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Abstract

The purpose of this paper is twofold. First, we use the motivic Landweber
exact functor theorem to deduce that the Bott inverted infinite projective space
is homotopy algebraic K-theory. The argument is considerably shorther than
any other known proofs and serves well as an illustration of the effectiveness of
Landweber exactness. Second, we dispense with the regularity assumption on the
base scheme which is often implicitly required in the notion of oriented motivic
ring spectra. The latter allows us to verify the motivic Landweber exact functor
theorem and the universal property of the algebraic cobordism spectrum for every
noetherian base scheme of finite Krull dimension.

Dedicated to Spencer J. Bloch on his 60th birthday.
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1 Landweber exactness and K-theory

It has been known since time immemorial that every oriented ring spectrum acquires

a formal group law. Quillen [8] showed that the formal group law associated to the

complex cobordism spectrum MU is isomorphic to Lazard’s universal formal group law;

in particular, the Lazard ring that corepresents formal group laws is isomorphic to the

complex cobordism ring MU∗. This makes an important link between formal group laws

and the algebraic aspects of stable homotopy theory. Let KU denote the periodic complex

K-theory spectrum. Bott periodicity shows the coefficient ring KU∗ ∼= Z[β, β−1]. Under

the isomorphism KU2
∼= K̃U

0
(S2), the Bott element β maps to the difference 1− ξ∞|CP1

between the trivial line bundle and the restriction of the tautological line bundle ξ∞ over

CP∞ to CP1 ∼= S2. Thus the class β−1(1− ξ∞) in K̃U
2
(CP∞) defines an orientation on

KU. It is straightforward to show that the corresponding degree −2 multiplicative formal

group law is FKU(x, y) = x+y−βxy, and the ring map MU∗ → KU∗ classifying FKU sends

v0 to p and v1 to βp−1 for every prime number p and invariant prime ideal (p, v0, v1, . . . )

of the complex cobordism ring. This map turns Z[β, β−1] into a Landweber exact graded

MU∗-algebra because the multiplication by p map on the integral Laurent polynomial

ring in the Bott element is injective with cokernel Z/p[β, β−1], and the multiplication by

βp−1 map on the latter is clearly an isomorphism. Having dealt with these well known

topological preliminaries, we are now ready to turn to motivic homotopy theory over a

noetherian base scheme S of finite Krull dimension.

Applying the considerations above to the motivic Landweber exact functor theorem

announced in [6, Theorem 8.6] and extended to nonregular base schemes in Theorem

2.12, imply there exists a Tate object LK in the motivic stable homotopy category SH(S)

and an isomorphism of motivic homology theories

LK∗,∗(−) ∼= MGL∗,∗(−)⊗MU∗ Z[β, β−1].

Here MGL denotes the algebraic cobordism spectrum, and the category SH(S)T of Tate

objects or cellular spectra refers to the smallest localizing triangulated subcategory of

SH(S) containing all mixed motivic spheres [1], [6]. In addition, there exists a quasi-

multiplication LK∧ LK→ LK, turning LK into a commutative monoid modulo phantom

maps, which represents the ring structure on the Landweber exact homology theory

LK∗,∗(−). Recall from [11] the motivic spectrum KGL representing homotopy algebraic

K-theory on SH(S). We show:
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Proposition 1.1: There is an isomorphism in SH(S) between LK and KGL.

Proof. It suffices to prove the result when S = Spec(Z) because LK and KGL pull back to

general base schemes; the former by [6, Proposition 8.4] and the latter by construction.

The motivic Bott element turns KGL into an oriented motivic ring spectrum with

multiplicative formal group law [9, Example 2.2]. It follows that there is a canonical

transformation LK∗∗(−) → KGL∗∗(−) of MGL∗∗(−)-module homology theories. Since

SH(Z)T is a Brown category [6, Lemma 8.2], we conclude there is a map Φ: LK→ KGL

of MGL-module spectra representing the transformation.

Now since LK and KGL are Tate objects, the former by construction and the latter

by [1], Φ is an isomorphism provided the naturally induced map between motivic stable

homotopy groups

π∗,∗Φ: π∗,∗(LK // KGL) (1)

is an isomorphism [1, Corollary 7.2]. The map in (1) is a retract of

MGL∗,∗Φ: MGL∗,∗(LK // KGL). (2)

To wit, there is a commutative diagram

LK //

Φ
��

MGL ∧ LK //

MGL∧Φ
��

LK

Φ
��

KGL // MGL ∧ KGL // KGL

where the horizontal compositions are the respective identity maps. Thus it suffices to

prove the map in (2) is an isomorphism.

