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HIGHER CLASS FIELD THEORY AND THE CONNECTED
COMPONENT

MORITZ KERZ

Abstract. In this note we present a new self-contained approach to the class
field theory of arithmetic schemes in the sense of Wiesend. Along the way we
prove new results on space filling curves on arithmetic schemes and on the class
field theory of local rings. We show how one can deduce the more classical version
of higher global class field theory due to Kato and Saito from Wiesend’s version.
One of our new result says that the connected component of the identity element
in Wiesend’s class group is divisible if some obstruction is absent.

Introduction

The main aim of higher global class field theory is to determine the abelian funda-
mental group πab

1 (X) of a regular arithmetic scheme X, i.e. of a regular separated
scheme flat and of finite type over Z, in terms of an arithmetically defined class
group C(X). In case dim(X) = 1 this is classically done in terms of restricted idele
groups as follows:

Let K be a number field and S a finite set of places of K containing all infinite
places. Let X be the complement of S in Spec(OK) as an open subscheme. Define
the class group of X to be

C(X) = coker[K× −→
⊕

x∈|X|

Z⊕
⊕
v∈S

K×
v ]

with the quotient topology of the direct sum topology. Here Kv is the completion
of K at v and |X| is the set of closed points of X. During the first half of the 20th
century it was shown that there exists a surjective reciprocity homomorphism ρ :
C(X) → πab

1 (X) whose kernel is the maximal divisible subgroup of C(X) and which
induces a bijection between the open subgroups of C(X) and the open subgroups of
πab

1 (X). In our setting it is this fundamental theorem that one wants to generalize
to higher dimensional schemes X

For dim(X) > 1 a solution to this problem was suggested by Parshin [14] and
completed by Kato and Saito in [7]. Roughly, their solution involves higher Milnor
K-groups of higher local fields in the definition of the class group as analogs of the
multiplicative group of a one-dimensional local field. A different approach to higher
class field theory was started in [18] and built into a self-contained approach by
Wiesend [21]. This work was completed in [10].

The fundamental result in this latter setting of higher class field theory – which is
the topic of this note – can be stated as follows: First, for an arithmetic scheme X
one defines a topological group C(X), the class group, together with a continuous
homomorphism ρ : C(X) → πab

1 (X), the reciprocity map. This is done in Section 4.
Sections 5 to 9 are concerned with the proof of the fundamental theorem:

Theorem. For a regular arithmetic scheme X the sequence

0 −→ C(X)0 −→ C(X)
ρ−→ πab

1 (X) −→ 0
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2 MORITZ KERZ

is a topological short exact sequence. Here C(X)0 is the connected component of the
identity in C(X).
If X is proper over some open subscheme of Spec(OK) for some number field K the
group C(X)0 is the maximal divisible subgroup of C(X).

Our principal aim for this note was to give a new, short and direct proof of
this fundamental theorem of higher class field theory without using the notion of
covering data resp. covering problems, which is used in [21] and [10]. One of the
major differences of our approach is that we prove the isomorphism theorem first
and use it in the proof of the existence theorem. The statement on the divisibility of
the connected component is new, see Section 5. Furthermore, we show in Section 10
that this fundamental theorem implies the results of Kato and Saito on arithmetic
schemes as presented in [16, Theorem 6.1]. One should remark that in the case of
varieties over finite fields we can handle at present only the tame part using the
methods of this paper. Here the ideas of Kato and Saito seem to be indispensable
for the wild part.

It is suggested to the reader who wants to gain an overview of higher class field
theory to skip the first three sections – which are quite technical – for the first
reading and start with Section 4.

I would like to thank Alexander Schmidt for many helpful discussions on higher
class field theory and his comments on preliminary versions of this note. I thank
Uwe Jannsen for his constant encouragement.

1. Background Material

1.1. Algebraic Geometry.

General definitions.

Definition 1.1. An arithmetic scheme is an integral separated normal scheme flat
and of finite type over Z.

Definition 1.2. If X is a scheme we call a closed subscheme C → X a curve if C
is integral and one-dimensional.

For a scheme X we denote by |X| the set of closed points of X.

Elementary fibrations. Usually proofs in higher class field theory use induction over
the Krull dimension. A basic ingredient will be Artin’s elementary fibrations. Let X
be an arithmetic scheme with dim(X) > 1. The next proposition shows that étale
locally around the generic point X can be fibred into smooth curves over a regular
base.

Proposition 1.3. There exists a nontrivial arithmetic scheme X ′ and an étale
morphism X ′ → X such that X ′ can be fibred as follows: There exists an open
immersion X ′ → X̄ ′ and a smooth projective morphism π̄ : X̄ ′ → W such that:
(i) W is regular of dimension dim(X)− 1.
(ii) X̄ ′ −X ′ with the reduced subscheme structure is isomorphic to a direct sum of
copies of W .
(iii) There exists a section s : W → X ′ of π̄.

Proof. This is a simple corollary to [1, XI 3.3]. �

Fundamental group. Let Gr be the category whose objects are profinite groups and
whose morphisms are continuous group homomorphisms modulo inner automor-
phism, i.e. two group homomorphisms f, g : A → B give the same morphism in the
category Gr if there exists b ∈ B with bfb−1 = g. Abelianization is a functor from
the category Gr to the category of abelian profinite groups. Let A be a set and B
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be a group. An equivalence class of maps from A to B up to inner automorphisms
is called a subset up to inner automorphism if it corresponds to an injective map.

Grothendieck’s fundamental group is a covariant functor, denoted π1, from the
category of connected noetherian schemes to Gr. The abelian fundamental group
functor πab

1 is the composition of π1 with the abelianization functor described above.
For a connected noetherian scheme X the open normal subgroups in π1(X) cor-

respond bijectively to the isomorphism classes of (connected) Galois coverings of X.
A connected étale covering Y → X is called a Galois covering if #Aut(Y/X) =
deg(Y/X). The Galois covering corresponding to V ≤ π1(X) has Galois group
G = π1(X)/V . If f : X ′ → X is a morphism of connected normal noetherian
schemes and Y → X is a Galois covering corresponding to V ≤ π1(X) the pullback
YX′ = X ′×X Y is a disjoint union of Galois coverings each of which has Galois group
isomorphic to G′ = π1(X ′)/f−1

∗ (V ).
For an arithmetic scheme X and a closed point x ∈ |X| we will denote the

Frobenius at x by Frobx, which is an element of π1(X) up to conjugation. If Y → X
is a Galois covering we call the subgroup up to conjugation of Gal(Y/X) generated
by Frobx the decomposition group at the point x, denoted DGY/X(x).

For further reference recall:

Lemma 1.4. If f : Y → X is an étale morphism of arithmetic schemes there exists
a dense open subscheme U ⊂ X such that the induced morphism f−1(U) → U is
finite.

Etale cohomology. Etale cohomology of a connected noetherian scheme X is related
to the fundamental group by

Homcont(π1(X), Q/Z) = H1(X, Q/Z) .

We will need a base change result for relative curves. Let π̄ : X̄ → W be a smooth
proper relative curve, i.e. π̄ is flat of relative dimension one with geometrically
connected fibres, W a regular arithmetic scheme. Let i : X → X̄ be an open
immersion such that X̄ −X is isomorphic to a direct sum of copies of W and such
that there exists a section s : W → X. Set π = π̄ ◦ i.

Proposition 1.5. The base change homomorphism

(R1π∗(Z/m))w̄−̃→H1(X ×W w̄, Z/m)

for a geometric point w̄ of W is an isomorphism for all m ∈ N which are invertible
in H0(W,OW ). Moreover R1π∗(Z/m) is locally constant.

