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ERROR ESTIMATES FOR APPROXIMATE SOLUTIONS OF THE

RICCATI EQUATION WITH REAL OR COMPLEX POTENTIALS

FELIX FINSTER AND JOEL SMOLLER
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Abstract. A method is presented for obtaining rigorous error estimates for approx-
imate solutions of the Riccati equation, with real or complex potentials. Our main
tool is to derive invariant region estimates for complex solutions of the Riccati equa-
tion. We explain the general strategy for applying these estimates and illustrate the
method in typical examples, where the approximate solutions are obtained by glue-
ing together WKB and Airy solutions of corresponding one-dimensional Schrödinger
equations. Our method is motivated by and has applications to the analysis of linear
wave equations in the geometry of a rotating black hole.

1. Introduction

The time-independent one-dimensional Schrödinger equation plays an important
role in both mathematics and physics. Except in special situations, it is impossible
to find exact solutions, and thus one resorts to approximation techniques. The most
common method is to take the WKB wave functions away from the zeros of the poten-
tial, and to glue them together with Airy functions, which approximate the solutions
near the zeros (see for example the textbook [9, Section 2.4] or the book [5]). Usually,
the potential in the Schrödinger equation is real-valued. However, there are situations
(like systems with dissipation) where the Schrödinger potential is complex.

The shortcoming of most approximation procedures is that they do not give error
estimates. To quote Fröman and Fröman [5, page 3] (1965),

“In spite of the abundant literature there is still lacking a convenient
method for obtaining definite limits of error. . . The problem of obtain-
ing such limits of error is not only of academic or mathematical interest
but is especially important in some physical applications. . . ”

Unfortunately, such a convenient method for obtaining definite limits of error is still
lacking today. Indeed, to our knowledge, despite the vast literature on WKB methods
(see [4] and the references therein), only a few papers are concerned with rigorous
error estimates. As typical examples see [7, 8], where L2-estimates are derived in the
time-dependent setting for short times, as well as [6], where estimates are obtained
in the setting of multiple tunneling. Here we shall develop a general method for
obtaining rigorous pointwise error estimates for any given approximate solution in the
time-independent setting, even in the case when the Schrödinger potential is complex.

We were led to the study of error estimates for solutions of one-dimensional Schrödin-
ger equations from problems arising in general relativity. In particular, when analyzing
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the scalar wave equation in the Kerr geometry, Carter’s remarkable separation of
variables [1] gives rise to a radial and angular ODE. These equations can both be
transformed into the Schrödinger form, which are coupled through two parameters ω
and λ. For estimating the global behavior of the solutions uniformly in ω and λ, we
were led to the idea of using invariant disk estimates [3, 2]. When attempting to extend
our analysis to gravitational waves in the framework of the Teukolsky equation [10],
one of the difficulties that arises is that the potentials in the separated equations turn
out to be complex. In the present paper, we obtain invariant disk estimates in a
general setting, which are applicable to one-dimensional Schrödinger equations with a
real or complex potential. The previous estimates in [3, 2] will arise as special cases.
In particular, our method gives rigorous pointwise error estimates for the standard
approximations by WKB and Airy functions. But the method works just as well for
any other approximate solutions. The aim of the present paper is to introduce the
method from a general point of view, and to illustrate it in typical examples. For an
application to eigenvalue and gap estimates as well as to problems involving parameters
we refer to [3] and [2].

We now set up the framework and fix our notation. The one-dimensional Schrödinger
equation reads

[

− d2

dx2
+ V(x)

]

φ(x) = λφ(x) .

Absorbing the parameter λ into the potential, we rewrite the Schrödinger equation as

d2

dx2
φ = V (x)φ(x) , (1.1)

where the new potential V = V − λ may depend on additional parameters. This is
a linear second order ODE. Thus the general solution φ can be written as a linear
combination of two linearly independent fundamental solutions φ1 and φ2,

φ = a φ1 + b φ2 . (1.2)

By choosing the coefficients a and b appropriately, one can then satisfy suitable bound-
ary conditions, if so desired. Setting

y =
φ′

φ
, (1.3)

the function y satisfies the Riccati equation

y′ = V − y2 . (1.4)

Our strategy is to estimate y in the complex plane. This requires a brief explanation,
because in the case when V is real it is natural to also choose φ, and thus y, to
be real. This real function φ will in general have zeros, and y will be singular at
each of these zeros. These divergences make it difficult to estimate y. We avoid
this problem by considering a linear combination φ = φ1 + iφ2 with real fundamental
solutions φ1 and φ2. Then, since the zeros of the fundamental solutions never coincide,
the function φ never vanishes, and thus the corresponding function y is globally well-
defined.

In the more general case when the potential V is complex, the situation is more
difficult because complex solutions of the Riccati equation (1.4) may “blow up in finite
time”. Nevertheless, we can hope to avoid singularities of the Riccati equation by
choosing the initial condition y(0) suitably.
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In this paper, we focus on the analysis of solutions of the Riccati equation for
specific initial conditions y(0). This is justified because our estimates also give rise
to corresponding estimates for general approximate Schrödinger wave functions, using
the following procedure. Suppose that a specific y is known, up to a small error term.
Then integrating (1.3), one obtains one fundamental solution φ1(x) = exp(

∫ x
y) of

the Schrödinger equation. The other fundamental solution can readily be obtained
by integrating the Wronskian equation φ′

1φ2 − φ1φ
′
2 = const. We thus obtain the

general solution (1.2). Keeping track of the error in this procedure, one can derive
error estimates for any Schrödinger wave function.

