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Abstract

We present a finite element approximation of motion by minus the Laplacian
of curvature and related flows. The proposed scheme covers both the closed curve
case, and the case of curves that are connected via triple junctions. On introducing
a parametric finite element approximation, we prove stability bounds and compare
our scheme with existing approaches. It turns out that the new scheme has very
good properties with respect to area conservation and the equidistribution of mesh
points. We state also an extension of our scheme to Willmore flow of curves and
discuss possible further generalizations.
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1 Introduction

In this paper we introduce a parametric finite element approximation for motion by surface
diffusion with the possible inclusion of triple junctions. For a closed hypersurface Γ in
Rd, which evolves in time, motion by surface diffusion is given by the following evolution
law for the normal velocity V , see (1.2),

V = −Δs κ, (1.1)

where Δs is the surface Laplacian and κ is the sum of the principal curvatures of Γ. For
later use we remark that for a parameterization ~x(ρ, t) ∈ Rd of Γ, (1.1) can be written as
a system of second order equations:

V := ~xt . ~ν = −Δs κ, κ ~ν = Δs ~x; (1.2)
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where ~ν is a unit normal to Γ. The second identity in (1.2) is well-known from surface
geometry, and yields the convention that κ is positive if the curvature is in the direction
of the normal. The evolution law (1.1) was proposed by Mullins (1957) as an evolution
law for a free surface enclosing a solid phase, which changes its shape due to the diffusion
of atoms along the surface. Later a derivation, in the context of rational thermodynamics,
was given by Davi and Gurtin (1990). Motion by surface diffusion governs the evolution of
free surfaces in many applications such as e.g. thermal grooving, sintering, void evolution
in microelectronic circuits and epitaxial growth; see e.g. Mullins (1957), Li, Zhao, and
Gao (1999), Bower and Craft (1998), Fried and Gurtin (2003), Averbuch, Israeli, and
Ravve (2003), and the references therein. Existence, uniqueness and stability results have
been given by Elliott and Garcke (1997), Escher, Mayer, and Simonett (1998) and Escher,
Garcke, and Ito (2003).

We remark that a surface that encloses a region in Rd and evolves according to (1.1)
conserves volume. Choosing ~ν to be the outward unit normal to the region and taking
a(t) as the total enclosed volume, this follows from

d

dt
a(t) =

∫

Γ

V ds = −
∫

Γ

Δs κ ds = 0,

where the last identity follows from the Gauss theorem on manifolds. Furthermore the
total surface area, |Γ(t)|, decreases in time as can be seen from

d

dt
|Γ(t)| = −

∫

Γ

κ V ds =
∫

Γ

κ (Δs κ) ds = −
∫

Γ

(∇s κ)
2 ds ≤ 0,

where ∇s f = ∇ f − (~ν .∇ f)~ν is the tangential gradient on Γ, see e.g. Deckelnick, Dzuik,
and Elliott (2005a, p. 150).

In this paper we will restrict our attention to the case d = 2, i.e. curves in the plane. In
many applications a network of curves with triple junctions appear. A model for surface
diffusion of a network of curves has been introduced by Garcke and Novick-Cohen (2000),
which we describe in the following for a network of three curves. Let Γ1, Γ2, Γ3 be the
given curves in Rd, d = 2, that intersect at two triple junction points Λ1 and Λ2; see
Figure 1. Let ~τi ∈ Rd be the unit tangent to Γi pointing away from the triple junction
point Λ1 and towards point Λ2. Then the normal velocity for each curve is given by

Vi = −σiΔs κi, i = 1→ 3, (1.3)

where κi is the curvature of Γi and σi is the surface energy density of Γi. The curvature
is said to be positive if Γi is curved in the direction of the normal ~νi ∈ Rd, which is the
unique unit vector that forms a positively orientated orthonormal system with ~τi. Then,
in addition to (1.3), the following conditions have to hold at the triple junction points Λ1
and Λ2:

the triple junction does not pull apart, (1.4a)

σ1 ~τ1 + σ2 ~τ2 + σ3 ~τ3 = 0, (1.4b)

σ1 ~τ1 .∇s κ1 = σ2 ~τ2 .∇s κ2 = σ3 ~τ3 .∇s κ3, (1.4c)

σ1 κ1 + σ2 κ2 + σ3 κ3 = 0, (1.4d)
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Figure 1: The setup of Γ = (Γ1,Γ2,Γ3).

where ∇s |Γi≡ ~τi
∂
∂s
with s being the arclength. The conditions (1.4a–d) are an attachment

condition, Young’s law, a flux balance condition and a chemical potential continuity con-
dition, respectively. Young’s law (1.4b) is the force balance (leading to angle conditions)
at the triple junction. If all surface energy densities, σi, are the same, then we recover
the familiar 120◦ degree condition. The flux balance condition (1.4c) follows from mass
balance considerations at the triple junction. In order to be in thermodynamical equilib-
rium locally, it is necessary that the chemical potential differences are continuous which
leads to (1.4d); for more details on the above derivations see Garcke and Novick-Cohen
(2000).

Taking the boundary conditions (1.4a)–(1.4d) into account, we easily derive that the
total area of the enclosed phases are conserved; e.g. for the area a3(t) of the phase enclosed
by Γ1 and Γ2, see Figure 1, we obtain that

d

dt
a3(t) =

∫

Γ2

V2 ds−
∫

Γ1

V1 ds = −σ2

∫

Γ2

Δs κ2 ds+ σ1

∫

Γ1

Δs κ1 ds = 0,

where the last identity follows from (1.4c). The total free energy of the system is given
by
∑3
i=1 σi |Γi(t)|, where |Γi(t)| is now the length of Γi(t), and we obtain from

d

dt

3∑

i=1

σi |Γi(t)| = −
3∑

i=1

σi

∫

Γi

κi Vi ds =
3∑

i=1

σ2i

∫

Γi

κiΔs κi ds

= −
3∑

i=1

σ2i

∫

Γi

|∇s κi|
2 ds ≤ 0

that the total free energy cannot increase. The first identity above holds because of
Young’s law, (1.4b), and the last identity is true since the boundary conditions (1.4c) and
(1.4d) imply that the boundary terms arising from the integration by parts disappear.

For parameterizations ~xi ∈ Rd of Γi, i = 1 → 3, (1.3) can be written as a system of
second order equations:

(~xi)t . ~νi = −σiΔs κi, κi ~νi = Δs ~xi. (1.5)
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A variational formulation of (1.5) will form the basis for our scheme that we present in
Section 2.

Let us now shortly discuss existing numerical approaches to surface diffusion. Level
set methods to compute surface diffusion and Willmore flow are studied in Chopp and
Sethian (1999) and Droske and Rumpf (2004), respectively. Numerical approximations
of parametric formulations of surface diffusion of closed curves (and surfaces) are the
subject of the papers by Escher, Mayer, and Simonett (1998), Dziuk, Kuwert, and Schätzle
(2002) and Bänsch, Morin, and Nochetto (2005). Our approach will use ideas of the
latter two papers and of the seminal paper Dziuk (1991). We remark that all existing
numerical approaches to the parametric formulation need to heuristically redistribute
points tangentially in order to avoid coalescence of points. There are also numerical
approaches for surface diffusion of axially symmetric surfaces, see Deckelnick, Dzuik, and
Elliott (2003), and surface diffusion of graphs, see Bänsch, Morin, and Nochetto (2004)
and Deckelnick, Dzuik, and Elliott (2005b). For an overview we refer to Deckelnick,
Dzuik, and Elliott (2005a).

As for work on the approximation of curve networks, we refer to Bronsard and Wetton
(1995), Thaddey (1999) and Neubauer (2002) for motion by mean curvature. A phase field
approximation of the motion of surface diffusion of a closed curve was studied in Barrett,
Nürnberg, and Styles (2004), and its extension to curve networks is given in Barrett,
Garcke, and Nürnberg (2006a). In the present literature, to our knowledge, there is no
work on the surface diffusion of a network of curves.

This paper is organised as follows. In Section 2, we formulate a finite element ap-
proximation of (1.5), (1.4a–d) and derive stability bounds. Here we first introduce our
approximation for the simpler case of a closed curve, (1.2), and then generalize that
scheme to cover (1.5) and (1.4a–d) in the case of a triple junction configuration as in
Figure 1. In addition, we indicate how to generalize the approach to an arbitrary setup
of curves and triple junctions. Moreover, we extend the scheme to approximate Willmore
flow, and related elastic flows, for closed curves. In Section 3, we present some numerical
computations for closed curves and compare our results with those from other algorithms
in the literature. Furthermore, we include various numerical results on the triple junction
setup of Figure 1 as well as on more general setups.

2 Finite Element Approximation

2.1 Closed curves

We introduce the following finite element approximation. Let J := R/Z = ∪Nj=1Jj, N ≥ 2,
be a decomposition of J into intervals given by the nodes qj, Jj = [qj−1, qj]. Let hj = |Jj|
and h = maxj=1→N hj be the maximal length of a grid element. Then the necessary finite
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element spaces are defined as follows:

V h0 := {~χ ∈ C(J,R
d) : ~χ |Jj is linear ∀ j = 1→ N} =: [W

h
0 ]
d ⊂ H1(J,Rd),

where W h0 ⊂ H
1(J,R) is the space of scalar continuous (periodic) piecewise linear func-

tions, with {φl}Nl=1 denoting the standard basis of W
h
0 . Throughout this paper, we make

use of the periodicity of J , i.e. qN ≡ q0, qN+1 ≡ q1 and so on.

In addition, let 0 = t0 < t1 < . . . < tM−1 < tM = T be a partitioning of [0, T ]
into possibly variable time steps τm := tm+1 − tm, m = 0 → M − 1. We set τ :=
maxm=0→M−1 τm. Let ~X

m ∈ V h0 be an approximation to ~x(∙, tm), and similarly κ
m ∈ W h0

for κ(∙, tm).