Proof. Purity [13, Corollary 5.3] implies that there is a commutative diagram

0 // R1π̄∗(Z/m)w̄
//

��

R1π∗(Z/m)w̄
//

��

⊕
π0(X̄−X)

Z/m(−1) //

��

Z/m(−1)

��
0 // H1(X̄ ×W w̄, Z/m) // H1(X ×W w̄, Z/m) //

⊕
π0(X̄−X)

Z/m(−1) // Z/m(−1)

with exact rows. So the result follows from the smooth proper base change and
finiteness theorem [13, Corollary 4.2] and the five lemma. �

Compactification of curves. Let C be a reduced scheme of dimension one, separated
and of finite type over Z.

Proposition 1.6. There exists a scheme C̄ which is proper over Z and a dense open
immersion C ⊂ C̄ with the following property: Every morphism from C to a scheme
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X which is proper over Z factors uniquely through C̄. This clearly determines C̄ up
to unique isomorphism.

C //

��

C̄

∃!
��~

~
~

~

X

Proof. By a theorem of Nagata, see [12], there exists a reduced compactification
C ⊂ C̄ ′. Let C̄ be the desingularization of C̄ ′ at the points C̄ ′\C. An application
of the valuative criterion of properness finishes the proof. �

1.2. Topological Groups.
Let (G, e) be a topological group. For further reference recall:

Lemma 1.7. {e} is closed in G if and only if G is Hausdorff.

By G0 we denote the maximal connected subset of G containing e. It is well
known that G0 is a closed subgroup.

1.3. One-dimensional class field theory.
Let K be a global field and S a finite set of places of K containing all infinite places.
Let X be the open subscheme of Spec(OK) whose closed points are exactly the
closed points of Spec(OK) not in S. Denote by

C(X) = coker[K× −→
⊕

x∈|X|

Z⊕
⊕
v∈S

K×
v ]

the (idele) class group of X. Here Kv is the completion of K at v. C(X) is a locally
compact Hausdorff group and covariant functorial in X. There exists a canonical
continuous homomorphism

ρ : C(X) −→ πab
1 (X)

called the reciprocity map. If p = char(K) > 0 there exists a natural homomorphism
C(X) → Z induced by X → Fp. The main theorem of class field theory, as proved
for example in [2, Chapter 8], reads now:

Proposition 1.8. If char(K) = 0 the sequence

0 −→ C(X)0 −→ C(X) −→ πab
1 (X) −→ 0

is a topological short exact sequence.
If p = char(K) > 0 the homomorphism

ker[C(X) → Z] −→ ker[πab
1 (X) → πab

1 (Fp) = Ẑ]

is a topological isomorphism.

Let now X be as above and φ : Y → X be a Galois covering, G = Gal(Y/X).

Corollary 1.9 (Isomorphism Theorem). The reciprocity map induces an isomor-
phism

C(X)/φ∗C(Y )−̃→Gab .

Proof. One checks that φ∗C(Y ) is an open subgroup of C(X), in particular we have
C(X)0 ⊂ φ∗C(Y ). Now a simple diagram chase, using Proposition 1.8 for X and Y ,
proves the corollary. �

For further reference we finally recall the weak approximation lemma. Let F be
a field and | · |1, . . . , | · |n inequivalent valuations on F .

Lemma 1.10 (Weak approximation lemma). Given a1, . . . , an ∈ F and ε > 0 there
exists a ∈ F with |a− ai|i < ε for all 1 ≤ i ≤ n.
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1.4. Chebotarev density.
Let X be an arithmetic scheme, d = dim(X). One can show that

∑
x∈|X|

1
N(x)s

converges for s > d. Here for a closed point x in X we denote by N(x) the number
of elements in k(x).

Given a subset M ⊂ |X| we call

D(M) = lim
s→d+0

(∑
x∈M

1
N(x)s

)
/ log(

1
s− d

)

the density of M if the limit exists. Let Y → X be a Galois covering with G =
Gal(Y/X)

Proposition 1.11 (Generalized Chebotarev). If R ⊂ G is stable under conjugation
and M = {y ∈ |Y | | Froby ∈ R} the density D(M) is well defined and

D(M) =
#R

#G
.

For a proof see for example [19].

1.5. Katz-Lang finiteness.
Let f : X → S be a smooth surjective morphism of arithmetic schemes. Assume
the geometric generic fibre of f is connected. Then Katz and Lang [8] prove the
following geometric finiteness result:

Proposition 1.12 (Katz-Lang). The kernel of f∗ : πab
1 (X) → πab

1 (S) is finite.

2. Bloch’s approximation lemma

An essential method in higher global class field theory is to reduce things to
the one-dimensional case by the following procedure (for a simple incidence of the
method see the proof of the Isomorphism Theorem in Section 6): Given an arithmetic
scheme X and a finite set of closed points on the scheme find a ‘good’ curve on X
which contains the given points. The most general conjecture in this direction would
be:

Conjecture 2.1 (Space filling curves on arithmetic schemes). Let X be a regular
quasi-projective arithmetic scheme, i.e. X is a subscheme of Pn

Z, and let S ⊂ |X| be
a finite set of closed points. Then there exists a regular curve C on X with S ⊂ |C|.

A conditional result for S = ∅ has been proven in [15]; the idea is to use hyperplane
sections. In higher class field theory the following very weak form of the conjecture
is sufficient. The next proposition strengthens Bloch’s approximation lemma [3,
Lemma 3.3], [16, Lemma 6.21], but whereas Bloch uses Hilbert irreducibility we use
a Bertini theorem over finite fields and some classical algebraic geometry.

Let F be a number field and O its ring of integers.

Proposition 2.2 (Bloch approximation). Let X/O be a smooth quasi-projective
arithmetic scheme and let Y → X be a Galois covering. Let xi (1 ≤ i ≤ n) be a
finite set of closed points of X. Then there exists a curve C ⊂ X such that
(i) The points xi are regular points of the curve C.
(ii) The scheme Y ×X C is irreducible.

Before we give the proof, we have to recall a Bertini type theorem over finite
fields. Let X be a quasi-projective subscheme of Pn

k where k is some finite field.
For a nonvanishing section f ∈ H0(Pn

k ,O(d)) we denote by Hf the corresponding
hypersurface.
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Proposition 2.3 (Gabber-Poonen). Assume X is smooth and xi (1 ≤ i ≤ m) is
some finite family of closed points of X. For d � 0 there exists f ∈ H0(Pn

k ,O(d)),
such that X and Hf intersect properly, X∩Hf is smooth and xi ∈ Hf for 1 ≤ i ≤ m.

Proof. Gabber [4, Corollary 1.6] proves the proposition under the assumption that
char(k)|d. Poonen [15, Theorem 1.2] proves it for large arbitrary d. �

Below we have to use the following standard connectivity fact about hypersurfaces,
which is shown for example in [5, Corollary III.7.9]:

Proposition 2.4. If H ⊂ Pn
k is a hypersurface and if X ⊂ Pn

k is a closed subscheme
with dim(X) ≥ 2, which is geometrically irreducible and smooth over k, then the
intersection H ∩X is geometrically connected.

Proof of Bloch approximation. In the first part of the proof we use induction on
dim(X) to reduce to the case dim(X) = 2. In the second part we handle the case
dim(X) = 2.

1st part: Assume dim(X) > 2 and the theorem is known for two-dimensional
schemes – this case will be validated in the second part. According to Proposition
1.11 we can find closed points xi ∈ X (n < i ≤ m) such that each conjugacy class
in Gal(Y/X) contains at least one Frobenius Frobxi for some i.

Claim (dim > 2). There exists a curve C on X which contains xi (1 ≤ i ≤ m) as
regular points.

