k OH(AK))*

atha n(a Ky, K athy (1 (A, K),K), H(A,K), K

Hom(H(H(A, K), K), H(H(A, K), K))

Hom(A, H(H(4, K), K)) < ——

Everything commutes by functoriality of ath and c¢. Now Idy 1 a k) k) in the
lower right set is sent to wy 4, k), x in the upper right set, which is in turn sent
to H(wa,x, K) o Wy a,k),k in the upper left set. But Idy (4 k) k) is also sent
to wa, x in the lower left set, which is sent to Idy (4 k) in the upper left set by
definition of w4, k. This proves the formula. O

1.4. Natural structures of triangulated categories with dualities. We now
assume that K is an object such that (H(—, K),w_ k) is dx-exact. In this assump-
tion is included the fact that wg is an isomorphism. We introduce some notations
for the following functors and morphisms of functors.

Dig: C — C
A — H(AK)
WK - Id — DK 9 DK
(Wr)a = wak
dg : T_lDK — DgT
(dK)A = thi,léx,K
prx: TDg — Dri
(px)a = thyak

Theorem 1.15. The 4-tuple (C, Dk ,dx,wk) is a triangulated category with weak
duality. If furthermore T-'H(—,K) = H(T(-), K) and thy_ g = Idyr—) k),
then (C, Dk, wk) is a triangulated category with strict duality.

Proof: We have to prove the relations D wgowr D = idp, and TdgT ! Dyo
Dyidyg owgT = Twg. The first one is Proposition 1.14 and the second one is
Proposition 1.12. O

Proposition 1.16. (C, Drk,drk,™wrKk) is a triangulated category with weak 5 -
duality. If furthermore T~'H(—, K) = H(T(—), K) and thy a,x = Idyra i), then
(C,Drk,wrK) is a triangulated category with strict duality.

Proof:  All the relations required are obtained by replacing K by T'K in the
previous theorem, so we just have to prove that (Drk,drk) is dx-exact. Recall
that (C,TDg,Tdk,(TdxkDg) o wg) is a triangulated category with duality by
Proposition 1.5, so if

A% B-5 0% TA
is an exact triangle, then the triangle

Dk (v) Dk (u) ST (D (w)o(dx)a)
— — -

D(C) D (B) D (A) TDy(C)
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is exact. Applying the functor T', we get that the triangle

TDK (’U)

TDw(C) "2 7D (B) TREM

—6xT?(Dx (w)o(dx)a)
—

TDg(A) T?Dg (C)

is exact. We now use the isomorphism of triangles

TDw(C) 207D (B2 Y7 D (4) T2Dy(C)

(PK)ci (pK)B\L (pK)A\L iT(PK)c

D —= Dri(B) 5—= Dri(A TD
i (C) 5 Prc(B) 5 P A) ety L P (©)

—5KT2(DK(w)O(dK)A)

The two squares on the left are commutative by simple functoriality, and the square
on the right is in fact T" applied to the diagram

(=6x)Tthi}y & w,
H(A, K) —— 8 poyr A, i) — 2 0, K
T 1th2}4K\L th2 ;—'A Kl ithQEK
-1 TA,TK C.TK
TOHATE) = HTATE) s MO TE)

in which the first square is commutative by (TH1TH2) and the second is commu-
tative by functoriality of th. O

Proposition 1.17. The pair (Ide,id, px) defines an isomorphism of triangulated
categories with dualities from (C,TDg,Tdyk,—(Tdx Dk )owk) to (C, Dri,drk, wrK)-

Proof: Let us prove the relations of Definition 1.4:

(1) pgTDg o (-TdgDk) o wx = Drgpk © Wrk
(2) Tpr o T?dg T~ = ~TdrgT ! o pxgT~! (since TDg has sign —dx and
Drk has sign d)

The first one is exactly equality («w7'2b) in Proposition 1.13 and the second one is,
after translation, (TH1TH2) applied to T-*A and K O

Note that the first category in the previous proposition is (resp. isnot) T(C, D, dx, @)
of Definition 1.6 when dx = 1 (resp. when dx = —1). For convenience, we now set
Cxk = (C,Dk,dk,wk). With this notation, (Id,id, px) is a duality dx-preserving
functor (recall Definition 1.7) from TCk to Crg.

Corollary 1.18. By induction on i, we obtain higher versions of (Idc, pr)

by setting I‘( ) = = (Ide,pk) and T% = Tpi1g 0 T(I‘(l 1)), By multiplications of
s1gns, FEK) is a duality 8% -preserving functor.

Proof: Follows from the previous discussion and Remark 1.8. O

Of course, all this only affects the duality transformation p (the underlying func-
tor is always Id¢). So these duality transformations induce isomorphisms from Witt
groups to Witt groups or to skew Witt groups (changing the bidual isomorphism
by (—1)) according to the sign of T

Remark 1.19. If with start with a K such that Cx is l-exact, then no duality
(—1)-preserving functor can appear in the higher versions.
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1.5. The functors f*, f, and f'. We now assume that we have two categories as
above, C and D, that each of them is equipped with internal Hom and ® satisfying
the axioms of section 1.3. Whenever possible, we use the same notation for this
data in both categories.

We assume furthermore that we have additive functors £,G : C — D and F :
D — C such that F is a left adjoint to F' and G is a right adjoint to F. Of
course, we are interested in the example corresponding to Corollary 2.3, that is
E = Lf*, F = Rf, and G = f' (which - contrary to the adjunction between
the tensor product and the internal Hom - does not exist on the level of additive
categories already, but only when passing to derived categories). These adjunctions
are denoted aef and afg. We also assume the following.

(TE) There is a functorial isomorphism teq : ETA — TEA, such that (E,te) is a
1-exact functor.

Using Lemma 1.2, one can define an isomorphism of functors tf4 : FTA — TFA
(resp. tga : GTA — TGA) such that (F,tf) (resp. (G,tg)) is a l-exact functor. It
is easy to show using trick 1.9 that the two following diagrams are commutative,
because they are exactly the ones used to find the inverse of ¢f (resp. tg) with
A= FB (resp. A=GB).

(AEF)

(teA)n

Hom(EA, B) — > Hom(TEA, TB) < Hom(ETA, TB)
U‘efA,B\L laefTA,TB
Hom(A, F'B) — Hom(T' A, TFB) rrae Hom(T' A, FTB)

tfB)y
(AFG)

t
Hom(FA, B) —> Hom(TFA, TB) YL Hom(FTA, TB)

ang,Bi langA,TB
Hom(A, GB) — Hom(T'A, TGB) e Hom(T'A,GTB)

tgp)y
We then assume the following.

(EP) There is a functorial (in both variables) isomorphism eps p : FAQEB —
E(A®B).
(TEP1) The following diagram is commutative.

EAETB S Ao TEB 25 T (EAR EB)

epA,TB\L iTep,.LB

E(A@TB)EHBET(AQ@B) W TE(A@B)

(TEP2) The following diagram is commutative.

ETA®EB 22 r g Ao EB 2L M (B A2 EB)

epTA,Bl iTepA,B

E(TA@B)EWBET(A(@B) m TE(A@B)



14 BAPTISTE CALMES AND JENS HORNBOSTEL

(EPC) The following diagram is commutative.

EAREB 2% E(A®B)

CEA,EB\L \LEcA,B

EB@EA m E(B@A)

Remark 1.20. Note that (TEP1) and (EPC) imply (TEP2), using (TCP).

Definition 1.21. Let x4 be the counit of aef, that is the image of Idra by the
adjunction Hom(F A, FA) — Hom(EFA, A). Let x4 p be the element z4®zp in
Hom(EFA®EFB,A®B). We denote by fpa p the image of x4 p by the chain of
morphisms

(617}_7‘;‘1-“3);1 aef

Hom(EFA®REFB,A®B) -~ Hom(E(FA®FB),A®B) — Hom(FA®FB, F(A®B))

Notice that we have used the fact that ep is an isomorphism, so we cannot go on
with the same procedure to define a similar morphism from GA®GB to G(A®DB)
since there is no reason for fp to be an isomorphism (and it is of course not an
isomorphism in the classical examples).

