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Abstract

We propose and analyze a primal-dual active set method for local and non-
local Allen-Cahn variational inequalities. An existence result for the non-local
variational inequality is shown in a formulation involving Lagrange multipliers
for local and non-local constraints. Superlinear local convergence is shown by
interpreting the approach as a semi-smooth Newton method. Properties of
the method are discussed and several numerical simulations demonstrate its
efficiency.
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1 Introduction

The Allen-Cahn model describes interface motion with applications including mate-
rials science, image processing, biology and geology, see [5, 29, 19, 30, 4, 3, 18, 22, 9,
27]. Here an interface in which a phase field or order parameter rapidly changes its
value, is modelled to have a thickness of order ε where ε > 0 is a small parameter.
The model is based on a non-convex energy E which has the form

E(u) :=
∫

Ω

(

γε

2
|∇u|2 + γ

ε
ψ(u)

)

dx

where Ω ⊂ R
d is an open and bounded domain, γ > 0 is a parameter related to the

interfacial energy and u : Ω → R is the phase field, also called order parameter. The
potential function ψ : R → R

+
0 ∪ {∞} is assumed to have two global minima at the
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points ±1 and the values ±1 describe the pure phases. Examples are ψ(u) = (1−u2)2

or the obstacle potential

ψ(u) =

{

1
2
(1 − u2) if |u| ≤ 1 ,

∞ if |u| > 1 .

Introducing ψ0(u) := 1
2
(1 − u2) and the indicator function

I[−1,1](u) :=

{

0 if |u| ≤ 1 ,

∞ if |u| > 1

we obtain

ψ(u) = ψ0(u) + I[−1,1](u) . (1)

In order to have E(u) of moderate size u favours the values ±1 due to the potential
function. On the other hand given the gradient term

∫

Ω

|∇u|2 oscillations between

the values ±1 are energetically not favourable.
Given an initial phase distribution u(., 0) = u0 : Ω → R at time t = 0 the interface
motion can be modelled by the steepest descent of E with respect to the L2-norm
which results into the Allen-Cahn equation. In the case of a smooth potential ψ we
obtain after a suitable rescaling of time

ε∂tu = γε∆u− γ

ε
ψ′(u) for x ∈ Ω and t > 0

together with Neumann boundary conditions ∂u
∂ν

= 0 on ∂Ω, where ν is the outer
unit normal to Ω. If ψ has the form (1) we obtain, see [5],

(ε∂tu, χ− u) + γε(∇u,∇(χ− u)) + γ

ε
(ψ′

0(u), χ− u) ≥ 0 (2)

which has to hold for almost all t and all χ ∈ H1(Ω) with |χ| ≤ 1. Here and in what
follows (., .) denotes the L2–inner product.
Often one considers systems in which the total spatial amount of the phases are
conserved. In this case one studies the steepest descent of E under the constraint
∫

Ω

−udx = m where m ∈ (−1, 1) is a fixed number and we use the notation
∫

Ω

−f(x)dx :=

1
|Ω|

∫

Ω

f(x)dx with |Ω| being the Lebesgue measure of Ω. In the case of a smooth

potential ψ we obtain (see [29, 19])

ε∂tu = γε∆u− γ

ε
ψ′(u) + γ

ε

∫

Ω

− ψ′(u)dx .

Assuming homogeneous Neumann boundary conditions it follows that

d
dt

∫

Ω

udx = 0 and d
dt
E(u) ≤ 0 .
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In the case of an obstacle potential we need to solve for given initial data u0 ∈ H1(Ω)
with |u0| ≤ 1 a.e. in Ω the following problem [5]:

(Pm) Find u ∈ H1(ΩT ) such that
∫

Ω

− u(x, t)dx = m, u(., 0) = u0, |u| ≤ 1 a.e. in

ΩT := Ω × (0, T ) and

(ε∂tu, χ− u) + γε(∇u,∇(χ− u)) + γ

ε
(ψ′

0(u), χ− u) ≥ 0 (3)

which has to hold for almost all t and all χ ∈ H1(Ω) with |χ| ≤ 1 and
∫

Ω

− χ = m.

In this paper we reformulate (Pm) with the help of Lagrange multipliers µ− and µ+

for the inequality constraints u ≥ −1, u ≤ 1 and a Lagrange multiplier λ for the
equality constraint

∫

Ω

−u = m. Under appropriate assumptions we show the existence

of a unique solution u of (Pm) together with unique multipliers, see Section 2.
The main goal of this paper is to introduce and analyze a primal-dual active set
method for a finite element discretization of a (semi-)implicit Euler discretization
of (Pm) and respectively, (2). Our formulation make use of the three dual variables
µ−, µ+ and λ, see Section 3. As was demonstrated in [21] the primal-dual active set
method can be reformulated as a semi-smooth Newton method. This allows us to
show local superlinear convergence of the proposed primal-dual active set method,
see Section 3.
When solving (Pm) and (2) in each time step we have to solve a (non-local) obstacle
problem. In order to demonstrate specific features of our approach we also discuss
elliptic obstacle problems. Given F ∈ (H1(Ω))∗ and uD ∈ H1(Ω) we want to solve

F(u) :=
∫

Ω

1
2
|∇u|2dx− F (u− uD) −→ min! for u ∈ K̂ (4)

where K̂ is either K := {u ∈ H1(Ω) | u − uD ∈ H1
0 (Ω), ϕ ≤ u ≤ ψ} or Km := {u ∈

K |
∫

Ω

− udx = m} with m ∈ R where ϕ, ψ : Ω → R ∪ {−∞,∞}. Similar problems

appear in the modelling of water tanks [7] and in the calculus of variations [20, 13].
We show that there are cases where the active set only moves one mesh point per
primal-dual active set iteration leading to a very slow convergence. For bilateral
constraints global convergence cannot be expected. In fact there are situations in
which iterates can oscillate between the two constraints. Numerical experiments
demonstrate this behaviour. Also we suggest and discuss how a nested approach
can speed up the method.
Finally in Section 5 we present numerical simulations for the non-local as well as for
the local Allen-Cahn variational inequality, i.e. with and without mass constraints.
In the local situation we observe that our approach is faster than other proposed
methods. Furthermore, larger time steps can be taken. For the non-local Allen-Cahn
variational inequality so far only explicit methods have been used, see [5, 19]. In this
paper we present a first method to numerically solve an implicit time discretization
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of the Allen-Cahn variational inequality with integral constraint. We show efficiency
and accuracy of our method for a problem where the explicit solution is known. In
particular, it turns out that large time steprs are possible, that implicit discretization
in time lead to higher accuracy than the semi-implicit one without loss of efficiency
and that the computation time for the non-local Allen-Cahn variational inequality
remains almost the same as in the local case. Finally we present two numerical
simulations for the Allen-Cahn variational inequality with integral constraint.

2 Existence theory

In this section we show existence and uniqueness to the Allen-Cahn variational in-
equality with integral constraint, see (3). As a first step we reformulate the problem
in the following lemma with the help of Langrange multipliers µ+ and µ− corre-
sponding to the inequality constraints u ≤ 1 and u ≥ −1 and a Lagrange multiplier
λ corresponding to the constraint

∫

Ω

− udx = m :=
∫

Ω

− u0dx.

As a general assumption we require:

(Am) The domain Ω ⊂ R
d is bounded and either convex or has a C1,1-boundary.

Furthermore the initial data u0 ∈ H1(Ω) fulfill |u0| ≤ 1 a.e. and
∫

Ω

− u0 = m for a

given m ∈ (−1, 1).