Proof. We prove the claim by induction on dim(X) ≥ 2. The case dim(X) = 2
is shown in the 2nd part below. Let Z ⊂ |Spec(O)| be the image of the set of
points {xi|1 ≤ i ≤ m} and denote η the generic point of Spec(O). Write X as
a subscheme of PN

O . X̄ will denote the closure of X in PN
O . Using Hironaka’s

resolution of singularities at the generic fibre we can assume without restriction
that X̄η is smooth over F . After replacing F by the algebraic closure of F in Xη we
can assume that X̄η is geometrically irreducible over F . Then we can find a prime
ideal p in O distinct from the primes in Z such that X̄Op is smooth over Op and such
that X̄p = X̄ ⊗ k(p) is irreducible. The latter because of Zariski’s connectedness
theorem [5, III.11.3]. Let A be the semi-local ring corresponding to the finite set of
points Z ∪ {p} of Spec(O) and I its Jacobson radical. Proposition 2.3 says, that
for d � 0 there exists a global section of OPN

A/I
(d) which induces a hypersurface

H of PN
A/I whose intersection with X̄ ⊗O A/I is proper, contains the points xi as

smooth points and such that H ∩ X̄p is smooth. Let im : PN
A/I → PN

A be the closed
embedding. The homomorphism

im∗ : H0(PN
A ,O(d)) −→ H0(PN

A/I ,O(d))

is surjective due to the Chinese remainder theorem. This enables us to lift H to
a hypersurface HA in PN

A . Observe that H ∩ X̄p is smooth and connected, the
latter by Proposition 2.4. This implies that HA ∩ X̄ is irreducible. Let X ′ be a
smooth connected subscheme of X such that X ′ ⊗ A = HA ∩ X. Then X ′ is an
integral smooth quasi-projective arithmetic scheme over O of dimension dim(X)−1
containing the points xi, so that we can apply an induction to reduce to the case
dim(X) = 2 which is shown below in the 2nd part of the proof. �

Now assume YC = Y ×X C was not irreducible, where C is as in the claim. This
would mean that the composite π1(C) → π1(X) → Gal(Y/X) was not surjective.
But as its image contains Frobenius elements in every conjugacy class of Gal(Y/X),
this would give a contradiction because of Lemma 2.5.

2nd part: Now we assume dim(X) = 2 and consider an embedding X → PN
O .

Let again Z ⊂ |Spec(O)| be the image of the set of points {xi|1 ≤ i ≤ m}. Let
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(X0, . . . , XN ) be homogeneous coordinates for PN
O . After performing an n-uple em-

bedding and a linear change of variables we can without restriction assume that
xi /∈ HX0 for 1 ≤ i ≤ m. Let A be the semi-local ring with Jacobson radical I
corresponding to the finite set of points Z of Spec(O). Then by Proposition 2.3 for
d � 0 we find a section f ′ ∈ H0(PN

A/I ,O(d)) such that the hypersurface Hf ′ of PN
A/I

has proper intersection with X̄ ⊗O A/I and the intersection contains the points xi

as smooth points. Let f ∈ H0(PN
A ,O(d)) be a preimage of f under the natural map

im∗ described above.
Now consider the rational map φ : PN

A → P1
A induced by (Xd

0 , f). After shrinking
X we can assume that φ induces a morphism φ|X : X → P1

O. It is étale at the points
xi for 1 ≤ i ≤ n. In fact it is enough to show the latter fibrewise for the fibres over
Z where it follows from the choice of f ′ ∈ H0(PN

A/I ,O(d)). Now by further shrinking
X around the points {xi|1 ≤ i ≤ m} we can assume that φ|X is étale.

According to Lemma 1.4 we can find an open subscheme U ⊂ P1
O such that

(φ|X)−1(U) → U

is an étale covering. Restricting Y to φ|−1
X (U) we obtain an étale covering of U and

denote by YU → U its Galois closure. Choose a finite set of closed points xj ∈ |U |
(n < j ≤ m) such that each conjugacy class in Gal(YU/U) contains one of the
Frobenius elements Frobxj (n < j ≤ m).

Claim (dim = 2) There exists a curve C on P1
O which contains φ(xi) (1 ≤ i ≤ n)

and xj (n < j ≤ m) as regular points.

Proof. The proof is almost verbatimly the same as that of the claim in the 1st
part, except that we have to choose the hypersurface H such that its fibre over the
auxiliary prime p has only one scheme theoretic point, which is not difficult. �

Let C be as in the claim. The curve (φ|X)−1(C) is the curve we were looking for.
In fact it is irreducible because YU × C is irreducible. The latter because otherwise
π1(C ∩ U) → π1(U) → Gal(YU/U) would not be surjective in contradiction to
Lemma 2.5, as the image contains Frobenius elements Frobxj (n < j ≤ m) in every
conjugacy class. �

Lemma 2.5. Let G be a finite group and D ⊂ G a subset which contains elements
from every conjugacy class. Then D generates G.

Proof. Let H be the subgroup generated by D and i = [G : H]. By assumption we
cleary have

G =
⋃

x∈G/H

xHx−1 .

If i > 1 the union is not disjoint and counting the elements on both sides would give
ord(G) < i · ord(H), which is a contradiction. �

3. Splitting properties

We will need two different splitting results, one global which is based on Cheb-
otarev density and one local which is based on class field theory of henselian local
rings.

We begin with the global result which is fairly standard.

Proposition 3.1 (Global splitting). Let X be an arithmetic scheme and φ : Y → X
be a connected étale covering which splits completely over all closed points of X.
Then φ is an isomorphism.
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Proof. Without restriction we can assume φ to be a Galois covering with Galois
group G. Because every closed point in X splits completely, all the Frobenius
elements are trivial in G. But according to Theorem 1.11 the Frobenius elements
generate G, so G is trivial. �

Now we come to the local result. Let A be an excellent regular henselian local
ring of dimension d with finite residue field. Let X be a dense open subscheme of
Spec(A). Set D = Spec(A)−X. The next proposition is due to Saito [17] for d = 2.
A geometric proof can be found in [11]. Here we will give a new proof generalizing
the work of Saito.

Proposition 3.2 (Local splitting). Let φ : Y → X be an abelian Galois covering
which splits completely over all closed points of X. Then φ is an isomorphism.

Proof. The proof uses class field theory of henselian local rings. Without restriction
we can assume X 6= Spec(A). Let P be the set of Parshin chains on Spec(A) of the
form P = (p0, . . . , pn) (0 ≤ n ≤ d) such that p0, . . . , pn−1 ∈ D and pn ∈ X. Let R
be the set of chains P = (p0, . . . , pn) (0 ≤ n < d) such that dim(pi) = i with pi ∈ D
for 0 ≤ i < n and dim(pn) = n + 1 with pn ∈ X. For a chain P = (p0, . . . , pn) we
call dim(P ) = dim(pn) the dimension of P . Now remember that to every chain P
we can associate a finite product of fields k(P ) by a henselization process, see [7,
Section 1.6]. Define the idele group to be

I(X) =
⊕
P∈P

KM
dim(P )(k(P )) .

We endow I(X) with the following topology: A neighborhood base of the zero
element is given by the subgroups⊕

P∈P
dim(P )=d

KM
d (k(P ),m) ≤ I(X)

where m ∈ N and for a discrete valuation ring (R, I) with quotient field F we let
KM

n (F,m) be the subgroup of KM
n (F ) generated by symbols {1 + Im, F×, . . . , F×}.

Define the class group to be the obvious quotient

C(X) = coker

[⊕
P∈R

KM
dim(P )(k(P )) → I(X)

]
.

Now it follows from a reciprocity result due to Kato [6, Proposition 7] that the
natural reciprocity homomorphism I(X) → πab

1 (X) factors through a continuous
ρ : C(X) → πab

1 (X). The proposition follows from the next lemma whose proof
we leave to the reader. It is only a slight generalization of the two-dimensional
case treated in [17]. The proof uses Zariski-Nagata purity of the branch locus and
approximation in Dedekind rings, Lemma 1.10.

Lemma 3.3. The map ρ has dense image. The natural map

h :
⊕

x∈|X|

k(x) −→ C(X)

has dense image.

It follows from the lemma that the composite⊕
x∈|X|

k(x) h−→ C(X)
ρ−→ πab

1 (X) −→ Gal(Y/X)

is surjective. But the splitting assumption of the proposition implies that it is the
zero homomorphism. �
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4. The Class Group

Wiesend introduced a very simple class group for an arithmetic scheme X which
is an extension of the Chow group of zero cycles CH0(X). For a curve C on X we
let C∞ be the set of places of k(C) which do not lie over points of C including the
archimedean places. Let k(C)v be the completion of k(C) with respect to the place
v.

