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ABSTRACT

The transit method is considered to be one of the most promising for discovering extrasolar plan-
ets. However, the method requires photometric precision ofbetter than∼1%. If we are able to
achieve this kind of accuracy, then we are set to discover extrasolar planets. The uniqueness of my
experiment will lead to the discovery of transiting planetsaround the brightest and most important
stars quicker than the competitors in the field. The importance of the transit method stems from
being able to supply many more planetary parameters than other methods which plays a crucial
role in testing planet formation theories. This thesis is divided into eight chapters.

The first chapter provides a general background about transits and their theory. We discuss
other methods of extrasolar planet detection, recent developments, future space missions, and
what we have learned so far about properties of hot Jupiters.The second chapter details the theory
of signals and noise on CCDs followed by the design of the PASS0 experiment. The third chapter
reports on the difference imaging data pipeline that we developed and applied to a set of PASS0
data to search for transiting planets. The fourth chapter shows how we apply the PASS0 pipeline to
SuperWASP data and improve on the accuracy obtained with their aperture photometry pipeline.
The fifth chapter reports on the search for variable stars from the PASS0 and SuperWASP data sets
that we consider in this thesis. In the sixth chapter we perform a transit search on the PASS0 and
SuperWASP data sets and report the results. In the seventh chapter we use the PASS0 pipeline to
process a full season of observing data from 2007 for two recent planet discoveries, WASP-7b and
WASP-8b, that have not yet been announced. We analyse their lightcurves and predict their radii.
Finally we conclude in the eighth chapter.
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Chapter 1

Transit Detection And Observed
Properties Of Extrasolar Planets

The prime experiment that we report in this thesis is based onthe aim of detecting extrasolar
planets using the transit method. However, there are many available methods to detect extrasolar
planets and a number of them have already had success in planet detections, some being more
successful to date than others. In the introduction to the thesis we discuss in relative detail only
the transit method (central to the thesis), the radial velocity method (the most successful method
to date) and the microlensing method (which is starting to yield planets). Some other methods are
not mentioned but the list is not complete since the aim of this thesis is not to review the whole
field of extrasolar planets.

1.1 The Transit Method

When a planet passes in front of its parent star it blocks partof the star flux. To observe such a phe-
nomenon from another star system at a great distance from theplanet, the observer has to be within
a very restricted region of space. Therefore any planet around a star does not necessarily transit
its host and we will only observe a small fraction of planets as transiting planets. The decrease in
luminosity of the host star when the planet transits is also of the order of∼1% for a Jupiter-sized
planet around a solar-type star which requires high photometric precision observations carried out
during and after the transit event.

In the following analysis of the transit phenomena we will assume that planetary orbits are
circular and that the surface brightness, mass, and radius of the planet are small compared to that
of the parent star. We will also assume that the orbital radius is much larger than the size of the
parent star itself.

A planet with radiusRP orbits a star of radiusR∗ and massM∗ at an orbital radiusa. A transit
of the stellar disk will be seen by an observer only if the orbital plane is at the correct inclination
to the line of sight (see Figure 1.1). Mathematically the inclination i must satisfy the following:

a cos i ≤ R∗ + RP (1.1)
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Figure 1.1: The geometry of a transit event of inclinationi and orbital radiusa as seen from the
side (top) and from the observer’s point of view (bottom) at amoment when the planet lies at a
projected distanced(t) from the star centre.

Sincecos i is the projection of the vector perpendicular to the orbitalplane onto the hemisphere
of the sky and this is distributed uniformly over the surfaceof the sky hemisphere, it is equally
likely to take on any random value between 0 and 1. Therefore,for a set of planetary systems with
arbitrary orientation with respect to the observer [69], the probability that the inclination satisfies
the necessary geometry for a transit is given by:

Geometric Transit Probability=

∫ (R∗+RP )/a
0 d(cos i)
∫ 1
0 d(cos i)

=
R∗ + RP

a
≈

R∗

a
(1.2)

The photometric depth of a transiting planet is determined by the fraction of the light from
the star that is eclipsed. Assuming that the flux from the staris F before or after the transit, and
that the planet creates a change in flux of∆F , then the ratio of∆F to F can be calculated by
considering the ratio of the area of the planetary disk to that of the stellar disk as follows:

∆F

F
=

(

RP

R∗

)2

(1.3)
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Figure 1.2: The transit lightcurve of HD209458b, taken fromCharbonneau et al. 2000 [14].

This equation ignores the effect of limb darkening, and shows that the luminosity of the host star
during transit is reduced by the square of the ratio of planetto star radius.

Figure 1.2 shows an typical transit lightcurve. In fact it isthe discovery lightcurve for the first
known transiting planet taken from Charbonneau et al. 2000 [14]. The periodP of the transiting
planet can be determined very simply by observing two or moreconsecutive transits and the period
is then simply the time between the transits. The transit itself yields the duration of the event or it
can be derived using the theory presented in Figure 1.3. Thisfigure shows that the planet subtends
an angle of2θ radians during a transit, out of the angle of2π radians that it subtends during a full
orbit. The duration of a transittT is therefore given by:

tT =
Pθ

π
(1.4)

From Figure 1.3(b) the height of the centre of the transit from the centre of the star (also called
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Figure 1.3: The transit duration is set by the fraction of thetotal orbit (left) for which a portion of
the planet eclipses the stellar disk (right).

the impact parameter) isa cos i and we may solve for the distancex using the Pythagorean rule:

x2 = (R∗ + RP)
2 − (a cos i)2 (1.5)

Then from Figure 1.3(a) we can calculateθ using simple trigonometry as:

θ = arcsin

(

√

(R∗ + RP)2 − (a cos i)2

a

)

(1.6)

Rewriting the equation for transit duration (Equation 1.4)using Equation 1.6 and assuming
thatθ is a small angle such thatsin θ ≈ θ, then we get:

tT =
P
√

(R∗ + RP)2 − (a cos i)2

πa
(1.7)

For the situation thata ≫ R∗ ≫ RP, which is generally true, Equation 1.7 becomes:

tT =
P

π

√

(

R∗

a

)2

− cos2 i ≤
PR∗

πa
(1.8)

We can get the mass of the host starM∗ from spectroscopy to determine the spectral type and
then use the mass-radius relation for (Sun-like) main sequence stars to get the star radiusR∗. It is
known that this relationship is given by the approximation:

R∗ = f(M∗) ≈ M∗

R⊙

M⊙

(1.9)

With the star mass and radius we can then calculate the orbital radius of the planet using Kepler’s
law:

P 2 =
4π2a3

GM∗

(1.10)
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The above equations are what are needed to analyse the lightcurve of a transiting planet and can
be used to obtain interesting properties like the planet radius and orbital period. The inclination of
the orbit of a transiting planet can be obtained from the lightcurve which is very important when
combined with the detection of radial velocity variations since it leads to a real estimate of the
planet mass, not just a minimum mass estimate (see Section 1.3).

1.2 Known Transiting Planets: HD 209458 b and Others

1.2.1 HD 209458 b

On November 12th 1999, a team led by G. W. Henry, G. Marcy, R. P.Butler and S. S. Vogt,
announced the discovery of the first transiting planet around the star HD209458 (IAU Circular
7307). In fact the discovered planet had been observed previously by Brown, T and Charbonneau,
D. between the 9th to 16th of September 1999 through the STAREproject. HD209458 is at 47
parsecs from the Sun in the constellation of Pegasus, and it is very similar to our Sun since it has
almost the same mass at∼1.05M⊙ and spectral type G0V. The apparent magnitude of the star is
7.65.

The planet was first detected by measuring the radial velocity variations of the star using
the Keck telescope. The sinusoidal periodicity in the velocity versus time curve with amplitude
∼81 m/s indicated the presence of a planet. Fits to the curve implied that the mass of the planet is
∼0.62MJUP at an orbital distance of∼0.046 AU (IAU Circular 7307). Photometric observations
were carried out at the times of transit predicted from the radial velocity data. These observations
reveal a magnitude dip of∼0.02 mag (or approximately 2%). Both Henry et al. 2000 [32] and
Charbonneau et al. 2000 [14] can claim this first detection ofa transiting planet, although the
Charbonneau et al. data set is much more convincing and reliable since they observed two full
transits whereas Henry et al. only observed the start of one transit.

These data allowed the teams to derive a planetary radius of 1.42RJUP, and orbital inclination
sin i > 0.993. The actual mass of the planet was therefore calculated to be∼0.62MJUP.

Knowing the mass and radius of the planet we can calculate thedensity and we get∼0.27 g/m3;
this classifies it as a gas giant. The interesting fact is thatdespite having a mass of only∼62% that
of Jupiter, the radius is∼60% larger than that of Jupiter. This agrees perfectly with theories that
anticipated a bloated planet at this close distance to the host star [28].

1.2.2 Successful Ground-based Transit Search Experiments

An up to date list of extrasolar planets is kept at “The Extrasolar Planets Encyclopedia” maintained
by J.P. Schneider [102]. The web address for this very valuable resource ishttp://exoplanet.eu/.

OGLE

The Optical Gravitational Lensing Experiment (OGLE; [88])uses the 1.3 m Warsaw telescope
located at Las Campanas Observatory in Chile. The telescopehas an imaging camera with a
4K × 4K CCD, and their configuration of the telescope and CCD givesa 35′ × 35′ field of view
(FOV). The main aim of the experiment is to actually detect planets from small deviations in
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standard microlensing events, but also the data is useful for searching for variables and transiting
planets because each field is visited a few and/or many times during one night over many years of
observing seasons. In the first few years of the survey, many transit candidates were announced
[89] but after a while it became clear that a large fraction ofthese are systems that have lightcurves
mimicking a transiting planet (e.g. [86]). However, as of November 2007, OGLE has lead to
the discovery of 7 transiting extrasolar planets close to the Galactic plane (see the website at
http://www.astrouw.edu.pl/∼ogle/).

HAT

The Hungarian Automated Telescope Network (HATNet; [5]) uses a 2K× 2K CCD with a 11 cm
diameter commercial lens. The FOV is 8× 8 square degrees. There are 3 instruments located
around the Earth, one at the Fred Lawrence Whipple Observatory (FLWO) in the US, one at the
Mauna Kea observatory in Hawaii, and one at the WISE observatory in Israel. As of November
2007, the HAT network has discovered 6 extrasolar planets transiting their parent stars (see the
website athttp://www.cfa.harvard.edu/∼gbakos/HAT).

SuperWASP

The acronym WASP stands for Wide Angle Search for Planets consortium [79] and it has a very
similar concept as that of HAT. The cameras use a similar lens(also commercial) but with a
better quality CCD. Currently there are two SuperWASP sitesand at each site there are 8 cameras
mounted on a single robotic equatorial mount. Each camera has a field of view of 7.8× 7.8 square
degrees. More details about the SuperWASP experiment and the prototype experiment WASP0
are described at the beginning of Chapter 4. As of November 2007, SuperWASP has discovered 5
extrasolar planets (see the website athttp://www.superwasp.org/).

TRES

TRES stands for the Trans-Atlantic Exoplanet Survey [4] andthe experiment consists of a network
of three small-aperture telescopes searching the sky for transiting planets (Sleuth at the Palomar
Observatory, Southern California, USA; PSST at the Lowell Observatory, Northern Arizona, USA;
STARE at the Teide Observatory, Canary Islands in Spain). The small telescopes have an f/2.8
lens with a 10 cm aperture that has a field of view of 6× 6 degrees coupled with a 2048x2048
back-illuminated CCD. As of November 2007, TRES has discovered 3 planets (see the website at
http://www.astro.caltech.edu/∼ftod/tres/tres.html).

XO

The XO experiment [50] is similar to HAT and Superwasp in the kind of lens they are using.
However, they use 2 cameras with 1K× 1K pixel CCDs, so that the FOV is about 7.2× 7.2
square degrees. The experiment is located on the summit of Haleakala on Maui, Hawaii and
started observing in September of 2003. The observational technique is different to other surveys
in that the CCD uses a drift scan mode where the CCD is continuously read out at the sidereal



1.2. KNOWN TRANSITING PLANETS 21

rate removing the need for tracking of observations. As of November 2007, XO has discovered 3
planets (see the website athttp://www-int.stsci.edu/∼pmcc/xo/).

1.2.3 Space-based Transit Search Experiments:

SWEEPS

The acronym SWEEPS stands for the Sagittarius Window Eclipsing Extrasolar Planet Search. This
team uses the Hubble Space Telescope (HST) to search for transiting planets towards the centre
of the Milky Way. This experiment has proved that extrasolarplanets can exist anywhere in the
Galaxy [70]. However spectroscopic confirmation of the transit candidates via radial velocity mea-
surements is a difficult challenge because the faintness of the stars puts them beyond even some of
the largest ground-based telescopes. As of November 2007, SWEEPS has discovered 2 transiting
planets (see the website athttp://www.nasa.gov/missionpages/hubble/exoplanettransit.html).

The COROT Mission

The COROT space mission has two objectives:

• Stellar seismology, or the detection and measurement of stellar vibrations.

• The search for planets around stars other than the Sun.

Both objectives require the same technique of very high precision stellar photometry (one hundred
times better than that which can be achieved from the best observatories on Earth), and continuous
observations of the same part of the sky over very long periods (at least 150 days). This is impos-
sible from the Earth, since the Earth’s orbital motion around the Sun only allows us to observe the
same part of the sky for 6 to 8 months. . . and only at night (except at the poles)!

By creating an observing program that consists of observing, in a systematic way, many fields
of 12000 stars, it has been estimated that about one hundred hot Jupiter planetary systems can
be detected, along with a few dozen small/terrestial planets. The first extrasolar planet detection
from COROT was in May of 2007. The planet was named COROT-Exo-1b [101] with an orbital
period of∼1.5 d indicating that it is a very hot Jupiter (since it also has a radius of 1.78 times
that of Jupiter). The host star is a main sequence star very similar to our Sun. COROT-Exo-1b
is the only planet discovered by the COROT mission as of November 2007 (see the website at
http://smsc.cnes.fr/COROT/).

The Kepler Mission

The Kepler Mission is specifically designed to survey the extended solar neighborhood to de-
tect and characterize hundreds of terrestrial and larger planets in or near the habitable zone, and
provide fundamental progress in our understanding of planetary systems. The results will yield a
broad understanding of planetary formation, the frequencyof formation, the structure of individual
planetary systems and the generic characteristics of starswith terrestrial planets.

The scientific goal of the Kepler Mission is achieved by surveying a large sample of dwarf
(main-sequence) stars to:-
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• Determine the frequency of terrestrial and larger planets in or near the habitable zone; dis-
tributions of planet sizes, semi-major axis, albedo, size,mass, and density of short-period
giant planets.

• Determine the properties of those stars that harbor planetary systems.

Kepler is predicted to be able to measure stellar flux with a fractional precision of the order
of 10−5 over the typical transit duration for terrestrial planets (∼13 hours). The mission will use
a differential photometer to continuously monitor the brightness of∼105 dwarf stars for up to
4 years, and hence it is expected to generally see∼4 transits of a terrestrial planet in the habit-
able zone of a Sun-like star (since observations are not interrupted by the day-night and seasonal
cycle). The launch of the mission is scheduled for the beginning of 2009 (see the website at
http://kepler.nasa.gov/).

1.2.4 Using Transits to Determine Accurate Planet Radii

Recently Knuston et al. 2007 [41] gathered 1066 spectra overfour distinct transits of HD209458
with the STIS spectrometer on the Hubble Space Telescope with synthesised multiple-bandpass
photometry (see Figure 1.4). Assuming the stellar mass-radius relation from Cody & Sasselov
2002 [18], and theoretical models for limb darkening to significantly improve the estimates of
the radius and orbital inclination of HD 209458b, they find that the radius of HD 209458b is
1.320±0.025RJUP which is a factor of two more precise than previous measurements. Knutson et
al. 2007 find a density for the planet of 0.345±0.05 g/cm3. The planet’s inclination is found to be
86.929◦±0.010◦, a factor of three more precise than previous measurements.

The above example is a good illustration of how the transit method can be used to measure
accurate planetary radii. From these measurements the planet mass-radius relationship can be
accurately explored which is necessary in order to carefully investigate various planet formation
scenarios.

1.2.5 Using Transits to Detect and Characterise an Extrasolar Planet Atmosphere

One of the aims of studying extrasolar planets is to learn about the composition of the planet
and its atmosphere. By studying the absorption-line spectra of the star during and out of transit,
it is possible to construct the absorption line spectra of the planet [12]. This method has been
used to detect elements such as C, O and Na in the atmosphere ofHD209458 [15] and to learn
that HD209458 is losing elements from its atmosphere as it isblown away due to the planet’s
proximity to its host star [93]. There is even some evidence that the atmosphere of the planet takes
the shape of a comet. For instance, Vidal-Madjar et al. 2003 [92] found that the depth of the transit
is ∼15% if the transit is observed at the wavelength of the Lymanα transition of the hydrogen
atom (compared to the∼1.5% dip in visible light). This means that the hydrogen of the planet
extends out past the Roche limit and the planet must therefore be losing its atmosphere.

Related to the idea of trying to detect an extrasolar planet atmosphere is the recent detection
by the Spitzer Space Telescope of the secondary eclipse of HD209458 [21]. The secondary eclipse
in this case is the obscuration of the planet by the star. Since this extrasolar planet is so close to
its parent star, it is expected to be very hot and the secondary eclipse is therefore much deeper in
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Figure 1.4: Normalized data for the transit curves of HD209458 observed by Knutson et al. 2007
in ten bandpasses. Theoretical fitted transit curves are overplotted. Each bandpass conatins data
from two separate observation visits from HST. Each successive transit curve is offset by 0.004.
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Figure 1.5: The normalised infrared flux ofυ Andromeda b as a function of orbital phase [30].

the infrared than in the visible, which is what has lead to itssuccessful detection. The planet’s
infrared flux confirms its hot temperature at∼1150 K.

The starυ Andromeda is orbited by three known planets, the innermost of which has an orbital
period of 4.617 days. Again infrared observations with the Spitzer Space Telescope have detected
the emission from the hot atmosphere and it was found that theemission varies with the phase
of the planet [30]. This indicates that there is a large temperature difference between the day and
night side of the planet. Figure 1.5 shows the normalised variation in infrared flux of the planet as
a function of phase.

Finally we would like to mention the important discovery of water vapour in the atmosphere of
the hot Jupiter HD189733b while it was transiting its parentstar [83]. The analysis by Tinetti et al.
2007 of Spitzer observations shows that absorption by watervapour is the most likely cause of the
wavelength-dependent variations in the effective radius of the planet at the infrared wavelengths
3.6µm, 5.8µm and 8µm.
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Figure 1.6: The radial velocity curve of HD209458 taken fromMazeh et al. 2000 [49]

1.3 The Radial Velocity Method

The majority of the known extrasolar planets around main sequence stars have been discovered
by the radial velocity method. The method is based on the factthat an orbiting planet perturbs the
host star in such a way that the star also orbits the combined centre of mass of the system. The
motion of the star creates a Doppler shift in the spectral lines of the star which shifts the lines
towards the red when the star is moving away from the observerand shifts the lines towards the
blue when the star is moving towards the observer. Since the planetary motion is periodic then so
is this Doppler shift.

By observing spectra of the host star over the course of an orbital period, we can measure
the radial velocty of the star at various orbital phases fromthe Doppler shift of the spectral lines
relative to some reference lines at rest on the Earth. The radial velocity curve will then look similar
to that shown in Figure 1.6 which is taken from a follow-up paper on the discovery of HD209458b
by Mazeh et al. 2000 [49]. From the radial velocity curve we can calculate the radial velocity
semi-amplitudeK of the star which is related to the star massM∗, planet massMP, inclinationi,
periodP and eccentricitye by the equation:

K =

(

2πG

P

)1/3 MP sin i

(MP + M∗)
2/3

1

(1 − e2)1/2
(1.11)
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We may also determineP from the radial velocity curve, and the star massM∗ can be estimated
from determining the spectral type of the host star from the radial velocity spectra.

Also, if we assume a circular orbit (e = 0) and thatMP ≪ M∗ then Equation 1.11 reduces to:

K = 28.4

(

P

1 year

)−1/3(MP sin i

MJUP

)(

M∗

M⊙

)−2/3

m s−1 (1.12)

MeasuringK allows us to calculate the minimum planet massMP sin i and Kepler’s third law in
Equation 1.10 can be use to determine the orbital radiusa of the planet. We refer toMP sin i as the
minimumplanet mass sincesin i can only take values between 0 and 1 for inclinations between0◦

and 90◦ which implies thatMP sin i is always smaller thanMP. Note that in the case of a planet
with an eccentric orbit, the eccentricity can be determinedfrom the shape of the radial velocity
curve by fitting the correct model to the data.

We consider the example of Jupiter orbiting the Sun. This causes aK = 12.5 ms−1 semi-
amplitude radial velocity with a period of 11.9 years. In thecase of Earth orbiting the Sun,K is
about 0.1 ms−1. Our current limit on radial velocity accuracy is aboutK = 3 ms−1 so Jupiter is
certainly detectable if we observe for long enough, but Earth is not detectable by this method.

Limitations of the radial velocity method include the fact that if the orbital systems that we
observe are seen face on (i = 0) then there is no radial oscillation, and since high signal-to-noise
(S/N) spectra are required to make the radial velocity measurements, observations are limited to
bright stars typically brighter than 9th magnitude in the visible. Equation 1.12 shows that radial
velocity measurements favour the detection of systems withmassive planets, less massive stars
and short periods.

1.4 The Microlensing Method

If two stars are correctly aligned with the Earth, where the first is in the background (the source
star) while the second is in the foreground (the lens star), then the intervening lens star will grav-
itationally bend the light of the more distant source star (see Figure 1.7). An observer of this
situation will see the source star in a magnified state. Sinceboth stars will be moving relative
to each other and the observer, the magnification of the source star is constantly changing and
will reach a peak at the position of closest alignment. In fact the source star will show a typical
symmetrical lightcurve of magnification and demagnification through a peak.

In our Galaxy, source stars tend to be in the Galactic bulge and lens stars somewhere in be-
tween, and the geometry of the events is such that both stars are aligned within the size of the
point spread function (PSF) of a ground based observation. Therefore, from the ground, both the
lens and the source star appear as one point source, and theseevents are termed “microlenses”.
When the lens star has an accompanying planet that also passes close to the line of sight between
the source star and the observer, there is another magnification event due to the planet. This event
appears as a deviation in the standard microlens lightcurve, and the deviation lasts up to a couple
of days for Jupiter-mass planets and a few hours for Earth mass planets. The great potential of this
method is in detecting Earth mass planets because the microlens lightcurve deviation size has the
potential to be infinite no matter what the mass of the planet.
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Figure 1.7: Diagram showing the bending of light towards an observer by an intervening massive
object. The massive object acts like a lens for the light fromthe distant source.

As of November 2007, only four planets have been detected by the microlensing method,
three of which have masses in the range of gas giants [8],[90],[27]. The real potential of the
microlensing method was demonstrated in 2006 with the publication of a very low mass planet
near the habitable zone of its parent star [6]. The best fit planet model has a planet mass of
5.5MEARTH at∼2.6 AU from the host M star. This planet is calculated to have atemperature of
∼50 K which, combined with its mass estimate, makes it most likely to be a frozen super-Earth
(rocky planet). The lightcurve of the discovery microlens lightcurve is presented in Figure 1.8 and
it shows the standard microlens lightcurve with a zoom on thedetected planetary deviation (taken
from [22]).

1.5 Detection via Direct Imaging

This method is the most direct way of detecting an extrasolarplanet since with this method you
are looking to detect photons reflected directly from the planet surface, rather than trying to detect
some indirect signal showing the presence of a planet. However, since the star outshines a planet
in brightness by billions of times in the optical wavelengths because a planet only reflects light,
the imaging of a planet close to such a bright source is very difficult.

In the infrared the contrast between the star and planet luminosities is less at around a million.
Using coronographs to block out the star’s light and adaptive optics to improve resolution has
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Figure 1.8: The microlens lightcurve that lead to the discovery of the∼5.5 Earth mass extrasolar
planet OGLE-05-390Lb, taken from [22].

lead to the first detection of an exoplanet [16]. The planet orbits the brown dwarf 2M1207 in the
constellation of Taurus. In 2005, GQ Lup b was the second exoplanet to be discoverd by the direct
detection imaging method [57] and in the same year the third planet discovered by this method
was AB Pic b [17]. As of November 2007, there are four known planets detected by direct imaging
[7].

1.6 The Pulsar Timing Method

Despite the success of other methods in detecting extrasolar planets, the pulsar timing method
deserves a mention because it lead to the first detection of anextrasolar planet, which happened in
1992 by Wolszczan A. & Frail D [96] who used this method to discover planets around a pulsar.
A pulsar emits radio beams of radiation as it spins rapidly. If this beam passes through the line
of sight during the pulsar rotation period, then the Earth observer receives a brief radio pulse
repeated at the period of the pulsar spin. Pulsars can have periods from 10 ms to 10 s and the
pulses are very regular. The movement of the pulsar due to an orbiting companion can be detected
by the delays caused in the reception of the radio pulses and the sensitivity can reach down to
planet masses smaller than that of the Earth. The disadvantage of the method is that the number
of known pulsars is very small due to the fact that very few arealigned correctly to be beaming at
the Earth. As of November 2007, there are 5 known planets detected using this method.
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1.7 The Formation of Hot Jupiters

Standard planet formation theory (e.g. [63], [10], [45]) predicts that giant planets like Jupiter and
Saturn should be formed at distances of 3 to 5 AU from the host star (for Sun-like stars). This
is because the accretion process for giant planets requirescore accretion involving ice grains. At
distances closer than∼4 AU the ice grains cannot form because the temperature is toohigh due
to the proximity of the host star. In the interior part of the accretion disk only dust and silicates
can accrete to form planets. Gas is blown out of the inner parts by the strong stellar wind from the
young star. Further out in the accretion disk gas can be accreted by the protoplanets because of
the weaker stellar wind and the higher mass of the accretion cores. Hence the theory predicts that
gas giants should form beyond the inner parts of the system.

However the existence of short-period giant planets of low density (like HD290458b) contra-
dicts the standard planet formation theory. To adapt the standard theory to account for hot Jupiters,
a scenario is required in order to explain how gas giants end up close to the host stars. The idea of
planetary migration has been discussed extensively in publications over the last decade as a most
likely explanation. However the main problem with the idea of inward migration of gas giants is
that it is not clear what process stops the migration at such small distances to the host star. Why
does the gas giant simply not fall into the star?

Some ideas have been put forwards in order to explain how suchmigration braking may come
about [48]:

• A central magnetic cavity around the star extending out to the edge of the accretion disk can
stop migration naturally [76].

• Many giant planets form at the same time, but most of them fallinto the central star and
when the disk disappears some giant planets remain [56].

• A mass transfer process via the Roche lobe, or by an exchange of angular momentum,
between the planet and its parent star may cause a braking effect [44], [87].

• Planet evaporation as a result of its gas reaching escape velocity would make the planet lose
mass and consequently move closer to its parent star to conserve momentum [59].

There are some formation scenarios that offer an explanation for hot Jupiters but do not use
migration:

• Jumping Jupiters: If many giant planets have formed at the same time, then there would be a
chaotic interaction between them that may eject some from the system and send others into
very close orbits around the parent star [94], [53] .

• In situ formation: If giant planets are able to form much faster than predicted by the standard
theory, then they may be able to form at very close distances to the host star [97], [98], [31].

It is very clear that planet formation theories are not sufficiently developed in order to explain
the variety of planetary systems that we have detected to date. This is why it is important to detect
as many planets as possible in order to build up statistics about planets of different types orbiting
different types of host stars in many different configurations. The statistics may then lead to being
able to constrain various planet formation and/or migration scenarios.
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Figure 1.9: Plot of orbital eccentricity against semi-major axis in AU for known extrasolar planets
detected by the radial velocity method (red triangles). Solar system planets are also plotted (green
squares). The plot was taken from the website by Phil Armitage in the reference [104].

1.8 Observed Properties of Extrasolar Planets

1.8.1 Planet Eccentricities

The definition for orbital eccentricity is the ratio betweenthe semi-major axis of the ellipse and
the distance from the centre to either of the foci of the ellipse. The eccentricity has a value of zero
for a circular orbit and can take a value between zero and one for an elliptical orbit.

Extrasolar planets appear surprisingly diverse and different from our Solar System. If we look
at Figure 1.9 where the orbital eccentricity is plotted against orbital distance, we don’t see any
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Figure 1.10: Plot ofMP sin i against orbital eccentricity for known extrasolar planetsdetected by
the radial velocity method. Short-period planets (a < 0.1 AU) are plotted as blue triangles and all
other systems are plotted as red squares The plot was taken from the website by Phil Armitage in
the reference [104].

clear relationship. However, with more study it becomes clear that hot Jupiters which have an
orbital radius of less than∼0.1 AU have near-circular orbits similar to those in our Solar System.
This is to be expected due to tidal circularising of orbits which is on a short timescale so close to
the parent star. Figure 1.9 also shows the bias of the radial velocity method towards very close-in
planets. A trend can also be seen that the range of eccentricities increases with semi-major axis.

Also, in Figure 1.10 we can see the absence of planets that have masses of below 0.1 Jupiter
masses with an eccentricity of more than 0.2 although planets of any mass in the known range
can have small eccentricities. This figure shows that higher-mass planets tend to have higher
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Figure 1.11: Plot of orbital eccentricity against period for known extrasolar planets detected by
the radial velocity method. The plot was taken from the extrasolar planet encyclopedia website
[102].

eccentricity orbits.
Figure 1.11 confirms the trends seen in Figures 1.9 and 1.10. For short periods of 1 to 10 days

there are very few planets with an eccentricity of more than 0.2, but as the period increases above
10 days, the scatter in the eccentricities also increases.