2. The Flow of Circles for a Constant Potential

In this section we consider the special case of a constant potential. This case can
easily be analyzed in closed form, and the resulting flow in the complex plane will be
helpful for the geometric understanding of the invariant disk estimates. Thus assume
that V is a non-zero complex constant. We set ζ =

√
V . Then the general solution of

the Schrödinger equation (1.1) is

φ(x) = aeζx + be−ζx , x ∈ R

with a, b ∈ C. The corresponding solution of the Riccati equation is

y(x) = ζ
aeζx − be−ζx

aeζx + be−ζx
= ζ

(a − b) cosh(ζx) + (a + b) sinh(ζx)

(a + b) cosh(ζx) + (a − b) sinh(ζx)

= ζ
(a − b) + τ(x) (a + b)

(a + b) + τ(x) (a − b)
,

where τ(x) := tanh(ζx). Setting y0 = y(0),

y0 = ζ
a − b

a + b
,

we can express y in terms of y0,

y(x) = ζ
y0 + τ(x) ζ

τ(x) y0 + ζ
.

Note that the mapping y0 → y is a fractional linear transformation. It has the fixed
points y = ±ζ corresponding to the two solutions φ = e±ζx, respectively. Furthermore,
we see that circles are mapped onto circles or straight lines. Thus by varying x, we
obtain a flow of circles in the complex plane. To analyze this flow, let us assume that y0

lies on a circle of radius R0 around m0, i.e.

y0 = m0 + z with z = R0 eiϕ .

Then for any fixed x,

y = ζ
z + m0 + τζ

τz + τm0 + ζ
.

Thus for any m ∈ C, we can write

y − m =
(ζ − τm)R0e

iϕ + ζm0 + τζ2 − τmm0 − mζ

τR0eiϕ + τm0 + ζ
=

c

eiϕ

(

eiϕ + γ

e−iϕ + δ

)

,

where the introduced quantities

c =
(ζ − τm)R0

τm0 + ζ
, γ =

ζm0 + τζ2 − τmm0 − mζ

(ζ − τm)R0
, δ =

τR0

τm0 + ζ
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are independent of ϕ. For m to be the center of the new circle, the resulting expression
for |y−m| must be independent of ϕ. This gives the condition γ = δ. We thus conclude
that

|y − m| = R ,

where the center and radius are given by

m = ζ
(m0 + τζ)(τm0 + ζ) − R2

0 τ

|τm0 + ζ|2 − R2
0|τ |2

, R =
R0 |τ2 − 1| |ζ|2

|τm0 + ζ|2 − R2
0 |τ |2

.

The denominator can have zeros, in which case the circle degenerates to a straight
line. Whenever the denominator has no zeros, we can take the limit x → ∞ to find
that in the case Re ζ > 0, the circle asymptotically approaches the fixed point y = ζ,
unless if we start at m0 = −ζ with R0 = 0. Thus we can say that y = ζ is the stable
and y = −ζ the unstable fixed point. Conversely, in the case Re ζ < 0, the fixed
point y = ζ is unstable, whereas y = −ζ is stable. The flow of circles is illustrated in
Figure 1 (left).

In the remaining case Re ζ = 0, we clarify the situation by computing the stationary
circles. In this case, ζ and τ are purely imaginary, and thus the above formula for R
becomes

R = R0 ζ2 τ2 − 1

τ2(R2
0 − |m0|2) − 2τ ζ Re(m0) − ζ2

.

For a stationary circle, R must equal R0, for all imaginary τ (because the range of
the function tanh(ζx) is iR). Multiplying by the denominator, we get a quadratic
polynomial in τ , and comparing the coefficients, we obtain the conditions

Rem0 = 0 and |m0|2 − R2
0 = |ζ|2 .

We thus obtain for any R0 ≥ 0 the two circles with centers

m0 = ±i
√

R2
0 + |ζ|2 , (2.1)

and an easy computation shows that these circles are indeed stationary under the flow.
Since these circles enclose the fixed points (see Figure 1 (right)), both fixed points are
centers.

This simple analysis gives rise to a useful concept. Namely, the above flow of circles
under the Riccati equation defines an invariant region consisting of the interior of the
circles together with their boundary. In the next section we shall implement this point
of view in the case of a non-constant potential V .

3. Invariant Disk Estimates for the Riccati Equation

We now turn our attention to solutions y ∈ C of the Riccati equation (1.4) for a
general complex-valued potential V (x). Our goal is to derive inequalities of the form

|y(x) − m(x)| ≤ R(x)

for explicit functions m and R. Geometrically, this means that the exact solution y
stays inside the disk of radius R centered at m. Thus we can interpret m as an
approximate solution, with R giving a rigorous bound on the error.

In preparation, we show that the the flow given by the Riccati equation maps circles
into circles. At the same time, we derive differential equations describing the motion
of these circles. Let us assume that y lies on a circle of radius R centered at m, i.e.

y = m + R eiϕ ,
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Figure 1. Example for flow of circles with ζ = 2− i (left) and station-
ary circles in the case ζ = i (right).

where R ≥ 0, ϕ ∈ R, m ∈ C. We now derive differential equations for R and m. First,

m′ + R′eiϕ + iϕ′ Reiϕ = y′

= V − y2 = V − m2 − 2Rmeiϕ − R2e2iϕ .

We multiply by e−iϕ and take the real parts to get

Re
[

e−iϕ(V − m2 − m′) − 2Rm − R′ − iϕ′ R − eiϕ R2
]

= 0 .

In taking the real part, the term involving ϕ′ drops out. Furthermore, we may replace
the factor eiϕ by e−iϕ. This gives

Re
[

e−iϕ(V − m2 − m′ − R2) − 2Rm − R′
]

= 0 .

Since this equation should hold for any ϕ, we obtain the system of ODEs

R′ = −2R Rem

m′ = V − m2 − R2 .

It is difficult to solve this system exactly. But the following lemma gives us a method
to obtain invariant disk estimates.