The following is a consequence of (EPC) and the adjunction of F and F":

(FPC) The following diagram is commutative.

fpa,B

FA®FB —2% F(A®B)

CFA‘FB\L tiA,B

FBRFA——> F(BRA)
fpB,a

We will see below that this definition also implies that the same diagrams as
(TEP1) and (TEP2) are still commutative after having replaced E by F, te by tf
and ep by fp. Explicitly, we get the following commutative diagrams.

(TFP1) The following diagram is commutative.

P2,FA,F

7 13
FAoFTB™ Y Ao B (F AR F B)
pr,TBi lepA‘B
F(ASTB) — > FT(A®B) — > TF(A®B)
Ftp2 a8 f

tfags
(TFP2) The following diagram is commutative.

FTAoFB 22 p Ao P B (P A9 F B)
fPTA,Bl inpA,B
F(TA®B) — > FT(A®B) — > TF(A®B)

Ftpi,a,B tfagxs

®

To establish the commutativity of (TFP1) is equivalent to showing that fpra p €
Hom(FAQFTB, F(AQTB)) resp. fpap € Hom(FAQFB, F(A®B)) are mapped
to the same element in Hom(FA®FTB, TF(A®B)) under t fyotp; resp. Tot ffotp.
By definition we have that aefo(ep™)¥(xa7p) = fparp and aefo(ep™!)¥(za 5) =
fpa p. Using all kind of functorialities and (AEF) and (TEP1), we are reduced to
show that x4 5 maps to x4 rp under T otf#otef otp?o (tp~t);. This follows using
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the definition of ¢f and again functorialities. The commutativity of (TFP2) can be
proved in a similar way.

Definition 1.22. Let ehap : EH(A,B) — H(EA,EB) denote the image of
Idya,B) by the chain of morphisms

Hom(H(A, B), H(A, B)) Hom(EH(A, B), H(EA, EB))

athT Tath

Hom(H(A, B)®A, B) — Hom(E(H(A, B)®A), EB) — I—ﬁIom(E"}'l(A7 B)®FEA, EB)

(epr(a,B)y,a)
We define fha p: FH(A,B) — H(FA, FB) the same way, replacing E by F.
Applying trick 1.9, we immediately get that the following diagram is commuta-
tive

(EHP)

Hom(A, H(B, C)) —Z Hom(EA, EH(B, C)) 2 Hom(EA, H(EB, EC))

athT Tath

Hom(A®B, C) — Hom(FE(A®B), EC) — Hom(FA®EB, EC)

(epa,B)

We also get the same commutative diagram with E, eh and ep replaced by F,
fh and fp.

(FHP)

Hom(A, H(B, C)) —> Hom(FA, FH(B, C)) 2 Hom(F A, H(FB, FO))

athT Tath

Hom(A®B, C) — Hom(F(A®B), FC) —— Hom(FAQF B, FC)

(fPA,B)

It is also easy to show that the following diagrams are commutative, using
(TEP1) (resp. (TEP2)) and (ATH) and proceeding similar to the argument that
establishes (TFP1) using (TEP1) and (AEF).

(TEH1)

H(ET-'A, EB) — H(T~'EA, EB) — TH(EA, EB)

T !

EH(T-'A, B) ETH(A, B) TEH(A, B)

(TEH2)

H(EA, ETB) — H(EA,TEB) —> TH(EA, EB)

| T

EH(A,TB) — ETH(A, B) TEH(A, B)

Similarly, using (TFP1) and (TFP2) we obtain



16 BAPTISTE CALMES AND JENS HORNBOSTEL

(TFH1)
H(FT'A,FB) — H(T~*FA, FB) —= TH(F A, FB)
FH(T~'A, B) —— FTH(A, B) —— TFH(A, B)
(TFH2)

H(FA,FTB) —> H(FA,TFB) —> TH(FA, FB)

| T

FH(A,TB) —> FTH(A, B) —> TFH(A, B)

Proposition 1.23. The morphisms eha g make the diagram

EWB

EA EH(H(A, B), B)

WEBl \LehH(A,B),B

H(H(EA, EB), EB) H(EH(A, B), EB)

_—
H(eha.p,EB)
commutative, in other words

ehy(a,B),B © Ewp = H(eha B, B) c wgrp

Proof:  This amounts, after applying the functor H(EA, —), to proving that
Idg 4 is sent to the same element by the two paths in the diagram

(Ewg)y

Hom(FA, EA) Hom(FEA, EH(H(A, B), B))
(WEB)ul i(EhH(A,B),B)ﬁ

Hom(EA, H(H(EA,EB),EB)) T Hom(EA, H(EH(A, B),EB))

Glueing under this last diagram the commutative diagram
Hom(EA, H(H(EA, EB), EB)) —“~ Hom(EA, H(EH(A, B), EB))
ath ath
Hom(EA®H(EA, EB), EB) —<" > Hom(EA® EH(A, B), EB)
Hom(H(EA, EB)®EA, EB) —< > Hom(EH(A, BY® EA, EB)

ath ath

Hom(H(EA,EB),H(EA, EB)) — Hom(EH(A, B), H(EA, EB))

in which all vertical maps are isomorphisms, one sees that idg 4 is sent to eh, p in
the lower right set by definition of wgp. We now prove that idg4 is again sent to
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this element eh 4 p using the other path in the first diagram. Consider the diagram

Hom(A, H(H(A, B), B)) —= Hom(EA, EH(H(A, B), BY) ““ 2 fém(EA, H(EH(A, B), EB))

ath ath

PA,?—L(A,B))u
_—

Hom(A®H(A, B), B) — > Hom(E(A®H(A, B)), BB Hom(EASEH(A, B), EB)

-
Hom(H(A, B)®A, B) — L= Hom(E(H(A, B)®A), EBS ’M‘)Hom(EH(A, B)®EA, EB)

ath ath

Hom(H (A, B), H(A, B)) — Hom(EH(A, B), EH(A, B)) (T>)Hom(EH(A, B),H(EA,EB))

eha,B)g

in which the top and bottom rectangles are commutative because of (EHP), the
middle left one because of the functoriality of £ and the middle right one because
of (EPC). Starting with idy (4, ) in the lower left corner, we end up with wa p in
the upper left corner, with eh4 g in the lower right corner, wich proves our claim.
O

Definition 1.24. We define s p : FH(A,GB) — H(FA,B) as the image of
tdya,cB) by the chain of morphisms

Hom(H(A, GB), H(A, GB)) Hom(FH(A, GB), H(F A, B))

athT Tath
-1

#
Hom(H(A, GB)®A, GB) L~ Hom(F(H(4, GB)2A), B ““““Afom(FH(A, GB)2F A, B)

Verdier [20, Proposition 3] defines a natural isomorphism with similar source and
target. In our setting, his definition becomes the following.

Definition 1.25. We define & by the composition
&: FH(A,GB) L2 n(FA, FGB)) ™ H(FA, B)
where Tr : FG — id is the counit of the adjunction afg between F' and G.

Verdier uses the projection formula to show that & is an isomorphism. Below,
we will use the projection formula to show that « is also an isomorphism. But
anyway, we have the following.

Proposition 1.26. The two natural isomorphisms o = & are equal.

Proof: We have to prove that the following diagram commutes.

Hom(FH(A, GB), FH(A,GB)) Ih Hom(FH(A, GB), H(FA, FGB))

v| |-

Hom(H(A, GB), H(A, GB)) Hom(FH(A,GB), H(F A, B))

athT Tath

Hom(H(A,GB)®A,GB) Hom(F(H(A,GB)®A), B) — Hom(FH(A,GB)®F A, B)
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Using that Tr o F = afg and that Tr and fp are applied to different variables and
thus commute, we are reduced to show the commutativity of

Hom(H(A, GB), H(A, GB)) —> Hom(FH(A, GB), FH(A, GB)) — > Hom(FH(A, GB), H(F A, FGB))

athT \Lath

Hom(H(A,GB)®A,GB) — Hom(F(H(A,GB)®A), FGB) — Hom(FH(A,GB)®FA, FGB)

which is (FHP) applied to H(A,GB), A and GB. O
Thus we no longer distinguish between a and & Applying trick 1.9, we immedi-
ately get the commutative diagram from Definition 1.24

(GHP)

(aB,0)4

Hom(A, H(B, GC)) —E= Hom(F A, FH(B, GC)) <5 Hom(F A, H(F B, C))

athT Tath

Hom(A®B,GC) Hom(F(A®B),C) Hom(FA®FB,(C)

afyg (fpa,B)*

Diagram (TFH1) and Proposition 1.26 imply that the following diagram is com-
mutative.