1.8.2 The Mass Function

Radial velocities only give the minimum masses of the extrasolar planetsMP sin i. However,
we can still analyse the statistics of the planet minimum mass distributions. The top panel in
Figure 1.12, which is a histogram of extrasolar planet mass corrected for thesin i term, shows that
low mass planets are more common than high mass planets. The bottom panel of the same figure,
which is a histogram of orbital period, also shows that short-period planets are more frequent than
long period planets. Neither of these observed trends are due to biases in the radial velocity method
since radial velocity surveys have been observing for upwards of 10 years and therefore planets
with periods of at least 10 years are within range of the surveys. Also, radial-velocity detections
favour higher-mass planets, not lower-mass planets.
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Figure 1.12: Histograms of planet mass (top) and orbital period (bottom), taken from Sotin et al.
2007 [80].

In Figure 1.13 we show a plot of planet minimum mass against orbital semi-major axis for ra-
dial velocity planets (red triangles) and solar system planets (green squares). Here the lower mass
limits of the radial velocity method with current technology become very clear. At an accuracy
of ∼3 m s−1, which is the current limit, we can detect Jupiter and maybe Saturn, but other Solar
system planets would be out of reach. Even though we may be able to improve on the accuracy
of the radial velocity method with technological advancements, there may be a fundamental limit
to the radial velocity method in that stars can show a radial velocity jitter of up to∼20 m s−1

themselves which would hide any smaller planetary signal [95]. Radial velocity jitter is dependent
on the stellar spectral type and activity level, and for G andF main sequence stars is generally less
than 2 m s−1.

1.8.3 Metal Rich Stars

During the first few years after the first radial velocity planet discovery, it was noticed that there is
a tendency to discover planets that orbit metal rich stars ([25],[26]; stars with the same or higher
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Figure 1.13: Plot of minimum planet mass against semi-majoraxis for radial velocity planets (red
triangles) and solar system planets (green squares). The dashed blue lines mark radial velocity
curve semi-amplitudes of 20 m s−1 and 5 m s−1. The plot was taken from the website by Phil
Armitage in the reference [104].

metal content than our Sun). With the growing number of detected planets, this early trend was
confirmed [71] and strengthened by a homogeneous metallicity determination for a set of planet-
hosting and comparison stars [72]. The abundance ratios of “non-Iron” chemical elements in the
stellar atmosphere ([Li/H], [C/H] and [N/H]) are found to becomparable for stars with and without
planets [71],[72].

This observation fits in well with the idea that an abundance of heavier elements would favour
planet formation. An intensive HST survey of the very metal poor globular cluster 47 Tuc ([Fe/H]
≈ −0.7) failed to detect any transits whereas several dozens were expected [24]. It should be
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noted however, that in the case of 47 Tuc, the absence of planets could be due to the clusters high
stellar density in the monitored region. Close stellar neighbours could prevent the formation of
the protoplanetary disk. However, some debate of the theoryhas been made in the light of the
discovery of a very old planet in the M4 globular cluster [82]since the stars in this cluster have
a heavy element fraction that is 1/20th of the value for the Sun. Another scenario to explain the
association of planets with metal rich stars is that the migration process which happens early on in
the time of planet formation was without a braking mechanismand that many of the protoplanets
ended their lives being engulfed by their parent stars [35].

D. Fischer & J. Valenti 2005 [23] analyse carefully the dependence of the probability of finding
giant planets around stars as a function of metallicity. Figure 1.14 shows plots of the percentage
of stars hosting a giant planet as a function of metallicity [Fe/H]. The data used to produce these
plots consists of 850 stars for which radial velocity measurements have been made that would
ensure the detection of planets with masses high enough to cause 30 m s−1 semi-amplitude radial
velocity curves with periods of 4 years or less. It is very obvious that for stars with [Fe/H]< 0.5,
the probability of finding a giant planet is very small indeed, whereas for Solar metallicity this
probability rises to∼3% and for [Fe/H]> 0.3 the probability is up to 15%. The relationship that
they are able to derive from this data for the range−0.5 <[Fe/H]< 0.5 is as follows:

P(Giant planet companion)= 0.03

[

NFe/NH

(NFe/NH)⊙

]2

(1.13)

Thus the probabilty of a star hosting a giant planet is proportional to the square of the number of
iron atoms.

It is interesting that particle collision rates are also proportional to the square of the number of
particles, which suggests a physical link between dust particle collision rates in the primordial disk
and the formation rate of gas giant planets. This strengthens the argument that high metallicity in
stars with planets is inherited from the primordial cloud, rather than an acquired property, and that
gas giant planets form by accretion rather than gravitational instabilities in a gaseous disk.
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(a)

(b)

Figure 1.14: Plots of the probability of finding a giant planet as a function of metallicity of the
host star. The plots are constructed from a uniform sample of850 stars and the ratio labelled over
each bin is the number of planets to stars in each bin.



Chapter 2

Design of the PASS0 Experiment

2.1 Introduction

This chapter is divided into two parts. The first part deals with the sources of observational noise
for a charge-coupled-device (CCD) detector and the theory behind them. In the design of our
experiment, we need to reduce the effects of the various noise sources as much as possible in order
to reach the∼1% precision required to detect planetary transits. The second part of the chapter is
an introduction to the idea and design of PASS0, and the challenges that we face in order to get
PASS0 to achieve its maximum precision.

2.2 CCD Signal and Noise Modelling

2.2.1 Readout Noise

On reading out a CCD pixel, noise is introduced into the signal from two sources:

1. The on-chip amplifier produces a statistical distribution of values centred on a mean value
when converting from the analogue signal to a digital signal. Hence, even on reading out the
same pixel twice with identical charge, a slightly different digital answer may be produced.

2. The output electronics themselves introduce spurious electrons into the readout process,
producing unwanted random fluctuations in the output signal.

The readout noise, generally denoted byσRON, generally follows a Normal distribution. Hence
it is quoted as a one-sigma value in electrons. It can be measured as the standard deviation of a
bias frame, where a bias frame is a zero-second exposure withthe shutter closed. The readout
noise for the PASS0 camera with the Apogee U10 CCD is∼9 e− (see Section 2.3.10).

2.2.2 Bias Level

The readout electronics apply a non-zero voltage to the CCD and the consequence of this is that
on readout, the pixel values include an additive bias level.This bias level can vary from image to

37



38 CHAPTER 2. DESIGN OF THE PASS0 EXPERIMENT

image and hence a few extra read cycles are performed before or after reading the real physical
pixels in order to quantify this level. This area of the imageis called the overscan region, and
the mean of this area is an estimate of the bias level. Images without an overscan region can be
corrected for bias level by taking bias frames interspersedbetween the actual observations. This
is the tactic we use with the PASS0 CCD which does not possess an overscan region.

2.2.3 Bias Pattern

On some CCDs there is a fixed pattern in the bias frames which will need to be removed from the
science images by subtraction of the pattern. The easiest way to do this is to construct a master
bias frame by combining many bias images together using the median or mean, which results in a
high S/N estimation of the bias pattern.

2.2.4 Dark Current

The electrons in the silicon of a CCD may be thermally agitated and freed, consequently to be
collected in the potential well of a pixel. Hence these thermal electrons accumulate along with the
signal to be measured, and constitute a dark current. Clearly the dark current is a strong function
of CCD temperature, and can be minimised by cooling down the CCD as much as possible. The
cooling system of the PASS0 camera for instance achieves a CCD temperature of -20◦C, which
strongly suppresses the dark current for the CCD, but is not enough cooling to reduce it to a
negligible level.

Characterising the dark current of a CCD at a particular temperature can be done by integrating
the CCD for a certain time (usually the same integration timeas the science observations) with
the shutter closed so as to only accumulate thermal electrons. A large number of dark images can
be combined to create a masterdark image which can be scaled to each science image using the
relative exposure times and subtracted, since dark currentis an additive effect.

The presence of a dark current can also introduce extra Poisson noise from the random nature
of the thermal electrons. The thermal noise is usually denoted byσTH and it is given by:

σTH =
√

D(x, y)∆t (2.1)

whereD(x, y) is the number of thermal electrons generated per second as a function ofx andy
position on the CCD, and∆t is the exposure time.

2.2.5 Photons

When the shutter on a CCD is opened, photons arrive at the CCD and knock electrons from
the silicon valence bands, which are subsequently collected in the potential wells of the pixels.
Photons in CCD observations arrive from two sources, sky background emission and astronomical
objects. Independent of the source of the photons, the photons arrive in a random manner with a
Poisson distribution. Hence, for a pixel of sensitivityF receiving a flux ofX photons per second,
XF photo-electrons per second are produced and the photon noiseσPH amounts to

√
X F ∆t in a

∆t second exposure.
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Each pixel in a CCD has a slightly different sensitivity to photons. This non-uniformity in de-
tector sensitivity can be characterised by imaging a brightuniform source (like the twilight sky).
These type of images are called flatfields, and they may be combined, usually via the median to
avoid bright stars, into a high signal-to-noise master flatfield which maps the sensitivity varia-
tions. The master flatfield, after appropriate normalisation, is then used to correct the non-uniform
sensitivity by dividing it into the science images.

The model for a raw CCD pixel valueZ(x, y) in electrons, taking into account all of the above
sources, may be written as:

Z(x, y) = B(x, y) + D(x, y)∆t + X(x, y)F (x, y)∆t (2.2)

whereB(x, y) represents the bias pattern including the bias level (electrons),D(x, y) is the dark
current per second,X(x, y) represents the distribution of incoming photons per second, F (x, y) is
the master flatfield (dimensionless) and∆t is the exposure time in seconds. The calibrated CCD
pixel valueX(x, y) in electrons per second is therefore given by:

X(x, y) =
Z(x, y) − B(x, y) − D(x, y)∆t

F (x, y)∆t
(2.3)

During the analogue to digital conversion in a CCD, electrons get converted to counts (or
ADUs) at a rate ofG electrons per ADU. The value ofG is referred to as the CCD gain. Equa-
tions 2.2 and 2.3 can be used in either units of electrons or ADUs. The gain for the PASS0 camera
with the Apogee U10 CCD is∼2.3 e−/ADU (see Section 2.3.10).

2.2.6 Pixel Noise

Combining all of the above discussion, we can write an expression for the noise in the raw pixel
valueσZ in electrons as:

σ2
Z(x, y) = σ2

RON + σ2
TH + σ2

PH (2.4)

All of σRON, σTH andσPH have units of electrons. Using the expressionsσTH =
√

D(x, y) ∆ t
andσPH =

√

X(x, y) F (x, y) ∆t gives:

σ2
Z(x, y) = σ2

RON + D(x, y)∆t + X(x, y)F (x, y)∆t (2.5)

Converting all quantities to ADU and ADU/s gives:

σ2
Z(x, y) = σ2

RON +
D(x, y)∆t

G
+

X(x, y)F (x, y)∆t

G
(2.6)

The process of calibrating the CCD pixel values via Equation2.3 affects the pixel noise model as
follows:

σ2
X(x, y) =

σ2
RON

(F (x, y)∆t)2
+

D(x, y)

F (x, y)2 G∆t
+

X(x, y)

F (x, y)G∆t
(2.7)

Again we are using ADU units in place of electrons (e−), and ADU/s in place of e−/s, where
appropriate. From now on in the analysis we only consider units of ADU and ADU/s.
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2.2.7 Measuring the CCD Gain

At this point we are in the position to be able to measure the CCD gain using Equation 2.7. The
simplest way to do this is to take two consecutive and identically-exposed bias-corrected flatfields
F1 andF2 and form the difference image∆F = F1 − F2. The exposure levelH of the two
flatfields can be measured by taking the mean of the central region. We are able to measure
the noiseσ2

∆F (x, y) on the difference image, which is free from a flatfield patternsince it is the
difference of two flat fields taken under exactly the same conditions. Assuming that the master
flatfield is approximately 1 and that the dark noise is negligible, then we get:

G =
2H

σ2
∆F (x, y) − 2σ2

RON

(2.8)

This method may be repeated with numerous pairs of flatfields in order to get a set of gain mea-
surements for the CCD from which the mean gain can be calculated. The gain for the PASS0
camera with the Apogee U10 CCD is∼2.3 e−/ADU (see Section 2.3.10).

2.2.8 Signal-to-Noise Ratio

The photons from an astronomical source are rarely confined to a single pixel. The signal is
spread over a small area of the CCD consisting of a group of pixels, and the distribution of the
photons is defined by the combination of the source light distribution and the combined point-
spread function (PSF) from the atmosphere and instrument. For stars, which are effectively point
sources, the photons are simply distributed via the PSF.

If we assume that we have a signal ofN∗ detected photo-electrons per second from a star, then
in ∆t seconds we obtainN∗∆t photo-electrons on the CCD. These photo-electrons are spread
out overnpix pixels, which each contain a sky background signal ofNSKY∆t photo-electrons. By
assuming that the noise contribution from the dark current is negligible (for a low dark current),
then the theoretical signal-to-noise (S/N) that we may get when measuringN∗∆t is:

S
N

=
N∗∆t

√

N∗∆t + npix(NSKY∆t + σ2
RON)

(2.9)

Note that hereσRON has units of electrons, as in the rest of this subsection. This equation is called
the “CCD Equation” [55], and there are various formulationsof this equation in the literature (e.g.,
[58] and [29]).

We may rewrite Equation 2.9 for two cases when various noise sources dominate. Generally
readout noise contributions never dominate sky noise contributions since there is always an appre-
ciable sky background signal. In the case where the star is bright, and its photons dominate the
sky photons,N∗ ∆ t ≫ npix NSKY ∆t, then we have:

S
N

=
√

N∗∆t (2.10)

yielding the expected result for a measurement of a single Poisson behaved value. In the case
where the sky background is bright enough to dominate the star photons,N∗ ∆ t ≪ npix NSKY ∆t,
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Figure 2.1: Example plot of signal-to-noise versus exposure time for a star signal spread out over
a 100 pixel area (regardless of shape). The various values for N∗ andNSKY are labelled on the
different curves. All curves are proportional to

√
∆t. It is assumed that the CCD does not saturate.

then we have:

S
N

= N∗

√

∆t

npixNSKY
(2.11)

In both cases, the signal-to-noise of the star signal only grows as S/N∝
√

∆t. In Figure 2.1,
we show the evolution of the signal-to-noise versus time fora set of stars with different fluxes and
measured under different sky background conditions. Readout noise is considered negligible and
saturation is ignored.

At this stage we note that given a desired S/N, we may calculate the required exposure time in
order to achieve this by inverting Equation 2.9 and solving the quadratic equation. Consequently



42 CHAPTER 2. DESIGN OF THE PASS0 EXPERIMENT

we find that:

∆t =
−B +

√

(B2 − 4AC)

2A
A =N2

∗

B = − (S/N)2(N∗ + npixNSKY)

C = − (S/N)2npixσ
2
RON

(2.12)

2.2.9 Lightcurve Noise

Here we derive the expected scatter in the lightcurves as a function of star brightness. These
calculations are necessary because they help to define the theoretical best precision that we can
reach in our lightcurves, in the case that we have a “perfect”data reduction pipeline. Since our
pipeline will not be perfect, these calculations will allowus to assess the quality of our reductions.
The result also depends on the method used to perform photometry on the calibrated CCD images.
We get a different result for aperture photometry as opposedto optimal PSF scaling. We derive
both results below.

We start by assuming that we have a CCD detector with readout noise σRON in ADU and
gainG. We assume that the dark current is negligible so thatD(x, y) ≈ 0, that the flatfield is
F (x, y) ≈ 1 and we use a single exposure time of∆t seconds. We represent the sky counts
(ADU/s/pix) asS(t) wheret is the time of observation, and the star counts (ADU/s) byN∗(t).
Our pixel noise model then becomes (using Equation 2.7):

σ2
X(x, y, t) =

σ2
RON

∆t2
+

X(x, y, t)

G∆t
(2.13)

whereX(x, y, t) andσX(x, y, t) represent the calibrated pixel value and its error bar (in units of
ADU/s), as functions of pixel coordinatesx andy.

In aperture photometry, we measure the star flux by placing a circular aperture of radiusR
pixels at the position of the star, summing the counts in thisarea and subtracting the sum of
the sky counts in this area. The sky background level can be estimated using a larger annulus
around the star aperture and calculating the median of thesepixels (to protect from other objects
contaminating the sky flux). The number of pixels in the star aperture is simplyπR2 pixels. To
summarise this process in an equation we may write:

N∗(t) =
∑

x,y

X(x, y, t) − πR2S(t) (2.14)

Here we are assuming that the size of the aperture is sufficient to enclose all star counts from the
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point-spread function. Using Equation 2.13, the variance of N∗(t) is given by:

σ2
N∗

(t) =
∑

x,y

σ2
X(x, y, t)

=
πR2σ2

RON

∆t2
+

πR2S(t)

G∆t
+

N∗(t)

G∆t
(2.15)

In astronomy we usually work in magnitudes, and we convert the flux to a magnitudem(t) via the
relation:

m(t) = M0 − 2.5 log(N∗(t)) (2.16)

whereM0 is some zeropoint magnitude. The zeropoint may vary from image to image, and is
usually determined from a set of standard stars in the field ofview. The corresponding error bar
onm(t), denoted byσm(t), is given by:

σm(t) = 1.0857
σN∗

(t)

N∗(t)
(2.17)

The root-mean-square (RMS) uncertainty in the mean level ofa lightcurveσLC may be calculated
from:

σ2
LC =

∑

t σ2
m(t)

NIM
(2.18)

whereNIM is the number of images in the sequence. By combining Equations 2.15, 2.17 and 2.18,
we may derive:

σ2
LC =

1.08572

NIM

(

πR2σ2
RON

∆t2

∑

t

1

N∗(t)2
+

πR2

G∆t

∑

t

S(t)

N∗(t)2
+

1

G∆t

∑

t

1

N∗(t)

)

(2.19)

In PSF photometry, we measure the star flux by fitting a PSF model at the position of the star.
This PSF model is usually previously constructed from fits tosuitable bright and isolated stars.
Fits may be analytical, empirical or some combination. We consider the case where a known
empirical PSF is simply scaled to the star at its already known position, and where the scaling is
done using the optimal scaling formula. This case corresponds to the difference imaging pipeline
we use to reduce our data later on (see Section 3.1). Since we are measuring difference images
(see Sections 3.1.3 and 3.1.4), the flux we are measuring is a difference flux, which we denote as
∆f(t), with units ADU per second.

We represent the PSF as the functionP (x, y, t). Then, using the optimal scaling formula, we
may measure∆f(t) as:

∆f(t) =

∑

x,y X(x, y, t)P (x, y, t)/σ2
X (x, y, t)

∑

x,y P (x, y, t)2/σ2
X(x, y, t)

(2.20)

The associated variance is given by:

σ2
∆f (t) =

1
∑

x,y P (x, y, t)2/σ2
X(x, y, t)

(2.21)
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Figure 2.2: A diagram showing the design concept of the PASS instrument

Note that again,σ2
X(x, y, t) is given in Equation 2.13 as our pixel noise model. In difference

imaging, the total star fluxN∗(t) may be obtained from the following equation (see Section 3.1.4):

N∗(t) = Fref +
∆f(t)

p(t)
(2.22)

whereFref is the star flux as measured on the reference image in ADU/s (see Section 3.1.2, and
p(t) is the photometric scalefactor (see Section 3.1.4). Therefore the error onN∗(t) is given by:

σ2
N∗

(t) =
1

p(t)2
∑

x,y P (x, y, t)2/σ2
X(x, y, t)

=
σ2

∆f (t)

p(t)2
(2.23)

To calculate the final noise in the lightcurveσLC, we need to use Equations 2.17 and 2.18. There
is no simple analytical expression forσLC as in the aperture photometry case.

2.3 PASS: Permanent All Sky Survey

2.3.1 The Motivation and Ideas Behind PASS

The primary goal and original envisioned idea of the Permanent All Sky Survey (PASS) is to detect
all transiting hot Jupiters in the entire sky, complete for hoststars between 5.5-10.5 mag, with
transits deeper than∼10 mmag, and with periods up to 1 week [20]. To achieve all-skycoverage, at
least two sites are required, and so we consider here how the experiment would be set up at a single
site. The sky above 30◦ elevation may be observed simultaneously using an array of CCD cameras
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of short focal length (approximately 50 mm and f-ratio f/1.4) orientated in different directions.
The CCD cameras would be fixed on a sturdy platform, ensuring the mechanical stability and
simplicity of the instrument, and a completely removable enclosure would be used to protect the
instrument when not in use. Figure 2.2 shows how PASS might look in reality.

One key in the design of PASS would be the synchronization of the start of each exposure with
Local Sidereal Time (LST). By ensuring that images are always taken at a fixed set of LSTs, stars
will trail over exactly the same CCD pixels for a given LST on different nights. The resulting pho-
tometry of stars at the same LST will then avoid systematic errors, such as flatfielding errors, that
do not vary from night to night. Also groups of images from a single LST are directly comparable
and already aligned with each other.

The data collected by PASS will not just be useful for planet hunting, but will also supply
information about any variability in the field, whether theybe variable stars, moving objects,
or transient events. PASS will provide a temporal spacing ofaround 30 seconds between data
points, allowing the characterisation of variable stars with periods as short as half an hour and as
long as years, depending on the length of operation of PASS (which will hopefully be indefinite).
Moving objects, such as asteroids, will drift slowly through the field of view, and astrometry and
photometry can be performed on such objects. Transient events may appear in just one image, but
the all sky coverage and high duty cycle will ensure the observation of events brighter than∼10th
magnitude.

PASS is not the first project to attempt all-sky surveillance. The All Sky Automated Survey
(ASAS; [64]) observes the whole southern sky once every two days, and provides reliable pho-
tometry down to∼14 mag. This survey has published the discovery of many variable stars (e.g,
[65], [66]). The RAPTOR survey [91] is a spatially distributed system of autonomous robotic
telescopes that is designed to monitor the sky for optical transients. The Kilodegree Extremely
Little Telescope (KELT; [60]) is a survey for planetary transits of bright stars (8-10 mag) using a
small-aperture wide-field (26◦x26◦) robotic telescope. The camera achieves coverage of∼25% of
the northern sky by cycling through a fixed set of observationfields. The project has produced∼4
transit candidates [61], none of which have been proven to beplanets. Finally, it should be noted
that there has already been one transit detection experiment similar in design to PASS. This was
the South Pole Exoplanet Transit Search [13] that uses a large-format CCD and a fast f/1.5 300 mm
focal length lens to give a seven degree field-of-view. No results have been reported to date.

2.3.2 PASS0: A Prototype PASS Experiment

Our prototype PASS experiment, which we name PASS0, was constructed with a single CCD and
lens combination. The aim of PASS0 was to test the ideas behind the PASS experiment. Our first
task was to evaluate the CCD detector and lens combination that would be used, and compare it to
that used by the SuperWASP experiment.

We consider four different commercial CCDs from Apogee (AP47P, AP8P, AP10 and AP9E)
with different Nikon lenses with fixed focal lengths 35 mm, 50mm and 85 mm. Each lens is
considered at its maximum aperture (or f-stop), which are f/1.4, f/1.2 and f/1.4 for the 35 mm,
50 mm and 85 mm focal length lenses respectively. For each lens and CCD combination, we carry
out the following evaluation of the potential planet catch.



46 CHAPTER 2. DESIGN OF THE PASS0 EXPERIMENT

For each CCD we are given information by the manufacturer on quantum efficiency (QE), the
size/dimensions of the CCD in pixels and the pixel size in microns. This information is listed in
Table 2.1 for the CCDs that we have chosen to evaluate. We alsolist in the table the focal length
of each lens used in the evaluation, along with its maximum aperture. We proceed to evaluate the
CCD and lens combinations by calculating the following quantities using the recipe we describe
below.

To calculate the pixel size in arcseconds∆arc, we use the relation:

∆arc =

(

3600 × 180

1000 × π

)

×
(

∆µ

fl

)

(2.24)

where∆µ is the pixel size in microns andfl is the focal length of the lens in mm. The field-of-view,
FOV, in degrees of each camera is given by:

FOV =
√

Dx Dy ×
∆arc

3600
(2.25)

whereDx is the CCD size in thex-direction in pixels, andDy is the CCD size in they-direction
in pixels. However, for PASS0, where stars trail across the CCD, this FOV would need scaling
according to how long it takes for a star to trail across the CCD and the length of an observing
night. For simplicity we do not make this adjustment, especially since we are trying to compare
various CCD and lens combinations. To calculate the sky magnitudeMSKY, assuming a standard
sky magnitude per square arcsecond of 18, and assuming a typical FWHM of 2 pixels for the PSF,
we use:

MSKY = 18 − 2.5 log(A)

A = Neff ∆
2
arc

=

(

π

2 ln(2)

)

× 4∆2
arc

(2.26)

whereNeff is the number of effective pixels of a Gaussian PSF. To get this result we have used
Equation B.8 from the Appendix B.

We now require to calculate the magnitude of the faintest star for which we can detect transits
at a signal-to-noise ratio (SNR) of 10. We start by assuming that our typical hot Jupiter has the
same radius as Jupiter, a period of 4 days and orbits a star with the same radius as our Sun. We also
assume that our survey observes for 30 nights (so that finallywe can quote the number of planets
we expect to detect on a per month basis) and on average 6 hoursper day. Using Equations 1.3
and 1.8, we get a transit depth of∼10 mmag, a transit duration of∼2.88 hours and∼1.9 transits
observed in one month on average. Taking Vega as our standardstar with magnitude zero and a
photon flux of approximately 103 photons per cm2 per sec per̊A at 5500Å, then for a bandwidth
of 1000Å, we calculate the number of counts per secondVcps arriving at the detector for a zero
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magnitude point source object as:

Vcps = 106 × Q ×
(π

4

)

× D2
l

Dl =
fl

10 fs

(2.27)

whereQ is the detector quantum efficiency,Dl is the lens diameter in cm andfs is the lens f-stop.
The counts per second due to sky backgroundScps are then calculated via:

Scps = Vcps× 10−0.4 MSKY (2.28)

and the number of sky counts received during the transit duration ST is then given by:

ST = ScpstT (2.29)

wheretT is the transit duration in seconds. In a similar way we can derive:

CT = Vcps× 10−0.4 M∗ × tT (2.30)

whereCT is the star counts during one transit. Using Equation 2.9 (ignoring readout noise), we
get the signal-to-noise for one transit SNR1 as:

SNR1 =

(

CT√
CT + ST

)

δT (2.31)

whereδT is the fractional transit depth. For more than one observed transit we derive a signal-to-
noise SNRN given by:

SNRN = SNR1

√
N (2.32)

whereN is the number of observed transits. Our requirement is that we can detect multiple transits
at a SNR of 10. We can rearrange Equations 2.30, 2.31 and 2.32 to get a quadratic equation for
the number of star counts during one transit:

C2
T − B2 CT − B2 ST = 0 (2.33)

B =
SNRN

δT
√

N
(2.34)

The quadratic equation can be solved in the standard way and we take the positive solution to get:

CT =

(

B

2

)

×
(

B +
√

B2 + 4ST

)

(2.35)

Finally, the faint star limit for a SNR of 10 is calculated from:

M∗ = −2.5 log

(

CT

VcpstT

)

(2.36)
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Table 2.1: Evaluation of each CCD and lens combination, listing useful quantities to be taken into account when designing the survey.
CCD Lens QE Dimensions Pixel Size Pixel Size FOV Sky Faint Star Distance Number Of Planet Discoveries

(pixel) (micron) (arcsec) (deg) Magnitude Magnitude Limit (pc) Stars (×103) Per Month
AP47P 35mm, f/1.4 0.7 1024x1024 13.3 78.4 22.3 6.14 9.08 75 1.07 0.55
AP8P 35mm, f/1.4 0.7 1024x1024 24.0 141.4 40.2 4.85 8.45 56 1.47 0.76
AP10 35mm, f/1.4 0.3 2048x2048 14.0 82.5 46.9 6.02 8.55 59 2.27 1.18
AP9E 35mm, f/1.4 0.5 2048x2048 9.0 53.0 30.2 6.98 9.29 83 2.64 1.37
AP47P 50mm, f/1.2 0.7 1024x1024 13.3 54.9 15.6 6.91 10.02 116 1.94 1.00
AP8P 50mm, f/1.2 0.7 1024x1024 24.0 99.0 28.2 5.63 9.40 87 2.65 1.37
AP10 50mm, f/1.2 0.3 2048x2048 14.0 57.8 32.9 6.80 9.50 91 4.13 2.14
AP9E 50mm, f/1.2 0.5 2048x2048 9.0 37.1 21.1 7.76 10.24 128 4.80 2.49
AP47P 85mm, f/1.4 0.7 1024x1024 13.3 32.3 9.2 8.06 11.00 182 2.60 1.35
AP8P 85mm, f/1.4 0.7 1024x1024 24.0 58.2 16.6 6.78 10.38 137 3.56 1.85
AP10 85mm, f/1.4 0.3 2048x2048 14.0 34.0 19.3 7.95 10.47 143 5.52 2.86
AP9E 85mm, f/1.4 0.5 2048x2048 9.0 21.8 12.4 8.91 11.22 201 6.40 3.32
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Table 2.2: Evaluation of the number of star counts for the PASS0 and SWASP cameras in various
magnitude ranges and observational directions. The columnheadedM represents the apparent
magnitude range considered extending 0.5 magnitdues either way around the listed magnitude.
The columns headed withb correspond to different Galactic latitudes and we only consider the
Galactic longitude of 90◦ (in the Galactic plane perpendicular to the Sun-Galactic centre line).

