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WITT MOTIVES, TRANSFERS AND DÉVISSAGE

BAPTISTE CALMÈS AND JENS HORNBOSTEL

Introduction

In this paper we define transfer maps between Witt groups with respect to proper
morphisms and establish the base change and projection formulae for those. Then
we use this to define the cateory of Witt motives. We also deduce a dévissage
theorem. In forthcoming work, these results together with the computations of
Grothendieck-Witt and Witt groups of representation categories of split reductive
algebraic groups (see [5, section2]) will hopefully lead to the computation of Witt
groups of twisted flag varietes.

Let us fix a base field F of characteristic different from 2. In his paper [16], Panin
computes the K-groups of twisted flag varietes, generalizing results of Quillen on
Brauer-Severi varieties and of Swan on quadrics. To this purpose, he constructs
a category of K0-motives with nice properties. This allows him to reduce the
computations to K-groups of finite-dimensional separable F -algebras and to K0 of
representation categories of split reductive algebraic groups.

This paper is part of an attempt to apply the techniques of Panin to Grothendieck-
Witt groups GW and Witt groups W instead of the Grothendieck group and higher
K-groups. As usual, the Grothendieck-Witt group GW(A) of an abelian category
with duality (A, ∗) is defined as the Grothendieck group of isomorphism classes of
symmetric spaces (and identifying metabolic spaces with the associated hyperbolic
spaces if A is not semi-simple. Identifying the hyperbolic spaces with zero yields
the Witt group W(A). Two examples we are interested in are the categories of
vector bundles over a smooth F -schemes (V ect(X),HomOX ( ,OX)) and of finite-
dimensional representations (Rep(G),HomF ( , F )) of a reductive algebraic group
G. If X = Spec(F ) = G, these to examples coincide and yield the classical Witt
group of the field F .

The situation for Witt groups is more complicated than for K-groups. In par-
ticular, it is much harder to construct reasonable transfer (or norm) morphisms
between Witt groups of schemes with a given dualizing complex and with respect
to proper morphisms. This is what this paper is about. Some very special cases
of morphisms have been treated in [8] and [22]. Once these transfers along with
some basic properties are established, we are able to construct the category of Witt
motives. More precisely, the second section contains a construction of W -motives
reminiscent to Panin’s K0-motives. As for K0, the construction of this category re-
lies heavily on the existence on transfers having good properties such as base change
and the projection formula. For coherent Witt groups, we prove (see Lemma 2.15,
Corollary 2.22 and Proposition 2.24)

Theorem 0.1. Let f : X → Y be a proper map of relative dimension d between
smooth varieties and L a line bundle on Y . Then we can construct a transfer map
of degree −d

f∗ : W ∗+d(X, f∗L⊗OX ωX) → W ∗(Y, L⊗OY ωY )
1
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which satisfies the base change and projection formula with respect to flat mor-
phisms.

This is a consequence of a more general result (see Definition 2.12 and Theorem
2.21). Observe the twists and shifts that show up. The construction of the transfer
map is more tricky than one might expect as one has to keep track carefully of the
dualites and isomorphisms between objects and their biduals involved. Moreover,
one has to keep track of the signs and and all kind of compabilities between the
triangulated structure, the duality and the monoidal structure. This is carried out
in the first section. We show that the natural isomorphism from the identity to the
bidual and various other isomorphisms can be constructed from an internal Hom
adjoint to some tensor product. We also show that this and other constructions
related to the adjointness of Lf∗, Rf∗ and f ! can be carried out in a compatible
way, and moreover compatible with the various sign conditions of Balmer and Gille.
These verifications - though not very surprising except maybe that there is a nice
choice of sign conventions - are rather long, but there is no way of avoiding them.
We have presented them in a general framework. As long as possible - namely the
entire section 1 - we stay in this general framework rather than appealing to known
results or arguments related to varieties, dualizing complexes and Witt groups.
This has at least two advantages. First, it emphasizes which of the results are
formal and which depend on the special case of Witt groups and varieties. Second,
section 1 may be applied to other areas of mathematics, for instance other “motivic”
categories or stable homotopy theory.

Theorem 0.1 allows us to construct the category of W -motives (see section
4.3) which are more complicated but similar in spirit to Panin’s K0-motives (and
Manin’s classical motives). We then construct a graph functor and explain the usual
structures (pseudoabelian completion, tensor product) as well as an involution on
this category of W -motives.

In the last section, we use the transfers and the base change theorem to prove
a devissage theorem (Theorem 3.1) for Witt groups. As a corollary, we obtain a
localization exact sequence (Corollary 3.2)

... → Wn−1(X−Z, j∗L) ∂→ Wn(Z, f !L)
f∗→ Wn(X, L)

j∗→ Wn(X−Z, j∗L) ∂→ Wn+1(Z, f !L) → ...

which is useful for computations, of course. We believe there will be other applica-
tions of the transfers constructed in this paper.

Except the short section on dévissage which is new, this paper contains essentially
section 4 and the appendix of the long preprint [5] which contains more results in
the first three sections aiming at the computation of Witt groups of twisted flag
varieties and a discussion of remaining difficulties. For instance, it remains to be
checked that the category of Witt motives generalizes well to the H-equivariant
setting for H an algebraic group, and that one can enlarge this category with
respect to semisimple algebras as Panin does for K0 (compare Remark 2.31). We
hope to settle these issues in forthcoming work.

Ch. Walter has computed the (Grothendieck-)Witt groups of projective bundles
in [21] by different methods, and there is work in progress by him on quadrics.
Pumplün [17] has some partial results about the classical Witt group of Brauer-
Severi varieties, and very recently Nenashev [15] obtained some partial results about
the Witt group of the standard hyperbolic quadric. It seems that the methods of
Pumplün and Nenashev do not generalize to obtain results about Witt groups of
twisted flag varieties in general.

We thank Bruno Kahn for discussions about and around Grothendieck-Verdier
duality and Stefan Gille for useful comments on earlier drafts.
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1. Duality formalism and classical adjunctions

In this section, we obtain formal consequences of adjunctions of the type ⊗-
H, f∗-f∗ and f∗-f ! in tensor-triangulated categories that are useful for Balmer’s
theory of higher Witt groups. They will be applied in section 2. We present
them in a general axiomatic framework which allows to distinguish between the
geometric input and the formal arguments concerning adjunctions in triangulated
categories. Moreover, we believe that the abstract frameworks and the results we
prove about it do apply to different examples (e.g., other motivic categories or the
stable homotopy category). For this reason, we have presented some aspects in
slighty greater generality and provided some more results than we actually need for
our applications in section 2.

Our philosophy is to exhibit a minimal axiomatic setting which can be verified
without too much work in the examples of interest and from which everything can
be deduced in a formal way. The example of a triangulated category to keep in
mind for this paper is of course the derived category Db

c(X) of bounded complexes
of OX -modules with coherent cohomology on a separated noetherian scheme X.

This section is rather long, and reading it might seem very unpleasant at first
glance. Don’t get discouraged: writing it and checking all the details one is tempted
to believe anyway was even more unpleasant. Of course, you can trust us (in the
spirit of [10, pp. 117-119]) and stop reading this section now. If you don’t, here
is a survey of its subsections. After reviewing some generalities on triangulated
categories (1.1), we refine the notion of a triangulated category with duality in
1.2. In 1.3, we axiomatize the derived tensor product, the derived Hom and the
adjunction between them. Then we use this to construct dualities on triangulated
categories in 1.4. Section 1.5 studies functors f∗, f∗ and f ! with adjunctions f∗-
f∗ and f∗-f ! and discusses in which sense these have to be compatible with the
tensor-triangulated structure. The projection formula appears in 1.6. Combining
everything yields to the general Theorems 1.31 and 1.32 in section 1.7 about the
existence of exact functors between triangulated categories which we then may
apply in section 2 (see Proposition 2.7 and Theorem 2.10). In fact, before applying
this to Witt groups some details remain to be checked (see 1.8.2). In particular,
we prove that there is a particular nice choice of signs. Don’t forget that choosing
correct signs is very important, as one wrong sign transforms the Witt group of
symmetric forms to the Witt group of skew-symmetric forms.

1.1. Generalities in triangulated categories. We recall a few basic notions
that we need in triangulated categories. Let C and D be triangulated categories,
with translation functors TC and TD.

Definition 1.1. (see for example [9, § 1.1]) Let F : C → D be a covariant (resp.
contravariant) functor. Let θ : FTC → TDF (resp. θ : T−1F → FT ) be an
isomorphism of functors. We say that the pair (F, θ) is δ-exact (δ = ±1) if for any
exact triangle

A
u−→ B

v−→ C
w−→ TA

the triangle
FA

Fu−→ FB
Fv−→ FC

δθA◦Fw−→ TFA

respectively

FC
Fv−→ FB

Fu−→ FA
δTD(Fw◦θA)−→ TFC

is exact.

The following is a well-known lemma, but we include here a complete proof for
lack of reference.
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Lemma 1.2. Let (F, f) be a covariant (resp. contravariant) δ-exact functor from
C to D, such that F admits a right adjoint R on the level of the underlying additive
categories. Then there is a canonical way to define an isomorphism of functors
r : RTD → TCR (resp. r : T−1R → RT ) such that (R, r) is δ-exact. The same is
true for a left adjoint.

Proof: We prove the lemma in the contravariant case, for a right adjoint and
for δ = 1. The other cases are proved alike. The morphism rA : RTA → TRA is
the image of IdRTA by the chain of isomorphisms

Hom(RTA, RTA) → Hom(FRTA, TA) → Hom(FTT−1RTA, TA)

(f−1)]

→ Hom(TFT−1RTA, TA) → Hom(FT−1RTA, A) → Hom(T−1RTA,RA)

→ Hom(RTA, TRA).
Its inverse is obtained from IdRA by the chain

Hom(RA, RA) → Hom(FRA,A) → Hom(TFRA, TA)

f]

→ Hom(FTRA, TA) → Hom(TRA, RTA).
It is easy to check (using the standard procedure as e.g. in Proposition 1.14) that
these two elements are inverse to each other. We now have to show that the pair
(R, r) is exact. Let

A
u−→ B

v−→ C
w−→ TA

be an exact triangle. We want to prove that the triangle

RA
u−→ RB

v−→ RC
rA◦Rw−→ TRA

is exact. We first complete RA
u−→ RB as an exact triangle

RA
u−→ RB

v′−→ C ′ w′−→ TRA

and we prove that this triangle is in fact isomorphic to the previous one. To do so,
one completes the uncomplete morphism of triangles

FRA
FRu //

²²

FRB
FRv //

²²

FC ′
fRA◦FRw //

h

²²

TFRA

²²
A u

// B v
// C w

// TA

.

Looking at the adjoint diagram, we see that ad(h) : C ′ → RC is an isomorphism
by the five lemma for triangulated categories. 2

1.2. Weak duality. We now explain the notion of triangulated category with weak
duality. It is obtained from Balmer’s definition of a triangulated category with
duality by weakening the axiom DT = T−1D for the contravariant endofunctor
(called duality functor) D on C of [3, definition 2.2]. Namely, we just assume that
we have an isomorphism of functors

d : T−1D → DT.

such that the (contravariant) pair (D, d) is δ-exact, for some δ ∈ ±1. By the
definition of a morphism of functors and composition of those, we have the formula

dd = (dT−1D ◦ T−1Dd) = (DTd ◦ dDT )

for the natural isomorphism dd : T−1DDT → DTT−1D. As in [9, Remark 1.1], we
also get iterated versions (d(2) 6= dd)

d(i) : T−iD → DT i
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for all i ∈ Z which e. g. for i > 0 is given by d(i) = dT i−1 ◦ T−1d(i−1) (or equiva-
lently d(i) = d(i−1)T ◦ T−(i−1)d). One easily checks that if (D, d) is δ-exact, then
(T iDT j , T idT j) is (−1)i+jδ-exact.

We also assume that we have an isomorphism of functors

$ : Id → D2

with the usual compatibility formula

D$ ◦$D = idD

and the modified usual compatibility formula

TdT−1D ◦Dd ◦$T = T$.