For scalar and vector functions f, g ∈ L2(J,R(d)) we introduce the L2 inner product
〈∙, ∙〉m over the current polygonal curve Γm, which is described by the vector function
~Xm ∈ V h0 , as follows

〈f, g〉m :=
∫

Γm
f . g ds =

∫

J

f . g | ~Xmρ | dρ .

Here and throughout this paper, ρ ∈ [0, 1] is the parameterization variable and ∙(∗) de-
notes an expression with or without the superscript ∗. In addition, if f, g are piecewise
continuous, with possible jumps at the nodes {qj}Nj=1, we define the mass lumped inner
product 〈∙, ∙〉hm as

〈f, g〉hm :=
1
2

N∑

j=1

| ~Xm(qj)− ~X
m(qj−1)|

[
(f . g)(q−j ) + (f . g)(q

+
j−1)

]
, (2.1)

where we define f(q−j ) := lim
ε↘0
f(qj − ε) and f(q

+
j ) := lim

ε↘0
f(qj + ε). Furthermore, we note

that

∇s f .∇s g =
fρ . gρ

| ~Xmρ |2
and ~νm =

( ~Xmρ )
⊥

| ~Xmρ |
,

where ∙⊥ denotes the clockwise rotation by π
2
. We propose the following approximation

to (1.2): Find { ~Xm+1, κm+1} ∈ V h0 ×W
h
0 such that

〈
~Xm+1 − ~Xm

τm
, χ ~νm〉hm − 〈∇s κ

m+1,∇s χ〉m = 0 ∀ χ ∈ W h0 , (2.2a)

〈κm+1 ~νm, ~η〉hm + 〈∇s ~X
m+1,∇s ~η〉m = 0 ∀ ~η ∈ V h0 (2.2b)

where, as noted above, the inner products 〈∙, ∙〉(h)m as well as ∇s depend on m.

Remark. 2.1. In Section 3, we will report on computations for the scheme (2.2a,b) and
compare the results with two other schemes in the literature. The first is from Dziuk,
Kuwert, and Schätzle (2002) and can be formulated as: Find { ~Xm+1, ~κm+1} ∈ [V h0 ]

2 such
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that for all ~χ, ~η ∈ V h0

〈
~Xm+1 − ~Xm

τm
, ~χ〉hm − 〈∇s ~κ

m+1,∇s ~χ〉m − 3
2
〈|~κm|2∇s ~X

m+1,∇s ~χ〉m

− 1
2
〈|~κm|2 ~κm+1, ~χ〉hm = 0, (2.3a)

〈~κm+1, ~η〉hm + 〈∇s ~X
m+1,∇s ~η〉m = 0. (2.3b)

The system (2.3a,b) is a discretization of the variational formulation of

~xt = −(Δs κ)~ν ≡ −Δs ~κ − 3
2
∇s .

(
|~κ|2∇s ~x

)
+ 1
2
|~κ|2 ~κ, ~κ := κ ~ν = Δs ~x

as opposed to (1.2). The second scheme is from Bänsch, Morin, and Nochetto (2005) and

can be stated as: Let ~Xm+1 := ~Xm + τm ~V
m+1, where ~V m+1 ∈ V h0 is part of the solution

of: Find {~V m+1, κm+1, ~κm+1, V m+1} ∈ V h0 ×W
h
0 × V

h
0 ×W

h
0 such that

〈~κm+1, ~η〉m + τm 〈∇s ~V
m+1,∇s ~η〉m = −〈∇s ~X

m,∇s ~η〉m ∀ ~η ∈ V h0 , (2.4a)

〈κm+1, χ〉m − 〈~κ
m+1, χ ~νm〉m = 0 ∀ χ ∈ W h0 , (2.4b)

〈V m+1, χ〉m − 〈∇s κ
m+1,∇s χ〉m = 0 ∀ χ ∈ W h0 , (2.4c)

〈~V m+1, ~η〉m − 〈V
m+1 ~νm, ~η〉m = 0 ∀ ~η ∈ V h0 . (2.4d)

The system (2.4a–d) is a discretization of the variational formulation of

~κ = Δs ~x, κ = ~κ . ~ν, v = −Δs κ, ~xt = ~v = v ~ν

as opposed to (1.2). We note that both schemes (2.3a,b) and (2.4a–d) only change the
approximation of ~x in the normal direction, whereas the scheme (2.2a,b) proposed in this
paper also induces tangential changes. This is a crucial difference.

Before we can proceed to prove existence and uniqueness to (2.2a,b), we have to make
the following very mild assumption.

(A0) Let | ~Xmρ | > 0 for almost all ρ ∈ J . For j = 1→ N , let ~ν
m
j− 1
2

:=
( ~Xmρ )

⊥

| ~Xmρ |
|Jj , and set

~ωmj :=
| ~Xm(qj)− ~Xm(qj−1)|~νmj− 1

2

+ | ~Xm(qj+1)− ~Xm(qj)|~νmj+ 1
2

| ~Xm(qj)− ~Xm(qj−1)|+ | ~Xm(qj+1)− ~Xm(qj)|

=
~Xm(qj+1)− ~Xm(qj−1)

| ~Xm(qj)− ~Xm(qj−1)|+ | ~Xm(qj+1)− ~Xm(qj)|
. (2.5)

Then we further assume that dim span{~ωmj }
N
j=1 = d = 2.

Remark. 2.2. a) We note that one can interpret ~ωmj as a weighted normal defined at

the node ~Xm(qj) of the curve Γ
m, where in general |~ωmj | < 1. Noting that ~ω

m
j points

in the direction ~Xm(qj+1) − ~Xm(qj−1), we obtain that the the assumption (A0) is
equivalent to excluding the following situation: All points { ~Xm(qj) : j is even} lie
on one straight line and simultaneously all points { ~Xm(qj) : j is odd} lie on another
parallel line.
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Figure 2: (A0) is violated in this case.

b) Since ~Xm(qN) = ~X
m(q0), we obtain in the case that N is odd that (A0) immediately

holds provided all points do not lie on one straight line. If N is even, then (A0)
is only violated on very rare occasions, see e.g. Figure 2. For example, for closed
curves Γm without self intersections the assumption (A0) always holds.

Theorem. 2.1. Let the assumption (A0) hold. Then there exists a unique solution
{ ~Xm+1, κm+1} ∈ V h0 ×W

h
0 to the system (2.2a,b).

Proof. As (2.2a,b) is linear, existence follows from uniqueness. To investigate the

latter, we consider the system: Find { ~X, κ} ∈ V h0 ×W
h
0 such that

〈 ~X, χ~νm〉hm − τm 〈∇s κ,∇s χ〉m = 0 ∀ χ ∈ W h0 , (2.6a)

〈κ~νm, ~η〉hm + 〈∇s ~X,∇s ~η〉m = 0 ∀ ~η ∈ V h0 . (2.6b)

Choosing χ = κ ∈ W h0 in (2.6a) and ~η = ~X ∈ V
h
0 in (2.6b) yields that

〈∇s ~X,∇s ~X〉m + τm 〈∇s κ,∇s κ〉m = 0 . (2.7)

It follows from (2.7) that κ ≡ κc ∈ R and ~X ≡ ~Xc ∈ Rd; and hence that

〈 ~Xc, χ ~νm〉hm = 0 ∀ χ ∈ W
h
0 , κc 〈~νm, ~η〉hm = 0 ∀ ~η ∈ V

h
0 . (2.8)

Choosing ~η = ~z φj ∈ V
h
0 in (2.8), and noting (2.1) and (2.5), yields, on assuming κ

c 6= 0,
that for all j = 1→ N

1
2

[
| ~Xm(qj)− ~X

m(qj−1)|~ν
m
j− 1
2
+ | ~Xm(qj+1)− ~X

m(qj)|~ν
m
j+ 1
2

]
. ~z = 0 ∀ ~z ∈ Rd

⇐⇒ ~ωmj . ~z = 0 ∀ ~z ∈ R
d ⇐⇒ ~ωmj = ~0 . (2.9)

However, this contradicts assumption (A0) and hence κc = 0. Similarly, testing (2.8)
with χ = φj yields that ~X

c . ~ωmj = 0 for all j = 1→ N . It follows from assumption (A0)

that ~Xc = ~0. Hence we have shown that (2.2a,b) has a unique solution { ~Xm+1, κm+1} ∈
V h0 ×W

h
0 .
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Here, and throughout, let ~Idn ∈ (Rd×d)n×n be the identity matrix, and similarly for
Idn ∈ Rn×n. We introduce also the matrices ~N0 ∈ (Rd)N×N , A0 ∈ RN×N and ~A0 ∈
(Rd×d)N×N with entries

[ ~N0]kl :=

∫

Γm
πh[φk φl]~ν

m ds, [A0]kl := 〈∇sφk,∇sφl〉m, [ ~A0]kl := [A0]kl ~Id1 ,

(2.10)
where πh : C(J,R) → W h0 is the standard interpolation operator at the nodes {qj}

N
j=1.