Lemma 2.1 Let T > 0 be a positive time and let the assumptions (Am) hold. A
function u ∈ L2(0, T ;H2(Ω)) ∩H1(ΩT ) solves (Pm) if there exists µ+, µ− ∈ L2(ΩT )
and λ ∈ L2(0, T ) such that

λ = ε2∂tu− γε2∆u+ γψ′
0(u) + µ+ − µ− a.e. in ΩT , (5)

u(0) = u0,
∂u

∂ν
= 0 a.e. on (∂Ω)T := ∂Ω × (0, T ) , (6)

∫

Ω

− udx = m for almost all t ∈ [0, T ] , (7)

|u| ≤ 1 a.e. in ΩT , (8)

µ+(u− 1) = 0, µ−(u+ 1) = 0 a.e. in ΩT , (9)

µ+ ≥ 0, µ− ≥ 0 a.e. in ΩT . (10)

Proof: Let η ∈ L2(0, T ;H1(Ω)) be such that |η| ≤ 1 a.e. in ΩT and
∫

Ω

−η(x, t)dx = m

for almost all t ∈ [0, T ]. Multiplying (5) by (η − u) gives

0 =
∫

ΩT

(ε2∂tu− ε2γ∆u+ γψ′
0(u))(η − u) +

∫

ΩT

µ+(η − u) −
∫

ΩT

µ−(η − u) .

Using the properties of η and (8)-(10) gives

µ+(η − u) ≤ 0, µ−(η − u) ≥ 0 a.e. in ΩT .
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After integration by parts in space we obtain

0 ≤
∫

ΩT

(ε∂tu+ γ

ε
ψ′

0(u))(η − u) + γε
∫

ΩT

∇u · ∇(η − u) .

Now (3) follows after localization in time. �

The primal-dual active set method that we propose will heavily depend on the
Lagrange multipliers µ−, µ+, λ. We hence show the existence of a solution u together
with unique Lagrange multipliers µ−, µ+ and λ. In the proof of the existence theorem
we handle the linear equality constraint

∫

Ω

−u = m by projection and use a penalty

approach for the inequality constraint |u| ≤ 1, see also [1, 6]. In particular we
replace the indicator function in ψ by terms penalizing deviations of u from the
interval [−1, 1].
We define ψ+(z) := max(z − 1, 0)2 , ψ−(z) := min (z + 1, 0)2 for all z ∈ R and
ψδ(z) := ψ0(z) + 1

δ
(ψ+(z) + ψ−(z)) + 1 for δ > 0. It can be shown that ψ′′

δ ≥ −1
and that ψδ(z) ≥ 0 for all z ∈ R holds for δ ∈ (0, 2). Now, we consider the L2–
gradient flow of

Eδ(u) :=
∫

Ω

(γε

2
|∇u|2 + γ

ε
ψδ(u))dx

taking the mean value constraint into account. Hence we want to solve the semilinear
parabolic equation

ε2∂tuδ = γε2∆uδ − γψ′
δ(uδ) +

∫

Ω

− γψ′
δ(uδ)dx in ΩT , (11)

uδ(0) = u0,
∂uδ

∂ν
= 0 on (∂Ω)T . (12)

The main challenge is to control approximate versions of the Lagrange multipliers
which is non-standard due to the coupling of non-local equality and local inequality
constraints.

Theorem 2.1 Let the assumptions (Am) hold and let T > 0. Then there exists a
unique solution (u, µ+, µ−, λ) of (5)-(10) with the following properties

u ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1(Ω)) ∩H1(ΩT ) ,

µ+, µ− ∈ L2(ΩT ) ,

λ ∈ L2(0, T ) .

Proof: We show the existence of a solution uδ to (11), (12) by a Galerkin approach,
see e.g. Evans [16]. Since such an approach is standard we only briefly describe the
arguments and focus on specific aspects that appear in our case due to the non-local
structure. We choose {wj}j∈N0

to be the eigenfunctions of the problem

−∆w = κw in Ω,
∂w

∂ν
= 0 on ∂Ω
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which are chosen to be normalized such that (wi, wj) = δij and we also choose w0

to be constant. A Galerkin approximation is then given as

uN(x, t) =

N
∑

j=0

cj(t)wj(x) , (13)

ε2(∂tu
N , wj) + γε2(∇uN ,∇wj) + γ(ψ′

δ(u
N), wj) = 0 for j = 1, . . . , N and t ≥ 0 ,

(14)

cj(0) = (u0, wj) for j = 0, . . . , N , (15)

c0(t) = c0(0) for t ≥ 0 . (16)

The last condition guarantees that the approximating solution uN fulfills the integral
constraint. The mean value term does not appear in (14) because the wj , j =
1, . . . , N , are orthogonal to constants. Standard ODE theory gives local existence
upto some time T̃ to the above initial value problem. Multiplying (14) by c′j(t),
summation and integration gives

ε
∫

ΩT

(∂tu
N)2 + Eδ(u

N(T̃ )) = Eδ(u
N(0)) . (17)

This energy estimate can be used to show boundedness of the ODE solution and
hence global existence to (13)-(16) on [0, T ]. Furthermore standard compactness and
regularity arguments, see e.g. Evans [16], give in the limit N → ∞ the existence of
a solution uδ ∈ L2(0, T ;H2(Ω))∩H1,2(ΩT )∩L∞(0, T ;H1(Ω)) of (11), (12) satisfying
∫

Ω

uδ(t) =
∫

Ω

u0 for all t ∈ [0, T ]. In particular we obtain

ε
∫

ΩT

(∂tuδ)
2 + Eδ(uδ(T )) ≤ Eδ(u0) (18)

for all δ > 0. Since ψ′
δ(uδ) ∈ L2(0, T ;H1(Ω)) we can multiply (11) by −∆uδ and

integrate. After integration by parts we obtain

ε2 d
dt

1
2

∫

Ω

|∇uδ|
2 + ε2γ

∫

Ω

|∆uδ|
2 + γ

∫

Ω

1
δ
(ψ′′

+(uδ) + ψ′′
−(uδ))|∇uδ|

2 = −
∫

Ω

γψ′′
0 (uδ)|∇uδ|

2

=
∫

Ω

γ|∇uδ|
2 .

A Grönwall argument gives that (uδ)δ∈(0,2) is uniformly bounded in L∞(0, T ;H1(Ω))
and that ∆uδ is uniformly bounded in L2(ΩT ). Now elliptic regularity theory gives
that (uδ)δ>0 is uniformly bounded in L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1(Ω)) ∩H1(ΩT ).
When passing to the limit in (11) we would like to obtain the Lagrange multipliers
µ± as the limit of γ

δ
ψ±(uδ) and λ as the limit of

∫

Ω

− γψ′
δ(uδ) as δ tends to zero. We

hence need to estimate
λδ :=

∫

Ω

− γψ′
δ(uδ)dx

6



in L2(0, T ) uniformly in δ. Multiplying (11) by uδ ± 1 gives after integration and
integration by parts using

∫

Ω

∂tuδ = 0 and
∫

Ω

− uδ = m:

∫

Ω

ε2∂tuδuδ + γε2
∫

Ω

|∇uδ|
2 +

∫

Ω

γψ′
δ(uδ)(uδ ± 1) = λδ(m± 1)|Ω| . (19)

Since ψ′′
δ ≥ −1 we obtain that ψδ(z) + 1

2
z2 is convex and hence

ψ′
δ(uδ)(uδ ± 1) + 1

2
(uδ ± 1)2 ≥ ψδ(uδ) − ψδ(±1) .

Using (19), ψδ(±1) = 1 and |m| < 1 we get

|λδ| ≤
C

(1−|m|)|Ω|
(‖∂tuδ‖L2‖uδ‖L2 +

∫

Ω

u2
δ + 1) ,

where C is a constant that can depend on ε and γ. Since uδ is uniformly bounded
in H1(ΩT ) for δ ∈ (0, 2) we obtain

λδ ∈ L2(0, T ) uniformly for δ ∈ (0, 2) .

In this context we refer to [1] for a similar argument in a different context.
Using standard compactness results we obtain the existence of a subsequence, still
denoted by (uδ), and a u ∈ L2(0, T ;H2(Ω)) ∩H1(ΩT ) ∩ L∞(0, T ;H1(Ω)), such that

uδ ⇀ u in L2(0, T ;H2(Ω)) ,

uδ ⇀ u in H1(ΩT ) ,

uδ → u in L2(0, T ;H1(Ω)) ,

uδ ⇀ u in L∞(0, T ;H1(Ω)) ,

uδ → u a.e. in ΩT .

