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RELATIONS BETWEEN SLICES AND QUOTIENTS OF THE

ALGEBRAIC COBORDISM SPECTRUM

MARKUS SPITZWECK

Abstract. We prove a relative statement about the slices of the algebraic
cobordism spectrum. If the map from MGL to a certain quotient of MGL

introduced by Hopkins and Morel is the map to the zero-slice then a relative
version of Voevodsky’s conjecture on the slices of MGL holds true. We outline
the picture for K-theory and rational slices.
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1. Introduction

In this paper we discuss certain aspects of the slice filtration of the algebraic cobor-
dism spectrum MGL. The slice filtration was introduced in [20]. It is a filtration
on any motivic spectrum which can be thought of as an analogue of the Postnikov
tower of a topological spectrum. We discuss the relation between the slice conjec-
ture on MGL [20, Conjecture (5)] and quotients of MGL. The conjecture describes
the slices in terms of the motivic Eilenberg MacLane spectrum and the topological
coefficients MU∗. The quotients are defined using the classifying map L∗ → MGL∗∗

of the formal group law induced by the canonical orientation of MGL and canonical
generators xi of L∗. Here L∗ denotes the graded Lazard ring. In topology it is
well known that the quotient MU/(x1, x2, . . .)MU is isomorphic to the Eilenberg
MacLane spectrum on the integers. This follows essentially from Quillen’s theorem
L∗

∼= MU∗ and the particular structure of L∗. In motivic homotopy theory no direct
analog of this argument seems to work. In particular, the filtration on MGL ob-
tained by dividing out the xi (more precisely ideals of L∗ consisting of elements of
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degree greater than a given bound) is not directly reflected on the homotopy groups
of MGL, instead this filtration is conjecturally the slice filtration of MGL. We show
that if this holds on the zeroth level then it holds in all levels. The statement is
of a purely homotopy theoretic nature and could be formulated in any context of
highly structured ring spectra.

Over perfect fields the zero slice of the sphere spectrum is known [19], [9]. An
effectivity result for MGL implies that MGL has the same zero slice, see Corollary
(3.3).

Our main statement implies that if the quotient of MGL by all the xi coincides
with this zero slice then [20, Conjecture (5)] holds, see Corollary (4.7). As a con-
sequence, under the same assumption, slices of all Landweber exact spectra are
given in terms of the Landweber coefficients and the motivic Eilenberg Maclane
spectrum, see [15].

The author was inspired by the course notes [7].

Here is an overview of the sections. In the first section we show effectivity and
cellularity results for the algebraic cobordism spectrum. Theorem (3.1) states that
the cofiber of the unit map of MGL lies in a certain subcategory of the stable motivic
homotopy category spanned by positive Tate-spheres. As a corollary we obtain the
effectivity of MGL and a proof of the observation in [20] that the zero slices of the
sphere spectrum and MGL coincide. These results can be viewed as refinements to
the cellularity results of [1]. The effectivity of MGL was implicitely assumed in [15].

The second paragraph deals with our main observation that if the Hopkins-Morel
quotient of MGL is the zero slice of MGL then a relative version of Voevodsky’s
conjecture [20] on slices holds true, Theorem (4.6). This is closely related to the
work of Hopkins and Morel on the spectral sequence for MGL in terms of motivic
cohomology, see [8]. In particular it is an unpublished result due to Hopkins and
Morel that over fields of characteristic 0 the quotient of MGL by the xi is isomorphic
to the motivic Eilenberg MacLane spectrum, [7]. It thus follows form Corollary (4.7)
that [20, Conjecture (5)] holds over fields of characteristic 0 assuming the Hopkins-
Morel isomorphism. As above we get under the same assumption the structure of
the slices of Landweber spectra.

We note that the idea of using filtrations of the ideal of the Lazard ring spanned
by elements of positive degree in a homotopy way goes back to [7].

The third paragraph covers the relationship of quotients of MGL to the algebraic
K-theory spectrum. The main statement is also contained in [7].

In the last paragraph we consider rational slices. Due to the rational splitting
of MGL this simplifies to understanding the rational Landweber theory LQ for the
additive formal group law over the rationals, see [11]. We obtain these assertions
over regular base schemes by comparing the Landweber decomposition of KGLQ

and a decomposition obtained in [13].

Acknowledgements. I thank the lecturers of [7]. I thank Niko Naumann, Paul
Arne Østvær, Ivan Panin and Oliver Röndigs for inspiring communications. I thank
Ulrich Bunke and Ansgar Schneider for helpful comments.
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2. Conventions

Throughout the article we work over a Noetherian base scheme of finite Krull
dimension S. The stable motivic homotopy category over S is denoted by SH(S).

The standard spheres are denoted by Sp,q ∼= S
∧(p−q)
s ∧G∧q

m . The category of smooth
schemes over S is denoted by Sm/S. The tensor unit of SH(S), i.e. the sphere
spectrum, is denoted by 1.

The full subcategory of SH(S) of effective spectra is denoted by SH(S)eff . It is
the full localizing triangulated subcategory generated by all Σ∞

T X+, X ∈ Sm/S.