Definition 1.3. We say that (C, D, d,$) is a triangulated category with weak
δ-duality if all the above conditions are satisfied. If T−1D = DT and d = id,
we recover Balmer’s usual definition (subsequently called strict duality, not to be
confused with the condition $ = id).

Definition 1.4. Let (C, DC , dC , $C) (resp. (D, DD, dD, $D)) be a triangulated
category with weak δC-(resp. δD-) duality. Let (F, θ) be a 1-exact pair from C to D
and let ρ : FDC → DDF be an isomorphism of functors. We then say that the triple
(F, θ, ρ) is a duality preserving functor if the following diagrams are commutative:

(1) F

$DF

²²

F$C // FDCDC

ρDC
²²

DDDDF
DDρ

// DDFDC

(2) FTCDC

(δCδD)θDC

²²

FDCT−1
C

FTCdCT−1
Coo ρT−1

C // DDFT−1
C

DDT−1
D θT−1

C
²²

TDFDC
TDρ

// TDDDF DDT−1
D F

TDdDT−1
D F

oo

Note that the first condition is the classical one (see for example [9, Definition
1.8, 1.]), and that the second is just a refinement of [9, Definition 1.8, 2.] where the
special case of a strict duality is considered. The proof of the following proposition
is straightforward.

Proposition 1.5. If (C, D, d, $) is a triangulated category with weak δ-duality,
then (C, TD, Td,−δ(TdD) ◦ $) is a triangulated category with weak (−δ)-duality.
Iterating, we get that (C, T iDT j , T idT j , (−1)(i−j)(i−j+1)/2δi−j(T id(i)T jd(j))◦$) is
a category with weak (−1)i−jδ-duality.

Definition 1.6. Following Balmer’s convention (see [3, Definition 2.8]), given a
triangulated category with weak δ-duality (C, D, d, $), we define a triangulated
category with shifted (or translated) duality by

T (C, D, d, $) = (C, TD, Td,−δTdD ◦$).

Definition 1.7. For convenience, when (F, ρ) is a duality preserving functor from
(C, DC , dC , $C) to (D, DD, dD, ε$D), ε = ±1, we say that it is a duality ε-preserving
functor from (C, DC , dC , $C) to (D, DD, dD, $D). The composition of such functors
trivially multiplies the signs.

Remark 1.8. As in the strict case, a duality ε-preserving functor induces duality
ε-preserving functors on the translated categories (same ε).
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It is possible to define symmetric spaces as usual, and to extend Balmer’s defi-
nition of Witt groups to this more general setting with weak dualities.

1.3. The functors H and ⊗. We assume that the triangulated category C is
endowed with an internal Hom functor, denoted by H, and an internal tensor
product denoted ⊗. This will be used below to make C into a triangulated category
with duality.

We assume the H and ⊗ functors satisfies the following axioms.
Compatibility of H with the translation T .
(TH1) There is a functorial (in both variables A and B) isomorphism th1,A,B :
H(TA, B) → T−1H(A,B).
(TH2) There is a functorial (in both variables A and B) isomorphism th2,A,B :
H(A, TB) → TH(A, B).
(TH1TH2) The following diagram is anticommutative.

H(TA, TB)

th2,T A,B

²²

th1,A,T B// T−1H(A, TB)

T−1th2,A,B

²²
TH(TA, B)

Tth1,A,B

// H(A,B)

Compatibility of ⊗ with the translation T .
(TP1) There is a functorial (in both variables A and B) isomorphism tp1,A,B :
TA⊗B → T (A⊗B).
(TP2) There is a functorial (in both variables A and B) isomorphism tp2,A,B :
A⊗TB → T (A⊗B).
(TP1TP2) The following diagram is anticommutative.

TA⊗TB

tp2,T A,B

²²

tp1,A,T B// T (A⊗TB)

Ttp2,A,B

²²
T (TA⊗B)

Ttp1,A,B

// T 2(A⊗B)

Adjunction of ⊗ and H.
(ATH) We have a functorial (in A, B and C) bijection athA,B,C : Hom(A⊗B,C) →
Hom(A,H(B, C)).

Let m : A → A′ be a morphism. For simplicity, and until Proposition 1.12, we
also denote by m the induced application from Hom(A′, B) to Hom(A, B) (resp.
from Hom(B, A) to Hom(B, A′)).
Compatibility of the adjunction ath and the translation T .
(TATH12) The following diagram is commutative.

Hom(TA⊗B, C) ath // Hom(TA,H(B, C))

Hom(T (A⊗B), C)

tp

OO

tp

²²

Hom(A, T−1H(B, C))

T

OO

Hom(A⊗TB, C)
ath

// Hom(A,H(TB,C))

th

OO
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(TATH23) The following diagram is commutative.

Hom(A⊗TB, C) ath // Hom(A,H(TB, C))

th

²²
Hom(T (A⊗B), C)

tp

OO

Hom(A, T−1H(B, C))

T−1th

²²
Hom(A⊗B, T−1C)

ath
//

T

OO

Hom(A,H(B, T−1C))

The following are consequences of the previous axioms.

(TATH13) The following diagram is commutative (combine (TATH12) and (TATH23)).

Hom(TA⊗B, C) ath // Hom(TA,H(B,C))

Hom(T (A⊗B), C)

tp

OO

Hom(A, T−1H(B, C))

T

OO

T−1th

²²
Hom(A⊗B, T−1C)

T

OO

ath
// Hom(A,H(B, T−1C))

(TATH12b) The following diagram is anticommutative (glue the diagram induced
by (TP1P2) on the left of (TATH12)).

Hom(TA⊗B, C) ath //

T−1tp

²²

Hom(TA,H(B, C))

Hom(T−1(TA⊗TB), C) Hom(A, T−1H(B, C))

T

OO

Hom(A⊗TB, C)

T−1tp

OO

ath
// Hom(A,H(TB,C))

th

OO

(TATH23b) The following diagram is anticommutative (glue the diagram induced
by (TH1H2) on the right of (TATH23)).

Hom(A⊗TB,C) ath // Hom(A,H(TB, C))

th

²²
Hom(T (A⊗B), C)

tp

OO

Hom(A, TH(TB, T−1C))

th

²²
Hom(A⊗B, T−1C)

T

OO

ath
// Hom(A,H(B, T−1C))

Symmetric commutativity constraint of ⊗.

We assume that the following holds.

(CP) There is a functorial isomorphism cA,B : A⊗B → B⊗A.
(SCP) The isomorphism c satisfies cB,A ◦ cA,B = IdA⊗B .
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(TCP) The following diagram is commutative.

TA⊗B
cT A,B //

tp1,A,B

²²

B⊗TA

tp2,B,A

²²
T (A⊗B)

TcA,B

// T (B⊗A)

1.3.1. Another possible definition of all this. It would have been possible to define
the morphisms above in a different way, which would make some axioms become
definitions. Suppose that the tensor product ⊗, tp1 and tp2 are given and that
they satisfy (TP1TP2). Assume H is also given, but not necessarily th1 and th2.
Suppose an adjunction ath is given without any compatibility property. Then, one
can define th1 using the diagram (TATH12) in the following way. Replace A in
the diagram by H(TB, C), and start with IdH(TB,C) in the lower right set. All the
morphisms but the lower right one are defined, we therefore get the image of the
identity in the middle right group by circling clockwise. This defines an element
th1,B,C , and by definition, the diagram

Hom(TH(TB,C)⊗B, C) ath // Hom(TH(TB, C),H(B, C))

Hom(T (H(TB,C)⊗B), C)

tp

OO

tp

²²

Hom(H(TB, C), T−1H(B,C))

T

OO

Hom(H(TB, C)⊗TB, C)
ath

// Hom(H(TB, C),H(TB,C))

th

OO

is commutative. Now it is easy to prove that (TATH12) is commutative for any A;
to do this, we use the following easy trick. We have to show that any element f
in Hom(A,H(TB, C)) is sent to the same element using both sides of the diagram.
Putting the above diagram under (TATH12) and sending IdH(TB,C) to f by the
map composing by f we are done by functoriality.

Trick 1.9. Since the above proof can be applied to other commutative diagrams
involving morphisms obtained by adjunctions and can be adapted to all sorts of
similar versions (exchanging left and right, adding isomorphisms of functors, etc...),
each time we will need such a diagram, we will just refer to the previous proof, and
leave it to the reader to make the suitable modifications.

Of course, one can define th2 by a similar technique using (TATH23) and that tp
and th1 are already defined, considering A = T−1H(B, C). Thus the commutativity
of (TATH12) and (TATH23) is true by definition and trick 1.9. It is then easy to
show that th1 and th2 satisfy (TH1TH2), using (TP1TP2).

One can use the same trick to define tp2 starting with tp1 using c (symmetric)
and (TCP). This shows that one may just start with

• ⊗, tp1

• c
• H
• ath

and use them to define
• tp2

• th1

• th2
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such that all the constraints are satisfied.

1.3.2. Evaluation morphism. Let A and K be objects of C. We define the evaluation
morphism

evA,K : H(A,K)⊗A → K

as the image of the identity by the adjunction (ATH).

Hom(H(A,K),H(A,K)) ' Hom(H(A,K)⊗A, K)

Proposition 1.10. The evaluation satisfies the equality

(EVT1) evA,TK = T (evA,K) ◦ tp1,H(A,K),A ◦ (th2,A,K⊗IdA)

Proof: Consider the following diagram of isomorphisms

Hom(H(A, TK),H(A, TK)) Hom(H(A, TK)⊗A, TK)athoo

Hom(TH(A,K),H(A, TK))

th

²²

th

OO

Hom(TH(A,K)⊗A, TK)

th

OO

ath
oo

Hom(TH(A,K), TH(A, K)) Hom(T (H(A,K)⊗A), TK)

tp

OO

Hom(H(A,K),H(A,K))

T

OO

Hom(H(A,K)⊗A,K)

T

OO

ath
oo

which is commutative by the functoriality of the adjunction and (TATH13) ap-
plied to H(A,K), A and TK.

Start with the identity in the top left set. It is sent to the identity in the bottom
left set (this is completely formal, solely due to the fact that T is a functor). These
identities are respectively map to evA,TK in the upper left corner and evA,K in the
lower left corner. Now the result follows from the right column. 2

Proposition 1.11. The evaluation satisfies the equality

(EVT2) evTA,K = evA,K ◦(tp1,T−1H(A,K),A)−1◦tp2,T−1H(A,K),A◦(th1,A,K⊗IdTA)

Proof: Similar to the previous proof, but replace (TATH13) by (TATH12)
applied to T−1H(A,K), A and K. 2

1.3.3. Bidual morphism. We now define what we call the bidual morphism

$A,K : A → H(H(A,K), K)

as the image of the evaluation evA,K under the chain of bijections

Hom(H(A,K)⊗A,K) ' Hom(A⊗H(A,K),K) ' Hom(A,H(H(A,K),K)

where the first one is induced by cH(A,K),A and the second one is the adjunction.

In most applications, K will be chosen so that this morphisms is an isomorphism
for all A, but formally, it has no reason to be so.

Proposition 1.12. The bidual morphism $A,K satisfies the formula

($T1) $TA,K = H(th1,A,K ,K) ◦ Tth1,T−1H(A,K),K ◦ T$A,K .
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Proof: We consider the following diagram.

Hom(H(TA, K)⊗TA, K) c // Hom(TA⊗H(TA, K), K) ath // Hom(TA,H(H(TA, K),K))

Hom(T−1H(A,K)⊗TA, K) c //

th

OO

Hom(TA⊗T−1H(A,K),K) ath //

th

OO

Hom(TA,H(T−1H(A,K),K))

th

OO

Hom(T (T−1H(A,K)⊗A), K) c //

tp

OO

tp

²²

Hom(T (A⊗T−1H(A,K)),K)

tp

OO

tp

²²

Hom(TA, TH(H(A,K),K))

Tth

OO

Hom(H(A,K)⊗A,K)
c

// Hom(A⊗H(A,K),K)
ath

// Hom(A,H(H(A,K),K))

T

OO

We have already seen in the proof of Proposition 1.11 that the left column send
evA,K to evTA,K . The top and bottom rows send respectively evTA,K and evA,K

to $TA,K and $A,K , by definition. Following what happens in the right column,
we thus just have to show that the outer diagram is commutative. In fact, each
inner diagram is commutative:

• the two bottom left squares because of (TCP),
• the bottom right rectangle because of (TATH12),
• the top left square because of the functoriality of the morphism c,
• the top right square because of the functoriality of the adjunction ath.

