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Abstract

The Cahn-Hilliard variational inequality is a non-standard parabolic vari-
ational inequality of fourth order for which straightforward numerical ap-
proaches cannot be applied. We propose a primal-dual active set method which
can be interpreted as a semi-smooth Newton method as solution technique for
the discretized Cahn-Hilliard variational inequality. A (semi-)implicit Euler
discretization is used in time and a piecewise linear finite element discretiza-
tion of splitting type is used in space leading to a discrete variational inequality
of saddle point type in each time step. In each iteration of the primal-dual
active set method a linearized system resulting from the discretization of two
coupled elliptic equations which are defined on different sets has to be solved.
We show local superlinear convergence of the primal-dual active set method
and demonstrate its efficiency with several numerical simulations.

Key Words: Cahn-Hilliard equation, active-set methods, semi-smooth
Newton methods, gradient flows, PDE-constraint optimization, saddle point
structure.

AMS subject classification: 35K55, 35K85, 90C33, 49N90, 80A22,
82C26, 65M60

1 Introduction

The Cahn-Hilliard equation was initially introduced to model phase separation in
binary alloys [10]. By now the Cahn-Hilliard equation has found many applications
ranging from classical aspects in materials science [30, 21] over image processing
[16], fluid dynamics [29], topology optimization [37] up to the modelling of mineral
growth [27] and galaxy structure formation [33]. The Cahn-Hilliard equation can
model interface motion in so called conserved systems, i.e. in systems where the
concentration of a species or the volume occupied by a phase is conserved. In these
applications Cahn-Hilliard variational inequalities are frequently used.

In this paper we propose a numerical method for solving Cahn-Hilliard vari-
ational inequalities and we heavily use the gradient flow structure of the Cahn-
Hilliard model. We interpret the time discretized version of the gradient flow as a
PDE-constraint optimization problem where in addition pointwise inequality con-
straints have to hold. The PDE-constraint minimization problem which we obtain is
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non-standard as the objective functional obtains L2-norm of gradients rather than
the L2-norms of the involved functions itself. We propose to solve the fully dis-
cretized system with a primal-dual active set method which can be reinterpreted
as a semi-smooth Newton method. It turns out that this approach is superior to
earlier numerical methods for Cahn-Hilliard variational inequalities. Its efficiency in
each iteration step is comparable to a method proposed by Gräser and Kornhuber
[22]. They introduce and analyse a Uzawa-multigrid algorithm. There in each iter-
ation step an intermediate primal-active set is determined with the help of obstacle
problems which are solved with a monotone multigrid method. In a second step a
linear subproblem similar to ours where only the right hand side differs has to be
solved, to then update the chemical potential by a damped gradient-type method.
After convergence the phase field is determined. In contrast we determine the active
sets in a simple way using approximations of the primal and dual variables, we have
to solve the same linear subproblem where we solve for the chemical potential and
the phase field simultaneously. Banas and Nürnberg [2] extended the idea of [22]
and apply a monotone multigrid approach to the whole system of Cahn-Hilliard
inequalities. Computational comparisons are not available up to now.

The outline of the paper is as follows. In the remainder of this section we
introduce the Cahn-Hilliard variational inequality. We will interpret the implicit
time discretization of the Cahn-Hilliard variational inequality as a PDE-constraint
optimization problem in Section 2. In Section 3 we introduce a primal-dual active
set approach for the time discretized Cahn-Hilliard variational inequality and we
formulate a finite element method for a splitting formulation of the Cahn-Hilliard
variational inequality in Section 4. We also show local superlinear convergence.
Finally, we numerically analyse the behaviour of the method with the help of four
examples of different type and show some simulations in Section 5.