The energy estimate (18) gives furthermore

∫

Ω

(ψ+(uδ) + ψ−(uδ)) ≤ c(ε, γ, u0)δ

for almost all t ∈ [0, T ]. Since uδ → u a.e. in ΩT we obtain from Fatou’s Lemma

∫

Ω

(max(u, 1)2 + min(u,−1)2) =
∫

Ω

lim
δ→0

(max(uδ,1)2 + min(uδ, − 1)2)

≤ lim inf
δ→0

∫

Ω

(ψ+(uδ) + ψ−(uδ))

≤ lim
δ→0

c(ε, γ, u0)δ = 0 .

We hence obtain |u| ≤ 1 a.e. in ΩT .
Defining

µδ,± := ±γ

δ
ψ′
±(uδ)
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we can rewrite (11) as

λδ = ε2∂tuδ − γε2∆uδ + γψ′
0(uδ) + µδ,+ − µδ,− . (20)

Since µδ,+ · µδ,− = 0 we obtain from (20) and the a priori estimates on uδ and λδ

that
‖µδ,+‖L2(ΩT ) + ‖µδ,−‖L2(ΩT ) ≤ c(ε, γ, u0) .

Hence there exists µ+, µ− ∈ L2(ΩT ) such that for a subsequence

µδ,± ⇀ µ± in L2(ΩT ) as δ ց 0 .

Since µ± are the weak limits of nonnegative functions we obtain µ± ≥ 0 a.e.. Passing
to the limit in a weak formulation of (20) now gives (5) and (6). (7) follows since
uδ → u in L2(ΩT ). In addition we obtain using the monotonicity of ψ′

+ and ψ′
+(1) = 0

µδ,+(uδ − 1) = γ

δ
ψ′

+(uδ)(uδ − 1)

= γ

δ
(ψ′

+(uδ) − ψ′
+(1))(uδ − 1) ≥ 0 .

Since uδ → u and µδ,+ ⇀ µ in L2(ΩT ) we obtain

∫

ΩT

µ+(u− 1) = limδ→0

∫

ΩT

µδ,+(uδ − 1) ≥ 0 .

Since (u− 1) ≤ 0 and µ+ ≥ 0 we hence deduce

µ+(u− 1) = 0 a.e. in ΩT .

It remains to show uniqueness. Assume that there are two solutions (u1, µ1
+, µ

1
−, λ

1)

and (u2, µ2
+, µ

2
−, λ

2). Then we define u = u1 − u2, µ± = µ1
± − µ2

±, λ = λ1 −
λ2. Multiplying the difference of the equation (5) for u1 and u2 with u gives after
integration and using

∫

Ω

u = 0

ε2 d
dt

∫

Ω

(u)2 + γε2
∫

Ω

|∇u|2 +
∫

Ω

(µ1
+ − µ2

+)(u1 − u2)

−
∫

Ω

(µ1
− − µ2

−)(u1 − u2) = γ
∫

Ω

(u)2 .

The complementary conditions (8)-(10) imply that the terms (µ1
+ − µ2

+)(u1 − u2)
and −(µ1

− − µ2
−)(u1 − u2) are non-negative. We hence deduce

ε2 d
dt

∫

Ω

|u|2 + γε2
∫

Ω

|∇u|2 ≤ γ
∫

Ω

|u|2 .

A Grönwall argument now gives uniqueness of u. Hence µ+ − µ− − λ is uniquely
given through the equation (5). For all t ∈ [0, T ] we find a ρ > 0 such that

Aρ := |{x ∈ Ω| |u(x, t)| < 1 − ρ}| > 0 .
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Hence we obtain that for almost all t ∈ [0, T ] the Lagrange multiplier λ(t) is uniquely
given through

λ(t) = 1
Aρ

∫

Ω

(ε2∂tu− γε2∆u+ γψ′
0(u))dx .

Finally, we obtain that µ+ and µ− are uniquely given as

µ+ = (λ− ε2∂tu+ γε2∆u− γψ′
0(u))+ ,

µ− = (−λ + ε2∂tu− γε2∆u+ γψ′
0(u))+

where (z)+ := max(z, 0). Here we use the fact that

λ = ε2∂tu− γε2∆u+ γψ′
0(u) a.e. on {|u| < 1} .

�

Remark 2.1 i) The variational inequality (Pm) has a unique solution. This follows
from a testing procedure similar to the one in Theorem 2.1.
ii) If (Am) holds we obtain that there exists a solution of (Pm) if and only if (5)-
(10) is solvable. In particular, if there is a solution u of (Pm) Lagrange multipliers
µ+, µ−, λ exist such that (5)-(10) hold. This follows from the unique solvability of
(Pm), Theorem 2.1 and Lemma 2.1.

Similar to the integral constrained case, see Lemma 2.1 and Theorem 2.1, we can
derive the following theorem for (2) without local constraints:

Theorem 2.2 Let Ω ⊂ R
d be a bounded domain which is either convex or has a

C1,1–boundary and let u0 ∈ H1(Ω) such that |u0| ≤ 1 a.e.. Then for any solution
to the Allen-Cahn variational inequality (2) without mass conservation Lagrange
multipliers µ+, µ− ∈ L2(ΩT ) exist such that the initial and boundary conditions (6),
the complementary conditions (8)-(10) and

0 = ε2∂tu− γε2∆u+ γψ′
0(u) + µ− − µ− a.e. in ΩT

hold.

3 Primal-dual active set approach

For the numerical approximation of solutions u of (Pm) we introduce a primal-
dual active set method or equivalently a semi-smooth Newton method [21]. Both
are well known in the context of optimization with partial differential equations
as constraints. We present a time discretization of the Allen-Cahn system and
reformulate the complementarity conditions with primal-dual active sets. Finally,
even though the method is not applicable to the time discretized problem, we present
for ease of understanding the idea of the resulting iterative solution for the time
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discretized problem, which will be applied to the fully discretized problem in the
next section.
We denote the time step by τ , which can be a variable time step, t0 = 0, tn := tn−1+τ
and un := u(., tn). Then the time discretization of (Pm) is given as an Euler-
discretization. In this paper we focus on the implicit discretization leading to the
following formulation:
(Pτ

m) Given un−1 find u = un ∈ H1(Ω) such that
∫

Ω

− udx = m, |u| ≤ 1 a.e. in Ω and

( ε
τ
(u− un−1), χ− u) + γε(∇u,∇(χ− u)) + γ

ε
(ψ′

0(u), χ− u) ≥ 0 (21)

for all χ ∈ H1(Ω) with |χ| ≤ 1 and
∫

Ω

− χdx = m.

For simplicity we denote by u the time discrete solution at time tn. This disretization
can also be seen as the Euler-Lagrange equation of an implicit time discretization
of the L2 gradient flow of the energy E, which is given as

min

{

γε

2
‖∇u‖2

L2 + γ

ε

∫

Ω

ψ0(u) + ε
2τ
‖u− un−1‖2

L2

}

(22)

s.t. |u| ≤ 1 and
∫

Ω

− udx = m.