AP10 with 50mm,f1.2 SWASP with 200mm,f1.8

M b = 0 b =90 b = 0 b = 90

4 83 18 3 0
5 200 35 13 2
6 331 148 19 4
7 1500 382 90 21
8 3852 944 229 65
9 13484 2196 806 146
10 38730 4650 2316 253
11 93839 9547 5612 533
12 175694 16088 10508 942

Total 327713 34008 19596 1966

Using the faint star magnitude limit, we can now calculate the distanced, in parsecs, out to
which we can detect a transiting planet at a SNR of 10 using thefollowing equation for solar-type
stars:

d = 101+(M∗−4.7)/5 (2.37)

Here we have ignored Galactic extinction because of the relatively small distances involved (< 300 pc).
The solid angleΩ corresponding to the FOV of the survey calculated earlier can be obtained from:

Ω =

(

FOV
180/π

)2

(2.38)

The volume of the surveyV in cubic parsecs is then given by:

V =

(

Ω

3

)

d3 (2.39)

The average density of main sequence stars in the solar neighbourhood is∼0.05 stars per parsec3.
Hence the number of starsN∗ in the survey is given by:

N∗ = 0.05V (2.40)

We can now make the assumption that∼0.5% of stars host a hot Jupiter, and using Equation 1.2
we get a transit probability of∼0.10 for our assumed hot Jupiter. Since we have considered
observations over a period of 30 days, we can estimate the number of planets detected per month
Nppm as:

Nppm = 0.005 × 0.10 × N∗ (2.41)
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Figure 2.3: The PASS0 camera in its enclosure at the Teide observatory in Tenerife.

In Table 2.1, we present the most important quantities from those we calculated above. In
choosing the CCD and lens combination we used to construct PASS0, we tried to balance a number
of important considerations. The main aim of the PASS project is to maximise the discovery rate
of extrasolar planets. For this reason it is obvious that theAP9E CCD is the best choice for the
detector regardless of the chosen lens. This CCD achieves the best planet discovery rate because
of its relatively high quantum efficiency and its large field of view. However, we also want to
design the PASS experiment to be complementary to the SuperWASP project rather than to be in
competition. The SuperWASP cameras target stars from 9th to15th magnitude and mainly expect
to discover planets in the 9th to 12th magnitude range. For this reason we want to avoid overlap of
the survey magnitude limits between the projects and the AP9E CCD goes too deep for our aims.
The next best choice is the AP10 CCD which also happens to be the WASP0 CCD. This CCD
supplies the largest field of view regardless of the lens used, and combined with the fact that it is
∼30% cheaper (at the time of purchase) than the AP9E CCD, we have opted for the AP10 CCD.

The choice of lens is also based on the above considerations.The 85mm lens goes deep enough
to overlap the SuperWASP magnitude range with the AP10 CCD and its field of view becomes
restrictive, and so we do not choose this lens. The 35mm lens provides a large field of view, but
with the f-stop available at 1.4, the lens is slower than the 50mm lens at f-stop 1.2 (i.e. it has
a smaller diameter) and this increases the exposure time necessary in order to reach a specified
S/N. We want to minimise the exposure time for efficiency and also to minimise trailing since the
longer the star trails the smaller S/N that we can achieve andthe more blending that the stars suffer
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from. Finally the 35mm lens suffers from the most vignettingand aberrations which will limit the
quality of the photometry that we can perform. Hence we choose the 50mm lens with f-stop of
1.2.

Finally we compare the idea of the PASS0 experiment to the SWASP experiment by a simple
comparison of the number of stars that will be surveyed at various magnitude intervals. We do this
by using the Besancon model for the Galaxy [68], and quote theresults of the star counts for each
magnitude range and observing direction. The Besancon model is the generally accepted model
of the Galaxy star population used in many astrophysical applications and we refer the interested
reader to the relevant publication of Robin et al. 2003 [68] for the model details. In Table 2.2 we
present the results of the Besancon model simulations carried out using the interactive webpage at
http://bison.obs-besancon.fr/modele/. The results indicate that in the primary magnitude range of
PASS0 from 6th to 9th magnitude the PASS0 experiment will survey approximately 20 times as
many stars as the SWASP experiment per camera showing its superiority for this magnitude range.

In Figure 2.3 we show a picture of the PASS0 camera as it was finally constructed with the U10
CCD (a better CCD, see Section 2.3.10) and 50mm lens in its enclosure at the Teide observatory
in Tenerife.

2.3.3 Essential Considerations for Successful Non-Tracking Observations

In carrying out a very wide field survey we face many challenges that we need to overcome. The
commercial lens that we use for PASS0 suffers from optical vignetting and spherical aberration.
Vignetting reduces the S/N towards the edges of the images and spherical aberration deforms the
PSFs of the stars towards the edges of the images.

In Figure 2.4 we show a 2D polynomial fit to the sky background of a typical PASS0 image
taken at f-stop of 1.2 which clearly illustrates the magnitude of the vignetting. Ideally the sky
background should be flat. This vignetting is also visible inthe image shown at the top in Fig-
ure 2.5 which was taken with an f-stop of 1.2. In the same imagewe can see that the star PSFs are
being deformed towards the edge of the image, which is a bigger effect than the short star trails in
the 20 second exposures.

The easiest way to reduce the problems with the vignetting and lens aberrations is to step
up the f-stop. The image shown at the bottom in Figure 2.5 has been taken with an f-stop of 2,
and now the vignetting amplitude is greatly reduced and the star PSFs are not distorted towards
the edges of the CCD. However, by stepping down from an f-stopof 1.2 to an f-stop of 2, the
lens diameter decreases by a factor of 0.6, and consequentlythe S/N we can achieve in a fixed
exposure time falls by a factor of 0.36. If we can develop methods to cope with the vignetting and
PSF deformations when doing the image reductions and data photometry, then it is clear that we
should still choose an f-stop of 1.2 to maximise our S/N.

Our approach to calibrating properly the lens vignetting involves obtaining a set of high quality
flatfields. Twilight sky flats are not suitable because they produce a large sky background gradient
since the sky is not sufficiently uniform over the PASS0 largefield of view. Also, since twilight
is restricted to a short time period of about half an hour, only a limited number of flat fields may
be obtained. Finally, stars appear in the twilight flat field images since the lens is a fast lens, and
these stars will interfere in constructing a high quality master flat field. Our solution has been
to construct a large white screen of light diffuser materialwhich we use as a source of uniform
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Figure 2.4: Plot of a 2D polynomial fit to the sky background ofa PASS0 image taken at f-stop 1.2.
The effect of the lens vignetting is to create a sky background that reaches a peak in the middle of
the CCD and falls off towards the edge of the CCD. Ideally the sky background should be flat.

illumination. Many flat fields may be taken at once using this device which allows us to construct
a very high S/N master flat field of a truly uniform source. Notethat flat fields are all taken at the
same CCD temperature for consistency and this temperature is below 20 degrees Celsius.

Next we consider the photometry method that we intend to use for the PASS0 image data.
Aperture photometry is possibly the simplest method and we make some initial tests on a WASP0
image of 60 second exposure using the AP10 CCD. The first challenge was to design the correct
aperture for a trailing star and we did this by redesigning the aperture used in the WASP0 pipeline
as shown in Figure 2.6. It is clear from the image that many apertures overlap, a situation that is
worsened by the trailing. For PASS0 with a much larger pixel scale, this problem will be much
worse.
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Figure 2.5:Top: PASS0 20 second image using a f-stop of 1.2.Bottom: PASS0 20 second image
using a f-stop of 2.
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Figure 2.6: A WASP0 60 second image with example apertures tobe used for aperture photometry.
The 180 mm lens FOV is 9◦ × 9◦ with a diameter of 6.30 cm and aperture f/2.8. The WASP0
camera uses the AP10 CCD.

At this point we see that the image subtraction method (see Chapter 3) can reduce the problem
of the blending of stars since all constant stars are removedin the difference images, and measuring
the difference images of variable stars is then a much cleaner process. Only blend stars that
lie within the PSF of the star being considered will continueto affect the lightcurve. Also, by
combining the image subtraction method with an optimal PSF scaling on the difference images in
order to measure the differential fluxes, we can achieve a better signal-to-noise ratio than aperture
photometry (because aperture photometry is not optimal). It is clear that for the experiment to
work we will need to create a pipeline that uses difference imaging.
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2.3.4 Trailing and its Effect on Signal-To-Noise

Star trailing is the obvious consequence of stationary observations. The main effect of the trailing
will be to spread out the star photons over a larger area of skyincreasing the sky noise that needs
to be taken into account when calculating the S/N of an observation. The longer the exposure time,
the longer the trail and consequently the more sky noise thatis added to the overall noise. The
length of a star trail in a certain exposure time depends on where we look on the sky, since stars
trail at the fastest rate on the celestial equator and at their slowest rate at the celestial poles.

In this section we try to quantify the effect of star trailingon the S/N of the observations. We
assume the values listed in Table 2.1 for the AP10 CCD and 50mmf/1.2 lens that we used for
constructing PASS0. We calculate the Vega counts per secondfrom Equation 2.27 and divide by
the CCD gain (15.5 e−/ADU) to get 2.639× 105 ADU/s. We can then calculate the star ADU per
secondCADUps for a star of magnitudem using:

CADUps = 2.639 × 105 × 10−0.4 m (2.42)

To calculate the sky counts in ADU per second per pixelSADUpspp we use:

SADUpspp =2.639 × 105 × 10−0.4 MSKY

MSKY =18 − 2.5 log
(

∆2
arc

)

(2.43)

and we note that each pixel is of size 57.8′′ (from Table 2.1).
Now we consider the case of no trailing which corresponds to “normal” observations (by

WASP0 for example) and to PASS0 when it is observing towards the celestial pole (δ = 90◦).
We want to calculate the signal-to-noise of an observation,using optimal PSF scaling, and as a
function of exposure time, which will involve the use of Equations 2.13, 2.20 and 2.21. To do
this we assume that the typical FWHM of the untrailed PSF is 2 pix and use this to generate a
normalised Gaussian PSF for the PSF functionP (x, y). We then use the known sky flux and star
flux to generate a model image, which becomes the termX(x, y). Finally we take the AP10 CCD
readout noise to be 1.3 ADU. The signal-to-noise SNR we calculate as:

SNR=
N∗

σN∗

(2.44)

In Figure 2.7 we plot the calculated signal-to-noise for a non-trailed image as a function of expo-
sure time for three example stars of magnitudes 7, 8 and 9 (solid curves).

To calculate the S/N for a trailed star image, we simulate thetrail by summing many Gaussian
PSFs shifted relative to each other and along the direction of the trail. The trail image is then
renormalised to giveP (x, y) and used together with the sky flux and star flux to calculateX(x, y).
The trail lengthLtrail, in pixels, is calculated using the equation:

Ltrail =

(

360 × 60 × 60

24 × 60 × 60

)

×
(

∆t cos δ

∆arc

)

(2.45)

whereδ is the declination of the observation. There is no trailing at the celestial pole (δ = 90◦)
and the fastest trailing occurs at the celestial equator (δ = 0◦). In Figure 2.7 we plot the calculated
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Figure 2.7: The S/N as a function of exposure time for a singleimage with no trailing (solid
curves) and trailing at the celestial equator (dashed curves). Each curve corresponds to a star of a
different magnitude (7, 8 or 9) and all the curves correspondto the PASS0 camera.

signal-to-noise for trailed images at the celestial equator for three example stars of magnitudes 7,
8 and 9 (dashed curves). The plot shows that, for a single exposure, the effect of the trailing is that
the S/N converges towards a maximum S/N and does not continueincreasing with exposure time.
It is clear that after about 50 s, the gains in S/N for the trailed images are very small.

Our conclusion from Figure 2.7 is that exposure times for PASS0 should be kept on the short
side for efficiency of the observations. However, we cannot have very short exposure times be-
cause the CCD has a readout time of∼10 s. In Figure 2.8, we plot the total S/N over 1 hour of
observations as a function of exposure time of an individualexposure, taking into account a read-
out time of 10 s. The solid curves correspond to stars of 7th, 8th and 9th magnitude without trailing
and the dashed curves to the same stars but with the trailing at the celestial equator (maxima are
marked by solid black circles). The curves are calculated bytaking the previous calculations of
signal-to-noise for one exposure and multiplying this by

√
NIM whereNIM is the number of im-

ages taken in 1 hour (including the readout time of 10 s). The number of images with exposure
time ∆t taken in 1 hour is simplyNIM = 3600/(∆t + 10). We conclude from Figure 2.8 that
for trailed images there is an optimal exposure time for the individual images for which the total
S/N during an observing run is maximised, and that for PASS0 this optimum exposure time will
be about 10 s to 15 s.
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Figure 2.8: The total S/N as a function of the single image exposure time for 1 hour of observa-
tions. No trailing is shown by the solid curves and trailing at the celestial equator is shown by the
dashed curves. Maxima are marked by solid black circles. Each curve corresponds to a star of a
different magnitude (7, 8 or 9) and all the curves correspondto the PASS0 camera.

2.3.5 Optimal Exposure Time for PASS0

We now try and predict the optimal exposure time for the PASS0camera. We can consider ob-
serving sites at the equator, at 30 degrees latitude (Teide Observatory in the Canary Islands), at
60 degrees latitude (St. Andrews University) and at the poles. In Figure 2.9 we show a figure
similar to Figure 2.8. We show the predicted S/N over 1 hour ofobservations as a function of the
single image exposure time for a PASS0 camera pointing at zenith for each of our example ob-
serving sites (see labels), and for example stars of magnitudes 7 (solid curves), 8 (dashed curves)
and 9 (dotted curves). Again, maxima are marked by solid black circles.

Ignoring the poles as an observing site (since this is equivalent to tracking observations), the
optimal exposure time for PASS0 lies between 10 s and 25 s depending on the observing site. As
we will see in the next Section, we also need to minimise scintillation noise, which is smaller for
longer exposure times. Hence we adopt a 20 s exposure time forthe PASS0 experiment which
also allows 10 s for readout and saving the image to the hard drive in any 30 s observing window.
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Figure 2.9: The total S/N as a function of the single image exposure time for 1 hour of obser-
vations. Here we consider three example stars of magnitudes7 (solid curves), 8 (dashed curves)
and 9 (dotted curves). Maxima are marked by solid black circles. For each star we consider four
observing sites, the poles, St. Andrews, the Teide Observatory and the equator. The observations
at each site are assumed to be made towards the zenith.

2.3.6 Limitations due to Scintillation

For PASS0 with its small aperture of diameter 4.17 cm, scintillation noise is an important contri-
bution to the overall observation noise. This noise term contributes equally at all star magnitudes
and hence its impact is worst on the brightest stars where other noise sources are smallest. We
can calculate the contribution to the overall noise due to scintillation using the equation of Young
1967 [99]:

σSCINT = 0.09 d−2/3X exp (−h/h0)
√

1/(2∆t) (2.46)

whereσSCINT is the RMS scintillation noise in magnitudes,d is the telescope diameter in cm,X
is the airmass,h is the observatory height in m,h0 = 8000 m and∆t is the exposure time in s.
At the time we were doing our simulations, it was not clear where the PASS0 experiment would
be located. However we can now update our simulations to the Teide observatory which has an
altitude of∼2400 m.

In Figure 2.10 we consider the size of the scintillation noise as a function of exposure time,
and we plot curves for an airmass of 1 (observations at zenith; solid curve), an airmass of 1.15 (ele-
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Figure 2.10: The scintillation noise as a function of the single image exposure time and airmass.
The solid curve represents an airmass of 1 (observations at zenith), the dashed curve represents an
airmass of 1.15 (elevation of 60 deg) and the dotted curve represents an airmass of 2 (elevation
of 30 deg). This noise source affects all stars equally and soimpacts most the photometry of the
brightest stars where other noise sources are smallest.

vation of 60 deg; dashed curve) and an airmass of 2 (elevationof 30 deg; dotted curve). For transit
searches we are looking at signals of 0.5-2%, and so a scintillation noise of above∼0.005 mag
is undesirable. This constraint indicates that we require exposure times of at least∼13,∼18 and
∼50 s at airmasses of 1, 1.15 and 2 to keep scintillation noise at a reasonable level. However, from
Figure 2.8 we have seen that there will be an optimal exposuretime for S/N considerations of
∼10-15 s. Hence the original idea of PASS with many cameras at one site is not optimal, or even
viable, since the ones pointing below elevations of 60 deg will be compromised by scintillation
noise. For the future, the idea of PASS will have to be based ona network of individual cameras
based at different sites around the globe that all point at zenith.

2.3.7 A Theoretical Pass0 Noise Model

In this section we make some simple assumptions about the PASS0 observations to predict the
theoretical photometric accuracy that we may achieve. The observing site was chosen to be Teide
Observatory in the Canary Islands and so we assume the latitude of 30 degrees and observations
at zenith. We take the adopted exposure time of 20 s and again assume a standard sky magnitude
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Figure 2.11: The predicted theoretical noise sources as a function of magnitude for PASS0 based
at the Teide Observatory in the Canary Islands and pointing at zenith. The various noise sources
are labelled appropriately.

of 18 per square arcsec. Using the equations from Sections 2.2.9 and 2.3.2 we calculate the
dependence of each noise source on star magnitude and plot these curves in Figure 2.11. The red
curve represents star photon noise, the blue curve represents sky photon noise, the green curve
represents scintillation noise (calculated using Equation 2.46) and the purple curve represents
readout noise. The total noise is represented by the solid black curve.

Figure 2.11 shows that scintillation noise is dominant for stars brighter than 7th magnitude
and that sky noise is dominant for stars fainter than 7th magnitude. The scintillation noise is likely
to be an underestimate since the PASS0 field of view is∼33 degrees, which gives a range of
airmasses between 1 and 1.04

2.3.8 The Advantages of PASS0

• PASS0 has the widest FOV at32◦ × 32◦ of all current experiments searching for transiting
planets.

• PASS0 searches for planets around the brightest stars in thesky from 4th to 10th magnitude
which are not generally targets of other wide field transit surveys that go slightly deeper.
Hence PASS0 is complementary to other wide field transit surveys.
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• PASS0 is designed to observe in a stationary mode and therefore a simple fixed base is
required. This is very attractive economically. The other advantage of not tracking on the
sky is that this set up eliminates the risk of errors from bad tracking.

• The stationary observing mode offers a very good way to calibrate the data. Since obser-
vations are synchronised to specific LSTs, stars will be in the same position in the sky and
at the same place on the CCD at specific LSTs. Hence the sourcesof any systematic errors
can be easily quantified since they are repeatable each day and will be functions of LST.

• The photometry pipeline that will be developed for PASS0 will be an interesting application
of photometry to non-round/trailed star PSFs.

• PASS0 has the potential to be used at multiple sites around the globe since CCDs are getting
cheaper along with commercial lenses. This opens the possibility for all sky coverage all
year round, and opens the door for amateur astronomers and high schools to participate in
the project.

• A PASS0 experiment placed at either the North or South pole, and pointing at the zenith,
will suffer from very little trailing, giving all the added advantages of tracking observations,
but without physically tracking. We suggest that this should be the site of choice for any
follow-up PASS0 experiment.

2.3.9 The Disadvantages of PASS0

• Since we are using small aperture lenses of the order of 4.1 cmdiameter, scintillation noise
seriously affects the accuracy of the photometry that we canachieve with the brighter stars.
Hence PASS0 observations will be limited to near the zenith at any observing site, since the
size of the scintillation effect increases in proportion toairmass (Figure 2.10).

• The star trailing serves to limit the S/N that can be achievedon the star photometry (Fig-
ure 2.9). Photometry on trailed stars is not as accurate as onnon-trailed stars due to the
increase in sky noise mixed with the star photon noise.

• Wide field observations suffer from vignetting and aberrations which can cause problems
for optimising the photometry pipeline (Figures 2.4 and 2.5).

• The large pixel size (∼1 arcmin) means that each observed star will be blended with many
other stars, mostly fainter ones. The trailing serves to make this effect worse. Hence any
photometric pipeline will need to deal with this blending ortake it into account.

• Individual stars can only be observed from one chip each night during the time it takes for
the star to cross the chip (only∼2 hours nearδ = 0◦).

2.3.10 The First Pass0 Observation Run

In the final design of PASS0, a new and better CCD was purchasedwith exactly the same charac-
teristics as the AP10 CCD except that it had a better gain (at 2.3 e−/ADU), no bad columns and a
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more efficient cooling system. The CCD was the Apogee U10 CCD and it has a readout noise of
∼4 ADU.

The PASS0 camera is controlled by a computer that runs a fullyautomatic observing script
written in VISUAL BASIC. The computer clock is not very accurate and can be in error with
UT by up to a few minutes. Also, at the PASS0 site at the Teide Observatory, there is no internet
access. This means that we opted to measure the UT time to within a tenth of a second using a
global positioning device (GPS) and convert this to LST. Thecomputer then uses the LST to start
a 20 s exposure at the beginning of each minute of LST, and exactly 30 seconds later. The 10
seconds of dead time are sufficient for the camera to be read out and the image saved to disk. The
observing script is also written to stop observing during the day, and to automatically take dark
and bias frames at specified times. Also the observing scriptonly allows the observations to start
when the CCD has reached below a temperature of -20 degrees Celsius. Finally, flat fields need to
be taken manually because of the use of the white light diffuser screen.

The observations taken and analysed in this thesis span the nights of the observing run from
the 29th of June 2005 to the 16th July 2005 inclusive. A total of 3426 science images were taken
between the LST times of 20:55:00 and 23:06:00 each night. This data set was intended as a test
of the ideas of PASS0 and to allow the development of a data pipeline, which is described in the
next chapter. For this reason the field containing the transiting planet HD209458b was observed
to see if we can recover the transit signal. However, this field centre was not at zenith but at an
airmass of 1.08, which means that the airmass varies from 1.005 to 1.28 across the FOV, and that
the scintillation noise can vary from 4.1 mmag to 5.2 mmag over the field. The data set we describe
was not necessarily intended to be used to search for transitcandidates, although we attempt this
in Chapter 6.



Chapter 3

PASS0 Data Reduction

3.1 The PASS0 Image Processing Pipeline

We have developed a custom made image processing pipeline for the PASS0 camera in order to
automatically reduce the large amounts of data per night of good-weather observations (∼8 Gb
per night in summer;∼11 Gb per night in winter). The pipeline is split into variousstages, each
of which we describe in detail below.

3.1.1 Stage 0: Preprocessing Calibrations

The standard CCD calibrations are controlled by a Visual Basic script that invokes theMAXIM DL
astronomical image processing application (by Diffraction Limited). The script works on a per
night basis, and as a first step, sorts the observations by image type for the current night under
consideration. All bias frames are collected and averaged to create a master bias frame. Similarly
all dark frames for a particular night are debiased using themaster bias frame and then averaged
together to create a master dark frame. The master bias and master dark frames are then subtracted
off all the flat frames and science images. The script createsa master flat field for the night by
normalising each corrected flat field and median combining them. Finally, the master flat field is
divided in to each science frame to produce a set of calibrated science images.

At this stage the data are organised by night of observation,but in order to be useful for the
PASS0 experiment we need to reorganise the data by the LST of observation. A master list of
LSTs is used to reorganise the science images, and the masterlist of LSTs is constructed from the
set of LSTs over all nights that were observed.

An initial approximate astrometric solution for each science image is derived using the pro-
grampinpoint [103], and the RA and DEC of the image centre are added to the image header.
Further astrometric calibration is required since the PASS0 lens exhibits strong barrel distortion,
and the star centroids are less certain due to the star trailing in each image. This is done later on
(see Section 3.1.2).

To perform photometry on the science images we have chosen the image subtraction method
[2],[3], which is known to deliver better precision than either aperture photometry or PSF fitting,
especially in the case of crowded stellar fields like that of PASS0 (for example, see [52]). The
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Figure 3.1: A grid of typical star images (PSFs) taken from a corresponding grid of positions on
a typical PASS0 calibrated science image. Each image stamp is 50×50 pixels. Note that all stars
are blended to some degree.
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Figure 3.2: Plot of trends in FWHM and sky background level inthe science frames against LST
for each night of our PASS0 data.

image subtraction method is flexible enough to deal with the complexity of the PASS stationary
mode and lens deformation, which complicate the shape of thePSF, and its stability across the
CCD, because the method models the differences in the PSF between frames, not the PSF itself.
In Figure 3.1, we illustrate the complicated PSF shape as a function of position on the PASS0
CCD. Note that all stars are blended to some degree, and for this figure we have tried to show
relatively unblended bright stars.

Image subtraction also has another important advantage over aperture photometry. Aperture
photometry has a larger confusion radius (smallest angulardistance between two resolvable stars
[40]) when considering blended objects, since a blend can beconsidered as any contaminating
star within the photometric aperture, which usually has a radius of at least 1.5 FWHM in order
to contain all the star flux. The confusion radius for image subtraction is determined by the PSF
fitting on the reference image which can separate sources usually down to at least one FWHM
or better. Only for sources closer than this will the reference flux become contaminated by a
blending source, which in turn affects the image subtraction lightcurves. This advantage in terms
of reducing the effects of blending is important because Kiss & Bedding [40] have shown that up
to 50% of stars in typical wide-field transit surveys can be affected by blending objects within 3
magnitudes.
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3.1.2 Stage 1: Reference Images and Astrometry

For the difference image analysis (DIA), we have opted to usethe core elements of the software
described in Bond et al. [9] and in Bramich et al. [11]. It is worth mentioning that a similar
software package is available called ISIS by C. Alard [2], [3]. However, we prefer the Bond &
Bramich DIA package (from now on BBDIA), since it uses PSF fitting on the difference images to
measure the difference flux, which is more suitable for measuring a trailed PSF than the circular
aperture photometry employed by ISIS. The difference imaging part of the PASS0 pipeline is
organised into three consecutive stages. The first stage involves the analysis of each reference
image including astrometry which is described in this section. The second stage is producing the
difference images and the third stage consists of measuringthe difference fluxes.

In order to employ difference imaging, we are required to choose a reference image for each
set of images grouped by common LST. The reference frame is selected by measuring the mean
FWHM (Full-Width Half-Maximum) and the sky background level in the science frames, and
choosing the night that yields the smallest average FWHM andthe smallest average sky back-
ground level. The FWHM we measure is along the long-axis direction of the PSF which is also
in they direction on the CCD. Figure 3.2 shows the trends of FWHM and sky background level
against LST for each night of PASS0 data. Notice that the FWHMimproves by a small but sig-
nificant amount (up to 0.2 pix) over the two hours of observations. This trend has two possible
explanations, the first of which is that the camera focus may depend on temperature, and the tem-
perature drops as the night continues. However the exactly repeated pattern implies that our second
explanation is probably more likely. There is an area of sky with a much higher concentration of
stars (due to being close to the Galactic plane). This area ofstars starts off near the edge of the
CCD where the FWHM is worse and moves towards the centre of theCCD where the FWHM
is better. These stars dominate the mean FWHM calculation and hence the observed decrease in
mean FWHM.

We have found that choosing the best night overall to define the reference frame instead of the
best frame per LST minimizes differences in extinction and seeing between the reference frames
in consecutive LSTs, and therefore provides consistency inthe measurements of the instrumental
magnitudes on the reference frames. Also, we found that the rate of matching stars between
consecutive LSTs is much better if all the reference frames belong to the same night. From the
evidence presented in Figure 3.2, we choose the night of the 16th July 2005 as the reference night
(2005-07-16). Finally, we cannot consider combining images from the same LST on various nights
in order to make a high signal-to-noise reference frame since our data set was taken on nights with
different weather quality, with only one set of observations in pristine conditions, and we would
need at least two very high quality nights. By combining reference frames, this can also create a
fundamental problem for variable stars.

Stars are detected in each reference image using theDAOFind algorithm available within
IRAF, which produces a list of stars along with correspondingx andy coordinates (DAOFind is
part of theDAOPhot stellar PSF fitting package developed by Stetson [77]). We note that with
the trailed PSF, the definition of what constitutes a star within DAOPhot needs to be modified.
Detected objects have a measured quantity called “round” defined by the following equation:

R =
hx − hy

(hx + hy) /2
(3.1)
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Figure 3.3: Plot of DAOPhot roundness statisticR versusy pixel coordinate. Horizontal continu-
ous lines mark the range of acceptable roundness values.

whereR is the roundness,hx andhy are the heights of the gaussians fitted to the projected flux
distributions in thex andy directions respectively. An object elongated inx will haveR less than
zero, and an object elongated iny will have a value ofR greater than zero. Stars, with radially
symmetric PSFs, are normally found by only choosing objectswith R in the range -1 to 1.

In fact the stars trail across the chip in they direction leading to elongated PSFs in they
direction. This is visible in Figure 3.1. Also, when we plot theDAOPhot roundnessR versus the
y pixel coordinate for the objects detected on a single reference image in Figure 3.3, we find that
R takes on values around a median of∼1.1, a positive value indicating that the PSFs are elongated
in they direction. Hence we only accept objects as stars if they havea value ofR in the range 0.6
to 1.6 (this range is delimited in Figure 3.3 by two horizontal continuous lines).

The noticeable gradient inR with they pixel coordinate in Figure 3.3 may be explained by
the fact that as stars trail from smally to largey, the trail is not straight but slightly curved due
to the Earth’s rotation. We illustrate this in Figure 3.4 by plotting the tracks of a random set of
stars across the CCD. We also mark on the track of the known star HD209458 hosting a transiting
planet. As you can see, this star fully crosses the chip in thecourse of the observations, and so the
lightcurve for this star is of maximum duration on each night(∼2 hours each night).