The i-th slice of a motivic spectrum E is denoted si(E), see [20].

Throughout the text we will use the language of model categories. An injective
model structure will be a model structure e.g. on a diagram category where weak
equivalences and cofibrations are understood objectwise. Dually the projective
model structure has objectwise fibrations. For homotopy colimits and limits we
refer to [3]. For symmetric monoidal model categories we refer to [5].

3. Effectivity of MGL

Let SH(S)T be the full localizing triangulated subcategory of SH(S) spanned
by {Sp,q|p, q ∈ Z}, see [11]. We let SH(S)T≥0

the full localizing triangulated
subcategory of SH(S) spanned by {Sp,q|p ∈ Z, q ≥ 0}.

Theorem 3.1. The cofiber of the unit map 1 → MGL is contained in ΣT SH(S)T≥0
.

Corollary 3.2. We have MGL ∈ SH(S)T≥0
. In particular MGL is an effective

spectrum.

Proof. Follows from 1 ∈ SH(S)T≥0
. �

Corollary 3.3. The unit map 1 → MGL induces an isomorphism

s0(1)
∼=
−→ s0(MGL).

Proof. The functor s0 is triangulated and s0(X) = 0 for any X ∈ ΣT SH(S)eff . �

We start with preparations for the proof of theorem (3.1).

Lemma 3.4. Let r be an integer and let

S2r,r → X → Y → S2r,r[1]

and
X → Z → W → X[1]

be two triangles in SH(S). Suppose Y,W ∈ Σr+1
T SH(S)T≥0

. Then the cofiber of

S2r,r → Z is in Σr+1
T SH(S)T≥0

.

Proof. The cofiber of S2r,r → Z is an extension of W by Y . �

Lemma 3.5. Let i : Z → X be a closed immersion in Sm/S and E a vector bundle
over X. Let U = X \Z, and denote the restrictions of E to Z and U by EZ and EU ,
respectively. Let N be the normal bundle of i. Then the cofiber of Th(EU ) → Th(E)
is canonically isomorphic to Th(EZ ⊕N ) in the A1-homotopy category.
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Proof. This follows from the fact that this cofiber is (as Zariski sheaves) isomorphic
to E/(E r j(Z)), j the composition of i followed by the zero section of E , and that
the normal bundle of j is EZ ⊕N . �

We first quote some facts from [11] about finite Grassmannians. We let G(n, d)
be the scheme parameterizing locally free quotients of rank d of the trivial bundle
of rank n. There is a universal short exact sequence

(1) 0 // Kn,d
// On

G(n,d)
// Qn,d

// 0

of vector bundles on G(n, d), and letting K′
n,d the dual of Kn,d, the tangent bundle

is given by

(2) TG(n,d)
∼= Qn,d ⊗K′

n,d.

The map

i : G(n, d)
� � // G(n + 1, d + 1)

classifying Kn,d ⊆ On
G(n,d) →֒ On+1

G(n,d) is a closed immersion. From (2) it follows that

the normal bundle N (i) of i identifies with K′
n,d. Next consider the composition on

G(n + 1, d + 1)

α : On
G(n+1,d+1)

� � // On+1
G(n+1,d+1)

// Qn+1,d+1

for the inclusion into the first n factors. The complement of the support of coker(α)
is an open subscheme U ⊆ G(n + 1, d + 1) and there is a map π : U → G(n, d + 1)
classifying α|U . It is easy to see that π identifies with Qn,d+1 → G(n, d + 1).
An argument with geometric points reveals that U = G(n + 1, d + 1) r i(G(n, d)).
Moreover the natural map ι : G(n, d+1) → G(n+1, d+1) classifying the subbundle
Kn,d+1 ⊕ O ⊂ On+1 is the zero section G(n, d + 1) → Qn,d+1 followed by the
inclusion Qn,d+1

∼= U → G(n + 1, d + 1).

We summarize the above with a diagram:

(3) G(n, d)
� � i // G(n + 1, d + 1) U?

_oo
π

//
vv

G(n, d + 1).

We note that compositions of the morphisms ι yields a map ι : pt ∼= G(d, d) →
G(n, d) which we consider as the natural pointing of G(n, d). Note that the unit of
MGL is induced via these maps.

Proposition 3.6. Let E be a vector bundle of rank r over G(n, d) which is a finite
sum of copies of Kn,d, K′

n,d and O. Then ι∗E is canonically trivialized. Furthermore

the cofiber of the map of suspension spectra of Thom spaces S2r,r → Σ∞Th(E) lies
in Σr+1

T SH(S)T≥0
.

Proof. We prove the statement by induction on n. It clearly holds for n = 0.
Suppose n ≥ 0 and assume the statement holds for n. The statement holds for
G(n + 1, 0) and G(n + 1, n + 1). Let 0 ≤ d < n. We prove the statement for
G(n + 1, d + 1). Let E be a vector bundle on G(n + 1, d + 1) of the considered type.
It is canonically trivialized over the pointing. We consider the diagram (3). By
lemma (3.5) we get an induced exact triangle
(4)

Σ∞Th(EU ) // Σ∞Th(E) // Σ∞Th(EG(n,d) ⊕K′
n,d) // Σ∞Th(EU )[1] .
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We note Kn+1,d+1|G(n,d)
∼= Kn,d, hence EG(n,d) and EG(n,d)⊕K′

n,d are vector bundles

on G(n, d) of the considered type.