As in Lemma 2.1 one can reformulate (Pτ
m) by using 1/ε scaled Lagrange-multipliers

µ± on Ω for the inequality constraints |u| ≤ 1, µ := µ+ −µ− and λ ∈ R for
∫

Ω

−u = m

and obtain:

µ = λ− ε2

τ
(u− un−1) + ε2γ∆u− γψ′

0(u) a.e. in Ω , (23)

∂u

∂ν
= 0 a.e. on ∂Ω , (24)

∫

Ω

− udx = m, (25)

together with the complementarity conditions

|u| ≤ 1 a.e. in Ω , (26)

µ+(u− 1) = 0, µ−(u+ 1) = 0 a.e. in Ω , (27)

µ+ ≥ 0, µ− ≥ 0 a.e. in Ω . (28)

Now the idea is to reformulate the complementarity conditions using active sets
based on the primal variable u and the dual variables µ±. Then, for any c > 0,
(26)-(28) is equivalent to:

u = 1 a.e. in A+; u = −1 a.e. in A−; (29)

µ = 0 a.e. in I := Ω \ (A+ ∪A−) (30)

with
A+ = {x ∈ Ω | c (u(x) − 1) + µ(x) > 0}
A− = {x ∈ Ω | c (u(x) + 1) + µ(x) < 0}

. (31)
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A further equivalent formulation of (26)-(28) is given by the following semi-smooth
equation

H(u, µ) := µ− max(0, µ+ c (u− 1)) + min(0, µ+ c (u+ 1)) = 0. (32)

If the sets A± were known, we would only have to solve a system of equations,
namely (23)-(25) together with (29), (30). In particular, given (29), (30) the system
(23)-(25) on Ω reduces to an equation for λ ∈ R and for u on the interface I:

0 = λ− ε2

τ
(u− un−1) + ε2γ∆u− γψ′

0(u) a.e. in I , (33)

∂u

∂ν
= 0 a.e. on ∂I ∩ ∂Ω , u = ±1 a.e. on ∂I ∩ ∂A± ,

∫

Ω

− u = m. (34)

Given now u and λ one can determine µ on A± using (23).
This leads to the idea of the Primal-Dual Active Set (PDAS) algorithm:
Given initial active sets A±

0 iterate the following steps for k ≥ 0

1. Set uk = ±1 on A±
k and µk = 0 on Ik,

2. Solve (33)-(34) for λk ∈ R and uk on Ik,

3. Determine µk on A±
k using (23),

4. Determine the new active sets A±
k+1,

5. Stop the iteration if A±
k+1 = A±

k , otherwise set k = k + 1 and goto 1.

This algorithm is formally equivalent to a Newton algorithm applied to (5)-(7) and
(32) (see e.g. [21]). However, we would like to mention that the method is more
driven by the current active set than by the current values of u, µ and λ in the sense
that different u, µ can lead to the same active sets and hence to the same iteration
step. The view point of an active set method also enhances the choice of this method
instead of other numerical approaches for solving the Allen-Cahn system. Namely,
due to the evolution in time good initial active sets are given. This is much in favour
for an active set approach instead of an interior point ansatz where good initial data
is difficult to exploit. For analytical reasons the formulation as a Newton iteration
is often more convenient and will be presented and used in the next section.
As mentioned in the beginning of this section we cannot apply the method to the
time discretized Allen-Cahn variational inequality. The reason is that although one
can show the existence of the Langrange-multipliers and the regularity µ± ∈ L2(Ω)
this regularity does in general not hold in each iteration of the PDAS- algorithm.
Then the multipliers may still exist but are only measures. This effect is also known
for obstacle problems, see [23]. Therefore, the pointwise definition of the active sets
A± according to (30) is not possible. However we show in the next section that the
application of the PDAS-method to the fully discretized problem is possible and the
convergence locally superlinear.
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4 Finite element approximation

For space discretization we employ a finite element approximation which we present
in this section. Furthermore we present the PDAS-algorithm for the fully discretized
system and discuss the local convergence by employing the formulation as a semi-
smooth Newton method. At the end of this section we show with the help of obstacle
problems some features of the method.

4.1 Notation

For simplicity we assume that Ω is a polyhedral domain. Let Th be a regular trian-
gulation of Ω into disjoint open simplices, i.e. Ω = ∪T∈Th

T . Furthermore we define
h := maxT∈Th

{diam T} the maximal element size of Th and we set J to be the set
of nodes of Th and {pj}j∈J to be the coordinates of these nodes. Associated with
Th is the piecewise linear finite element space

Sh :=
{

ϕ ∈ C0(Ω)
∣

∣

∣
ϕ∣

∣

T

∈ P1(T ) ∀ T ∈ Th

}

⊂ H1(Ω),

where we denote by P1(T ) the set of all affine linear functions on T . Furthermore
we denote the standard nodal basis functions of Sh by χj for all j ∈ J . Then uj for
j = 1, . . .J denote the coefficients of the basis representation of uh in Sh which is
given by uh =

∑

j∈J ujχj and the vector of coefficients is denoted by u.
In order to derive a discretization of our models we set

Kh := {η ∈ Sh | |η(x)| ≤ 1 for all x ∈ Ω}, Km
h := {η ∈ Kh|

∫

Ω

− ηdx = m}.

We introduce also the lumped mass scalar product (f, g)h =
∫

Ω
Ih(fg) instead of

(f, g), where Ih : C0(Ω) → Sh is the standard interpolation operator such that
(Ih f)(pj) = f(pj) for all nodes j ∈ J .
Defining mj := (1, χj) we have

∫

Ω

− uh =
∑

j∈J mjuj/
∑

j∈J mj . Moreover we define

the stiffness matrix as A := (aij) with aij = (∇χj,∇χi), the mass matrix M :=
((χj, χi)h) = diag(mj) and the mass vector m := (mj).

4.2 Finite element approximation and the PDAS-algorithm

We now introduce the following finite element approximations of (Pτ
m) given by (21)

using ψ′
0(u) = −u. In the following we consider a fixed time step τ = tn − tn−1 and

omit in some places the superscript n:
(Pτ

m,h) Given un−1
h ∈ Km

h find uh = un
h ∈ Km

h such that

( ε
τ
(uh − un−1

h ) − γ

ε
uh, χ− uh)h + γε(∇uh,∇(χ− uh)) ≥ 0 ∀χ ∈ Km

h . (35)
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Due to the use of piecewise linear finite elements and nodal basis functions the
reformulation of (Pτ

m,h) with Lagrange multipliers µh ∈ Sh and λ ∈ R can be stated
as follows:
(Qτ

m,h) Find uh ∈ Sh, µh ∈ Sh and λ ∈ R such that

( ε2

τ
− γ)(uh, ϕ)h + γε2(∇uh,∇ϕ) + (µh, ϕ)h − λ(1, ϕ) = ε2

τ
(un−1

h , ϕ)h ∀ϕ ∈ Sh (36)
∑

j∈J

mjuj = m
∑

j∈J

mj , (37)

(µj)− ≥ 0, (µj)+ ≥ 0, |uj| ≤ 1, (38)

(uj + 1)(µj)− = (uj − 1)(µj)+ = 0 ∀ j ∈ J . (39)

As in (32) the complementarity conditions can be rewritten as

H(uj, µj) = 0 ∀j ∈ J . (40)

Applying now the PDAS-method presented in Section 3 to (Qτ
m,h) we obtain the

following algorithm:

Primal-Dual Active Set Algorithm (PDAS-I):

0. Set k = 0 and initialize A±
0 .

1. Define Ik = J \ (A+
k ∪ A−

k ).
Set uk

j = ±1 for j ∈ A±
k and µk

j = 0 for j ∈ Ik.

2. Solve the discretized PDE (36) with the non-local constraint (37) to obtain uk
j

for j ∈ Ik and λk ∈ R:

( ε
τ
− γ

ε
)mju

k
j + γε

∑

i∈Ik

aiju
k
i −

1
ε
mjλ

k (41)

= ε
τ
mju

n−1
j + γε(

∑

i∈A−

k

aij −
∑

i∈A+

k

aij) ∀j ∈ Ik

∑

i∈Ik

miu
k
i = m

∑

i∈J

mi −
∑

i∈A+

k

mi +
∑

i∈A−

k

mi. (42)

3. Determine µk
j for j ∈ A±

k using (36):

µk
j = −( ε2

τ
− γ)uk

j − γε2 1
mj

∑

i∈J

aiju
k
i + λk + ε2

τ
un−1

j .

4. Set A+
k+1 := {j ∈ J : uk

j +
µk

j

c
> 1}, A−

k+1 := {j ∈ J : uk
j +

µk
j

c
< −1}.

5. If A±
k+1 = A±

k stop, otherwise set k = k + 1 and goto 1.