This proves the stated equality. 2

Proposition 1.13. The bidual morphism $A,K satisfies the formulas:

($T2a) $A,TK = H(th2,A,K , TK) ◦ th−1
1,H(A,K),TK ◦ T−1th−1

2,H(A,K),K ◦$A,K

($T2b) $A,TK = −H(th2,A,K , TK) ◦ th−1
2,TH(A,K),K ◦ Tth−1

1,H(A,K),K ◦$A,K

Proof: To get the first formula, we proceed as for the previous proposition
with the following diagram of isomorphism. The commutative rectangle involved
is (TATH23).

Hom(H(A, TK)⊗A, TK) c // Hom(A⊗H(A, TK), TK) ath // Hom(A,H(H(A, TK), TK))

Hom(TH(A,K)⊗A, TK) c //

th

OO

Hom(A⊗TH(A,K), TK) ath //

th

OO

Hom(A,H(TH(A,K), TK))

th

OO

th

²²
Hom(T (H(A,K)⊗A), TK) c //

tp

OO

Hom(T (A⊗H(A,K)), TK)

tp

OO

Hom(A, T−1H(H(A,K), TK))

T−1th

²²
Hom(H(A,K)⊗A, K)

c
//

T

OO

Hom(A⊗H(A,K),K)
ath

//

T

OO

Hom(A,H(H(A,K),K))

The second formula is then a trivial consequence of the first one, using (TH1TH2).
2

Proposition 1.14. The bidual morphism $A,K satisfies the formula:

($D) H($A,K ,K) ◦$H(A,K),K = IdH(A,K)
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Proof: Consider the following diagram, in which all vertical maps are isomor-
phisms. Let f : F → F ′. We use the notation f ] : Hom(F ′, G) → Hom(F, G) and
f] : Hom(G,F ) → Hom(G,F ′) for the maps iduced by f .

Hom(H(A,K),H(A,K)) Hom(H(A,K),H(H(H(A,K),K),K))
(H($A,K ,K))]oo

Hom(H(A,K)⊗A, K)

athH(A,K),A,K

OO

Hom(H(A,K)⊗H(H(A,K), K), K)
(H(A,K)⊗$A,K)]

oo

athH(A,K),H(H(A,K),K),K

OO

Hom(A⊗H(A, K), K)

cA,H(A,K)

OO

athA,H(A,K),K

²²

Hom(H(H(A, K), K)⊗H(A, K), K)
($A,K⊗H(A,K))]

oo

cH(H(A,K),K),H(A,K)

OO

athH(H(A,K),K),H(A,K),K

²²
Hom(A,H(H(A,K),K)) Hom(H(H(A,K),K),H(H(A,K),K))

($A,K)]

oo

Everything commutes by functoriality of ath and c. Now IdH(H(A,K),K) in the
lower right set is sent to $H(A,K),K in the upper right set, which is in turn sent
to H($A,K ,K) ◦ $H(A,K),K in the upper left set. But IdH(H(A,K),K) is also sent
to $A,K in the lower left set, which is sent to IdH(A,K) in the upper left set by
definition of $A,K . This proves the formula. 2

1.4. Natural structures of triangulated categories with dualities. We now
assume that K is an object such that (H(−,K), $−,K) is δK-exact. In this assump-
tion is included the fact that $K is an isomorphism. We introduce some notations
for the following functors and morphisms of functors.

DK : C → C
A 7→ H(A,K)

$K : Id → DK ◦DK

($K)A = $A,K

dK : T−1DK → DKT
(dK)A = th−1

1,A,K

ρK : TDK → DTK

(ρK)A = th−1
2,A,K

Theorem 1.15. The 4-tuple (C, DK , dK , $K) is a triangulated category with weak
duality. If furthermore T−1H(−,K) = H(T (−), K) and th1,−,K = IdH(T (−),K),
then (C, DK , $K) is a triangulated category with strict duality.

Proof: We have to prove the relations DK$K◦$KDK = idDK and TdKT−1DK◦
DKdK ◦ $KT = T$K . The first one is Proposition 1.14 and the second one is
Proposition 1.12. 2

Proposition 1.16. (C, DTK , dTK , $TK) is a triangulated category with weak δK-
duality. If furthermore T−1H(−,K) = H(T (−),K) and th1,A,K = IdH(TA,K), then
(C, DTK , $TK) is a triangulated category with strict duality.

Proof: All the relations required are obtained by replacing K by TK in the
previous theorem, so we just have to prove that (DTK , dTK) is δK-exact. Recall
that (C, TDK , TdK , (TdKDK) ◦ $K) is a triangulated category with duality by
Proposition 1.5, so if

A
u−→ B

v−→ C
w−→ TA

is an exact triangle, then the triangle

DK(C)
DK(v)−→ DK(B)

DK(u)−→ DK(A)
δKT (DK(w)◦(dK)A)−→ TDK(C)
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is exact. Applying the functor T , we get that the triangle

TDK(C)
TDK(v)−→ TDK(B)

TDK(u)−→ TDK(A)
−δKT 2(DK(w)◦(dK)A)−→ T 2DK(C)

is exact. We now use the isomorphism of triangles

TDK(C)
TDK(v)//

(ρK)C

²²

TDK(B)

(ρK)B

²²

TDK(u)// TDK(A)

(ρK)A

²²

−δKT 2(DK(w)◦(dK)A)// T 2DK(C)

T (ρK)C

²²
DTK(C)

DT K(v)
// DTK(B)

DT K(u)
// DTK(A)

δKT (DT K(w)◦(dT K)A)
// TDTK(C)

The two squares on the left are commutative by simple functoriality, and the square
on the right is in fact T applied to the diagram

H(A,K)

T−1th−1
2,A,K

²²

(−δK)Tth−1
1,A,K // TH(TA, K)

th−1
2,T A,K

²²

TH(w,K) // TH(C, K)

th−1
2,C,K

²²
T−1H(A, TK)

δKth−1
1,A,T K

// H(TA, TK) H(w,TK)
// H(C, TK)

in which the first square is commutative by (TH1TH2) and the second is commu-
tative by functoriality of th. 2

Proposition 1.17. The pair (IdC , id, ρK) defines an isomorphism of triangulated
categories with dualities from (C, TDK , TdK ,−(TdKDK)◦$K) to (C, DTK , dTK , $TK).

Proof: Let us prove the relations of Definition 1.4:

(1) ρKTDK ◦ (−TdKDK) ◦$K = DTKρK ◦$TK

(2) TρK ◦ T 2dKT−1 = −TdTKT−1 ◦ ρKT−1 (since TDK has sign −δK and
DTK has sign δK)

The first one is exactly equality ($T2b) in Proposition 1.13 and the second one is,
after translation, (TH1TH2) applied to T−1A and K 2

Note that the first category in the previous proposition is (resp. is not) T (C, DK , dK , $K)
of Definition 1.6 when δK = 1 (resp. when δK = −1). For convenience, we now set
CK = (C, DK , dK , $K). With this notation, (Id, id, ρK) is a duality δK-preserving
functor (recall Definition 1.7) from TCK to CTK .

Corollary 1.18. By induction on i, we obtain higher versions of (IdC , ρK)

Γ(i)
K : T iCK → CT iK

by setting Γ(1)
K = (IdC , ρK) and Γi

K = ΓT i−1K ◦ T (Γ(i−1)
K ). By multiplications of

signs, Γ(i)
K is a duality δi

K-preserving functor.

Proof: Follows from the previous discussion and Remark 1.8. 2

Of course, all this only affects the duality transformation ρ (the underlying func-
tor is always IdC). So these duality transformations induce isomorphisms from Witt
groups to Witt groups or to skew Witt groups (changing the bidual isomorphism
by (−1)) according to the sign of Γ.

Remark 1.19. If with start with a K such that CK is 1-exact, then no duality
(−1)-preserving functor can appear in the higher versions.
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1.5. The functors f∗, f∗ and f !. We now assume that we have two categories as
above, C and D, that each of them is equipped with internal Hom and ⊗ satisfying
the axioms of section 1.3. Whenever possible, we use the same notation for this
data in both categories.

We assume furthermore that we have additive functors E,G : C → D and F :
D → C such that E is a left adjoint to F and G is a right adjoint to F . Of
course, we are interested in the example corresponding to Corollary 2.3, that is
E = Lf∗, F = Rf∗ and G = f ! (which - contrary to the adjunction between
the tensor product and the internal Hom - does not exist on the level of additive
categories already, but only when passing to derived categories). These adjunctions
are denoted aef and afg. We also assume the following.
(TE) There is a functorial isomorphism teA : ETA → TEA, such that (E, te) is a
1-exact functor.

Using Lemma 1.2, one can define an isomorphism of functors tfA : FTA → TFA
(resp. tgA : GTA → TGA) such that (F, tf) (resp. (G, tg)) is a 1-exact functor. It
is easy to show using trick 1.9 that the two following diagrams are commutative,
because they are exactly the ones used to find the inverse of tf (resp. tg) with
A = FB (resp. A = GB).
(AEF)

Hom(EA, B) T //

aefA,B

²²

Hom(TEA, TB) Hom(ETA, TB)
(teA)]

oo

aefT A,T B

²²
Hom(A,FB)

T
// Hom(TA, TFB)

(tfB)]

// Hom(TA, FTB)

(AFG)

Hom(FA, B) T //

afgA,B

²²

Hom(TFA, TB) Hom(FTA, TB)
(tfA)]

oo

afgT A,T B

²²
Hom(A,GB)

T
// Hom(TA, TGB)

(tgB)]

// Hom(TA, GTB)

We then assume the following.
(EP) There is a functorial (in both variables) isomorphism epA,B : EA⊗EB →
E(A⊗B).
(TEP1) The following diagram is commutative.

EA⊗ETB

epA,T B

²²

idEA⊗teB// EA⊗TEB
tp2,EA,EB// T (EA⊗EB)

TepA,B

²²
E(A⊗TB)

Etp2,A,B

// ET (A⊗B)
teA⊗B

// TE(A⊗B)

(TEP2) The following diagram is commutative.

ETA⊗EB

epT A,B

²²

teA⊗idEB// TEA⊗EB
tp1,EA,EB// T (EA⊗EB)

TepA,B

²²
E(TA⊗B)

Etp1,A,B

// ET (A⊗B)
teA⊗B

// TE(A⊗B)
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(EPC) The following diagram is commutative.

EA⊗EB
epA,B //

cEA,EB

²²

E(A⊗B)

EcA,B

²²
EB⊗EA epB,A

// E(B⊗A)

Remark 1.20. Note that (TEP1) and (EPC) imply (TEP2), using (TCP).

Definition 1.21. Let xA be the counit of aef , that is the image of IdFA by the
adjunction Hom(FA, FA) → Hom(EFA,A). Let xA,B be the element xA⊗xB in
Hom(EFA⊗EFB, A⊗B). We denote by fpA,B the image of xA,B by the chain of
morphisms

Hom(EFA⊗EFB, A⊗B)
(ep−1

F A,F B)]

−→ Hom(E(FA⊗FB), A⊗B)
aef→ Hom(FA⊗FB,F (A⊗B))

Notice that we have used the fact that ep is an isomorphism, so we cannot go on
with the same procedure to define a similar morphism from GA⊗GB to G(A⊗B)
since there is no reason for fp to be an isomorphism (and it is of course not an
isomorphism in the classical examples).

The following is a consequence of (EPC) and the adjunction of E and F :
(FPC) The following diagram is commutative.