Since ι∗Kn+1,d+1
∼= K(n, d + 1)⊕O there is an induced map Th(Kn,d+1 ⊕O) →

Th(Kn+1,d+1) which factors through Th(Kn+1,d+1|U ). Note Th(Kn,d+1 ⊕ O) →
Th(Kn+1,d+1|U ) and more generally Th(ι∗E) → Th(EU ) are motivic weak equiva-
lences: we cover U by the opens for which α restricted to a fixed subset of the
summands of On of size d + 1 surjects onto Qn+1,d+1. Those opens are pullbacks
from G(n, d+1). We claim on such opens the situation trivializes completely. With-
out loss of generality we can assume the first d + 1 summands of Qn surject onto
Qn+1,d+1. Then Kn+1,d+1 restricted to this open trivializes by projecting to the last
n − d summands of On+1. This trivialization is compatible with the one over the
corresponding open V ⊂ G(n, d + 1). Thus ((ι∗E)|V )◦ → (E|π−1(V ))

◦ is a motivic
weak equivalence, and the same holds for the map (ι∗E)◦ → E◦

U by a Mayer-Vietoris
argument. This shows the claim that the map of Thom spaces is also a motivic
weak equivalence.

We can thus rewrite the sequence (4) as
(5)

Σ∞Th(ι∗E) // Σ∞Th(E) // Σ∞Th(EG(n,d) ⊕K′
n,d) // Σ∞Th(ι∗E)[1]

and use the fact that ι∗E is of the type considered for G(n, d+1). By induction hy-
pothesis the cofiber of S2r,r ∼= Σ∞Th(ι∗ι∗E) → Σ∞Th(ι∗E) lies in Σr+1

T SH(S)T≥0
.

Moreover again by induction hypothesis Σ∞Th(EG(n,d) ⊕ K′
n,d) ∈ Σr+j

T SH(S)T≥0

with j = n − d > 0. Now the statement follows from lemma (3.4). �

Proof of Theorem (3.1). We let BGLn = colimdG(n+d, d), ξn = colimdKn+d,d the
universal vector bundle. Then

MGL = hocolimnΣ−2n,−nΣ∞Th(ξn) ∼= hocolimn,dΣ
−2n,−nΣ∞Th(Kn+d,d).

The unit 1 → MGL is induced via the maps

Σ−2n,−nΣ∞Th(ι∗Kn+d,d) → Σ−2n,−nΣ∞Th(Kn+d,d).

By proposition (4) the cofibers of these maps are in ΣT SH(S)T≥0
. Since cofiber

sequences are compatible with homotopy colimits the claim follows. �

4. Quotients and slices of MGL

Let MGL denote a fibrant and cofibrant model as commutative S-algebra of the
algebraic cobordism spectrum. We work in the simplicial version of the S-modules of
[2], see [14]. In particular MGL is fibrant and cofibrant as (symmetric) T -spectrum.
We let Mod(MGL) be the symmetric monoidal category with weak unit of MGL-
modules. The homotopy category of Mod(MGL) is denoted by DMGL. It is a closed
tensor triangulated category.

We denote ϕ : MU∗ → MGL∗ the canonical map and fix an isomorphism MU∗
∼=

Z[x1, x2, . . .], |xi| = i (we divide the usual topological grading by 2).

As in topology we can form the quotient Q := MGL/(x1, x2, . . .)MGL by taking
iterated cofibers of multiplications by the xi in DMGL.

This quotient is well-defined up to isomorphism.
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We give a construction of a more explicit model of this quotient:

We pick once and for all the following data:

(1) S2i,i = T∧i, i > 0, a cofibrant model of the (2i, i)-sphere in T -spectra, and
denote the corresponding cofibrant sphere S2i,i ∧ MGL by Σ2i,iMGL.

(2) a map Σ2i,iMGL → MGL representing the element ϕ∗(xi) ∈ MGL2i,i, also
denoted by xi.

We let I be the following category: the objects are (commutative) monomials
in the xi, there is a unique map from M to N if N divides M ; the monomial 1 is
allowed. We let I◦ be the full subcategory consisting of all non-constant monomials.
The subcategory I≤1 consists of monomials containing each xi with multiplicity at
most 1, I◦≤1 is the same category with the constant monomial removed.

We let 1 be the category whose diagrams are morphisms, i.e. two objects 0 and
1 and one non identity map. We let 1n ⊂ I≤1 be the inclusion of the monomials
containing only the xi, i ≤ n. Via these inclusions I≤1 is the union of all the 1n.

We are going to define the following I-diagram of MGL-modules: a monomial
xk1

1 · · ·xkn
n , ki ≥ 0, is sent to (Σ2,1MGL)∧MGLk1 ∧MGL . . . ∧MGL (Σ2n,nMGL)∧MGLkn .