Remark 4.1 We solve (41), (42) by multiplying (42) with ε
τ

and using the conjugate
gradient method.
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4.3 Convergence as a semi-smooth Newton method

In [21] it is shown that the mapping y → max(0, y) from R to R is slantly differ-
entiable and one possible slanting function is G(y) = 1 for y > 0 and G(y) = 0 for
y ≤ 0. Setting A+

h := {j ∈ J : uj +
µj

c
> 1}, A−

h := {j ∈ J : uj +
µj

c
< −1},

Ih := J \(A+
h ∪A

−
h ) and adapting the above for the min-max-function H(uj, µj) one

derives the slanting function G(uj, µj) = (−c, 0) for j ∈ A±
h and G(uj, µj) = (0, 1)

for j ∈ Ih. We now consider the system (36), (37) and (40) as a problem of
finding a root of F (u,µ, λ) = 0, by using a semi-smooth Newton method (SSN)
(uk+1,µk+1, λk+1) = (uk,µk, λk) − G(uk,µk, λk)−1F (uk,µk, λk). We set

Gu(u,µ) := (gu
ij) with gu

ij :=

{

−c for i = j ∈ A±
h

0 elsewhere
(43)

Gµ(u,µ) := (gµ
ij) with gµ

ij :=

{

1 for i = j ∈ Ih

0 elsewhere
(44)

and derive for F the slanting function

G(u,µ, λ) =





( ε2

τ
− γ)M + γε2A M −m
Gu(u,µ) Gµ(u,µ) 0
−mt 0 0



 . (45)

Moreover, it is easy to show the equivalence of the Newton algorithm to the PDAS-I
method using as a starting set A±

0 the set given by an initial guess (u−1, µ−1).

Theorem 4.1 The PDAS-I algorithm converges locally superlinear to the coefficient
vector u∗ of the solution uh of the discretized Allen-Cahn variational inequality with
mass constraints (35), if at least one mesh point pj of uh exists such that |uh(pj)| < 1
and τ is sufficiently small. (The precise assumption on τ is given in Theorem 4.2).

Proof: Given at least one inactive mesh point pj of uh there exists an open
neighborhood U where j ∈ Ih for all (u,µ, λ) ∈ U . Since for a fixed discretization
there exists only a finite number of possible active sets, only finitely many different
Gu(u,µ) and Gµ(u,µ) can occur, as is the case for G. In the following theorem we
show that G is invertible for all possible active sets with Ih 6= ∅. Hence the inverses
of G are uniformly bounded on U . The convergence result for the semismooth
Newton method in [11, 21] then provides the local superlinear convergence. �

Remark 4.2 One has to keep in mind that the convergence radius is unknown. In
the worst case the radius is so small that the active set of the initial guess is identical
to the active set of the solution. Then, however, the solution is obtained in one step.
In practice we always observed convergence for a larger convergence radius.
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In order to show the invertibility of G(u,µ, λ) we need a discrete Poincaré inequality:
There exists a Poincaré constant cph > 0 such that

(v, v)h ≤ cph(∇v,∇v) ∀v ∈ K (46)

with K := {v ∈ Sh |
∫

Ω

v = 0, v(pj) = 0 if j ∈ A±
h }. We then obtain the following

theorem.

Theorem 4.2 Assume Ih 6= ∅ and let τ be such that

τ(1 − ε2

c
p
h

) < ε2

γ
. (47)

Then the matrix G(u,µ, λ) is invertible which is equivalent to the unique solvability
of (41), (42).

Proof: We show that the kernel of G(u,µ, λ) contains only 0 provided that Ih 6= ∅.
The equation

G(u,µ, λ)(v,κ, α)t = 0 (48)

implies v ≡ 0 on the active sets A±
h , κ = 0 on Ih and m · v = 0. If one can show

that v = 0 has to hold, we can conclude by using a row j ∈ Ih that α = 0. Then
the first block of rows yield κ = 0, and hence the assertion holds.
To show v = 0 we prove that v = 0 is the unique solution of the quadratic opti-
mization problem in v on the inactive set

min
v∈K

[

1
2
( ε2

τ
− γ)(v, v)h + γε2

2
(∇v,∇v)

]

(49)

where the first order necessary conditions are given by (48).
We show that (49) is a strictly convex minimization problem. If τ ≤ ε2

γ
this follows

immediately. In the other case we need to control (v, v)h on K. Using the Poincaré
inequality (46) we obtain

γε2

2
(∇v,∇v) + 1

2
( ε2

τ
− γ)(v, v)h ≥ (γε2

2
+ 1

2
cph(

ε2

τ
− γ))(∇v,∇v) .

We hence obtain that (49) is uniquely solvable if (47) holds. �

In the Allen-Cahn model interfaces have to leading order in ε a thickness πε. Hence
we expect that the typical Poincaré constants cph in (46) which depends due to K

only on Ih scales like ε2. Then the time step restriction is much less severe than
τ < ε2

γ
which is usually taken, see [12], in fully implicit time discretizations of the

Allen-Cahn equation. This shall be illustrated in the following remark.

Remark 4.3 i) The Poincaré constant cph and therefore the maximal possible time
step τ , see (47), can be estimated by a Poincaré constant cp(Ih) for a continuous
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problem. We introduce ΩIh
:= int{x ∈ Ω | x ∈ suppχj, j ∈ Ih}where intA is the

interior of a set A. Let cp(Ih) be a Poincaré constant such that

(v, v) ≤ cp(Ih) (∇v,∇v) ∀v ∈ H1
0 (ΩIh

) with
∫

Ω

− vdx = 0 .

Since (v, v)h ≤ (d+ 2)(v, v) for all v ∈ Sh where d is the space dimension, see [24]
Lemma 11, we obtain (v, v)h ≤ cp(Ih) (d+ 2)(∇v,∇v) for v ∈ K and hence

cph ≤ cp(Ih) (d+ 2) .

ii) In one dimension it is shown in [17] Lemma 6.2 that for an interface I of width
πε a Poincaré constant cp(I) = 1

4
ε2 is obtained.

Then, given a good numerical approximation Ih of I no restriction at all has to be
enforced for the time step τ in order to show unique solvability.

Remark 4.4 We can also solve a semi-implicit discretization, i.e. in case that we
replace ψ0(uh) by ψ0(u

n−1
h ) + ψ′

0(u
n−1
h )(uh − un−1

h ), respectively ψ′
0(uh) by ψ′

0(u
n−1
h )

and in (36) γ(uh, ϕ)h by γ(un−1
h , ϕ)h, with a primal dual active set algorithm. In

this case the resulting linear systems are always solvable, since in (49) the negative
term disappears. However it will turn out that the fully implicit time discretization
is much more accurate.

4.4 Further features of the PDAS-approach

Although local superlinear convergence is shown, we can face, as mentioned in Re-
mark 4.2, slow convergence or oscillatory behavior of the method, if the starting sets
or the choice of c is not appropriate. For both we give here examples.

i) An example with slow convergence.

There are situtations in which the active set approach for the discrete obstacle
problem belonging to (4) converges very slowly. To demonstrate this we discuss the
following explicit example. We choose Ω = (−1, 1), uD ≡ 1, ϕ ≡ 0, ψ ≡ ∞, F (u) =

−8
∫ 1

−1
udx and K̂ = K, i.e. min

∫ 1

−1
1
2
|∇u|2 − 8(u − 1)dx for (u − 1) ∈ H1

0 (−1, 1)

and u ≥ 0. The explicit solution is given as u(x) = 4max(x − 1
2
, 0)2 for x > 0 and

for x < 0 by its reflection. The discretization shall be given by the help of Sh and
a uniform grid with step size h = 1/N , N ∈ N which leads to u0 = uN = 1 and
− 1

h2 (uj+1 − 2uj + uj−1) − 8 = µj for j = 1, . . . , N − 1 together with uj = 0 for
j ∈ A = {j | cuj + µj < 0} and µj = 0 for j /∈ A. Taking as initial active set A0

all interior nodes we obtain that the first iterate u0 is equal to zero at all interior
nodes. Consequently for all nodes j with two active neighbours we obtain µ0

j = −8.
In conclusion we obtain that the active set can shrink in this and later iterations
only by one mesh point at each boundary. This makes the algorithm very slow for
small h.
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Similar situations often appear in practical computations and hence either regular-
ization as for example discussed in [23] has to be applied, or a nested approach, as
we propose and employ in Section 5.1, has to be used.