The DAOPhot package, from withinIRAF, is used to measure the instrumental fluxes of
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Figure 3.4: Plot of star tracks across the PASS0 CCD for a few random stars. The track for
HD209458 is plotted as a dot-dashed curve.

the detected stars on the reference images via PSF fitting. For each reference image, the soft-
ware works by automatically choosing 175 bright PSF stars. The PSF stars are then fitted with
a “penny2” function, which is allowed to vary quadraticallywith position, and a lookup table of
residuals. The neighbours of the PSF stars are then subtracted using this solution, and a new PSF
function is solved for. This new solution is used to measure the instrumental fluxes and accu-
rate positions of all stars on the reference image. The result is a set of reference images with
corresponding star lists that report reference fluxes and positions.

A full astrometric solution for each reference image is derived using the WASP0 astrometric
pipeline. The declination of a PASS0 field is the same at all LSTs and on all nights, and we use
the initial estimate of the declination present in the imageheaders as a first approximation for the
field centre. The right ascension of a PASS0 field is constantly changing and is given by:

Θ = h + α (3.2)

whereΘ represents local sidereal time,h is hour angle, andα is the right ascension. In this experi-
ment, PASS0 was pointed at the sky vertically overhead (the zenith), toward the local meridian. In
this case,h = 0 andΘ = α. Therefore, by measuring the LST, we are approximately measuring
the right ascension of the field centre.
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Our experiment requires a high precision measurement of theLST so that we can time exactly
when to start each exposure and calculate an accurate right ascension. To overcome this problem
we have used a GPS device to supply the observing script with the precise location and current
time (UT). The calculated RA and constant declination of thefield centre are written to each image
header.

The WASP0 astrometric pipeline uses its own object detection routine (extractor from the
STARLINK package) to create a coordinate list of the brightest 200 stars for each PASS0 science
image, along with their approximate instrumental magnitudes. Using the approximate field cen-
tres from the image headers and known PASS0 field orientation, the WASP0 astrometric pipeline
attempts to match the 200 brightest stars in each image to objects in the Tycho-2 Catalogue [33].
This catalogue has an astrometric precision of better than∼60 mas and a photometric precision of
better than∼0.1 mag for all stars in the catalogue, which is more than required for matching with
PASS0. Also, the magnitude range of Tycho-2 is from∼2 mag to∼11 mag in the optical, which
matches well with the PASS0 magnitude range from∼4 mag to∼12 mag.

To accomplish the task of matching stars between the Tycho-2catalogue and those detected
on the science image, the WASP0 astrometric pipeline employs a similar triangles technique de-
scribed in Quine & Durrant-Whyte [67]. Triangles formed by Tycho-2 stars and image stars are
matched by shape (where triangle shape is defined by the internal angles), and the process is aided
by the prior knowledge of the PASS0 camera pixel scale, and the estimated instrumental star mag-
nitudes. To illustrate the idea of matching similar triangles, we present the matched triangles for a
typical WASP0 image in Figure 3.5 (courtesy of A. Collier Cameron and J. Irwin).

The set of matching triangles is converted into a list of matching stars from which an initial
4-parameter astrometric solution is derived describing the translation, scaling and rotation of the
CCD coordinates in the tangent plane. This solution allows the cross-identification of many more
stars with their Tycho-2 counterparts. The location of the optical axis on the sky and on the
CCD, along with the barrel-distortion coefficient, are refined iteratively and a final 6-coefficient
astrometric fit is computed, correcting for any small amountof image shear that may be present. A
great advantage to our fixed observing mode is that at the sameLST, stars are at exactly the same
position regardless of the amount of camera distortion, andfor difference imaging this avoids the
need to pre-align images and use image resampling.

3.1.3 Stage 2: Image Subtraction

The second stage of the PASS0 BBDIA pipeline starts by addingvarious header keywords that
are required by BBDIA to the science image headers. Also, each debiased and flat-fielded science
image has its sky background fitted with a 2D polynomial of order 6. The fitted surface is then
subtracted from the science image to leave the background flat and essentially with a zero mean
value. The BBDIA code requires positive pixel values due to the fact that bad pixels are identified
with a value of -1 and hence a constant background, derived from the previous fit, is added back
to the science images.

The image subtraction method relies on accurately matchingthe PSF between the current
science image and the corresponding reference image. The reference image, by construction, has
the best seeing (smallest FWHM PSF) and it therefore needs tobe convolved (blurred) with a
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Figure 3.5: Set of triangle matches that have been successfully determined for a typical WASP0
image (courtesy of A. Collier Cameron and J. Irwin).

convolution kernel in order to match the current science image. This relation can be written as:

R ⊗ K(x, y) + B(x, y) = I(x, y) (3.3)

whereR ⊗ K(x, y) is the reference image convolved with the kernelK(u, v, x, y) with kernel
coordinatesu andv (⊗ is the symbol for convolution),B(x, y) is the differential background, and
I(x, y) is the current science image. The convolution of the reference imageR with the kernelK
is defined by:

R ⊗ K(x, y) =

∫ ∫

R(x − u, y − v)K(u, v, x, y) du dv (3.4)

The BBDIA package solves for a spatially variable kernel as asum of 3 Gaussians with sigmas
0.7, 1.3 and 2.1 pix, multiplied by polynomials of degree 6, 4and 2 (respectively) inu andv, and
further multiplied by a polynomial of degree 2 inx and y. The differential backgroundB is
modelled in BBDIA as a polynomial of degree 2. Difference imagesD(x, y) are constructed as:

D(x, y) = I(x, y) − R ⊗ K(x, y) − B(x, y) (3.5)



3.1. THE PASS0 IMAGE PROCESSING PIPELINE 71

A star that has stayed constant in brightness between the reference image and the current science
image should leave no residual counts on the difference image. Hence, a field with no variable
objects should result in a difference image composed entirely of noise (readout noise and photon
noise). In fact, only variable stars should show a residual PSF on a difference image, positive
or negative depending on whether an object increased or decreased in brightness with respect
to the reference image. The flux contained in the residual PSF, called the difference flux, may
consequently be measured. A small number of non-variable stars will not have a completely
clean subtraction. This may be caused by small misalignments between images, although this is
compensated for in the kernel solution process.

In the PASS0 BBDIA pipeline, we opted to split each image intofour square sections and
solve for the kernel and differential sky background in eachsection. This was found to produce
“cleaner” image subtractions than simply solving for the kernel and differential sky background
for the image as a whole.

Also, as a final step, a high signal-to-noise ratio empiricalPSF for the reference image is
constructed for a 3 by 3 grid in each section by stacking a set of suitably resampled stamps centred
on bright and relatively isolated stars. This means that there are 36 empirical PSFs corresponding
to a 6 by 6 grid for each reference image. Each PSF is 27×27 pixels in size which easily includes
the full PASS0 trailed PSF shape. The empirical PSF is constructed for use in measuring the
difference images, after modification with the kernel function to produce a PSF for each star on
each science image (see Section 3.1.4).

3.1.4 Stage 3: Measuring Difference Fluxes

In BBDIA, difference fluxes are measured using the empiricalPSF constructed for each square
section of the reference image in Stage 2 (Section 3.1.3). For each star to be measured, the corre-
sponding empirical PSF is resampled at the fractional pixelcoordinates of the star, and then it is
convolved with the kernel derived in Stage 2. The convolved PSF is then optimally scaled to the
difference image at the already known position of the star onthe reference image (fixed position
PSF photometry). The optimal scale factor∆f of the normalised convolved PSFP (x, y) is given
by:

∆f =

∑

x,y P (x, y)D(x, y)/σ2(x, y)
∑

x,y P (x, y)2/σ2(x, y)
(3.6)

and the varianceσ2
∆f is given by:

σ2
∆f =

1
∑

x,y P (x, y)2/σ2(x, y)
(3.7)

where theσ(x, y) are calculated from the CCD noise model. If the empirical PSFis normalised
to a sum of 1 over all pixels, then∆f supplies an estimate of the difference flux for the star under
consideration. A 3σ clip on the residuals of the scaling is performed, and one pixel rejected. The
scaling and rejection is repeated until no more pixels are rejected, and the final value for∆f is
taken to be the difference flux.
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The total fluxFtot for a star with difference flux∆f and reference fluxFref (where the reference
flux is the star flux as measured on the reference image as described in Section 3.1.2) is given by:

Ftot = Fref +
∆f

p
(3.8)

where all fluxes have units of ADU/s andp(x, y) =
∑

u,v K(u, v, x, y) is the photometric scale-
factor (integral of the kernel solution overu andv). The photometric scale factorp(x, y) is forced
to be a constantp for the image by appropriate normalisation of the kernel basis functions in the
kernel model. The total flux is converted to a magnitude usingthe standard relation:

M = M0 − 2.5 log(Ftot) (3.9)

whereM is the calibrated magnitude, andM0 is the zeropoint magnitude (magnitude of a star that
gives 1 ADU/s). We are only interested in obtaining a rough absolute calibration of the PASS0
instrumental magnitudes for the purpose of hunting for transits and so we simply determineM0

from the mean difference between the PASS0 instrumental magnitudes and the Tycho-2 catalogue
magnitudes for the brightest 200 stars on the reference image. With this method we obtainM0 ≈
15.75.

In Figure 3.6, we show five image stamps (columns) centred on each of 9 stars (rows) taken
from a 3x3 grid on the reference image (where the reference image in this case corresponds to the
LST 21:52:30). The first image stamp is a cutout from the reference image (observed on 2005-07-
16). The second image stamp is a cutout from a typical scienceimage (observed on 2005-07-06 at
LST 21:52:30). The third image stamp is a cutout from the difference image showing the residuals
at the position of each star. The fourth image stamp is the difference image with the optimally
scaled empirical PSF subtracted at the position of the central star, which shows the quality of the
PSF model used to measure the difference image. The fifth image stamp shows the fourth image
stamp normalised by the pixel sigmas determined from the CCDnoise model. It is clear that our
method for measuring the difference images is working acceptably since the fifth image stamp
looks like pure noise with no obvious residuals. Included isa clear example of a variable star in
the third row and a moving object (maybe a satellite) in the fourth row. Notice how the variable
star is correctly subtracted in the difference images in thethird row.

3.1.5 Stage 4: Constructing the lightcurves:

At this stage we have a separate reference image with a corresponding star list for each LST, and
time series photometry for each star in each star list. In order to construct full lightcurves across
all LSTs, we must first match the stars between the different LST star lists, and then extract the
relevant photometry to a single file for each unique star. This is most logically done by matching
stars between consecutive LSTs and cumulatively building up the lightcurves, since during the
course of the night stars drift onto the detector, across andoff the detector.

Below we describe the algorithm, employed in theCSHELL script “extract.csh” and in the
PERL subprogram “constructraw lc.pl”, that is used to construct full lightcurves:

(1) For each LST, starting at the earliest LST and stepping intime order to the latest LST, the
program carries out steps (2) to (8)
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Figure 3.6: Five image stamps (columns) centred on each of 9 stars (rows). The first image stamp
is a cutout from the reference image on 2005-07-16 at LST 21:52:30. The second image stamp
is a cutout from a typical science image on 2005-07-06 at LST 21:52:30. The third image stamp
is a cutout from the difference image. The fourth image stampis the difference image with the
optimally scaled empirical PSF subtracted at the position of the central star. The fifth image stamp
shows the fourth image stamp normalised by the pixel sigmas determined from the CCD noise
model.
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(2) The program checks that a Tycho-2 catalogue file exists for the current LST, indicating that
the derivation of the astrometric solution was successful.

(3) The program makes a list of the current set of lightcurves.

(4) For each star in the Tycho-2 catalogue file for the currentLST, the program carries out steps
(5) to (8)

(5) The program calculates two(x, y) pixel coordinates of the current star from the Tycho-2
catalogue file corresponding to the beginning and the end of the star trail, and calculates the
average pixel position.

(6) The program searches for the lightcurve file of the current Tycho-2 star in the list of lightcurves.
If the Tycho-2 star does not have a corresponding lightcurve, then an empty lightcurve file
is created, and the lightcurve name is added to the list of lightcurves.

(7) The program reads in the DAOPhot star list for the currentLST and finds the star in this
list that is closest to the average coordinates of the current Tycho-2 star. If this star is less
than 2.5 pixels away from the current Tycho-2 star, then a match is considered to have been
found, and the program continues by extracting the photometry in step (8). Otherwise the
program moves on to the next Tycho-2 star.

(8) The program extracts the photometry and trend information for the current Tycho-2 star
from the BBDIA data files using the star match found in step (7). This information is
written to the corresponding lightcurve file.

The whole PASS0 pipeline is summarised in the flow chart shownin Figure 3.7.

3.2 Lightcurve Calibration

Each LST for which we make observations uses a separate reference frame in the PASS0 pipeline,
which means that a different reference flux is obtained for each star at each LST. The reference flux
for a particular star is dependent on the LST due to changes inairmass, atmospheric extinction,
position on the detector and possible intrinsic variability. This problem is illustrated in Figure 3.8
where, in the top row of panels, we show how the reference flux for star 3185-1155-1 (left) and
2679-0493-1 (right) varies as a function of LST (open circles). Star 3185-1155-1 is a typical
constant star with mean magnitude 7.44 mag and star 2679-0493-1 is a variable star with mean
magnitude 8.33 mag.
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Preprocessing Calibration
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Build Reference Images & Do Astrometry
BBDIA, DAOFind, DAOPhot, Wasp0 Astrometry

Image Subtraction
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Measuring Difference Flux
BBDIA

Constructing Light Curves
extract.csh. construct_raw_lc.pl

Post Processing Calibration

PASSCAL

Figure 3.7: A flow chart of the PASS0 pipeline.



76 CHAPTER 3. PASS0 DATA REDUCTION

Figure 3.8: In the top two panels we plot the reference flux on the reference night against LST
for two stars, a constant star (3185-1155-1 on the right) anda variable star (2679-0493-1 on the
left). The open circles represent the reference fluxes before application of the string method, and
the solid black circles represent the reference fluxes afterapplication of the string method. In the
bottom two panels we present lightcurves of both stars before (open circles) and after (solid black
circles) the application of the string method.

The effect that LST-dependent reference fluxes have on the lightcurves is shown in the bottom
two panels for the two stars, where we show the full lightcurves of the stars (open circles). Close
examination of the open symbol lightcurves in Figure 3.8 indicates that there is an LST-dependent
pattern that repeats on each night, greatly increasing the scatter in the lightcurve of every star,
including many stars that have no intrinsic variability. Hence we have investigated various methods
for calibrating the lightcurves and removing systematic trends that may be present.



3.2. LIGHTCURVE CALIBRATION 77

3.2.1 The String Method

Our first attempt at calibrating the PASS0 lightcurves consists of trying to determine what cor-
rections need to be applied to the reference fluxes in order toremove their LST dependence. The
method we use is applied on a star by star basis since each starexperiences unique changes in air-
mass, extinction and position, especially across such a wide field, and each star enters and leaves
the CCD at a different LST.

Consider a single star with observations atN LSTs on each night over a period ofM nights.
Then we haveMN data points, and we requireN − 1 factors to correct theN reference fluxes.
So long asM is greater than 1 then we are guaranteed to be able to determine the factors.

We apply a minimization technique based on the idea behind the string length technique used
for determining periods in periodic variables with unknownforms of variations [43]. Stars are
most likely constant but they may also be variables of any type and hopefully transit candidates.
Hence we cannot make any prior assumption about the lightcurve shape. Instead we calculate a
string length between consecutive data points and sum the lengths to get a total lengthd given by:

d =

NM−1
∑

i=1

mi+1 − mi (3.10)

wheremi are the lightcurve magnitudes. Then we use the AMOEBA algorithm to adjust the
reference flux factorsKj in order to minimize this total string length by recalculating the lightcurve
magnitudes as follows:

mi = M0 − 2.5 log

(

KjFref,j +
∆fi

p

)

(3.11)

whereFref,j is the relevant reference flux for the LSTj that applies to the data pointi.

To help illustrate why we do this, imagine the data points as beads threaded by a string. The
beads are allowed to move vertically in small groups (grouped by LST). By pulling the string
taught you try to minimize the string length between the beads and the system will settle into its
natural shape. This shape depends on the underlying variations in the light from the star. Since
we are only interested in adjusting the reference fluxes, we do not consider the dependence of the
string length on epoch of observation.
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Figure 3.9:(a): Plot of RMS scatter against mean magnitude for the PASS0 lightcurves before
(green points) and after (red points) calibration using thestring method. The red line shows the
aperture photometry theoretical limit using the special extended aperture suitable for the trailed
star images, and the blue dashed line shows the theoretical PSF photometry limit calculated using
the known PASS0 PSF. Scintillation noise at 5.2 mmag has beenincluded. (b): The same as (a)
except that the red points now represent the PASS0 lightcurves after calibration withPASSCAL.
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In Figure 3.8 we also show the reference fluxes (top panels) and lightcurves (bottom panels)
for the two example stars after calibration with the string method (solid black points). In correcting
the reference fluxes using the string method, it is now obvious which star is the constant star and
which star is the variable star.

In Figure 3.9(a) we plot the RMS scatter in the lightcurves versus PASS0 mean magnitude
(calibrated to Tycho-2 catalogue magnitudes). The green points show the RMS scatter for the
raw lightcurves from the pipeline, and the red points show the improvement after applying the
string method that we have developed. In calculating the theoretical aperture photometry limit
we have assumed that a special aperture is necessary. This aperture consists of a rectangle with a
semicircle at each end (on the ends in the direction of the star trail; see Figure 2.6). The aperture
is defined by the diameter of the semicircles and the length ofthe rectangle. For observations
near the celestial equator we calculate that the trailing in20 seconds requires a rectangle of length
∼5.2 pix (or∼5.0 arcmin; see Equation 2.45) and the PASS0 PSF requires a semicircle diameter
of 7.0 pix (exactly the same size as for the SuperWASP pipeline in Chapter 4). The theoretical
aperture photometry limit is plotted in Figure 3.9(a) as thesolid red line. Finally the theoretical
PSF photometry limit is calculated using Equations 2.17, 2.18 and 2.23 with the known PASS0
PSF and it is plotted as the dashed blue line. A scintillationnoise of 5.2 mmag (as calculated in
Section 2.3.10) has been added in quadrature with the noise models to account for this effect.

It is clear from Figure 3.9(a) that the string method greatlyimproves the raw PASS0 lightcurves
but it does not reach to the theoretical PSF photometry limitand it does only slightly better than
the aperture photometry limit towards the faint end (from 9th mag and fainter). The spread in
RMS at each magnitude is due to the fact that most PASS0 lightcurves have fewer epochs than
the maximum number since stars drift on, over and off the CCD.Also, the wide field-of-view
of the PASS0 camera means that each star has a slightly different airmass at each epoch and
the varying amounts of scintillation noise present for eachstar contribute to this spread in RMS.
The theoretical limits presented have been calculated assuming that all epochs are present in a
lightcurve and that the scintillation noise is the same as that in the field centre for the whole field-
of-view.

3.2.2 PASSCAL

As we have seen in Section 3.2.1, there is still room for improvement on the results obtained using
the string method for calibrating the PASS0 lightcurves. Our second attempt at calibrating the
PASS0 lightcurves takes a different and more logical approach to the problem where we attempt
to model the flux correction factors as a function of LST, night of observation, and detector position
using the lightcurves themselves. These factors may then beapplied to the lightcurves to remove
any systematic trends that are found.

We choose to model the flux correction factorK as a function of LSTt, night of observation
n and detector coordinatesx andy. The form we choose forK(t, n, x, y) is:

K(t, n, x, y) = k1(t) k2(n) k3(x, y) (3.12)

The most important correction factor isk1(t) since it allows for the fact that a different reference
image is used for each LST and we have already seen some examples in Figure 3.8 of the sys-
tematic trends in the reference flux as a function of LST that need to be corrected. Thek2(n)
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correction factor adjusts the brightness of all stars at allLSTs by a different amount for each night
of observation, which models changes in extinction betweennights. Since the airmass range for
our PASS0 images is so small as PASS0 was pointed to near the zenith, we do not need to gen-
eralise this term to a 2-parameter extinction fit. However, for future data obtained for a pointing
away from the zenith, this extension of the model may be necessary. Thek3(x, y) factor allows
for correction of star fluxes based on their current positionon the detector, which is useful for
modelling defects in the chip sensitivity which are not already corrected for by the flatfielding
process.

We fit our flux calibration model to our lightcurve dataL(s, t, n) (wheres represents each
star) using iterated optimal scaling to solve for the three patternsk1(t), k2(n) andk3(x, y) in turn.
Our modelM(s, t, n) for the lightcurve data is therefore:

M(s, t, n) = f(s) k1(t) k2(n) k3(X(s, t, n), Y (s, t, n)) (3.13)

wheref(s) is the mean flux of each star, andX(s, t, n) andY (s, t, n) are the coordinates of the
calculated centroid of stars at time t on nightn. If the patternsk1(t), k2(n) andk3(x, y) are
already known, then we may calculatef(s) using optimal scaling:

f(s) =

∑

t,n L(s, t, n) k1(t) k2(n) k3(X(s, t, n), Y (s, t, n))/σ2(s, t, n)
∑

t,n(k1(t) k2(n) k3(X(s, t, n), Y (s, t, n)))2/σ2(s, t, n)
(3.14)

whereσ2(s, t, n) are the lightcurve data variances. Hence, for our first iteration we calculatef(s)
by assumingk1(t) = k2(n) = k3(x, y) = 1. We then calculatek1(t) and its varianceσ2

k1
(t)

using our estimated values off(s) and the optimal scaling formula again:

k1(t) =

∑

s,n L(s, t, n) f(s) k2(n) k3(X(s, t, n), Y (s, t, n))/σ2(s, t, n)
∑

s,n(f(s) k2(n) k3(X(s, t, n), Y (s, t, n)))2/σ2(s, t, n)
(3.15)

σ2
k1

(t) =
1

∑

s,n(f(s) k2(n) k3(X(s, t, n), Y (s, t, n)))2/σ2(s, t, n)
(3.16)

We also normalisek1(t) as follows:

∑

t
k1(t)
σ2

k1
(t)

∑

t
1

σ2

k1
(t)

= 1 (3.17)
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Figure 3.10:(a): The flux correction factork1(t) against LST (h).(b): The flux correction factor
k2(n) against observation date labelled directly on the plot.(c): The flux correction factork3(x, y)
against x and y CCD coordinates as a grey scale image with a linear scale from 0.9 to 1.1.
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Figure 3.11: On the left we plot lightcurves of the variable star 2679-0493-1 before calibration
with PASSCAL (open circles) and after calibration withPASSCAL (solid black circles). On the
right we make the same plot but for the constant star 3185-1155-1.

Simlarly we may calculatek2(n) andσ2
k2

(n) from the following equations:

k2(n) =

∑

s,t L(s, t, n) f(s) k1(t) k3(X(s, t, n), Y (s, t, n))/σ2(s, t, n)
∑

s,t(f(s) k1(t) k3(X(s, t, n), Y (s, t, n)))2/σ2(s, t, n)
(3.18)

σ2
k2

(n) =
1

∑

s,t(f(s) k1(t) k3(X(s, t, n), Y (s, t, n)))2/σ2(s, t, n)
(3.19)

with normalisation:
∑

n
k2(n)
σ2

k2
(n)

∑

n
1

σ2

k2
(n)

= 1 (3.20)

Finally we may calculatek3(x, y) andσ2
k3

(x, y) from the following equations:

k3(x, y) =

∑

s,n,t L(s, t, n) f(s) k1(t) k2(n)w(x − X, y − Y )/σ2(s, t, n)
∑

s,n,t(f(s) k1(t) k2(n))2 w(x − X, y − Y )/σ2(s, t, n)
(3.21)

σ2
k3

(x, y) =
1

∑

s,n,t(f(s) k1(t) k2(n))2 w(x − X, y − Y )/σ2(s, t, n)
(3.22)

where:

w(x − X, y − Y ) = exp

(

−
(x2 + y2)

2D2

)

/G (3.23)

where theD is the sigma of the Gaussian and the factorG is chosen to enforce the normalisation:
∑

x,y

w(x − X, y − Y ) = 1 (3.24)
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We normalisek3(x, y) using:
∑

x,y
k3(x,y)
σ2

k3
(x,y)

∑

x,y
1

σ2

k3
(x,y)

= 1 (3.25)

By iterating the process of estimatingf(s), k1(t), k2(n) andk3(x, y) in turn, we progressively
reconstruct the correction patterns. The iteration process is ended when the fractional change in
any one element off(s), k1(t), k2(n) andk3(x, y) is less than10−4.

In Figure 3.10 we show plots of the functionsk1(t), k2(n) andk3(x, y). The functionk1(t)
shows a systematic pattern of up to∼20% and is therefore the most important correction (Fig-
ure 3.10(a)). The functionk2(n) shows an amplitude of only∼0.2% and is therefore an insignifi-
cant correction in comparison tok1(t). This is what is expected if the difference imaging pipeline
is determining the correct atmospheric extinction for eachimage via the photometric scale factor.
The functionk3(x, y) shows a clear pattern of amplitude∼10% that is approximately a function
of the distance from the centre of the CCD. It is probably the result of a difference between the
actual vignetting and that taken out by the flatfield.

In Figure 3.9(b) we show the RMS diagram for the PASS0 lightcurves calibrated with the
PASSCAL procedure (red points). In the same figure we also show the RMSof the raw PASS0
lightcurves along with the previously calculated apertureand PSF photometry theoretical limits.
We have clearly improved on the string method in our calibrations which is to be expected since
the methodology behindPASSCAL is based on a model specific to the PASS0 experiment. For
∼8.8 mag and fainter we are starting to reach the theoretical PSF photometry limit, and from
∼8.2 mag and fainter we are doing better than the theoretical aperture photometry limit. However
at the bright end, the photometry has an RMS of∼0.01 mag independent of magnitude. It is most
likely that the photometric accuracy is being limited by scintillation down to about 8th magnitude.

In Figure 3.11 we replot the lightcurves of the variable star2679-0493-1 (left) and the constant
star 3185-1155-1 (right) before (open circles) and after (solid black circles) calibration by the
PASSCAL routine. The improved quality of the lightcurve of the constant star compared to the
lightcurve after calibration by the string method (see Figure 3.8 bottom right) is quite clear.

Future improvements toPASSCAL which are possible, but have not been implemented to
date, would include downweighting stars that are clearly variable, downweighting images with
large residuals (indicating clouds), and expanding the fluxcorrection model to include colour-
dependent correction functions using the Tycho B and V magnitudes.

3.3 HD209458

In the last section of this chapter we mention briefly the lightcurve of HD209458. This transiting
planet, the first that was discovered, is present in the PASS0data that we analysed. The lightcurve
of HD209458 has 3426 data points, which is the maximum number, since the star is present on all
PASS0 images. In Figure 3.12 we plot the PASS0 lightcurve of HD209458 phased on its period
of 3.5247484 d and using a transit epoch ofT0 = 2451659.93677 d. These transit ephemerides
are taken from Agol & Steffen 2007 [1] who reanalyse all public HST data on HD209458 transits
including 13 transit events from 2001 to 2006. The transit event is clearly visible in the PASS0
lightcurve even though we have only caught the first half of one transit on one night (20050630).
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We use further transit parameters listed by Agol & Steffen 2007 to calculate a model transit
lightcurve. We take the published values for the planet-to-star radius ratio of 0.12, the orbital
radius to star radius ratio of 8.883 and the inclination of 85.845◦ to calculate a model transit
lightcurve using the equations of Mandel & Agol 2002 [47]. Wealso assume a linear limb dark-
ening coefficient of 0.5 as quoted in the original discovery paper [14] for HD209458 as a decent
approximation. We plot the model transit lightcurve as the black curve in Figure 3.12. It is en-
couraging to see that the data follow the model to within the photometric accuracy. We leave the
search for variables and transit candidates in the PASS0 lightcurves to Chapters 5 and 6.
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Figure 3.12:(a): Phased lightcurve of HD209458 calibrated usingPASSCAL (red points). The
black curve is the model lightcurve using published transitparameters.(b): Zoom around the
transit event of the phased lightcurve of HD209458 (red points). Again the black curve is the
model lightcurve using published transit parameters.
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Chapter 4

Optimising SuperWASP Photometry

4.1 The SuperWASP Experiment

As described in Chapter 1, SuperWASP, among other wide field surveys, was initiated after the
discovery of the first transiting planet around HD209458 [14]. The initial phase of the SuperWASP
project was the construction of a prototype system called WASP0. The instrument consisted of a
200mm, f/2.8 Nikon telephoto lens with an AP10 CCD from Apogee. WASP0 was observationally
tested both on La Palma in the Canary Islands and at the Kryoneri Observatory in Greece. A
handful of transit candidates and many variable stars have been discovered using the prototype
[36], [37], [38].

After fine tuning the prototype system and observing procedure, and while developing the
reduction pipeline, the WASP consortium were able to get sufficient funds to build multi-detector
SuperWASP cameras for the La Palma site. The SuperWASP instrument is made of 8 cameras each
containing a back-illuminated CCD from the company Andor ofBelfast. Each CCD is 2048x2048
pixels with a pixel size of 13.5µm equating to a pixel scale of 13.7′′ per pixel. The camera lens is
a 200mm, f/1.8 Canon telephoto lens. Each camera has a field ofview of 7.8◦ × 7.8◦.