(TFG)

—1

FTH(A, GBY YT FH(T A, GB) —%> H(FT A, B)

tfl lTlth1

TFH(A,GB) TH(FA,B) <—— H(T"'FA,B)

[0}

Proposition 1.27. The morphisms as,p make the diagram

Fwa,cs

FA—2%" . PH(H(A,GB),GB)

WFA,Bi laH(A,GB),B

H(H(FA, B), B) = H(FH(A,GB), B)

commutative.

Proof: The proof is the same as for Proposition 1.23, but replacing F by F, B
by GB, eh by a = Tr o fh, (EHP) by (GHP), (EPC) by (FPC) and functoriality
of E by functoriality of afg. O

1.6. The projection formula and its consequences. Let u be the unit of the
adjunction aef. We now assume that the morphism ga.p = uwo fp : AQFB —
F(EA®B) obtained by adjunction from idgagp is an isomorphism for all A and
B.
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Definition 1.28. We define 54,5 : H(FA,B) — FH(A,GB) as the image of
idy(a,gB)y by the chain of morphisms

Hom(H(FA, B), H(FA, B)) Hom(H(FA, B), FH(A, GB))
athli Taef
Hom(H(FA, BY®F A, B) Hom(EH(FA, B), H(A,GB))

(qH%FA'BM)ni Tath
Hom(F(EH(FA, B)®A), B) —2Y ~ Hom(EH(FA, B)® A, GB)
Proposition 1.29. The morphisms aa,p and Ba g are inverse to each other.

Proof: The proof that aa g o Ba,B = idy(ra,p) follows as in the commutative
diagram

#
Hom(FH(A, GB), FH(A, GB)) 2% Hom(H(F A, B), FH(A, GB))

aef~ ! aef~?!
Hom(EFH(A, GB), H(A, GB)) ——> Hom(EH(FA, B), H(A,GB))
ath™?! ath™?!

Hom(EFH(A,GB)®A,GB)

Hom(EH(FA,B)®A,GB)

afg™? afg™"

Hom(F(EFH(A,GB)®A), B) — > Hom(F(EH(FA, B)®A), B)

Hom(FH(A,GB)®F A, B)

Hom(H(FA, B)QF A, B)
ath ath

Hom(FH(A,GB),H(FA,B))

Hom(H(FA, B), H(FA, B))
(Ba,B)*
the element id in the upper left corner is mapped to « in the lower left (since
uf = aef~' o F and all morphism are natural with respect to u) and to 3 in the
upper right corner, which are both mapped to id in the lower right corner. The
fact that 84 B o s B = idpy(a,ap) comes again from the same kind of reasoning

applied to the same diagram with 3 instead of a.
O

Remark 1.30. Looking at the proof of the previous proposition, one can in fact
weaken the assumptions, and just require that gpya,g),4 and gy (ra,py,a are
isomorphisms for a certain A and B, and the proposition will still hold for these
particular A and B.

1.7. Natural functors of triangulated categories with duality. Recall that
(E,te) is a l-exact functor from C to D and that (F,¢f) is a l-exact functor from
D to C. We denote by Ax = e x the morphism of functors

Ak : EDg — DggFE
eharx: EH(AK) — H(EA EK).
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Name ‘ context ‘
thia,B H(TA,B) — T~ YH(A, B)
tha AB H(A,TB) — TH(A, B)
tp1,4,B TA®B — T(A®B)
tp2.A.B AQTB — T(A®B)
atha,pc | Hom(A®B,C) — Hom(A, H(B, C))
CA,B A®B — BRA
eva K HAK)RK — K
WA K A—HMHAK),K)
aefap Hom(EA, B) — Hom(A, FB)
afga,p Hom(F A, B) — Hom(A, GB)
tea ETA—-TFEA
tfa FTA—TFA
tga GTA—TGA
epa,B EA®EB — E(A®B)
fraB FA®FB — F(A®B)
ehaB EH(A,B) — H(EA,EB)
fhap FH(A,B) — H(FA,FB)
ansp FH(A,GB) — H(FA, B)
Ba,B H(FA,B) — FH(A,GB)
qA,B A®FB — F(EA®B)

TABLE 1. Summary of the different definitions

Theorem 1.31. Let K be an object of C such that wyi and Ak are isomorphisms
of functors, and such that (Dg,dri) and (Dgk,dgk) are §-exact (same 0). Then
the triple (E,te,Ak) is a functor of triangulated categories with dualities from
(C7DK,dK,wK) to (D,DEK,dEK,TDEK).

Proof: We have to check that A\g satisfies the diagrams of Definition 1.4. The
first one is Proposition 1.23 and the second one is (TEH1). O

Theorem 1.32. Let L be an object of D such that wgy, and wy, are isomorphisms,
(Dr,dr) and (Dgr,dgL) are §-exact (same &), and such that qppg, (a),a and
qD,F(A),A are isomorphism for all A and set ay, = o 1. Then the triple (F,tf, ar)
is a functor of triangulated categories with dualities from (D, Dgr,dar,@war) to
(C,Dr,dr,wL).

Proof: Proposition 1.29 and Remark 1.30 ensure that «y is an isomorphism of
functors. We then have to check that ay satisfies the diagrams of Definition 1.4.
The first one is Proposition 1.27 and the second one is (TFG). O

1.8. An example for section 1.3.

1.8.1. Category of complexes. Let A be an additive category with an internal Hom
(denoted by h) and an internal tensor product (denoted by e) with a commutativity
constraint and an adjunction between e and h additive and functorial in the three
variables. We now show that the both the categories of bounded and unbounded
complexes of objects of A can be equipped with an internal Hom H and an internal
tensor product ® satisfying the axioms of section 1.3. This is essentially a problem
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of choosing some signs, and as explained in section 1.3.1, some choices determine
the others.

We work with homological differentials, i.e.
df‘ A — A
The groups defining the translation functor are
(TA), = A,_1.
The groups in the tensor product and the internal Hom are given by

(A®B), @ A;eB;

1+j=n

I »4i.B;)

Jj—i=n

and

In table 2 can be read where we put which sign in our definitions of the different
groups and morphisms. As a general rule, the indices in the sign correspond to the
groups from which the morphism with this sign starts.

Definition of ‘ Sign ‘ Locus
T4 e dTA = Td A
A®B e}f;’ G}V?df‘ozdgj

e?j? 62®idAv0d-B
H(A, B) 6717] }?(dzﬂ)

o (dP),
ip1,4.B E?jl tplZdA 0B,
tp2,4,B 6?;-2 er ; ZdAi.Bj
thiap eihl e"lidya, b))
tho.a,B 6?,}}2 65@2idh(Ai,Bj)

atha g.c eg)tjh ‘”h(Hom( ;oB;,Ci1;) — Hom(A;, h(Bj,Cit;)))
CA,B ef]- eﬁj(Aiij — BjoAi)

TABLE 2. Sign definitions

In table 3, we state the compatibility that these signs must satisfy for the axioms
to be true.

As the discussion in section 1.3.1 suggests, some equalities are consequences of
other ones. It is also easy to see that (1,4,6) = 7 and (2,10,12) = 8. If you
assume 19, then 17 and 18 are equivalent.

Balmer, Gille and Nenashev [3], [4],[6], [9] always consider strict dualities, that

is €t = 1. The signs choosen in [4, §2 6] imply that elH = 1. The choices made

by [9, Example 1.4] are 61] =1and &% = (~1)". In [6, p. 111] the signs Gt =
and €2t = (—1)"*J*! are choosen. Flnally, the sign choosen for w in [6, p. 112]
corresponds via our definition of w to the equality €2 ?th ¢ = (—1)j(j_1)/2.