Lemma 3.1. For a given complex-valued potential V = V (x), we assume that the
complex function m and the real function R ≥ 0 satisfy on the interval I := [x0, x1]
the differential equations

R′ = −2R Rem + δR (3.1)

m′ = V − m2 − R2 + δm , (3.2)

where the real function δR and the complex function δm obey the inequality

δR ≥ |δm| . (3.3)

Then the disk with radius R centered at m is invariant, i.e. for any solution of the
Riccati equation (1.4) the following implication holds:

|y − m|(x0) ≤ R(x0) =⇒ |y − m|(x) ≤ R(x) ∀x ∈ I .
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Proof. We first prove the lemma in the case of strict inequality in (3.3). If the lemma
were false, there would be an x ∈ I such that |y − m|(x) > R(x). Let x̄ ∈ [x0, x1) be
the infimum of all such x. Then |y−m|(x̄) = R(x̄). Using (1.4) and (3.2), we find at x̄

d

dx
|y − m| = Re

(y′ − m′)(y − m)

|y − m| = Re
(V − y2 − V + m2 + R2 − δm)(y − m)

|y − m|

≤ R Re(y − m) + |δm| − Re
(y2 − m2)(y − m)

|y − m|
= R Re(y − m) + |δm| − R Re(y + m) = −2R Rem + |δm| .

Combining this with (3.1) and the strict inequality in (3.3), we obtain

d

dx
|y − m|(x̄) <

d

dx
R(x̄) .

Hence there is a δ > 0 such that on the interval (x̄, x̄ + δ) the inequality |y − m| < R
holds. This is a contradiction.

To prove the general case of non-strict inequality in (3.3), we introduce the new

radius R̃ by

R̃ = R + εeL(x−x1) ,

where ε > 0 and

L > max
I

(

−2Re m + 2R − εeL(x−x1)
)

. (3.4)

Then R̃ and m satisfy again the differential equations (3.1) and (3.2), where R is

replaced by R̃, and δR and δm are replaced by

δR̃ = δR + εeL(x−x1) (L + 2Re m)

δm̃ = δm + εeL(x−x1)
(

2R − εeL(x−x1)
)

.

Using (3.3) and (3.4), we see that |δm̃| < δR̃ for sufficiently small ε, and thus the circle

with radius R̃ and center m is invariant. Letting ε ց 0 completes the proof. �

In what follows, it is convenient to write m = α+iβ with real α and β, and similarly
we write δm = δα + i δβ. Then the equations (3.1) and (3.2) become

R′ = −2αR + δR (3.5)

α′ = Re V − α2 + β2 − R2 + δα (3.6)

β′ = Im V − 2αβ + δβ . (3.7)

In our first theorem we satisfy the conditions of Lemma 3.1 by employing a special
ansatz where the invariant disks are centered on the real axis (so that β ≡ 0). We
introduce the abbreviation

U = Re V − α2 − α′ . (3.8)

Theorem 3.2. Suppose that on an interval I ⊂ R, we are given the real func-
tions α,W ∈ C1(I). Assume furthermore that W > 0 and that

2αW +
W ′

2
−

√
W

(

|W − U | + |Im V |
)

≥ 0 . (3.9)

Then the circle with radius R centered at m with

R =
√

W , m = α (3.10)
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is invariant on I under the Riccati flow (1.4).

Proof. We shall verify the conditions of Lemma 3.1. Using the ansatz (3.10) in the
equations (3.5), (3.6) and (3.7), we get

δR =
W ′

2
√

W
+ 2α

√
W , δα = W − U , δβ = −ImV .

The sufficient condition δR ≥ |δα| + |δβ| reduces to (3.9). �

In our next theorem we will not prescribe β. For convenience, we now replace (3.3)
by the sufficient condition

δR = |δα| + |δβ| . (3.11)

Thus our task is to find six functions R, α, β, δR, δα and δβ which satisfy the
equations (3.5), (3.6) and (3.7) together with the condition (3.11). Thus we expect
that we can freely assign two functions, and then the remaining four functions will
be determined. To explain which functions are to be preassigned, we note that the
equations (3.5) and (3.7) are both linear, so that the only nonlinearity appears in the
α-equation (3.6). Thus we can get rid of the nonlinear differential equation by taking
the functions

α and W := R2 − β2 (3.12)

as a-priori given. Then (3.6) becomes the defining equation for δα; namely,

δα = −ReV + α2 + α′ + W .

Using these definitions, we are left with the system of equations

R′ = −2αR + |δα| + |δβ| (3.13)

β′ = Im V − 2αβ + δβ (3.14)

R2 − β2 = W (3.15)

for the three unknown functions R, β and δβ. This system consists of two linear
differential equations and one nonlinear algebraic equation. Of course, we must also
ensure that 0 ≤ R < ∞.

To analyze these equations, we consider the two cases δβ ≥ 0 and δβ < 0 separately.

Case (A) δβ ≥ 0: Subtracting (3.14) from (3.13) we get

(R − β)′ = −2α (R − β) − ImV + |δα| . (3.16)

Furthermore, differentiating (3.15) gives

2RR′ − 2ββ′ = W ′ . (3.17)

We consider (3.16) and (3.17) as a system of two linear algebraic equations in
the unknowns R′ and β′. Solving for β′ and substituting into (3.14), we find

(R − β) δβ = −R |δα| + 2Wα + ImV β +
W ′

2
. (3.18)

Since we assumed δβ to be positive, we get the consistency condition

(R − β)

[

2αW +
W ′

2
− R |δα| + β ImV

]

≥ 0 . (3.19)

Provided that this consistency condition holds, we can use (3.16) to solve
for R − β. Then using (3.15), we conclude that R + β = W/(R − β).
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Case (B) δβ < 0: Adding (3.13) and (3.14) gives

(R + β)′ = −2α (R + β) + ImV + |δα| . (3.20)

Solving (3.20) and (3.17) for β′ and substituting the result into (3.14), we
obtain

(R + β) δβ = R |δα| − 2Wα − ImV β − W ′

2
,

giving rise in this case to the consistency condition

(R + β)

[

2αW +
W ′

2
− R |δα| + β ImV

]

≥ 0 . (3.21)

Provided that this consistency condition holds, R + β is determined by (3.20),
and R − β = W/(R + β).

