# Universität Regensburg Mathematik 



Extensions of profinite duality groups

Alexander Schmidt and Kay Wingberg

Preprint Nr. 25/2008

# Extensions of profinite duality groups 

Alexander Schmidt and Kay Wingberg

September 25, 2008

Let $G$ be a profinite group and let $p$ be a prime number. By $\operatorname{Mod}_{p}(G)$ we denote the category of discrete $p$-primary $G$-modules. For $A \in \operatorname{Mod}_{p}(G)$ and $i \geq 0$, let

$$
D_{i}(G, A)=\underset{U}{\lim _{\vec{~}}} H^{i}(U, A)^{*},
$$

where * is $\operatorname{Hom}\left(-, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)$, the direct limit is taken over all open subgroups $U$ of $G$ and the transition maps are the duals of the corestriction maps. $D_{i}(G, A)$ is a discrete $G$-module in a natural way. Assume that $n=c d_{p} G$ is finite. Then the $G$-module

$$
I(G)={\underset{\nu}{\lim }}^{\lim _{\mathbb{N}}} D_{n}\left(G, \mathbb{Z} / p^{\nu} \mathbb{Z}\right)
$$

is called the dualizing module of $G$ at $p$. Its importance lies in the functorial isomorphism

$$
H^{n}(G, A)^{*} \cong \operatorname{Hom}_{G}(A, I(G))
$$

for all $A \in \operatorname{Mod}_{p}(G)$. This isomorphism is induced by the cup-products $(V \subseteq U)$

$$
H^{n}(G, A)^{*} \times{ }_{p^{\nu}} A^{U} \longrightarrow H^{n}\left(V, \mathbb{Z} / p^{\nu} \mathbb{Z}\right)^{*},(\phi, a) \longmapsto\left(\alpha \mapsto \phi\left(\operatorname{cor}_{G}^{V}(\alpha \cup a)\right)\right)
$$

by passing to the limit over $\nu$ and $V$, and then over $U$. The identity-map of $I(G)$ gives rise to the homomorphism

$$
\operatorname{tr}: H^{n}(G, I(G)) \longrightarrow \mathbb{Q}_{p} / \mathbb{Z}_{p}
$$

called the trace map.
The profinite group $G$ is called a duality group at $\boldsymbol{p}$ of dimension $\boldsymbol{n}$ if for all $i \in \mathbb{Z}$ and all finite $G$-modules $A \in \operatorname{Mod}_{p}(G)$, the cup-product and the trace map

$$
H^{i}\left(G, \operatorname{Hom}(A, I(G)) \times H^{n-i}(G, A) \xrightarrow{u} H^{n}(G, I(G)) \xrightarrow{t r} \mathbb{Q}_{p} / \mathbb{Z}_{p}\right.
$$

yield an isomorphism

$$
H^{i}(G, \operatorname{Hom}(A, I(G))) \cong H^{n-i}(G, A)^{*}
$$

Remark: In [Ve], J.-L. Verdier used the name strict Cohen-Macaulay at $\boldsymbol{p}$ for what we call a profinite duality group at $p$ here. In [Pl], A. Pletch defined $D_{p}^{n}$-groups (and called them duality groups at $p$ of dimension $n$ ). The $D_{p}^{n}$-groups of Pletch are exactly the duality groups at $p$ (in our sense) which, in addition, satisfy the following finiteness condition:
$F C(G, p): \quad H^{i}(G, A)$ is finite for all finite $A \in \operatorname{Mod}_{p}(G)$ and for all $i \geq 0$.
Since any finite, discrete $G$-module is trivialized by an open subgroup $U$ of $G$, condition $F C(G, p)$ can also be rephrased in the form:
$F C(G, p): \quad H^{i}(U, \mathbb{Z} / p \mathbb{Z})$ is finite for all open subgroups $U$ of $G$ and all $i \geq 0$.
By a duality theorem due to J. Tate, see [Ta] Thm. 3 or [Ve] Prop. 4.3 or [NSW] (3.4.6), a profinite group $G$ of cohomological $p$-dimension $n$ is a duality group at $p$ if and only if

$$
D_{i}(G, \mathbb{Z} / p \mathbb{Z})=0 \quad \text { for } 0 \leq i<n .
$$

As a consequence we see that every open subgroup of a duality group at $p$ is a duality group at $p$ as well (of the same cohomological dimension), and if an open subgroup of $G$ is a duality group at $p$ and $c d_{p} G<\infty$, then $G$ is a duality group at $p$ of the same cohomological dimension (use [NSW] (3.3.5)(ii)). Furthermore, any profinite group of cohomological $p$-dimension 1 is a duality group at $p$.