We can then formulate (2.2a,b) as: Find {δ ~Xm+1, κm+1} ∈ (Rd)N × RN , such that
(
τmA0 − ~NT0
~N0 ~A0

)(
κm+1

δ ~Xm+1

)

=

(
0

− ~A0 ~Xm

)

, (2.11)

where, with the obvious abuse of notation, δ ~Xm+1 = (δ ~Xm+11 , . . . , δ ~Xm+1N )T and κm+1 =
(κm+11 , . . . , κm+1N )T are the vectors of coefficients with respect to the standard basis of
~Xm+1 − ~Xm and κm+1, respectively. The discrete system arising from (2.4a–d) is solved
in Bänsch, Morin, and Nochetto (2005) using a Schur complement approach. We adopt
a similar procedure here for (2.11). Introducing the inverse S0 of A0 restricted on the set
(kerA0)

⊥ ≡ (span{1})⊥, where 1 := (1, . . . , 1)T ∈ RN , and noting that the first equation
in (2.11) implies 1T ~NT0 δ

~Xm+1 = 0, one can transform (2.11) to

κm+1 = 1
τm
S0 ~N

T
0 δ
~Xm+1 + μ 1 , (2.12a)

( ~A0 +
1
τm
~N0 S0 ~N

T
0 ) δ ~X

m+1 = − ~A0 ~X
m − μ ~N01, (δ ~Xm+1)T ~N01 = 0 ; (2.12b)

where μ = 1T κm+1

1T 1
∈ R is unknown. We introduce also the orthogonal projection ~Π onto

R⊥0 := { ~X ∈ (R
d)N : ~XT ~N01 = 0} by ~Π := ~IdN − ~w~wT

~wT ~w
, where ~w := ~N01. Then (2.12b),

on noting that ~Π δ ~Xm+1 = δ ~Xm+1, is replaced by

~Π( ~A0 +
1
τm
~N0 S0 ~N

T
0 ) ~Π δ ~X

m+1 = −~Π ~A0 ~X
m. (2.13)

As (2.2a,b) has a unique solution, it is easily established that there exists a unique solution
to (2.13). Moreover, the system (2.13) is symmetric and positive definite on R⊥0 . For
details we refer to the triple junction case which is handled in Theorem 2.4 below.

In addition, a stability result for (2.6a,b) is easily established; see Theorem 2.3, and
the ensuing comment, below.

Remark. 2.3. It is worthwhile to consider a continuous in time semidiscrete version of
our scheme. Here we replace (2.2a,b) by

〈 ~Xt, χ ~ν
h〉h − 〈σ∇s κ,∇s χ〉 = 0 ∀χ ∈ W h0 , (2.14a)

〈κ~νh, ~η〉h + 〈∇s ~X,∇s ~η〉 = 0 ∀ ~η ∈ V h0 ; (2.14b)

where we always integrate over the current curve Γh, described by ~X, and so ~νh = ( ~Xρ)⊥

| ~Xρ|

and 〈∙, ∙〉(h) is the same as 〈∙, ∙〉(h)m with Γm and ~Xm replaced by Γh and ~X, respectively. It
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is now straightforward to show that (2.14a,b) conserves the enclosed area, ah(t), exactly;
since on choosing χ = 1 in (2.14a) and taking into account (2.1) yields that

0 = 〈 ~Xt, ~ν
h〉h =

∫

Γh

~Xt . ~ν
h ds =

d

dt
ah(t). (2.15)

To our knowledge, no other direct approximation of (1.2) in the literature satisfies this
property.

Furthermore the scheme (2.14a,b) will always equidistribute the vertices along Γh; since
on choosing ~η = (~ωhj )

⊥ φj ∈ V
h
0 in (2.14b), where ~ω

h
j is the Γ

h analogue of ~ωmj , yields, on
recalling (2.1) and (2.5), that for j = 1→ N
[
~Xj+1 − ~Xj
| ~Xj+1 − ~Xj|

−
~Xj − ~Xj−1
| ~Xj − ~Xj−1|

]

. ( ~Xj+1 − ~Xj−1) = 0 ⇒

[ | ~Xj+1 − ~Xj| − | ~Xj − ~Xj−1| ] [ | ~Xj+1 − ~Xj| | ~Xj − ~Xj−1| − ( ~Xj+1 − ~Xj) . ( ~Xj − ~Xj−1) ] = 0

⇒ either | ~Xj+1 − ~Xj| = | ~Xj − ~Xj−1| or ( ~Xj+1 − ~Xj) ‖ ( ~Xj − ~Xj−1) . (2.16)

It does not appear possible to prove the analogues of (2.15) and (2.16) for the fully discrete
scheme (2.2a,b). However, in practice we observe that the enclosed area is approximately
preserved, and that the area loss tends to zero as τ → 0. Moreover, in practice we also
see that the vertices are moved tangentially so that they will eventually be equidistributed.
See Section 3 for details.

2.2 Triple junctions

In this section, we consider the case where a network of curves meeting at triple junction
points moves under motion by surface diffusion. Unless otherwise stated, for ease of
exposition, from now on we consider the case of three curves (Γ1,Γ2,Γ3) with surface
energies σ := (σ1, σ2, σ3) meeting at two triple junction points Λ1 and Λ2, and enclosing
two areas, see Figure 1 and in particular note the stated choice of the direction of the
unit tangents. We will outline later how the ideas presented for this case can be carried
over to the general case, see Remark 2.5 below.

The main idea for the necessary trial (≡ test) spaces is to make sure, that the con-
ditions (1.4a–d) hold either essentially or weakly at the triple junctions. Here we will
enforce conditions (1.4a,d) explicitly through the trial space, whereas conditions (1.4b,c)
will be enforced weakly, similarly to a Neumann boundary condition for a standard second
order elliptic PDE.

Let I := [0, 1] be the unit interval and let I = ∪Nij=1I
i
j, i = 1 → 3, be decompositions

of I into intervals I ij = [q
i
j−1, q

i
j] based on the nodes {q

i
j}
Ni
j=0, Ni ≥ 2. Let h

i
j = |I

i
j| and

h = maxi=1→3maxj=1→Ni h
i
j be the maximal length of a grid element. Let

V := {(~χ1, ~χ2, ~χ3) ∈ [C(I,R
d)]3 : ~χ1 = ~χ2 = ~χ3 on ∂I}
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and
W := {(χ1, χ2, χ3) ∈ [C(I,R)]

3 : σ1 χ1 + σ2 χ2 + σ3 χ3 = 0 on ∂I}.

The appropriate finite element spaces are then defined by

V h := {(~χ1, ~χ2, ~χ3) ∈ V : ~χi |Iij is linear ∀ j = 1→ Ni, i = 1→ 3} ⊂ V

and similarly for the space of scalar functions W h ⊂ W .

Recall the time partitioning {τm}Mm=1 and let ~X
m ∈ V h be an approximation to ~x(∙, tm),

and similarly κm ∈ W h for κ(∙, tm). We introduce the L2 inner product 〈∙, ∙〉m and the
mass lumped inner product 〈∙, ∙〉hm over the current surface Γ

m := (Γm1 ,Γ
m
2 ,Γ

m
3 ), which

is described by the vector function ~Xm ∈ V h, for scalar and vector functions f, g ∈
[L2(I,R(d))]3 as follows:

〈f, g〉m :=
∫

Γm
f . g ds :=

3∑

i=1

σi

∫

I

fi . gi |( ~X
m
i )ρ| dρ,

〈f, g〉hm :=
3∑

i=1

σi
2

Ni∑

j=1

| ~Xmi (q
i
j)− ~X

m
i (q

i
j−1)|

[
(fi . gi)([q

i
j]
−) + (fi . gi)([q

i
j−1]

+)
]
. (2.17)

In addition, we note that

(∇s f .∇s g) |Γmi =
(fi)ρ . (gi)ρ

|( ~Xmi )ρ|2
, ~νm |Γmi =

[( ~Xmi )ρ]
⊥

|( ~Xmi )ρ|
, i = 1→ 3.

We then propose the following approximation to (1.5) and (1.4a–d): Find { ~Xm+1, κm+1} ∈
V h ×W h such that

〈
~Xm+1 − ~Xm

τm
, χ ~νm〉hm − 〈σ∇s κ

m+1,∇s χ〉m = 0 ∀ χ ∈ W h, (2.18a)

〈κm+1 ~νm, ~η〉hm + 〈∇s ~X
m+1,∇s ~η〉m = 0 ∀ ~η ∈ V h. (2.18b)

Observe that (2.18a,b) was derived from (1.5) using integration by parts and the definition

of the spaces W h and V h. On noting that (∇s ~Xm+1) |Γmi approximates ~τ
m
i , i = 1 → 3,

we see that (2.18b) weakly approximates Young’s law (1.4b) at the triple junction points
Λ1 and Λ2, while (2.18a) weakly approximates (1.4c).

Before we can proceed to prove existence and uniqueness to (2.18a,b), we have to make
the following very mild assumption.

(A) Let |( ~Xmi )ρ| > 0 for almost all ρ ∈ I, i = 1 → 3. Let ~νm
i,j− 1

2

:=
[( ~Xmi )ρ]

⊥

|( ~Xmi )ρ|
|Iij ,

j = 1 → Ni and set ~ωmi,j :=
| ~Xmi (q

i
j)−
~Xmi (q

i
j−1)|~ν

m

i,j− 12
+| ~Xmi (q

i
j+1)−

~Xmi (q
i
j)|~ν

m

i,j+12

| ~Xmi (q
i
j)−
~Xmi (q

i
j−1)|+|

~Xmi (q
i
j+1)−

~Xmi (q
i
j)|

, j = 1 →

Ni − 1, i = 1 → 3. Then we assume further that for each i = 1 → 3 there
exists an j ∈ {1, . . . , Ni − 1} such that ~ωmi,j 6= ~0. Moreover, we require that
dim span{{~ωmi,j}

Ni−1
j=1 }

3
i=1 = d = 2.
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The assumption (A) basically assures that none of the the curves Γmi , i = 1 → 3, is a
“zig zagging” connection between the two triple junctions points Λ1 and Λ2. A sufficient
condition for (A) to hold is that at least one of the three curves is not a “saw tooth” like
curve similarly to the one in Figure 2, where all the vertex normals ~ωmi,j, j = 1→ Ni − 1,
are linearly dependent.