Since the bracket in (3.19) and (3.21) will appear often, it is convenient to introduce
the abbreviation

D = 2αW +
W ′

2
− R |δα| + β ImV . (3.22)

We refer to D as the determinator. Then the following invariant disk estimate holds.

Theorem 3.3. Suppose that on an interval I ⊂ R, we are given the real func-
tions α,W ∈ C1(I). We set

σ(x) = exp

(
∫ x

2α

)

. (3.23)

Then the following statements hold.

(A) Define real functions R and β on I by

(R − β)(x) =
1

σ

∫ x

σ (−ImV + |W − U |) (3.24)

(R + β)(x) =
W (x)

(R − β)(x)
(3.25)

(with U as defined by (3.8)). Assume that the function R − β has no zeros,
R ≥ 0, and that

(R − β) D ≥ 0 (3.26)

(with D according to (3.22)). Then the circle centered at m(x) = α + iβ with
radius R(x) is invariant on I under the Riccati flow (1.4).

(B) Define real functions R and β on I by

(R + β)(x) =
1

σ

∫ x

σ (Im V + |W − U |) (3.27)

(R − β)(x) =
W (x)

(R + β)(x)
. (3.28)

Assume that the function R + β has no zeros, R ≥ 0, and that

(R + β) D ≥ 0 . (3.29)

Then the circle centered at m(x) = α + iβ with radius R(x) is invariant on I
under the Riccati flow (1.4).
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Proof. We only prove the first part, as the proof of the second part is similar. Since (3.26)
holds, we are consistently in Case (A) above. Integrating the differential equation (3.16)
gives (3.24), whereas (3.25) follows from (3.12). We thus have a solution of the system
of equations (3.13), (3.14) and (3.15) with δβ given by (3.18). Applying Lemma 3.1
completes the proof. �

We next outline the general strategy for applying the last theorem. Suppose that
an approximate solution ỹ of the Riccati equation is given. Setting Ṽ = ỹ′ + ỹ2, we
can consider ỹ as a solution of a Riccati equation

ỹ′ = Ṽ − ỹ2 (3.30)

with an “approximate” potential Ṽ . Since ỹ approximates y, an obvious idea would
be to consider circles centered at m = ỹ. In the estimates of Theorem 3.3, however,
we only need to prescribe the function α = Rem, whereas the imaginary part of m
will then be determined. Therefore, it is natural to choose

α = Re ỹ . (3.31)

A natural choice for W is to set

W = U (3.32)

(with U according to (3.8)), because then the term |W − U | in (3.24) and (3.27)
vanishes1. Then Theorem 3.3 gives us invariant disk estimates. The center m of this
disk can be viewed as an improved approximate solution, and its error, measured as
the distance from the exact solution, is at most R. The invariant disk estimate depends
crucially on the sign of the determinator D. Thus in applications it is important to
know the sign of D. It can even be useful to modify ỹ so as to give D a desired sign
(this will be illustrated in Section 5 in a few examples). For this purpose, it is useful
to bring the determinator into a more convenient form.

Lemma 3.4. Suppose that, for a given solution ỹ of an approximate Riccati equa-
tion (3.30), α and W are chosen according to (3.31) and (3.32). Then the determinator
is given by

D = 2α Re(V − Ṽ ) +
1

2
Re(V − Ṽ )′ − β̃ Im Ṽ + β Im V , (3.33)

where β̃ = Im ỹ.

Proof. Writing the Riccati equation (3.30) as

α′ = Re Ṽ − α2 + β̃2 , β̃′ = Im Ṽ − 2αβ̃ ,

we can use (3.32) and (3.8) to obtain

W = U = Re(V − Ṽ ) − β̃2 .

Applying these identities in (3.22) gives

D = 2α Re(V − Ṽ ) +
1

2
Re(V − Ṽ )′ − 2αβ̃2 − β̃β̃′ + β Im V .

Using the β̃′-equation finishes the proof. �

1Other choices of W might be useful, but we will not consider them in this paper.



10 F. FINSTER AND J. SMOLLER

4. Error Estimates for Real Potentials and Examples

In this section we shall illustrate our error estimates in examples for a real poten-
tial V and explain how the previous results from [3, 2] fit into our framework. We
first mention an additional structural relation which appears only for a real potential.
Namely, suppose that φ is a complex solution of the Schrödinger equation (1.1). De-
composing it into its real and imaginary parts, φ = φ1+iφ2, the functions φ1 and φ2 are
real solutions of the Schrödinger equation forming a fundamental set. Thus their Wron-
skian w = φ1φ

′
2 − φ′

1φ2 is a constant. It can be expressed as w = Im (φ φ′) = |φ|2 Im y,
giving rise to the relation

|φ|2 =
w

Im y
,

which is useful for estimating the amplitude of φ. Moreover, this relation shows that
the imaginary part of y can never change sign, and thus the upper and lower half
planes must be invariant regions for y.

To illustrate how our estimates apply, we begin with a simple example.

Example 4.1. (negative, increasing potential) Suppose that the potential satis-
fies on the interval I = [x0, x1] the conditions

V (x) ≤ 0 , V ′(x) ≥ 0 .

The simplest (but certainly not the best) choice is to set α ≡ 0. Furthermore, set-
ting W = U , we see from (3.23) that σ is a constant. According to (3.8), we find
that W = V . The determinator (3.22) simplifies to

D =
V ′

2
≥ 0 . (4.1)

We want to apply part (B) of Theorem 3.3 (part (A) is similar if one flips the sign
of β). From (3.27) we see that R+β is a constant, which according to (3.29) and (4.1)
must be positive. We thus obtain

β + R = c > 0 , β − R =
|V |
c

. (4.2)

The condition R ≥ 0 gives the constraint

c2 ≥ max
I

|V | = |V (x0)| .