Definition 4.1. The idele group of an arithmetic scheme X is defined as the direct
sum of topological groups

I(X) =
⊕

x∈|X|

Z⊕
⊕

C,v∈C∞

k(C)×v

where C runs over all curves on X. The finite idele group If (X) is defined in the
same way but without the archimedean summands.

If dim(X) > 1 the group I(X) is Hausdorff but not locally-compact. For its
connected component of the identity element we have

I(X)0 =
⊕

C× ⊕
⊕

R×
+

where we sum over all archimedean valuations corresponding to curves on X.
The next lemma is essential for our approach to higher class field theory.

Lemma 4.2. The open subgroups of I(X)/I(X)0 form a neighborhood base of the
zero element.

Proof. I(X) can be decomposed as I(X) = Ia(X)⊕Ina(X)⊕I |X|(X) in an archimedean,
non-archimedean and closed point part. Then I(X)0 is a subgroup of Ia(X) with
discrete quotient group. I |X|(X) is discrete too. So it suffices to show that the
open subgroups of Ina(X) form a neighborhood base of the zero element. The set of
curves on an arithmetic scheme is at most countable, so if we assume dim(X) > 1
we can write

Ina(X) =
⊕
i∈N

F×
i

for local non-archimedean fields Fi (i ∈ N). Let O ⊂ Ina(X) be an open neighbor-
hood of the zero element. We will successively construct open compact subgroups
Un of In = ⊕i≤nF×

i contained in O. Suppose we have constructed Un for some n.
For each x ∈ In choose an open compact subgroup O′

x ⊂ F×
n+1 and an open neigh-

borhood Ox of x in Un such that Ox × O′
x ⊂ O. As Un is compact there exists a

finite set W ⊂ Un with ∪x∈W Ox = Un. Now set Un+1 = Un ⊕ (∩x∈W O′
x). It is now

clear that ∪n∈NUn is an open subgroup of Ina(X) contained in O. �

Definition 4.3. The class group is defined to be

C(X) = coker[
⊕
C

k(C)× → I(X)]

with the quotient topology. The finite variant Cf (X) is defined by the same formula
replacing I(X) by If (X).

Remark 4.4. In [10, Example 7.1] it is shown that for X = P1
Z the class group C(X)

is not Hausdorff. This might suggest to replace the class group by its Hausdorff
quotient. Nevertheless it often seems difficult to explicitly determine the Hausdorff
quotient even for simple arithmetic schemes, so we do not pursue this approach here.

Lemma 4.5. The image of
⊕

x∈|X| Z → C(X) is dense in C(X). If moreover X is
regular and U ⊂ X is a dense open subscheme the image of

⊕
x∈|U | Z → C(X) is

dense in C(X).
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Proof. Let C ⊂ C(X) be a closed subset containing the image of
⊕

x∈|X| Z → C(X).
We have to show C = C(X). For a curve D on X let D̃ be the normalization and
i : D̃ → X the natural morphism. The closed set i−1

∗ (C) contains the image of⊕
x∈|D̃| Z → C(D̃) so by the weak approximation lemma, Lemma 1.10, i−1

∗ (C) =

C(D̃). This means that C = C(X).
Let now U be a dense open subscheme of a regular X. By what has just been

shown it is enough to verify that the image of
⊕

x∈|U | Z → C(X) is dense in the
image of

⊕
x∈|X| Z → C(X). Fix a closed point x ∈ |X| and choose a curve D which

contains x as a regular point and which meets U . Here we need the regularity of
X. Denote by 1x the element of C(X) which has vanishing summands except at x,
where it is 1 ∈ Z. By the choice of D we have 1x ∈ im[C(D̃) → C(X)]. As the
image of

⊕
x∈|D̃×U | Z → C(D̃) is dense by Lemma 1.10, we conclude that 1x lies in

the closure of the image of
⊕

x∈|U | Z → C(X). �

Proposition 4.6. The intersection of all open subgroups of C(X) is the connected
component of the identity C(X)0 in C(X), which is also the closure of the image of
I(X)0.

Proof. Observe that the closure of im(I(X)0) in C(X) is contained in C(X)0. So it
suffices to show that im(I(X)0) ⊂ C(X) is the intersection of all open subgroups of
C(X). It follows from Lemma 1.7 that G := C(X)/im(I(X)0) is a Hausdorff group.
So the intersection of all open sets in G containing 0 is {0}. We have to show that
every open subset O of G with 0 ∈ O contains an open subgroup. The quotient map

q : I(X)/I(X)0 → G

is open. According to Lemma 4.2 we can find an open subgroup U ≤ I(X)/I(X)0

such that U ⊂ q−1(O). Then q(U) is the open subgroup of G we are looking for. �

Proposition 4.7. For a morphism of arithmetic schemes f : X → Y there exists
a unique continuous homomorphism f∗ : C(X) → C(Y ) such that for every closed
point x ∈ |X|, y = f(x), the diagram

C(x) = Z //

deg(k(x)/k(y))
��

C(X)

f∗
��

C(y) = Z // C(Y )

commutes. The left vertical arrow is multiplication by deg(k(x)/k(y)).

Proof. Uniqueness follows from Lemma 4.5. Existence can be shown similarly to [10,
Lemma 7.3] �

Proposition 4.8 (Reciprocity). There exists a unique continuous homomorphism
ρ : C(X) → πab

1 (X) such that for every closed point x ∈ |X| the diagram

C(x) = Z //

Frob
��

C(X)

ρ

��
πab

1 (x) = Ẑ // πab
1 (X)

commutes.

Proof. Again uniqueness follows from Lemma 4.5 and existence is shown in analogy
to [10, Proposition 7.5]. �
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Corollary 4.9. For a morphism of arithmetic schemes f : X → Y the diagram

C(X)
ρ //

f∗
��

πab
1 (X)

f∗
��

C(Y ) ρ
// πab

1 (Y )

commutes.

Proof. The corollary follows from the commutativity of the diagram

C(x) //

��

πab
1 (x)

��
C(f(x)) // πab

1 (f(x))

and the last two propositions, where x ∈ X is an arbitrary closed point. �

Proposition 4.10. The image of ρ is dense in πab
1 (X).

Proof. Let V ≤ πab
1 (X) be an open subgroup containing the image of ρ. We have to

show that V = πab
1 (X). If this was not the case V would define a nontrivial abelian

Galois covering of X which would split completely over all closed points of X. But
this is impossible in view of Proposition 3.1. �

5. Connected Component

In view of the one-dimensional case it is a natural question to ask whether for an
arithmetic scheme X the connected component of the identity C(X)0 in the class
group C(X) is divisible. In fact in the one-dimensional case it is well known to be
divisible and its torsion subgroup can be described at least conjecturally. The next
example shows that C(X)0 is not divisible in general.

Example 5.1. Let K be a totally imaginary number field of class number 1 and let X
be Spec(A1

OK
). By Proposition 4.6 we have an exact sequence of topological groups⊕

C× −→ C(X)0 −→ Cf (X)0 −→ 0

where the sum on the left is over all archimedean places of curves on X. Therefore
it suffices to show that Cf (X)0 is not divisible in order to deduce that C(X)0 is
not divisible. Let R ≤ If (X) be the image of the map

⊕
C k(C)× → If (X).