Since the gradient flow perspective is important for what follows we choose to
derive the Cahn-Hilliard equations as a gradient flow. We remark that our derivation
will be formal. We now consider a vector space Z and an affine subspace U ⊂ Z, i.e.
there exists a u ∈ Z and a linear space Y ⊂ Z such that U = u+ Y. The gradient
of a sufficiently smooth function E : U → R depends on the inner product chosen
for Z. We define the first variation of E at a point u ∈ U in a direction v ∈ Y by

δE

δu
(u)(v) := lim

δ→0

E(u+ δv)− E(u)

δ
.

We say grad
Z
E(u) ∈ Z is a gradient of E with respect to the inner product (., .)Z

on Z if

(gradZE(u), v)Z =
δE

δu
(u)(v) for all v ∈ Y .

Now the gradient flow of E with respect to the inner product (., .)Z is given as

∂tu(t) = −gradZE(u(t)) . (1)
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The energy decreases in time due to the inequality

d

dt
E(u(t)) = (gradZE(u(t)), ∂tu(t))Z = −‖∂tu‖2Z ≤ 0.

In the following, in order to derive the Cahn-Hilliard equation, we introduce the
Ginzburg-Landau energy E : H1(Ω)→ R as

E(u) =
∫

Ω

{γε

2
|∇u|2 + 1

ε
ψ(u)}dx (2)

where Ω ⊂ R
d is a bounded domain with Lipschitz boundary, γ > 0 is a constant

related to the interfacial energy density and ψ is a double well potential, e.g. ψ(u) =
(1− u2)2 or an obstacle potential, e.g.

ψ(u) =

{

ψ0(u) u ∈ [−1, 1]
∞ elsewhere

}

= ψ0(u) + I[−1,1](u) (3)

where ψ0 is smooth and I[−1,1] is the indicator function, i.e. I[−1,1] is set to infinity
outside the interval [−1, 1] and to 0 on [−1, 1]. In the following we will choose

ψ0(u) = 1
2
(1− u2) (4)

which is the typical choice in the literature, see e.g. [7], but other non-convex
functions are possible. In the Cahn-Hilliard model different phases correspond to
the values u = ±1. On an interface a solution rapidly changes from values close to
1 to values close to −1 and the thickness of this interfacial region is proportional to
the parameter ε in (2), see e.g. Figure 1.

If ψ is smooth the first variation of E in a direction v is given as

δE

δu
(u)(v) =

∫

Ω

(γε∇u · ∇v + 1
ε
ψ′(u)v) . (5)

Choosing Z = L2(Ω), U = Y = H1(Ω) and u = 0 we obtain

gradL2E(u) = −γε∆u+ 1
ε
ψ′(u) (6)

and the resulting gradient flow equation gives the so called Allen-Cahn equation.
We remark here that for (6) we also need to require ∂u

∂n
= 0 on ∂Ω where n is the

outer unit normal to ∂Ω.
As mentioned above in the Cahn-Hilliard model the total concentration, i.e.

∫

Ω

u(x)dx is assumed to be conserved. Denoting by
∫

Ω

− u the mean value of a function

u, we now define for a given m ∈ (−1, 1) the sets

U := {u ∈ H1(Ω) |
∫

Ω

− u = m} , Y := {u ∈ H1(Ω) |
∫

Ω

− u = 0}.
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In addition we introduce Z = H−1(Ω) = {u′ ∈ (H1(Ω))′ | 〈u′, 1〉 = 0}, i.e. all
bounded linear functionals on H1(Ω) that vanish on constant functions. Here and
in what follows 〈., .〉 denotes the dual pairing. On Z = H−1(Ω) we define the H−1-
inner product for v1, v2 ∈ Z as

(v1, v2)H−1 :=
∫

Ω

∇(−∆)−1v1 · ∇(−∆)−1v2 (7)

where y = (−∆)−1v is the weak solution of −∆y = v, ∂y

∂n
= 0. We remark that

the solution to this elliptic problem is only defined up to a constant and we always
choose y such that

∫

Ω

− y = 0. The function space Y is canonically embedded into Z

since u ∈ Y can be related to the linear functional y 7→
∫

Ω

uy. For v1, v2 ∈ Y we

obtain
(v1, v2)H−1 = (v1, (−∆)−1v2)L2 = ((−∆)−1v1, v2)L2 .