If the potential is constant, we recover the stationary circles of Section 2 (as is easily
verified by comparing (4.2) and (2.1)). If the potential is non-constant, we get an
increasing family of invariant disks in the upper half plane centered on the imaginary
axis whose highest point is fixed at ic, and whose lowest point varies like i|V |/c; see
Figure 2. ♦

We next consider the situation for a general real potential V and a general choice
of α, again setting W = U . Then the determinator becomes

D = 2αU +
U ′

2
=

U

2

(σ2U)′

σ2U
(4.3)

(with σ defined by (3.23)). The main simplification is that now D is an a-priori given
function. In the case when R − β and R + β have opposite signs, we see from (3.26)
and (3.29) that, depending on the sign of D, either part (A) or part (B) of Theorem 3.3
applies. In this case, we can combine parts (A) and (B) to obtain a statement which
can be used even if D changes sign infinitely often. In view of (3.15), the condition
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c

Im y

Re y

|V |
c

Figure 2. A simple invariant disk estimate for a negative, increasing potential.

that R−β and R+β should have opposite signs is equivalent to the simpler condition
that U < 0; it means that the invariant disk either lies in the upper half plane or in the
lower half plane, without intersecting the real line. By continuity, the invariant disk
cannot move from the upper to the lower half plane. Thus we can assume without
loss of generality that the invariant disk lies in the upper half plane. This means
that R + β > 0 and R − β < 0. It is convenient to satisfy the equation (3.15) (and
thus also (3.25) and (3.28)) by making the ansatz

β =

√

|U |
2

(

T +
1

T

)

, R =

√

|U |
2

(

T − 1

T

)

(4.4)

with a free function T > 1. If D is negative, we apply Theorem 3.3 (A) to obtain

T = −
√

|U |
R − β

= −σ
√

|U |
c

with c an integration constant. Diffentiating gives

T ′

T
=

(σ
√

|U |)′

σ
√

|U |
=

1

2

(σ2|U |)′
σ2|U | =

1

2

(σ2U)′

σ2U
=

1

2

∣

∣

∣

∣

(σ2U)′

σ2U

∣

∣

∣

∣

,

where in the last two steps we used that U is negative, and that in the considered
case D < 0, the term (σ2U)′/(σ2U) is positive according to (4.3). If D is positive, we
apply Theorem 3.3 (B) to get

T =
R + β
√

|U |
=

c

σ
√

|U |
.

Now differentiating gives

T ′

T
= −(σ

√

|U |)′

σ
√

|U |
= −1

2

(σ2U)′

σ2U
=

1

2

∣

∣

∣

∣

(σ2U)′

σ2U

∣

∣

∣

∣

,

where in the last step we used that now (σ2U)′/(σ2U) < 0. We conclude that, inde-
pendent of the sign of D, we obtain the differential equation

T ′

T
=

1

2

∣

∣

∣

∣

(σ2U)′

σ2U

∣

∣

∣

∣

.
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R

Im y

Re y

m
√

|U |
T

√

|U |T

Figure 3. Invariant disk estimate for U < 0.

Integrating both sides, we can rewrite T as a total variation,

T (x) = T0 exp

(

1

2
TV[x0,x) log |σ2U |

)

. (4.5)

In this way, we recover the invariant disk estimate which was first obtained in [3,
Lemma 4.1]; see Figure 3.

Lemma 4.2. Let α be a real function on [x0, x1] which is continuous and piecewise
C1. Suppose that the function U := V −α2−α′ is negative on [x0, x1]. Using the above
definitions (4.5) and (4.4), the disks of radius R centered at m = α + iβ are invariant
under the Riccati flow (1.4), on [x0, x1].

We now illustrate in two examples how this lemma can be applied (for other ap-
plications see [3, Theorems 4.2 and 4.3] and [2, Lemmas 4.10 and 4.12]). In the first
example, we consider the case that the potential V is negative. We recall that the
WKB wave functions are given by (see for example [9, Section 2.4] or [5])

φWKB(x) = |V (x)|− 1

4 exp

(

±i

∫ x
√

|V |
)

. (4.6)

A short calculation shows that these functions satisfy the equation

d2

dx2
φWKB − V φWKB =

(

5

16

|V |′2
|V |2 − 1

4

|V |′′
|V |

)

φWKB .

Interpreting the right side as an error term, one sees that the WKB wave functions
are expected to be a good approximation to φ provided that

∣

∣

∣

∣

V ′′

V 2

∣

∣

∣

∣

+

∣

∣

∣

∣

V ′2

V 3

∣

∣

∣

∣

≪ 1 . (4.7)

For definiteness, we consider the plus sign in (4.6) (the minus sign can be obtained by
complex conjugation). Then the corresponding approximate Riccati solution is given
by

yWKB =
φ′

WKB

φWKB

= i
√

|V | − V ′

4V
.
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Following the general strategy described after Theorem 3.3, we thus choose

α = Re yWKB = − V ′

4V
. (4.8)

An easy computation gives

α′ = −V ′′

4V
+

V ′2

4 V 2
(4.9)

U = V

(

1 +
V ′′

4V 2
+

5 V ′2

16 |V |3
)

(4.10)

σ = exp

(

−1

2

∫ x V ′

V

)

=
c

√

|V |
(4.11)

σ2U = −c2

(

1 +
V ′′

4V 2
+

5 V ′2

16 |V |3
)

. (4.12)

In view of (4.10), the condition (4.7) and the fact that V < 0, we see that U is negative.
Thus Lemma 4.2 applies, giving the following estimate.