ii) Oscillations in the bilateral case.
In the obstacle problem (4) we choose Ω = (−1, 1), uD ≡ 0, ϕ ≡ −1, ψ ≡ 1, F ≡ 0

and K̂ = K, i.e. min
∫ 1

−1
1
2
|∇u|2dx for u ∈ H1

0 (−1, 1) with |u| ≤ 1. The exact solution

is of course u ≡ 0. We again discretize the problem in Sh on a uniform grid with step
size h = 1

N
, N ∈ N and obtain µj = 1

h2 (uj+1−2uj +uj−1) for j = −N+1, . . . , N−1,
u

N
= uN = 0 together with uj = 1 for j ∈ A+ = {j | c(uj − 1) + µj > 0}, uj = −1

for j ∈ A− = {j | c(uj + 1) + µj < 0} and µj = 0 for j /∈ A±. Choosing A+
0 = {0},

A−
0 = {1} we obtain µ0

j = 0 if j 6= 0, 1,

u0(x) =











1 + x if x ∈ [−1, 0] ,

1 − 2
h
x if x ∈ [0, h] ,

1
1−h

(x− 1) if x ∈ [h, 1]

and as a consequence µ0
0 = −2+h

h2 < 2
h2 , µ

0
1 = 1

h2 (2 + h
1−h

) > 2
h2 . In conclusion we

obtain A+
1 = {1}, A−

1 = {0} if c < 1
h2 . A similar argument shows that in this case

A+
2 = {0} = A+

0 and A−
2 = {1} = A−

0 and hence the iterates oscillate between two
states.
Hence c has to be chosen larger than 1

h2 in order to avoid such unwanted oscillation.
This shows clearly that the local superlinear convergence radius of the PDAS-method
depends on the choice of c. In fact, we observed similar oscillations in our numerical
computations also in higher space dimensions. In addition the above example shows
that for bilateral constraints the parameter c will not drop out after one iteration,
compare [21] for the unilateral case.

5 Computational results

In this section we discuss some computational results. In Subsection 5.1 we apply the
PDAS-method to one-dimensional obstacle problems with mass constraints. Here
exact solutions can be derived and convergence properties can be analyzed. We give
one example, where one sees slow convergence similar to the example in 4.4(i) and
suggest and apply a nested iteration approach to overcome this problem. Moreover,
we apply the method also in a case where the Langrange multiplier is only a measure
and discuss its results.
In Subsection 5.2 we consider the Allen-Cahn variational inequality without inte-
gral constraint. We compare our PDAS-method to the widely used projected SOR
method and show its efficiency. Furthermore, we see that the PDAS-method allows
larger time steps resulting in a speed up without loss of accuracy. In Subsection
5.3 we present some results for the non-local Allen-Cahn equation. The computa-
tion times obtained are similiar to the local Allen-Cahn variational inequalities and
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again large time steps are possible. Furthermore, we consider one example where the
explicit solution is known and show that implicit discretization provides higher ac-
curacy than the semi-implicit one. Finally, we present numerical simulations in two
and three space dimensions for the Allen-Cahn variational inequality with volume
constraint.
Unless it is otherwise stated, we take ε = 1

16π
and γ = 1. Furthermore we present

numerical results in two and three space dimensions, where we take Ω = (−1, 1)2

and, respectively, Ω = (−1, 1)3.
We note that since the interfacial thickness is proportional to ε in order to resolve
the interfacial layer we need to choose h ≪ ε (see [14, 15] for details). Away from
the interface h can be chosen larger and hence adaptivity in space can heavily speed
up computations. In fact we use the finite element toolbox Alberta 1.2 (see Schmidt
and Siebert [28]) for adaptivity and we implemented the same mesh refinement
strategy as in Barrett, Nürnberg and Styles [2], i.e. a fine mesh is constructed
where |un−1

h | < 1 with a coarser mesh present in the bulk regions un−1
h = ±1. For

the computations in Subsections 5.2 and 5.3 we take the minimal diameter of an
element hmin = 3.91 × 10−3 and the maximal diameter hmax = 6.25 · 10−2, unless
otherwise stated. The time step is chosen as τ = 6.25 · 10−5.
For the standard Allen-Cahn variational inequality, i.e. without mass constraint,
there is no Lagrange multiplier λ and (42) does not need to be considered. In
each PDAS iteration one has to solve the linear system (41) without the variable
λ present. For both the local and the non-local Allen-Cahn variational inequality
we use the conjugate gradient method to solve the linear system (41)-(42), see also
Remark 4.1.

5.1 Non-local obstacle problem

We consider the one-dimensional version of the non-local obstacle problem (4) in-
troduced in Section 1. In particular, we set Ω = (−1, 1), uD ≡ 1, ϕ ≡ 0, ψ ≡ ∞
and m = 2, i.e. we study

min
∫ 1

−1
1
2
|u′|2dx− F (u− 1) for (u− 1) ∈ H1

0 with u ≥ 0 and
1
∫

−1

−udx = 2.

The numerical results presented are obtained from a piecewise linear finite element
approximation of u and the Lagrange multiplier µ on a uniform grid with mesh size
h = 2

N+1
, where again mass lumping is used. Then, a primal-dual active set method

like the one introduced in Section 4 is applied. In the computations the active set
is initialized to be all nodes j with −0.5 ≤ pj ≤ 1.6.
We consider two cases for the forcing term F , for which the obstacle problems can
be solved explicitely. In both cases the solutions are symmetric. Hence we only list
the solutions on [0, 1].
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Case 1: F (u) = f
1
∫

−1

u(x)χ[−a,a](x)dx where f̄ is a constant and a ∈ (0, 1).

One can show similar to the presented Allen-Cahn problem, that there exist La-
grange multipliers λ ∈ R and µ ∈ L2(−1, 1) such that −u′′ − f̄χ[−a,a] = λ + µ and
u ≥ 0, µ ≥ 0, uµ = 0 on [−1, 1]. Herewith, we obtain

u(x) =















0 0 ≤ x < b,

−λ+f̄

2
(b− x)2 b < x < a,

−λ
2
(1 − x)2 + 1 + cl(1 − x) a < x ≤ 1,

where λ, b and cl can be obtained using the continuity of u and u′ at x = a and the
integral constraint

∫ 1

−1
udx = 2.

In Figure 1 we display plots of the approximate solution uh obtained for several f̄
and with a = 0.3. In Table 1 the errors in u, λ and µ as well as the number of

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
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1.4

1.6

1.8

Figure 1: Case 1 with a = 0.3 and f = −20 (green), f = −40 (blue), f = −60 (red)
and f = −80 (magenta)

h ||u−uh||H1 |λ− λh| ||µ− µh||2
# of New-
ton iter.

CPU[s]
time

1.00 · 10−2 2.407 · 10−1 3.496 · 10−1 2.126 · 10−1 12 1.10
5.00 · 10−3 1.206 · 10−1 1.749 · 10−1 1.071 · 10−1 22 14.05
2.50 · 10−3 6.048 · 10−2 8.778 · 10−2 5.393 · 10−2 43 223.17
1.25 · 10−3 3.024 · 10−2 4.382 · 10−2 2.688 · 10−2 85 4182.30
1.25 · 10−3 3.024 · 10−3 4.382 · 10−2 2.688 · 10−2 16 nested 185.20

Table 1: Case 1 with f̄ = −80 and a = 0.3

PDAS-iterations and CPU-times are listed for various mesh sizes h for f̄ = −80.
We see the convergence order h of the H1-norm in u, in λ, of the L2-norm in µ and
the approximation of b is essentially only limited by the location of the mesh points.
The number of Newton iterations approximately doubles as h is halved. This is
because we are in a similar situation to the one in Section 4.4. From the second
iteration on the active set only moves two mesh point per primal dual active set
iteration, hence leading to a very slow convergence.
We overcome this issue by applying nested iteration, i.e. we first solve the problem
on a coarse mesh and then use this solution as initial data for the problem on the
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next finer mesh and repeat this until the finest mesh is reached. As coarsest mesh
we used h = 10−2 and then halved the mesh sizes up to h = 1.25 · 10−3. With this
nested approach we drastically reduced the CPU time for h = 1.25 ·10−3 from 4182.3
seconds to 185.2 seconds. The number of Newton iterations that were used, starting
with the coarse grid, were 12, 1, 1 and 2. One clearly notices that the main work is
done on the coarse grid. We suggest this approach for all cases where the number
of PDAS iterations is large already on a coarse grid.