Theorem. 2.2. Let the assumption (A) hold. Then there exists a unique solution
{ ~Xm+1, κm+1} ∈ V h ×W h to the system (2.18a,b).

Proof. As (2.18a,b) is linear, existence follows from uniqueness. To investigate the

latter, we consider the system: Find { ~X, κ} ∈ V h ×W h such that

〈 ~X, χ~νm〉hm − τm 〈σ∇s κ,∇s χ〉m = 0 ∀ χ ∈ W h, (2.19a)

〈κ~νm, ~η〉hm + 〈∇s ~X,∇s ~η〉m = 0 ∀ ~η ∈ V h. (2.19b)

Similarly to (2.6a,b), choosing χ = κ ∈ W h in (2.19a) and ~η = ~X ∈ V h in (2.19b) yields
that

〈∇s ~X,∇s ~X〉m + τm 〈σ∇s κ,∇s κ〉m = 0 . (2.20)

It follows from (2.20) that κ ≡ κc = (κc1, κ
c
2, κ

3
c)
T ∈ R3 such that

∑3
i=1 σi κ

c
i = 0 and

~X ≡ ~Xc = ( ~Xc1, ~X
c
2,
~Xc3)

T ∈ (Rd)3 with ~Xc1 = ~X
c
2 =
~Xc3; and hence

〈 ~Xc, χ ~νm〉hm = 0 ∀ χ ∈ W
h, 〈κc ~νm, ~η〉hm = 0 ∀ ~η ∈ V

h. (2.21)

Similarly to (2.9), choosing ~η = ~z ϕij ∈ V
h, for a fixed i = 1 → 3 and j = 1 → Ni − 1

in (2.21), with ϕij ∈ W
h being the standard basis function associated with qij, and noting

(2.17) yields, on assuming κci 6= 0, that for all j = 1→ Ni − 1

~ωmi,j . ~z = 0 ∀ ~z ∈ R
d ⇐⇒ ~ωmi,j = ~0.

However, this contradicts assumption (A) and hence κci = 0, i = 1 → 3. Similarly,
choosing χ = ϕij in (2.21) and noting that ~X

c
1 = ~X

c
2 = ~X

c
3 yields that

~Xc1 . ~ω
m
i,j = 0 ∀ j = 1→ Ni − 1, i = 1→ 3 .

Assumption (A) then yields that ~Xc1 = ~0, and hence ~X
c = ~0. Hence we have shown that

(2.18a,b) has a unique solution { ~Xm+1, κm+1} ∈ V h ×W h.

Remark. 2.4. Similarly to (2.14a,b), in a time continuous semidiscrete version of our
scheme (2.18a,b) we obtain exact area conservation as testing for example with χ =
(− 1
σ1
, 1
σ2
, 0) ∈ W h in the analogue of (2.18a) leads to

0 =

∫

Γh2

[ ~X2]t . ~ν
h ds−

∫

Γh1

[ ~X1]t . ~ν
h ds =

d

dt
ah3(t),

where ah3(t) is the area enclosed by Γ
h
1 and Γ

h
2 . Moreover, the condition (2.16) now yields

that vertices will be equidistributed on all curve segments of Γhi , that are not locally parallel.
Although we are unable to prove such results for the fully discrete scheme (2.18a,b), the
change relative to the initial area never exceeded 1% in our simulations. In addition, we
observed the equidistribution property for (2.18a,b), see e.g. Figure 12 below.
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Remark. 2.5. The definitions of the spaces V and W can easily be generalized to a
situation with KB bubbles/areas, KC curves and KT triple junction points; and all the
results in this section extend to this general case. Note that the Euler–Poincaré formula
yields that 6 (KB − 1) = 2KC = 3KT . In particular, we would have

V := {(~χ1, . . . , ~χKC ) ∈ [C(I,R
d)]KC : ~χij(pj,ij) = ~χ1j(pj,1j), i = 2→ 3, ∀ j = 1→ KT},

W := {(χ1, . . . , χKC ) ∈ [C(I,R)]
KC :

3∑

i=1

(−1)pj,ij σij χij(pj,ij) = 0 ∀ j = 1→ KT} .

Here ij ∈ {1, . . . , KC}, i = 1→ 3, denotes the 3 curves meeting at triple junction j, while
pj,ij ∈ {0, 1} denotes whether these curves start (pj,ij = 0) or end (pj,ij = 1) at the triple
junction point j. I.e. |{ij : i = 1→ 3}| = 3 for all j = 1→ KT , |{j : ij = c}| = 2 for all
c = 1→ KC and

∑KT
j=1 pj,c = 1 for all c = 1→ KC.

Furthermore, we can establish that our scheme is unconditionally stable.

Theorem. 2.3. Let { ~Xm, κm}Mm=1 be the solution of (2.18a,b). Then for all k = 1→M
we have

|Γk|+
k−1∑

m=0

τm

∫

Γm
σ |∇s κ

m+1|2 ds ≤ |Γ0| ,

where |Γk| :=
∫
Γk
1 ds ≡

∑3
i=1 σi |Γ

k
i | on recalling the definition (2.17).

Proof. Testing (2.18a) with χ = κm+1 ∈ W h and (2.18b) with ~η =
~Xm+1− ~Xm

τm
∈ V h

yields that

〈∇s ~X
m+1,∇s ( ~X

m+1 − ~Xm)〉m + τm 〈σ∇s κ
m+1,∇s κ

m+1〉m = 0 . (2.22)

We now analyse the first term in (2.22), using the techniques in Dziuk (1999). Let
~hi,mj :=

~Xmi (q
i
j+1)− ~X

m
i (q

i
j). Then it holds that

〈∇s ~X
m+1,∇s ( ~X

m+1 − ~Xm)〉m =
3∑

i=1

σi

∫

Γmi

[∇s ~X
m+1] . [∇s ( ~X

m+1 − ~Xm)] ds

=
3∑

i=1

σi

Ni−1∑

j=1

[
|~hi,m+1j |2 − ~hi,m+1j .~hi,mj

|~hi,mj |

]

=
3∑

i=1

σi

Ni−1∑

j=1

[
(|~hi,m+1j | − |~hi,mj |)

2 + |~hi,m+1j | |~hi,mj | − ~h
i,m+1
j .~hi,mj

|~hi,mj |
+ |~hi,m+1j | − |~hi,mj |

]

≥
3∑

i=1

σi

Ni−1∑

j=1

[
|~hi,m+1j | − |~hi,mj |

]
= |Γm+1| − |Γm| . (2.23)

Combining (2.22) and (2.23) yields that

|Γm+1| − |Γm|+ τm

∫

Γm
σ |∇s κ

m+1|2 ds ≤ 0 . (2.24)
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Summing (2.24) for m = 0→ k − 1 yields the desired result.

The proof above is written explicitly for (2.18a,b) but as it depends solely on a specific
choice of test functions it immediately carries over to (2.2a,b).

2.2.1 Schur complement approach

Let N :=
∑3
i=1(Ni + 1). We define the orthogonal projections

K : RN → X := {(z1, z2, z3) ∈ R
N :

3∑

i=1

σi [zi]0 =
3∑

i=1

σi [zi]Ni = 0} (2.25)

and ~P : (Rd)N → X := {(z1, z2, z3) ∈ (R
d)N : [z1]0 = [z2]0 = [z3]0, [z1]N1 = [z2]N2 =

[z3]N3} onto the Euclidean spaces associated with W
h and V h, respectively.

In order to give a matrix formulation for (2.18a,b) we introduce the matrices ~N i ∈
(Rd)(Ni+1)×(Ni+1), ~Ai ∈ (Rd×d)(Ni+1)×(Ni+1) and Ai ∈ R(Ni+1)×(Ni+1), i = 1→ 3, defined by

~N ikl := σi

∫

Γmi

πhi [φ
i
k φ
i
l]~ν
m ds, Aikl := σi

∫

Γmi

∇sφ
i
k .∇sφ

i
l ds, ~Aikl := A

i
kl
~Id1 ,

where {φil}
Ni
l=0 is the standard basis of S

h
i := {χ ∈ C(I,R) : χ |Iij is linear ∀ j = 1→ Ni}

and πhi : C(I,R)→ S
h
i is the standard interpolation operator at the nodes {q

i
j}
Ni
j=0. Then

on introducing the matrices

A :=






σ1A
1 0 0

0 σ2A
2 0

0 0 σ3A
3




 , ~A :=






~A1 0 0

0 ~A2 0

0 0 ~A3




 , ~N :=






~N1 0 0

0 ~N2 0

0 0 ~N3




 , (2.26)

where A : RN → RN , ~A : (Rd)N → (Rd)N and ~N : RN → (Rd)N , the system of equations
(2.18a,b) can be written as: Find {δ ~Xm+1, κm+1} ∈ X× X such that

(
τmKAK −K ~NT ~P
~P ~NK ~P ~A~P

)(
κm+1

δ ~Xm+1

)

=

(
0

−~P ~A~P ~Xm

)

. (2.27)

Here, with the obvious abuse of notation similarly to (2.11), κm+1 = (κm+11 , κm+12 , κm+13 )T

with κm+1i = ([κm+1i ]0, . . . , [κ
m+1
i ]Ni), i = 1→ 3, and δ ~X

m+1 = (δ ~Xm+11 , δ ~Xm+12 , δ ~Xm+13 )T

with ~Xm+1i = ([ ~Xm+1i ]0, . . . , [ ~X
m+1
i ]Ni), i = 1 → 3, are the vectors of coefficients with

respect to the standard basis {{φil}
Ni
l=0}

3
i=1 of κ

m+1 and ~Xm+1 − ~Xm in (2.18a,b), respec-
tively.