We call a profinite group $G$ virtually a duality group at $\boldsymbol{p}$ of (virtual) dimension $\boldsymbol{v} \boldsymbol{c} \boldsymbol{d}_{\boldsymbol{p}} \boldsymbol{G}=\boldsymbol{n}$ if an open subgroup $U$ of $G$ is a duality group at $p$ of dimension $n$.

The objective of this paper is to give a proof of Theorem 1 below, which states that the class of duality groups is closed under group extensions $1 \rightarrow$ $H \rightarrow G \rightarrow G / H \rightarrow 1$ if the kernel satisfies $F C(H, p)$. Weaker forms of Theorem 1 were first proved by A. Pletch (for $D_{p}^{n}$-groups, see $[\mathrm{Pl}]^{1}$ ) and by the second author (for Poincaré groups, see [Wi]).

[^0]Theorem 1. Let

$$
1 \longrightarrow H \longrightarrow G \longrightarrow G / H \longrightarrow 1
$$

be an exact sequence of profinite groups such that condition $F C(H, p)$ is satisfied. Then the following assertions hold:
(i) If $G$ is a duality group at $p$, then $H$ is a duality group at $p$ and $G / H$ is virtually a duality group at $p$.
(ii) If $H$ and $G / H$ are duality groups at $p$, then $G$ is a duality group at $p$.

Moreover, in both cases we have:

$$
c d_{p} G=c d_{p} H+v c d_{p} G / H,
$$

and there is a canonical G-isomorphism

$$
I(G)^{\vee} \cong I(H)^{\vee} \hat{\otimes}_{\mathbb{Z}_{p}} I(G / H)^{\vee},
$$

where ${ }^{\vee}$ is the Pontryagin dual and $\hat{\otimes}_{\mathbb{Z}_{p}}$ is the tensor-product in the category of compact $\mathbb{Z}_{p}$-modules.

Remark: The assumption $F C(H, p)$ is necessary, as the following examples show:

1. Let $G$ be the free pro- $p$-group on two generators $x, y$ and let $H \subset G$ be the normal subgroup generated by $x$. Then $H$ is free of infinite rank, $G / H$ is free of rank one and $1 \rightarrow H \rightarrow G \rightarrow G / H \rightarrow 1$ is an exact sequence in which all three groups are duality groups of dimension one.
2. Let $D$ be a duality group at $p$ of dimension $2, F$ a duality group at $p$ of dimension 1 and $G=F * D$ their free product. The kernel of the projection $G \rightarrow D$ has cohomological $p$-dimension 1 , hence is a duality group a $p$ of dimension 1 . The group $G$ has cohomological $p$-dimension 2 but is is not a duality group at $p$.

In the proof of Theorem 1, we make use of the following
Proposition 2. Let

$$
1 \longrightarrow H \longrightarrow G \longrightarrow G / H \longrightarrow 1
$$

be an exact sequence of profinite groups. Assume that $F C(H, p)$ holds. Then there is a spectral sequence of homological type

$$
E_{i j}^{2}=D_{i}(G / H, \mathbb{Z} / p \mathbb{Z}) \otimes D_{j}(H, \mathbb{Z} / p \mathbb{Z}) \Longrightarrow D_{i+j}(G, \mathbb{Z} / p \mathbb{Z})
$$