Proposition 4.6 implies that the natural map R/R → Cf (X)0 is bijective. Let
ιx : Z → Cf (X) be the natural homomorphism corresponding to a point x ∈ |X|.
First, we want to show that ιx vanishes for all x ∈ |X|. Fix such an x and let
p ⊂ OK be the prime ideal over which x lies, x corresponds to a monic irreducible
polynomial over OK/p. If we lift this polynomial to a monic polynomial over OK

this lifted polynomial will be irreducible and therefore gives us a curve C on X which
is finite over OK . By construction C is étale and does not split over p ⊂ OK . In
other words p generates the prime ideal in H0(C̃,OC̃) corresponding to the point
x ∈ C̃, which is therefore principal, since p is itself principal (OK has class number
1). Summarizing we get a commutative diagram

Z ιx //

!!DD
DD

DD
DD

D Cf (X)

Cf (C̃)

OO
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in which the diagonal arrow vanishes. Therefore ιx vanishes. This means that R =
Cf (X) so that R/R contains as direct summands groups of the form F((t))×/F(t)×,
where F is some finite field of characteristic p. The latter groups are not divisible:
In fact the map

F(t)× −→ F((t))×/(F((t))×)p,

cannot be surjective, since the left hand side is countable while the right hand side
is uncountable. So we deduce that R/R ∼= Cf (X)0, and therefore also C(X)0, is not
divisible.

This example suggests that the only obstruction for C(X)0 to be divisible comes
from the local fields of positive characteristic. In fact if these are absent C(X)0 is
divisible.

Theorem 5.2. For an arithmetic scheme X the connected component C(X)0 in
C(X) is divisible if all vertical curves on X are proper.

Remark 5.3. Let X be an arithmetic scheme and let K be the algebraic closure
of Q in k(X). Recall that all vertical curves on X are proper if and only if the
morphism X → OK is proper over its image. This can be seen as follows: Assume
all vertical curves on X are proper and denote the image of X → OK by U . Choose a
compactification X ⊂ X̄ → U as constructed by Nagata, for a modern presentation
see for example [12]. We have to show X = X̄. For this it suffices to verify that
for all closed points u ∈ U we have Xu = X̄u. Observe that our assumption on the
properness of vertical curves implies that Xu is an open and closed subscheme of X̄u.
As X̄⊗K is geometrically connected over K we deduce that for all closed u ∈ U the
fibre X̄u is geometrically connected by Zariski’s connectedness theorem [5, III.11.3].
So we conclude Xu = X̄u.

Proof of Theorem 5.2. Let U(X) be the open subgroup of I(X)/I(X)0 given by the
sum U(X) = ⊕O×

Kv
over all non-archimedean valuations appearing in I(X). Let

R(X) be the image of ⊕
C

k(C)× −→ I(X)/I(X)0 .

Proposition 4.6 shows that we have an exact sequence

I(X)0 −→ C(X)0 −→ R(X)/R(X) −→ 0 .

As I(X)0 is clearly divisible it suffices to show that R(X)/R(X) is divisible.

Lemma 5.4. Let G be an abelian topological group, U ≤ G an open subgroup and
R ≤ G an arbitrary subgroup. Then we have

R ∩ U ·R = R .

In particular, if R ∩ U/R ∩ U is divisible then R/R is divisible, too.

The proof of the lemma is left to the reader. Let C ′
i (i ∈ N) be a family of curves

on X containing each curve at least once and let Ci be ∪j≤iC
′
j . Exactly as in the

arithmetic case we can define the groups I(Ci), C(Ci), U(Ci) and R(Ci). Our aim is
to show:

(1) R(Ci)/R(Ci) is divisible for every i ∈ N,
(2) R(X) = lim

−→
i

R(Ci).

Here R(Ci) means the closure of R(Ci) in I(Ci)/I(Ci)0. Indeed the two properties
imply that

R(X)/R(X) = lim
−→
i

R(Ci)/R(Ci)

is divisible and this will prove the theorem.
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Proof of (1). It is well known that U(Ci) is a Ẑ-module and that R(Ci) ∩ U(Ci) is
finitely generated as an abelian group. Choosing d generators of this latter group
we get a commutative diagram with exact rows and columns

Zd //

��

R(Ci) ∩ U(Ci)

��

// 0

Ẑd //

��

R(Ci) ∩ U(Ci) //

��

0

(Ẑ/Z)d //

��

R(Ci) ∩ U(Ci)/R(Ci) ∩ U(Ci) //

��

0

0 0

and since Ẑ/Z is divisible we conclude by Lemma 5.4 that R(Ci)/R(Ci) is divisible.
�

Proof of (2). By Lemma 5.4 it suffices to show that

R(X) ∩ U(X) = lim
−→
i

R(Ci) ∩ U(Ci) .

Moreover the right hand side is automatically a dense subgroup of the left hand
side, so we need to show that the right hand side is closed in U(X). For j > i

consider the subgroup Si,j of U(Ci) defined to be the preimage of R(Cj) ∩ U(Cj)
under the map U(Ci) → U(Cj). Si,j is a closed subgroup of U(Ci) and therefore a
Ẑ-submodule. Now the essential observation is that U(Ci) is a noetherian Ẑ-module,
since it is a finite sum of unit groups of local fields of characteristic 0; in fact the
assumption on the properness of vertical curves guarantees that no local fields of
positive characteristic show up, whose unit group is highly non-noetherian. This
implies that for fixed i the ascending sequence of Ẑ-submodules Si,j ≤ U(Ci) (j > i)
becomes stationary at some point, in particular

Si := lim
−→
j

Si,j

is a closed subgroup of U(Ci). Furthermore it is immediate that

lim
−→
i

R(Ci) ∩ U(Ci) = lim
−→
i

Si =: L .

As we saw above it is sufficient to show that L ≤ U(X) is a closed subgroup. By the
definition of the direct limit topology L is closed in U(X) if and only if its preimages
in the groups U(Ci) are closed for all i ∈ N. But the preimage of L in U(Ci) is Si,
which we have just seen to be closed. This finishes the proof of property (2) and
therefore of the theorem. �

6. Isomorphism Theorem

Let φ : Y → X be a Galois covering of regular arithmetic schemes.

Theorem 6.1 (Isomorphism). The reciprocity map induces an isomorphism

ρY/X : C(X)/φ∗C(Y )−̃→Gal(Y/X)ab .
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Proof. Clearly Gal(Y/X)ab = πab
1 (X)/φ∗π

ab
1 (Y ) and the surjectivity of ρY/X follows

from Proposition 4.10. Let U be an affine dense open subscheme of X which is
smooth over Z. Let W ⊂ |U | be a finite subset and let

imW := im[⊕W Z → C(X)/φ∗C(Y )] .

The Bloch approximation method, Proposition 2.2, produces a curve D which con-
tains all points in W as regular points and such that DY = D ×X Y is irreducible.
So we get an isomorphism

Gal(k(DY )/k(D))−̃→Gal(Y/X)

In other words the map β in the following commutative diagram is an isomorphism.

C(D̃)/φ∗C(D̃Y ) //

α

��

πab
1 (D̃)/φ∗π

ab
1 (D̃Y )

β
��

Gal(k(DY )/k(D))ab

o
��

C(X)/φ∗C(Y )
ρY/X // πab

1 (X)/φ∗π
ab
1 (Y ) Gal(Y/X)ab

Here D̃ is the normalization of D. According to Corollary 1.9 the upper horizontal
arrow is an isomorphism, so that we deduce im(α)∩ker(ρY/X) = 0 Furthermore it is
clear by the choice of D that imW ⊂ im(α) and consequently imW ∩ ker(ρY/X) = 0.
As this holds for all finite subsets W ⊂ U and we know according to Lemma 4.5
that ⋃

W

imW = C(X)/φ∗C(Y )

we deduce ker(ρY/X) = 0. This finishes the proof of the theorem. �

7. Weak Existence Theorem

7.1. Extension.
Consider the commutative diagram

C(X ′)
ρ //

i∗
��

πab
1 (X ′)

i∗
��

C(X) ρ
// πab

1 (X)

where X, X ′ are regular nonempty arithmetic schemes and i : X ′ → X is an open
immersion.

Proposition 7.1 (Extension). Let V ′ ≤ πab
1 (X ′) and U ≤ C(X) be open subgroups

such that ρ−1(V ′) = i−1
∗ (U). Then there exists a unique open subgroup V ≤ πab

1 (X)
with ρ−1(V ) = U and i−1

∗ (V ) = V ′.