Example 4.3. (error estimate for WKB wave function, V < 0)
Suppose that V is negative and

− V ′′

4V 2
− 5 V ′2

16 |V |3 < 1 .

Then the disks of radius R centered at m = α + iβ as given by (4.8), (4.4) and

T (x) = T0 exp

(

1

2
TV[x0,x) log

[

1 +
V ′′

4V 2
+

5 V ′2

16 |V |3
])

(4.13)

are invariant under the Riccati flow (1.4), on [x0, x1].

In our setting, the semiclassical limit can be described by scaling the potential
according to V → λV and considering the behavior as λ → ∞. In this limit, the square
bracket in (4.13) converges to one, so that the logarithm vanishes. As a consequence,
T becomes a constant. Choosing T0 = 1, we find that the radius R(x) as given by (4.4)
vanishes identically in the semiclassical limit, in agreement with the fact that the WKB
wave function goes over to the exact solution.

The next estimate even applies near a zero of the potential.

Example 4.4. (invariant disk estimate with exponential bound)
Choose a constant α,

α = c + sup
x∈[x0,x1]

√

max(0, V (x)) (4.14)

with c ≥ 0. Then

U = V − α2 < −c2 ≤ 0

σ = C e2αx

σ2U = C2 e4αx
(

V − α2
)

with an integration constant C. Hence Lemma 4.2 yields that the disks of radius R
centered at m = α + iβ as given by (4.14), (4.4) and

T (x) = T0 exp

(

1

2
TV[x0,x) log

[

e4αx
(

V − α2
)]

)
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Uσ

c1

α −
√

U

c2

σ

−c1

σ

−Uσ

c2

Im y

Re y

α +
√

U

Figure 4. Invariant lens-shaped region estimate for U > 0.

are invariant under the Riccati flow (1.4), on [x0, x1].

Clearly, due to the exponential factor e4αx, this estimate gets weaker as the size of
the interval increases. We shall below see a much better estimate using Airy functions
(see Example 5.1).

We next consider how Theorem 3.3 applies in the case U ≥ 0 (where we again
choose W = U). Then, according to (3.15), the functions R − β and R + β have the
same sign, which must be positive because R ≥ 0. Inspection of (3.26) and (3.29)
yields that the determinator must be positive, i.e.

U ′ + 4αU ≥ 0 . (4.15)

Provided that this condition holds, we may apply both parts (A) and (B) of Theo-
rem 3.3. Taking the intersection of the corresponding invariant disks gives the following
result, which generalizes [2, Lemma 4.2].

Lemma 4.5. Let α be a real function on [x0, x1] which is continuous and piecewise
C1. Suppose that the function U := V − α2 − α′ is positive on [x0, x1] and that the
condition (4.15) holds. For any positive constants ck, k = 1, 2, we introduce the two
disks of radii Rk centered at mk = α + iβk with

R1 =
1

2

(

Uσ

c1
+

c1

σ

)

, β1 =
1

2

(

Uσ

c1
− c1

σ

)

R2 =
1

2

(

Uσ

c2
+

c2

σ

)

, β2 = −1

2

(

Uσ

c2
− c2

σ

)

.

Then the two disks as well as the lens-shaped region obtained as their intersection are
invariant under the Riccati flow (1.4).

As is easily verified, the boundaries of both disks intersect the real axis at the points
α ±

√
U , and thus their intersection is non-void; see Figure 4.
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In our next example we shall apply Lemma 4.5 to the WKB wave function for
a positive potential. We thus assume that V > 0 and that (4.7) is again satisfied.
Considering the WKB wave function

φWKB(x) = V (x)−
1

4 exp

(
∫ x √

V

)

, (4.16)

an easy computation shows that

yWKB(x) =
φ′

WKB

φWKB

=
√

V − V ′

4V

α = Re yWKB(x) =
√

V − V ′

4V

U = V − α2 − α′ = − 5

16

V ′2

V 2
+

V ′′

4V
.

Unfortunately, in contrast to our previous example (4.10), now U need not have a fixed
sign, and thus one cannot apply the above lemmas. Our method for getting around
this problem is to consider in the WKB ansatz another potential VWKB, and to set

φWKB(x) = VWKB(x)−
1

4 exp

(
∫ x

√

VWKB

)

.

Then

α = Re
φ′

WKB

φWKB

=
√

VWKB − V ′
WKB

4VWKB

(4.17)

U = V − α2 − α′ = V − VWKB − 5

16

V ′2
WKB

V 2
WKB

+
V ′′

WKB

4VWKB

. (4.18)

By arranging that U has a definite sign, we may apply either Lemma 4.2 or Lemma 4.5.
To give a simple example, we choose

VWKB =
V

4
.

Then U is positive because V is positive and (4.7) holds. Furthermore, a direct com-
putation gives

σ = exp

(
∫ x

2α

)

=
1√
V

exp

(
∫ x √

V

)

(4.19)

2

V
U =

3

2
+

[

−5

8

V ′2

V 3
+

V ′′

2V 2

]

(4.20)

2

3V
3

2

(

U ′ + 4αU
)

= 1 +

[

− 5

12

V ′2

V 3
+

5

8

V ′3

V
9

2

+
V ′′

3V 2
− 3V ′V ′′

4V
7

2

+
V ′′′

6V
5

2

]

. (4.21)

We are now in a position to apply Theorem 3.3.

Example 4.6. (error estimate for WKB wave function, V > 0)
Suppose that V is positive and that the square brackets in (4.20) and (4.21) are both
greater than minus one. Then choosing U and σ according to (4.20) and (4.19),
the lens-shaped region from Lemma 4.5 (see Figure 4) is invariant under the Riccati
flow (1.4), on [x0, x1].
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It is worth noting that from (4.19), we see that σ grows exponentially. Hence the
lens-shaped region gets thinner, improving the estimate exponentially fast.