We note that the kernel of KAK is the direct sum of kerK and the space E = kerA∩X
spanned by the two null vectors e1 := (

1
σ1
11,− 1

σ2
12, 0) ∈ X and e2 := (0, 1σ21

2,− 1
σ3
13) ∈ X

of KAK, where 1i := (1, . . . , 1)T ∈ RNi+1, i = 1 → 3. I.e. kerKAK = kerK ⊕ span{ei :
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i = 1→ 2} ≡ X⊥⊕span{ei : i = 1→ 2}. Introducing the inverse S of KAK restricted on
the set (kerKAK)⊥ ⊂ RN , i.e. S KAK v = KAK S v = v for all v ∈ (kerKAK)⊥, and
defining the space R := span {~P ~NK ei : i = 1→ 2} ≡ {~P ~NK v : v ∈ kerKAK} ⊂ X;
we note from the first equation of (2.27) that δ ~Xm+1 ∈ T := R⊥ ∩ X and hence that
K ~NT ~P δ ~Xm+1 ∈ (kerKAK)⊥. Therefore, we can employ a Schur complement approach
in order to transform (2.27) to

κm+1 = 1
τm
S K ~NT ~P δ ~Xm+1 +

2∑

i=1

μi ei, (2.28a)

(~P ~A~P + 1
τm
~P ~NK SK ~NT ~P ) δ ~Xm+1 = −~P ~A~P ~Xm −

2∑

i=1

μi ~P ~NK ei, δ ~X
m+1 ∈ T ;

(2.28b)

where in (2.28a) we have used the fact that κm+1 ∈ X and where μi ∈ R are unknown.
Let ~Π : (Rd)N → R⊥ be the orthogonal projection onto R⊥. Then, on noting that
δ ~Xm+1 ∈ R⊥, (2.28b) can be simplified to

~Π ~P ( ~A+ 1
τm
~NK SK ~NT ) ~P ~Π δ ~Xm+1 = −~Π ~P ~A~P ~Xm. (2.29)

Remark. 2.6. A possible definition for the projection ~Π is ~Π := ~IdN − ~Q~QT , where
im ~Q = R and ~QT ~Q = Id2. I.e. the columns of ~Q ∈ (Rd)N×2 are an orthonormal basis
of the subspace R ⊂ (Rd)N spanned by ~P ~NKei ≡ ~P ~N ei, where ei ∈ X, i = 1 → 2, are
the above mentioned null vectors of KAK. We note that the definitions of ~P and ~N yield
that dimR = 2. Hence ~Π is the orthogonal projection from (Rd)N onto (im ~Q)⊥ ≡ R⊥.

Remark. 2.7. The definition of ~Π can easily be adapted to a situation with KB bub-
bles/areas. Now the subspace E of the kernel of KAK has dimension KB, and a possible
basis consists of vectors that each “describe an admissible orientation of the boundary of
a bubble” in terms of the given KC curves. E.g. if KB = 3 and one area is enclosed by
curves 1, 2, 4 and curve 2 is parameterized in the opposite direction to curves 1 and 4,
then the corresponding eigenvector would be ( 1

σ1
11,− 1

σ2
12, 0, 1

σ4
14, 0, 0). A more rigorous

justification for this can be found in the Appendix.

Theorem. 2.4. Let {δ ~Xm+1, κm+1} ∈ X × X be the unique solution to (2.27). Then
δ ~Xm+1 uniquely solves (2.29). Moreover, the operator in (2.29) is symmetric positive
definite.

Proof. We have already demonstrated that if {δ ~Xm+1, κm+1} is the unique solution to
(2.27), then δ ~Xm+1 solves (2.29). It remains to show that the solution δ ~Xm+1 to (2.29)

forms part of the solution to (2.27). On noting that ~Π δ ~Xm+1 = δ ~Xm+1 it follows from
(2.29) that

~P ( ~A+ 1
τm
~NK SK ~NT ) ~P δ ~Xm+1 = −~P ~A~P ~Xm −

2∑

i=1

μi ~P ~NK ei, (2.30)
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where μi ∈ R are uniquely defined by

2∑

i=1

μi ~P ~NK ei = (~Π− ~IdN)
[
~P ~A~P ~Xm + ~P ( ~A+ 1

τm
~NK SK ~NT ) ~P δ ~Xm+1

]
∈ R,

on recalling that the vectors {~P ~NK ei}2i=1 are linearly independent.

On noting that δ ~Xm+1 ∈ R⊥, we have that K ~NT ~P δ ~Xm+1 ∈ (kerKAK)⊥, and hence
we can define κm+1 ∈ X uniquely by

κm+1 = τ−1m S K
~NT ~P δ ~Xm+1 +

2∑

i=1

μi ei. (2.31)

Combining (2.30) and (2.31) gives that

~P ~A~P δ ~Xm+1 + ~P ~NK κm+1 = −~P ~A~P ~Xm, (2.32)

while multiplying (2.31) with KAK yields that

τmKAK κ
m+1 = K ~NT ~P δ ~Xm+1 . (2.33)

Combining (2.32) and (2.33) yields that {δ ~Xm+1, κm+1} ∈ X × X is the unique solution
to (2.27). Moreover, δ ~Xm+1 is the unique solution to (2.29).

Finally, on recalling the definition of T , we note that ~Π T ⊂ R⊥ and K ~NT ~P R⊥ ⊂
(kerKAK)⊥. Since the operatorKAK is symmetric and positive definite on (kerKAK)⊥,

it is easily established that ~Π ~P ~NK SK ~NT ~P ~Π : T → T is symmetric and positive semi-
definite. Moreover, the operator ~Π ~P ~A~P ~Π : T → T is symmetric and positive semi-
definite. As (2.29) has a unique solution, the operator in (2.29) is non-singular and hence
symmetric positive definite.

The proof above is easily adapted to the closed curve system (2.13).

2.3 Willmore flow for curves

For a closed curve Γ ⊂ Rd, d = 2, and a parameterization ~x ∈ Rd of Γ, the system

~xt . ~ν = −Δs κ − 1
2
κ3 + λκ, κ ~ν = Δs ~x (2.34)

for λ = 0 models Willmore flow for curves, also called evolution of elastic curves. The
inclusion of the given parameter λ ∈ R either penalizes growth (λ > 0) or encourages
further growth (λ < 0) in the length of the curve. The time dependent choice

λ(t) =

∫
Γ

[
1
2
|κ|4 − |∇sκ|2

]
ds

∫
Γ
|κ|2 ds
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models length preserving elastic flow. One can interpret (2.34) as the L2 gradient flow of
the energy functional

E(~x) :=

∫

Γ

[
1
2
|κ|2 + λ

]
ds (2.35)

see e.g. Dziuk, Kuwert, and Schätzle (2002) for details. In fact, for fixed λ ∈ R testing
the first equation in (2.34) with ~xt . ~ν and integrating over Γ yields that

d

dt

∫

Γ

[
1
2
|κ|2 + λ

]
ds =

∫

Γ

[
Δs κ + 1

2
κ3 − λκ

]
~ν . ~xt ds = −

∫

Γ

|~xt . ~ν|
2 ds ≤ 0 . (2.36)

One notes that the energy (2.35) with λ = 0 can be reduced by scaling, as e.g. an
expanding circle continuously reduces the energy E, and that a parameter λ > 0 acts as
a penalization term for growth in the curve’s length. For more details on Willmore flow,
see also Di Carlo, Gurtin, and Podio-Guidugli (1992), Gurtin and Jabbour (2002), and
Deckelnick, Dzuik, and Elliott (2005a).

We can adapt (2.2a,b) to include the extra terms as follows: Find { ~Xm+1, κm+1} ∈
V h0 ×W

h
0 such that

〈
~Xm+1 − ~Xm

τm
, χ ~νm〉hm − 〈∇s κ

m+1,∇s χ〉m − [λm]+ 〈κ
m+1, χ〉hm

= −1
2
〈(κm)3, χ〉hm + [λm]− 〈κ

m, χ〉hm ∀ χ ∈ W h0 , (2.37a)

〈κm+1 ~νm, ~η〉hm + 〈∇s ~X
m+1,∇s ~η〉m = 0 ∀ ~η ∈ V h0 , (2.37b)

where [r]± := ±max{±r, 0}. Note that for a fixed λ ∈ R we set λm = λ, m = 0→M−1,
whereas the time dependent choice

λm =
1
2
|(κm)2|2m,h − |∇s κ

m|2m
|κm|2m,h

, (2.38)

with | ∙ |2m(,h) := 〈∙, ∙〉
(h)
m , approximates length preserving elastic flow.

Theorem. 2.5. Let the assumption (A0) hold. Then there exists a unique solution
{ ~Xm+1, κm+1} ∈ V h0 ×W

h
0 to the system (2.37a,b).

Proof. The proof is the same as the proof of Theorem 2.1, with the only change being
the additional term τm [λm]+ 〈κ, κ〉hm in (2.7).

Lemma. 2.1. Let { ~Xm, κm}Mm=1 be the solution of (2.37a,b). Then, if λm = λ ∈ R for
m = 0→M − 1, we have for all k = 1→M that

|Γk|+
k−1∑

m=0

τm
[
|∇s κ

m+1|2m + [λ]+ |κ
m+1|2m,h

]

≤ |Γ0|+
k−1∑

m=0

τm

[
1
2

[
3
4
|(κm)2|2m,h +

1
4
|(κm+1)2|2m,h

]
− [λ]−

2

[
|κm|2m,h + |κ

m+1|2m,h
]]
.

(2.39)
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Similarly, for the time dependent choice (2.38) we have for all k = 1→M that

|Γk| ≤ |Γ0|+
k−1∑

m=0

τm F
m , (2.40)

where, for m = 0→M − 1,

Fm :=
[
|∇s κ

m|2m − |∇s κ
m+1|2m

]
+ ([λm]+ +

1
2
[λm]−)

[
|κm|2m,h − |κ

m+1|2m,h
]

+ 1
8

[
|(κm+1)2|2m,h − |(κ

m)2|2m,h
]
.