J—t,4%,—1"j—i,1
It is possible to choose the signs in a way compatible with all these choices and our

formalism.
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‘ compatibility ‘ reason ‘
1 ‘ 6%? 11,?_1 ??E?%j =-1 ‘ A®B is a complex ‘
2 e teltt el = — H(A, B) is a complex
3 efel 656 fpjl ?illj =1 tp1,4,p is a morphism
o] aesen e
5 erel, e 1?6??+16210126tf;2 L= tp2,4,p is a morphism
6 61T+36i(§)611?+16?326?121,3 =1
7 el e2el? = -1 (TP1TP2) is true
8 eiflehl | efh2elh? - = -1 (TH1TH2) is true
9 | €€l ;e el ettt =1 | thy ap is a morphism
10 eT_l_legHeffl ]e‘;}zleﬁzl =1
11 elel jeHelt eh2elh2 | =1 the, a,p is a morphism
12 el eltet elh2elhd =1
13| 699l et je¢th = —1| ath is well defined
14 e}?e?%_ﬁﬁh e =1
15| ePleP2ethl . eoth eath =1 (TATH12) is true
16 | ePZelhl | eth2 eatheath | — (TATH23) is true
17 %f’ 3? fi€i1;=1 ca,B is a morphism
18 g €€ =1
19 € €5 =1 (SCP) is true
20 PrelZes ec ) =1 (TCP) is true

TABLE 3. Sign definitions

Theorem 1.33. Let a,b € {+1,—1}. Then

satisfies all equalities of Table 8 as well as €4

€1® =1

2® 7

6, =(=1)

6171‘ =1

62%( ( 1)i+j+1
6ath b(il)z(zfl)/2
esz -1

?

ath,

;€

J—1,81,5—1

= a(-1)
1
a( 1”)1'-&-]

ath _.c —

¢ i = (=1)70D/2 and is

compatible with all the above sign choices of Balmer, Gille and Nenashev.

Proof: Straightforward. O

1.8.2. Derived category. Assume now that A is as in 1.8.1 and furthermore is an
abelian (or more generally exact) category with enough injectives and projectives
(or flat objects). Then we obtain a (right) derived internal Hom and a (left) derived
tensor product. In general, these bifunctors are defined on categories of complexes
with cohomology bounded above or below.
of Ox-modules for X a regular noetherian scheme as will be studied in section
2, these bifuctors reduce to complexes in D’ (as we have finite resolutions) and

In the case of the derived category
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even to complexes with coherent cohomology (see e. g. [10, Proposition I1.3.3 and
Proposition 11.4.3]). In particular, we obtain an adjunction between RHom and
@Y in D%(X) satisfying all the formulae of subsection 1.3.

2. WITT MOTIVES

In this section, we will construct transfer maps between (Grothendieck-)Witt
groups with respect to proper morphisms and establish some properties such as
the base change and the projection formula. In contrast to Ky, the transfer maps
for (Grothendieck-)Witt groups will shift the degree and twist the duality. Using
section 1, it seems straigthforward to generalize the construction of transfer maps
to the H-equivariant setting for an algebraic group H, but we have not checked this
in full detail, so the careful reader should assume H = {1}. These transfer maps
and their properties are then used for the construction of the categories GW* and
WH of Grothendieck-Witt motives and Witt motives with respect to an algebraic
group H. This category is the analogue of the category K of [16, section 6] which
is the crucial construction for Panin’s computations.

Everything in the sequel is true both for GW and W, so we just state everything
for W.

We observe that in some very special cases there are already constructions that
deserve the name transfer map. In particular, for any projection map 7 : P" x X —
X, Walter establishes maps W¢(P" x X,m*L(—n — 1)) — W =" (X, L) [21, p. 24]
which using in particular Theorem 5.6, Proposition 5.11 and p.23/24 of loc. cit. can
be seen to be natural with respect to X. Also, there seems to be work in progress
by C. Walter on the construction of transfer maps in a very general setting (which
should presumably yield the same transfer maps as those we constructed). There
are also transfer constructions for Witt groups with respect to certain finite maps
and closed embeddings in the affine space [8], [22], but not for other projective
morphisms which is what we need.

2.1. Some derived categories. In order to define transfers, it will be necessary to
consider larger categories than just D®(Vect(X)). We denote D*(X) the bounded
derived category of sheaves of Ox-modules. Recall that for any exact category &
(e.g. £ = Ox-modules on a given scheme X), the canonical functor from the de-
rived category of bounded complexes D’(€) to the subcategory of the unbounded
derived category D(&) of complexes with bounded cohomology is an equivalence of
categories (see e.g. [11, Lemma 11.7]). Thus, we shall use the same symbol for this
latter category as well, and it is this variant we work with when using the previous
section. We further denote by D2(X) and D?.(X) the full subcategories of com-
plexes with coherent resp. quasi-coherent cohomology. For X noetherian regular
of finite Krull dimension, the inclusion D®(Vect(X)) — D%(X) is an equivalence of
triangulated categories.

The inclusion D%(X) — DJ.(X) is fully faithful by definition, but never an equiv-
alence. Recall that for X locally noetherian, the functor D*(QCoh(X)) — DSC(X)
is an equivalence, see e.g. [10, Corollary I1.7.19]. Under suitable assumptions (see
section 1, and in particular 1.8.2), the category D®(X) has an internal Hom denoted
by RHomy or just RHom which is right adjoint to ®I(5X and restricts to internal
Homs in D?(X) and D}.(X).

Remark 2.1. Sign conventions. First of all, we use chain complexes, as in Balmer’s
work (i.e. the differential in degree n is d,, : A, — A,_1). The sign conventions
that we then use are discussed in 1.8.1.
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2.2. Transfers. If f : X — Y is proper and Y locally noetherian, then there is
a functor Rf, : DS.(X) — D/.(Y) and similar for D} (see [10, p. 88-89]). The
construction of transfers for Witt groups along R f, will rely on the following duality
theorem due to Grothendieck-Verdier (-Hartshorne-Deligne) (see [20, Proposition
3, p. 404]):

Theorem 2.2. Let f : X — Y be a proper morphism of noetherian schemes of
finite Krull dimension. Then there is a functor f' DI.(Y) — D .(X) and a natural
transformation Try such that for all F € D, (X), G € DJ.(Y) the composition

&:Rf.RHom(F, f'G) "™ RHom(Rf,F, RS, f'G) ¢ RHom(Rf.F,G)

. . L
is an isomorphism in DJ.(Y).

Applying the global section functor RI'(Y, ) and using the isomorphism of
functors R['(X, ) = RI(Y,Rf.( )) (see [10, IL.Proposition 5.2]), the isomor-
phism of the theorem becomes an isomorphism RHom(F, f'G)>RHom(Rf,F,G)
in D(Ab). Observe also that since f is proper, the above statement remains true
after replacing gc by ¢ everywhere by [10, Proposition I1.2.2] and [20, p. 396].

Applying H°, we obtain (see [20, Theorem 1]):

Corollary 2.3. In the above situation, the functors Rf. : DJ.(X) — Df.(Y) and
fhe DI.(Y) — DJ.(X) form an adjoint pair.

Proof:  Apply H° to the isomorphism RHom(F, f'G)S>RHom(Rf.F,G) in
D*(Ab). O

Remark 2.4. In fact, Verdier proceeds in the other direction. That is, he first
states Corollary 2.3 and then deduces Theorem 2.2 using the projection formula.
We will also use Corollary 2.3 and the projection formula to construct a natural
isomorphism «a : Rf,RHom(F, f'G) — RHom(Rf.F,G) (see Theorem 1.24), but
in a different way than Verdier.

Being part of an adjoint pair, the functor f' : DJ.(X) — DJ.(Y) and the natural
transformation T'ry are unique up to unique isomorphism, see [20, p. 394]. There
are at least two different ways to construct them and to prove the isomorphism of the
theorem (see also [14] for still another approach). One is to use residual complexes
as Hartshorne [10] does. The other is to use apply the techniques of [20] as done
by Deligne in the appendix of [10]. We will use this second construction. Although
f' and Try are unique up to unique isomorphism, this does not automatically
mean that we can say explicitely how the isomorphism between the constructions
of Hartshorne and Deligne looks like.