Proof. Uniqueness is clear because πab
1 (X ′) → πab

1 (X) is surjective. For existence
let V ′ ≤ πab

1 (X ′) corresponds to the abelian Galois covering φ′ : Y ′ → X ′. Now let
φ : Y → X be the normalization of X in k(Y ′). We have to show φ is étale, because
then φ corresponds to some open subgroup V ≤ πab

1 (X) with i−1
∗ (V ) = V ′. It follows

easily from the fact that the image of C(X ′) → C(X) is dense, Lemma 4.5, that we
also have ρ−1(V ) = U . So it suffices to show the following claim. Fix a closed point
x ∈ |X| − |X ′| and let Xx = Spec(Ax) be an étale extension of the henselian local
ring at x such that pullback of U to the residue field of Ax is trivial. Let X ′

x be
X ′ ×X Xx.

Claim. The étale covering Y ′×X X ′
x → X ′

x splits completely over all closed points.
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Proof. Y ×X Xx is normal. It is étale over X ′
x and each of its components is an

abelian Galois covering over X ′
x. The closed points of X ′

x correspond to the branches
of curves on X through x which meet X ′.
But if j : D → X is such a curve and j′ : D′ → X ′ is its restriction to X ′ the
pullback j′−1(Y ) is an étale covering of D′ which corresponds by one-dimensional
class field theory, Proposition 1.8, to the open subgroup (i◦j′)−1

∗ (U) ≤ C(D̃′), where
the tilda means normalization. But then one-dimensional class field theory implies
that j′−1(Y ) extends to an étale covering of D̃.
Now we claim that this implies that Y ×Xx splits completely over all closed points
of X ′

x.
Let y ∈ X ′

x be such a closed point corresponding to the prime ideal py ⊂ Ax. By
what has been said above Y ×k(y) extends to an étale covering of the normalization
of Ax/py. But over the closed point of the normalization of Ax/py this étale covering
splits completely, since the pullback of U to the residue field of Ax is trivial. As
the normalization of Ax/py is a henselian discrete valuation ring, the whole étale
covering is the sum of trivial coverings. �

The claim together with the local splitting result, Proposition 3.2, implies that
Y ×X Xx → Xx is a sum of trivial coverings and thus that Y is étale over X. �

7.2. Effacability.
The next proposition is one of the key observations of our present approach to the
class field theory of arithmetic schemes. It says that étale locally around the generic
point of an arithmetic scheme X an open subgroup U ≤ C(X) becomes trivial.

Proposition 7.2. Let U ≤ C(X) be an open subgroup such that C(X)/U has fintie
exponent. Then there exists an arithmetic scheme X ′ and an étale morphism f :
X ′ → X with dense image such that f−1

∗ (U) = C(X ′).

Proof. Let m be the exponent of C(X)/U and assume without restriction that m ∈
H0(X,O×

X). We use induction on d = dim(X). If d = 1 the proposition can be
deduced from one-dimensional class field theory, Proposition 1.8. So assume d > 1.
Using Proposition 1.3 we can without restriction assume that there exists an open
immersion i : X → X̄ and a relative curve π̄ : X̄ → W over a regular arithmetic
scheme W such that X̄ − X is a direct sum of copies of W . Furthermore we can
assume that there exists a section s : W → X. Set π = π̄ ◦ i.

By induction s−1
∗ (U) becomes trivial in some étale neighborhood of the generic

point of W . So after an étale base change we can assume that s−1
∗ (U) = C(W ).

Furthermore replacing W by an étale neighborhood of its generic point we can
assume that R1π∗(Z/m) is constant on W using Proposition 1.5. Let Yk(W ) be the
maximal abelian Galois covering of Xk(W ) = X×W k(W ) of exponent m which splits
completely over sk(W ) : Spec(k(W )) → Xk(W ). As a first step we want to determine
the Galois group of Yk(W ) → Xk(W ). We have an isomorphism

πab
1 (Xk(W )) ∼= πab

1 (X
k(W )

)Gal(k(W )) ⊕Gal(k(W ))ab

induced by s and an isomorphism

Homcont(πab
1 (X

k(W )
), Z/m) = H1(X

k(W )
, Z/m) ,

which makes πab
1 (X

k(W )
) ⊗ Z/m and H1(X

k(W )
, Z/m) dual finite abelian groups.

Base change, Proposition 1.5, and the assumption that R1π∗(Z/m) is a constant
sheaf imply that Gal(k(W )) acts trivially on H1(X

k(W )
, Z/m) and therefore on

πab
1 (X

k(W )
)⊗ Z/m. So we have

πab
1 (Xk(W ))⊗ Z/m ∼= πab

1 (X
k(W )

)⊗ Z/m⊕Gal(k(W ))ab ⊗ Z/m
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and
Gal(Yk(W )/Xk(W )) = πab

1 (X
k(W )

)⊗ Z/m .

Let φ : Y → X be the normalization of X in k(Yk(W )).

Claim. φ : Y → X is an étale morphism and induces over each fibre of π : X → W
the maximal abelian Galois covering of exponent m completely split over the image
of s.

Proof. Let w be a point of W and let Ah resp. Ash the henselization resp. strict
henselization of the local ring at w, F h = Q(Ah). Let YAh be the maximal abelian
Galois covering of XAh = X × Ah of exponent m completely split over the image
of sAh . We will show that YAh is indeed isomorphic to the base change Y × Ah,
because this implies that Y → X is étale over w. Reasoning as above we get

Gal(YAh/XAh) = πab
1 (XAsh)⊗ Z/m

So the equalities

πab
1 (X

k(W )
)⊗ Z/m = πab

1 (XAsh)⊗ Z/m = πab
1 (X

k(w)
)⊗ Z/m ,

which follow from Proposition 1.5, show that Yk(W ) ×k(W ) F h = YAh ×Ah F h and
that YAh ×Ah k(w) is the maximal abelian Galois covering of exponent m of Xw

completely split over the image of sw. The former implies that YAh = Y × Ah as
we wanted to show and the latter shows that the fiber of Y → X over w is what it
should be. �

Finally, for a closed point w ∈ |W | consider the commutative diagram

Yw
//

φw

��

Y

φ
��

Xw
iw

// X

One-dimensional class field theory, Proposition 1.8, shows that (iw ◦ φw)−1
∗ (U) =

C(Yw) because φw : Yw → Xw is the maximal abelian Galois extension of exponent
m completely split over the image of s. The image of⊕

w∈|W |

C(Yw) −→ C(Y )

is dense, Lemma 4.5, and φ−1
∗ (U) ≤ C(Y ) is an open subgroup and contains this

image. So it follows that φ−1
∗ (U) = C(Y ). We set X ′ = Y . �

7.3. Existence.
Let X be a regular arithmetic scheme.

Theorem 7.3 (Weak Existence). Let U ≤ C(X) be an open subgroup such that
C(X)/U has finite exponent. Then there exists a unique open subgroup V ≤ πab

1 (X)
with ρ−1(V ) = U . In particular C(X)/U is finite.

In fact the deep finiteness theorem of the next section will show that the finite
exponent assumption is superfluous. This is why we call the theorem weak existence
theorem. In the proof of the finiteness theorem one uses the weak existence theorem
in an essential way, so that it deserves its own name.