FA⊗FB
fpA,B //

cF A,F B

²²

F (A⊗B)

FcA,B

²²
FB⊗FA

fpB,A

// F (B⊗A)

We will see below that this definition also implies that the same diagrams as
(TEP1) and (TEP2) are still commutative after having replaced E by F , te by tf
and ep by fp. Explicitly, we get the following commutative diagrams.
(TFP1) The following diagram is commutative.

FA⊗FTB

fpA,T B

²²

idF A⊗tfB// FA⊗TFB
tp2,F A,F B// T (FA⊗FB)

TfpA,B

²²
F (A⊗TB)

Ftp2,A,B

// FT (A⊗B)
tfA⊗B

// TF (A⊗B)

(TFP2) The following diagram is commutative.

FTA⊗FB

fpT A,B

²²

tfA⊗idF B// TFA⊗FB
tp1,F A,F B// T (FA⊗FB)

TfpA,B

²²
F (TA⊗B)

Ftp1,A,B

// FT (A⊗B)
tfA⊗B

// TF (A⊗B)

To establish the commutativity of (TFP1) is equivalent to showing that fpTA,B ∈
Hom(FA⊗FTB, F (A⊗TB)) resp. fpA,B ∈ Hom(FA⊗FB, F (A⊗B)) are mapped
to the same element in Hom(FA⊗FTB, TF (A⊗B)) under tf]◦tp] resp. T ◦tf ]◦tp].
By definition we have that aef◦(ep−1)](xA,TB) = fpA,TB and aef◦(ep−1)](xA,B) =
fpA,B . Using all kind of functorialities and (AEF) and (TEP1), we are reduced to
show that xA,B maps to xA,TB under T ◦ tf ] ◦ te] ◦ tp] ◦ (tp−1)]. This follows using
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the definition of tf and again functorialities. The commutativity of (TFP2) can be
proved in a similar way.

Definition 1.22. Let ehA,B : EH(A,B) → H(EA,EB) denote the image of
IdH(A,B) by the chain of morphisms

Hom(H(A,B),H(A,B)) Hom(EH(A,B),H(EA, EB))

Hom(H(A,B)⊗A,B)
E

//

ath

OO

Hom(E(H(A,B)⊗A), EB)
(epH(A,B),A)]

// Hom(EH(A,B)⊗EA, EB)

ath

OO

We define fhA,B : FH(A,B) → H(FA, FB) the same way, replacing E by F .

Applying trick 1.9, we immediately get that the following diagram is commuta-
tive

(EHP)

Hom(A,H(B, C)) E // Hom(EA, EH(B, C))
(ehB,C)]// Hom(EA,H(EB, EC))

Hom(A⊗B, C)
E

//

ath

OO

Hom(E(A⊗B), EC)
(epA,B)]

// Hom(EA⊗EB,EC)

ath

OO

We also get the same commutative diagram with E, eh and ep replaced by F ,
fh and fp.

(FHP)

Hom(A,H(B, C)) F // Hom(FA, FH(B, C))
(fhB,C)]// Hom(FA,H(FB, FC))

Hom(A⊗B, C)
F

//

ath

OO

Hom(F (A⊗B), FC)
(fpA,B)]

// Hom(FA⊗FB, FC)

ath

OO

It is also easy to show that the following diagrams are commutative, using
(TEP1) (resp. (TEP2)) and (ATH) and proceeding similar to the argument that
establishes (TFP1) using (TEP1) and (AEF).
(TEH1)

H(ET−1A, EB) // H(T−1EA, EB) // TH(EA, EB)

EH(T−1A,B)

OO

// ETH(A,B) // TEH(A,B)

OO

(TEH2)

H(EA,ETB) // H(EA, TEB) // TH(EA, EB)

EH(A, TB)

OO

// ETH(A,B) // TEH(A,B)

OO

Similarly, using (TFP1) and (TFP2) we obtain
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(TFH1)

H(FT−1A,FB) // H(T−1FA, FB) // TH(FA, FB)

FH(T−1A,B)

OO

// FTH(A,B) // TFH(A,B)

OO

(TFH2)

H(FA, FTB) // H(FA, TFB) // TH(FA,FB)

FH(A, TB)

OO

// FTH(A,B) // TFH(A, B)

OO

Proposition 1.23. The morphisms ehA,B make the diagram

EA

$EB

²²

E$B // EH(H(A,B), B)

ehH(A,B),B

²²
H(H(EA,EB), EB) H(ehA,B ,EB)

// H(EH(A,B), EB)

commutative, in other words

ehH(A,B),B ◦ E$B = H(ehA,B , B) ◦$EB

Proof: This amounts, after applying the functor H(EA,−), to proving that
IdEA is sent to the same element by the two paths in the diagram

Hom(EA,EA)

($EB)]

²²

(E$B)] // Hom(EA,EH(H(A,B), B))

(ehH(A,B),B)]

²²
Hom(EA,H(H(EA, EB), EB)) H(ehA,B ,B)]

// Hom(EA,H(EH(A,B), EB))

Glueing under this last diagram the commutative diagram

Hom(EA,H(H(EA, EB), EB)) eh // Hom(EA,H(EH(A,B), EB))

Hom(EA⊗H(EA,EB), EB)

ath

OO

eh // Hom(EA⊗EH(A,B), EB)

ath

OO

Hom(H(EA, EB)⊗EA,EB)

c

OO

ath

²²

eh // Hom(EH(A,B)⊗EA,EB)

c

OO

ath

²²
Hom(H(EA,EB),H(EA, EB))

eh
// Hom(EH(A,B),H(EA, EB))

in which all vertical maps are isomorphisms, one sees that idEA is sent to ehA,B in
the lower right set by definition of $EB . We now prove that idEA is again sent to



WITT MOTIVES, TRANSFERS AND DÉVISSAGE 17

this element ehA,B using the other path in the first diagram. Consider the diagram

Hom(A,H(H(A,B), B)) E // Hom(EA, EH(H(A,B), B))
(ehH(A,B),B)]// Hom(EA,H(EH(A,B), EB))

Hom(A⊗H(A,B), B)

ath

OO

E // Hom(E(A⊗H(A,B)), EB)
(epA,H(A,B))

]

// Hom(EA⊗EH(A,B), EB)

ath

OO

Hom(H(A,B)⊗A,B)

ath

²²

c

OO

E // Hom(E(H(A,B)⊗A), EB)

c

OO

(epH(A,B),A)]

// Hom(EH(A,B)⊗EA, EB)

ath

²²

c

OO

Hom(H(A,B),H(A,B))
E

// Hom(EH(A,B), EH(A,B))
(ehA,B)]

// Hom(EH(A,B),H(EA,EB))

in which the top and bottom rectangles are commutative because of (EHP), the
middle left one because of the functoriality of E and the middle right one because
of (EPC). Starting with idH(A,B) in the lower left corner, we end up with $A,B in
the upper left corner, with ehA,B in the lower right corner, wich proves our claim.
2

Definition 1.24. We define αA,B : FH(A,GB) → H(FA,B) as the image of
idH(A,GB) by the chain of morphisms

Hom(H(A,GB),H(A,GB)) Hom(FH(A,GB),H(FA, B))

Hom(H(A,GB)⊗A,GB)
afg−1

//

ath

OO

Hom(F (H(A, GB)⊗A), B)
(fpH(A,GB),A)]

// Hom(FH(A,GB)⊗FA,B)

ath

OO

Verdier [20, Proposition 3] defines a natural isomorphism with similar source and
target. In our setting, his definition becomes the following.

Definition 1.25. We define α̃ by the composition

α̃ : FH(A, GB)
fh→ H(FA,FGB)) Tr→ H(FA,B)

where Tr : FG → id is the counit of the adjunction afg between F and G.

Verdier uses the projection formula to show that α̃ is an isomorphism. Below,
we will use the projection formula to show that α is also an isomorphism. But
anyway, we have the following.

Proposition 1.26. The two natural isomorphisms α = α̃ are equal.

Proof: We have to prove that the following diagram commutes.

Hom(FH(A,GB), FH(A,GB))
fh // Hom(FH(A,GB),H(FA,FGB))

Tr

²²
Hom(H(A,GB),H(A,GB))

F

OO

Hom(FH(A,GB),H(FA,B))

Hom(H(A, GB)⊗A,GB)
afg

//

ath

OO

Hom(F (H(A,GB)⊗A), B)
fp

// Hom(FH(A,GB)⊗FA, B)

ath

OO
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Using that Tr ◦F = afg and that Tr and fp are applied to different variables and
thus commute, we are reduced to show the commutativity of

Hom(H(A,GB),H(A,GB)) F // Hom(FH(A,GB), FH(A,GB))
fh // Hom(FH(A,GB),H(FA, FGB))

ath

²²
Hom(H(A,GB)⊗A,GB)

ath

OO

F
// Hom(F (H(A,GB)⊗A), FGB)

fp
// Hom(FH(A,GB)⊗FA, FGB)

which is (FHP) applied to H(A,GB), A and GB. 2

Thus we no longer distinguish between α and α̃ Applying trick 1.9, we immedi-
ately get the commutative diagram from Definition 1.24

(GHP)

Hom(A,H(B,GC)) F // Hom(FA,FH(B, GC))
(αB,C)] // Hom(FA,H(FB, C))

Hom(A⊗B, GC)
afg

//

ath

OO

Hom(F (A⊗B), C)
(fpA,B)]

// Hom(FA⊗FB,C)

ath

OO

Diagram (TFH1) and Proposition 1.26 imply that the following diagram is com-
mutative.

(TFG)

FTH(A,GB)

tf

²²

FH(T−1A,GB)FTth−1T−1
oo α // H(FT−1A,B)

T−1tfT−1

²²
TFH(A,GB)

α
// TH(FA,B) H(T−1FA,B)

Tth−1T−1
oo

Proposition 1.27. The morphisms αA,B make the diagram

FA

$F A,B

²²

F$A,GB // FH(H(A,GB), GB)

αH(A,GB),B

²²
H(H(FA,B), B)H(αA,B ,B)

// H(FH(A, GB), B)

commutative.

Proof: The proof is the same as for Proposition 1.23, but replacing E by F , B
by GB, eh by α = Tr ◦ fh, (EHP) by (GHP), (EPC) by (FPC) and functoriality
of E by functoriality of afg. 2

1.6. The projection formula and its consequences. Let u be the unit of the
adjunction aef . We now assume that the morphism qA,B = u ◦ fp : A⊗FB →
F (EA⊗B) obtained by adjunction from idEA⊗B is an isomorphism for all A and
B.
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Definition 1.28. We define βA,B : H(FA,B) → FH(A,GB) as the image of
idH(A,GB) by the chain of morphisms

Hom(H(FA, B),H(FA, B))

ath−1

²²

Hom(H(FA,B), FH(A,GB))

Hom(H(FA,B)⊗FA,B)

(q−1
H(F A,B),A

)]

²²

Hom(EH(FA, B),H(A,GB))

aef

OO

Hom(F (EH(FA,B)⊗A), B)
afg // Hom(EH(FA, B)⊗A,GB)

ath

OO

Proposition 1.29. The morphisms αA,B and βA,B are inverse to each other.

Proof: The proof that αA,B ◦ βA,B = idH(FA,B) follows as in the commutative
diagram

Hom(FH(A,GB), FH(A, GB))

aef−1

²²

(βA,B)]

// Hom(H(FA,B), FH(A,GB))

aef−1

²²
Hom(EFH(A,GB),H(A,GB))

ath−1

²²

β // Hom(EH(FA, B),H(A,GB))

ath−1

²²
Hom(EFH(A,GB)⊗A,GB)

afg−1

²²

β // Hom(EH(FA, B)⊗A,GB)

afg−1

²²
Hom(F (EFH(A,GB)⊗A), B)

q

²²

β // Hom(F (EH(FA, B)⊗A), B)

q

²²
Hom(FH(A,GB)⊗FA, B)

ath

²²

β // Hom(H(FA, B)⊗FA, B)

ath

²²
Hom(FH(A,GB),H(FA, B))

(βA,B)]

// Hom(H(FA, B),H(FA, B))

the element id in the upper left corner is mapped to α in the lower left (since
u] = aef−1 ◦ F and all morphism are natural with respect to u) and to β in the
upper right corner, which are both mapped to id in the lower right corner. The
fact that βA,B ◦ αA,B = idFH(A,GB) comes again from the same kind of reasoning
applied to the same diagram with β instead of α.