By [6, Remark 9.2] there is an isomorphism

MGL∗∗LK ∼= MGL∗∗ ⊗MU∗ MU∗KU. (3)

The latter identifies with the target of MGL∗,∗Φ via the isomorphisms

MGL∗∗KGL ∼= colimn MGL∗+2n,∗+n(Z× BGL)

∼= MGL∗∗ ⊗MU∗ colimn MU∗+2n(Z× BU)

∼= MGL∗∗ ⊗MU∗ MU∗KU.

(4)
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In the third isomorphism we use compatibility of the structure maps of KGL and KU,

and the computation MGL∗∗(BGL) ∼= MGL∗∗ ⊗MU∗ MU∗BU.

It remains to remark that MGL∗∗Φ is the identity with respect to the isomorphisms

in (3) and (4).

Remark 1.2: Proposition 1.1 reproves the general form of the Conner-Floyd theorem

for homotopy algebraic K-theory [9]. We would like to point out that this type of result is

more subtle than in topology: Recall that if E is a classical homotopy commutative ring

spectrum which is complex orientable and the resulting formal group law is Landweber

exact, then E∗(−) = MU∗(−)⊗MU∗ E∗. Now suppose S has a complex point and let E be

the image of HQ under the right adjoint of the realization functor. It is easy to see that

E is an orientable motivic ring spectrum with additive formal group law and E∗ ∼= LQ∗,

at least for fields. However, since Ep,q = Ep,q′ for all p, q, q′ ∈ Z, we get that E 6∼= LQ.

In [9] it is shown that the Bott inverted infinite projective space is the universal

multiplicative oriented homology theory. Thus there exists an isomorphism between the

representing spectra LK and Σ∞P∞
+ [β−1]. By [6, Remark 9.8(ii)] there is a unique such

isomorphism, and it respects the monoidal structure. This allows us to conclude there is

an isomorphism in SH(S) between Σ∞P∞
+ [β−1] and KGL. An alternate computational

proof of this isomorphism was given in [9] and another proof was announced in [2]. In

the event of a complex point on S, the topological realization functor maps LK∗,∗(−)

to KU∗(−) and likewise for KGL. For fun, we note that running the exact same tape

in stable homotopy theory yields Snaith’s isomorphism Σ∞CP∞
+ [β−1] ∼= KU. In the

topological setting, the argument above could have been given over thirty year ago.

In the proof of Proposition 1.1 we used the universal property of the homology theory

associated to MGL. For the proof this is only needed over Z. In the following sections

we shall justify the claim that this holds over general base schemes.

Theorem 1.3: Suppose S is a noetherian scheme of finite Krull dimension and E a

commutative ring spectrum in SH(S). Then there is a bijection between the sets of ring

spectra maps MGL→ E in SH(S) and the orientations on E.

The proof also shows there is an analogous result for homology theories. For fields,

this result is known thanks to the works of Vezzosi [10] and more recently of Panin-

Pimenov-Röndigs [7]. The generalization of their results to regular base schemes is

straightforward using, for example, the results in [6].
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In order to prove Theorem 1.3 we compute the E-cohomology of MGL for E an oriented

motivic ring spectrum; in turn, this makes use of the Thom isomorphism for universal

vector bundles over Grassmannians. Usually the base scheme is tactically assumed to

be regular for the construction of Chern classes of vector bundles. However, since the

constituent spaces comprising the spectrum MGL are defined over the integers Z one

gets Chern classes and the Thom isomorphism by pulling back classifying maps of line

bundles. In any event, one purpose of what follows is to dispense with the regularity

assumption for the construction of Chern classes. For the remaining part of the proof we

note that the streamlined presentation in [7] following the route layed out in algebraic

topology carries over verbatim.

2 Chern classes and oriented motivic ring spectra

The basic input required for the theory of Chern classes is that of the first Chern class

of a line bundle. If the base scheme S is regular, there is an isomorphism

Pic(X) ∼= HomH(S)(X,P∞)

between the Picard group of X and maps from X to the infinite projective space P∞ in

the unstable motivic homotopy category H(S) [5, Proposition 4.3.8]. If S is nonregular,

there is no such isomorphism because the functor Pic(−) is not A1-invariant. The first

goal of this section is to prove that the most naive guess as to what happens in full

generality holds true, namely:

P∞ represents the A1-localization of Pic.