Proof. Let $g$ run through the open normal subgroups of $G$. Then $g H / H \cong$ $g / g \cap H$ runs through the open normal subgroups of $G / H$. For a $G$-module $A \in \operatorname{Mod}_{p}(G)$, we consider the Hochschild-Serre spectral sequence
$E(g, g \cap H, A): E_{2}^{i j}(g, g \cap H, A)=H^{i}\left(g / g \cap H, H^{j}(g \cap H, A)\right) \Longrightarrow H^{i+j}(g, A)$.
If $g^{\prime} \subseteq g$ is another open normal subgroup of $G$, then the corestriction yields a morphism

$$
\text { cor : } E\left(g^{\prime}, g^{\prime} \cap H, A\right) \longrightarrow E(g, g \cap H, A)
$$

of spectral sequences. The map

$$
E_{2}^{i j}\left(g^{\prime}, g^{\prime} \cap H, A\right) \longrightarrow E_{2}^{i j}(g, g \cap H, A)
$$

is the composite of the maps

$$
\begin{gathered}
H^{i}\left(g^{\prime} / g^{\prime} \cap H, H^{j}\left(g^{\prime} \cap H, A\right)\right) \stackrel{\substack{\text { cor } g^{g^{\prime} \cap H}}}{\longrightarrow} H^{i}\left(g^{\prime} / g^{\prime} \cap H, H^{j}(g \cap H, A)\right) \\
\stackrel{\substack{\text { cor } \\
g^{\prime} / g^{\prime} \cap H}}{\text { gnH }} H^{i}\left(g / g \cap H, H^{j}(g \cap H, A)\right)
\end{gathered}
$$

and the map between the limit terms is the corestriction

$$
\operatorname{cor}_{g}^{g^{\prime}}: H^{i+j}\left(g^{\prime}, A\right) \longrightarrow H^{i+j}(g, A) .
$$

For $2 \leq r \leq \infty$ we set

$$
E_{i j}^{2}=D_{i j}^{r}(G, H, A):=\underset{g}{\lim } E_{r}^{i j}(g, g \cap H, A)^{*} .
$$

As taking duals and direct limits are exact operations, the terms $D_{i j}^{r}(G, H, A)$, $2 \leq r \leq \infty$, establish a homological spectral sequence which converges to $D_{n}(G, A)$. If $h$ runs through the open subgroups of $H$ which are normal in $G$, then the cohomology groups $H^{j}(h, A)$ are $G$-modules in a natural way. If $g$ is open in $G$ with $g \cap H \subseteq h$, then these groups are $g / g \cap H$-modules. We see that
where for both limits the transition maps are (induced by) cor ${ }^{*}$. In order to conclude the proof of the proposition, it remains to construct isomorphisms

$$
D_{i j}^{2}(G, H, \mathbb{Z} / p \mathbb{Z}) \cong D_{i}(G / H, \mathbb{Z} / p \mathbb{Z}) \otimes D_{j}(H, \mathbb{Z} / p \mathbb{Z})
$$

for all $i$ and $j$. To this end note that all occurring abelian groups are $\mathbb{F}_{p^{-}}$ vector spaces, so that ${ }^{*}$ is $\operatorname{Hom}\left(-, \mathbb{F}_{p}\right)$. Further note that for vector spaces $V, W$ over a field $k$ the homomorphism

$$
V^{*} \otimes W^{*} \longrightarrow(V \otimes W)^{*}, \phi \otimes \psi \longmapsto(v \otimes w \mapsto \phi(v) \psi(w))
$$

is an isomorphism provided that $V$ or $W$ is finite-dimensional. Let $h$ be an open subgroup of $H$ which is normal in $G$ and let $g^{\prime} \subseteq g$ be open subgroups of $G$ such that $g$ acts trivially on the finite group $H^{j}(h, \mathbb{Z} / p \mathbb{Z})$. Then, by [NSW] (1.5.3)(iv), the diagram

$$
\begin{array}{rll}
H^{i}\left(g^{\prime} / g^{\prime} \cap H, \mathbb{Z} / p \mathbb{Z}\right) \otimes H^{j}(h, \mathbb{Z} / p \mathbb{Z}) & \stackrel{\sim}{\sim} & H^{i}\left(g^{\prime} / g^{\prime} \cap H, H^{j}(h, \mathbb{Z} / p \mathbb{Z})\right) \\
& \downarrow^{\operatorname{cor} \otimes i d} & \\
H^{i}(g / g \cap H, \mathbb{Z} / p \mathbb{Z}) \otimes H^{j}(h, \mathbb{Z} / p \mathbb{Z}) & \stackrel{\cup}{\sim} & H^{i}\left(g / g \cap H, H^{j}(h, \mathbb{Z} / p \mathbb{Z})\right)
\end{array}
$$