We now explain why this theorem is useful to define transfers. Given a line
bundle L on a Gorenstein scheme X (for instance L = Oy, or L = wy := wy,r the
canonical sheaf if X is smooth over F), the functor * := 1, := Homp ( ,L) is a

duality functor on Vect(X) with the natural isomorphism @ : Id= #x* defined below.
This induces a duality on the triangulated category RHom( , L) on D*(Vect(X))
where L is considered as a complex concentrated in degree 0. We will work with the
larger category D%(X) instead on which RHom( , L) is still a duality (see [6, 2.5.3
p. 115] and [10, Theorem V.3.1]) and gives rise to the so-called coherent Witt groups
(compare [6, Definition 2.16]). For the precise definition of the w with respect to
RHom( ,L) on D%(X) we use and for a comparison with the signs choosen in
[6, p. 112] see sections 1.8.1 and 1.8.2. As we always work with coherent Witt
groups (instead of derived categories of vector bundles), we denote these simply by
W*(X):
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Definition 2.5. Let L be a line bundle on a scheme X which is Gorenstein noe-
therian of finite Krull dimension. Then we define

WX, L) = W(D!(X), RHom( .L),L).

Beware that following Hartshorne, in the notation RHom( ,L) the R means
R;R;;, so we replace the line bundle L by an injective resolution. We also have
locally free resolutions if X is quasiprojective. Moreover, the derived functor of
Hom using projective resolutions if those exist (denoted by R;;R; in Hartshorne)
is canonically isomorphic to the one defined via injective resolutions (see [10, p.
65/66, 91]), but we will not use this in the sequel. From now on, we assume that
all schemes are noetherian of finite Krull dimension and Gorenstein.

Remark 2.6. First, we have a natural transformation
wy,k : Id - RHom(RHom( ,K), K))

for any bounded complex K (see 1.3.2). We say that K is a dualizing complex if
wy, i is an isomorphism. The fact that X is Gorenstein ensures that Ox is a dual-
izing complex. Moreover, [10, Theorem V.3.1] implies that any dualizing complex
of finite injective dimension is quasi-isomorphic to a shifted line bundle, provided
X is connected. Of course, Definition 2.5 generalizes to dualizing complexes.

Recall that as X is noetherian regular of finite Krull dimension, the inclusion
(D*(Vect(X)),*1) — (D%(X),*z) is an equivalence of triangulated categories with
duality, inducing a non-canonical isomorphism between the associated Witt groups
(the proof of [6, Corollary 2.17.2] for Ox carries over to arbitrary line bundles
L). We also obtain a map f*: W*(Y,0Oy) — W*(X,Ox) between coherent Witt
groups for f: X — Y a flat morphism [7, p. 221].

The techniques of section 1 yield such maps f* for other dualities provided X
and Y are regular.

Proposition 2.7. Let f : X — Y be a flat morphism of regular schemes and M
a dualizing complex on Y. Then there is a natural morphism f* : W*(Y, M) —
W*(X, f*M) induced by an exact functor of categories with dualities.

Proof: This follows from Theorem 1.31 which hypotheses are satisfied by the
arguments of the proof of Theorem 2.10 and [10, Proposition 11.5.8]. O

Now if we have a proper morphism f : X — Y, we want to find dualizing
complexes M on X (i.e., M € D%(X) such that Dy := RHom( , M) is a duality
on D%(X)) such that Rf, can be extended to a functor of triangulated categories
with duality (Rfs,a) : (D%(X), Dy, @) — (DY), %1, ). By definition, o must
be a natural isomorphism « : Rf,RHom(F, M)=>RHom(Rf,F,L). The duality
theorem above tells us that this might be possible if we choose M to be isomorphic
to f'L. We also have the following:

Lemma 2.8. If f : X — Y s a smooth proper morphism of relative dimension
d and L a line bundle on'Y, then there is a natural isomorphism 8 : f'LSf*L ®
wX/y[d]. If moreover g 1 Y — Z is also smooth, we have an isomorphism wx

1

[H(wy)z) @ wxyy. If f as above and h : 'V — Y arbitrary, then ﬁ*(wx/y)
WX xyV/V-

Proof: See [10, p. 143, p. 419-421] or [20, Theorem 3] for the first claim and
[10, p. 142, p. 141] for the second and third one. O

If f is a closed embedding of codimension d which is locally complete intersection
(e. g. the graph of a morphism), then it is still possible to define wx/y (see [10, p.
141]). and one may establish the second and third isomorphisms again using [10,
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p. 142, p. 141]. The description of f'L can be generalized easily to non-smooth
morphisms when using absolute rather that relative canonical sheafs, which turns
out to be more natural for our later purposes anyway.

Lemma 2.9. (B. Kahn) Let f : X — Y be a proper morphism of relative dimension
d between smooth varieties over a field F and L a line bundle on Y. Then there is
a natural isomorphism 3 : f'LSf*L ® f*w{,l ® wx|d].

Proof: Recall that f'L & f*L ® f'Oy [10, p. 419-420]. Let px and py be the
projections from X and Y to Spec(F). We have px = py o f, so, by adjunction
Py = f' opl, hence, by Lemma 2.8 and the above isomorphism

wx[dim X] 2 py Op = f'pOp = fluy[dimY] & ffwy[dim Y] ® f'Oy

which yields the formula for L = Oy. Now apply the above isomorphism again for
the general case. O

Observe that f, has finite cohomological dimension (see e.g. [10, p. 87]), hence
R f. restricts to a functor Rf, : D%(X) — D4(Y).

Of course, we now have to show that this « indeed defines a functor of trian-
gulated categories with duality. See Proposition 1.26 for the comparison of this
construction of a with the & of Verdier.

Theorem 2.10. If in addition to the hypothesis of Theorem 2.2 X and Y are
smooth over F', then the functor

(Rf*va) : (DZC)(X)v *f‘vaX) - (ch)(y)v *vaY)
is a functor of triangulated categories with duality.

Proof: We want to apply Theorem 1.32 with D = D%(X), C = DY) (see
also subsection 1.8.2), E = Lf* (as defined in [10, Proposition 11.4.4]), F' = Rf,
and G = f'. Observe that Lf* and f' restrict to D? as X and Y are regular
noetherian and Lemma 2.9 applies to vector bundles as well. We know that @,
@y, are isomorphisms because L is a line bundle and therefore the complex f'L is
quasi-isomorphic to a shifted line bundle. The projection formula morphisms

(Rf*Df’LA)®Rf*A - Rf*((f*Rf*Df!LA)®A)

and
(DLRfA)@RfA = RE((f*DLRfA)®A)

are isomorphisms by [10, Proposition IL.5.6]. For the adjunctions aef and afg, we
use [10, Corollary I11.5.11] and Corollary 2.3. The isomorphism ep is provided by [10,
Proposition 11.5.9], and the isomorphisms ¢, tp; and tp, are the obvious ones given
by subsections 1.8.1 and 1.8.2. It remains to define te and to check that TE, TEP1,
TEP2 and EPC hold. Replacing all complexes by flat ones, we are reduced to
study chain complexes. Thus we see that we may choose te = Id : Tf* — f*T as
f* is defined degreewise, and the commutativity of the three squares is immediatly
checked degreewise using that in each diagram the only sign that appears (namely
€'P2, resp. €'P1, resp. €°) does appear twice. O

Remark 2.11. We may replace the condition ”smooth over F” by "regular” if we
know (for some other reason than Lemma 2.9) that f'L is a dualizing complex on
X.

Having done all this, we can finally define the desired transfer maps between
Witt groups.
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Definition 2.12. Let f : X — Y be a proper map between smooth varieties over
F and L a line bundle on Y. Then we define the transfer map

fo: WX, f'L) — W*(Y, L)
to be the map induced by the triangulated duality preserving functor (Rfs, )

above.

The transfer respects compositions.

Lemma 2.13. Let X RNV Ny be two proper maps and N a line bundle on Z.
Then we have (go f)s = g« © fo : W*(X, (g0 f)'N) — W*(Z,N).

Proof:  One has to check (R(g 0 f)«, agor) = (Rgx, g) © (Rfs, af) where the
right hand side is defined by 2.20 below. This immediately follows using among
others that T'rg o (Rg*Trfg!) =Trgy. O

Remark 2.14. 1f f is a smooth finite morphism, then wx,y = Ox, so by Lemma
2.8 the above transfer map becomes f, : W*(X, f*L) — W*(Y, L). In particular,
we get some version of the classical Scharlau transfer [18] f, : W*(X) — W*(Y) if
L =0y.