2

Remark 1.30. Looking at the proof of the previous proposition, one can in fact
weaken the assumptions, and just require that qFH(A,GB),A and qH(FA,B),A are
isomorphisms for a certain A and B, and the proposition will still hold for these
particular A and B.

1.7. Natural functors of triangulated categories with duality. Recall that
(E, te) is a 1-exact functor from C to D and that (F, tf) is a 1-exact functor from
D to C. We denote by λK = e ,K the morphism of functors

λK : EDK → DEKE
ehA,K : EH(A,K) 7→ H(EA, EK).
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Name context

th1,A,B H(TA,B) → T−1H(A,B)
th2,A,B H(A, TB) → TH(A, B)
tp1,A,B TA⊗B → T (A⊗B)
tp2,A,B A⊗TB → T (A⊗B)

athA,B,C Hom(A⊗B, C) → Hom(A,H(B, C))
cA,B A⊗B → B⊗A

evA,K H(A,K)⊗K → K

$A,K A → H(H(A,K),K)

aefA,B Hom(EA,B) → Hom(A,FB)
afgA,B Hom(FA,B) → Hom(A,GB)

teA ETA → TEA

tfA FTA → TFA

tgA GTA → TGA

epA,B EA⊗EB → E(A⊗B)
fpA,B FA⊗FB → F (A⊗B)
ehA,B EH(A,B) → H(EA,EB)
fhA,B FH(A,B) → H(FA, FB)

αA,B FH(A,GB) → H(FA, B)
βA,B H(FA, B) → FH(A,GB)
qA,B A⊗FB → F (EA⊗B)

Table 1. Summary of the different definitions

Theorem 1.31. Let K be an object of C such that $K and λK are isomorphisms
of functors, and such that (DK , dK) and (DEK , dEK) are δ-exact (same δ). Then
the triple (E, te, λK) is a functor of triangulated categories with dualities from
(C, DK , dK , $K) to (D, DEK , dEK , $EK).

Proof: We have to check that λK satisfies the diagrams of Definition 1.4. The
first one is Proposition 1.23 and the second one is (TEH1). 2

Theorem 1.32. Let L be an object of D such that $GL and $L are isomorphisms,
(DL, dL) and (DGL, dGL) are δ-exact (same δ), and such that qFDGL(A),A and
qDLF (A),A are isomorphism for all A and set αL = α ,L. Then the triple (F, tf, αL)
is a functor of triangulated categories with dualities from (D, DGL, dGL, $GL) to
(C, DL, dL, $L).

Proof: Proposition 1.29 and Remark 1.30 ensure that αL is an isomorphism of
functors. We then have to check that αL satisfies the diagrams of Definition 1.4.
The first one is Proposition 1.27 and the second one is (TFG). 2

1.8. An example for section 1.3.

1.8.1. Category of complexes. Let A be an additive category with an internal Hom
(denoted by h) and an internal tensor product (denoted by •) with a commutativity
constraint and an adjunction between • and h additive and functorial in the three
variables. We now show that the both the categories of bounded and unbounded
complexes of objects of A can be equipped with an internal Hom H and an internal
tensor product ⊗ satisfying the axioms of section 1.3. This is essentially a problem
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of choosing some signs, and as explained in section 1.3.1, some choices determine
the others.

We work with homological differentials, i.e.

dA
i : Ai → Ai−1.

The groups defining the translation functor are

(TA)n = An−1.

The groups in the tensor product and the internal Hom are given by

(A⊗B)n =
⊕

i+j=n

Ai•Bj

and
H(A,B)n =

∏

j−i=n

h(Ai, Bj).

In table 2 can be read where we put which sign in our definitions of the different
groups and morphisms. As a general rule, the indices in the sign correspond to the
groups from which the morphism with this sign starts.

Definition of Sign Locus

TA εT
i dTA

i+1 = εT
i diA

A⊗B ε1⊗i,j ε1⊗i,j dA
i •idBj

ε2⊗i,j ε2⊗i,j idAi•dB
j

H(A,B) ε1Hi,j ε1Hi,j (dA
i+1)

]

ε2Hi,j ε2Hi,j (dB
j )]

tp1,A,B εtp1
i,j εtp1

i,j idAi•Bj

tp2,A,B εtp2
i,j εtp2

i,j idAi•Bj

th1,A,B εth1
i,j εth1

i,j idh(Ai,Bj)

th2,A,B εth2
i,j εth2

i,j idh(Ai,Bj)

athA,B,C εath
i,j εath

i,j (Hom(Ai•Bj , Ci+j) → Hom(Ai, h(Bj , Ci+j)))

cA,B εc
i,j εc

i,j(Ai•Bj → Bj•Ai)
Table 2. Sign definitions

In table 3, we state the compatibility that these signs must satisfy for the axioms
to be true.

As the discussion in section 1.3.1 suggests, some equalities are consequences of
other ones. It is also easy to see that (1, 4, 6) ⇒ 7 and (2, 10, 12) ⇒ 8. If you
assume 19, then 17 and 18 are equivalent.

Balmer, Gille and Nenashev [3], [4],[6], [9] always consider strict dualities, that
is εth1 = 1. The signs choosen in [4, §2.6] imply that ε1Hi,0 = 1. The choices made
by [9, Example 1.4] are ε1⊗i,j = 1 and ε2⊗i,j = (−1)i. In [6, p. 111] the signs ε1Hi,j = 1
and ε2Hi,j = (−1)i+j+1 are choosen. Finally, the sign choosen for $ in [6, p. 112]
corresponds via our definition of $ to the equality εath

j−i,iε
ath
i,j−iε

c
j−i,i = (−1)j(j−1)/2.

It is possible to choose the signs in a way compatible with all these choices and our
formalism.
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compatibility reason

1 ε1⊗i,j ε1⊗i,j−1ε
2⊗
i,j ε2⊗i−1,j = −1 A⊗B is a complex

2 ε1Hi,j ε1Hi,j−1ε
2H
i,j ε2Hi+1,j = −1 H(A,B) is a complex

3 εT
i εT

i+jε
1⊗
i,j ε1⊗i+1,jε

tp1
i,j εtp1

i−1,j = 1 tp1,A,B is a morphism

4 εT
i+jε

2⊗
i,j ε2⊗i+1,jε

tp1
i,j εtp1

i,j−1 = 1

5 εT
j εT

i+jε
2⊗
i,j ε2⊗i,j+1ε

tp2
i,j εtp2

i,j−1 = 1 tp2,A,B is a morphism

6 εT
i+jε

1⊗
i,j ε1⊗i,j+1ε

tp2
i,j εtp2

i−1,j = 1

7 εtp1
i,j εtp1

i,j+1ε
tp2
i,j εtp2

i+1,j = −1 (TP1TP2) is true

8 εth1
i,j εth1

i,j+1ε
th2
i,j εth2

i+1,j = −1 (TH1TH2) is true

9 εT
i+1ε

T
j−i−1ε

1H
i,j ε1Hi+1,jε

th1
i,j εth1

i+1,j = 1 th1,A,B is a morphism

10 εT
j−i−1ε

2H
i,j ε2Hi+1,jε

th1
i,j εth1

i,j−1 = 1

11 εT
j εT

j−iε
2H
i,j ε2Hi,j+1ε

th2
i,j εth2

i,j−1 = 1 th2,A,B is a morphism

12 εT
j−iε

1H
i,j ε1Hi,j+1ε

th2
i,j εth2

i+1,j = 1

13 ε1⊗i,j ε2⊗i,j ε1Hj−1,i+j−1ε
ath
i,j−1ε

ath
i−1,j = −1 ath is well defined

14 ε1⊗i,j ε2Hj,i+jε
ath
i−1,jε

ath
i,j = 1

15 εtp1
i,j εtp2

i,j εth1
j,i+j+1ε

ath
i,j+1ε

ath
i+1,j = 1 (TATH12) is true

16 εtp2
i,j εth1

j,i+j+1ε
th2
j,i+jε

ath
i,j εath

i,j+1 = 1 (TATH23) is true

17 ε1⊗i,j ε2⊗j,i εc
i,jε

c
i−1,j = 1 cA,B is a morphism

18 ε1⊗j,i ε2⊗i,j εc
i,jε

c
i,j−1 = 1

19 εc
i,jε

c
j,i = 1 (SCP) is true

20 εtp1
i,j εtp2

j,i εc
i,jε

c
i+1,j = 1 (TCP) is true

Table 3. Sign definitions

Theorem 1.33. Let a, b ∈ {+1,−1}. Then

ε1⊗i,j = 1 εtp1
i,j = a

ε2⊗i,j = (−1)i εtp2
i,j = a(−1)i

ε1Hi,j = 1 εth1
i,j = 1

ε2Hi,j = (−1)i+j+1 εth2
i,j = a(−1)i+j

εath
i,j = b(−1)i(i−1)/2 εc

i,j = (−1)ij

εT
i = −1

satisfies all equalities of Table 3 as well as εath
j−i,iε

ath
i,j−iε

c
j−i,i = (−1)j(j−1)/2 and is

compatible with all the above sign choices of Balmer, Gille and Nenashev.

Proof: Straightforward. 2

1.8.2. Derived category. Assume now that A is as in 1.8.1 and furthermore is an
abelian (or more generally exact) category with enough injectives and projectives
(or flat objects). Then we obtain a (right) derived internal Hom and a (left) derived
tensor product. In general, these bifunctors are defined on categories of complexes
with cohomology bounded above or below. In the case of the derived category
of OX -modules for X a regular noetherian scheme as will be studied in section
2, these bifuctors reduce to complexes in Db (as we have finite resolutions) and
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even to complexes with coherent cohomology (see e. g. [10, Proposition II.3.3 and
Proposition II.4.3]). In particular, we obtain an adjunction between RHom and
⊗L in Db

c(X) satisfying all the formulae of subsection 1.3.

2. Witt motives

In this section, we will construct transfer maps between (Grothendieck-)Witt
groups with respect to proper morphisms and establish some properties such as
the base change and the projection formula. In contrast to K0, the transfer maps
for (Grothendieck-)Witt groups will shift the degree and twist the duality. Using
section 1, it seems straigthforward to generalize the construction of transfer maps
to the H-equivariant setting for an algebraic group H, but we have not checked this
in full detail, so the careful reader should assume H = {1}. These transfer maps
and their properties are then used for the construction of the categories GWH and
WH of Grothendieck-Witt motives and Witt motives with respect to an algebraic
group H. This category is the analogue of the category KH of [16, section 6] which
is the crucial construction for Panin’s computations.

Everything in the sequel is true both for GW and W , so we just state everything
for W .

We observe that in some very special cases there are already constructions that
deserve the name transfer map. In particular, for any projection map π : Pn×X →
X, Walter establishes maps W i(Pn ×X, π∗L(−n − 1)) → W i−n(X,L) [21, p. 24]
which using in particular Theorem 5.6, Proposition 5.11 and p.23/24 of loc. cit. can
be seen to be natural with respect to X. Also, there seems to be work in progress
by C. Walter on the construction of transfer maps in a very general setting (which
should presumably yield the same transfer maps as those we constructed). There
are also transfer constructions for Witt groups with respect to certain finite maps
and closed embeddings in the affine space [8], [22], but not for other projective
morphisms which is what we need.

