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Let G be a profinite group and let p be a prime number. By Mod,(G)
we denote the category of discrete p-primary G-modules. For A € Mod,(G)
and 7 > 0, let

U
where * is Hom(—,Q,/Z,), the direct limit is taken over all open subgroups
U of G and the transition maps are the duals of the corestriction maps.
D;(G, A) is a discrete G-module in a natural way. Assume that n = c¢d, G is
finite. Then the G-module

I(G) = lim D,(G,Z/p"Z)
veN

is called the dualizing module of G at p. Its importance lies in the func-
torial isomorphism

H"(G,A)" = Homg(A, I(G))
for all A € Mod,(G). This isomorphism is induced by the cup-products
(VCU)
H™(G,A)" x wAY — H"(V,Z/p"Z)", (¢,a) — (a— ¢(cor §(aUa)))

by passing to the limit over v and V', and then over U. The identity-map of
I(G) gives rise to the homomorphism

tr: H"(G,I1(G)) — Q,/Z, ,

called the trace map.

The profinite group G is called a duality group at p of dimension n
if for all 4 € Z and all finite G-modules A € Mod,(G), the cup-product and
the trace map



H'(G,Hom(A, I(GQ)) x H" (G, A) - H"(G, I(G)) 2 Q,/Z,

yield an isomorphism
H'(G,Hom(A, I(G))) = H" (G, A)*.

Remark: In [Ve], J.-L. Verdier used the name strict Cohen-Macaulay
at p for what we call a profinite duality group at p here. In [Pl], A. Pletch
defined D}-groups (and called them duality groups at p of dimension n). The
D7 -groups of Pletch are exactly the duality groups at p (in our sense) which,
in addition, satisfy the following finiteness condition:

FC(G,p): HYG,A) is finite for all finite A € Mod,(G) and for all i > 0.

Since any finite, discrete G-module is trivialized by an open subgroup U of
G, condition F'C(G,p) can also be rephrased in the form:

FC(G,p): HYWU,Z/pZ) is finite for all open subgroups U of G and alli > 0.

By a duality theorem due to J. Tate, see [Ta] Thm.3 or [Ve] Prop. 4.3
or [NSW] (3.4.6), a profinite group G of cohomological p-dimension n is a
duality group at p if and only if

D;(G,Z/pZ) =0 for 0 <i<n.

As a consequence we see that every open subgroup of a duality group at
p is a duality group at p as well (of the same cohomological dimension),
and if an open subgroup of G is a duality group at p and cd, G < oo, then
G is a duality group at p of the same cohomological dimension (use [NSW]
(3.3.5)(ii)). Furthermore, any profinite group of cohomological p-dimension 1
is a duality group at p.

We call a profinite group G virtually a duality group at p of (virtual)
dimension ved, G = n if an open subgroup U of G is a duality group at p
of dimension n.

The objective of this paper is to give a proof of Theorem 1 below, which
states that the class of duality groups is closed under group extensions 1 —
H — G — G/H — 1 if the kernel satisfies FC(H,p). Weaker forms of
Theorem 1 were first proved by A. Pletch (for D}-groups, see [P]]') and by
the second author (for Poincaré groups, see [Wi).

!The proof given by Pletch in [P1] is only correct for pro-p-groups as the author assumes
that finitely generated projective modules over the complete group ring Z,[G] are free.



Theorem 1. Let
l1—H—G—G/H—1

be an exact sequence of profinite groups such that condition FC(H,p) is sat-
isfied. Then the following assertions hold:

(i) If G is a duality group at p, then H is a duality group at p and G/H is
virtually a duality group at p.

(ii) If H and G/H are duality groups at p, then G is a duality group at p.

Moreover, in both cases we have:
cd, G = cd, H + ved, G/ H,
and there is a canonical G-isomorphism
H(G) = I(H)" ®z, I(G/H),
where ¥ is the Pontryagin dual and ®Zp is the tensor-product in the category
of compact Z,-modules.

Remark: The assumption F'C(H,p) is necessary, as the following examples
show:

1. Let G be the free pro-p-group on two generators x,y and let H C G
be the normal subgroup generated by z. Then H is free of infinite
rank, G/H is free of rank one and 1 - H -G — G/H — 1 is an exact
sequence in which all three groups are duality groups of dimension one.

2. Let D be a duality group at p of dimension 2, F' a duality group at
p of dimension 1 and G = F % D their free product. The kernel of
the projection G — D has cohomological p-dimension 1, hence is a
duality group a p of dimension 1. The group G has cohomological
p-dimension 2 but is is not a duality group at p.

In the proof of Theorem 1, we make use of the following
Proposition 2. Let
l1—H—G—G/H—1

be an exact sequence of profinite groups. Assume that FC(H,p) holds. Then
there is a spectral sequence of homological type

B2 = Dy(G/H,Z/pZ) @ D;(H,Z/pZ) = D,\;(G,Z/pT).



Proof. Let g run through the open normal subgroups of G. Then gH/H =
g/g N H runs through the open normal subgroups of G/H. For a G-module
A € Mod,(G), we consider the Hochschild-Serre spectral sequence

E(g,gNH,A): Ej(g,gnH, A) = H'(g/gNH, H (¢gNH, A)) = H" (g, A).