The morphisms will be given by multiplications with the xi, i.e. iterations of the
morrphisms xi. We have to be careful since in general the two possible maps
Σ2i,iMGL ∧MGL Σ2i,iMGL → Σ2i,iMGL given by applying the map xi either on the
left or on the right and then composing with a unit morphism (note MGL only serves
as a weak unit) do not coincide in general. Therefore we make the convention that

for a map M → N in I, M = xk1
1 · · ·xkn

n , N = xl1
1 · · ·xln

n , li ≤ ki, we insert for any
1 ≤ i ≤ n the map (Σ2i,iMGL)∧MGLk1 → (Σ2i,iMGL)∧MGLl1 which applies xi on the
ki − li right most tensor factors of the source followed by appropriate unit maps.

We end up with a diagram of MGL-modules, denoted D.

We need the following lemma in which we denote by hofib the homotopy fiber
of a map between pointed simplicial sets.

Lemma 4.1. Let

X //

��

Y

��

Z // W

be a diagram of pointed simplicial sets. Let P be the homotopy pullback of the right
lower triangle of the square. Then the homotopy fiber of the natural map X → P
is naturally equivalent to hofib(hofib(X → Z) → hofib(Y → W )).

Proof. Replacing the diagram with an injectively fibrant diagram the statement
follows from the corresponding strict statement. �

Let D≤1 be the restriction of D to I≤1 and D◦
≤1 the one to I◦≤1.

We have the following observations. We use the notion of total cofiber of a
diagram with respect to a subdiagram, see [6]. This is defined to be the cofiber of the
natural map from the homotopy colimit of the subdiagram to the homotopy colimit
of the total diagram. Usually this can be viewed as the total object corresponding
to a diagram of a certain shape, e.g. of a cubical diagram. For a functor to be
homotopy right cofinal see [3, Definition 19.6.1].
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Lemma 4.2. (1) The inclusion I◦≤1 → I◦ is homotopy right cofinal.

(2) The total cofiber of the diagram D≤1 with respect to the inclusion D◦
≤1 →

D≤1, i.e. the cofiber of the map hocolimD◦
≤1 → D(1) = MGL, is isomorphic

to Q in DMGL.

Proof. (1): Let the inclusion be denoted by j. We have to show that for any object
o ∈ I◦ the under category o\j is contractible. But this under category has the
initial object (o′, o → o′), where o′ contains xi with multiplicity 1 if xi|o, otherwise
it contains it with multiplicity 0.

(2): We first show the analogous statement for finitely many xi: the total cofiber
of D|1n with respect to the inclusion (1n)◦ ⊂ 1n is equivalent to the quotient
MGL/(x1, . . . , xn)MGL. This is proved by induction on n using the following state-
ment (with J = 1n for the induction step n 7→ n + 1):

Let J◦ be a small category and let J be the same category added a terminal object
(so if J had already a terminal object this object will no longer be terminal). Let C
be a pointed model category and G : J × 1 → C be a functor. Let (J × 1)◦ be again
the category obtained by removing the terminal object. Then the total cofiber of
G with respect to the inclusion (J × 1)◦ → J × 1 can be computed as follows: it
is the cofiber of the map Totcof(G|J×{0}) → Totcof(G|J×{1}), Totcof denoting the
total cofiber with respect to the inclusions of the respective subcategories obtained
by removing the terminal object.

By considering pointed mapping spaces this statement reduces to the dual state-
ment for pointed simplicial sets. Here to compute homotopy limits we can use the
injective model structure on diagram categories. Now we switch and let J be the
opposite of the original J , similarly with J◦. The category (J × 1)◦ this time de-
notes J × 1 with the initial object removed. Let G : J × 1 → sSet• be a functor.
Fix an injectively fibrant replacement G → R. We note that R|(J×1)◦ , R|J◦×{i},
i = 0, 1, are again injectively fibrant: the respective restriction functors are right
Quillen functors since the corresponding adjoints preserve objectwise cofibrations.

Let i be the initial object of J . We replace the diagram R by the square

R(i, 0) //

��

lim R|J◦×{0}

��

R(i, 1) // lim R|J◦×{1}

.

This yields again an injectively fibrant diagram, the limit of the lower right triangle
gives the homotopy limit of G|(J×1)◦ , whence the statement follows from lemma
(4.1).

We are left to prove the statement for infinitely many xi. The restriction func-
tors from I◦≤1-diagrams to (1n)◦-diagrams preserve projectively cofibrant diagrams,

whence hocolimD◦
≤1 ≃ hocolimn(hocolimD|(1n)◦). This shows the claim. �

For any n > 0 let Ideg≥n be the subcategory of I of monomials of degree ≥ n,

where the degree of a monomial xk1
1 · · ·xkn

n is
∑n

i=1 i · ki. Moreover for a monomial
M let I≥M be the subcategory of all monomials which are divisible by M . We also
let Ddeg≥n = D|Ideg≥n

and D≥M = D|I≥M
.
7



Proposition 4.3. Let F : Ideg≥n → C be a diagram in a cofibrantly generated
model category C such that for any monomial M of degree n the natural map
hocolimF |I≥M

→ F (M) is an equivalence. Then the natural map

hocolim(F |Ideg≥n+1
) → hocolimF

is an equivalence.