Proof. The uniqueness holds because ρ has dense image according to Proposition 4.10.
In fact if V1, V2 ≤ πab

1 (X) both have preimage U we have the equalities

V1 = ρ(U) + V1 ∩ V2 = V2 ,
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because V1 ∩V2 is an open subgroup of πab
1 (X). For the existence part use Theorem

7.2 to find a nontrivial étale morphism f : X ′′ → X with f−1
∗ (U) = C(X ′′). From

Lemma 1.4 we know that after replacing X ′′ by an étale neighborhood of its generic
point we can factor f into a Galois covering φ : X ′′ → X ′ and an open immersion
i : X ′ → X. It follows from our assumption that φ∗C(X ′′) ⊂ i−1

∗ (U) = U ′. The
isomorphism theorem, Theorem 6.1, gives an isomorphism

ρ : C(X ′)/φ∗C(X ′′)−̃→Gal(X ′′/X ′)ab = πab
1 (X ′)/φ∗π

ab
1 (X ′′) .

so that V ′ = ρ(U ′) + φ∗π
ab
1 (X ′′) ≤ πab

1 (X ′) satisfies ρ−1(V ′) = U ′. Finally, Propo-
sition 7.1 applied to i : X ′ → X produces an open subgroups V ≤ πab

1 (X) with
ρ−1(V ) = U . �

8. Finiteness

Wiesend’s finiteness theorem is one of the strongest and most beautiful results in
higher global class field theory. In some sense it replaces Bloch’s exact sequence in
the more classical approaches to higher global class field theory originating from [3].
The proof we give is a corrected version of Wiesend’s proof in [20] close to [10,
Section 5]. Let X be a regular arithmetic scheme.

Theorem 8.1 (Finiteness). Let U ≤ C(X) be an open subgroup. Then U has finite
index in C(X).

Proof. By the weak existence theorem, Theorem 7.3, it is enough to show that
C(X)/U has finite exponent. But in order to prove the latter it is sufficient to show
that for some étale neighborhood f : X ′ → X of the generic point of X the exponent
of C(X ′)/f−1

∗ (U) is finite. In fact this follows from the short exact sequence

0 −→ C(X ′)/f−1
∗ (U) −→ C(X)/U −→ C(X)/[f∗(C(X ′)) + U ] −→ 0

because exp[C(X)/f∗(C(X ′))+U ] ≤ deg(X ′/X). We will use this reduction several
times in the proof. In particular we can assume that there exists a fibration π : X ⊂
X̄ → W as in Proposition 1.3 with W affine and smooth over Z. Furthermore we
can by induction and using the weak existence theorem, Theorem 7.3, assume that
the pullback of U along some section s : W → X of π is trivial. For the rest of the
proof we let Nx be the order of the image of C(x) → C(X)/U for x ∈ |X|. Nx is
finite for all x ∈ |X|, since for a horizontal curve i : D → X with x ∈ D regular
we have Nx ≤ #C(D)/i−1

∗ (U) < ∞. The latter finiteness holds by one-dimensional
class field theory, Proposition 1.8. By Lemma 4.5 it is enough to show that all the
Nx are bounded. First we prove the theorem under the following assumption:

Assumption. There is a prime l such that for all x ∈ |X| the natural number Nx

is a power of l.

Without restriction we can assume that l ∈ H0(W,O×
W ). Then by Proposition 1.5 we

get that R1π∗Ql/Zl is locally constant. It is easy to see that the li-torsion subsheaf
of R1π∗Ql/Zl is R1π∗Z/li for all i > 0. The next claim assures the existence of an
l-Bloch point.

Claim. There exists an arithmetic scheme W ′, an étale morphism W ′ → W with
dense image and a closed point w0 ∈ |W ′| such that

H1(X
k(W ′), Ql/Zl)Gal(k(W ′)) ∼= H1(X

k(w0)
, Ql/Zl)Gal(k(w0)) .

Proof. Remark that by our assumptions the left hand side is non-canonically con-
tained in the right hand side for arbitrary w0 and W ′. In order to see this observe
that by Proposition 1.5 we have

H1(X
k(w0)

, Ql/Zl) = H1(XAsh , Ql/Zl) = H1(X
k(W ′), Ql/Zl) .
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Here Ah resp. Ash is the henselization resp. strict henselization of the local ring at
some w0 ∈ W ′. Furthermore we have non-canonically Gal(k(w0)) = π1(Spec(Ah)) ⊂
Gal(k(W ′)), so putting this together we get

H1(X
k(w0)

, Ql/Zl)Gal(k(w0)) = H1(XAsh , Ql/Zl)π1(Spec(Ah))

⊃ H1(X
k(W ′), Ql/Zl)Gal(k(W ′)) .

Observing that these groups are finite by Theorem 1.12 we fix w ∈ |W | and let W ′

be a sufficiently fine étale neighborhood of w such that there exists w0 ∈ |W ′| with
k(w0) = k(w) and such that the last inclusion becames an equality. The details can
be found in [7, Proposition 5.7]. �

For the rest of the proof of the theorem we assume without restriction that there
exists an l-Bloch point w0 ∈ W , that is a point as in the last claim. The generic
point of W is denoted by η. We introduce the following notation

H(w, li) = #H1(X
k(w)

, Z/li)Gal(k(w))

for w ∈ W and i ∈ N ∪ {∞}; here Z/l∞ = Ql/Zl. It follows from Katz-Lang
finiteness, Theorem 1.12, that for all points w ∈ W we have H(w, l∞) < ∞.
Claim. There exists a Galois covering W ′ → W such that H(w, l∞) = H(w0, l

∞)
for all points w ∈ |W | with DGW ′/W (w0) ⊂ DGW ′/W (w).

Proof. Choose n > 0 such that H(w0, l
∞) = H(w0, l

n) and let W ′ be the Galois
covering trivializing R1π∗Z/ln+1. It is then sufficient to show that H(w0, l

n) =
H(w, ln) = H(w, ln+1) for a point w ∈ |W | with DGW ′/W (w0) ⊂ DGW ′/W (w), since
if for a finite l-primary abelian group exponent ln resp. ln+1 elements coincide the
group has exponent ln itself. So fix a point w with DGW ′/W (w0) ⊂ DGW ′/W (w)
and observe that this implies H(w, li) ≤ H(w0, l

i) for i ≤ n + 1. Generally we have
for every point w ∈ W and i ∈ N ∪ {∞} the inequality H(η, li) ≤ H(w, li). On the
other hand the assumption that w0 is an l-Bloch point means H(w0, l

i) = H(η, li).
If we put everything together we see H(w0, l

n) = H(w, ln) = H(w, ln+1). �

Set X ′ = X ×W W ′ and x0 = s(w0). It is easily seen that X ′ → X is a Galois
covering with Galois group Gal(W ′/W ).

Claim. The numbers Nx are bounded above if x ∈ |X| varies over all points with
DGX′/X(x) = DGX′/X(x0).

Proof. Using one-dimensional class field theory, Proposition 1.8, it follows that Nx ≤
#C(Xπ(x))/Uπ(x) ≤ H(π(x), l∞), because the pullback of U ≤ C(X) along s : W →
X is trivial. Now if DGX′/X(x) = DGX′/X(x0) we have

DGW ′/W (w0) = DGX′/X(x0) = DGX′/X(x) ⊂ DGW ′/W (π(x)) ,

so that by the last claim H(π(x), l∞) = H(w0, l
∞). This means the Nx in question

are bounded by H(w0, l
∞). �

Let B be a bound for the numbers Nx with DGX′/X(x) = DGX′/X(x0) and
d = deg(X ′/X).

Claim. Nx ≤ B d for all x ∈ |X|.

Proof. Let x ∈ |X|. We will show Nx ≤ B d. Let C be a curve on X which contains
x0 and x as regular points and such that C ′ = C ×X X ′ is irreducible. Such a curve
exists according to the Bloch approximation method, Proposition 2.2. Set

A = {y ∈ |C| | y regular,DGC′/C(y) = DGC′/C(x0)} .
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Chebotarev density, Proposition 1.11, shows that D(A) ≥ 1/d. Set

A′ = {y ∈ |C| | y regular, Ny ≤ B} .

By the last claim A ⊂ A′ and consequently D(A′) ≥ D(A) ≥ 1/d. One-dimensional
class field theory, Theorem 1.8, gives a canonical abelian Galois covering CU → C̃
with Galois group G = C(X)/U . Then

A′ = {y ∈ |C| | y regular, F roby ∈BG} ,

where Froby is the Frobenius in G and BG is the B-torsion subgroup of G. Assume
for the moment that Nx > B d; this will lead to a contradiction. It would imply
#G/BG > d. But then the Chebotarev density theorem applied to CU → C̃ would
give D(A′) < 1/d, which is a contradiction to D(A′) ≥ 1/d. �

General case. The finiteness theorem holds without the assumption that the
Nx are powers of some prime.