For L = wy, the transfer map becomes

fo: WX, floy) = WH(Y, wy).

Using the isomorphism of Lemma 2.8, Lemma 2.9 and the fact that an isomorphism
of dualizing complexes induces an isomorphism of categories with dualities and thus
of Witt groups, we deduce from Theorem 2.10 a transfer map f. : W*(X,wx[d]) —
W*(Y,wy) (or f. : WHX, f*L Qo wx[d]) — W*(Y,L ®o, wy) for some line
bundle L on Y).

Applying 1.17, we therefore have:

Lemma 2.15. Under the assumptions of Lemma 2.9, the above transfer map in-
duces a transfer map of degree —d

f* : W*er(Xaf*L ®OX wX) - W*(KL ®OY WY)'
Lemma 2.16. Let X Ty 2z be two proper maps and N a line bundle on Z.
Then we have (go f)s = gs o fu : WX, (go f)*NQuwx) — W (Z,N Quwyz).

Proof: We want to reduce this to Lemma 2.13. Recall that from Lemma 2.9,
we have isomorphisms

By : M= f*M®f*w;1 ® wx|d]
and

By:g'N = g"N@gw,' @wyld]
Fix an isomorphism A\ : N ® wgl ~ N’. Then the proof of Lemma 2.15 shows that
starting with the isomorphism

A : WH(Z,N) - W*(Z,N' @ wyz)
we obtain two isomorphisms
WX, f'¢'N) - W*(X, f*¢*N' ® wx)
applying either first ¢* and then f* or directly (g o f)*. The lemma follows as one
can show that these two coincide. To check this, one uses among others that
Bgor : (g0 /) N@wy' = f*g'N® f*g'wy' @ frwy @ frwy' @ wx @ wy'
and f*(8, ® Id) o By are equal. O
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2.3. Another category. Before we prove the related properties of transfers and
pull-backs for Witt groups, we introduce a new category in which those properties
can be expressed nicely.

Let L, L', M, M’ and N, N’ be vector bundles over X, Y and Z, respectively, and
assume we have morphisms px,z : X — Z and pyyz 1Y — Z. Let V =X xz Y
be the cartesian product of X by Y over Z. We denote L X M the vector bundle
p*{//X(L)®(pV/XOpX/Z)*(N)QQp*{//Y(M) over X xzY. When we write LX M, we
mean that Z is the point and that N is trivial. We therefore get a vector bundle
over X x Y. We identify

° (L 0N M) X (L/ X n M’) = (L@L/) &N@)N' (M@M/)

L] wXXZy = wx &wgl wy
where the last equality follows from Lemma 2.8 provided everything is smooth.
When f: X' — X and g: Y’ — Y, we also identify

o (fxg)"(LRM)=f*LKg*M.
Now, let f : X — Y and g be two composable morphism and P and P’ be line
bundles over the target of g. We identify

e f*(Oy)=0x

o frogi(P)=(go f)"(P)

o [f(P)& fH(P') = fr(P®P)
Finally, we denote L~! the dual line bundle of L and we identify

o L ® L 1= Ox
Of course, we could avoid all those identifications by working with the canonical
isomorphism involved, but the proofs would become completely unreadable.

Definition 2.17. Let £ denote the category whose objects are pairs (X, L) where
X is a smooth variety and L is a line bundle over X. A morphism from (X, L) to
(Y, M) is a pair (f,$) where f is a morphism from X to Y and ¢ : f*(M) ~ L is
an isomorphism of vector bundles. The composition is defined by (g, %) o (f, ) =
(go f.¢o (1))

Associativity in L is clear. There is an obvious faithful functor from the category
of smooth schemes to this category sending X to (X,0x) and f : X — Y to
(f,Ido, ). To keep notations concise, we denote by X and f the images of X and f
by this functor. We denote pt the object (SpecF, Ogpecr). The reader discouraged
by all these notations might want to restrict his attention to the case where all the
L and M are just the structure sheafs.

There is a well defined contravariant functor W* from the subcategory of flat
morphisms of £ to the category of abelian groups that send an object (X, L) on the
corresponding Witt group W#(X, L). The morphism (f,¢) is sent to the compo-
sition WY, M) — WX, f*(M)) — WX, L), where the second map is induced
by ¢ and the first is the classical pull-back on Witt groups. For obvious reasons,
we denote this morphism (f, ¢)*.

We can also define the push-forwards (or transfer) for a morphism (f, ¢) if f is as
in Definition 2.12. This is a morphism (f, ¢), from W4 (X, M ®@wx) to Wi (Y, L®
wy) when f is of dimension d. It is given by the isomorphism Wit¢(X, f*(L) ®
wx) ~ Witd(X, M ® wy) induced by ¢ composed with the morphism of 2.15. One
can check that ((g,v) o (f,#))« = (9,9)« © (f,9).

For reasons that will be clear later, we define the twist of an object ¢(X, L) =
(X,L ® wx). We can therefore interpret the transfer for a morphism (f,¢) as a
morphism from Witd(¢(X, L)) to Wi(c(Y, M)).

Next, we prove the base change formula for Witt groups. We need to study the
following technical condition.
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Definition 2.18. Let (F,ar) and (G, ag) be two exact fuctors (A, D4, wwa) —
(B,Dp,wg) between exact categories with duality. We say that o : FF' = G is a
natural transformation (resp. isomorphism) between duality preserving functors if
o : F' = G is a natural transformation (resp. isomorphism) between functors and
the square

FDjy —Es DRF

O-DA\L TDBU

GDATG>DBG

is commutative. If F' and G are exact functors between triangulated categories,
we say that o : F' = (G is a triangulated natural transformation (resp. isomorphism)
between duality preserving functors if moreover o7 = To.

Lemma 2.19. If o is a natural isomorphism between duality preserving functors as
above, then the two maps W(A) — W (B) induced by F and G coincide. If moreover
o 1s a triangulated isomorphism, then the two induced maps between graded Witt
groups W*(A) — W*(B) coincide.

Proof: 1t is straightforward to check that the images with respect to F' and G
of some symmetric space in A are isomorphic as symmetric spaces in B, and similar
for the shifted dualities in the triangulated setting. O

It is possible to compose duality preserving functors between triangulated cate-
gories with dualities.

Definition 2.20. Let
(F777) : (Aa DAawA) - (BaDvaB)

and
(va) : (B,DB7WB) - (O,DC,WC’)

be two duality preserving functors of triangulated categories with duality. Then we
define their composition (GF, pn) by

(GF7 (pF) o (Gn)) : (AuDA7wA) - (07 DC,’WC).
It is straightforward to check that (GF, pn) is a duality preserving functor.

Theorem 2.21. Assume that we have a cartesian square of smooth varieties

VX
f'l f
Y—=7
where g and g’ are flat and f and f' are proper and satisfy the hypotheses of

Definition 2.12. Let N be a line bundle on X. Then we have a commutative square
of Witt groups

g/*

WH(V,g™* f'N) <— W*(X, f'N)

{

W*(Y,g*N) <— W*(Z,N)
g
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Proof: =~ The square of Witt groups is induced by the following diagram of
cateories with duality

(DY(V), RHom( .g" f'N)“ (DY(X), RHom( ,f'N))

(Id,c)i

(DX(V),RHom( ,f"g*N)) (Rf..a)
(RfLa’)i

(De(Y),RHom( ,g*N)) (D2(Z2),RHom( ,N))

(g"id)

where ¢ is the canonical isomorphism of [20, Theorem 2]. We may now apply
Lemma 2.19 to the functors F' = g* o Rf, and G = Rf. o Id o g’*. The required
natural isomorphism ¢ is given by [2, p. 84, p. 285] and [1, p. 290]. The hypothesis
in Definition 2.19 is then precisely the commutativity of the square of functors and
natural isomorphisms

g'RERHom( ., f'N) == RHom( ,g"N)g*Rf.
coRHom( ,f!N)l TRHom( ,g"N)oo

Rf.g"RHom( ,f'N)——=RHom( ,g*N)Rf.g"*

; f
a’ocoid

This can be shown using adjunctions and their standard properties, in particular
the fact that the two different definitions of ¢ in [20, p. 401] coincide. O

Corollary 2.22. Let (X, L), (Y,M), (Z,N) and (V,P) in L be such that X, Y,
Z,V and the morphisms f, ', g and g’ between them are as in Theorem 2.21 and

I, [ satisfy the hypotheses of Lemma 2.9. Let (f,9), (g,%), (f',¢') and (¢',¢")
have sources and targets as follows:

v, P) L0 (v, )

c(V, P) (Y, M)
(g’«/ﬂ)i i(g,w)
C(X, L) C(Z’ N)

X,L)—— (Z,N

(X.1) = (ZN)

Assume that (¢’ @Id)o(f")*(v) = (Y ®@Id)o(g')* (@) (the source of these morphisms
is (go f)"(N Q@uwz) = (fog)*(N ®wz) and their target is P @ (Ox Ko, wy ).
Then the two morphism (g,v)* o (f,¢)x = (f, ¢ )s o (¢, ") : W*(X, LQwx) —
W*=4(Y, M ® wy) coincide.