Proof. One can show similarly to (2.22) that

1
τm
〈∇s ~X

m+1,∇s ( ~X
m+1 − ~Xm)〉m + 〈∇s κ

m+1,∇s κ
m+1〉m + [λm]+ 〈κ

m+1, κm+1〉hm
= 1
2
〈(κm)3, κm+1〉hm − [λm]− 〈κ

m, κm+1〉hm

≤ 1
2

[
3
4
|(κm)2|2m,h +

1
4
|(κm+1)2|2m,h

]
− [λm]−

2

[
|κm|2m,h + |κ

m+1|2m,h
]

(2.41)

and hence, on noting (2.23), that

1
τm
(|Γm+1| − |Γm|) + |∇s κ

m+1|2m + [λm]+ |κ
m+1|2m,h

≤ 1
2

[
3
4
|(κm)2|2m,h +

1
4
|(κm+1)2|2m,h

]
− [λm]−

2

[
|κm|2m,h + |κ

m+1|2m,h
]
.

(2.42)

Summing (2.42) for m = 0 → k − 1 yields the desired result (2.39). On the other hand,
for the choice (2.38) it follows from the first equality in (2.41) that

1
τm
〈∇s ~X

m+1,∇s ( ~X
m+1 − ~Xm)〉m + |∇s κ

m+1|2m − |∇s κ
m|2m + [λm]+

[
|κm+1|2m,h − |κ

m|2m,h
]

= 1
2
〈(κm)3, κm+1 − κm〉hm − [λm]− 〈κ

m, κm+1 − κm〉hm,

≤ 1
8

[
|(κm+1)2|2m,h − |(κ

m)2|2m,h
]
− 1
2
[λm]−

[
|κm+1|2m,h − |κ

m|2m,h
]
. (2.43)

Combining (2.43) and (2.23) yields, on noting the definition of Fm, that

|Γm+1| ≤ |Γm|+ τm F
m . (2.44)

Summing (2.44) for m = 0→ k − 1 yields the desired result (2.40).

Remark. 2.8. Clearly a time continuous semidiscrete version of (2.37a,b) will inherit
the tangential equidistribution property (2.16), as it depends solely on (2.14b).

In addition, Lemma 2.1 shows that the growth in Γ can be controlled by a discrete

analogue of
∫
Γ

[
1
2
|κ|4 − [λ]− |κ|2

]
ds. Moreover, on choosing χ = πh

[
~Xm+1− ~Xm

τm
. ~ωm

]
∈

W h0 in (2.37a), where, recall (A0), ~ω
m :=

∑N
j=1 ~ω

m
j φj ∈ V

h
0 , it is straightforward to show

that the solution { ~Xm+1, κm+1} to (2.37a,b) satisfies, e.g. in the case λ = 0,

− 〈∇s κ
m+1,∇s π

h
[
~Xm+1− ~Xm

τm
. ~ωm

]
〉m + 1

2
〈(κm)3,

~Xm+1− ~Xm

τm
. ~ωm〉hm

= −〈
~Xm+1− ~Xm

τm
,
[
~Xm+1− ~Xm

τm
. ~ωm

]
~νm〉hm = −

∣
∣
∣
~Xm+1− ~Xm

τm
. ~ωm

∣
∣
∣
2

m,h
. (2.45)
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However, it does not seem possible to derive a discrete analogue of (2.36) from (2.45).

Moreover, the bound (2.40) shows that although we cannot guarantee length preserva-
tion for our scheme (2.37a,b) with the choice (2.38), we can show that the growth in the
length of the discrete curve is bounded. In particular, (2.40) suggests that the maximal
possible growth goes to zero as τ → 0. In fact, in practice the length of the discrete curve
is almost exactly preserved, see Section 3.

Similarly to (2.10), we introduce the matrix M0 ∈ RN×N by

[M0]kl := 〈φk, φl〉
h
m =

∫

Γm
πh[φk φl] ds,

and then rewrite (2.37a,b) in terms of
(
τm (A0 + [λm]+M0) − ~NT0

~N0 ~A0

) (
κm+1

δ ~Xm+1

)

=

(
b

− ~A0 ~Xm

)

, (2.46)

where b ∈ RN with bj = τm 〈12(κ
m)3 − [λm]− κm, φj〉hm, j = 1→ N .

The solution to (2.46) can be found as follows. If λm > 0, then Â0 := A0 + [λm]+M0
is a positive definite matrix, and we can solve (2.46) by solving

( ~A0 +
1
τm
~N0 Â

−1
0
~NT0 ) δ

~Xm+1 = − ~A0 ~X
m − 1

τm
~N0 Â

−1
0 b

and then setting
κm+1 = 1

τm
Â−10 [ ~N

T
0 δ
~Xm+1 + b] .

If λm ≤ 0, on the other hand, we note that

1T ( ~NT0 δ ~X
m+1 + b) = 0 (2.47)

and, similarly to (2.12a), we have that

κm+1 = 1
τm
S0 [ ~N

T
0 δ
~Xm+1 + b] + μ 1 = 1

τm
S0Π [ ~N

T
0 δ
~Xm+1 + b] + μ 1,

where Π = IdN − 1 1T

1T 1
is the orthogonal projection onto (kerA0)

⊥ = (span{1})⊥. Hence
δ ~Xm+1 satisfies

( ~A0 +
1
τm
~N0ΠS0Π ~N

T
0 ) δ ~X

m+1 = − ~A0 ~X
m − 1

τm
~N0ΠS0Π b− μ ~N0 1 . (2.48)

Once again, the unique solvability of (2.37a,b) yields that the operator ~G on the left hand
side of (2.48) is symmetric and positive definite. Hence μ has to be chosen such that

condition (2.47) is satisfied. This can be achieved as follows. Let ~Xf := ~G
−1 (− ~A0 ~Xm −

1
τm
~N0ΠS0Π b) and ~Xg := ~G

−1 ~N0 1. Then

μ :=
1T b+ 1T ~NT0

~Xf

1T ~NT0 ~Xg
and δ ~Xm+1 = ~Xf − μ ~Xg.

Note that 1T ~NT0 ~Xg = ~X
T
g
~G ~Xg > 0, as ~G is symmetric positive definite, so μ is well

defined and uniquely determined.
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3 Results

The Schur complement approach (2.29) can be easily solved with a conjugate gradient
solver. For the solution of KAK y = x in order to compute S x we can employ an (inner
loop) CG solver without a projection, as the right hand side vector x always satisfies the
compatibility condition x ∈ (kerKAK)⊥. See Hestenes (1975) for a justification of using
a CG solver for a positive semi-definite system.

Throughout this section we use uniform time steps τm = τ , m = 0→M −1. For later
purposes, we define

~X(t) := t−tm−1
τ
~Xm + tm−t

τ
~Xm−1 t ∈ [tm−1, tm] m ≥ 1.

3.1 Closed curves

Here we compare the scheme (2.2a,b) with two other algorithms in the literature, namely
the scheme (2.3a,b) from Dziuk, Kuwert, and Schätzle (2002) and the scheme (2.4a–d)
from Bänsch, Morin, and Nochetto (2005).

The first experiment is for a mild ellipse. The parameters were chosen as follows.
N = 64, τ = 10−6, T = 10−3 and the initial curve is a 3 : 1 ellipse with semiminor
axis R = 0.075. The scheme (2.3a,b) eventually breaks down on this experiment, due to

the coalescence of grid points. We plot the approximation ~X at time t = 8 × 10−4 in
Figure 3 (left). Similarly the scheme (2.4a–d) breaks down at t = 3.2× 10−4, see Figure 3
(right). Our scheme (2.2a,b), on the other hand, intrinsically moves the vertices such
that the problem can be computed until time t = T , when the solution has reached the
shape of a circle; see the Figure 3 (bottom). Recall that a proof of this is given for the
continuous in time semidiscrete scheme in Remark 2.3. Note that the area loss for (2.2a,b)
for this experiment was 0.7%. We remark that no other scheme published in the literature
does intrinsically move the mesh points so that no coalescence of mesh points can occur.
However, a scheme where a tangential force is prescribed in order to achieve this has
been published in Mikula and Ševčovič (2005). Here a finite difference approximation of
a very complicated fourth order system has to be solved, see Mikula and Ševčovič (2005,
(4.2)–(4.5)).

In order to investigate the three different schemes further, we conduct the following
experiment. Starting with an initial curve that consists of a semi-circle and a single
additional node on the periphery of the circle, we investigate the ratio r := h ~Xm/` ~Xm ,

where h ~Xm := maxj=1→N | ~X
m(qj)− ~Xm(qj−1)| and ` ~Xm := minj=1→N | ~X

m(qj)− ~Xm(qj−1)|,
over time. We used as parameters N = 128, τ = 10−7, T = 5×10−4 and R = 0.075 as the
radius of the circle. The evolution of ~X for our scheme (2.2a,b) can be seen in Figure 4.
Plots of the ratio r for the three schemes can be seen in Figure 5. We note that scheme
(2.3a,b) could only compute up to time t = 7.9× 10−6, while scheme (2.4a–d) could only
compute up to time t = 8.4 × 10−5. The last plot in that figure shows the length of
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Figure 3: The three schemes for the first experiment, a 3 :1 ellipse.

Figure 4: A plot of ~X at times t = 0, 10−7, 5× 10−7, 10−6, 10−5, T = 5× 10−4.
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Figure 5: A plot of log r for the ratio r = h ~Xm/` ~Xm for the three schemes (2.3a,b), (2.4a–d)
and (2.2a,b). The last plot shows the length |Γ(t)| for t ∈ [0, 2× 10−5].

the curve computed from our approximation (2.2a,b) over time. One can clearly see that
although the true solution (a circle) is reached very quickly (at around time t = 2×10−5),
in the remaining time the vertices are continually moved tangentially which results in a
further decrease in the ratio r, which approaches the optimal value 1.