For τ some topology on the category of smooth S-schemes Sm/S, let sPre(Sm/S)τ

denote any one of the standard model structure on simplicial presheaves with τ -local

weak equivalences and likewise for sPre(Sm/S)τ,A1
and τ −A1-local weak equivalences.

The topologies of interest in what follows are the Zariski and Nisnevich topologies,

denoted by Zar and Nis respectively. Let H(S) denote the unstable motivic homotopy

category of S associated to the model structure sPre(Sm/S)Nis,A1
. Throughout we

will use the notation Gm for the multiplicative group scheme over S, Pic(X) for the

Picard groupoid of a scheme X, and νPic for the simplicial presheaf obtained from (a

strictification of) Pic by applying the nerve functor.
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Proposition 2.1: (i) There exists a commutative diagram

cX : Pic(X) // HomH(S)(X,P∞)

HomSet(Sm/S)op (X,P∞)

f

iiSSSSSSSSSSSSSS g

44jjjjjjjjjjjjjjjj

which is natural in X ∈ Sm/S, where f is given by pulling back the tautological line

bundle on P∞ and g is the canonical map. The transformation c is an isomorphism

when S is regular.

(ii) There is a natural weak equivalence

P∞ ' νPic

in sPre(Sm/S)Zar,A1
.

To prepare for the proof of Proposition 2.1, suppose G ∈ sPre(Sm/S) is a group

object acting on a simplicial presheaf X. Let X/hG denote the associated homotopy

quotient. It is defined as the total object (homotopy colimit) of the simplicial object:

X X × Goo
oo

X × G2oo
oo

oo · · ·:oo

oo

Pushing this out to any of the localizations yields local homotopy quotients since the

localization is a left adjoint functor, and hence preserves (homotopy) colimits. If X → Y

is a G-equivariant map with Y having trivial G-action, there is a naturally induced map

X/hG→ Y in the corresponding homotopy category.

Lemma 2.2: The naturally induced map

(An+1 r {0})/hGm
// Pn

is a Zariski local weak equivalence.

Proof. Let π : An+1 r {0} → Pn be the canonical map, fix 0 ≤ i ≤ n and consider

the standard affine open Ui := {[x0 : . . . : xn] |xi 6= 0} ⊆ Pn and its pullback along π,

i.e. Vi := π−1(Ui) ⊆ An+1r{0}. Working Zariski locally, it suffices to see that π induces a

weak equivalence Vi/
hGm → Ui. There is an Gm-equivariant isomorphism Vi

∼= Gm×An

with Gm acting trivially on An and by multiplication on Gm. It remains to remark that

(Gm×An)/hGm
∼= An because the simplicial diagram defining (Gm×An)/hGm admits

an evident retraction.
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By lemma 2.2 there is a weak equivalence (A∞r{0})/hGm → P∞ in sPre(Sm/S)Zar.

Let BGm denote the quotient pt/hGm in any of the localizations of sPre(Sm/S).

Lemma 2.3: The map

(A∞ r {0})/hGm
// BGm

induced by A∞ r {0} → pt is a weak equivalence in sPre(Sm/S)A
1
.

Proof. The map A∞ r {0} → pt is an equivalence in sPre(Sm/S)A
1
: In effect, the

inclusions An r {0} ↪→ An+1 r {0} are homotopic to a constant map by the elementary

A1-homotopy

(t, (x1, . . . , xn)) � // ((1− t)x1, . . . , (1− t)xn, t).

A finite generation consideration finishes the proof. See [5, Proposition 4.2.3] for a

generalization.

Corollary 2.4: There is a natural weak equivalence

BGm ' P∞

in sPre(Sm/S)Zar,A1
.

Proof. Combine the equivalences (A∞r{0})/hGm → P∞ and (A∞r{0})/hGm → BGm

from Lemmas 2.2 and 2.3.

Lemma 2.5: There is a natural weak equivalence

BGm ' νPic

in sPre(Sm/S)Zar.

Proof. Denote by Pic′ ⊂ Pic the subpresheaf of groupoids consisting objectwise of the

single object formed by the trivial line bundle. Then νPic′ provides a model for BGm in

sPre(Sm/S). By considering stalks it follows that νPic′ → νPic is a Zariski local weak

equivalence.

Moreover, one easily sees that

νPic satisfies Zariski descent. (5)

Indeed, Zariski descent for νPic holds in any topology which is coarser than the flat one.