The fields monitored are selected to avoid the crowded Galactic plane regions, and the ecliptic
plane (to avoid the Moon and planets). Data reduction is fully automated using a purpose built
pipeline [62]. The photometric output is stored in, and exploited from, the SuperWASP data
archive held at the University of Leicester. During the 2004season∼6.7 million lightcurves were
observed.

4.2 SuperWASP Observations and Reductions

The transiting planet XO-1b [51], the first planet discovered by the XO team [50], is a perfect
candidate for comparing the accuracy of photometric reductions using the SuperWASP pipeline
and the PASS0 pipeline. The planet transits an 11th magnitude G1 main sequence star with a
period of 3.941534±0.000027 d, transit depth of≈2% and duration of≈0.1 d. Hence the target
star is bright enough for observation by SuperWASP, the planet is a short-period hot Jupiter, and
the transit depth should produce an easily recoverable signal in the SuperWASP data.

87
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Figure 4.1: Plot of the blending indices Blendex1 and Blendex2 for one particular SuperWASP
image. The stars considered to be unblended lie in the locus labelled by a “0”. Figure courtesy of
A.C. Cameron.

Up until the end of 2004, the SW-N observing station made 8775observations of fields con-
taining the star XO-1, including observations of 11 separate transit events. We chose to reconsider
688 of 4585 available images from one specific camera, which were taken over a 15 night period
between UTC dates 1st-15th June 2004. This time period includes observations of four transit
events, two of which are fully covered and the other two are partially covered. The most densely
covered transit event is at HJD≈2453162.5 d. The chosen sub-sample of the data are sufficient
for testing our image subtraction algorithm and assessing the likely improvements that may be
possible in comparison with aperture photometry.

The SuperWASP pipeline [62] starts by classifying and sorting out images as bias, dark, flat
and science frames and then it produces a master bias, masterdark and master flat for each night.
Science images are preprocessed in the standard way by subtracting the master bias and the master
dark and then dividing by the master flat. The Starlink EXTRACTOR package is used to detect
all objects 4σ above sky in the calibrated science frames.

An astrometric solution is determined for each science image by matching detected objects
with known objects in the Tycho-2 [33] and USNO-B1.0 [54] catalogs. Then aperture photometry
is performed for all USNO-B1.0 sources brighter than 15th magnitude using 3 circular apertures
of radius 2.5, 3.5 and 4.5 pixels. A Fermi-Dirac like function is used to assign weights to pixels
lying partially outside the aperture to compensate for different aperture offsets from the centre of
a pixel.
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Since SuperWASP pixels are of size 13.7′′ , object blending can be a serious problem. In order
to start to sort out blended and nonblended stars, the following ratios are calculated:

Blendex1=
f3 − f1

f1
(4.1)

Blendex2=
f2 − f1

f1
(4.2)

wheref1, f2 and f3 are the measured fluxes in each of the three apertures. Stars are filtered
according to the scheme shown in Figure 4.1 where the two ratios Blendex1 and Blendex2 are
plotted against each other. The stars in the locus marked by “0” are considered unblended and
those outside this locus are considered blended in some way.Other star types range from “1” to
“9” and they are not considered suitable for transit searches. The diagonal line shows where the
effect of a nearby companion is detectable in the first aperture.

In the search for transit candidates, only stars classed as unblended are considered, which
intentionally neglects many possible stars from the analysis. The above method of separating
out blends is essential for the SuperWASP project since theyuse aperture photometry and reli-
able photometry is required for the transit search. Also, SuperWASP, and other wide field transit
surveys, have deliberately avoided the Galactic plane due to the higher stellar density. The im-
age subtraction method provides the possibility of considering not only the unblended stars, but
many of those stars that SuperWASP immediately rejects fromthe transit search because of visible
blending, which image subtraction is not affected by.

The other main advantage of the difference imaging technique as opposed to aperture pho-
tometry is that optimal PSF fitting can be applied to the difference images. Optimal PSF fitting
achieves considerably better S/N than aperture photometry, especially in the sky noise dominated
regime. In fact, for the subsample of SuperWASP data we consider in Section 4.3.1, image sub-
traction combined with optimal PSF fitting can potentially reach 0.33, 0.48 and 0.62 mag deeper
than aperture photometry at RMS accuracies of 5, 10 and 20 mmag. Hence many more stars will
have lightcurves of the necessary accuracy in order to detect transit signals, therefore increasing
the detection potential of the survey.

4.3 Application of the PASS0 Pipeline

4.3.1 Adapting the PASS0 Pipeline

With the aim of judging the performance of the PASS0 difference imaging pipeline on SuperWASP
data, we rereduced the 688 SuperWASP images. The rereduction was carried out using the original
raw images and calibration frames from the SuperWASP camera. Standard calibrations of debi-
asing, dark frame subtraction and flat-fielding were carriedout as described in Section 3.1.1. On
close inspection of the calibrated SuperWASP images it was noted that the PSF is undersampled
with a FWHM on average of around 1.9 pixels and that the imagessuffer from a strong spatially
and time varying sky background. In Figure 4.2, we show the PSF shape as a function of position
in the SuperWASP CCD using a 5 by 5 grid of positions taken froma calibrated SuperWASP
science image.
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Figure 4.2: A grid of typical star images (PSFs) taken from a corresponding grid of positions on a
typical SuperWASP calibrated science image. Each image stamp is 50×50 pixels.
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Figure 4.3: A 300x200 pixel subregion of a typical SuperWASPdifference image produced by the
PASS0 difference imaging pipeline with no image blurring (test N). Highly complicated residuals
at the positions of the brighter stars are clearly visible. We supply a zoom on two of the stars to
show the residuals in greater detail.

First attempts at using the PASS0 difference imaging pipeline to produce good quality differ-
ence images were fruitless. The undersampled PSF on the SuperWASP images made it impossible
to derive an accurate convolution kernel. We experimented with different resampling methods for
aligning the images and determined that the resampling method was not the cause of the problems
with deriving the kernel. We also tried to construct a stacked reference image from a selection
of the best-seeing images in order to increase the signal-to-noise of the reference frame, but this
failed to solve the problem.
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Figure 4.4: A typical SuperWASP difference image produced by the PASS0 difference imaging
pipeline. The background residuals range from approximately −80 ADU to 100 ADU, which is
the intensity scaling used on this image.
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In Figure 4.3 we display a section of a difference image produced with the standard PASS0
difference imaging pipeline. You can clearly see complicated residuals at the positions of the
brighter stars. The maximum and minimum scaling on the imageis -350 to 350 ADU. In Figure 4.4
we show a full frame typical difference image. It now also becomes clear that SuperWASP images
suffer from high spatial frequency fringing at the level of∼100 ADU per 50 pixels along with low
spatial frequency background variations of the same size.

To attempt to reduce the effect of the undersampling we have taken the approach of blurring
each image with a Gaussian convolution kernel. By convolving an image with a Gaussian, we are
forcing the image sampling to improve, the amount of which depends on the sigma of the Gaussian
used. Since it is not clear what value the sigma of the Gaussian kernel should take, we have tested
a grid of values. We also note that because the reference image is required to be the best-seeing
image for the technique of difference imaging, we choose to convolve the reference image with a
Gaussian that has a smaller sigma than the Gaussian used to convolve the rest of the images.

Since image subtraction is based on the idea of “blurring” the reference image to match the
current image, the question arises as to why we pre-blur the reference image with a Gaussian?
The reason is that the undersampled nature of the SuperWASP images causes problems for the
reference flux analysis of the PASS0 pipeline using DAOFind and DAOPhot. Convolving the
reference image with a Gaussian improves the determinationof the reference fluxes, which we
show later on in Section 4.3.3.

For this test we considered a subset of 198 images from a 3 night period between UTC dates
5th-7th June 2004. This time period includes the most densely covered transit event on the night of
5th June 2004. In Table 4.1 we list the FWHMs of the Gaussians used to blur the reference image
and the remaining images, and we include a test V′ where we do not blur the reference image
in order to analyse what effect, if any, the blurring of the reference image has on the lightcurve
accuracy that we obtain.

For each test, the data are reduced using the PASS0 pipeline and blurring is done just before
image alignment to the reference image, but after the derivation of the spatial transformation link-
ing the two images. This is to minimise the effect of resampling on a (possibly) undersampled
image, but maximise the signal of the stars used for derivingthe transformation. The alignment
process is very robust since the images are all centred on thesame field in the sky and there is
very little rotation between images. The blurred referenceimage is analysed with DAOFind and
DAOPhot PSF fitting photometry in exactly the same way as described in Section 3.1.2, except
that since the PSFs are circularly symmetric, we use the roundness statisticR between the normal
limits of -1 and 1 to detect stars. In this way we construct a list of detected stars on the reference
image with associated reference fluxes. Difference images are produced by the PASS0 pipeline
which are then measured to produce the difference fluxes for each star. When we scale the empiri-
cal PSF to the difference image at the position of each star, we also fit a local sky background as a
constant, which removes the need to model the complicated differential background visible in the
typical difference image in Figure 4.4.

Constructing lightcurves for the SuperWASP data is much simpler than for the PASS0 data
since there is just a single reference image. For each objectthe total fluxFtot = Fref + ∆f/p
(see Equation 3.8) at each time is calculated as in Section 3.1.4 and converted to an instrumental
magnitude using Equation 3.9. We find that for our particularchoice of reference image, by taking
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Table 4.1: The list of blur tests using Gaussians of different FWHMs.
Test FWHM (pix) of Gaussian FWHM (pix) of Gaussian A B C

used to blur the used to blur the (mmag) (mmag) (mmag)
reference image remaining images

N No blurring No blurring 33.6 9.86 11.3
P No blurring 0.5 33.4 9.49 11.2
Q 0.5 1.0 26.2 11.0 9.09
R 1.0 1.5 9.96 9.90 7.88
S 1.5 2.0 8.47 11.9 7.04
T 2.0 2.5 7.10 11.2 7.55
U 2.5 3.0 6.78 11.0 8.60
V 3.0 3.5 6.69 10.7 9.68
V′ No blurring 3.5 7.27 10.3 9.72
W 3.5 4.0 6.58 11.8 11.0
X 4.0 4.5 5.91 13.0 12.2
Y 4.5 5.0 5.80 14.3 14.1
Z 5.0 5.5 4.41 16.4 15.3

M0 = 19.73 mag, we bring the lightcurves on to the same magnitude scale as the SuperWASP
lightcurves (derived from the 100 brightest star matches).

4.3.2 Comparing the Gaussian Preconvolution Tests

We use an analysis of the RMS diagram for each test in Table 4.1so that we can assess the quality
of the reductions and the noise in the lightcurves as a function of magnitude. In Figure 4.5 we
show the RMS diagrams for tests N (red dots), U (green dots) and Z (blue dots). We also show
the theoretical noise curve for aperture photometry as the red line (calculated using Equation 2.19,
and for optimal PSF photometry as the dashed blue line (calculated using Equations 2.23, 2.17
and 2.18). It is clear that for test N, in which no blurring wascarried out, the results are disastrous
where at best we achieve an RMS scatter of∼0.03 mag at the bright end. Test U, for an intermedi-
ate blurring, achieves an RMS scatter close to the theoretical limit for PSF photometry for the stars
fainter than∼12.5 mags, but only achieves an RMS of∼0.007 mag at the bright end. However,
we should note that test U actually does better than the theoretical limit for aperture photometry
for magnitudes fainter than∼12.5 mag. Test Z, for a high blurring, performs with a similarquality
as test U for bright stars, but performs considerably worse for magnitudes fainter than∼12 mag,
because the sky photons become dominnat over the star photons for such a large PSF.

The solid curves in Figure 4.5 represent “backbone” fits to the RMS diagram. A “backbone”
fit consists of fitting the following model to the RMS diagram using a 3-sigma clip algorithm and
the amoeba downhill simplex method to minimise the total of the squared residuals:

R(m) =
√

A2 + (B × 10 0.2(m−12.75))2 + (C × 10 0.4(m−12.75))2 (4.3)
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Figure 4.5: The RMS scatter in the lightcurves versus magnitude for tests N (red dots), U (green
dots) and Z (blue dots). The theoretical noise curve for aperture photometry is shown as the solid
red line and, for PSF photometry, it is shown as the dashed blue curve. The black solid curves
represent the “backbone” fits to the data points for each dataset.

wherem is the magnitude on the SuperWASP magnitude scale, andA, B andC are parameters to
be determined. The fitted values ofA, B andC are presented in Table 4.1. In factA corresponds
to the total noise contribution from noise sources that are independent of magnitude (for example,
readout noise or scintillation). The parameterB corresponds to the Poisson noise from the star
photons and the parameterC corresponds to the Poisson noise from the sky photons, both for a
star with magnitude 12.75.

We fit the RMS diagram for each of the tests listed in Table 4.1 and hence determine the
dependence of the parametersA, B andC on the FWHM of the convolving Gaussian. We expect
that if the noise parameterA is dominated by scintillation, then it will be independent of the
amount of blurring, since the scintillation occurs before the photons enter the camera. We also
expect thatB is independent of the amount of blurring since the total number of star photons stays
the same. However, we expect that the noise parameterC will be proportional to the blurring
FWHM because a blurring byb pixels FWHM increases the number of sky photons by a factor of
b2 and therefore the sky noise by a factor ofb.

In Figure 4.6, we show the dependence of the three noise parameters as a function of the
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Figure 4.6: The derived values of the noise parametersA, B andC as a function of the FWHM of
the convolving Gaussian. The horizontal continuous line represents the expected value ofB and
the curved continuous line represents the expected behaviour of C.

FWHM of the convolving Gaussian. ParameterA decreases rapidly with FWHM and therefore
this magnitude-independent noise term is not dominated by scintillation. ParameterB is approxi-
mately constant as expected for FWHM≤ 3.5 pix, but increases rapidly for larger FWHMs. The
black horizontal continuous line marks the value ofB = 0.0060 mag that we expect from Equa-
tion 2.23 for am = 12.75 (so thatR(m) = B in Equation 4.3) and assuming that the pixel noise is
dominated by star photons. ParameterC has an expected value of 0.0064 mag from Equation 2.23
for m = 12.75 and no blurring, assuming that the pixel noise is dominated by sky photons. This
value forC may then be scaled to other blurring FWHMs by noting that the sky noise scales with
the final FWHM of the PSF in the blurred images, and calculating the final FWHM as the square
root of the sum of the blurring FWHM squared and the typical PSF FWHM squared. The expected
values forC are plotted in Figure 4.6 as the black solid curve. The observed values ofB andC
do not follow the theoretical predictions which is most likely due to correlations between these
quantities when fittingR(m). In fact, whenA andC are larger thanB, there will be no informa-
tion in the data concerningB, and the three parameter model leads to unrealistic values for the
parameters. This is especially visible in Figure 4.6 for a FWHM ≥ 3.5 pix, where the values for
B andC follow the same trend.



4.3. APPLICATION OF THE PASS0 PIPELINE 97

0.1
0.09
0.08
0.07

0.06

0.05

0.04

0.03

0.02

0.01
0.009
0.008
0.007

0.006

5.04.03.02.01.00.90.80.70.60.50.4

R
M

S
 s

ca
tte

r 
(m

ag
ni

tu
de

)

FWHM of Convolving Gaussian (pix)

10.0 mag

10.5 mag
11.0 mag

11.5 mag
12.0 mag

12.5 mag

13.0 mag

13.5 mag

14.0 mag

14.5 mag

Figure 4.7: Plot of RMS scatter in the lightcurves versus theFWHM of the convolving Gaussian
for different groups of stars binned by brightness. Each solid curve and associated data points
(filled circles) represents the results for a group of stars with a brightness within 0.25 magnitudes
of the magnitude marked at the end of the curve on the right hand side of the plot. The triangles
represent how one iteration of the Tamuz post-calibration procedure affects the results. The dashed
line links the minima of the solid curves.

At this point, it is clear that some amount of blurring is beneficial in order to be able to apply
difference imaging to the SuperWASP data (see Figure 4.5). The question that concerns us is what
FWHM should the Gaussian have with which we will convolve theimages? Figure 4.7 shows
the RMS scatter in the lightcurves as a function of FWHM of theconvolving Gaussian and star
brightness (each curve is marked at the right hand side of theplot with the centre of its magnitude
bin; each magnitude bin is 0.5 mag). It is clear that no blurring or small FWHMs produces very
poor results at all magnitudes. We also expect the visible trend that the accuracy of the lightcurves
of faint stars is degraded significantly by large amounts of blurring (FWHM > 3.5 pix) because
the act of convolution dilutes the star photon signal with sky noise. Brighter stars are less affected
by this process and this is also clear in Figure 4.7. The dashed line in Figure 4.7 links the minima
of the solid curves and highlights the best FWHM of the convolving Gaussian for each range of
star brightnesses. The best results for stars brighter than∼13 mag are obtained with a FWHM of
3.0 pix and for stars fainter than this, with a FWHM of∼1.5 to 2.0 pix.

We also test the influence of the Tamuz algorithm on the results illustrated in Figure 4.7.
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We apply only one iteration of the Tamuz algorithm for test purposes (see Section 4.3.7). The
algorithm hardly improves the lightcurve RMS scatter in most cases, and moderately improves the
lightcurve scatter for bright stars with large blurring FWHMs. The improvement in this situation
reaches∼6%. The results from applying the Tamuz algorithm are also shown in Figure 4.7 as the
filled triangles that sit just below the filled circles. Hencethe use of the Tamuz algorithm will not
significantly influence our decision on what is to be the correct blurring FWHM.

Finally, we discuss the results of tests V and V′. The RMS diagrams for both tests are virtually
identical to the human eye, and the values of the parametersA, B andC listed in Table 4.1 are
equal to within their uncertainties. This observation is reassuring because it shows that the blurring
of the reference image has no degrading effects on the subsequent photometry. This is also to be
expected because the convolution by a Gaussian and then a derived kernel (test V) is equivalent to
convolution by a single derived kernel (test V′).

4.3.3 Testing the PASS0 Pipeline on Fake Image Data

Ideally we would like to avoid preconvolution of the SuperWASP images with a Gaussian when
applying the image subtraction method since the act of convolution degrades the theoretical ac-
curacy that we may achieve in our lightcurves. However, we have seen that the undersampled
SuperWASP images are leading to large systematic residualson the difference images at the po-
sitions of the stars. We decided to investigate what effect this really has on our data, and whether
these residuals can explain the very poor∼0.03 mag RMS accuracy that we achieve for test N. To
do this we consider two noiseless fake data sets that we generate ourselves, one for undersampled
image data, and one for oversampled image data. We do not inject fake noise in to our fake images
because we are trying to understand the direct effect of undersampling on our results.

To test the PASS0 pipeline in the undersampled case, we choose a Gaussian model with
FWHM of 2 pix to represent the PSF with total counts of105 ADU. We generate 121 square
images of size 1681x1681 pixels with a fixed sky background of1000 ADU. Each image is made
up of a 41x41 grid of 41x41 pixel sub-squares. At the centre ofeach sub-square we add a PSF
simulating a star with a sub-pixel shiftdx anddy, in x andy respectively, that is given by:

dx =
Gx − 21

40
+

(I mod 11) − 5

10

dy =
Gy − 21

40
+

I − (I mod 11) − 55

110
(4.4)

whereGx is the grid number inx that runs from 0 to 40,Gy is the grid number iny that runs from
0 to 40 andI is the image number that runs from 0 to 120. In this way, in one image each star
is centred at a slightly different sub-pixel phase, where all stars cover a grid of 41x41 sub-pixel
phase positions. Also, since each image in the sequence has aslightly different sub-pixel offset,
a single star samples a grid of 11x11 sub-pixel phase positions over the image sequence. When
calculating the pixel values to be added to each image from the inserted PSF, we supersample the
Gaussian by a factor of 10 inx andy to ensure the correct flux integral over each pixel.

We also generate a second set of fake image data to test the PASS0 pipeline in the oversampled
case. This is done in an identical way as for the undersampledcase, except that we use a Gaussian
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Figure 4.8: Plot of the recovered reference fluxes from the fake image data for the undersampled
case with a FWHM of 2 pix with no pre-blurring (red points), for the undersampled case with
3 pix FWHM pre-blurring (blue points) and for the oversampled case with a FWHM of 4 pix
(black points).

model with FWHM of 4 pix to represent the PSF, again with totalcounts of105 ADU. For both
cases, we choose the image withdx = dy = 0 for the central star as the reference image.

We perform three PASS0 pipeline reduction tests as follows.We reduce the undersampled
fake data without pre-blurring the images to simulate test N, and we reduce the undersampled fake
data with pre-blurring with a Gaussian of FWHM 3 pix (blurring the reference image by 2.5 pix)
to simulate test U. Finally we reduce the oversampled fake data without pre-blurring the images
to simulate the case where the SuperWASP camera actually oversamples the image.

On running the fake image data sets through the PASS0 pipeline, we may first compare the
reference fluxes we obtain from the analysis of the referenceimages. We know that each star was
injected with total counts of105 ADU. Figure 4.8 shows the recovered reference fluxes for the
undersampled image data with no pre-blurring (red points),undersampled image data with 3 pix
FWHM pre-blurring (blue points off set by 10 pix inx for clarity) and the oversampled image
data with no pre-blurring (black points) as a function of thefake imagex coordinate. There is
a very clear pattern, which is to be expected from the way the reference image was constructed,
and this pattern is very similar to that obtained when plotting the reference fluxes against they



100 CHAPTER 4. OPTIMISING SUPERWASP PHOTOMETRY

Figure 4.9: Normalised histograms of the recovered difference fluxes from the fake image data
for the undersampled case with a FWHM of 2 pix (left), the pre-blurred undersampled case with
a FWHM of 2 pix (middle) and for the oversampled case with a FWHM of 4 pix (right). The total
number of data points used in each histogram is 203401 (sincethere are 1681 stars for which each
has 121 measurements).

coordinate. What is clear from Figure 4.8 is that the PASS0 pipeline reference image analysis
performs much better on the oversampled data and the pre-blurred undersampled data than on the
undersampled data alone, since the reference flux values recovered for the oversampled case are
all within 10 ADU (or 0.01%) of the correct value and the reference flux values recovered for the
pre-blurred undersampled case are all within 30 ADU (or 0.03%) of the correct value, whereas for
the undersampled case they can differ from the correct valueby up to 250 ADU (or 0.25%). This
discovery explains why we chose to pre-blur the reference image as well as the remaining images
in the tests performed in Section 4.3.1.

Now we consider the fake lightcurves produced by the pipeline, which should each consist
of 121 values of zero for the quantity∆f/p (the difference flux normalised by the photometric
scale factor). With 1681 test stars, we have 203401 estimates of the difference flux, and we
present these measurements in Figure 4.9 as normalised histograms for the undersampled case
(left), the pre-blurred undersampled case (middle) and theoversampled case (right). The standard
deviation of the∆f/p measurements for the undersampled case is∼310 ADU, for the pre-blurred
undersampled case is∼0.173 ADU and for the oversampled case is∼0.087 ADU, corresponding



4.3. APPLICATION OF THE PASS0 PIPELINE 101

to 0.31%, 1.7× 10−4% and8.7× 10−5% of the expected total flux. These results suggest that the
pipeline works exceptionally well on the pre-blurred undersampled fake data and the oversampled
fake data, recovering the injected fluxes at a precision at least103 times better than we require.
However, for the undersampled fake data, systematic errorsof the order of 0.31%, with a possible
amplitude of up to 1% (from Figure 4.9), are introduced by thepipeline into the lightcurves.
These results go some way to explaining the poor RMS accuracyachieved for the SuperWASP
lightcurves in test N.

4.3.4 Sub-Pixel Phase Map

As a last attempt to improve the photometry of the SuperWASP images without resorting to image
blurring, we investigate how the position of the centroid ofeach star within a pixel affects the
photometry of the star. Considering the lightcurves for test N, we calculate the residual magni-
tudes around the mean magnitude for each lightcurve. We alsoconsider a single pixel divided
up into a grid of 400 square bins such that there are 20 bins along each axis. Using the known
position of each star at each epoch in the original images, wecan assign each magnitude residual
to its corresponding sub-pixel bin using the sub-pixel position of the star. Uncertainties for each
magnitude residual are also stored. Since there are∼ 104 stars with 198 epochs, each sub-pixel
bin on average contains∼5000 magnitude residuals. The final sub-pixel phase map of magnitude
residuals is calculated by taking the optimal inverse-variance weighted mean of the residuals in
each sub-pixel bin.

The sub-pixel phase map we obtain is presented in Figure 4.10(a) as a 2×2 pixel grid in
order to highlight the structure of the pattern. The maximumand minimum values are 0.0124
and−0.0105 mag respectively. There is clearly a systematic pattern at the∼0.005 mag level.
We attempt to use this map to correct the test N lightcurves for this systematic error by optimally
scaling the pattern to the lightcurve residuals and subtracting, but we find that the correction makes
a negligible improvement to the RMS accuracies of the lightcurves. We explain this by considering
that a∼0.005 mag correction at all epochs cannot drastically improve lightcurves which have RMS
accuracies of∼0.03 mag and worse.

We also present the sub-pixel phase map that we obtain for test U in Figure 4.10(b). It is clear
that the pattern present for test N has disappeared, which isto be expected since the image blurring
influences the measured star centroids. Hence we do not attempt to apply any such correction for
test U.

4.3.5 Choosing the Best Gaussian Preconvolution

We decide to reduce the 688 images from the full SuperWASP data set using a convolving Gaus-
sian with a FWHM of 3.0 pix for all images except the referenceimage, which is convolved with
a Gaussian with a FWHM of 2.5 pix. This is judged to produce thelowest RMS scatter in the
lightcurves for all stars down to a magnitude of∼13.25, and a slightly suboptimal RMS scatter
for stars down to∼13.75 mag. Below this, the stars are generally too faint to search for transits
since the RMS scatter is above 4%. Hence we are not interestedso much in the quality of these
lightcurves.
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(a) (b)

(c) (d)

Figure 4.10:(a): Sub-pixel phase map for test N (no image blurring) repeated in a 2×2 pixel grid.
Each pixel map represents the optimal mean magnitude residuals as a function of position within
a SuperWASP pixel. The image scale is linear from−0.01 to 0.01 mag.(b): Sub-pixel phase map
for test U (image blurring with a Gaussian of FWHM 3.0 pix) repeated in a 2×2 pixel grid with
the same scale as in (a).(c)&(d): 3D surface plots of a single sub-pixel phase map from (a) & (b).

4.3.6 Image Subtraction Residuals

As with the PASS0 data analysed in Chapter 3, we produce imagestamps of the residuals on the
difference images for two interesting cases, the star XO-1 and an eclipsing binary. This test is done
to check that the PASS0 pipeline is working correctly on the SuperWASP data. In Figure 4.11,
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which is based on the same idea as that behind Figure 3.6, we plot 5 image stamps for each epoch
and we consider 10 epochs for each of the two stars. Star XO-1 is the star in the centre of the left
hand set of stamps and the eclipsing binary is the star in the centre of the right hand set of stamps.
Each row of stamps is a different epoch, and these epochs stretch from HJD 2453162.5 d to HJD
2453162.6 d, covering a part of the XO-1 lightcurve going from in-transit to out-of-transit. Note
that XO-1 is very close to the edge of the reference image.

The first column of stamps are cutouts from the blurred reference image (the same stamp
at each epoch), the second column are cutouts from the science images after blurring and then
resampling, and the third column are cutouts from the difference images. The fourth column are
cutouts from the difference images, but with the optimally scaled empirical PSF subtracted at the
position of the central star and the fifth column is the fourthcolumn normalised by the pixel sigmas
determined from the CCD noise model.

The transit signal for XO-1 is not visible to the human eye on the third column of stamps, and
hence the fourth column looks the same. However, for comparison, the eclipsing binary, which
has a much larger variation amplitude, clearly shows a decrease in brightness over the epochs
considered, and the residuals of the fit to the difference image look reasonable in the fourth column.
For both stars, the normalised residuals in the fifth column do not stretch to the full±3 sigma
range since the blurring process has smoothed out the noise (in other words the pixel noise is now
correlated between pixels). This may be compared to the fifthcolumn in Figure 3.6 where pixel
noise is not correlated. Any fixed pattern that is noticeablein the background on the difference
image stamps comes from the subtraction of the pre-blurred reference image, since the reference
image has approximately the same signal-to-noise as any other image. These stamps demonstrate
that there are not any serious systematic residuals at the position of the stars considered that may
affect the PASS0 photometry pipeline.

4.3.7 Further Lightcurve Calibration

Lightcurves from the SuperWASP pipeline are detrended using the algorithm described in Tamuz,
Mazeh & Zucker [81]. This algorithm is used to identify and remove systematic effects in large
numbers of light curves. As long as the systematic effects are linear and common in most of the
stars, then the algorithm will recognize them and remove them. Here we summarise briefly the
Tamuz detrending algorithm.
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Figure 4.11: Various image stamps for star XO-1 on the left and an eclipsing binary on the right.
For each star we show 10 rows of stamps corresponding to 10 epochs from HJD 2453162.5 d to
HJD 2453162.6 d, covering a part of the XO-1 lightcurve goingfrom in-transit to out-of-transit.
The first column of stamps are cutouts from the blurred reference image, the second column are
cutouts from the science images after blurring and then resampling, and the third column are
cutouts from the difference images. The fourth column are cutouts from the difference images,
but with the optimally scaled empirical PSF subtracted at the position of the central star and the
fifth column is the fourth column normalised by the pixel sigmas determined from the CCD noise
model.
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Figure 4.12:(a),(b),(c),(d): Tamuz coefficients against image number.(e): Tamuz coefficients
for the 1st iteration against photometric scale factor.(f): Tamuz coefficients for the 2nd iteration
against y-Shift.(g): Photometric scale factor against image number.(h): y-Shift against image
number.
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For a stari and an imagej we would like to minimise the chi-squared:

χ2
i =

∑

j

(rij − ciaj)
2

σ2
ij

(4.5)

whererij represents the lightcurve residuals after subtracting themean magnitude for the star. The
uncertainties on the lightcurve magnitude measurement arerepresented byσij and the coefficients
ci andaj may be thought of as the extinction coefficient for each star and the effective airmass of
each image respectively.