commutes. For fixed $h$, we therefore obtain isomorphisms

$$
\begin{aligned}
& D_{i}(G / H, \mathbb{Z} / p \mathbb{Z}) \otimes H^{j}(h, \mathbb{Z} / p \mathbb{Z})^{*} \\
& \cong\left(\underset{\vec{g}}{\lim } H^{i}(g / g \cap H, \mathbb{Z} / p \mathbb{Z})^{*}\right) \otimes H^{j}(h, \mathbb{Z} / p \mathbb{Z})^{*} \\
& \cong \underset{g}{\lim } H^{i}(g / g \cap H, \mathbb{Z} / p \mathbb{Z})^{*} \otimes H^{j}(h, \mathbb{Z} / p \mathbb{Z})^{*} \\
& \cong \underset{g}{\lim }\left(H^{i}(g / g \cap H, \mathbb{Z} / p \mathbb{Z}) \otimes H^{j}(h, \mathbb{Z} / p \mathbb{Z})\right)^{*} \\
& \cong \underset{g}{\lim _{g}} H^{i}\left(g / g \cap H, H^{j}(h, \mathbb{Z} / p \mathbb{Z})\right)^{*} .
\end{aligned}
$$

Passing to the limit over $h$, we obtain the required isomorphism

$$
D_{i}(G / H, \mathbb{Z} / p \mathbb{Z}) \otimes D_{j}(H, \mathbb{Z} / p \mathbb{Z}) \cong D_{i j}^{2}(G, H, \mathbb{Z} / p \mathbb{Z})
$$

Corollary 3. Under the assumptions of Proposition 2, let $i_{0}$ and $j_{0}$ be the smallest integers such that $D_{i_{0}}(G / H, \mathbb{Z} / p \mathbb{Z}) \neq 0$ and $D_{j_{0}}(H, \mathbb{Z} / p \mathbb{Z}) \neq 0$, respectively. Then $D_{i_{0}+j_{0}}(G, \mathbb{Z} / p \mathbb{Z}) \neq 0$.

Proof. The spectral sequence constructed in Proposition 2 induces an isomorphism

$$
D_{i_{0}+j_{0}}(G, \mathbb{Z} / p \mathbb{Z}) \cong D_{i_{0}}(G / H, \mathbb{Z} / p \mathbb{Z}) \otimes D_{j_{0}}(H, \mathbb{Z} / p \mathbb{Z}) \neq 0
$$

Proof of Theorem 1. Assume that $G$ is a duality group at $p$ of dimension $d$. Let $c d_{p} H=m$ and $n=d-m$. Then there exists an open subgroup $H_{1}$ of $H$ such that $H^{m}\left(H_{1}, \mathbb{Z} / p \mathbb{Z}\right) \neq 0$. Let $G_{1}$ be an open subgroup of $G$ such that $H_{1}=G_{1} \cap H$. Then $G_{1}$ is a duality group at $p$ of dimension $d, c d_{p} H_{1}=m$ and $G_{1} / H_{1}$ is an open subgroup of $G / H$. We consider the exact sequence

$$
1 \longrightarrow H_{1} \longrightarrow G_{1} \longrightarrow G_{1} / H_{1} \longrightarrow 1 .
$$

As $H^{m}\left(H_{1}, \mathbb{Z} / p \mathbb{Z}\right)$ is finite and nonzero, we have $v c d_{p} G_{1} / H_{1}=n$, see [NSW] (3.3.9). Furthermore, $D_{i}\left(G_{1}, \mathbb{Z} / p \mathbb{Z}\right)=0, i<n+m$. Using Corollary 3, we see that $D_{i}\left(G_{1} / H_{1}, \mathbb{Z} / p \mathbb{Z}\right)=0$ for all $i<n$ and $D_{j}\left(H_{1}, \mathbb{Z} / p \mathbb{Z}\right)=0$ for all $j<m$. Thus $G_{1} / H_{1}$, hence $G / H$, is virtually a duality group at $p$ of dimension $n$, and $H_{1}$, and so $H$, is a duality group at $p$ of dimension $m$. This shows (i).

Assume now that $H$ and $G / H$ are duality groups at $p$ of dimension $m$ and $n$. Then, $c d_{p} G=n+m$ by [NSW] (3.3.8), and in the spectral sequence of Proposition 2 we have $E_{i j}^{2}=0$ for $(i, j) \neq(n, m)$. Hence $D_{r}(G, \mathbb{Z} / p \mathbb{Z})=0$ for $r \neq n+m$ showing that $G$ is a duality group at $p$ of dimension $n+m$.