If ¢ C g is another open normal subgroup of G, then the corestriction yields
a morphism
cor : E(¢',g "H,A)— E(g,gN H, A)

of spectral sequences. The map
E;j(glag, N H7 A) I E;](gag N H7 A)
is the composite of the maps

/
NH
COT‘g

H(g/g NH, Hi(g'NH,A)) =~ H(g/g' N H, H (g H,A))

g'/g'nH

S/enH Hi(g/gﬂH,Hj(gﬂH,A))

cor

and the map between the limit terms is the corestriction
cor?d H™ (g, A)— H"™ (g, A).
For 2 <r < oo we set

2 _ pr N E ] *
B =D (G, H,A) :=1lim E/(g,9N H, A)".

As taking duals and direct limits are exact operations, the terms Dz’fj(G JH, A),
2 < r < o0, establish a homological spectral sequence which converges to
D, (G, A). If h runs through the open subgroups of H which are normal in
G, then the cohomology groups H7(h, A) are G-modules in a natural way. If
g is open in G with g N H C h, then these groups are g/g N H-modules. We
see that
D%(G, H,A) = lim  lim H'(g/gN H,H’(h, A))*,

hCH gCG

h<G gNHCh
where for both limits the transition maps are (induced by) cor*. In order to
conclude the proof of the proposition, it remains to construct isomorphisms

D%(G, H,Z/pZL) = Dy(G/H,Z/pZ) @ D;(H,Z/pZ)
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for all 4 and j. To this end note that all occurring abelian groups are IF,-
vector spaces, so that * is Hom(—,F,). Further note that for vector spaces
V, W over a field £ the homomorphism

ViR W (Ve W), ¢0¢— (vow e o))

is an isomorphism provided that V' or W is finite-dimensional. Let h be an
open subgroup of H which is normal in G and let ¢’ C g be open subgroups
of G such that g acts trivially on the finite group H’(h,Z/pZ). Then, by
[NSW] (1.5.3)(iv), the diagram

Hi(g'/g' N H,Z/pZ) @ H(h,Z/pL) <> H'(g'/g' " H, Hi(h,Z/pZ))

l cor ®id J{ cor

Hi(g/g N H,Z/pZ) @ Hi(h,Z/pZ) = H'(g/gNH, Hi(h,Z/pZ))
commutes. For fixed h, we therefore obtain isomorphisms
~ (lim H'(g/g N H,Z/pZ)") ® H’ (h, Z,/pZ)"
g )
lim H*(g/g N H,Z/pZ)" ® H'(h, Z/pZ)*

I

I

tiy (H'(9/9 1 H,Z,/pZ) © H9 (. 2/p2))’

I

lim H'(g/g N H, H' (h, Z/pZ)) .
g
Passing to the limit over h, we obtain the required isomorphism
Di(G/H,Z/pZ) ® D;(H,Z/pZ) = D},(G, H,Z/pZ).
O

Corollary 3. Under the assumptions of Proposition 2, let ig and jo be the
smallest integers such that D;,(G/H,Z/pZ) # 0 and D;,(H,Z/pZ) # 0,
respectively. Then D,y ; (G, Z/pZ) # 0.

Proof. The spectral sequence constructed in Proposition 2 induces an iso-
morphism

DioJrjo(GvZ/pZ) = Di0<G/H7 Z/pZ) ® DJO(H> Z/pZ) 7é 0.



Proof of Theorem 1. Assume that G is a duality group at p of dimension d.
Let c¢d, H = m and n = d —m. Then there exists an open subgroup H; of H
such that H™(H,,Z/pZ) # 0. Let G be an open subgroup of G such that
Hy =Gy N H. Then G, is a duality group at p of dimension d, cd, H; = m
and G/ H; is an open subgroup of G/H. We consider the exact sequence

1—>H1 —>Gl —>G1/H1—>]_

As H™(H,,Z/pZ) is finite and nonzero, we have ved, G1/Hy = n, see [NSW]|
(3.3.9). Furthermore, D;(G1,Z/pZ) = 0, i < n + m. Using Corollary 3,
we see that D;(G1/Hy,Z/pZ) = 0 for all ¢ < n and D;(Hy,Z/pZ) = 0 for
all 7 < m. Thus G;/H;, hence G/H, is virtually a duality group at p of
dimension n, and Hy, and so H, is a duality group at p of dimension m. This
shows (i).

Assume now that H and G/H are duality groups at p of dimension m
and n. Then, ¢d,G = n+ m by [NSW] (3.3.8), and in the spectral sequence
of Proposition 2 we have E}; = 0 for (i,7) # (n,m). Hence D.(G,Z/pZ) = 0
for r # n + m showing that G is a duality group at p of dimension n + m.

In order to prove the assertion about the dualizing modules, let A run
through all open subgroups of H which are normal in G and ¢ runs through
the open subgroups of G. Since m = cd, H, the Hochschild-Serre spectral
sequence induces isomorphisms

H™™(g,Z/p"Z) = H"(g/g N H,H™ (g " H,Z/p"Z)),

and we obtain

[(G) = lim lim H™™"(g,Z/p"Z)"
v g
& h%)n h%n h%)n H”(g/g NH,H™(h, Z/p”Z))
=l lny limg H(g/g N H, Hom (H™ (h, Z/p'Z), 1(G/H)))
~ h_n} hTr)n Hom(H™(h,Z/p"Z), 1(G/H))
=~ Homcts(Li%n l%n H™(h, Z/p"Z), 1(G/H))
=~ Hom, ((lim lim H™ (h, Z/p"Z)")", 1(G/H))
v h

> Hom. (I(H)", 1(G/H)) = (I(H)" &z, 1(G/H)")’

(see [NSW] (5.2.9) for the last isomorphism). This completes the proof of
the theorem. 0
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