Starting with an initial guess for the airmassesaj (using the values recorded in the image
headers for instance), we can minimise theχ2

i in Equation 4.5 by differentiating theχ2
i with

respect toci, equating to zero and solving forci to get:

ci =

∑

j

(

rijaj/σ
2
ij

)

∑

j

(

a2
j/σ

2
ij

) (4.6)

Having solved for the coefficientsci we can now use a similar method to solve for the most suitable
airmassesaj :

aj =

∑

i

(

rijci/σ
2
ij

)

∑

i

(

c2
i /σ

2
ij

) (4.7)

The process can then be iterated until convergence is reached onci andaj .
For the SuperWASP pipeline, the Tamuz algorithm is applied four times to the lightcurves

removing four components of systematic error, two of which are thought to be caused by airmass
variations and thermal changes in the camera focus, but the causes of the other two are unknown
[19]. We also apply the Tamuz algorithm to our lightcurves from the PASS0 pipeline for the full
SuperWASP data set (688 images) and we find a reasonable improvement in the lightcurve scatter.
For a fair comparison of lightcurves and the accuracy we achieve with that of the SuperWASP
pipeline, we choose to apply four iterations of the Tamuz algorithm. The results are discussed in
Section 4.4.

In Figure 4.12 we present the Tamuz coefficients for the 1st, 2nd, 3rd and 4th iterations in
panels (a), (b), (c) and (d). The coefficients are plotted against image number and the vertical
dashed lines indicate a change in date. There are clear systematic patterns that are repeated from
night to night. We have attempted to find correlations against various quantities corresponding
to each image. The quantities we tested were sky background,FWHM, photometric scale factor,
and the rotation and xy-shifts transforming the images to the reference image. We find a clear
correlation between the Tamuz coefficients from the 1st iteration and the photometric scale factor,
which measures the extinction as a function of time (Figures4.12(g) and 4.12(e)). We also find
a correlation between the Tamuz coefficients from the 2nd iteration and the y-shift between im-
ages (Figures 4.12(h) and 4.12(f)). The other Tamuz coefficients do not correlate with any of the
quantities that we tested.
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Table 4.2: The fitted parameters to the final RMS diagrams.
Pipeline Number of Tamuz A B C

Iterations (mmag) (mmag) (mmag)
SuperWASP 4 7.51 5.04 22.6

PASS0 0 5.03 12.1 12.5
PASS0 4 4.52 10.1 12.3

4.4 Comparing the PASS0 and SuperWASP Pipeline Results

4.4.1 Comparing RMS Diagrams

Now we compare the results of our reductions using the PASS0 pipeline of the full SuperWASP
data set (688 images) to those using the SuperWASP pipeline and we do this using the RMS
diagrams. In Figure 4.13(a) we show the RMS scatter of the lightcurves from the SuperWASP
pipeline, including 4 iterations of Tamuz, as the green points. The red points represent the RMS
scatter of the raw lightcurves from the PASS0 pipeline whichhave NOT been calibrated by the
Tamuz procedure. We also plot the aperture photometry limitas the solid red line and the PSF
photometry limit (no blurring) as the blue dashed line. We include the scintillation noise (solid
black line) calculated from Equation 2.46 assuming a lens diameterd = 11.1 cm, a median airmass
X = 1.3 for the image sequence, an observatory heighth = 2400 m and an exposure time
∆t = 30 s, which givesσSCINT ≈ 2.2 mmag. It is clear that at all magnitudes, the PASS0 pipeline,
employing the 3.0 pix FWHM image blurring, produces considerably better photometry. For
stars at 12th mag and fainter, the PASS0 pipeline starts to dobetter than the aperture photometry
theoretical limit, and we get close to the PSF photometry theoretical limit.

In Figure 4.13(b) we plot the same RMS diagram as in Figure 4.13(a) except that we now show
the RMS scatter of the PASS0 pipeline lightcurves after 4 iterations with the Tamuz algorithm.
There has been a reasonable improvement to the RMS scatter inthe lightcurves. We fit the various
sets of points in Figure 4.13 using the three parameter modelfrom Section 4.3.2 and present the
fits in Table 4.2.

Finally, in Figure 4.14 we plot the photometry limits and RMSdiagram fits relative to the
RMS diagram fit for the best result (PASS0 pipeline with Tamuzdetrend). Here one can clearly
see that our PASS0 pipeline improves on the SuperWASP photometry by up to a factor of∼1.7
with a minimum improvement of∼1.3 at 11.4 mag. The Tamuz calibration of the PASS0 pipeline
lightcurves improves the photometry by a factor of∼1.1 across the magnitude range. Our final
lightcurves get to within a factor∼0.7 of the PSF photometry theoretical limit at the faint end
and are more accurate than can be achieved by aperture photometry from∼12.2 mag and fainter.
However, all pipelines fail drastically to reach the theoretical limits at the bright end suggesting a
shortcoming in the theoretical noise models.
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Figure 4.13:(a): RMS scatter in the lightcurves against magnitude for the SuperWASP data for
the SuperWASP pipeline (green points) and for the PASS0 pipeline (red points). The solid red
line shows the aperture photometry limit, the dashed blue line shows the PSF photometry limit (no
blurring) and the solid black line shows the scintillation noise. The SuperWASP pipeline results
have been calibrated with four iterations of the Tamuz algorithm and the PASS0 pipeline results
have NOT been calibrated by the Tamuz algorithm (i.e. they are the raw pipeline results).(b): The
same as (a) except that the PASS0 pipeline results have now been calibrated using four iterations
of the Tamuz algorithm so that the results are directly comparable.
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Figure 4.14: A plot of photometric limits and RMS diagram fitsas functions of magnitude and
normalised by the RMS diagram fit for PASS0 pipeline with Tamuz detrending. Each curve is
labelled appropriately.

Now we are in the position to estimate how the improvements inphotometric accuracy will
affect the planet yield from the SuperWASP survey. From Figure 4.13(b), we can see that on
average, for a given RMS accuracy, the corresponding magnitude is∼0.7 mag fainter for the
reductions using the PASS0 pipeline than for the SuperWASP pipeline. Using this information
in Equation 2.37 implies that the distance out to which we candetect planets will have increased
by a factor of100.7/5 ≈ 1.4. Since volume is proportional to the distance cubed, and since the
number of stars is proportional to the volume, then we can predict that there will be approximately
102.1/5 ≈ 2.6 times more stars for which we can detect planets, and a corresponding increase in
the planet detection efficiency of the SuperWASP survey. Hence our improvements in photometric
accuracy have the potential to more than double the planet yield of SuperWASP.

4.4.2 Comparing the Lightcurves of XO-1

We find that our reduction procedure has significantly improved the lightcurve of the star XO-1
compared to the SuperWASP lightcurve. In Figure 4.15(a) we plot the full lightcurve of XO-1
as produced by the SuperWASP pipeline (which includes the Tamuz calibrations) and in Fig-



110 CHAPTER 4. OPTIMISING SUPERWASP PHOTOMETRY

ure 4.15(c) and 4.15(e) we plot the full lightcurve as produced by the PASS0 pipeline before
and after the Tamuz detrending respectively. It is already clear at the this stage that the PASS0
pipeline lightcurve is of better quality, with fewer outliers and a slightly smaller scatter. The tran-
sits at HJDs of 2453158.5, 2453162.5, 2453166.5 and 2453170.5 days stand out much more in the
PASS0 pipeline lightcurve than in the SuperWASP lightcurve.

In the right hand column of plots in Figure 4.15 we plot the same lightcurves but zoomed in
on one night including a full transit, and now it is clear thatthe PASS0 pipeline lightcurve also
suffers from less systematic trends than the SuperWASP pipeline lightcurve. For instance, the
0.03 mag brightening of the SuperWASP lightcurve at HJD of 2453162.42 days is not real, and is
not present in the PASS0 pipeline lightcurve.

The most obvious visualisation of the improvement is illustrated in Figure 4.16 where we plot
the XO-1 lightcurves folded on the period of 3.941534 d. In Figure 4.16(a) we show the full phase
and in Figure 4.16(b) we show a zoom on the transit event. In both panels we plot the SuperWASP
pipeline lightcurve with red dots, and offset by 0.07 mag forclarity we plot the PASS0 pipeline
lightcurve (green points in Figure 4.16(a) and different coloured points in Figure 4.16(b) for each
different night of observations). The phased transit eventis much clearer in the PASS0 pipeline
lightcurve than the SuperWASP pipeline lightcurve.

McCullough et al. 2006 report a transit ephemeris ofT0 = 2453808.9170 d andP = 3.941534 d
in their discovery paper [51]. Further improvements in the ephemeris are not yet available in
the literature, although Holman et al. 2006 have produced improved photometry for four transit
events which allow them to derive more accurate transit and planetary parameters [34]. These
parameters are reported as a planet-to-star radius ratio of0.13102, an orbital inclination of 89.31◦

and an impact parameter of 0.14. The impact parameterb is related to the orbital inclinationi
via b = a cos i/R∗, which means that we can calculate an orbital radius to star radius ratio of
a/R∗ = 11.6. We assume a linear limb darkening coefficient of 0.5 as a decent approximation
for a Sun-like star. Then we use the combination of all the above quoted parameters to calculate
a model transit lightcurve using the equations of Mandel & Agol 2002 [47]. We plot the model
transit lightcurve as the black curve in Figure 4.15 and it isclear that the data follows the model
to within the photometric accuracy.
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Figure 4.15:(a): Detrended lightcurve of XO-1 from the SuperWASP pipeline. Error bars are not
plotted for clarity. Instead, a typical error bar is plottedin the top right hand corner. The time of
central transit occurs at HJD - 2453000≈ 162.5.(b): The third night of the same lightcurve as in
(a). (c): Lightcurve of XO-1 from the PASS0 difference imaging pipeline. Again, a sample error
bar is plotted in the top right hand corner. No Tamuz detrending has been carried out.(d): The
third night of the same lightcurve as in (c).(e): Lightcurve of XO-1 from the PASS0 difference
imaging pipeline with Tamuz detrending.(f): The third night of the same lightcurve as in (e).
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Figure 4.16:(a): Detrended phased lightcurve of XO-1 from the SuperWASP pipeline (red points)
and detrended phased lightcurve of XO-1 from the PASS0 pipeline (green points). The black curve
is the model lightcurve using published transit parameters. (b): Zoom around the transit event of
the detrended phased lightcurve of XO-1 from the SuperWASP pipeline (red points) and of the
detrended phased lightcurve of XO-1 from the PASS0 pipeline(various colour points). For the
PASS0 pipeline lightcurve, each night has a different colour code. Again the black curve is the
model lightcurve using published transit parameters.



Chapter 5

Variable Candidates from the PASS0
and SuperWASP Data

5.1 Introduction

In this Chapter we present a search method for variable starsand apply it to both the PASS0 data
and the SuperWASP data that we have analysed in Chapters 3 and4. We attempt to find periods
for the variables using the Lomb-Scargle periodogram [46],[73], and present a short catalogue of
variable stars with derived periods where possible. It is understood that most of these variables are
likely to be known already since they are stars in the magnitude range from 4th mag to 15th mag.

5.2 Variables in the PASS0 Lightcurve Data

5.2.1 Identifying Variable Stars

The idea behind the method that we use for identifying variables is a simple one. Variable stars
should show an RMS scatter in the lightcurves that is above the usual RMS scatter due to noise.
We can use the RMS diagrams to find the stars with an RMS that is larger than that of the majority
of stars at any particular magnitude.

Firstly we plot a histogram of the number of epochs in the PASS0 lightcurves and decide
to consider a variable search in the 12853 lightcurves (out of 13515) with at least 100 epochs
(Figure 5.1). Then we plot the RMS diagram for the chosen PASS0 lightcurves (Figure 5.2) and
fit it with the model described by Equation 4.3 in Chapter 4, but adjusting the model to take a
reference magnitude of 8 rather than 12.75. We obtainA = 12.1 mmag,B = 8.8 mmag and
C = 7.2 mmag. The model is plotted on Figure 5.2 as the solid black line.

To identify variables, we need to choose a threshold in RMS above which any stars will be
considered as variable. We must be carefull in choosing thisthreshold because the higher we set
this threshold, the more real variables that we will fail to detect, and because the lower we set this
threshold, the more constant stars that will contaminate our variable star sample.

It is clear from Figure 5.2 that our variable star detection threshold will need to be a function of
magnitude, and we decide to set the threshold as some factorT times the fitted model (solid black

113
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Figure 5.1: Histogram of the number of epochs in the PASS0 lightcurves. The lightcurves with at
least 500 epochs are represented by the shaded part of the histogram.

line). In Figure 5.3 we present a normalised cumulative histogram of the ratio of the lightcurve
RMS to the model RMS. We compare the normalised cumulative histogram to similar histograms
for chi squared distributions with degrees of freedom ranging from 1 up to the number of epochs in
the longest PASS0 lightcurve (3426 epochs), where we have normalised thex-axis by the number
of degrees of freedom. We find that the chi squared distribution that best fits the normalised
cumulative histogram (chosen using least squares) has 27 degrees of freedom. The range in the
number of epochs in the PASS0 lightcurves, combined with systematic trends present in the PASS0
lightcurves have served to increase the spread in the RMS values around the model RMS curve,
which has resulted in the best-fitting chi squared distribution having an artificially small number
of degrees of freedom.

To choose our threshold factorT we consider the probabilityP (x > T ) that the lightcurve
RMS to the model RMS ratiox is greater thanT , which can be obtained directly from the chi
squared distribution with 27 degrees of freedom. The probability that x ≤ T for N lightcurves is
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Figure 5.2: Plot of lightcurve RMS scatter against mean magnitude for the PASS0 lightcurves
(red dots). The fit to the RMS diagram is shown as the solid black line, and the cut off in RMS
for choosing variable star candidates is shown by the green dashed line. Variable star candidates
are shown as small filled black circles. Variable star candidates that survive our further cuts in
Section 5.2.2 are shown as large filled black circles.

given by:
P (x ≤ T for all N lightcurves) = (1 − P (x > T ))N (5.1)

Hence the probability that at least one lightcurve exceeds our thresholdT is1− (1−P (x > T ))N ,
and we choose to require that this false alarm probability is5%. We can now solve for the proba-
bility P (x > T ):

P (x > T ) = 1 − (1 − 0.05)1/N (5.2)

and we may then chooseT by considering the cut-off value of the chi squared distribution with 27
degrees of freedom. For theN = 12853 PASS0 lightcurves that we search for variables we find
that we should setT = 2.71.

Having chosen our detection threshold for variable stars, we scale up the model represented by
the solid black line in Figure 5.2 by a factor ofT = 2.71, and plot it as the green dashed line. We
take all stars with an RMS above this dashed line as candidatevariables. This method is similar to
that presented in Street et al. 2002 [78]. The 123 candidate variable stars are marked in Figure 5.2
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Figure 5.3: Normalised cumulative histogram of the ratio ofthe lightcurve RMS to the model
RMS (solid line). We overplot the best-fit chi squared distribution with 27 degrees of freedom,
where thex-axis of this distribution has been normalised by the numberof degrees of freedom
(dotted line).

as filled black circles, rather than the red dots for all the other stars.

5.2.2 Determining the Period of the Variable Stars

For each variable star candidate we inspect the lightcurve and remove obviously spurious lightcurves.
These fake variables show the same large drop in brightness at the end of a night of observations,
boosting the RMS of the lightcurve to a large value not representative of the actual scatter in the
rest of the lightcurve. We also try and determine a period foreach lightcurve using the Lomb-
Scargle method [46],[73] via the standard periodogram. Forthe PASS0 lightcurves it became
clear that without at least 500 epochs in a lightcurve, it wasimpossible to determine a period,
mainly because of the poor time sampling of the lightcurves (∼2 hours in every 24 hours). Hence
we further cut the set of variable lightcurve candidates to only those with at least 500 epochs (see
Figure 5.1). This left us with 60 variable stars.

The Lomb-Scargle periodogram method attempts to find the best period for a set of time-series
data (evenly or unevenly spaced) by fitting sine and cosine curves at different frequencies to the
data, and plotting the improvement in the data residuals as afunction of frequency. With a clear
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Figure 5.4: Periodograms for PASS0 example variable lightcurves.

periodic signal, the period will be indicated by the peak of the periodogram. However, when the
signal is not so strong, there may be multiple periodogram peaks. Also, when the time-series data
does not cover the full phase of the actual period, other periodogram peaks of equal strength may
appear at integer multiples of the real frequency.

The period search for each variable lightcurve was limited to the range from the Nyquist
frequency (half the sampling frequency) to half the time length of the specific lightcurve. In the
case of a clear periodogram peak, we take this peak as the period. In the case of multiple equal-
strength peaks, we take the peak corresponding to the shortest period as the period. For stars which
have periodograms without a clear peak we simply plot the unphased lightcurves.

In Figure 5.4 we plot four example periodograms corresponding to four PASS0 variables. The
top left periodogram is for the star 1632-1488-1 (lightcurve in Figure 5.5) which varies on a longer
time scale than the length of the observation run. In this case, the periodogram suggests a period
of 1 d, which is clearly wrong, and corresponds to the time between different observation nights.
Hence we cannot derive a period for this star. The top right periodogram is for the star 3215-0971-
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1 (lightcurve in Figure 5.6) which shows an eclipse on the seventh observing night, but is constant
otherwise. It is impossible to derive a period with only one eclipse, and the periodogram shows
no clear peak but suggests a period of greater than 10 d. Hencewe do not adopt a period for this
lightcurve. The bottom left periodogram is for the star 3169-3875-1 (lightcurve in Figure 5.8) and
it has a clear peak at a period of 3.3979 d. The folded lightcurve is of good quality and therefore we
adopt the suggested period. The bottom right periodogram isfor the star 3215-1746-1 (lightcurve
in Figure 5.7). The strongest peak is at a period of 0.1603 d which produces a beautiful folded
lightcurve and therefore we adopt this period.

Of the 60 variable stars, we could derive a period in 30 cases.In Figures 5.5 and 5.6, we
plot the 30 unphased variable star lightcurves for which a reliable period could not be found. In
Figures 5.7 and 5.8, we present the remaining 30 variable star lightcurves phased on the most
reliable period. We mention that for lightcurves like 1635-0568-1, 3155-1202-1 and 1631-0923-
1 there seem to be a few copies of the lightcurve pattern shifted in magnitude from the main
lightcurve. This is caused by a small subset of thePASSCAL factors for the LST correction
(k1(t)) being poorly determined for these lightcurves (see Section 3.2.2).

In Tables 5.1 and 5.2, we list the variable stars from the PASS0 data. We report the celestial
coordinates and mean magnitude of each star. We also report the period and amplitude of the
lightcurve for those lightcurves for which we could derive aperiod. In the last column we report
the results of a query in the SIMBAD astronomical database (http://simbad.u-strasbg.fr/simbad/)
for the Tycho star identifier and list the variable type if thestar is already known as a variable (note
that the SIMBAD database does not supply the period). We find that 37 out of the 60 variable stars
are already known as variables in SIMBAD, and it is likely that the remaining 23 variables are
known variables that are not reported in SIMBAD but elsewhere, simply because these are bright
stars (brighter than 10th magnitude). It is not within the range of this thesis to investigate these
variables further.

5.3 Variables in the SuperWASP Lightcurve Data

All the lightcurves for the SuperWASP data have 688 epochs and hence it is not necessary to make
a constraint on the number of epochs when identifying variable stars. We make a similar RMS
diagram plot as for the PASS0 data in Figure 5.9, and fit the model described by Equation 4.3
(solid black line). We obtain the resultsA = 4.5 mmag,B = 10.1 mmag andC = 12.3 mmag.
We also plot a normalised cumulative histogram of the ratio of the lightcurve RMS to the model
RMS in Figure 5.10 and find that the best-fit is a chi squared distribution with 47 degrees of
freedom. Theoretically, since each SuperWASP lightcurve has 688 epochs, the best-fit chi squared
should have 687 degrees of freedom. The fact that it has only 47 degrees of freedom indicates that
systematic errors in the lightcurves have served to increase the spread in the RMS values around
the model RMS curve.

We choose the variable star thresholdT = 2.18 by requiring a 5% false alarm probability and
using Equation 5.2 withN = 9671 lightcurves. The dashed green line in Figure 5.9 representsthe
solid black line scaled up by a factor ofT = 2.18, and all stars above this become our candidate
variable stars (filled black circles). With this method we find 287 candidate variables.

However, we find many high scatter lightcurves for the fainter stars and hence we decide to
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remove all candidate variables with mean magnitudes of lessthan 14.5 mag, which leaves 217
candidate variables. We visually inspect the candidate variable lightcurves and remove obviously
spurious variables, usually due to a group of outlier data points. We also use the Lomb-Scargle
method to determine a period for each lightcurve in exactly the same way as for the PASS0 variable
lightcurves in Section 5.2.2.

The results of our variable search in the SuperWASP lightcurves are shown in Figures 5.11
and 5.12 where in Figure 5.11 we plot 11 variable stars for which we could not find a period, and
in Figure 5.12 we plot 10 variable stars for which we could finda period. In Table 5.3 we report
the properties of the SuperWASP variables in an identical way to Tables 5.1 and 5.2 for the PASS0
variables. We find that 15 out of the 21 variables are already known as variables in the SIMBAD
astronomical database. The 21 variables are plotted in Figure 5.9 as large filled black circles.

5.4 Conclusions

In Section 5.2 we search for variables in 12853 PASS0 lightcurves using a fitted model to the
RMS diagram. We find 60 convincing variable star candidates and we are able to derive a period
for 30 of them. We also find that 37 candidate variables are already known variables according
to the SIMBAD astronomical database. In Section 5.3 we perform a similar variable star search
in the 9671 SuperWASP lightcurves and find 21 convincing variable star candidates, 15 of which
are already known variables according to SIMBAD. The results presented in this Chapter show
the potential for variable star discovery and monitoring asa side-product of a wide-field transit
survey.
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Figure 5.5: Unphased PASS0 variable star lightcurves.
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Figure 5.6: Unphased PASS0 variable star lightcurves continued.



122 CHAPTER 5. VARIABLE CANDIDATES

Figure 5.7: Phased PASS0 variable star lightcurves.
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Figure 5.8: Phased PASS0 variable star lightcurves continued.
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Table 5.1: Properties of the PASS0 variable stars. The SIMBAD variable type is taken from a
query in the SIMBAD astronomical database (http://simbad.u-strasbg.fr/simbad/).

Star RA Dec Mean Amplitude Period SIMBAD
Name J2000 J2000 Magnitude (mag) (d) Variable Type

1632-1488-1 20:29:10 16◦ 16′ 25′′ 5.76 - - Semi-Regular Pulsator
1635-0568-1 20:16:30 17◦ 34′ 42′′ 7.90 - - -
1638-0307-1 20:43:05 17◦ 05′ 17′′ 6.79 - - Mira Ceti
1642-0318-1 20:43:50 19◦ 13′ 07′′ 8.79 - - -
1656-2033-1 21:01:53 18◦ 59′ 56′′ 7.02 - - Variable
1691-1787-1 21:52:18 21◦ 16′ 23′′ 5.10 - - Variable
1715-0550-1 23:10:45 19◦ 19′ 22′′ 8.52 - - -
1726-2507-1 23:33:28 22◦ 29′ 56′′ 4.57 - - Variable
2165-1026-1 20:36:32 26◦ 36′ 15′′ 9.03 - - RV Tau
2199-0493-1 21:23:50 28◦ 28′ 15′′ 8.76 - - -
2232-1454-1 22:42:59 28◦ 09′ 26′′ 6.82 - - Semi-Regular Pulsator
2238-1289-1 22:54:40 24◦ 23′ 14′′ 6.63 - - Irregular Variable
2254-2568-1 23:47:23 26◦ 07′ 53′′ 6.61 - - Variable
2257-0716-1 23:46:52 28◦ 25′ 11′′ 6.09 - - -
2258-1427-1 23:55:04 28◦ 38′ 01′′ 7.69 - - RS CVn
2678-0210-1 20:04:27 34◦ 06′ 44′′ 8.73 - - Delta Cepheid
2682-0467-1 20:04:28 36◦ 49′ 00′′ 6.53 - - Semi-Regular Pulsator
2682-1280-1 20:01:43 36◦ 47′ 28′′ 9.28 - - -
2684-1088-1 20:18:47 36◦ 20′ 26′′ 8.69 - - Beta Lyr Eclipsing Binary
2695-1321-1 20:43:35 35◦ 35′ 33′′ 6.29 - - -
2701-0975-1 21:05:49 30◦ 13′ 02′′ 7.69 - - Semi-Regular Pulsator
2759-2238-1 23:10:09 33◦ 46′ 04′′ 4.92 - - Irregular Variable
3166-0772-1 20:48:00 39◦ 17′ 16′′ 7.15 - - Beta Lyr Eclipsing Binary
3186-2070-1 21:22:49 40◦ 55′ 57′′ 4.70 - - Variable
3197-2503-1 21:56:03 43◦ 19′ 22′′ 9.14 - - -
3212-0235-1 22:24:14 44◦ 02′ 49′′ 9.30 - - -
3215-0971-1 22:52:15 38◦ 44′ 45′′ 8.75 - - Eclipsing Binary
3226-1976-1 22:46:18 43◦ 52′ 08′′ 8.87 - - -
3237-0744-1 23:58:58 40◦ 47′ 32′′ 8.99 - - Variable Star
3240-0404-1 23:44:40 42◦ 03′ 32′′ 7.18 - - Variable Star
1176-0155-1 23:45:39 14◦ 43′ 48′′ 8.75 0.65 0.0555 -
3215-1746-1 22:53:42 37◦ 56′ 19′′ 9.12 0.70 0.1603 W UMa Eclipsing Binary
1656-1961-1 20:57:10 19◦ 38′ 59′′ 9.05 0.20 0.1822 W UMa Eclipsing Binary
3155-1202-1 20:10:55 40◦ 42′ 03′′ 8.17 0.10 0.1983 -
3169-0942-1 21:13:19 37◦ 34′ 08′′ 9.65 0.35 0.2317 -
2706-3713-1 21:16:22 32◦ 12′ 52′′ 9.66 0.50 0.2822 -
1713-1187-1 23:25:25 15◦ 41′ 19′′ 8.48 0.35 0.2965 W UMa Eclipsing Binary
3200-1872-1 22:29:35 37◦ 57′ 31′′ 9.33 0.35 0.3130 -
1631-0923-1 20:21:35 15◦ 25′ 38′′ 9.06 0.45 0.3225 -
2694-0550-1 20:37:20 35◦ 26′ 16′′ 8.77 0.45 0.3596 Beta Lyr Eclipsing Binary
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Table 5.2: Properties of the PASS0 variable stars. The SIMBAD variable type is taken from a
query in the SIMBAD astronomical database (http://simbad.u-strasbg.fr/simbad/).

Star RA Dec Mean Amplitude Period SIMBAD
Name J2000 J2000 Magnitude (mag) (d) Variable Type

2707-0173-1 21:25:00 33◦ 41′ 15′′ 8.75 0.40 0.3929 W UMa Eclipsing Binary
2254-2650-1 23:45:35 25◦ 28′ 19′′ 9.60 0.60 0.4071 W UMa Eclipsing Binary
1100-1710-1 20:39:37 14◦ 25′ 43′′ 8.93 0.50 0.4216 Algol Eclipsing Binary
3225-1270-1 23:16:21 41◦ 33′ 43′′ 9.03 0.35 0.4416 -
2209-0606-1 22:11:39 26◦ 07′ 32′′ 9.04 0.25 0.5353 -
2715-0262-1 21:21:24 35◦ 44′ 11′′ 9.01 0.55 0.6536 Beta Lyr Eclipsing Binary
1118-1950-1 21:26:41 13◦ 41′ 18′′ 7.79 0.30 0.7277 Beta Lyr Eclipsing Binary
2724-1974-1 22:09:33 33◦ 05′ 28′′ 8.55 0.10 1.0513 -
1667-1093-1 21:24:00 18◦ 16′ 44′′ 9.08 0.25 2.4309 W Vir
2701-3917-1 22:15:31 32◦ 18′ 45′′ 6.14 0.15 2.5079 -
3210-1930-1 22:01:31 43◦ 53′ 26′′ 9.08 1.10 2.5148 RS CVn
1132-1853-1 21:41:38 14◦ 39′ 31′′ 8.69 0.35 2.9656 Algol Eclipsing Binary
2679-0493-1 20:06:10 35◦ 23′ 10′′ 8.26 0.70 3.2464 Beta Lyr Eclipsing Binary
3161-1401-1 20:32:22 41◦ 18′ 19′′ 8.31 0.35 3.2829 Beta Lyr Eclipsing Binary
3169-3875-1 21:19:22 38◦ 14′ 15′′ 6.20 0.10 3.3979 Delta Cepheid
2183-2726-1 20:51:28 28◦ 15′ 02′′ 6.14 0.20 4.3441 Delta Cepheid
3156-0007-1 20:26:21 39◦ 40′ 10′′ 9.18 0.45 4.3501 -
3197-2856-1 21:51:41 43◦ 08′ 03′′ 8.98 0.55 4.9296 Delta Cepheid
3175-0287-1 20:55:19 42◦ 43′ 32′′ 8.98 0.40 5.0156 -
3210-1636-1 21:01:05 40◦ 15′ 35′′ 8.97 0.30 5.3133 -
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Figure 5.9: Plot of lightcurve RMS scatter against mean magnitude for the SuperWASP lightcurves
(red dots). The fit to the RMS diagram is shown as the solid black line, and the cut off in RMS
for choosing variable star candidates is shown by the green dashed line. Variable star candidates
are shown as small filled black circles. The final set of 21 variable stars are shown as large filled
black circles.
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Figure 5.10: Normalised cumulative histogram of the ratio of the lightcurve RMS to the model
RMS (solid line). We overplot the best-fit chi squared distribution with 47 degrees of freedom,
where thex-axis of this distribution has been normalised by the numberof degrees of freedom
(dotted line).
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Figure 5.11: Unphased SuperWASP variable star lightcurves.
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Figure 5.12: Phased SuperWASP variable star lightcurves.