Proof. Let Q → F be a cofibrant replacement of F for the projective model struc-
ture on CIdeg≥n . Let M be a monomial of degree n. We claim Q|I≥n

is still cofibrant:
in fact the right adjoint r to the restriction functor preserves objectwise fibrations:
for o ∈ I≥M we have r(H)(o) = H(o), for o /∈ I≥M we have r(H)(o) = pt.

Thus if we define Q′ by replacing for any M with deg(M) = n the object Q(M)
with colimQ|I≥M

and leaving the other entries unchanged we do not change the weak
homotopy type of Q. As above Q′|Ideg≥n+1

is cofibrant, moreover Q′ is cofibrant

itself since for any B ∈ CIdeg≥n we have Hom(Q′|Ideg≥n+1
, B|Ideg≥n+1

) ∼= Hom(Q′, B).
Thus hocolimQ′|Ideg≥n+1

≃ colimQ′|Ideg≥n+1
∼= colimQ′ ≃ hocolimQ′ ≃ hocolimQ,

which finishes the proof. �

For the proof of the next statement we use the notion of a left Quillen presheaf
on ω, where ω is the first infinite ordinal. In this case such a presheaf is given by a
model category Cn for each natural number n and left Quillen functors fn : Cn+1 →
Cn for each n ≥ 0. A section consists of objects Xn ∈ Cn for each n ≥ 0 and maps
fn(Xn+1) → Xn, n ≥ 0. It is called homotopy cartesian if the maps (Lfn)(Xn+1) →
Xn are isomorphisms in Ho(Cn). The category of sections possesses the invers model
structure where weak equivalences and cofibrations are objectwise. We will use the
fact that the mapping space out of a homotopy cartesian section X• into any Y• is
given as the homotopy limit over the individual mapping spaces map(Xn, Yn).

Lemma 4.4. Let F : C ↔ D : G be a Quillen adjunction between stable pointed
model categories. Suppose RG : HoD → HoC preserves sums. Then RG preserves
homotopy colimits.

Proof. We indicate a proof. First note that a homotopy colimit of a functor F : I →
D, which we suppose to take values in cofibrant objects, can be computed as the
homotopy colimit of the simplicial diagram [n] 7→

∐
ϕ : [n]→I F (ϕ(0)), [n] the ordered

set {0, . . . , n} viewed as a category. By considering mapping spaces this reduces to

the statement that mapping spaces in sSetI can be computed by homotopy ends.

Since RG preserves homotopy coproducts by assumption it thus suffices to show
that colimits over △op are preserved. Let α : △op → D be a functor. We claim
hocolim(α) ≃ hocolimnhocolim(α|△op

≤n
). This proves the above since RG preserves

finite homotopy colimits since we are dealing with a stable situation and sequen-
tial homotopy colimits over ω since RG preserves sums. Using mapping spaces
we reduce the statement about α to the dual statement in simplicial sets. Now
we observe that Ho(sSet△) is equivalent to homotopy cartesian sections in the
homotopy category of the category of sections of the left Quillen presheaf on ω,
n 7→ sSet△≤n , the categories sSet△≤n carrying the injective model structure such
that the restriction maps preserve cofibrations. Considering mapping spaces out
of constant diagrams shows the claim since a mapping space between homotopy
cartesian sections is a homotopy limit over ω of the individual mapping spaces. �
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We now turn to the functors fi : SH(S) → Σi
T SH(S)eff ⊂ SH(S) introduced in

[20]. These are defined as right adjoints to the inclusions Σi
T SH(S)eff ⊂ SH(S).

These functors can be defined on the level of model categories by using colocaliza-
tion of model categories, see [12]. In particular it makes sense to ask whether these
functors preserve homotopy colimits.

Corollary 4.5. The functors fi preserve homotopy colimits.

Proof. This follows from lemma (4.4) and the fact that the fi preserve sums [20]. �

We now can state the main observation of this text.

Theorem 4.6. Suppose the natural map MGL → Q is the map from MGL to its
zero-slice. Then [20, Conjecture (5)] holds with HMU2q

replaced by s0MGL⊗MU2q.

Note the compatibility with the natural homomorphism MU∗ → MGL∗∗ still
makes sense.

Proof. Lemma (4.2).(1) and (2) and [3, Theorem 19.6.13] imply that the map from
MGL to the total cofiber of D with respect to D◦ → D is the map to Q, hence
by assumption this is the map to the zero-slice. Thus hocolimD◦ → f1MGL is
an equivalence. By corollary (4.5) the fi commute with homotopy colimits. We
denote by Fi functorial versions of the fi on the level of model categories. Then
we can rewrite f2hocolimD◦ ≃ hocolimF2D

◦. Observe the diagram F2D
◦ satisfies

the asssumptions of proposition (4.3) for n = 1, hence f2MGL ≃ hocolimF2D
◦ ≃

hocolimDdeg≥2.