Case 2: F (u) = gu(0) = gδ0(u), where δ0 is the Dirac distribution at 0 and g ∈ R.

It can be shown, see for example [25], that there exists Lagrange multipliers λ ∈ R,
µ ∈ (H1

0 (−1, 1))∗ such that −u′′−[u′(0)]+− δ0−gδ0 = λ+µ , and u ≥ 0, µ ≥ 0, µ(u) =

0 where [.]+− denotes the jump of a quantity. We want to emphasize that µ may be
only a measure in this case, and hence the complementarity conditions cannot be
formulated pointwise.
Nevertheless, for g ∈ [−8, 0] we obtain

u(x) = 3
8
g(1 − x)2 + 1 − g

4
(1 − x) if x > 0 ,

λ = −3
4
g and the Lagrange function µ ≡ 0. The bound is never strictly active.

For g < −8 we have
u(x) = −3(1 − x)2 + 2(1 − x) + 1 if x > 0 ,

λ = 6 and the measure µ = (−8 − g)δ0.
In Figure 2 we display plots of the approximate solution uh obtained for several
values of g including a case of g < −8. In Table 2 we list the results for g = −2.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 2: Case 2 with g = −2 (magenta), g = −4 (green), g = −6 (red), g = −12
(blue)

As in Case 1 we obtain a convergence rate of h for u and λ. The Lagrange function
µ = 0 is always determined exactly. Due to the generic choice of the initial active
set, which we chose not to be empty, we always need 2 Newton iterations.

h ||u−uh||H1 |λ− λh|
# of New-
ton iter.

1.000 · 10−2 1.178 · 10−2 7.463 · 10−3 2
5.000 · 10−3 5.900 · 10−3 3.741 · 10−3 2
2.500 · 10−3 2.953 · 10−3 1.873 · 10−3 2
1.250 · 10−3 1.477 · 10−3 9.371 · 10−4 2

Table 2: Case 2 with g = −2
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h ||u−uh||H1 |λ− λh| |8+g+hµh(0)|
# of New-
ton iter.

1.0 · 10−2 4.229 · 10−2 6.000 · 10−4 6.060 · 10−2 1
5.0 · 10−3 2.118 · 10−2 1.500 · 10−4 3.015 · 10−2 1
2.5 · 10−3 1.060 · 10−2 3.750 · 10−5 1.504 · 10−2 1
1.25 · 10−3 5.301 · 10−3 9.368 · 10−6 7.509 · 10−3 1

Table 3: Case 2 with g = −12

The results for g = −12 are given in Table 3. Here, we have the specific situation
that µ is a measure and we have a primal-dual active set, which is given by the
single point x = 0. The approximations always determine this set exactly for any
tested h in one iteration. Moreover, the convergence rate in u is h and in λ it is even
h2. As approximation for the point mass at x = 0 with mass −8 − g we get µh = 0
everywhere except on (−h, h) where the mass is given by hµh(0). The corresponding
error behaves like h.

5.2 Allen-Cahn variational inequality without
mass constraints

We begin by comparing the PDAS algorithm with the standard projected SOR
(pSOR) algorithm that is often used to solve (Ph), see [12]. In particular we take
the simple problems of a shrinking circle in R

2 and a shrinking sphere in R
3 with

radius 0.45 and centre 0 and we compare the CPU times as well as the relative error
at T = 0.01 of the two algorithms. In the tables CPU total gives the computation
time needed for the program to reach the time T , whereas CPU solver gives the
computation time needed for the solver only. For the projected SOR method this
is the computation time needed to solve the system of equations using a projected
SOR algorithm; for the PDAS method it is the time needed to solve for uk

j the linear
system of equations (41) without λ (there is no mass constraint present) using the
conjugate gradient. We calculate the relative error by taking the zero level set of
uh as approximation of the sharp interface and compare it to the solution of the
sharp interface formulation for which the radius R(t) at time t is given by the ODE
d
dt
R(t) = − 1

R(t)
, R(0) = 0.45 [5]. To be precise we measure the error between the

intersection points of the positive x1-axis with the circle and with the zero level set
of uh. There may be minor variances of uh in the other directions, but they have
been negligible in our experiments. At T = 0.01 we have R(T ) = 0.4272 and the
circle disappears at t = 0.10125. For the sphere the exact solution is given by the
ODE d

dt
R(t) = − 1

2R(t)
, R(0) = 0.45, since the mean curvature is defined to be the

sum of the principle curvatures. Hence, the sphere shrinks twice as fast as the circle.
We expect essentially the relative errors for the projected SOR and the PDAS to be
of the same size, since we are solving the same equation on the interface. However,
for the SOR method we use |uk,l

j − uk,l−1
j | < tol as stopping criterion while for the
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cg-method we use the residual. We chose and fixed the tolerances in such a way that
the relative errors are almost the same for the smallest time step. For the larger
time step the PDAS method resulted in slightly higher accuracy. Futhermore, given
averages of the degree of freedoms (DOFs) and the PDAS-iterations are averages
over the time.

time CPU [s] total CPU [s] solver DOFs rel. error PDAS-
step pSOR PDAS pSOR PDAS circa pSOR PDAS iter. ø
6.25·10−5 23.57 20.59 7.47 2.77 15500 9.64·10−3 7.61·10−3 2.1
5.00·10−4 13.90 7.43 10.12 3.27 16500 1.63·10−2 5.23·10−3 3.2
1.00·10−3 - 6.59 - 3.44 17700 - 6.11·10−3 4.2

Table 4: Projected SOR method vs. PDAS-method - CPU and error for various
time steps in 2D at T = 0.01

Figure 3: Number of Newton iterations for a shrinking circle

In the two dimensional case the results are listed in Table 4 and Figure 3. For both
time steps τ = 6.25 · 10−5 and τ = 5 · 10−4 our PDAS-method is faster. In case of
τ = 5 · 10−4 it is even about 46% faster than the pSOR method. Furthermore, it is
more stable since for the pSOR method the time step has to be less than 6 · 10−4

to converge. In Theorem 4.2 and the following remark we have shown that the
time step can be much larger for the PDAS-method, which is also observed in the
above calculations. In particular, in the numerical experiments the PDAS-method
worked for time steps as long as the mean curvature does not become too high. If
the solution is only of interest at time T , large time steps are favoured and with the
PDAS-method the computation time can be reduced significantly.
In addition, larger time steps can be taken for the PDAS method without loosing
accuracy. This is in contrast to the projected SOR method which gives a higher
error for τ = 5 · 10−4.
We note that the CPU time for the SOR solver in the projected SOR method
increases for larger time steps although there are less equations to be solved. This
is due to the initial guess, which is the solution of the previous time step, being
further away from the solution of the linear system in the current time step. The
conjugate gradient solver does not depend that strongly on a good initial guess due
to a higher convergence rate and converges faster than the SOR method for larger
time steps.
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time CPU [s] total CPU [s] solver DOFs rel. error PDAS-
step pSOR PDAS pSOR PDAS ø mill. pSOR PDAS iter. ø
6.25·10−5 12447 11350 3609 1697 1.9 8.48·10−3 8.95·10−3 4.2
5.00·10−4 6072 2500 4713 1029 2.1 4.22·10−3 2.63·10−3 4.7
1.00·10−3 - 2216 - 1290 2.3 - 3.18·10−3 6.1

Table 5: Projected SOR method vs. PDAS method - CPU and error for various
time steps for 3D at T = 0.01

Moreover, the CPU time for the solver in the PDAS-method is significantly lower
than for the pSOR method, since the system of equations are considerably smaller.
However, the total CPU time does not decrease quite that much because extra time
is needed to determine the Lagrange multiplier µk

j and to set the active and inactive
sets.
Note that in contrast to the PDAS-method for the pSOR method we are restricted
to use the SOR solver. In this paper we are using the conjugated gradient algorithm
in the PDAS-method. However, a different solver may additionally speed up the
PDAS-method. This is a subject for further research.
The average number of Newton iterations increases for larger time steps, since the
interface, and hence the active set moves more in a single time step. The dependence
of the number of Newton iterations on the speed of the interface movement can also
be observed in time (see Figure 3). When the radius becomes smaller the number
of Newton iterations increases. Note that the circle disappears at t = 0.10125.