Proof: This follows from Theorem 2.21 and Lemma 2.15. O

Products. Observe that there is a product g on @, W*( , L) induced by the
(left) product of [9, Theorem 3.1] (see also [21, p.7/8]). Using the fact that for any
vector bundles V and W over X one has A% (V x W) =V xx W, one sees that
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the product p factors through the exterior product (with X =Y)
Ax,n),(v,m) s WX, L) x WY, M) 2 W*(X X Y,L&M)

namely as W*(X, L) x W*(X, M) 2 W*(X x X L&M) W*(X L®M). The
factorization follows as the pairing of exact categories with duality

(Vect(X),Hom( ,L)) x (Vect(X),Hom( ,M)) — (Vect(X),Hom( ,L® M))

is dualizing in the sense of [9, Definition 1.11] and factors as a dualizing pairing
through (Vect(X x X ), Hom( , LK M)) which induces a factorization of the dualiz-
ing pairing for the corresponding D®(Vect( )). The very same construction applies
to Db, and D?.

Lemma 2.23. The exterior product A\ commutes with pull-backs and push-forwards.
This means that if f : X — X' and g : Y — Y’ are morphisms of schemes which
are flat (resp. proper of pure dimension), we have the equalities

A (@), 9" (Y) = (f x g)" o Mz, y)
and

M), 9+ (¥) = (f X )« 0 Mz, ).

Proof:  The first equality is a slight improvement of [9, Theorem 3.2] but is
not more difficult to show. For the second equality, pick two complexes F and
G on X and Y with forms. The claim then reduces essentially to the “Kiinneth”
isomorphism (f X ¢).(FXG) ~ f.(F) X g.(G) which can be checked by an explicit
computation. O

Proposition 2.24. For (f,¢) : (X,L) — (Y,M) and (f,¢') : (X, L") — (Y, M)
with f as in Definition 2.12, the projection formula (f,¢ @ ¢')«(a. (f, ¢")*(b )) =
(f, ®)«(a).b holds for any a € WH{(X,L ® wx) and b € WI(Y,M").

Proof: The result follows from the previous lemma and Corollary 2.22 applied
to the following cartesian diagram.

Id oAx,Id
(X, L@ 1) USDA By 1wy
(f@@d)l l(fx]d,qbﬁld)
(Y, M ® M) (Y x Y, M & M).

(Ay,Id)
O

Let H be an algebraic group and X an H-variety. By this we mean a morphism
H x X — X satisfying the standard properties. Let Vect (X) be the category
of H-equivariant vector bundles over X. This is a full subcategory of the cate-
gory of H-equivariant-Ox-modules. We say that an H-equivariant-Ox-module is
coherent if the underlying Ox-module is, and we denote the corresponding cate-
gory by Cohf (X). See [19] and [13, section 3] for the precise definitions and basic
properties. The functor Coh*( ) is contravariant for flat H-maps and covariant
for H-projective morphisms (see [19, p. 543]). It is a non-trivial task to extend
everything we did in this section so far to the equivariant setting. For instance,
the existence of injective resolutions is not clear (that one has enough projectives
follows from [19, Corollary 5.3]). From now on we make the assumption that all the
previous definitions and results in this section carry over to the H-equivariant set-
ting. We will hopefully discuss the details of this in forthcoming work. Therefore,
the following is true unconditionally only for the non-equivariant setting (H = 1),
otherwise the assumption has to be used.
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Given an H-scheme X and and H-line bundle L on it, we write W*H (X L)
for the Witt group of the derived category D% (X) of H-equivariant Ox-modules
with coherent cohomology with respect to the duality induced by *..

2.4. Categories of motives. Now we are ready to define the category W# of
H-Witt motives.

Definition 2.25. Let PL be the full subcategory of £ whose objects are pairs
(X, L) with X projective. Fix an algebraic group H. By definition, the category
WH has as objects couples (V, L) where V is endowed with an H-action and L a line
bundle on V' equipped with a left equivariant H-action. The set of morphisms (or
W-correspondances) between two objects is a graded abelian group and is defined
by Hom%VH((X, L),(Y,M)) = WitdmXH(X « Y (L7' ® wy) X M). For a €
Homw= (X, L), (Y,M)) and b € Homw= ((Y,M),(Z,N)) the composition ba is
defined as

(7x 2z, IdL—lxoyg(N@)w;l))*
(w((mxv, Id( L1 gux)mMRO,) (@), (Ty 2z, [do  ®(M -1 gwy)mN) " (D))

Proposition 2.26. The above composition law in WH is associative and any object
admits an identity automorphism, so WH really is a category.

Proof: = The proof of associativity is the usual proof of the associativity of
correspondences, as in [12, §2, Lemma p. 446]. It just uses the composition of
the pull-backs and push-forwards, the base change formula (Corollary 2.22) and
the projection formula (Proposition 2.24). The identity of (X, L) is given by
(AX,Idw)—(l)*(].X) (recall that 1x is the class in Wy(X,Ox) of the one dimen-
sional standard form < 1 > on Ox). Again, the proof that it is an identity is a
generalization of the classical one. In fact, it is a particular case of the existence of
graphs (see Proposition 2.28 below). O

Remark 2.27. There is an obvious category of Witt correspondences of degree zero
defined by setting Homyyo,r ((X, L), (Y, M)) = Hom$y« (X, L), (Y, M)).

Now we can construct the graph functor.

Proposition 2.28. There is a contravariant functor I' from the category PL to
WH . It is the identity on objects, and it sends a morphism (f,¢) : (X,L) —
(Y. M) to (v, (6¥) " © Tdy, @ Id,—1).(1x) € W™ (¥ x X, (M~} @ wy) R L) =
Hom®((Y, M), (X, L)), where v : X — Y x X is the graph morphism (it is always
proper as all considered varieties are separated). By ¢V, we mean the morphism
dual to ¢, going from L= to f*(M)~L.

Proof:  This functor respects the composition. This follows from standard
arguments, as in [12, §2, Proposition p. 447]. O

Of course, we can consider the full subcategory of W# of objects of the form
(X, O0x), but as we shall see, there are very few interesting motives that decompose
in this category.

We now define a realization functor to the category of graded abelian groups.

Definition 2.29. We define the covariant functor R from W¥ to the category
of graded abelian groups by setting R (X, L) = WH(X,L) and R (c) = (z —
(py )« (p% (x).c)) for an element ¢ € Hom((X, L), (Y, M)). For any subgroup H; of
H, there is an obvious functor Resj, from W to W1 induced by the restriction
of the action of H to Hj.
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Remark 2.30. The functor R¥ respects the composition because it coincides with
the functor Hom(pt, ). In particular we have thus obtained the Witt version
(without twist) of [16, Key Lemma 6.5] wich is just a particular case of the fact
that any motivic isomorphism induces an isomorphism on the realisations. Observe
also that the composition R o T sends a morphism (f, ¢) to (f, $)*.

The fact that we deal with categories with dualities is of course reflected by
a duality already on the category of Witt motives. There is an involutive func-
tor (of order 2) on W# sending an object (X, L) to (X,wx ® L™!) and a mor-
phism ¢ in Hom'((X, L), (Y, M)) = Wi ¥ (X x Y,(L~!' ® wx) ® M) to the
corresponding element ¢! in the group W}jdimX(Y x X,M X (wx ® L7)) =
Hom'TdmX=dim¥ ((y" ,,o @ M~1), (X,wx ® L™1). Notice that it doesn’t respect
the graduation.