Increasing the degree of the monomials it follows from proposition (4.3) by in-
duction that fnMGL ≃ hocolimDdeg≥n. In addition the maps

fn+1MGL → fnMGL

are the naturally induced maps

hocolimDdeg≥n+1 → hocolimDdeg≥n.

Thus the snMGL are the cofibers of these maps. We rewrite the source again as
hocolimFn+1Ddeg≥n. Cofibers commute with homotopy colimits, thus snMGL ≃
hocolim cofib(Fn+1Ddeg≥n → Ddeg≥n). The value of this cofiber of diagrams at
a monomial of degree > n is zero, at a monomial of degree n we exactly have
Σn

T s0MGL. Now it is easy to see that the homotopy colimit of such a diagram is
the homotopy coproduct of the entries in degree n, which is Σn

T s0MGL ⊗ MU2n.

The compatibility with the natural homomorphism MU∗ → MGL∗∗ follows by
the choice of the xi.

�

Recall the natural orientation MGL → MZ of the motivic Eilenberg MacLane
spectrum. It is additive, in particular the xi all map to zero in MZ∗∗. Iteratively
we get factorizations MGL/(x1, . . . , xn)MGL → MZ in SH(S) in a compatible way,
which gives a map Q → MZ.

Corollary 4.7. Suppose S is the spectrum of a perfect field. If the natural map
Q → MZ is an isomorphism then [20, Conjecture (5)] holds.
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Proof. By [9] and [19] s01 ∼= MZ. Thus by corollary (3.3) the map MGL → MZ is
the map from MGL to its zero-slice. The statement follows from theorem (4.6). �

5. K-theory

By the Landweber exactness theorem [11] and [10] the spectrum KGL is the
Landweber spectrum associated to the MU∗-algebra x−1

1 MU∗/(x2, x3, . . .)MU∗
∼=

Z[u, u−1]. The latter algebra classifies the multiplicative formal group law x + y −
uxy.

The orientation MGL → KGL sends all xi ∈ MGL2i,i, i ≥ 2, to 0 ∈ KGL2i,i. Thus
we obtain a factorization MGL/(x2, x3 . . .)MGL → KGL. Since x1 acts invertibly on
KGL this map further factors as

B : x−1
1 MGL/(x2, x3 . . .)MGL → KGL.

Lemma 5.1. Let

0 → M∗
f
→ N∗ → Q∗ → 0

be a short exact sequence of evenly graded Landweber exact MU∗-modules. Let
F : EM → EN be a map of spectra in SH(Z)T representing the homology trans-
formation given by f via the motivic Landweber exact functor theorem. Then the
cofiber of F represents the Landweber theory given by Q∗.

Proof. We let X be the stack [Spec(MU∗)/Spec(MU∗MU)] and M̃∗ etc. the quasi
coherent sheaves on X obtained from the M∗ etc. by pushforward along the map
Spec(MU∗) → X . Then by Landweber exactness the sequence

0 → M̃∗ → Ñ∗ → Q̃∗ → 0

is a short exact sequence of flat OX -modules. In particular tensoring this sequence
with a quasi coherent OX -module yields again a short exact sequence. However,
the Landweber theorem ([11]) is proved by considering the MGL-homology of a
motivic spectrum as a (MGL∗,MGL∗MGL)-comodule and via restriction along a
map of Hopf algebroids as (MU∗,MU∗MU)-comodule, then tensoring this over OX

with M̃∗ and finally pulling back to Spec(MU∗). This shows that the sequence of
motivic homology theories obtained from the original sequence is short exact. In
particular if the first map is represented by any map of motivic spectra then the
cofiber will represent the homology theory associated with Q∗. �

Theorem 5.2. The map of spectra B : x−1
1 MGL/(x2, x3, . . .)MGL → KGL is an

isomorphism.

Proof. We use that x−1
1 MGL/(x2, x3, . . .)MGL can also be constructed by first in-

verting x1 and then quotienting out the xi, i ≥ 2. Now observe that all the quo-
tients x−1

1 MU∗/(x2, . . . , xn)MU∗ are Landweber exact: they are torsionfree, and for
a prime p the element v1 of (MU∗)(p) already acts invertibly. Thus the

0 → Σn+1x−1
1 MU∗/(x2, . . . , xn)MU∗ → x−1

1 MU∗/(x2, . . . , xn)MU∗

→ x−1
1 MU∗/(x2, . . . , xn+1)MU∗ → 0

(Σ refers to a shift of evenly graded groups) are short exact sequences of evenly
graded Landweber modules, and lemma (5.1) applies. Thus it follows inductively
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that the quotients −1
1 MGL/(x2, . . . , xn)MGL are the Landweber spectra for the mod-

ules x−1
1 MU∗/(x2, . . . , xn)MU∗. Passing to the colimit shows the claim. �

Remark 5.3. Fix a prime p and let BPTop be the topological Brown-Peterson
spectrum. Let BP be the motivic spectrum on the Landweber coefficients BPTop

∗ . It
can be seen that this coincides with the definition given in [18] since both definitions
give rise to the universal oriented ring cohomology theory on compact objects with
p-typical formal group law.