The previous estimates using Lemma 4.2 and Lemma 4.5 have the disadvantage that
if U changes sign, different kinds of estimates must be pasted together. This makes it
necessary to match invariant disks (see [2, Lemma 4.4]). In the next section we explain
a more convenient method in the more general context of a complex potential (but
also working for real potentials) which makes it possible for the invariant disks to flow
continuously across the real line.

5. Error Estimates for Approximate WKB/Airy Solutions for Real or
Complex Potentials

In this section we illustrate the general technique for applying Theorem 3.2 and
Theorem 3.3 by discussing typical examples. Based on Theorems 3.2 and 3.3, we will
derive rigorous error estimates for the standard approximate solutions obtained by
glueing together WKB and Airy wave functions.

For a given potential (real or complex), one can usually distinguish regions where |V |
is large, so that the solutions of the Schrödinger equation are well-approximated by
WKB wave functions. In the remaining regions, one can approximate the potential by
a linear potential, so that the Schrödinger equation can be solved explicitly in terms of
Airy functions. To be more flexible, in the WKB region we consider the approximate
solutions

φWKB(x) = VWKB(x)−
1

4 exp

(
∫ x

±
√

VWKB

)

(5.1)

with a potential VWKB ≈ V , which will be determined later. Likewise, in the Airy
region, our approximate wave functions are solutions of the Schrödinger equation

φ′′
A
(x) = VA φA , (5.2)

where VA ≈ V is a linear function, also to be determined later. By the standard C1-
glueing of the WKB and Airy functions, we obtain an approximate wave function φ̃.
The wave function φ̃ is a weak solution of a Schrödinger equation

φ̃′′ = Ṽ φ̃ , (5.3)

where Ṽ in the Airy region coincides with VA, whereas in the WKB region a short
calculation gives

Ṽ = VWKB +
5

16

V ′2
WKB

V 2
WKB

− V ′′
WKB

4VWKB

. (5.4)

Note that Ṽ is piecewise smooth, but in general has discontinuities. Following the
strategy explained after Theorem 3.3, we introduce the function ỹ = φ̃′/φ̃, which is
continuous and piecewise smooth, satisfying the Riccati equation

ỹ′ = Ṽ − ỹ2 . (5.5)

We again introduce the (continuous, but only piecewise smooth) function α by

α = Re ỹ , (5.6)

define U by (3.8) and (again for simplicity) choose W = U . We choose starting
values for the functions β and R which are compatible with (3.15). We can then
apply Theorem 3.3 in various ways. If U < 0, i.e. R + β and R − β have opposite
signs, depending on the sign of the determinator D, we can apply either part (A)
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or part (B). If however U ≥ 0, the functions R + β and R − β are both positive,
and thus Theorem 3.3 applies only if D is positive, and in this case we can apply
both part (A) and part (B). If β becomes zero, it may be preferable to switch to the
simpler estimate of Theorem 3.2, provided that the inequality (3.9) holds. In this way,
we have different possibilities to obtain invariant disk estimates, and by taking their
intersection one gets even sharper estimates involving lens-shaped invariant regions.
Observe that on the boundaries between the WKB and Airy regions, the functions V
and α′, and consequently also U , may have discontinuities. In order to satisfy (3.15),
either R + β or R − β must “jump” discontinuously, in such a way that the new disk
contains the old one.

The crucial point for making this procedure work is that one must be able to pre-
scribe the sign of D or to satisfy the inequality (3.9). One method to achieve this is
to modify the potentials VWKB and VA in (5.1) and (5.2). The effect on D of modify-
ing the potentials can be seen most easily from Lemma 3.4. More specifically, in the
WKB region, the term 2α Re(V − Ṽ ) in (3.33) can be suitably changed by modifying

the real part of VWKB, whereas the imaginary part of VWKB affects the term −β̃ Im Ṽ .
Note that the derivative term in (3.33) as well as the derivative terms in (5.4) only
give rise to small corrections. In the Airy region, on the other hand, we can change
the coefficients in the linear function VA(x) to modify the suitable terms in (3.33). In
order to satisfy the condition (3.9), it may be useful to apply the identity

(3.9) = 2α Re(V − Ṽ ) +
1

2
Re(V − Ṽ )′ − β̃ Im Ṽ − |ImV |

√

Re(V − Ṽ ) − β̃2

(keeping in mind that in this case, β ≡ 0, and thus β̃ should be small), or else one can
modify α, without respecting the relation (5.6).

We now give two concrete examples to illustrate this method. In the first example,
the imaginary part of the potential is so small that the method works just as well for
a real potential.

Example 5.1. We consider the potential (inspired by the spheroidal wave operator [3])

V = 10000

(

−1

2
+ (1 + 0.05 i) sin2 x

)

, (5.7)

on the interval [0, π
2 ]. Due to the large prefactor, the WKB condition (4.7) is satisfied

except in a small neighborhood of the point x = π
4 , where |V | is small. Thus we divide

our interval into three regions:

(a) The “classically allowed” WKB region [0, 0.715]
(b) The Airy region [0.715, 0.83] near the “classical turning point”
(c) The “classically forbidden” WKB region [0.83, π

2 ]

(The precise choice of the boundary points is arbitrary and has no major effect. More-
over, since the factor 0.05 is so small, we simply adopted the terminology from quantum
mechanics, disregarding the effect of the imaginary part of the potential.) In the Airy
region we approximate the potential by its linear Taylor series around the point x = π

4 .
We glue together the corresponding WKB and Airy functions, starting at x = 0 with
the WKB wave function (5.1) with VWKB = V and choosing the plus sign. In the

region (c) we also choose VWKB = V . This gives the approximate wave function φ̃,

and we define the corresponding approximate Riccati solution by ỹ = φ̃′/φ̃. Following
the general procedure described earlier in this section, we choose α according to (5.6)
and set W = U . To better illustrate our estimates, we choose the radius R of the
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Figure 5. Upper and lower bounds for the imaginary (left) and real
(right) parts of the Riccati solution in Example 5.1.