The composition R ot o sends a morphism (f,®) to (f,#)* composed at the
two ends by the isomorphism Wy (X, L @ wx) ~ Wy (X,wx ® L), and the similar
one for (Y, M).

There is a pairing W (X, M) x W((X,M)*) — W(pt) given by the composition
(m,1d)« o (Ax,Id)* o A\x,ar),(x,m)r Where 7 is the structural morphism from X to
the point.

Remark 2.31. Panin also constructs a category A¥ where the objects are couples
(X, B) with X smooth projective over F' and B a central simple F-algebra, such
that K is precisely the full subcategory of A¥ of objects (X, F'). The F-algebra
B allows Panin to twist. We would like to do the same in our setting, considering
of course F-algebras B with involution. In forthcoming work, we intend to settle
this issue.

2.5. Effective Witt Motives. We now define the category Wff f of effective Witt
motives. It is just the pseudo-abelianised completion of the previous category. For
a definition of the pseudo-abelian completion, see e. g. [12, §5]. Recall that the
objects are just the pairs ((X,L),p) where p is an idempotent in End(X, L) and
the morphisms between ((X, L),p) and ((Y, L), q) are given by the quotient of the
subgroup Homy# ((X, L), (Y, L)) given by the elements f such that fp = ¢f by
the subgroup of elements f such that fp = gf = 0. It contains W as the full
subcategory of objects for which p = Id.

Remark 2.32. We don’t lose the graduation on the Hom sets because an idempotent
has to be of degree zero so the relation fp = qf = 0 is homogeneous. We can extend
the realisation functors R¥ and R to ng ¢ because of the universal property of
the pseudo-abelian completion. More precisely, we set R ((X, L),p) = ker R (p)
on objects.

We can define a tensor structure on this category by setting (X, L, p)®(Y, M, q) =
(X xY, LK M,pxq).

3. DEVISSAGE

Assume that f: Z — X is a closed embedding of smooth varieties and L a line
bundle on X. Then by Theorem 2.10,

(Rf*,(){) : (DZZ’(Z)v*f!Ler) - (DZ(X)’*L’WX)

is a functor of triangulated categories with duality. The map (Rf.,a) obviously
factors through the full triangulated subcategory with duality (Dg 2(X), *¥pp,x)
which by definition consists of complexes whose homology has support on Z. We
denote its Witt groups by Wi (X,L). The goal of this section is to prove the
following dévissage theorem for Witt groups.
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Theorem 3.1. In the above situation, the functor of triangulated categories with
duality

(Rf*v a) : (D?(Z)v *f!vaZ) - (DS,Z(X)v *vaX)
induces a map
fo i WHZ, f'L) - W3(X, L)
which is an isomorphism.

Proof: It remains to show that f, is an isomorphism. We roughly follow the
strategy of [6, section 4]. First, replace [6, Theorem 4.2] by Theorem 2.10. Next,
write down the long exact sequences arising from filtration by the codimension of
support as in [6, p.130]. Of course, one needs to twist correctly the dualities (by L
for X and f'L for Z) in this sequence, as well as everywhere else, but these twists
don’t change anything in the proof. We are thus reduced to show the claim on the
top of page 131 of loc. cit. with B/J and B replaced by Z and X. Replace [6,
Lemma 4.3] by Theorem 2.21 (closed embeddings are proper and localizations=open
embeddings are flat). Now we may conclude similar to [6, 4.2.3]. O

We write j : X — Z — X for the open inclusion of the complement. As usual,
dévissage implies (or improves) a localization exact sequence.

Corollary 3.2. In the above situation, we have a long exact sequence
L WYX=z, °0) 2wz, L) B owrx, L) Do wrX—2Z,5°L0) & Wz, f'L) — ..

Proof: By definition resp. construction, we have a short exact sequence of trian-
Rf., " id
gulated categories with dualities (D%(Z), iy, wz) (Rfes) (DY%(X),*p,wx) (.49)
(D%(X), %1, wx_7). Hence Balmer’s abstract localization theorem [3] and our
dévissage theorem yield the claim. O
Recall from Lemma 2.9 that f'L can be described in more concrete terms.

REFERENCES

1. Théorie des intersections et théoréme de Riemann-Roch, Springer-Verlag, Berlin, 1971,
Séminaire de Géométrie Algégrique du Bois-Marie 1966-1967 (SGA 6), Dirigé par P. Berth-
elot, A. Grothendieck et L. Illusie. Avec la collaboration de D. Ferrand, J. P. Jouanolou, O.
Jussila, S. Kleiman, M. Raynaud et J. P. Serre, Lecture Notes in Mathematics, Vol. 225.

2. Théorie des topos et cohomologie étale des schémas. Tome 3, Springer-Verlag, Berlin, 1973,
Séminaire de Géométrie Algébrique du Bois-Marie 1963-1964 (SGA 4), Dirigé par M. Artin,
A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat,
Lecture Notes in Mathematics, Vol. 305.

3. P. Balmer, Triangular Witt Groups Part 1: The 12-Term Localization FExact Sequence, K-
Theory 4 (2000), no. 19, 311-363.

, Triangular Witt groups. II. From wusual to derived, Math. Z. 236 (2001), no. 2,

351-382.
. B. Calmes and J. Hornbostel, Witt Motives, Tranfers and Reductive Groups, http://www.
mathematik.uni-bielefeld.de/LAG/, 2004.

. S. Gille, On witt groups with support, Math. Annalen 322 (2002), 103-137.

, Homotopy invariance of coherent Witt groups, Math. Z. 244 (2003), no. 2, 211-233.

, A transfer morphism for Witt groups, J. Reine Angew. Math. 564 (2003), 215-233.

. S. Gille and A. Nenashev, Pairings in triangular Witt theory, J. Algebra 261 (2003), no. 2,

292-309.

10. R. Hartshorne, Residues and duality, Lecture notes of a seminar on the work of A.
Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne. Lecture Notes
in Mathematics, No. 20, Springer-Verlag, Berlin, 1966.

11. B. Keller, Derived categories and their uses, Handbook of algebra, Vol. 1, North-Holland,
Amsterdam, 1996, pp. 671-701.

12. Y. I. Manin, Correspondences, motifs and monoidal transformations, Mat. Sb. (N.S.) 77
(119) (1968), 475-507.

13. A. S. Merkurjev and I. A. Panin, K-theory of Algebraic Tori and Toric Varieties, K-theory
12 (1997), no. 2, 101-143.

ot

© W,



15.

16.

17.

18.

19.

20.

21.

22.

WITT MOTIVES, TRANSFERS AND DEVISSAGE 35

. A. Neeman, The Grothendieck duality theorem via Bousfield’s techniques and Brown repre-
sentability, J. Amer. Math. Soc. 9 (1996), no. 1, 205-236.

A. Nenashev, On the Witt group of projective bundles and split quadrics, a geometric reason-
ing, preprint, http://math.uiuc.edu/K-theory/, 2004.

I. A. Panin, On the Algebraic K-theory of Twisted Flag Varieties, K-theory 8 (1994), no. 6,
541-585.

S. Pumpluen, Corrigendum: “The Witt group of symmetric bilinear forms over a Brauer-
Severi variety with values in a line bundle” [K-theory 18 (1999), no. 3, 255-265 ], K-Theory
23 (2001), no. 2, 201-202.

W. Scharlau, Quadratic and Hermitian forms, Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences], vol. 270, Springer-Verlag,
Berlin, 1985.

R. W. Thomason, Algebraic K-theory of group scheme actions, Algebraic topology and alge-
braic K-theory (Princeton, N.J., 1983), Ann. of Math. Stud., vol. 113, Princeton Univ. Press,
Princeton, NJ, 1987, pp. 539-563.

J.-L. Verdier, Base change for twisted inverse tmage of coherent sheaves, Algebraic Geometry
(Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, London, 1969,
pp. 393-408.

C. Walter, Grothendieck-witt groups of projective bundles, preprint, http://www.math.uiuc.
edu/K-theory/0644/, 2003.

Serge Yagunov, Rigidity. II. Non-orientable case, Doc. Math. 9 (2004), 29-40 (electronic).