Let E(n)Top be the topological spectrum for the coefficients

v−1
n BPTop

∗ /(vn+1, vn+2, . . .).

The corresponding motivic Landweber spectrum si denoted E(n). Now the quotients

v−1
n BPTop

∗ /(vn+1, . . . , vn+k)BPTop
∗ are also Landweber exact. Hence by the same

method as for theorem (5.2) we see that there is an isomorphsim

E(n) ∼= v−1
n BP/(vn+1, vn+2, . . .)BP,

compare with [4].

The map from [15, par. 6] is ill-defined since BP is not a direct summand of
MGL(p) as MGL-module.

Next we analize the relationship to connective or effective K-theory. A version
of that has been introduced in [9].

Since MGL/(x2, . . .)MGL is effective, the canonical map MGL/(x2, . . .)MGL →
x−1

1 MGL/(x2, . . .)MGL ∼= KGL factors as

Beff : MGL/(x2, . . .)MGL → f0KGL.

Proposition 5.4. Suppose the map MGL → Q is the map from MGL to its zero-
slice. Then Beff induces isomorphisms on slices. If S is the spectrum of a perfect
field and Beff is an isomorphism, then the map MGL → Q is the map from MGL

to its zero-slice.

Proof. Let us assume MGL → Q is the map to the zero-slice. Then by theorem (4.6)
the assumption (SlMGL) of [15] is fulfilled, hence by [15, corollary 4.2] we have
s0KGL ∼= s0MGL, and the isomorphism is realized by the map s0MGL → s0f0KGL.

By the periodicity of KGL the map f1KGL → f0KGL is isomorphic to the map
ΣT f0KGL → f0KGL given by multiplication by the Bott element u ∈ (f0KGL)2,1 =
KGL2,1. Thus the cofiber of this map is isomorphic to s0MGL, and the same holds
true for the cofiber of the map ΣT MGL/(x2, . . .)MGL → MGL/(x2, . . .)MGL given
by multiplication by x1 by the assumption. Interating this process shows the claim.

Suppose now that S is the spectrum of a perfect field. Then by [9] there are
isomorphisms s01 ∼= s0KGL ∼= MZ, and by corollary (3.3) we also have s0MGL ∼=
s0KGL. Now if Beff is an isomorphism, then the map ΣT MGL/(x2, . . .)MGL →
MGL/(x2, . . .)MGL given by multiplication by x1 is the map f1MGL/(x2, . . .)MGL →
MGL/(x2, . . .)MGL showing the claim. �

11



6. Rational slices

We show in this paragraph that the asumptions from the last sections hold true
after rationalization, at least over regular base schemes.

We denote by LQ the Landweber spectrum associated to the MU∗-module Q

carrying the additive formal group law.

We note that any rational motivic Landweber spectrum has a decomposition
into a sum of Σ2i,iLQ for various i. This follows directly from the corresponding
decomposition of the topological coefficients.

Since the Landweber coefficients for the rational K-theory spectrum are Q[v, v−1]
(v the Bott element in homological degree 2) we obtain

(6) KGLQ
∼= PLQ =

⊕

i∈Z

Σ2i,iLQ,

compare also with [11, Theorem 10.1].

Using projectors [13, Theoreme IV.72] gives a decomposition

(7) KGLQ
∼=

⊕

i∈Z

H
(i)
B .

This decomposition is first defined for regular base schemes S. For morphisms
between regular base schemes it pulls back. It thus makes sense to pull back the
decomposition given over Spec(Z) to any base scheme, which we shall assume.

The next statement follows from the structure of a rational Snaith map

colimn(LQ ∧ Σ−2n,−nΣ∞P∞
+ ) → KGLQ

(see [16] for the Snaith map) and the way the projectors for (7) are defined.

We call the map
Σ−2i,−iΣ∞P∞

+ → KGLQ

the i’th Snaith map.

Proposition 6.1. The decompositions (6) and (7) coincide.

Proof. We can assume the base is Spec(Z). We first compute the map

(8) QZ →
∏

j∈Z

Hom(Σ2j,jLQ,Σ2j,jLQ) → Hom(PLQ,PLQ) ∼=

Hom(KGLQ,KGLQ) → Hom(Σ−2i,−iΣ∞P∞
+ ,KGLQ) = (KGL∗∗

Q [[x]])2i,i = Q[[u]].

The first map in the second line is precomposition with the i’th Snaith map. On
the right hand side an appropriate Bott shift is applied to powers of x to obtain the
powers of u. Note that for the system in i on the right hand side all transition maps
are the same and given by uj 7→ −juj−1 + juj (this follows from the multiplicative
formal group law for KGL). Note also that we define the Bott element to be the
negative reduced class of P1 in P∞ and BGL.

We let Hom(Σ∞P∞
+ ,PLQ) = Q[[u′]]. Here u′ is the generator for the additive

orientation on PLQ times the Bott element.

The multiplicative isomorphism

Q[[u]] ∼= Hom(Σ∞P∞
+ ,KGLQ) ∼= Hom(Σ∞P∞

+ ,PLQ) ∼= Q[[u]]
12



is given by u = 1 − eu′

, which is the change of formal parameters between the
multiplicative and additive formal group law.