In general, νPic is not A1-local.
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Proof (of Proposition 2.1). Combining Corollary 2.4 and Lemma 2.5 yields (ii). We

define the natural transformation c in part (i) using the composition

Pic(X) = π0νPic(X)

(5)∼= HomHo(sPre(Sm/S)Zar)(X, BGm)

→ HomH(S)(X, BGm)

∼= HomH(S)(X,P∞).

If S is regular, then νPic is A1-local, and hence the composition is an isomorphism.

The triangle in (i) commutes since the map P∞ → BGm used to construct the

transformation c classifies the tautological line bundle on P∞.

Let Th(T (1)) denote the Thom space of the tautological vector bundle T (1) ≡
OP∞(−1) with fiber A1 over the base point S ↪→ P∞. We recall the notion of oriented

motivic ring spectra formulated in [7], cf. [3], [4] and [10]. The unit of a commutative,

i.e. a commutative monoid in SH(S), P1-ring spectrum E defines 1 ∈ E0,0(S+). Applying

the P1-suspension isomorphism to 1 yields the element ΣP1(1) ∈ E2,1(P1,∞). The

canonical covering of P1 defines motivic weak equivalences

P1 ∼ // P1/A1 T ≡ A1/A1 r {0}∼oo

of pointed motivic spaces inducing isomorphisms E∗∗(P1,∞) ← E∗∗(A1/A1 r {0}) →
E∗∗(T). Let ΣT(1) be the image of ΣP1(1) in E2,1(T).

Definition 2.6: Let E be a commutative P1-ring spectrum.

(i) A Chern orientation on E is a class ch ∈ E2,1(P∞) such that ch|P1 = −ΣP1(1).

(ii) A Thom orientation on E is a class th ∈ E2,1(Th(T (1)) such that its restriction to

the Thom space of the fiber over the base point coincides with ΣT(1) ∈ E2,1(T).

(iii) An orientation σ on E is either a Chern orientation or a Thom orientation. A

Chern orientation ch coincides with a Thom orientation th if ch = z∗(th).

Example 2.7: Let u1 : Σ∞
P1(Th(T (1)))(−1)→ MGL be the canonical map of P1-spectra.

Set thMGL ≡ u1 ∈ MGL2,1(Th(T (1))). Since thMGL|Th(1) = ΣP1(1) ∈ MGL2,1(Th(1)), the

class thMGL is an orientation on MGL.
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Using Proposition 2.1 we are now ready to define first Chern classes.

Definition 2.8: Suppose (E, σ) is an oriented motivic ring spectrum in SH(S), X ∈
Sm/S and L a line bundle on X. Then the first Chern class of L for the given orientation

is defined as cL ≡ cX(L)∗(σ) ∈ E2,1(X).

It is clear that this definition recovers the previously considered construction in case

S is regular.

The following key result and its proof due to Morel [4] are included for completeness.

Lemma 2.9: For every n ≥ 1 there is a canonical weak equivalence Pn/Pn−1 ∼= (P1)∧n

such that the naturally induced diagram

Pn

��

∆∧n
// (Pn)∧n

Pn/Pn−1
∼= // (P1)∧n

OO

commutes in H(S).

Proof. For 0 ≤ i ≤ n, let Ui be the open affine subscheme of Pn of points [x0, . . . , xn]

such that xi 6= 0, set Ωi ≡ (Pn)i−1 × Ui × (Pn)n−i and Ω ≡ ∪1≤i≤nΩi ⊆ (Pn)n. The

projection (Pn)n → (Pn)n/Ω induces a motivic weak equivalence (Pn)∧n → (Pn/U1) ∧
· · · ∧ (Pn/Un). It allows to replace (Pn)∧n by the weakly equivalent smash product of

the motivic spaces Pn/Ui for 1 ≤ i ≤ n. Note that Pn → (Pn/U1) ∧ · · · ∧ (Pn/Un)

factors through Pn/ ∪1≤i≤n Ui and the inclusion Pn−1 ⊆ ∪1≤i≤nUi is the zero section of

the canonical line bundle over Pn−1. Hence the latter map is a motivic weak equivalence

and Pn → Pn/∪1≤i≤n Ui induces a motivic weak equivalence Pn/Pn−1 → Pn/∪1≤i≤n Ui.