Remember that we have reduced the theorem to the case of a fibration π : X → W
and a section s : W → X such that s−1

∗ (U) = C(W ). For a prime l let Ul ≤ C(X) be
the smallest subgroup containing U such that C(X)/Ul is l-primary. By the special
case treated above C(X)/Ul is finite. As C(X)/U is torsion we have

C(X)/U = ⊕lC(X)/Ul ,

so that is suffices to show that for almost all primes l the group C(X)/Ul is trivial.
But Theorem 7.3 shows that C(X)/Ul is isomorphic to a quotient of ker[πab

1 (Xk(W )) →
πab

1 (k(W ))] and this group is finite according to Proposition 1.12. This finishes the
proof of the finiteness theorem. �

Corollary 8.2. The Chow group of zero cycles CH0(X) is finite.

Proof. There exists a natural surjective homomorphism C(X) → CH0(X) with open
kernel. �

Remark 8.3. One can develop an analogous class field theory of smooth varietes
over finite fields, see [10], and can prove the finiteness of the tame class group in
this context by very similar methods. Together with the above finiteness theorem
this reproves a result of Bloch and Kato-Saito which says that CH0(X) is finitely
generated if X is a scheme of finite type over Z.

9. Fundamental theorems

The following theorems comprise the essential features of higher class field theory
of arithmetic schemes.

Theorem 9.1. For a regular arithmetic scheme X the sequence

0 −→ C(X)0 −→ C(X)
ρ−→ πab

1 (X) −→ 0

is a topological short exact sequence. Here C(X)0 is the connected component in
C(X).

Theorem 9.2. If X is an arithmetic scheme the connected component of the class
group C(X)0 has the following characterizations:

(i) It is the intersection of all open subgroups of C(X).
(ii) It is the closure of the image of I(X)0 → C(X).

If X is regular we have:
(iii) It is the group of universal norms in C(X).

If X is regular and furthermore all vertical curves on X are proper:
(iv) It is the set of divisible elements of C(X).
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(v) It is the maximal divisible subgroup of C(X).

Proof of Theorem 9.1. The weak existence theorem, Theorem 7.3, together with the
finiteness theorem, Theorem 8.1, show that every open subgroup of C(X) is the
preimage of an open subgroup in πab

1 (X). So the exactness at C(X) is clear, be-
cause the intersection of all open subgroups of C(X) is C(X)0 by Proposition 4.6.
Moreover the global splitting result, Proposition 3.1, shows that ρ has dense image.
Now in order to finish the proof we show that C(X)/C(X)0 is compact.

Claim. If X maps smoothly and surjectively onto some open subscheme U ⊂
Spec(OK) for some number field K and there exists a section s : U → X then
C(X)/C(X)0 is compact.

We reduce the general case to the one treated in the claim. In fact there exists X ′′

satisfying the assumption of the claim and an étale covering φ : X ′′ → X ′ where
i : X ′ → X is some open subscheme of X. Let G be defined by the exact sequence

C(X ′′)/C(X ′′)0 −→ C(X ′)/C(X ′)0 −→ G −→ 0 .

As the image of the first arrow in the sequence is open Theorem 8.1 implies that
G is finite. As the claim says that C(X ′′)/C(X ′′)0 is compact this implis that
C(X ′)/C(X ′)0 is compact too. From Lemma 4.5 we known that the image of
C(X ′)/C(X ′)0 → C(X)/C(X)0 is dense and so C(X)/C(X)0 is compact.

Proof of the claim. We are in a situation where we can apply Katz-Lang finiteness,
Proposition 1.12. So consider the commutative diagram with exact rows

0 // ker1
//

��

C(X)/C(X)0 //

α
��

C(U)/C(U)0

β
��

// 0

0 // ker2
// πab

1 (X) // πab
1 (U) // 0

Katz-Lang says that ker2 is finite. The injectivity of α was shown above so that
ker1 is finite too. Finally β is an isomorhism by Proposition 1.8, so that C(U)/C(U)0

is compact. The section s : U → X induces an isomorphism C(X)/C(X)0 ∼=
ker1 ⊕ C(U)/C(U)0 which completes the proof of the claim. �

�

Proof of Theorem 9.2. (i) and (ii) are just Proposition 4.6. (iii) follows immediately
from Theorem 9.1. By Theorem 5.2 we know that C(X)0 is divisible if all vertical
curves on X are proper, so for (iv) and (v) we have to show that an element α ∈
C(X)\C(X)0 cannot be divisible. In fact the image of α in πab

1 (X) is non-zero by
Theorem 9.1 and a non-zero element of a pro-finite group is not divisible. �

10. Comparison with Kato-Saito class field theory

We shortly recall Kato-Saito class field theory of arithmetic schemes and explain
why Wiesend’s class field theory is stronger, i.e. implies the main results of Kato and
Saito. First of all we have to translate Wiesend’s theory from the complete world to
the henselian world. For an arithmetic scheme X we define Ch(X) in the same way
as C(X) but replacing the complete field Kv by the henselian local field Kh

v , which
is defined as the algebraic closure of K in Kv if v is archimedean.

Lemma 10.1. The natural map φ : Ch(X) → C(X) induces a bijection between the
open subgroups of C(X) and the open subgroups of Ch(X).
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Proof. Since φ is continuous and has dense image the natural map

{open subgroups of C(X)} −→ {open subgroups of Ch(X)}

is injective. So we have to show it is surjective. Let Uh ≤ Ch(X) be an open
subgroup. For every curve C on X and every v ∈ Cna

∞ choose nv ∈ N such that the
image of 1 + πnv

v Ok(C)h
v

in Ch(X) is contained in Uh. Here πv is a prime element.
Setting

U = φ(Uh) + im(I(X)0) +
∑

v

im(1 + πnv
v Ok(C)v

)

we obtain φ−1(U) = Uh. �

Let X̄ be an arithmetic scheme of dimension d which is proper over Z and let
X ⊂ X̄ be a dense open subscheme which is smooth over Z. For simplicity we will
assume that k(X) contains a totally imaginary number field.
For a coherent ideal sheaf I an X̄ such that I|X = OX Kato and Saito define their
cohomological class group as

CI(X̄) = Hd
Nis(X̄,KM

d (OX̄ , I)) .

Here KM
d (OX , I) is the relative Milnor K-sheaf in the Nisnevich topology, defined

as
KM

d (OX , I) = ker[KM
d (OX) → KM

d (OX/I)] .

For general properties of the Milnor K-sheaf see [9]. The main result of Kato and
Saito in [7] and [16] reads now:

Theorem 10.2. For all I as above the group CI(X̄) is finite and there is a natural
reciprocity isomorphism of topological groups

KS(X) = lim
←−
I

CI(X̄)−̃→πab
1 (X) .

Proof. It follows from [7, Proposition 2.9] that there is a natural continuous sur-
jective homomorphism Ch(X) → CI(X̄) (the Kato-Saito class group CI(X̄) has
the discrete topology). The finiteness theorem, Theorem 8.1, and Lemma 10.1 im-
ply the finiteness of CI(X̄) and therefore the pro-finiteness of KS(X). This shows
that the continuous homomorphism KS(X) → πab

1 (X) defined by Kato and Saito is
surjective, since we already know that the image is dense. The diagram

Ch(X) //

ρ $$IIIIIIIII
KS(X)

zzttttttttt

πab
1 (X)

commutes. Finally, from this diagram, Lemma 10.1 and Theorem 9.1 it follows
that the open subgroups of KS(X) are in bijective correspondence with the open
subgroups of πab

1 (X), so that the injectivity of KS(X) → πab
1 (X) results. �
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