2.1. Some derived categories. In order to define transfers, it will be necessary to
consider larger categories than just Db(V ect(X)). We denote Db(X) the bounded
derived category of sheaves of OX -modules. Recall that for any exact category E
(e.g. E = OX -modules on a given scheme X), the canonical functor from the de-
rived category of bounded complexes Db(E) to the subcategory of the unbounded
derived category D(E) of complexes with bounded cohomology is an equivalence of
categories (see e.g. [11, Lemma 11.7]). Thus, we shall use the same symbol for this
latter category as well, and it is this variant we work with when using the previous
section. We further denote by Db

c(X) and Db
qc(X) the full subcategories of com-

plexes with coherent resp. quasi-coherent cohomology. For X noetherian regular
of finite Krull dimension, the inclusion Db(V ect(X)) → Db

c(X) is an equivalence of
triangulated categories.

The inclusion Db
c(X) → Db

qc(X) is fully faithful by definition, but never an equiv-
alence. Recall that for X locally noetherian, the functor Db(QCoh(X)) → Db

qc(X)
is an equivalence, see e.g. [10, Corollary II.7.19]. Under suitable assumptions (see
section 1, and in particular 1.8.2), the category Db(X) has an internal Hom denoted
by RHomX or just RHom which is right adjoint to ⊗L

OX
and restricts to internal

Homs in Db
c(X) and Db

qc(X).

Remark 2.1. Sign conventions. First of all, we use chain complexes, as in Balmer’s
work (i.e. the differential in degree n is dn : An → An−1). The sign conventions
that we then use are discussed in 1.8.1.
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2.2. Transfers. If f : X → Y is proper and Y locally noetherian, then there is
a functor Rf∗ : D+

qc(X) → D+
qc(Y ) and similar for D+

c (see [10, p. 88-89]). The
construction of transfers for Witt groups along Rf∗ will rely on the following duality
theorem due to Grothendieck-Verdier (-Hartshorne-Deligne) (see [20, Proposition
3, p. 404]):

Theorem 2.2. Let f : X → Y be a proper morphism of noetherian schemes of
finite Krull dimension. Then there is a functor f ! : D+

qc(Y ) → D+
qc(X) and a natural

transformation Trf such that for all F ∈ D−
qc(X), G ∈ D+

qc(Y ) the composition

α̃ : Rf∗RHom(F, f !G)
aRf∗→ RHom(Rf∗F,Rf∗f !G)

Trf→ RHom(Rf∗F, G)

is an isomorphism in D+
qc(Y ).

Applying the global section functor RΓ(Y, ) and using the isomorphism of
functors RΓ(X, ) '→ RΓ(Y,Rf∗( )) (see [10, II.Proposition 5.2]), the isomor-
phism of the theorem becomes an isomorphism RHom(F, f !G)'→RHom(Rf∗F, G)
in Db(Ab). Observe also that since f is proper, the above statement remains true
after replacing qc by c everywhere by [10, Proposition II.2.2] and [20, p. 396].

Applying H0, we obtain (see [20, Theorem 1]):

Corollary 2.3. In the above situation, the functors Rf∗ : D+
qc(X) → D+

qc(Y ) and
f ! : D+

qc(Y ) → D+
qc(X) form an adjoint pair.

Proof: Apply H0 to the isomorphism RHom(F, f !G)'→RHom(Rf∗F, G) in
Db(Ab). 2

Remark 2.4. In fact, Verdier proceeds in the other direction. That is, he first
states Corollary 2.3 and then deduces Theorem 2.2 using the projection formula.
We will also use Corollary 2.3 and the projection formula to construct a natural
isomorphism α : Rf∗RHom(F, f !G) → RHom(Rf∗F,G) (see Theorem 1.24), but
in a different way than Verdier.

Being part of an adjoint pair, the functor f ! : D+
qc(X) → D+

qc(Y ) and the natural
transformation Trf are unique up to unique isomorphism, see [20, p. 394]. There
are at least two different ways to construct them and to prove the isomorphism of the
theorem (see also [14] for still another approach). One is to use residual complexes
as Hartshorne [10] does. The other is to use apply the techniques of [20] as done
by Deligne in the appendix of [10]. We will use this second construction. Although
f ! and Trf are unique up to unique isomorphism, this does not automatically
mean that we can say explicitely how the isomorphism between the constructions
of Hartshorne and Deligne looks like.

We now explain why this theorem is useful to define transfers. Given a line
bundle L on a Gorenstein scheme X (for instance L = OY , or L = ωY := ωY/F the
canonical sheaf if X is smooth over F ), the functor ∗ := ∗L := HomOX

( , L) is a
duality functor on V ect(X) with the natural isomorphism $ : Id

'→∗∗ defined below.
This induces a duality on the triangulated category RHom( , L) on Db(V ect(X))
where L is considered as a complex concentrated in degree 0. We will work with the
larger category Db

c(X) instead on which RHom( , L) is still a duality (see [6, 2.5.3
p. 115] and [10, Theorem V.3.1]) and gives rise to the so-called coherent Witt groups
(compare [6, Definition 2.16]). For the precise definition of the $ with respect to
RHom( , L) on Db

c(X) we use and for a comparison with the signs choosen in
[6, p. 112] see sections 1.8.1 and 1.8.2. As we always work with coherent Witt
groups (instead of derived categories of vector bundles), we denote these simply by
W ∗(X):
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Definition 2.5. Let L be a line bundle on a scheme X which is Gorenstein noe-
therian of finite Krull dimension. Then we define

W i(X, L) := W (Db
c(X),RHom( , L), $L).

Beware that following Hartshorne, in the notation RHom( , L) the R means
RIRII , so we replace the line bundle L by an injective resolution. We also have
locally free resolutions if X is quasiprojective. Moreover, the derived functor of
Hom using projective resolutions if those exist (denoted by RIIRI in Hartshorne)
is canonically isomorphic to the one defined via injective resolutions (see [10, p.
65/66, 91]), but we will not use this in the sequel. From now on, we assume that
all schemes are noetherian of finite Krull dimension and Gorenstein.

Remark 2.6. First, we have a natural transformation

$Y,K : Id → RHom(RHom( ,K),K))

for any bounded complex K (see 1.3.2). We say that K is a dualizing complex if
$Y,K is an isomorphism. The fact that X is Gorenstein ensures that OX is a dual-
izing complex. Moreover, [10, Theorem V.3.1] implies that any dualizing complex
of finite injective dimension is quasi-isomorphic to a shifted line bundle, provided
X is connected. Of course, Definition 2.5 generalizes to dualizing complexes.

Recall that as X is noetherian regular of finite Krull dimension, the inclusion
(Db(V ect(X)), ∗L) → (Db

c(X), ∗L) is an equivalence of triangulated categories with
duality, inducing a non-canonical isomorphism between the associated Witt groups
(the proof of [6, Corollary 2.17.2] for OX carries over to arbitrary line bundles
L). We also obtain a map f∗ : W ∗(Y,OY ) → W ∗(X,OX) between coherent Witt
groups for f : X → Y a flat morphism [7, p. 221].

The techniques of section 1 yield such maps f∗ for other dualities provided X
and Y are regular.

Proposition 2.7. Let f : X → Y be a flat morphism of regular schemes and M
a dualizing complex on Y . Then there is a natural morphism f∗ : W ∗(Y, M) →
W ∗(X, f∗M) induced by an exact functor of categories with dualities.

Proof: This follows from Theorem 1.31 which hypotheses are satisfied by the
arguments of the proof of Theorem 2.10 and [10, Proposition II.5.8]. 2

Now if we have a proper morphism f : X → Y , we want to find dualizing
complexes M on X (i.e., M ∈ Db

c(X) such that DM := RHom( ,M) is a duality
on Db

c(X)) such that Rf∗ can be extended to a functor of triangulated categories
with duality (Rf∗, α) : (Db

c(X), DM , $) → (Db
c(Y ), ∗L, $). By definition, α must

be a natural isomorphism α : Rf∗RHom(F, M)'→RHom(Rf∗F, L). The duality
theorem above tells us that this might be possible if we choose M to be isomorphic
to f !L. We also have the following:

Lemma 2.8. If f : X → Y is a smooth proper morphism of relative dimension
d and L a line bundle on Y , then there is a natural isomorphism β : f !L

'→f∗L ⊗
ωX/Y [d]. If moreover g : Y → Z is also smooth, we have an isomorphism ωX/Z '
f∗(ωY/Z) ⊗ ωX/Y . If f as above and h : V → Y arbitrary, then h̃∗(ωX/Y ) ∼=
ωX×Y V/V .

Proof: See [10, p. 143, p. 419-421] or [20, Theorem 3] for the first claim and
[10, p. 142, p. 141] for the second and third one. 2

If f is a closed embedding of codimension d which is locally complete intersection
(e. g. the graph of a morphism), then it is still possible to define ωX/Y (see [10, p.
141]). and one may establish the second and third isomorphisms again using [10,
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p. 142, p. 141]. The description of f !L can be generalized easily to non-smooth
morphisms when using absolute rather that relative canonical sheafs, which turns
out to be more natural for our later purposes anyway.

Lemma 2.9. (B. Kahn) Let f : X → Y be a proper morphism of relative dimension
d between smooth varieties over a field F and L a line bundle on Y . Then there is
a natural isomorphism β : f !L

'→f∗L⊗ f∗ω−1
Y ⊗ ωX [d].

Proof: Recall that f !L ∼= f∗L⊗ f !OY [10, p. 419-420]. Let pX and pY be the
projections from X and Y to Spec(F). We have pX = pY ◦ f , so, by adjunction
p!

X = f ! ◦ p!
Y , hence, by Lemma 2.8 and the above isomorphism

ωX [dim X] ∼= p!
XOF

∼= f !p!
YOF

∼= f !ωY [dim Y ] ∼= f∗ωY [dim Y ]⊗ f !OY

which yields the formula for L = OY . Now apply the above isomorphism again for
the general case. 2

Observe that f∗ has finite cohomological dimension (see e.g. [10, p. 87]), hence
Rf∗ restricts to a functor Rf∗ : Db

c(X) → Db
c(Y ).

Of course, we now have to show that this α indeed defines a functor of trian-
gulated categories with duality. See Proposition 1.26 for the comparison of this
construction of α with the α̃ of Verdier.

Theorem 2.10. If in addition to the hypothesis of Theorem 2.2 X and Y are
smooth over F , then the functor

(Rf∗, α) : (Db
c(X), ∗f !L, $X) → (Db

c(Y ), ∗L, $Y )

is a functor of triangulated categories with duality.

Proof: We want to apply Theorem 1.32 with D = Db
c(X), C = Db

c(Y ) (see
also subsection 1.8.2), E = Lf∗ (as defined in [10, Proposition II.4.4]), F = Rf∗
and G = f !. Observe that Lf∗ and f ! restrict to Db

c as X and Y are regular
noetherian and Lemma 2.9 applies to vector bundles as well. We know that $f !L,
$L are isomorphisms because L is a line bundle and therefore the complex f !L is
quasi-isomorphic to a shifted line bundle. The projection formula morphisms

(Rf∗Df !LA)⊗Rf∗A → Rf∗((f∗Rf∗Df !LA)⊗A)

and

(DLRf∗A)⊗Rf∗A → Rf∗((f∗DLRf∗A)⊗A)

are isomorphisms by [10, Proposition II.5.6]. For the adjunctions aef and afg, we
use [10, Corollary II.5.11] and Corollary 2.3. The isomorphism ep is provided by [10,
Proposition II.5.9], and the isomorphisms c, tp1 and tp2 are the obvious ones given
by subsections 1.8.1 and 1.8.2. It remains to define te and to check that TE,TEP1,
TEP2 and EPC hold. Replacing all complexes by flat ones, we are reduced to
study chain complexes. Thus we see that we may choose te = Id : Tf∗ → f∗T as
f∗ is defined degreewise, and the commutativity of the three squares is immediatly
checked degreewise using that in each diagram the only sign that appears (namely
εtp2, resp. εtp1, resp. εc) does appear twice. 2

Remark 2.11. We may replace the condition ”smooth over F” by ”regular” if we
know (for some other reason than Lemma 2.9) that f !L is a dualizing complex on
X.