For the three dimensional test problem the same behaviour is observed as in the
two dimensional case, see Table 5. We note in particular that for τ = 5.00 · 10−4

our method is 2.4 times faster than the pSOR method. This is mostly due to the
decreased computation time needed to solve the linear systems. Since the mean
curvature is defined as the sum of all principle curvatures the curvature of the
sphere is twice as high as the curvature of a circle with the same radius. This has
the effect that the interface changes more rapidly and hence, the number of Newton
iterations is significantly higher for the three dimensional case. Moreover, we see
that in higher dimensions it is essential to be able to use large time steps for the
study of the interface at a specific time T , which is possible with the PDAS-method.
In comparison to the pSOR method we obtain uh with a speed up of 64%. Further
time reduction could be possible with another choice of linear algebra solver, as
mentioned before.
Finally, we would like to mention, that most existing literature concentrates up to
now on the explicit discretization where with the use of mass lumping a non-linear
system of equations has to be solved [5, 19, 26]. The explicit discretization has the
usual stability restriction for parabolic problems, τ ≤ Ch2. Since we need h ≪ ε
this time step restriction is very strong. In contrast, for the implicit discretization
in time in combination with the suggested PDAS-method, which we study in this
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time step CPU [s]
total

CPU [s]
solver

DOFs
circa

rel. error
Newton
iter. ø

6.25 · 10−5 19.75 4.42 16000 4.08 · 10−4 1.07
5.00 · 10−4 7.06 3.46 17000 4.04 · 10−4 1.50
1.00 · 10−3 6.74 3.95 17500 4.00 · 10−4 2.00

Table 6: PDAS-method for the volume conserved Allen-Cahn equation at T = 0.01

paper, we only have the restriction (47). In our computations we were able to reduce
the time step down to τ = 1.0 · 10−3.

5.3 Allen-Cahn variational inequality with integral constraint

5.3.1 Numerical comparison with analytically known solutions

Example 1: To clarify the difference between problems without and with integral
constraints we consider the same model problem as in the previous section, i.e. a
circle of radius 0.45 as initial interface, but now with volume conservation. Now the
circle should keep its shape and stay stationary. Therefore we expect only minor
changes in the active set due to discretization errors. This behaviour can be seen
in Table 6 looking at the numbers of Newton iterations averaged over time, which
are between 1 and 2. Only for the first iteration we need 3 or 4 Newton iterations
after which the number of Newton iterations goes down to 2 and soon stabilizes
at only one Newton iteration per time step iteration. The CPU time does not
increase compared to the computations for the shrinking circle. As before we use
the conjugate gradient method and essentially we only add one more row and column
to the linear system of equations. Again large time steps can be used and speed up
the calculation without loss of accuracy.
Example 2: Next, we take two spheres with radii r1 and r2 which do not intersect,
here r1(0) = 0.3 and r2(0) = 0.2 with centres (−0.5, 0) and (0.5, 0). This results for
the sharp interface problem in r′1 = − 1

r1
+λ, r′2 = − 1

r2
+λ together with the condition

of volume conservation 0 = 1
2
(r2

1 + r2
2)

′, which we also can solve analytically [27].
The larger circle grows while the smaller one disappears roughly at time T = 0.053s.
Again we compared the radii of the sharp interface solutions with the approximations
we obtained using the PDAS-method. We employed a semi-implicit as well as an
implicit discretisation in time. In Figure 4 the radii of the larger circle over time
are displayed for all three solutions for three different time step sizes. Here the
radii of the approximations are determined as in Section 5.2. The behaviour for
the smaller one is essentially the same and therefore omitted. The semi-implicit
approximation leads to very poor accuracy for larger time steps, in particular at
growing time t. Although accuracy improves for smaller time steps it remains worse
than the approximation obtained for implicit discretisation in time. Hence, even
though there is no time step restriction for the semi-implicit time discretisation
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the time step still needs to be very small to achieve accurate approximations. The
implicit discretisation leads to better results.
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Figure 4: Comparison: sharp interface solution vs. semi-implicit and implicit PDAS-
approximation.

For the implicit discretization the absolute error in time is given in Figure 5. The
errors are of order 10−3 but increase significantly when the circle with initial radius
r2(0) = 0.2 becomes very small. Close to this singularity a smaller time step achieves
higher accuracy, whereas if the radii of the circles are big enough larger time steps
can be chosen. This clearly indicates that an adaptive choice of the time step would
be favourable, which shall be studied in the future.

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.002

0.004

0.006

0.008

0.01

time

ab
so

lu
te

 e
rr

or

 

 

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

time

ab
so

lu
te

 e
rr

or

 

 

 τ = 6.25⋅10−5

 τ = 5.0⋅10−4

 τ = 1.0⋅10−3

 τ = 6.25⋅10−5

 τ = 5.0⋅10−4

 τ = 1.0⋅10−3

Figure 5: Absolute error between sharp interface solution and approximations (using
implicit discretisation in time) of r1 (left) and r2 (right) for various time steps

5.3.2 Simulations for the Allen-Cahn equation with integral constraint

For the first simulation (Figure 6) of interface evolution with volume constraint in
two space dimensions we set the initial values for the order parameter u randomly
between -0.1 and 0.1, i.e. there are no pure phases present. Already at time t = 0.002
grains start to form and grow and at t = 0.003 we have two phases (red and blue)
separated by a diffuse interface. Now the interface moves according to motion by
mean curvature but preserving the volume of both phases. That means that closed
curves turn into circles and shapes with less volume shrink and disappear while at
the same time shapes with the highest volume will grow. At the end (i.e. when
the problem becomes stationary) there are three different shapes we can obtain: a
circle, a quarter of a circle in one of the corners (see Figure 6) and a straight vertical
or horizontal line dividing the two phases.
For the computation in Figure 7 we use a three dimensional domain with one of
the phases being a dumbbell. For this computation we had to take a coarser mesh
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t = 0.000 t = 0.003 t = 0.010

t = 0.090 t = 0.250 t = 3.000

Figure 6: Volume controlled Allen-Cahn equation (2d) with random initial data
(varying between -0.1 and 0.1)

due to memory restrictions. We used hmin = 7.81 · 10−3 and hmax = 6.25 · 10−2.
Without the volume conservation the dumbbell would dissect and the two spheres
would shrink and disappear. The volume conservation forces the dumbbell to turn
into an ellipsoid before turning into a sphere and finally becoming stationary.

t = 0.001 t = 0.010 t = 0.050

t = 0.100 t = 0.160 t = 0.500

Figure 7: Volume controlled Allen-Cahn equation with a dumbbell as initial data
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5.4 Conclusions

In this paper we introduced, analyzed and applied a primal-dual active set method
for local and non-local Allen-Cahn variational inequalities. Our approach enables
us to use implicit discretisation in time and hence large time steps can be taken as
well as higher accuracy is obtained. Only close to singularities smaller time steps
are needed to achieve accurate approximations. Therefore, an adaptive time step
strategy may be used which will be subject for further research. Thus far we have
used the conjugate gradient method to solve the linear problem in each iteration,
but a different linear algebra solver would lead to a further speed up of our method.
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