initial disk to be 2.5, although choosing it equal to zero would give a better estimate.
In Figure 5 (left), the imaginary part of an exact numerical solution y starting on
the boundary of the initial circle is plotted together with the upper bound β + R and
the lower bound β − R. Likewise, in Figure 5 (right), the real part of the solution as
well as the upper bound α + R and the lower bound α − R are given. On sees that
the invariant disks jump discontinuously at the glueing points, such that the new disk
contains the old disk. In Figure 6,

the invariant disks are plotted for discrete values of x, and the black dots denote
the exact solution at these values of x. We point out that the invariant disk always
stays in the upper half plane. In region (c), the determinator is negative, so that part
(A) of Theorem 3.3 applies. This means geometrically that the lower bound β − R
approaches the exact solution exponentially fast, whereas the upper bound β + R is
not as good an approximation.

In order to get a better upper bound, we changed the WKB potential in region (c)
to

VWKB = 0.9 V . (5.8)

This makes the determinator negative, so that part (B) of Theorem 3.3 applies.
Since VWKB in (5.8) deviates considerably from V , we cannot expect that our ap-
proximation will be good in region (c). This is reflected in Figure 7 by the fact that R
becomes large if x approaches π

2 . Nevertheless, this estimate is still useful because the
upper bound β +R approaches the exact solution exponentially fast. Taking the inter-
section of the invariant disks with those from Figure 6, one gets lens-shaped invariant
regions, thus estimating the exact solution up to exponentially decaying errors (see
Figure 8). This exponential shrinkage of the invariant region can be understood by
the fact that the the potential is slowly varying, and that for a constant potential the
solutions would tend exponentially fast to the stable fixed point

√
V (see Section 2).

Finally, in Figure 9 we show invariant disk estimates, where in region (c) we applied
Theorem 3.2 and chose β ≡ 0. This estimate is not as good as the previous estimate,
but on the other hand Theorem 3.2 is easier to apply, and the coarser estimate might
be sufficient for some applications. ♦

In the previous example, the semi-classical approximation was very good because
of the large prefactor in (5.7). In our next example, the WKB/Airy wave function is
not such a good approximation, making the error estimates more subtle. Moreover,
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Figure 6. Invariant disks for the Riccati solution in Example 5.1.
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Figure 7. Upper and lower bounds after flipping the sign of D in Example 5.1.
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Figure 8. Lens-shaped region estimates for the Riccati equation in Example 5.1.

the imaginary part of V has the opposite sign, thereby forcing the Riccati solution to
cross the real axis. By suitably adjusting the sign of the determinator, we will arrange
that the invariant disks also move from one half plane to the other.
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Figure 9. Invariant disk estimate applying Theorem 3.2 in Example 5.1.

Example 5.2. We consider on the interval [0, π
2 ] the potential

V = 500

(

−1

2
+ (1 − 0.2 i) sin2 x

)

.

We choose the WKB regions to be [0, 0.52] (region (a)) and [0.83, π
2 ] (region (c)),

and the intermediate region [0.52, 0.83] (region (b)) is the Airy region. In Figures 10
and 11 upper and lower bounds are given. In Figure 12 we plot the corresponding
invariant disk estimates as well as lens-shaped invariant regions obtained by taking
the intersection of the disks of Figures 10 and 11.

Note that now the invariant disks cross the real axis. When this happens, one must
ensure when applying Theorem 3.3 that the denominator in (3.25) or (3.28) never
becomes zero, because otherwise we would lose control of the estimates. This means
that if the function R−β vanishes, we must arrange the sign of the determinator such
that case (A) applies, whereas R+β may vanish only when we are in case (B). To this
end, the potentials VWKB and VA are chosen as follows:

Β+R

Β-R

0.2 0.4 0.6 0.8 1.0 1.2 1.4
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Im y
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Figure 10. Upper and lower bounds for the imaginary (left) and real
(right) parts of the Riccati solution in Example 5.2.
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Figure 11. Upper and lower bounds after flipping the sign of D in Example 5.2.
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Figure 12. Invariant disk (red) and lens-shaped region estimates
(blue) for the Riccati equation in Example 5.2.

In region (a), we choose VWKB = V . In region (b), for VA we took the linear Taylor
polynomial and decreased the real part of the linear term so as to make D positive.
Then we are in case (B) of Theorem 3.3, in which the function β−R can cross smoothly
across the real line. Shortly after β −R has become negative, we switch to case (A) of
Theorem 3.3, so that β + R can smoothly flip sign. For the estimates of Figure 10 we
choose the potential VWKB = V in region (c) such that D is always positive. Then β−R
is a good approximation. For the estimates of Figure 11, however, we modified VWKB
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Figure 13. The potential Ṽ −V as used for the estimates in Figure 10
(left) and Figure 11 (right).

in region (c) such as to arrange that D becomes negative, with the result that β + R
is a good approximation.

Our choice of the approximate potentials is shown in Figure 13, where we plot the
real and imaginary parts of Ṽ −V , with Ṽ as in (5.3) and (5.5). We point out that the
scale in these plots is one order of magnitude smaller than the scale of V ∼ 250. This
illustrates that slight modifications of the approximate potentials suffice to arrange the
appropriate sign of D. The detailed form of the choice of the approximate potentials
affects the function β + R in Figure 10 (left) or the function β −R in Figure 11 (left),
as well as the functions α±R on the right of these figures. However, the corresponding
lens-shaped invariant regions are insensitive to the detailed choice of Ṽ ; see Figure 12.

♦
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[4] S. Fraga, J.M. Garćıa de la Vega, E.S. Fraga, “The Schrödinger and Riccati Equations,” Lecture
Notes in Chemistry 70, Springer Verlag (1999)
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