The inclusion U0 ⊆ Pn induces an isomorphism of pointed motivic spaces An/Anr{0} ∼=
Pn/∪1≤i≤nUi. Since there are canonical isomorphisms An/An r{0} ∼= (A1/A1 r{0})∧n

and A1/A1 r {0} ∼= P1/A1 there is an induced map (P1/A1)∧n → (Pn/U1) ∧ · · · ∧
(Pn/Un) weakly equivalent to (P1)∧n → (Pn/U1) ∧ · · · ∧ (Pn/Un).

Next we state and prove the projective bundle theorem for oriented motivic ring

spectra.

Theorem 2.10: Suppose E is an oriented motivic ring spectrum, ξ : Y → X a rank

n + 1 vector bundle over a smooth S-scheme X, P(ξ) : P(Y ) → X its projectivization

and cξ ∈ E2,1(P(ξ)) the first Chern class of the tautological line bundle.
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(i) Then E∗,∗(P(ξ)) is a free E∗,∗(X)-module on generators 1 = c0
ξ , cξ, . . . , c

n
ξ .

(ii) If ξ is trivial, then there is an isomorphism of E∗,∗(X)-algebras

E∗,∗(P(ξ)) ∼= E∗,∗(X)[cξ]/(c
n+1
ξ ).

Proof. The claimed isomorphism is given explicitly by⊕n
i=0 E∗−2i,∗−i(X)

∼= // E∗,∗(P(ξ));

(x0, . . . , xn) � // Σn
i=0(P(ξ))∗(xi)c

i
ξ.

Combining the choice of a trivialization of the vector bundle ξ with a Mayer-Vietoris

induction argument shows that (i) follows from (ii). Part (ii) is proved by induction on

the rank of ξ.

Assume the map is an isomorphism for the trivial vector bundle Y → X of rank

n, and form Y ⊕ OX → X of rank n + 1. Next form the cofiber sequence P(Y ) →
P(Y ⊕ OX) → (TX ≡ A1

X/A1
X r {0})∧n ∧ X+ and consider the induced diagram in

E-cohomology:

. . . // E∗−2n,∗−n(X+) //

��

⊕n
i=0 E∗−2i,∗−i(X+) //

��

⊕n−1
i=0 E∗−2i,∗−i(X+) //

��

. . .

. . . // E∗,∗((TX)∧n ∧X+) // E∗,∗(P(Y ⊕OX)) // E∗,∗(P(Y )) // . . .

The right hand square commutes using functoriality of first Chern classes and the

fact that the restriction map is a ring map. The commutativity of the left hand square

is exactly the explicit computation of the Gysin map and is where Lemma 2.9 enters

the proof.

The left hand map is an isomorphism since smashing with TX is an isomorphism in

SH(S). Now use the induction hypothesis and apply the 5-lemma which proves part (i)

in this special case. The relation cn+1
ξ = 0 follows using exactness of the lower row of

the diagram.

Theorem 2.10 allows to define the higher Chern class ciξ ∈ E2i,i(X) of ξ as the unique

solution of the equation

cn
ξ = c1ξc

n−1
ξ − c2ξc

n−2
ξ + · · ·+ (−1)n−1cnξ.
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With the theory of Chern classes in hand, one constructs a theory of Thom classes

by the usual script. In particular, as for regular base schemes one verifies the Thom

isomorphism theorem:

Theorem 2.11: If ξ : Y → X is a rank n vector bundle with zero section z : X → Y over

a smooth S-scheme X, cup-product with the Thom class of ξ induces an isomorphism

(− ∪ thξ) ◦ ξ∗ : E∗,∗(X)
∼= // E∗+2n,∗+n(Y/(Y r z(X))).

With these preparations dealt with the E-cohomology computation of Grassmannians

in [6] extends to nonregular base schemes. The other parts involved in the proof of the

motivic Landweber exact functor theorem given in [6] do not require a regular base

scheme. In conclusion, the following holds (for additional prerequisites we refer to [6]):

Theorem 2.12: Let S be a noetherian base scheme of finite Krull dimension and M∗

an Adams graded Landweber exact MU∗-module. Then there exists a motivic spectrum

E in SH(S)T and a natural isomorphism

E∗∗(−) ∼= MGL∗∗(−)⊗MU∗ M∗

of homology theories on SH(S).

Moreover, based on the results above, the following computations stated for fields in

[7] hold for S. Let Gr denote the infinite Grassmannian over S.

Theorem 2.13: Suppose E is an oriented motivic ring spectrum.

(i) The canonical map

E∗,∗(MGL) // lim←−E∗+2n,∗+n(Th(T (n))) = E∗,∗[[c1, c2, c3, . . . ]] (6)

is an isomorphism. (Here ci is the ith Chern class.)