Having done all this, we can finally define the desired transfer maps between
Witt groups.
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Definition 2.12. Let f : X → Y be a proper map between smooth varieties over
F and L a line bundle on Y . Then we define the transfer map

f∗ : W ∗(X, f !L) → W ∗(Y, L)

to be the map induced by the triangulated duality preserving functor (Rf∗, α)
above.

The transfer respects compositions.

Lemma 2.13. Let X
f−→ Y

g−→ Z be two proper maps and N a line bundle on Z.
Then we have (g ◦ f)∗ = g∗ ◦ f∗ : W∗(X, (g ◦ f)!N) → W∗(Z, N).

Proof: One has to check (R(g ◦ f)∗, αg◦f ) = (Rg∗, αg) ◦ (Rf∗, αf ) where the
right hand side is defined by 2.20 below. This immediately follows using among
others that Trg ◦ (Rg∗Trfg!) = Trg◦f . 2

Remark 2.14. If f is a smooth finite morphism, then ωX/Y = OX , so by Lemma
2.8 the above transfer map becomes f∗ : W ∗(X, f∗L) → W ∗(Y,L). In particular,
we get some version of the classical Scharlau transfer [18] f∗ : W ∗(X) → W ∗(Y ) if
L = OY .

For L = ωY , the transfer map becomes

f∗ : W ∗(X, f !ωY ) → W ∗(Y, ωY ).

Using the isomorphism of Lemma 2.8, Lemma 2.9 and the fact that an isomorphism
of dualizing complexes induces an isomorphism of categories with dualities and thus
of Witt groups, we deduce from Theorem 2.10 a transfer map f∗ : W ∗(X, ωX [d]) →
W ∗(Y, ωY ) (or f∗ : W ∗(X, f∗L ⊗OX

ωX [d]) → W ∗(Y, L ⊗OY
ωY ) for some line

bundle L on Y ).
Applying 1.17, we therefore have:

Lemma 2.15. Under the assumptions of Lemma 2.9, the above transfer map in-
duces a transfer map of degree −d

f∗ : W ∗+d(X, f∗L⊗OX ωX) → W ∗(Y, L⊗OY ωY ).

Lemma 2.16. Let X
f−→ Y

g−→ Z be two proper maps and N a line bundle on Z.
Then we have (g ◦ f)∗ = g∗ ◦ f∗ : W∗(X, (g ◦ f)∗N ⊗ ωX) → W∗(Z, N ⊗ ωZ).

Proof: We want to reduce this to Lemma 2.13. Recall that from Lemma 2.9,
we have isomorphisms

βf : f !M
'−→ f∗M ⊗ f∗ω−1

Y ⊗ ωX [d]

and
βg : g!N

'−→ g∗N ⊗ g∗ω−1
Z ⊗ ωY [d′]

Fix an isomorphism λ : N ⊗ ω−1
Z ' N ′. Then the proof of Lemma 2.15 shows that

starting with the isomorphism

λ∗ : W∗(Z, N) → W∗(Z,N ′ ⊗ ωZ)

we obtain two isomorphisms

W∗(X, f !g!N) → W∗(X, f∗g∗N ′ ⊗ ωX)

applying either first g∗ and then f∗ or directly (g ◦ f)∗. The lemma follows as one
can show that these two coincide. To check this, one uses among others that

βg◦f : (g ◦ f)!N ⊗ ω−1
X → f∗g∗N ⊗ f∗g∗ω−1

Z ⊗ f∗ωY ⊗ f∗ω−1
Y ⊗ ωX ⊗ ω−1

X

and f∗(βg ⊗ Id) ◦ βf are equal. 2
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2.3. Another category. Before we prove the related properties of transfers and
pull-backs for Witt groups, we introduce a new category in which those properties
can be expressed nicely.

Let L,L′, M, M ′ and N,N ′ be vector bundles over X, Y and Z, respectively, and
assume we have morphisms pX/Z : X → Z and pY/Z : Y → Z. Let V = X ×Z Y
be the cartesian product of X by Y over Z. We denote L £N M the vector bundle
p∗V/X(L)⊗ (pV/X ◦ pX/Z)∗(N)⊗ p∗V/Y (M) over X×Z Y . When we write L£M , we
mean that Z is the point and that N is trivial. We therefore get a vector bundle
over X × Y . We identify

• (L £N M)⊗ (L′ £N ′ M ′) = (L⊗ L′) £N⊗N ′ (M ⊗M ′)
• ωX×ZY = ωX £ω−1

Z
ωY

where the last equality follows from Lemma 2.8 provided everything is smooth.
When f : X ′ → X and g : Y ′ → Y , we also identify

• (f × g)∗(L £ M) = f∗L £ g∗M.

Now, let f : X → Y and g be two composable morphism and P and P ′ be line
bundles over the target of g. We identify

• f∗(OY ) = OX

• f∗ ◦ g∗(P ) = (g ◦ f)∗(P )
• f∗(P )⊗ f∗(P ′) = f∗(P ⊗ P ′)

Finally, we denote L−1 the dual line bundle of L and we identify
• L⊗ L−1 = OX

Of course, we could avoid all those identifications by working with the canonical
isomorphism involved, but the proofs would become completely unreadable.

Definition 2.17. Let L denote the category whose objects are pairs (X, L) where
X is a smooth variety and L is a line bundle over X. A morphism from (X,L) to
(Y, M) is a pair (f, φ) where f is a morphism from X to Y and φ : f∗(M) ' L is
an isomorphism of vector bundles. The composition is defined by (g, ψ) ◦ (f, φ) =
(g ◦ f, φ ◦ f∗(ψ)).

Associativity in L is clear. There is an obvious faithful functor from the category
of smooth schemes to this category sending X to (X,OX) and f : X → Y to
(f, IdOX

). To keep notations concise, we denote by X and f the images of X and f
by this functor. We denote pt the object (SpecF,OSpecF ). The reader discouraged
by all these notations might want to restrict his attention to the case where all the
L and M are just the structure sheafs.

There is a well defined contravariant functor W i from the subcategory of flat
morphisms of L to the category of abelian groups that send an object (X, L) on the
corresponding Witt group W i(X,L). The morphism (f, φ) is sent to the compo-
sition W i(Y, M) → W i(X, f∗(M)) → W i(X,L), where the second map is induced
by φ and the first is the classical pull-back on Witt groups. For obvious reasons,
we denote this morphism (f, φ)∗.

We can also define the push-forwards (or transfer) for a morphism (f, φ) if f is as
in Definition 2.12. This is a morphism (f, φ)∗ from W i+d(X, M⊗ωX) to W i(Y, L⊗
ωY ) when f is of dimension d. It is given by the isomorphism W i+d(X, f∗(L) ⊗
ωX) ' W i+d(X,M ⊗ωX) induced by φ composed with the morphism of 2.15. One
can check that ((g, ψ) ◦ (f, φ))∗ = (g, ψ)∗ ◦ (f, φ)∗.

For reasons that will be clear later, we define the twist of an object c(X,L) =
(X, L ⊗ ωX). We can therefore interpret the transfer for a morphism (f, φ) as a
morphism from W i+d(c(X, L)) to W i(c(Y, M)).

Next, we prove the base change formula for Witt groups. We need to study the
following technical condition.
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Definition 2.18. Let (F, αF ) and (G,αG) be two exact fuctors (A,DA, $A) →
(B,DB , $B) between exact categories with duality. We say that σ : F ⇒ G is a
natural transformation (resp. isomorphism) between duality preserving functors if
σ : F ⇒ G is a natural transformation (resp. isomorphism) between functors and
the square

FDA
αF //

σDA

²²

DBF

GDA αG

// DBG

DBσ

OO

is commutative. If F and G are exact functors between triangulated categories,
we say that σ : F ⇒ G is a triangulated natural transformation (resp. isomorphism)
between duality preserving functors if moreover σT = Tσ.

Lemma 2.19. If σ is a natural isomorphism between duality preserving functors as
above, then the two maps W (A) → W (B) induced by F and G coincide. If moreover
σ is a triangulated isomorphism, then the two induced maps between graded Witt
groups W ∗(A) → W ∗(B) coincide.

Proof: It is straightforward to check that the images with respect to F and G
of some symmetric space in A are isomorphic as symmetric spaces in B, and similar
for the shifted dualities in the triangulated setting. 2

It is possible to compose duality preserving functors between triangulated cate-
gories with dualities.

Definition 2.20. Let

(F, η) : (A,DA, $A) → (B, DB , $B)

and
(G, ρ) : (B, DB , $B) → (C, DC , $C)

be two duality preserving functors of triangulated categories with duality. Then we
define their composition (GF, ρη) by

(GF, (ρF ) ◦ (Gη)) : (A,DA, $A) → (C, DC , $C).

It is straightforward to check that (GF, ρη) is a duality preserving functor.

Theorem 2.21. Assume that we have a cartesian square of smooth varieties

V
g′ //

f ′

²²

X

f

²²
Y g

// Z

where g and g′ are flat and f and f ′ are proper and satisfy the hypotheses of
Definition 2.12. Let N be a line bundle on X. Then we have a commutative square
of Witt groups

W ∗(V, g′∗f !N)

f ′∗
²²

W ∗(X, f !N)
g′∗oo

f∗
²²

W ∗(Y, g∗N) W ∗(Z,N)
g∗

oo
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Proof: The square of Witt groups is induced by the following diagram of
cateories with duality

(Db
c(V ),RHom( , g′∗f !N))

(Id,c)

²²

(Db
c(X),RHom( , f !N))

(g′∗,id)oo

(Rf∗,α)

²²

(Db
c(V ),RHom( , f ′!g∗N))

(Rf ′∗,α′)
²²

(Db
c(Y ),RHom( , g∗N)) (Db

c(Z),RHom( , N))
(g∗,id)

oo

where c is the canonical isomorphism of [20, Theorem 2]. We may now apply
Lemma 2.19 to the functors F = g∗ ◦Rf∗ and G = Rf ′∗ ◦ Id ◦ g′∗. The required
natural isomorphism σ is given by [2, p. 84, p. 285] and [1, p. 290]. The hypothesis
in Definition 2.19 is then precisely the commutativity of the square of functors and
natural isomorphisms

g∗Rf∗RHom( , f !N) id◦α //

σ◦RHom( ,f !N)

²²

RHom( , g∗N)g∗Rf∗

Rf ′∗g
′∗RHom( , f !N)

α′◦c◦id
// RHom( , g∗N)Rf ′∗g

′∗

RHom( ,g∗N)◦σ
OO

This can be shown using adjunctions and their standard properties, in particular
the fact that the two different definitions of c in [20, p. 401] coincide. 2

Corollary 2.22. Let (X, L), (Y, M), (Z, N) and (V, P ) in L be such that X, Y ,
Z, V and the morphisms f , f ′, g and g′ between them are as in Theorem 2.21 and
f, f ′ satisfy the hypotheses of Lemma 2.9. Let (f, φ), (g, ψ), (f ′, φ′) and (g′, ψ′)
have sources and targets as follows:

(V, P )
(f ′,φ′)// (Y, M)

c(V, P )

(g′,ψ′)
²²

c(Y, M)

(g,ψ)

²²
c(X,L) c(Z, N)

(X,L)
(f,φ)

// (Z,N)

Assume that (φ′⊗Id)◦(f ′)∗(ψ) = (ψ′⊗Id)◦(g′)∗(φ) (the source of these morphisms
is (g ◦ f ′)∗(N ⊗ ωZ) = (f ◦ g′)∗(N ⊗ ωZ) and their target is P ⊗ (OX £OZ ωY ).
Then the two morphism (g, ψ)∗ ◦ (f, φ)∗ = (f ′, φ′)∗ ◦ (g′, ψ′)∗ : W ∗(X,L ⊗ ωX) →
W ∗−d(Y, M ⊗ ωY ) coincide.