In order to prove the assertion about the dualizing modules, let $h$ run through all open subgroups of $H$ which are normal in $G$ and $g$ runs through the open subgroups of $G$. Since $m=c d_{p} H$, the Hochschild-Serre spectral sequence induces isomorphisms

$$
H^{m+n}\left(g, \mathbb{Z} / p^{\nu} \mathbb{Z}\right) \cong H^{n}\left(g / g \cap H, H^{m}\left(g \cap H, \mathbb{Z} / p^{\nu} \mathbb{Z}\right)\right)
$$

and we obtain

$$
\begin{aligned}
& I(G) \cong \underset{\nu}{\lim } \underset{g}{\lim } H^{m+n}\left(g, \mathbb{Z} / p^{\nu} \mathbb{Z}\right)^{*} \\
& \cong \underset{\nu}{\lim } \underset{h}{\lim } \underset{g}{\lim } H^{n}\left(g / g \cap H, H^{m}\left(h, \mathbb{Z} / p^{\nu} \mathbb{Z}\right)\right)^{*} \\
& \cong \underset{\nu}{\lim } \underset{h}{\lim } \underset{g, r e s}{\lim } H^{0}\left(g / g \cap H, \operatorname{Hom}\left(H^{m}\left(h, \mathbb{Z} / p^{\nu} \mathbb{Z}\right), I(G / H)\right)\right) \\
& \cong \underset{\nu}{\lim } \underset{h}{\lim } \operatorname{Hom}\left(H^{m}\left(h, \mathbb{Z} / p^{\nu} \mathbb{Z}\right), I(G / H)\right) \\
& \cong \operatorname{Hom}_{c t s}\left(\lim _{\check{\nu}}{\underset{\check{l}}{ }}_{l_{h}} H^{m}\left(h, \mathbb{Z} / p^{\nu} \mathbb{Z}\right), I(G / H)\right) \\
& \cong \operatorname{Hom}_{\text {cts }}\left(\left(\underset{\nu}{\lim } \underset{h}{\lim } H^{m}\left(h, \mathbb{Z} / p^{\nu} \mathbb{Z}\right)^{*}\right)^{\vee}, I(G / H)\right) \\
& \cong \operatorname{Hom}_{c t s}\left(I(H)^{\vee}, I(G / H)\right) \cong\left(I(H)^{\vee} \hat{\otimes}_{\mathbb{Z}_{p}} I(G / H)^{\vee}\right)^{\vee}
\end{aligned}
$$

(see [NSW] (5.2.9) for the last isomorphism). This completes the proof of the theorem.

## References

[NSW] Neukirch, J., Schmidt, A., Wingberg, K. Cohomology of Number Fields. sec.ed. Springer 2008
[Pl] Pletch, A. Profinite duality groups I. J. Pure Applied Algebra 16 (1980) 55-74 and 285-297
[Ta] Tate, J. Letter to Serre. Annexe 1 to Chap.I in Serre, J.-P. Cohomologie Galoisienne. Lecture Notes in Mathematics 5, Springer 1964 (Cinquième édition 1994)
[Ve] Verdier, J.-L. Dualité dans la cohomologie des groupes profinis. Annexe 2 to Chap.I in Serre, J.-P. Cohomologie Galoisienne. Lecture Notes in Mathematics 5, Springer 1964 (Cinquième édition 1994)
[Wi] Wingberg, K. On Poincaré groups. J. London Math. Soc. 33 (1986) 271-278

Alexander Schmidt, NWF I - Mathematik, Universität Regensburg, D-93040 Regensburg, Deutschland. email: alexander.schmidt@mathematik.uni-regensburg.de

Kay Wingberg, Mathematisches Institut, Universität Heidelberg, Im Neuenheimer Feld 288, 69120 Heidelberg, Deutschland. email: wingberg@mathi.uni-heidelberg.de


[^0]:    ${ }^{1}$ The proof given by Pletch in $[\mathrm{Pl}]$ is only correct for pro- $p$-groups as the author assumes that finitely generated projective modules over the complete group ring $\mathbb{Z}_{p} \llbracket G \rrbracket$ are free.