The coalescence of vertices for the two schemes cited from the literature can be pre-
vented by heuristically redistributing all the mesh points tangentially after each time step,
as described in Dziuk, Kuwert, and Schätzle (2002) and Bänsch, Morin, and Nochetto
(2005), respectively. In the former case this can lead to excessive loss of area, whereas
the latter redistribution is area conserving. To demonstrate the possible effects of these
redistributions, we used the same parameters as in the experiment for Figure 3 for an
initial 8 : 1 ellipse with semiminor axis R = 0.075. The results for the three respective
schemes can be seen in Figure 6. The area loss for our scheme (2.2a,b) is 0.7%, while the
scheme (2.3a,b) (now with a redistribution after each time step) lost 14.1% of the area.
The scheme (2.4a–d) (with the redistribution as in Bänsch, Morin, and Nochetto (2005))
lost −0.7% of the area. In part, this can have a dramatic effect on the size of the final
circular solution.

For a finer mesh, N = 256, and τ = 10−7 we obtained the following results for the 8:1
ellipse. For the scheme (2.3a,b) with redistribution, the loss of area is 0.8%, while the
scheme (2.4a,b) with redistribution lost −0.1% of the initial area. The scheme (2.2a,b) can
once again integrate until the final time without artificially redistributing mesh points.
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Figure 6: (2.3a,b), (2.4a–d) and (2.2a,b) for the second experiment, an 8:1 ellipse.

Figure 7: Success for an 8:1 ellipse. Plotted times are t = 0, 10−4, 2× 10−4, . . . , 10−3.

The total area loss was 0.1%. The final solution can be seen in Figure 7.

The next experiment underlines the analysis in Remark 2.3. To this end, we fix
N = 64, T = 2 and let τ = 10−k, k = 0 → 5 for an initial 2 : 1 ellipse with semiminor
axis R = 1. In Table 1 we report on the area loss, a0 − aM , for our approximation
(2.2a,b) as well as for the scheme (2.4a–d) from Bänsch, Morin, and Nochetto (2005),
which, due to the relatively small curvatures present in the initial curve, could compute
the solution without redistributing the nodes. We omit the results for the scheme (2.3a,b),
as without redistribution of vertices it could only integrate until time T for k ≤ 3. As is
to be expected from the considerations in Remark 2.3 for the semidiscrete approximation

k (2.2a,b) (2.4a–d)

0 5.7897e-01 1.0438e-01

1 9.2350e-02 4.7302e-02

2 1.1379e-02 7.4513e-03

3 1.4182e-03 1.0281e-03

4 1.0742e-04 2.9404e-04

5 4.6785e-05 2.1847e-04

Table 1: Area loss |a(0)− a(T )| for N = 64 and τ = 10−k, k = 0→ 5.
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N |a0 − aM |/|a0| |aM − a(0)| ||ΓM | − limt→∞ |Γ(t)|| ‖ ~X(T )− ~x?‖L∞

16 4.4% 9.2741e-01 3.7046e-01 4.7917e-02

32 1.3% 2.6356e-01 1.0482e-01 1.4588e-02

64 0.4% 7.3366e-02 2.9446e-02 5.1632e-03

128 0.1% 2.0149e-02 8.1808e-03 2.4653e-03

256 0.03% 5.5318e-03 2.2717e-03 1.7030e-03

512 0.008% 1.5181e-03 6.2799e-04 1.4872e-03

Table 2: Relative area loss and some errors with respect to the true asymptotic solution
~x? := limt→∞ ~x(∙, t).

(2.14a,b), when τ → 0 the observed area loss for our scheme (2.2a,b) tends to zero. For
other schemes, e.g. (2.4a–d), we expect the area loss to be bounded from below by some
constant depending on h.

Finally, we perform the following convergence test. As initial shape we choose an 8:1
ellipse with semiminor axis R = 0.75, and let τ = 0.5h2 with T = 15, by which time
the numerical solutions have reached a circular “steady state”. In Table 2 we report on
the relative area loss compared to the area a0 of the initial polygon, as well as the error
|aM − a(0)| and the indicative error ||ΓM | − limt→∞ |Γ(t)||, i.e. the differences in area and
in length to the true asymptotic solution ~x? := limt→∞ ~x(∙, t), which is given by a circle.
We also report on the error ‖ ~X(T )− ~x?‖L∞ := maxj=1→N minρ∈I | ~XM(qj)− ~x?| between
~X(T ) and the true asymptotic solution ~x?.

3.2 Willmore flow for curves

As a first test, we repeated the computations for a true solution as given in Dziuk, Kuwert,
and Schätzle (2002, p. 1241). An exact solution to (2.34), with λ = 0, is given by

~x(ρ, t) = (1 + 2 t)
1
4 (cos g(ρ), sin g(ρ))T , κ(ρ, t) = (1 + 2 t)−

1
4 ,

where g(ρ) = (ρ+0.1 sin ρ) in order to make the initial distribution of nodes non-uniform.

Note that the true curvature vector is given by ~κ(ρ, t) = −(1+2 t)−
1
4 (cos g(ρ), sin g(ρ))T .

The results can be seen in Table 3, where we report on the errors in L∞(0, T ;L∞(J,R(d)))
for T = 1 and τ = 0.5h2. We compare our results from (2.37a,b) to the corresponding
version of the scheme in Dziuk, Kuwert, and Schätzle (2002), i.e. (2.3a,b) with the last
term on the left hand side of (2.3a) replaced by −λm 〈~κm+1, ~χ〉hm; with no redistribution
of nodes. Note that we report on their scheme in two different columns, as with the
original scheme (2.3a,b) we could not quite reproduce the numbers reported in their
paper. In particular, we report on the original scheme (2.3a,b), “DKS (orig)”, and a

small modification, “DKS (mod)”. The modified scheme uses |~κm+
1
2 |2 instead than |~κm|2

in (2.3a), where ~κm+
1
2 ∈ V h0 is such that

〈~κm+
1
2 , ~η〉hm + 〈∇s ~X

m,∇s ~η〉m = 0 ∀ ~η ∈ V h0 .
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DKS (orig) DKS (mod) (2.37a,b)

N ‖ ~X − ~x‖L∞ ‖~κ− ~κ‖L∞ ‖ ~X − ~x‖L∞ ‖~κ− ~κ‖L∞ ‖ ~X − ~x‖L∞ ‖κ− κ‖L∞

10 2.7861e-01 1.2994e-01 9.8686e-03 6.6960e-03 1.9925e-01 6.8622e-02

20 3.7365e-02 1.7942e-02 2.8856e-03 3.2501e-03 3.5188e-02 7.8014e-03

40 8.3949e-03 4.6565e-03 7.9028e-04 5.5311e-04 8.4705e-03 2.3520e-03

80 2.0410e-03 1.0037e-03 2.1042e-04 2.1395e-04 2.1098e-03 4.3881e-04

160 5.0574e-04 1.1518e-04 5.4438e-05 1.2143e-04 5.2816e-04 2.5638e-05

320 1.2602e-04 4.1575e-05 1.3859e-05 2.4003e-05 1.3222e-04 6.6411e-06

640 3.1463e-05 1.1178e-05 3.4973e-06 5.6171e-06 3.3085e-05 2.4567e-06

Table 3: Absolute errors ‖ ~X − ~x‖L∞ and ‖κ− κ‖L∞ for the test problem.

Figure 8: Willmore flow for a closed curve. On the left λ = 0, on the right λ = 1.

We show the evolution of a lemniscate under the flow (2.34) with λ = 0 and λ = 1 in
Figure 8. Note that no redistribution of nodes was necessary for (2.37a,b), whereas the
scheme (2.3a,b) was not able to compute this evolution without a redistribution of nodes.
The same experiment for the length preserving elastic flow, i.e. with the time dependent
parameter λm as in (2.38) is shown in Figure 9. The initial curve is a 2 :1 lemniscate. The
discretization parameters are N = 100 and τ = 10−3, the final time is T = 1. The length
of the original curve was almost exactly preserved (the length of the initial curve is 7.86
and that has grown by only 2.3×10−3 at time t = T ). The length preserving modification
of (2.3a,b), see Dziuk, Kuwert, and Schätzle (2002, p. 1240), however, fails to compute
this example without the redistribution of vertices. The solution at time t = 0.346 can
be seen on the right hand side of the figure.

A similar experiment for a 4 :1 lemniscate and T = 4 can be seen in Figure 10. Again,
no redistribution was needed for scheme (2.37a,b), while the scheme (2.3a,b) without
redistribution failed, this time at time t = 0.154.
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Figure 9: Length preserving elastic flow. Our scheme (2.37a,b) on the left, the appropri-
ately modified scheme (2.3a,b) on the right.

Figure 10: Length preserving elastic flow. Our scheme (2.37a,b) on the left, the appro-
priately modified scheme (2.3a,b) on the right.

3.3 Triple junctions

In the first experiment for triple junctions, see Figure 11, we simulate how two initially
elliptic bubbles approach the standard double bubble shape, where Γ2 is a straight line
and Γ1 is the arc of a circle with Γ3 its reflection, see Hutchings, Morgan, Ritoré, and Ros
(2002). A non equal area case can be seen on the right hand side of the same figure.