Proof: This follows from Theorem 2.21 and Lemma 2.15. 2

Products. Observe that there is a product µ on ⊕LW ∗( , L) induced by the
(left) product of [9, Theorem 3.1] (see also [21, p.7/8]). Using the fact that for any
vector bundles V and W over X one has ∆∗

X(V ×W ) = V ×X W , one sees that
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the product µ factors through the exterior product (with X = Y )

λ(X,L),(Y,M) : W ∗(X, L)×W ∗(Y, M) λ→ W ∗(X × Y,L £ M)

namely as W ∗(X, L)×W ∗(X,M) λ→ W ∗(X ×X, L £ M)
∆∗X−→ W ∗(X, L⊗M). The

factorization follows as the pairing of exact categories with duality

(V ect(X), Hom( , L))× (V ect(X), Hom( ,M)) → (V ect(X), Hom( , L⊗M))

is dualizing in the sense of [9, Definition 1.11] and factors as a dualizing pairing
through (V ect(X×X), Hom( , L£M)) which induces a factorization of the dualiz-
ing pairing for the corresponding Db(V ect( )). The very same construction applies
to Db

qc and Db
c.

Lemma 2.23. The exterior product λ commutes with pull-backs and push-forwards.
This means that if f : X → X ′ and g : Y → Y ′ are morphisms of schemes which
are flat (resp. proper of pure dimension), we have the equalities

λ(f∗(x′), g∗(y′)) = (f × g)∗ ◦ λ(x′, y′)

and
λ(f∗(x), g∗(y′)) = (f × g)∗ ◦ λ(x, y).

Proof: The first equality is a slight improvement of [9, Theorem 3.2] but is
not more difficult to show. For the second equality, pick two complexes F and
G on X and Y with forms. The claim then reduces essentially to the “Künneth”
isomorphism (f × g)∗(F £G) ' f∗(F )£ g∗(G) which can be checked by an explicit
computation. 2

Proposition 2.24. For (f, φ) : (X, L) → (Y,M) and (f, φ′) : (X, L′) → (Y,M ′)
with f as in Definition 2.12, the projection formula (f, φ ⊗ φ′)∗(a.(f, φ′)∗(b)) =
(f, φ)∗(a).b holds for any a ∈ W i(X,L⊗ ωX) and b ∈ W j(Y, M ′).

Proof: The result follows from the previous lemma and Corollary 2.22 applied
to the following cartesian diagram.

(X, L⊗ L′)
((Id×f)◦∆X ,Id⊗φ′)//

(f,φ⊗φ′)
²²

(X × Y,L £ M ′)

(f×Id,φ£Id)

²²
(Y, M ⊗M ′)

(∆Y ,Id)
// (Y × Y, M £ M ′).

2

Let H be an algebraic group and X an H-variety. By this we mean a morphism
H × X → X satisfying the standard properties. Let VectH(X) be the category
of H-equivariant vector bundles over X. This is a full subcategory of the cate-
gory of H-equivariant-OX -modules. We say that an H-equivariant-OX -module is
coherent if the underlying OX -module is, and we denote the corresponding cate-
gory by CohH(X). See [19] and [13, section 3] for the precise definitions and basic
properties. The functor CohH( ) is contravariant for flat H-maps and covariant
for H-projective morphisms (see [19, p. 543]). It is a non-trivial task to extend
everything we did in this section so far to the equivariant setting. For instance,
the existence of injective resolutions is not clear (that one has enough projectives
follows from [19, Corollary 5.3]). From now on we make the assumption that all the
previous definitions and results in this section carry over to the H-equivariant set-
ting. We will hopefully discuss the details of this in forthcoming work. Therefore,
the following is true unconditionally only for the non-equivariant setting (H = 1),
otherwise the assumption has to be used.
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Given an H-scheme X and and H-line bundle L on it, we write W ∗,H(X, L)
for the Witt group of the derived category Db,H

c (X) of H-equivariant OX -modules
with coherent cohomology with respect to the duality induced by ∗L.

2.4. Categories of motives. Now we are ready to define the category WH of
H-Witt motives.

Definition 2.25. Let PL be the full subcategory of L whose objects are pairs
(X, L) with X projective. Fix an algebraic group H. By definition, the category
WH has as objects couples (V,L) where V is endowed with an H-action and L a line
bundle on V equipped with a left equivariant H-action. The set of morphisms (or
W -correspondances) between two objects is a graded abelian group and is defined
by Homi

WH ((X,L), (Y, M)) = W i+dimX,H(X × Y, (L−1 ⊗ ωX) £ M). For a ∈
HomWH ((X, L), (Y,M)) and b ∈ HomWH ((Y, M), (Z, N)) the composition ba is
defined as

(πXZ , IdL−1£OY £(N⊗ω−1
Z ))∗

(µ((πXY , Id(L−1⊗ωX)£M£OZ
)∗(a), (πY Z , IdOX£(M−1⊗ωY )£N )∗(b))).

Proposition 2.26. The above composition law in WH is associative and any object
admits an identity automorphism, so WH really is a category.

Proof: The proof of associativity is the usual proof of the associativity of
correspondences, as in [12, §2, Lemma p. 446]. It just uses the composition of
the pull-backs and push-forwards, the base change formula (Corollary 2.22) and
the projection formula (Proposition 2.24). The identity of (X, L) is given by
(∆X , Idω−1

X
)∗(1X) (recall that 1X is the class in W0(X,OX) of the one dimen-

sional standard form < 1 > on OX). Again, the proof that it is an identity is a
generalization of the classical one. In fact, it is a particular case of the existence of
graphs (see Proposition 2.28 below). 2

Remark 2.27. There is an obvious category of Witt correspondences of degree zero
defined by setting HomW0,H ((X, L), (Y, M)) = Hom0

WH ((X, L), (Y, M)).

Now we can construct the graph functor.

Proposition 2.28. There is a contravariant functor Γ from the category PL to
WH . It is the identity on objects, and it sends a morphism (f, φ) : (X,L) →
(Y, M) to (γf , (φ∨)−1 ⊗ IdL ⊗ Idω−1

X
)∗(1X) ∈ W dimY (Y ×X, (M−1 ⊗ ωY ) £ L) =

Hom0((Y, M), (X, L)), where γf : X → Y ×X is the graph morphism (it is always
proper as all considered varieties are separated). By φ∨, we mean the morphism
dual to φ, going from L−1 to f∗(M)−1.

Proof: This functor respects the composition. This follows from standard
arguments, as in [12, §2, Proposition p. 447]. 2

Of course, we can consider the full subcategory of WH of objects of the form
(X,OX), but as we shall see, there are very few interesting motives that decompose
in this category.

We now define a realization functor to the category of graded abelian groups.

Definition 2.29. We define the covariant functor RH from WH to the category
of graded abelian groups by setting RH(X, L) = WH(X,L) and RH(c) = (x 7→
(pY )∗(p∗X(x).c)) for an element c ∈ Hom((X, L), (Y,M)). For any subgroup H1 of
H, there is an obvious functor ResH

H1
from WH to WH1 induced by the restriction

of the action of H to H1.
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Remark 2.30. The functor RH respects the composition because it coincides with
the functor Hom(pt, ). In particular we have thus obtained the Witt version
(without twist) of [16, Key Lemma 6.5] wich is just a particular case of the fact
that any motivic isomorphism induces an isomorphism on the realisations. Observe
also that the composition RH ◦ Γ sends a morphism (f, φ) to (f, φ)∗.

The fact that we deal with categories with dualities is of course reflected by
a duality already on the category of Witt motives. There is an involutive func-
tor (of order 2) on WH sending an object (X,L) to (X,ωX ⊗ L−1) and a mor-
phism c in Homi((X, L), (Y,M)) = W i+dimX

H (X × Y, (L−1 ⊗ ωX) £ M) to the
corresponding element ct in the group W i+dimX

H (Y × X,M £ (ωX ⊗ L−1)) =
Homi+dimX−dimY ((Y, ωY ⊗ M−1), (X, ωX ⊗ L−1). Notice that it doesn’t respect
the graduation.

The composition RH ◦ t ◦ Γ sends a morphism (f, φ) to (f, φ)∗ composed at the
two ends by the isomorphism WH(X, L⊗ ωX) ' WH(X,ωX ⊗ L), and the similar
one for (Y,M).

There is a pairing W (X, M)×W ((X, M)t) → W (pt) given by the composition
(π, Id)∗ ◦ (∆X , Id)∗ ◦ λ(X,M),(X,M)t where π is the structural morphism from X to
the point.

Remark 2.31. Panin also constructs a category AH where the objects are couples
(X, B) with X smooth projective over F and B a central simple F -algebra, such
that KH is precisely the full subcategory of AH of objects (X, F ). The F -algebra
B allows Panin to twist. We would like to do the same in our setting, considering
of course F -algebras B with involution. In forthcoming work, we intend to settle
this issue.

2.5. Effective Witt Motives. We now define the category WH
eff of effective Witt

motives. It is just the pseudo-abelianised completion of the previous category. For
a definition of the pseudo-abelian completion, see e. g. [12, §5]. Recall that the
objects are just the pairs ((X, L), p) where p is an idempotent in End(X, L) and
the morphisms between ((X, L), p) and ((Y,L), q) are given by the quotient of the
subgroup HomWH ((X, L), (Y,L)) given by the elements f such that fp = qf by
the subgroup of elements f such that fp = qf = 0. It contains WH as the full
subcategory of objects for which p = Id.

Remark 2.32. We don’t lose the graduation on the Hom sets because an idempotent
has to be of degree zero so the relation fp = qf = 0 is homogeneous. We can extend
the realisation functors RH and R to WH

eff because of the universal property of
the pseudo-abelian completion. More precisely, we set RH((X, L), p) = kerRH(p)
on objects.

We can define a tensor structure on this category by setting (X, L, p)⊗(Y, M, q) =
(X × Y,L £ M, p× q).

3. Dévissage

Assume that f : Z → X is a closed embedding of smooth varieties and L a line
bundle on X. Then by Theorem 2.10,

(Rf∗, α) : (Db
c(Z), ∗f !L, $Z) → (Db

c(X), ∗L, $X)

is a functor of triangulated categories with duality. The map (Rf∗, α) obviously
factors through the full triangulated subcategory with duality (Db

c,Z(X), ∗f !L, $X)
which by definition consists of complexes whose homology has support on Z. We
denote its Witt groups by W ∗

Z(X, L). The goal of this section is to prove the
following dévissage theorem for Witt groups.
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Theorem 3.1. In the above situation, the functor of triangulated categories with
duality

(Rf∗, α) : (Db
c(Z), ∗f !L, $Z) → (Db

c,Z(X), ∗L, $X)
induces a map

f∗ : W ∗(Z, f !L) → W ∗
Z(X, L)

which is an isomorphism.

Proof: It remains to show that f∗ is an isomorphism. We roughly follow the
strategy of [6, section 4]. First, replace [6, Theorem 4.2] by Theorem 2.10. Next,
write down the long exact sequences arising from filtration by the codimension of
support as in [6, p.130]. Of course, one needs to twist correctly the dualities (by L
for X and f !L for Z) in this sequence, as well as everywhere else, but these twists
don’t change anything in the proof. We are thus reduced to show the claim on the
top of page 131 of loc. cit. with B/J and B replaced by Z and X. Replace [6,
Lemma 4.3] by Theorem 2.21 (closed embeddings are proper and localizations=open
embeddings are flat). Now we may conclude similar to [6, 4.2.3]. 2

We write j : X − Z → X for the open inclusion of the complement. As usual,
dévissage implies (or improves) a localization exact sequence.

Corollary 3.2. In the above situation, we have a long exact sequence

... → Wn−1(X−Z, j∗L) ∂→ Wn(Z, f !L)
f∗→ Wn(X, L)

j∗→ Wn(X−Z, j∗L) ∂→ Wn+1(Z, f !L) → ...

Proof: By definition resp. construction, we have a short exact sequence of trian-

gulated categories with dualities (Db
c(Z), ∗f !L, $Z)

(Rf∗,α)−→ (Db
c(X), ∗L, $X)

(i∗,id)−→
(Db

c(X), ∗i∗L, $X−Z). Hence Balmer’s abstract localization theorem [3] and our
dévissage theorem yield the claim. 2

Recall from Lemma 2.9 that f !L can be described in more concrete terms.
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