130 CHAPTER 5. VARIABLE CANDIDATES

Table 5.3: Properties of the SuperWASP variable stars. The SIMBAD variable type is taken from
a query in the SIMBAD astronomical database (http://simbad.u-strasbg.fr/simbad/).

Star RA Dec Mean Amplitude Period SIMBAD
Name J2000 J2000 Magnitude (mag) (d) Variable Type

lc 00292.78900016.301t 15:24:06.0 34◦ 34′ 11.3′′ 11.13 - - RR Lyrae
lc 00384.29700174.715t 15:27:14.3 34◦ 14′ 52.6′′ 13.63 - - RR Lyrae
lc 00404.58601294.019t 15:48:22.0 34◦ 18′ 21.6′′ 10.85 - - -
lc 01214.94601164.746t 15:46:26.1 31◦ 05′ 36.0′′ 10.53 - - -
lc 01266.25100483.430t 15:33:50.9 30◦ 49′ 16.7′′ 12.99 - - -
lc 01548.80200120.828t 15:27:28.1 29◦ 38′ 09.3′′ 12.77 - - Galaxy
lc 01577.71500767.400t 15:39:16.3 29◦ 37′ 07.6′′ 10.59 - - Algol Eclipsing Binary
lc 01683.50601693.216t 15:56:08.0 29◦ 14′ 20.0′′ 11.38 - - Mira Ceti
lc 01725.94100778.039t 15:39:26.7 29◦ 00′ 58.9′′ 11.06 - - -
lc 01835.60501771.713t 15:57:31.8 28◦ 38′ 00.4′′ 12.56 - - RR Lyrae
lc 01924.95301272.594t 15:48:31.7 28◦ 16′ 54.5′′ 10.62 - - Pulsator
lc 01196.96300819.446t 15:40:00.8 31◦ 08′ 17.6′′ 13.49 0.50 0.1601 Eclipsing Binary
lc 00844.00101767.654t 15:57:41.0 32◦ 33′ 51.3′′ 13.69 0.50 0.1815 Eclipsing Binary
lc 00173.68001890.676t 16:00:14.5 35◦ 12′ 31.6′′ 11.96 0.40 0.1903 W UMa Eclipsing Binary
lc 02026.87601873.367t 15:59:18.6 27◦ 52′ 15.0′′ 11.35 0.60 0.1987 W UMa Eclipsing Binary
lc 00398.74701933.310t 16:00:58.5 34◦ 18′ 54.3′′ 12.91 0.35 0.2457 RR Lyrae
lc 01576.38101215.196t 15:47:25.9 29◦ 39′ 42.6′′ 13.98 1.10 0.4481 RR Lyrae
lc 00163.70401310.849t 15:49:00.2 35◦ 15′ 59.3′′ 14.18 1.40 0.4793 RR Lyrae
lc 00483.30000290.253t 15:29:32.7 33◦ 52′ 55.5′′ 10.78 0.10 2.2919 -
lc 01609.75100700.414t 15:38:03.0 29◦ 29′ 14.0′′ 10.49 0.20 3.4142 RS CVn
lc 01692.70201020.864t 15:43:54.7 29◦ 11′ 42.4′′ 14.35 1.20 6.7074 -



Chapter 6

Transit Candidates from the PASS0 and
SuperWASP Data

6.1 Introduction

In this Chapter we perform a transit search on the PASS0 lightcurves and the SuperWASP lightcurves.
However, we do not expect to find any new transit candidates since the observations do not cover a
long enough time period. The∼15 night observing runs are unlikely to catch any transitingplanet
in a∼3 day orbit, especially in the case of the PASS0 data since only ∼2 hours were observed each
night. Instead, the aim of the transit search exercise is to see if we can recover any of the known
transiting planets and/or transit candidates in the field with a standard transit search method.

6.2 Transit Search Algorithms

Identifying transit candidates from large sets of lightcurves for radial velocity follow-up observa-
tions is a difficult procedure. The transit signal is small (of the order of∼1%) and it is usually
comparable to the noise in the lightcurves. In many cases a single transit is not detectable and the
combined signal from observations of many different transits is necessary for the transit candidate
to be identified. This implies that a period analysis is required while searching for transits increas-
ing the parameter space to be searched. When searching for a transit we therefore need to scan the
parameter space defined by the transit epoch, duration and period.

Transit search algorithms have been studied and reviewed inthe literature [84],[85]. One of
the most widely used is the box-fitting algorithm (BLS) by Kovacs, Zucker & Mazeh [42]. It has
been proven to perform the same or better than any other transit search algorithm in the tests of
Tingley (2003; [85]). The BLS method is based on searching the lightcurves for signals that have
a periodic alternation between two discrete levels, with much less time spent at the lower level.
The method involves choosing a trial period and consideringthe folded time series of magnitude
measurements. A step function is fitted for a grid of phases and transit durations covering the
parameter space of these quantities. For each point in the parameter grid, the average weighted
squared deviation is calculated and the minimum of this quantity over the parameter grid indicates
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the best phase and transit duration. The same procedure is repeated for all trial periods over a given
range in which we are searching for planets. The overall minima of the BLS statistic is taken as
the best transit signal, with the corresponding period, phase and duration, and fitted out-of-transit
and in-transit magnitudes. The BLS method is made even more effective by ignoring any fits that
give an increase in brightness at times of “transit” (“the directional correction”, see [85]).

Another method that was not considered in the tests of Tingley [84],[85] is that described by
Schwarzenberg-Czerny & Beaulieu 2006 [74]. This method is based on a modification of the
analysis-of-variance (AoV) periodogram [75] for the specific purpose of planetary transit searches
(AoVtr). This method was published after the comparison paper of Tingley [85] and hence was
not included in the tests. The AoVtr method involves choosing a trial period and then binning the
lightcurve intoNH = P/tT bins, whereP is the period andtT is the transit duration. The bin
with the faintest mean magnitude is taken as the transit bin,and the out-of-transit mean magnitude
is calculated from the remaining data points. Using the division of the data into out-of-transit
and in-transit, the AoVtr statistic is calculated (see Schwarzenberg-Czerny & Beaulieu 2006).
The maximum of the AoVtr statistic over all test periods indicates the best transit signal for the
lightcurve.

Schwarzenberg-Czerny & Beaulieu state that the AoVtr test is more powerful than other meth-
ods because it is based on just one parameter fit, the in-transit magnitude. Also, it can be coded
to be up to ten times more efficient than other tests, and this efficient code is available from the
internet. Hence we have chosen to use the AoVtr method to search for transits in both the PASS0
and SuperWASP lightcurves.

6.3 Transit Candidates in the PASS0 Lightcurve Data

Out of the 13515 PASS0 lightcurves, we decide to search for transits in the 10827 lightcurves
that have at least 500 epochs (as with the variable search) and that were not identified as variable
candidates via Figure 5.2. By excluding stars with a high RMS, we are hopefully limiting the
number of spurious transit candidates that may be detected by removing real variable stars and a
large proportion of the stars with drops in brightness at theend of an observing night.

We apply the AoVtr routine to the lightcurves using the values ofNH suggested by Schwarzenberg-
Czerny & Beaulieu, 15 and 30. This corresponds to searching for transits with durations that are
1/15 and 1/30 of the orbital period. We scan periods from 1 d (which is slightly shorter than the
period of the shortest period known extra-solar planet) up to 8 d (approximately half the duration
of the observing run). The frequency resolution used was5 × 10−4 d−1 which corresponds to a
period resolution of5× 10−4 d at a period of 1 d and 0.032 d at a period of 8 d. Both these period
resolutions are small fractions of the transit duration forboth theNH = 15 andNH = 30 cases,
which indicates that we are scanning the period parameter space with sufficient resolution.
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Figure 6.1:Upper: The AoVtr statistic plotted against lightcurve magnitude for the 10827 PASS0
lightcurves that we search for transit candidates (red dots). This plot corresponds to theNH = 15
search case. The fitted constant function is plotted as the continuous black line, and the transit
candidate threshold is plotted as the green dashed line. Theset of initial transit candidates are
the filled black circles, and the AoVtr statistic for HD209458 is plotted as an asterisk. The larger
filled black circles represent the set of final transit candidates. Lower: Normalised cumulative
histogram of the ratio of the AoVtr statistic to the model AoVtr statistic (solid line). We overplot
the best-fit chi squared distribution with 4 degrees of freedom, where thex-axis of this distribution
has been normalised by the number of degrees of freedom (dotted line).
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Figure 6.2:Upper and Lower: The same as Figure 6.1 except that these plots correspond to the
NH = 30 search case.
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In the upper panels of Figures 6.1 and 6.2, we plot the AoVtr statistic versus magnitude for
both theNH = 15 andNH = 30 cases (red dots). To identify our initial set of transit candidates in
both cases, we fit a constant function to the AoVtr versus magnitude diagram using a 3-sigma clip
algorithm and the amoeba downhill simplex method to minimise the total of the squared residuals.
The idea of the fit is very similar to that of the “backbone” fitsto the RMS diagrams described in
Section 4.3.2 except that we now use the magnitude-independent model:

AoVtr(m) = A (6.1)

wherem represents magnitude, andA is a constant to be determined. We find that forNH = 15
we getA = 79.1, and that forNH = 30 we getA = 78.1. The models for AoVtr(m) are plotted
in both the upper panels of Figures 6.1 and 6.2 as solid black lines.

In the lower panels of Figures 6.1 and 6.2 we plot the normalised cumulative histogram of the
ratio of the AoVtr statistic to the model AoVtr transit statistic in Equation 6.1 (solid line). The
best-fit chi squared distribution has 4 degrees of freedom (dotted line) in both theNH = 15 and
NH = 30 cases. We choose to require a false alarm probability of 5%, which givesT = 7.52 using
Equation 5.2 andN = 10827 lightcurves. Hence we choose our initial set of transit candidates
by scaling up the AoVtr(m) model lines by a factor of 7.52 (green dashed lines) and choosing
all lightcurves with the AoVtr statistic above the scaled model. The initial transit candidates are
plotted on Figures 6.1 and 6.2 as filled black circles, and we find 221 initial transit candidates for
theNH = 15 case and 216 initial transit candidates for theNH = 30 case.

We also plot the AoVtr statistic for HD209458 in the upper panels of Figures 6.1 and 6.2 as an
asterisk. It is clear that the transit of HD209458 in the PASS0 data would not have been detected
by our method because it lies below the transit candidate threshold for both search cases. This is
to be expected since the PASS0 lightcurve of HD209458 only includes the observations of half of
one transit which does not give enough signal-to-noise in order for it to be detected.

We inspect all our initial transit candidates and find many spurious lightcurves, either showing
the brightness drop at the end of an observing night (as mentioned in section 5.2.2) picked up as
a transit by the AoVtr algorithm, or showing a repeating pattern with a period that is close to an
integer (1, 2, 3 etc.) or half integer (1.5, 2.5, 3.5 etc.) which indicates the presence of systematic
errors repeated from night to night. By removing these fake transit candidates, we are left with 11
transit candidates for theNH = 15 case and 4 transit candidates for theNH = 30 case. Our final
transit candidates are plotted in the upper panels of Figures 6.1 and 6.2 as large filled black circles.

We plot the phased lightcurves of the transit candidates fortheNH = 15 case in Figure 6.3
and for theNH = 30 case in Figure 6.4. The scale on the magnitude axis always covers a range
of 0.7 magnitudes so that the depths of each transit candidate are directly comparable. We also
overplot the step function model corresponding to the AoVtrstatistic as a continuous black line.

Star 3173-1826-1 is reported by the SIMBAD astronomical database as an irregular type vari-
able, but it is clearly an eclipsing binary with a secondary eclipse. It is interesting to note that
this variable star was not detected in our variable search inChapter 5 but it was detected in our
transit search. Star 2707-0239-1 is reported by SIMBAD as a double star, and the lightcurve also
suggests that it is an eclipsing binary (note that the AoVtr transit algorithm has chosen the wrong
period). Stars 1649-0042-1 and 3223-3620-1 are not constant out of the detected drop in bright-
ness and hence we can exclude these as transiting planets. Infact star 3223-3620-1 is reported as
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a Beta Cep type variable by SIMBAD. The remaining stars all show the correct shape for a transit
curve, but the phase coverage of the lightcurves is too poor for any real conclusions to be drawn
about the nature of the dips, since they are all only partially covered. Of these stars, 1691-1257-
1, 3238-1651-1 and 3216-1614-1 are known variable stars in the SIMBAD database. Also, note
that three of the four transit candidates for theNH = 30 case are also transit candidates for the
NH = 15. Hence, from our 12 different transit candidates, we have 5 for which more observations
would be useful to construct their full phased lightcurves.To obtain celestial coordinates of any of
the mentioned stars, simply perform a search for the Tycho-2identifier in the SIMBAD database.
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Figure 6.3: Plots of the phased lightcurves of the transit candidates for theNH = 15 search case.
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Figure 6.4: Plots of the phased lightcurves of the transit candidates for theNH = 30 search case.
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Figure 6.5:Upper: The AoVtr statistic plotted against lightcurve magnitude for the 9384 Super-
WASP lightcurves that we search for transit candidates (reddots). This plot corresponds to the
NH = 15 search case. The fitted exponential function is plotted as the continuous black line, and
the transit candidate threshold is plotted as the green dashed line. The set of initial transit candi-
dates are the filled black circles, and the AoVtr statistic for the four transit candidates from K07
are labelled appropriately. The larger filled black circlesrepresent the set of final transit candi-
dates.Lower: Normalised cumulative histogram of the ratio of the AoVtr statistic to the model
AoVtr statistic (solid line). We overplot the best-fit chi squared distribution with 13 degrees of
freedom, where thex-axis of this distribution has been normalised by the numberof degrees of
freedom (dotted line).
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Figure 6.6:Upper and Lower: The same as Figure 6.5 except that these plots correspond to the
NH = 30 search case, and that in the lower panel the chi squared distribution (dotted line) is for
12 degrees of freedom.
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6.4 Transit Candidates in the SuperWASP Lightcurve Data

We search for transits using the AoVtr statistic method in the 9384 SuperWASP lightcurves that
were not selected as variable candidates in Chapter 5 (of 9671 lightcurves in total). We use exactly
the same values ofNH, the same period range and the same frequency resolution as the transit
search in the PASS0 lightcurves (see Section 6.3). In the upper panels of Figures 6.5 and 6.6, we
plot the AoVtr statistic versus magnitude for both theNH = 15 andNH = 30 cases (red dots). We
fit the following exponential function to the AoVtr versus magnitude diagram using a 3-sigma clip
algorithm and the amoeba downhill simplex method to minimise the total of the squared residuals:

AoVtr(m) = A + B exp (m − 12.75) (6.2)

We find that forNH = 15 we getA = 22.4 andB = 4.04, and that forNH = 30 we getA = 24.0
andB = 5.04. The models for AoVtr(m) are plotted in both the upper panels of Figures 6.5 and
6.6 as solid black lines.

In the lower panels of Figures 6.5 and 6.6 we plot the normalised cumulative histogram of the
ratio of the AoVtr statistic to the model AoVtr transit statistic in Equation 6.2 (solid line). The
best-fit chi squared distribution (dotted line) has 13 degrees of freedom in theNH = 15 case, and
12 degrees of freedom in theNH = 30 case. We choose to require a false alarm probability of
5%, which givesT = 3.73 for theNH = 15 case, andT = 3.88 for the NH = 30 case, using
Equation 5.2 andN = 9384 lightcurves. Hence we choose our initial set of transit candidates by
scaling up the AoVtr(m) model lines by the chosen thresholds (green dashed lines) and choosing
all lightcurves with the AoVtr statistic above the scaled model. The initial transit candidates are
plotted on Figures 6.5 and 6.6 as filled black circles, and we find 195 initial transit candidates for
theNH = 15 case and 151 initial transit candidates for theNH = 30 case.

In the upper panels of Figures 6.5 and 6.6, we also plot the AoVtr statistic for the four transit
candidates from Table 2 in Kane et al. 2007 ([39]; from now on K07) that lie within the field of the
SuperWASP observations that we analysed. These transit candidates are labelled appropriately in
Figures 6.5 and 6.6. One of these transit candidates from K07is actually the transiting planet XO-
1b and we detect it in theNH = 15 AoVtr search but not in theNH = 30 AoVtr search (although
it is very close to the threshold). It is reassuring that we confidently recover this transiting planet,
especially since this detection is using only the 11 nights of SuperWASP data that we analysed.

For the transit candidate J152645.62+310204.3 from K07 (marked as “t2”), our data covers
two transit events compared to the 16 transit events used to detect the transit in K07, explaining
why we do not detect this event in our transit search. We present the lightcurve folded on the
1.409102 d period and epoch reported in K07 in Figure 6.7. Thedip in brightness is visible, and
the variations in the out-of-transit lightcurve that lead K07 to reject this candidate as a possible
planet are also visible.

For the transit candidate J153135.51+305957.1 from K07 (marked as “t3”), our data covers
just one transit event compared to the 10 transit events usedto detect the transit in K07. However,
the high quality of our lightcurve and the∼0.02 mag depth of the event lead it to be detected just
above the detection threshold for theNH = 15 transit search (the transit candidate is not detected
in the NH = 30 transit search). We present the lightcurve folded on the 4.467224 d period and
epoch reported in K07 in Figure 6.7. Again the dip in brightness is clearly visible. K07 rejected
this transit candidate because the predicted size of the transiting planet was too large (∼2 RJUP).
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Figure 6.7: The phased lightcurves of the four transit candidates in the field of our SuperWASP
data from K07. The dip at phase 0.5 is visible in all four lightcurves. However, only XO-1b and t3
were detected by our transit search because of the small number of observations that we processed.
All four lightcurves are plotted with the size of the range at0.15 mag so that the size of the dips
are directly comparable.

For the transit candidate J153741.83+344433.4 (marked as “t4”), our data covers two transit
events fully and one partially, compared to the 24 events used to detect the transit in K07, explain-
ing why we do not detect this event in our transit search. We present the lightcurve folded on
the 0.963514 d period and epoch reported in K07 in Figure 6.7 and one can clearly see the event.
This transit candidate was rejected because of its period, but the fact that the signal is also clearly
present in our reductions means that this transit candidateshould be reconsidered.

We inspect all our initial transit candidates, and we removethose showing groups of outlier
data points being picked up as a transit and those showing a repeating pattern with a period close
to an integer or half integer. Our final set of transit candidates are plotted as phased lightcurves
in Figure 6.8 for theNH = 15 case and in Figure 6.9 for theNH = 30 case. The scale on
the magnitude axis always covers a range of 0.3 mag so that thedepths of each transit candidate
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are directly comparable. We also overplot the step functionmodel corresponding to the AoVtr
statistic as a continuous black line. We find 6 transit candidates for theNH = 15 case and 5 transit
candidates for theNH = 30 case.

As we have already mentioned, we detect the transiting planet XO-1b in the AoVtr search
with NH = 15, but we detect it at a period of∼1.31 d, which is approximately one third of the
real period. This is a period alias that has been detected andit occurs because of the sparse phase
coverage at the real period. The same has happened for the transit candidate J153135.51+305957.1
from K07 for which our data only covers one transit event. With just one event, the period cannot
be determined and so the AoVtr algorithm has picked up a spurious period of 2.7822 d. A search
on SIMBAD for the remaining transit candidates does not reveal any known variables so we now
discuss each transit candidate in turn.

Star lc01296.62501643.003t is clearly a pulsating variable star and it is detected in both the
NH = 15 andNH = 30 transit searches. Star lc00180.63401441.525t shows a V-shaped partial
eclipse on one night which is at least 0.06 mag deep and probably deeper. This star is most likely
to be an eclipsing binary that we detect in both theNH = 15 andNH = 30 transit searches. Star
lc 01265.01401399.240t is another pulsating variable star.

Star lc00582.05800840.097t shows a small dip of∼0.01 mag on one night, but also shows
some possible out-of-transit variations at the same level.The listing for this star in SIMBAD does
not give any useful information on the spectral type of the star. More observations will be needed
to fully characterise the lightcurve of this star.

Star lc01960.71301889.197t shows a number of sharp V-shaped eclipses and out-of-transit
variation which means that this is most likely an eclipsing binary rather than a transiting planet
(note that the AoVtr transit algorithm has clearly picked the wrong period). Star lc00391.90300952.326t
also shows a short duration V-shaped eclipse and out-of-transit variation indicating that it is an
eclipsing binary. Finally, the suspected “dip” in the lightcurve of lc 00667.88701922.180t oc-
curs on one night and on inspection of the lightcurve, it seems to be due to a group of noisy
measurements rather than a real effect.

6.5 Conclusions

In Section 6.3 we search for transits in 10827 PASS0 lightcurves using the AoVtr statistic method.
We find no convincing candidates and we would require more observations for 5 transit candidates
that we could not reject based on their lightcurves. Our findings here are to be expected because
we have reduced a test data set from PASS0 that consisted of 14nights of observations with only
2 hours per night observed. A successful search for transitsin PASS0 data would really need a
month of observations of one field for full nights.

In Section 6.4 we search for transits in 9384 SuperWASP lightcurves again using the AoVtr
statistic method. This data set is also a test data set, but with 11 full nights of observations over
a 15 night period. Hence the phase coverage of the lightcurves for 1 to 10 day period planets is
better than for the PASS0 lightcurves. We successfully recover the transiting planet XO-1b, but
we recover only one of the other three known transit candidates from this field as reported by
K07. This is due to too few transit events being observed for each transit candidate. Our search for
transits gives 9 unique candidates, one of which is known as atransiting planet (XO-1b), another of
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which is a K07 transit candidate, and 5 of which are obviouslyvariable stars. One of the remaining
candidates is explained as a group of noisy points that were detected and the final candidate shows
a small dip, but also some possible out-of-transit variations, which means that more observations
are required to determine the full properties of the lightcurve. Again we conclude that a transit
search in this SuperWASP field would require many more observations in order to successfully
detect a transiting planet, but with the improvements in theSuperWASP photometry that we have
achieved, such a transit search will be more efficient.
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Figure 6.8: Plots of the phased lightcurves of the transit candidates for theNH = 15 search case.
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Figure 6.9: Plots of the phased lightcurves of the transit candidates for theNH = 30 search case.



Chapter 7

WASP-7b and WASP-8b

7.1 Introduction

In the last few weeks of writing this thesis, the WASP consortium provided an opportunity to
further prove the effectiveness of the DIA method in producing accurate and reliable lightcurves,
and this time, the results of the analysis would have an impact on the published parameters of
two newly discovered, but unannounced, extra-solar planets. These planets are WASP-7b and
WASP-8b, discovered by photometry from the SuperWASP-South station at the South African
Astronomical Observatory (SAAO), and confirmed by spectroscopy from the CORALIE spectro-
graph on the Euler 1.2-m telescope at the La Silla observatory in Chile.

Due to the volume of image data available for these two events, the time available only allowed
the transfer of images from the 2007 season to our processingcomputer and the processing of these
images. WASP-7b was observed in 2007 on chips DAS21 and DAS27from 30th April until 14th
October with 7008 images for DAS21 and 6971 images for DAS27.WASP-8b was observed in
2007 on chips DAS21 and DAS22 from 16th June until 28th November with 6290 images for
DAS21 and 6289 images for DAS22.

7.2 Reductions

The calibration frames of master bias, master dark and master flat produced by the SuperWASP
pipeline for each night were supplied by the WASP consortium. We applied these calibration
frames to the raw images in the standard way (see Section 4.2)so that the preprocessing reductions
were done in exactly the same way as for the SuperWASP pipeline. We also measured some useful
quantities like sky background and FWHM which allowed us to identify some images to be ignored
(e.g. some bias images were labelled as science images). In this way, for WASP-7b, we rejected 7
images for DAS21 and 5 images for DAS27, and for WASP-8b, we rejected 8 images for DAS21
and 8 images for DAS22. We chose a reference image for each planet and chip combination with
low sky backgrounds (∼300 ADU) and sharp FWHMs (∼1.7 pix).

The stars WASP-7b and WASP-8b have magnitudes of∼9.6 and∼9.9, which are at the bright
end of the stars surveyed by the SuperWASP camera. Considering the analysis we have done in
Chapter 4 on optimising the SuperWASP photometry, we can choose the amount of image blurring
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to optimise the photometry for our specific targets since we are only interested in the lightcurve
of one star from each chip. From Figure 4.7, we can see that forstars of approximately 10th
magnitude the best Gaussian blur has a FWHM of 3.5 pix. Hence we blur each image using a
Gaussian of FWHM 3.5 pix and we blur the reference image with aGaussian of FWHM 3 pix.
This is in contrast to the recommendation from Chapter 4 to blur each image with a Gaussian of
FWHM 3 pix which is optimised for all stars in the field.

To process of the order of∼26000 images through all stages of the PASS0 pipeline success-
fully within the two week deadline required considering only a 500×500 pixel cut out of each
image around the position of the planet-hosting star on the reference image. Also, to speed up the
processing, images were processed in batches on a few different processors in parallel.

Here we report on the reductions for WASP-7b. For DAS21 and DAS27, 2 and 5 images re-
spectively failed to be registered with the reference imagedue to heavy clouds. Also, 198 images
for DAS21 had pixel shifts of above 250 pixels which meant that WASP-7b did not fall within
our chosen 500×500 pixel cutout. Normally these images would be successfully processed by the
pipeline when considered as full images. Another complication which we only became aware of
after having done the reductions was that the flat field calibrationframes provided by the WASP
consortium, and produced by the SuperWASP pipeline, contain of the order of 100 “blank” pixels
with no value. The single bad pixels were flagged correctly byour PASS0 pipeline in the cali-
brated science images, but grew into larger bad pixel areas when each image was preblurred by
a Gaussian. The reference images suffered even more becausethese images are preblurred by a
Gaussian and then subsequently blurred by the derived kernel, and the blank pixels grow twice
over. As the pointing of the SuperWASP camera drifts during each night, and from night to night,
our target star sometimes drifts over a bad pixel area and we lose the photometric measurements
for the affected images. Consequently we lost 465 measurements of WASP-7b for DAS21 and
32 measurements for DAS27. In future, if DIA is to be used, the“blank” pixel problem in the
SuperWASP calibration frames will have to be solved, possibly by filling in the blank pixels with
the median value of the surrounding pixels. At this stage we find we have 6332 lightcurve data
points for DAS21 and 6929 lightcurve data points for DAS27.

Now we report on the reductions for WASP-8b. For DAS21 and DAS22, we successfully
registeredall images with the reference image for both chips. However, we then discovered that
for DAS22, WASP-8b is only present in thefull frame for 364 images. Due to the problem with
blank pixels in the SuperWASP calibration frames, we lost 136 measurements of WASP-8b for
DAS21 and 107 measurements for DAS22. Hence at this stage we find we have 6146 lightcurve
data points for DAS21 and 257 lightcurve data points for DAS22.