Moreover the zero’th Snaith map to KGLQ is the element 1 − u ∈ Q[[u]] ∼=
Hom(Σ∞P∞

+ ,KGLQ). Thus the Snaith map translates to

eu′

∈ Q[[u′]] ∼= Hom(Σ∞P∞
+ ,PLQ) ∼= HomModSH(Z)(LQ)(LQ ∧ Σ∞P∞

+ ,PLQ).

We let LQ∧Σ∞P∞
+ = LQ < b0, b1, b2, . . . >, where the bi are dual generators to

the powers of the orientation generator. It follows that after these identifications
the Snaith map

LQ < b0, b1, b2, . . . >→ PLQ

has the effect

LQbj

1
j!
→ Σ2j,jLQ

on summands.

The Snaith map Σ−2i,iΣ∞P∞
+ → PLQ is just the same map with the appropriate

Bott shift applied and is thus given on summands by

Σ−2i,−iLQbj

1
j!
→ Σ−2i+2j,−i+jLQ.

Now let us start with the n’th projector p ∈ Hom(PLQ,PLQ), n ∈ Z. Compo-
sition with the i’th Snaith map gives us a map

Σ−2i,−iLQ < b0, b1, b2, . . . >→ PLQ

sending, if n ≥ −i, Σ−2i,−ibn+i to 1
(2n+2i)!Σ

2n,nLQ (abusing notation) and the

other generators to 0. Thus this map is the element

1

(2n + 2i)!
u′2n+2i

∈ Q[[u′]] = Hom(Σ−2i,−iΣ∞P∞
+ ,PLQ).

Applying the equation u′ = ln(1 − u) we get the result that the map (8) sends
the projector p, if n ≥ −i, to

1

(2n + 2i)!
ln(1 − u)

2n+2i ∈ Q[[u]] = Hom(Σ−2i,−iΣ∞P∞
+ ,KGLQ),

otherwise to 0.

This is the same formula as used in [13] to define the projectors, see [13, Def.
IV.62, after Cor. IV.67, Def. IV.71].

Now it suffices to observe that the Snaith system is indeed the system appearing
in loc. cit. to describe endomorphisms of KGL and KGLQ, see [13, Th. IV.13, before
Prop. IV.33]. �

Lemma 6.2. The natural map MGLQ → LQ factors as an isomorphism QQ → LQ.

Proof. The claim follows from the decompositions

MGLQ
∼= LQ[b1, b2, . . .] ∼= LQ[x1, x2, . . .]

(see [11] for the definition of the bi, see also [11, Theorem 10.5]). �

Proposition 6.3. Suppose S is regular. Then the map MGLQ → LQ is the map to
the zero slice.
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Proof. First note that by the decomposition MGLQ
∼= LQ[b1, b2, . . .] and the effec-

tivity of MGL it follows that LQ is effective. By lemma (6.2) we have to show
that MGL → LQ is the map to the zero slice. The decomposition of MGLQ shows
that for this it suffices to show that HomSH(S)(Σ

p,qΣ∞
+ X, LQ) = 0 for X ∈ Sm/S,

p ∈ Z, q ≥ 1. Equivalently we have to show that every map Σp,qΣ∞
+ X → KGLQ,

X ∈ Sm/S, p ∈ Z ,q ≥ 0, factors through LQ[u] with respect to the decompo-
sition KGLQ

∼= LQ[u, u−1]. We can assume q = 0 by replacing X by X × Gq
m.

Proposition (6.1) and [13, Corollaire VI.75] imply this for non-negative p. Suppose
p < 0. Then by the periodicity of PLQ the claim we want to show is equivalent to
the statement that for p + 2q ≥ 0 every map Σp+2q,qΣ∞

+ X → LQ[u, u−1] factors
through uqLQ[u]. This follows from the decomposition [17, Corollary (5.5)(ii)] of
the algebraic K-theory of the Laurent polynomials over a regular ring. �

Corollary 6.4. Suppose S is regular. Then si(MGLQ) ∼= Σi
T LQ⊗MU2i compatible

with the homomorphism MU∗ → MGLQ,∗∗.

Proof. By proposition (6.3) we have s0(LQ) = LQ. The claim follows from the
decomposition MGLQ

∼= LQ[x1, x2, . . .]. �

Corollary 6.5. Suppose S is regular. Then s0(1Q) = s0(1)Q = LQ.

Proof. This follows now from Corollary (3.3). �
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des schémas. Thesis, K-theory Preprint Archives, 793.
[14] M. Spitzweck. Operads, Algebras and Modules in Model Categories and Motives. PhD thesis,

University of Bonn, 2001.

[15] Markus Spitzweck. Slices of motivic Landweber spectra. Preprint, arXiv:0805.3350v1.
[16] Markus Spitzweck and Paul Arne Østvær. The Bott inverted infinite projective space is

homotopy K-theory. Preprint, http://folk.uio.no/paularne/bott.pdf.

14



[17] V. Srinivas. Algebraic K-theory, volume 90 of Progress in Mathematics. Birkhäuser Boston
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