(ii) The canonical map

E∗,∗(MGL ∧MGL) // lim←−E∗+2n,∗+n(Th(T (n)) ∧ Th(T (n))) = E∗,∗[[c′1, c
′′
1, c

′
2, c

′′
2, . . . ]]

(7)

is an isomorphism. Here c′i is the ith Chern class obtained from projection on the

first factor of Gr×Gr, and likewise c′′i is obtained from the second factor.
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3 The universal property of MGL

In this section we observe, with no claims of originality other than for the cohomology

computations in Theorem 2.13 and the Thom isomorphism Theorem 2.11, that the proof

of the universal property of MGL given by Panin-Pimenov-Röndigs in [7] goes through

for noetherian base schemes of finite Krull dimension.

Theorem 3.1: Suppose E is a commutative P1-ring spectrum. Then the assignment

ϕ 7→ ϕ(thMGL) ∈ E2,1(Th(T (1))) identifies the set of monoid maps ϕ : MGL → E in

SH(S) with the set of orientations on E. Its inverse sends th ∈ E2,1(Th(T (1))) to

the unique map ϕ ∈ E0,0(MGL) = HomSH(S)(MGL, E) such that u∗i (ϕ) = th(T (i)) in

E2i,i(Th(T (i))). Here, ui : Σ∞
P1(Th(T (i)))(−i)→ MGL is the canonical map.

Proof. Note that th := ϕ(thMGL) is an orientation on E since

ϕ(th)|Th(1) = ϕ(th|Th(1)) = ϕ(ΣP1(1)) = ΣP1(ϕ(1)) = ΣP1(1).

Conversely, note that thE gives rise to a unique map ϕ : MGL→ E in SH(S) as desired:

In effect, the elements th(T (i)) comprise an element in the target of the isomorphism

E∗,∗(MGL)→ lim←−E∗+2i,∗+i(Th(T (i))) in (6). This shows uniqueness of ϕ ∈ E0,0(MGL).

To check that ϕ respects the multiplicative structure, form the diagram:

Σ∞
P1(Th(T (i)))(−i) ∧ Σ∞

P1(Th(T (j)))(−j)
Σ∞

P1 (µi,j)(−i−j)
//

ui∧uj

��

Σ∞
P1(Th(T (i + j)))(−i− j)

ui+j

��

MGL ∧MGL
µMGL //

ϕ∧ϕ

��

MGL

ϕ

��

E ∧ E
µE // E

The upper square homotopy commutes since

ϕ ◦ ui+j ◦ Σ∞
P1(µi,j)(−i− j) = µ∗i,j(th(T (i + j))) = th(µ∗i,j(T (i + j))) = th(T (i)× T (j))

= th(T (i))× th(T (j)) = µE(th(T (i)) ∧ th(T (j)))

= µE ◦ ((ϕ ◦ ui) ∧ (ϕ ◦ uj)).

Combining (7) with the equality ϕ ◦ ui+i ◦ Σ∞
P1(µi,i)(−2i) = µE ◦ ((ϕ ◦ ui) ∧ (ϕ ◦ ui))

shows that µE ◦ (ϕ ∧ ϕ) = ϕ ◦ µMGL in SH(S).
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It remains to show the maps constructed above are inverses of each other. To begin

with, if th ∈ E2,1(Th(O(−1))), then ϕ ◦ ui = th(Ti) for all i and the induced orientation

th′ := ϕ(thMGL) coincides with th since th′ = ϕ(thMGL) = ϕ(u1) = ϕ◦u1 = th(T (1)) = th.

On the other hand, the monoid map ϕ′ obtained from the orientation th := ϕ(thMGL) on

E satisfies u∗i (ϕ
′) = th(T (i)) for every i ≥ 0. To check that ϕ′ = ϕ, the isomorphism (6)

shows that it suffices to prove that u∗i (ϕ
′) = u∗i (ϕ) for all i ≥ 0. Now since u∗i (ϕ

′) = th(Ti)

it remains to prove that u∗i (ϕ) = th(T (i)). In turn this follows if ui = thMGL(T (i)) in

MGL2i,i(Th(T (i))), since then u∗i (ϕ) = ϕ ◦ ui = ϕ(ui) = ϕ(thMGL(T (i))) = th(T (i)).

We note that the proof of the equality ui = thMGL(T (i)) given in [7] carries over to our

setting on account of the Thom isomorphism Theorem 2.11.
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