The final stage of our reductions involves processing the lightcurves for each planet and chip
combination through four iterations of the Tamuz algorithm(see Section 4.3.7). We firstly filter
out all data points from our lightcurves for which the photometric scale factor is less than 0.3 indi-
cating the presence of cloud cover. It was clear from inspecting a random selection of lightcurves
that these low quality data points were producing unrealistic outliers of a few up to a few mag-
nitudes. Removing these data points left us with much cleaner lightcurves with 6139 and 6735
data points for DAS21 and DAS27 respectively for WASP-7b, and 5978 and 257 data points for
DAS21 and DAS22 respectively for WASP-8b. At this point we apply four iterations of the Tamuz
procedure.
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Figure 7.1:(a): RMS scatter in the lightcurves against magnitude for the final set of lightcurves
(Tamuz detrended) in the field of WASP-7b for DAS21. WASP-7b is marked by the solid black
circle. The solid red line shows the aperture photometry limit, the dashed blue line shows the PSF
photometry limit (no blurring) and the solid black line shows the scintillation noise.(b): The same
as (a) for the field of WASP-7b for DAS27.
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Figure 7.2:(a): RMS scatter in the lightcurves against magnitude for the final set of lightcurves
(Tamuz detrended) in the field of WASP-8b for DAS21. WASP-8b is marked by the solid black
circle. The solid red line shows the aperture photometry limit, the dashed blue line shows the PSF
photometry limit (no blurring) and the solid black line shows the scintillation noise.(b): The same
as (a) for the field of WASP-8b for DAS22.
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Table 7.1: Comparison of the PASS0 and SuperWASP pipeline results for the WASP-7b lightcurve.
DAS21 PASS0 Pipeline SuperWASP Pipeline PASS0 Pipeline SuperWASP Pipeline

RMS (mag) RMS (mag) No. Data Points No. Data Points
Unfiltered lightcurves 0.0072 0.0505 6139 (+465) 6308

Matched unfiltered lightcurves 0.0071 0.0263 5604 5604
Filtered SuperWASP lightcurve - 0.0059 - 3701

Matched unfiltered DIA lightcurve with filtered SuperWASP lightcurve 0.0057 0.0059 3700 3700
DAS27

Unfiltered lightcurves 0.0078 0.0415 6735 (+32) 5718
Matched unfiltered lightcurves 0.0078 0.0242 5551 5551
Filtered SuperWASP lightcurve - 0.0058 - 3867

Matched unfiltered DIA lightcurve with filtered SuperWASP lightcurve 0.0060 0.0058 3852 3852

Table 7.2: Comparison of the PASS0 and SuperWASP pipeline results for the WASP-8b lightcurve.
DAS21 PASS0 Pipeline SuperWASP Pipeline PASS0 Pipeline SuperWASP Pipeline

RMS (mag) RMS (mag) No. Data Points No. Data Points
Unfiltered lightcurves 0.0071 0.0680 5978 (+136) 6095

Matched unfiltered lightcurves 0.0071 0.0265 5543 5543
Filtered SuperWASP lightcurve - 0.0063 - 4706

Matched unfiltered DIA lightcurve with filtered SuperWASP lightcurve 0.0061 0.0063 4677 4677
DAS22

Unfiltered lightcurves 0.0039 0.0056 257 (+107) 349
Matched unfiltered lightcurves 0.0039 0.0042 243 243
Filtered SuperWASP lightcurve - 0.0047 - 295

Matched unfiltered DIA lightcurve with filtered SuperWASP lightcurve 0.0041 0.0044 204 204
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To bring our instrumental magnitudes approximately into line with the SuperWASP magni-
tudes we use the known magnitudes of WASP-7b and WASP-8b to derive magnitude zeropoints of
M0 ≈ 18.78, 18.88, 18.69 and 18.75 for WASP-7b-DAS21, WASP-7b-DAS27, WASP-8b-DAS21
and WASP-8b-DAS22 respectively. We present our final RMS diagrams in Figures 7.1 and 7.2 for
WASP-7b and WASP-8b respectively. In each RMS diagram the red points correspond to stars in
the field and the solid black circle corresponds to the objectof interest (WASP-7b or WASP-8b).
Also, the solid red line shows the aperture photometry limit, the dashed blue line shows the PSF
photometry limit (no blurring) and the solid black line shows the scintillation noise (calculated
from Equation 2.46 assumingd = 11.1 cm, X = 1.3, h = 2400 m and∆t = 30 s, giving
σSCINT ≈ 2.2 mmag).

7.3 Comparing the Lightcurves from the PASS0 and SuperWASP
Pipelines

The WASP consortium provided us with the lightcurves of WASP-7b and WASP-8b produced by
the SuperWASP pipeline and calibrated by the Tamuz algorithm. Hence we can directly compare
the PASS0 pipeline lightcurves to the SuperWASP pipeline lightcurves for these two planets. We
would like to compare the pipelines for both accuracyand reliability. We assess the accuracy of
the pipelines by looking at the RMS values of the lightcurvesand we assess the reliability of the
pipelines by looking at how many data points are produced foreach lightcurve.

In Tables 7.1 and 7.2 we present the results of our pipeline comparison for each planet and chip
combination (WASP-7b-DAS21, WASP-7b-DAS27, WASP-8b-DAS21 and WASP-8b-DAS22).
For each case we present the RMS of the (unfiltered) lightcurves for the PASS0 and SuperWASP
pipelines along with the number of data points successfullymeasured using each pipeline. For
the PASS0 pipeline we note in brackets the number of data points lost to the “blank” pixel prob-
lem, which can be avoided by producing the appropriate calibration frames free of blank pixels.
We also match the data points in the (unfiltered) PASS0 and SuperWASP pipeline lightcurves for
a direct comparison of RMS values for common data points and present these results in the Ta-
bles. For the purpose of lightcurve fitting, the WASP consortium filters the SuperWASP pipeline
lightcurves of WASP-7b and WASP-8b by rejecting all data points with uncertainties greater than
0.02 mag. We show the effect on the SuperWASP pipeline lightcurve RMS values and number
of data points in the Tables. Finally we match the (unfiltered) PASS0 pipeline lightcurve with the
filtered SuperWASP pipeline lightcurve and present these results in the Tables.

Considering the (unfiltered) lightcurves, it is clear that the PASS0 pipeline achieves much
better RMS accuracy than the SuperWASP pipeline, and that the PASS0 pipeline is more reliable
than the SuperWASP pipeline because all the PASS0 pipeline lightcurves have more data points
than the corresponding SuperWASP pipeline lightcurves (when you take into account the data
points lost to the “blank” pixel problem). Matching the unfiltered lightcurves between the pipelines
does not affect the RMS accuracy of the PASS0 pipeline lightcurves, but considerably improves
the RMS accuracy of the SuperWASP pipeline lightcurves, at the expense of losing of the order of
∼10% of the data points. This suggests that the PASS0 pipelinehas automatically rejected poor
data points whereas the SuperWASP pipeline has included poor data points in the lightcurves,
indicating further the better reliability of the PASS0 pipeline.
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The WASP consortium has data on WASP-7b and WASP-8b from the 2006 observing season as
well as from the 2007 observing season, and they have supplied us with appropriate ephemerides
for these planets which are more accurate than what we could derive from the 2007 data alone
(C. Hellier, private communication). WASP-7b has a period of P = 4.9551026 d with time of
mid-transitT0 = 2453856.18820 d, and WASP-8b has a period ofP = 8.1595457 d with time
of mid-transitT0 = 2454181.68318 d. In Figures 7.3 and 7.4 we present the unfiltered phased
lightcurves for both pipelines for WASP-7b and WASP-8b respectively. For WASP-7b, DAS21
data points are red and DAS27 data points are green, and for WASP-8b, DAS21 data points are red
and DAS22 data points are green. For both planets, it is clearthat the PASS0 pipeline lightcurve is
much superior to the SuperWASP pipeline lightcurve, which suffers from very serious systematic
trends and large outliers in both cases, even after the Tamuzdetrending. It is questionable as to
how the transiting planets were even detected using the SuperWASP data.

The filtering of the SuperWASP pipeline lightcurves by rejecting all data points with uncer-
tainties greater than 0.02 mag is an effective way of greatlyimproving the RMS accuracy of the
SuperWASP pipeline lightcurves. The improvement is good enough that the filtered SuperWASP
pipeline lightcurves have reasonably better RMS accuracy than the (unfiltered) PASS0 pipeline
lightcurves. However, the filtering process can remove anywhere from∼15% to∼40% of the data
points (WASP-8b-DAS22 and WASP-7b-DAS21 respectively). This strong approach to filtering
removes very important data from during the transit event.

When matching between the (unfiltered) PASS0 pipeline lightcurve and the filtered Super-
WASP pipeline lightcurve, it becomes clear that the data points in the filtered SuperWASP pipeline
lightcurve are contained in the PASS0 pipeline lightcurve (see Tables 7.1 and 7.2). Also, the
matched lightcurves in this case are generally slightly better for the PASS0 pipeline than the Su-
perWASP pipeline. This leads to the conclusion that for the best balance between RMS accuracy
and number of data points, the (unfiltered) PASS0 pipeline lightcurves are the best choice. It is
now clear that the PASS0 pipeline successfully processes the higher S/N images to a similar ac-
curacy as the SuperWASP pipeline and that the PASS0 pipelineprocesses lower S/N images to a
much better accuracy than the SuperWASP pipeline.

In each panel of Figures 7.5 and 7.6 corresponding to a different planet and chip combination,
we plot the filtered SuperWASP pipeline lightcurve magnitudes against the (unfiltered) PASS0
pipeline lightcurve magnitudes for the matching data points. We do this to see what level of cor-
relation the SuperWASP pipeline aperture photometry showswith the PASS0 pipeline DIA-PSF
photometry. In all four cases there is a relatively high level of correlation between the lightcurves
and this conclusion is supported by the Spearman’s rank correlation coefficients shown within the
panels. This fact is reassuring for the reliability of the reductions from both pipelines.

At this point we mention that the WASP-7b and WASP-8b host stars are at the very bright
end of the stars surveyed by the SuperWASP camera. For these stars it is theoretically possible
for aperture photometry to perform as accurately as PSF photometry since the photon noise is
dominated by star photons (see Figures 7.1 and 7.2). However, from Figures 7.1 and 7.2 it is
clear that if WASP-7b and WASP-8b had been fainter than∼12 mag, then the PASS0 pipeline
would have provided RMS accuracies significantly better than the SuperWASP pipeline, even
after filtering the SuperWASP pipeline lightcurve, since the stars fainter than this limit have RMS
accuracies better than the theoretical aperture photometry limit.
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Figure 7.3:(a): Plot of the phased lightcurve of WASP-7b for both chips (red points are DAS21;
green points are DAS27) for the SuperWASP pipeline.(b): The same as (a) but for the PASS0
pipeline.
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Figure 7.4:(a): Plot of the phased lightcurve of WASP-8b for both chips (red points are DAS21;
green points are DAS22) for the SuperWASP pipeline.(b): The same as (a) but for the PASS0
pipeline.
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Figure 7.5: (a): Plot of filtered SuperWASP pipeline lightcurve magnitudes against (unfiltered)
PASS0 pipeline lightcurve magnitudes for matching data points. This case corresponds to WASP-
7b and DAS21.(b): The same as (a) but for WASP-7b and DAS27.
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Figure 7.6: (a): Plot of filtered SuperWASP pipeline lightcurve magnitudes against (unfiltered)
PASS0 pipeline lightcurve magnitudes for matching data points. This case corresponds to WASP-
8b and DAS21.(b): The same as (a) but for WASP-8b and DAS22.
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Figure 7.7:(a): Plot of the phased lightcurve of WASP-7b for both chips for the filtered Super-
WASP pipeline lightcurve (black points) and the (unfiltered) PASS pipeline lightcurve (red points;
offset by 0.08 mag). The best fit step function model is plotted as the solid black curve for both
lightcurves.(b): The same as (a) but zoomed in around the transit event.
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Figure 7.8:(a): Plot of the phased lightcurve of WASP-8b for both chips for the filtered Super-
WASP pipeline lightcurve (black points) and the (unfiltered) PASS pipeline lightcurve (red points;
offset by 0.08 mag). The best fit step function model is plotted as the solid black curve for both
lightcurves.(b): The same as (a) but zoomed in around the transit event.
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Table 7.3: The fitted planet parameters for WASP-7b and WASP-8b.
Transit Depth Transit Duration Time of Central Transit Planet Radius Orbital Inclination

(mmag) (h) (d) (RJUP) (◦)
WASP-7b PASS0 pipeline 6.9±0.2 3.07±0.12 2453856.15847 1.00±0.10 87.8

WASP-7b SuperWASP pipeline 9.1±0.5 2.93±0.27 - 1.14±0.12 87.4
WASP-8b PASS0 pipeline 13.5±0.5 4.97±0.35 2453181.65870 1.08±0.11 -

WASP-8b SuperWASP pipeline 3.2±0.3 13.9±0.71 - - -
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7.4 Fitting the Lightcurves from the PASS0 and SuperWASP Pipelines

In Figures 7.7 and 7.8 we plot the SuperWASP pipeline and PASS0 pipeline phased lightcurves of
WASP-7b and WASP-8b respectively. The SuperWASP pipeline lightcurves (black points) have
been filtered by rejecting all data points with uncertainties greater than 0.02 mag, and the PASS0
pipeline lightcurves (red points) are presented unfiltered(and offset by 0.08 mag). In Figures 7.3
and 7.4 we noticed that the time of central transit provided to us is slightly in error, and so we have
redetermined it in our fits of these lightcurves. The lightcurves presented in Figures 7.7 and 7.8
have been phased on the periods provided by C. Hellier, but using our fitted times of central transit
for the PASS0 lightcurves.

Firstly we consider what we can derive from the lightcurves for the planet WASP-7b. We fit
a step function to the phased lightcurve with parameters of mean magnitude out-of-transitMOUT,
time of central transitT0, transit depth∆m and transit durationtT. We do not take a more compli-
cated transit model (by including limb darkening etc.) simply because the data is not of sufficient
quality to extract any more than the basic transit properties. To find the best-fit parameters of the
step function we step through a fine grid of transit durationsfrom zero to 0.1 in phase and times
of central transit from 0.45 to 0.55 in phase. For each trial duration and time of central transit we
may calculate the out-of-transit mean magnitudeMOUT and the in-transit mean magnitudeMIN

using optimal means, from which we can also derive the transit depth∆m = MIN −MOUT. Then
for each trial duration we use the fitted parameters to calculate theχ2, and the best-fit solution
corresponds to the step function with the smallestχ2.

The fitted step functions are plotted on Figure 7.7 as solid black curves. We find that for the
PASS0 lightcurve, the best-fit step function has a transit duration tT = 3.07 ± 0.12 h and a transit
depth∆m = 6.9±0.2 mmag. The error bar on∆m was calculated directly from the use of optimal
means to calculateMOUT andMIN , and the error bar ontT was estimated by measuring the size of
the region whereχ2 − χ2

BEST < 1 (whereχ2 = χ2
BEST for the best-fit solution). We determine a

new time of central transit ofT0 = 2453856.15847 d. For the SuperWASP lightcurve, the best-fit
step function has a transit durationtT = 2.93± 0.27 h and a transit depth∆m = 9.1± 0.5 mmag.
Note that the filtering of the SuperWASP lightcurve has removed a large fraction of important data
points during the transit event, which has reduced the accuracy of the derived transit parameters
for the SuperWASP pipeline.

The radial velocity method provides no information on the radius of the extra-solar planet
whereas the depth of a transit indicates the ratio of the radius of the planet to the radius of the
star (see Equation 1.3). For small transit depths we can assume ∆m ≈ ∆F/F = (RP/R∗)

2.
With knowledge of the host star radius we can then estimate the planetary radius. Also the transit
parameters can be used to estimate the orbital inclination using Equations 1.8 and 1.10.

The host star of WASP-7b is a main sequence star of spectral type F6 with predicted radius
∼ 1.2R⊙ and mass∼ 1.29M⊙ (C. Hellier, private communication). We are not supplied with the
uncertainties on the stellar parameters and so we take conservative estimates of 10%. Our results
then provide planetary radii estimates of∼ 1.00 ± 0.10RJUP for the PASS0 pipeline lightcurve,
and∼ 1.14 ± 0.12RJUP for the SuperWASP pipeline lightcurve (assumingRJUP ≈ 0.1R⊙). We
also estimate the inclination as∼ 87.8◦ for the PASS0 pipeline lightcurve and∼ 87.4◦ for the
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SuperWASP pipeline lightcurve.
For the WASP-8b lightcurves, we use the same method to find thebest-fit step function. The

best-fit step functions are plotted on Figure 7.8 as solid black curves. For the PASS0 pipeline
lightcurve we gettT = 4.97 ± 0.35 h and∆m = 13.5 ± 0.5 mmag whereas for the SuperWASP
pipeline lightcurve we gettT = 13.9 ± 0.71 h and∆m = 3.2 ± 0.3 mmag. Again the filtering
of the SuperWASP lightcurve has removed essential data points from the transit event, which has
left the transit event with too few data points in order to be fit successfully, and the resulting fit is
clearly wrong. We determine a new time of central transit ofT0 = 2454181.65870 d. The host
star of WASP-8b is a main sequence star of spectral type G6 with predicted radius∼ 0.93R⊙ and
mass∼ 0.93M⊙. (C. Hellier, private communication). Again we assume thatthe uncertainties on
the stellar parameters are at 10%. Hence we predict a planetary radius of∼ 1.08± 0.11RJUP from
our PASS0 pipeline lightcurve, and we ignore the erroneous results from the SuperWASP pipeline
lightcurve. We note that the maximum transit duration whichoccurs for a central transit is given
by tT = PR∗/πa = 3.48 h (see Equations 1.8 and 1.10). Hence the duration of the transit fit
to the PASS0 pipeline lightcurve (and that of the SuperWASP pipeline) must be in error and we
cannot estimate correctly the inclination of the transiting planet. This error has occurred because
of the lack of data points available during the transit event.

7.5 Conclusions

In this chapter we have shown again how the DIA-PSF method is more accurate and reliable than
the aperture photometry method for SuperWASP data. We have demonstrated this by reprocessing
the SuperWASP data for 2007 for two transiting planets that will be announced soon. We find that
the PASS0 pipeline lightcurves are of sufficient quality to model the transit events without further
filtering of the lightcurves, whereas the SuperWASP pipeline lightcurves require heavy filtering to
remove the serious systematic trends that they suffer from.However, by filtering the SuperWASP
lightcurves, the number of data points is drastically reduced which means that modelling the transit
event becomes much less accurate for the SuperWASP lightcurves (or even impossible in the case
of WASP-8b).

We summarise the results of our fits to the various transitingplanet lightcurves in Table 7.3. We
derive planetary radii of∼ 1.00 ± 0.10RJUP and∼ 1.08 ± 0.11RJUP from the PASS0 lightcurves
for WASP-7b and WASP-8b respectively. We also determine more accurate times of central transit
asT0 = 2453856.15847 d andT0 = 2454181.65870 d for WASP-7b and WASP-8b respectively.
For WASP-7b we are also able to estimate the orbital inclination as∼ 87.8◦. Our results show the
potential of our PASS0 pipeline to deliver more accurate andreliable planetary parameters than
the SuperWASP pipeline.



Chapter 8

Summary

In the first Chapter of this thesis we introduced the field of extrasolar planets and the methods
of detection, focussing on the transit method. We describeda wide selection of transit search
experiments and commented on their potential and success. We discussed what information on
extrasolar planets can be determined from the transit lightcurves and mentioned the achievements
of various investigators in these areas. We briefly discussed planet formation theory and how this
area has been shaken up by the disovery of hot Jupiters. Then we concluded with a discussion of
the properties of known extrasolar planets.

The second Chapter is split into two halves. In the first half we introduce CCDs and the theory
behind the digital images that they produce, including pixel noise. We look at how to calculate
signal-to-noise and derive equations to calculate the noise in lightcurves made from photometric
measurements on CCDs. In deriving these equations, which are central to the thesis, we consider
two popular methods of photometry, aperture photometry andPSF photometry. In the second half
of the Chapter we introduce the Permanent All Sky Survey (PASS) and present the calculations
used in considering the design of the experiment. Having chosen the experiment parameters and
hardware (U10 CCD and 50mm lens with f-stop 1.2), we considerthe effects of the fixed observing
mode and star trailing on our expected signal-to-noise. We find that for trailed observations there
is an optimal exposure time between 10 s and 25 s depending on the observing site (and we
adopt a 20 s exposure time). The optimal exposure time has been chosen to maximise the SNR
of the photometric measurements and also to keep the scintillation noise to a minimum. In fact
scintillation noise becomes prohibitive for pointings below elevations of 60 deg, and so to create
an all-sky survey based on PASS cameras, we suggest a worldwide network of cameras pointing
at or near zenith. In fact, we have shown that the most desirable site for a PASS camera is at
the North or South pole, with the camera pointing towards thezenith, which minimises the star
trailing. Finally we describe our PASS0 test data set of 3426science images taken from 29th June
2005 to 16th July 2005.

In Chapter 3 we describe in detail each stage of the PASS0 pipeline that we developed in or-
der to successfully process the trailed PASS0 images. The PASS0 pipeline uses difference image
analysis to perform differential photometry on the images using the difference images. Images are
processed in groups using the LST as the grouping parameter,and full lightcurves are constructed
by matching up the starlists between consecutive LSTs. Due to the different reference fluxes mea-
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sured for each LST, the full lightcurves require further calibration. We attempt to do this first
with the string method, but find that we do not get optimal results, and so with further develop-
ment of a more logical calibration model, we have developedPASSCAL. This program models
the lightcurve corrections as functions of LST, observation night and position on the chip, and
substantially improves the accuracy of the lightcurves. Our final PASS0 lightcurves are reaching
the theoretical PSF photometry limit from∼8.8 mag and fainter, and from∼8.2 mag and fainter
we are doing better than the theoretical aperture photometry limit. However, at the bright end our
photometry has an RMS of∼0.01 mag independent of magnitude which suggests that scintillation
noise is dominating our photometric accuracy down to∼8th magnitude. As a final proof of the
viability of our experiment, we show the lightcurve of HD209458 and see that the transit signature
is clearly visible.

In the fourth Chapter we describe a test data set of 688 observations from the SuperWASP
experiment of a field containing the transiting planet host star XO-1 which span 15 nights. We find
that the undersampled SuperWASP images, processed using the standard PASS0 pipeline methods,
produce very poor DIA photometry. We show that by preblurring the science images, we can
force them to be well sampled, and hence we can extract lightcurves close to the theoretical PSF
photometry limit. We test various different amounts of preblurring and find that to optimise the
RMS accuracy of the lightcurves over as large a range of magnitudes as possible, we should adopt
a Gaussian blur with FWHM of 3.0 pix. Our PASS0 pipeline testson fake image data confirm that
the undersampling of the SuperWASP images is the cause of theproblems for the PASS0 pipeline
photometry. As with the SuperWASP pipeline, we use the Tamuzalgorithm to further calibrate the
lightcurves. We find that the RMS accuracy of the lightcurvesfrom the PASS0 pipeline is better
than the aperture photometry limit for 12th magnitude and fainter, and that the PASS0 pipeline
photometry improves on the available SuperWASP photometryby up to a factor of∼1.7. We
estimate that these improvements in photometric accuracy would increase the detection efficiency
of the SuperWASP experiment by up to a factor of∼2.6 based on signal-to-noise considerations
only. The DIA technique would also allow access to planet detections for visibly blended stars
simply due to the nature of the technique, something that is impossible with the SuperWASP
aperture photometry pipeline. Finally, we show that the PASS0 pipeline lightcurve of XO-1 is
clearly of superior quality than the corresponding SuperWASP lightcurve. Our results suggest that
the SuperWASP project could more thandouble its planet detection efficiency from the adoption
of the DIA pipeline instead of their standard aperture photometry pipeline.

In the fifth Chapter we present our method for searching for variable stars in both the PASS0
and SuperWASP lightcurves from Chapters 3 and 4. We choose our variable star detection thresh-
old to keep the false alarm probability at 5%. Where possiblewe derive periods for the variables
using the Lomb-Scargle periodogram method, although this is particularly difficult for the PASS0
lightcurves with only 2 hours of sampling per day. From 12853PASS0 lightcurves, we find 60
convincing variable star candidates, 37 of which are already known variables according to the
SIMBAD astronomical database, and we are able to derive a period for 30 of them. From 9671
SuperWASP lightcurves, we find 21 convincing variable star candidates, 15 of which are already
known variables according to the SIMBAD astronomical database, and we are able to derive a
period for 10 of them. The results presented in this Chapter show the potential for variable star
discovery and monitoring as a side-product of a wide-field transit survey.
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In Chapter 6 we perform a transit search on the PASS0 and SuperWASP lightcurves from
Chapters 3 and 4 using the AoVtr algorithm. We do not expect todetect any new transiting plan-
ets in these data sets since the observations do not cover a long enough time period. We choose
our transit candidate detection threshold to keep the falsealarm probability at 5%. From 10827
suitable PASS0 lightcurves that we search for transits, we find no convincing candidates, and
we would require more observations for 5 transit candidatesthat we could not reject based on
their available lightcurves. We do not detect the transiting planet HD209458, but this is to be ex-
pected since the observations only cover half of one transitevent. From 9384 suitable SuperWASP
lightcurves that we search for transits, we successfully recover the transiting planet XO-1, but we
only recover one of the other three known transit candidatesfrom this field. This is due to too
few transit events being observed for each transit candidate in the test SuperWASP data set. Our
search for transits in the SuperWASP lightcurves gives 9 transit candidates, one of which is XO-1,
another of which is a known transit candidate, and 5 of which are obviously variable stars. One of
the remaining candidates we can explain as a group of noisy data points, and the final candidate
requires more observations in order to determine if the out-of-transit lightcurve shows suspected
variations. We conclude that more observations of up to one month would be required in order to
perform a serious transit search on the data.

In our seventh and final Chapter, we describe our attempts at reducing a full season (2007) of
image data for each of the newly discovered, but not yet announced, transiting planets WASP-7b
and WASP-8b. We reduced 13979 images for WASP-7b and 12579 images for WASP-8b. By
applying a preblurring Gaussian of FWHM 3.5 pix to the science images (which is the most ap-
propriate blurring for the magnitude of the host stars), we obtain a lightcurve RMS of 0.0072 mag
and 0.0078 mag for each of the chips containing WASP-7b, and 0.0071 mag and 0.0039 mag for
each of the chips containing WASP-8b. This may be compared tothe lightcurve RMS from the
SuperWASP pipeline of 0.0505 mag and 0.0415 mag for each of the chips containing WASP-
7b, and 0.0680 mag and 0.0056 mag for each of the chips containing WASP-8b. It is only with
heavy filtering of the SuperWASP pipeline lightcurves that the RMS values are similar to those
for the lightcurves from the PASS0 pipeline. Consequently,the higher quality filtered SuperWASP
pipeline lightcurve have up to 40% less data points than the PASS0 pipeline lightcurves which cre-
ates problems for estimating the correct transit parameters. From the PASS0 pipeline lightcurves
we derive planetary radii of∼ 1.00±0.10RJUPand∼ 1.08±0.11RJUP for WASP-7b and WASP-8b
respectively. We also determine more accurate times of central transit asT0 = 2453856.15847 d
andT0 = 2454181.65870 d for WASP-7b and WASP-8b respectively. For WASP-7b we are also
able to estimate the orbital inclination as∼ 87.8◦.

In this thesis, we have shown that the PASS0 experiment is a difficult challenge, but certainly
has the potential for planetary discoveries, especially ifit is placed at a site like the North/South
Pole, where trailing is not such a problem for non-tracking observations. The difference imaging
pipeline and post-calibration programs are designed to overcome the problems inherent in the
non-tracking observations and we can reach close to the PSF photometry accuracy limit. We have
also shown that the difference imaging analysis technique,through the pipeline we developed for
the PASS0 experiment, has the potential to deliver more accurate and reliable lightcurves for the
SuperWASP experiment, which will increase the efficiency ofthe detection algorithms, and will
lead to more accurate estimates of the planetary parameters. More importantly, the implmentation
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of such improvements as the standard in SuperWASP data reduction could more thandouble the
planet detection efficiency of the project.



Appendix A

Relation between Gaussian Sigma and
FWHM

A Gaussian has an equation:

G(x) = A exp

(

−
x2

2σ2

)

(A.1)

We require the value ofx atG(x) = A/2. Then:

A/2 = A exp

(

−
x2

2σ2

)

(A.2)

Solving forx we get:
x = σ

√
2 ln 2 (A.3)

The full-width half-maximum (FWHM) of the Gaussian is actually 2x:

FWHM = 2x = 2σ
√

2 ln 2 (A.4)
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Appendix B

Number of Effective Pixels of a
Gaussian PSF

Consider Equation 2.21, which we repeat here for convenience, ignoring the time dependence for
the moment:

σ2
∆f =

1
∑

x,y P (x, y)2/σ2
X(x, y)

(B.1)

In the case of a faint star, the sky noiseσSKY dominates the pixel noise so thatσ2
X(x, y) = σ2

SKY.
So we can write:

σ2
∆f =

σ2
SKY

∫

x,y P (x, y)2 dx dy
(B.2)

and then define the number of effective pixels of the PSFP (x, y) as:

Neff =
1

∫

x,y P (x, y)2 dx dy
(B.3)

Assume thatP (x, y) is a 2-dimensional Gaussian:

P (x, y) =

(

1

2πσ2

)

exp

(

−
x2

2σ2

)

exp

(

−
y2

2σ2

)

(B.4)

Note the standard result for the integral of a Gaussian is:
∫

x
P (x) dx =

∫

x
exp

(

−
x2

2σ2

)

dx =
√

2πσ2 (B.5)

For this case, the integral in Equation B.3 can be done as:
∫

x,y
P (x, y)2 dx dy =

(

1

4π2σ4

)
∫

x
exp

(

−
x2

σ2

)

dx

∫

y
exp

(

−
y2

σ2

)

dy

=

√
πσ2

√
πσ2

4π2σ4

=
1

4πσ2

(B.6)
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Therefore:
Neff = 4πσ2 (B.7)

Using Equation A.4 we get:

Neff =
π[FWHM]2

2 ln 2
(B.8)



Appendix C

Useful Equations

Definition of chi-squared:

χ2 =
∑

i

(

Xi − Mi

σi

)2

(C.1)

whereXi are the data,Mi are the model or expected values andσi are the uncertainties.

Optimal average formula:

M =

∑

i

(

Xi

σ2

i

)

∑

i

(

1
σ2

i

) (C.2)

whereM is the optimal average,Xi are the data andσi are the uncertainties.

Optimal scaling formula:

f =

∑

i

(

XiPi

σ2

i

)

∑

i

(

P 2

i

σ2

i

) (C.3)

wheref is the optimal scale factor,Xi are the data,Pi are the pattern to be scaled andσi are the
uncertainties.

Step function:

m(x) =

{

mIN for 0.5 − tT/2 < x < 0.5 + tT/2

mOUT otherwise
(C.4)

wherem(x) is the magnitude as a function of phasex, tT is the transit duration in units of phase,
mIN is the magnitude in-transit andmOUT is the magnitude out-of-transit.
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