For the standard double bubble, we checked for our scheme (2.18a,b), as h → 0, the
absolute area loss maxi=1→2 |a0i − a

M
i | and the observed angles θ := (θ1, θ2, θ3) at the

triple junctions, which, through symmetry, are the same at both triple junction points.
Here θ is defined as the angles formed by the three curve segments meeting at a triple
junction and θi, i = 1→ 3, denotes the angle opposite the curve ΓMi at a triple junction.
The parameters were chosen as follows. The initial shape is a parameterization of the
standard double bubble with two circles of radius 0.075. We integrate until time T = 10−4

and used a uniform time step size τ = 10−5 32
N
. For the results see Table 4, where the

maximal element length h ~XM at the final time is defined similarly to Table 2, and the
area error is defined with respect to the true double bubble solution ~x. Note that the
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Figure 11: The standard double bubble, with a non equal area case on the right.

N h ~XM area loss angles (θ1, θ2, θ3)

32 2.6148e-02 2.0280e-04 (110.4, 139.2, 110.4)

64 1.3012e-02 5.0898e-05 (115.3, 129.4, 115.3)

128 6.1883e-03 1.2261e-05 (117.7, 124.6, 117.7)

256 3.0213e-03 3.0659e-06 (118.9, 122.3, 118.9)

512 1.4932e-03 7.6653e-07 (119.4, 121.1, 119.4)

1024 7.4231e-04 1.9163e-07 (119.7, 120.6, 119.7)

2048 3.7115e-04 4.7909e-08 (119.9, 120.3, 119.9)

4096 1.8531e-04 1.1963e-08 (119.9, 120.1, 119.9)

8192 9.2590e-05 2.9908e-09 (120.0, 120.1, 120.0)

Table 4: Area loss and triple junction angles as h→ 0.

relative area loss max
i=1→2

|a0i−a
M
i |

|a0i |
for these experiments was always less than 10−5%. In a

more realistic experiment, we used as initial data two 3 : 1 ellipses with semiminor axis
R = 0.75, similarly to the left hand side of Figure 11, and integrated until time T = 2.
The results for a time step size of τ = 0.5h2 are displayed in Table 5.

We note that for both sets of experiments one observes that the triple junction angles
approach the true value 120◦ as h → 0, while the error in the area and the relative area
loss tend to zero.

The considerations for the semidiscrete version of (2.18a,b) in Remarks 2.3 and 2.4
are underlined by the following experiment. Using the parameters N = 64, τ = 10−3 and
T = 1 we investigate how an initial approximation of two semi-circles of radius R = 1
with a straight line in between, where we uniformly parameterize only the upper half of
each curve, is evolved by our scheme (2.18a,b). As can be seen in Figure 12, the vertices
on the two circular curve segments are equidistributed, while the nodes on the straight
line segment experience no tangential movement. This is in line with the analysis for the
semidiscrete scheme in Remarks 2.3 and 2.4.

An equal area double bubble for different surface energies can be seen in Figure 13. The
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N h ~XM relative area loss angles (θ1, θ2, θ3)

32 3.5583e-01 0.3% (109.6, 140.9, 109.6)

64 1.7864e-01 0.08% (114.9, 130.2, 114.9)

128 8.9415e-02 0.02% (117.5, 125.1, 117.5)

256 4.4261e-02 0.007% (118.8, 122.5, 118.8)

512 2.2132e-02 0.002% (119.4, 121.2, 119.4)

Table 5: Area loss and triple junction angles as h→ 0.

Figure 12: Tangential movement for an equal area double bubble. A plot of ~X(t) at times
t = 0 and t = T .

surface energies were chosen to be (σ1, σ2, σ3) = (1, 1,
3
2
) and (1, 1, 7

4
), respectively. That

means that the length of the curve Γ3 is weighted more in the overall energy |Γ|, so that
it will shorten during the evolution. For the parameters N = 256, T = 1 and τ = 10−4,
and starting from the standard double bubble with radii R = 1, the observed angles at
the triple junctions at time T are θ = (136.8, 140.7, 82.5) and θ = (148.8, 153, 58.2) re-
spectively. (Note that Young’s law yields θ = (138.6, 138.6, 82.8) and θ = (151, 151, 57.9),
respectively, for the exact solution.) An experiment for the surface energies (1, 1, 2) can
be seen in Figure 14. Here the observed angles at the triple junctions at time T are
θ = (173.4, 178.9, 7.8). However, one should note that the true steady state for this ex-
periment would consist of only two circular curves, with the third one shrunk to a point.

Figure 13: An equal area double bubble for surface energies (1, 1, 3
2
) and (1, 1, 7

4
).
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Figure 14: An equal area double bubble for surface energies (1, 1, 2). ~X(t) at times
t = 0, 0.1 (left) and t = T (right).

Figure 15: The standard triple bubble (left) and a non equal area triple bubble (right).

Of course, we cannot compute until that singularity.

For the remaining experiments we always use equal surface energies. Examples with
three and four enclosed areas, respectively, can be seen in Figures 15 and 16. Examples
with five, six and seven enclosed areas can be seen in Figures 17, 18 and 19, respectively.

4 Conclusions

We have presented a fully practical finite element approximation for the motion by surface
diffusion of curves in R2. Our scheme enjoys the property that no artificial redistribution
of vertices is necessary in practice. To our knowledge, this is the first such scheme in
the literature. Moreover, the presented scheme can easily be generalized to the case of
multiple curves that meet at triple junction points. Also the case of mean curvature flow,
V = κ, with and without triple junctions can be treated with the ideas developed in this
paper. Moreover, nonlinear functions of mean curvature can equally be used as a driving
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Figure 16: The standard quadruple bubble (left) and a non equal area quadruple bubble
(right).

Figure 17: A standard quintic bubble (left) and a non equal area quintic bubble (right).

Figure 18: A standard sextic bubble (left) and a non equal area sextic bubble (right).
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Figure 19: A standard septic bubble (left) and a non equal area septic bubble (right).

force. The equation V = f(κ) can be discretized, for example, by

〈
~Xm+1 − ~Xm

τm
, χ ~νm〉hm − 〈f(κ

m+1), χ〉hm = 0 ∀ χ ∈ W h0 ,

together with (2.2b), and so will also inherit the equidistribution property (2.16). Further-
more, the combined effect of motion by surface diffusion and motion by mean curvature
can be modelled with a small change to our scheme. This and the additional effects of
curves intersecting the external boundary of the domain will be studied in the forthcoming
paper Barrett, Garcke, and Nürnberg (2006b).

Further topics of our future research related to the presented paper include the exten-
sion to fully anisotropic surface energies and to geometric flows of 2-dimensional hyper-
surfaces in R3, including mean curvature flow, surface diffusion and Willmore flow.

Appendix

Here we want to investigate the kernel of the operator KAK in (2.27) for the case of
an arbitrary number KB of enclosed areas. Note that we assume that at each triple
junction exactly three curves meet and that we exclude any intersection of a curve with
the external boundary. Hence we have that 6 (KB − 1) = 2KC = 3KT , where KC and
KT are the number of curves and triple junction points, respectively.

The definitions (2.26) are trivially extended to the general case, while (2.25) needs to
be replaced by

K : RN → X := {(z1, . . . , zKC ) ∈ R
N :

3∑

i=1

(−1)pj,ij σij [zij ]pj,ijNij = 0 j = 1→ KT},

(A.1)
where now N :=

∑KC
i=1(Ni + 1) and pj,ij ∈ {0, 1}, i = 1→ 3, j = 1→ KT , are defined as

in Remark 2.5.
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We now want to find a basis for the space E ⊂ X ⊂ RN , where kerKAK = kerK⊕E ≡
X⊥ ⊕ E. For simplicity we assume that σi = 1, i = 1 → KC . Then it is clear that the
KC vectors v1 = (1

1, 0, . . . , 0), v2 = (0, 1
2, 0, . . . , 0), . . . , vKC = (0, . . . , 0, 1

KC ) ∈ RN form
a basis of kerA. Furthermore E = kerA ∩ X.

Lemma. A.1. It holds that dimE = KB. A possible basis of E is given by ei :=
(α1i 1

1, . . . , αKCi 1
KC ), i = 1 → KB, where α

j
i ∈ {−1, 0, 1} are such that for α

j
i 6= 0,

~Xmj (
1+αji
2
s+

1−αji
2
(1− s)) parameterizes a segment of the boundary of bubble i clock-wise,

such that the union of all these segments yields the whole boundary of bubble i.

Proof. On noting (A.1) it is clear that by construction ei ∈ X and ei ∈ kerA, for all
i = 1 → KB. It is also easy to see that the {ei}

KB
i=1 are linearly independent. It remains

to show that dimE = KB.

Let C ∈ RKT×KC be the matrix such that

e := (α1 11, . . . , αKC 1KC ) ∈ E ≡ kerA ∩ X ⇐⇒ C α = 0, (A.2)

where α := (α1, . . . , αKC ) ∈ RKC . That is, C describes the constraints in (A.1) and each
row has exactly three non-zero entries (of modulus one), and each column has exactly two
nonzero entries that add up to zero.

The latter property immediately yields rank C ≤ KT − 1. We will now show that
rank C ≥ KT − 1. Let D ∈ R(KT−1)×KC denote the first KT − 1 rows of C and assume

DT β = 0 (A.3)

for β ∈ RKT−1. For a fixed i ∈ {1, . . . , KT − 1}, let (`1, . . . , `L) ∈ {1, . . . , KT}L, with
`1 = KT and `L = i denote a path within the given network of curves connecting triple
junction point ΛKT to point Λi. As we consider a connected network of curves, such a
path always exists. It is now straightforward to show by induction that it follows from
(A.3) that β`j = 0 for all j = 1→ L, and in particular β`L = βi = 0.

Repeating this argument for all i = 1→ KT−1 shows that (A.3) implies β = 0. Hence
KT − 1 = rankD ≥ rank C. Thus we have that rank C = KT − 1 and, on recalling (A.2),
it holds that dimE = KC − rank C = KC − (KT −1) = 3 (KB−1)−2 (KB−1)+1 = KB.
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