These identities also hold more generally for functions v1, v2 ∈ L2(Ω) with mean
value zero. To compute the H−1-gradient of E we now need to find gradH−1E(u) ∈ Z

such that

(v, gradH−1E(u))H−1 =
δE

δu
(u)(v) holds for all v ∈ Y.

From the above we obtain (v, (−∆)−1gradH−1E(u))L2 = (v, gradL2E(u))L2 and hence

gradH−1E(u) = (−∆)gradL2E(u) . (8)

Then, the Cahn-Hilliard equation is given as theH−1-gradient flow of the Ginzburg–
Landau energy E. If ψ is smooth we obtain the fourth order parabolic equation

∂tu = −gradH−1E(u) = ∆
(

−γε∆u+ 1
ε
ψ′(u)

)

(9)

or equivalently introducing the so called chemical potential w the equation can be
rewritten as a system as follows

∂tu = ∆w , (10)

w = −γε∆u+ 1
ε
ψ′(u). (11)

In addition the boundary conditions ∂u
∂n

= ∂w
∂n

= 0 on ∂Ω have to hold. Let us
remark, that in this formulation we do not necessarily have

∫

Ω

−w = 0, i.e. in general

w 6= −(−∆)−1∂tu but both functions only differ by an additive constant.
It is also possible to derive the Cahn-Hilliard equation from the mass balance

law and in this case −∇w is the mass flux where for simplicity a mobility coefficient
was taken to be one, see e.g. Elliott [18] or Novick-Cohen [30].

The presentation so far is appropriate for smooth functions ψ. If the energy has
the double obstacle form (3) we differentiate I[−1,1] in the sense of subdifferentials,
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i.e. for a u ∈ L2(Ω) with |u| ≤ 1 we obtain that µ ∈ L2(Ω) is in the subdifferential
of I[−1,1] at u if and only if

µ ∈ ∂I[−1,1](u) =











(−∞, 0] if u = −1 ,

0 for u ∈ (−1, 1) ,

[0,∞) if u = 1 ,

(12)

is fulfilled pointwise almost everywhere. This can be rewritten in the following
complementarity form

µ = µ+ − µ−, µ+ ≥ 0, µ− ≥ 0, µ+(u− 1) = 0, µ−(u+ 1) = 0 (13)

which also has to hold almost everywhere. In this case the H−1-gradient flow has
the form

∂tu = ∆w , (14)

w = −γε∆u+ 1
ε
(ψ′

0(u) + µ) (15)

with µ ∈ ∂I[−1,1](u), |u| ≤ 1 and zero Neumann boundary conditions for u and w.
This formulation can be restated in a variational inequality formulation, see e.g.
Blowey and Elliott [7] or Kinderlehrer and Stampacchia [26] and Friedman [20] for
other obstacle problems, as follows:

∂tu = ∆w , (16)

(w, ξ − u)L2 ≤ γε(∇u,∇(ξ − u))L2 + 1
ε
(ψ′

0(u), ξ − u)L2 ∀ ξ ∈ H1(Ω), |ξ| ≤ 1 ,(17)

together with |u| ≤ 1 a.e.. For this formulation it can be shown that a unique
solution u exists which is H2-regular in space. More precisely the following theorem,
see [7], is true.

Theorem 1.1 Assume Ω is convex or ∂Ω ∈ C1,1, u0 ∈ H1(Ω) with |u0| ≤ 1 and
∫

Ω

−u0 = m ∈ (−1, 1). Then there exists a unique pair (u, w) such that

u ∈ H1(0, T ; (H1(Ω))′) ∩ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1(Ω)) ,

|u| ≤ 1 a.e. and w ∈ L2(0, T ;H1(Ω)) which solves

〈∂tu, η〉+ (∇w,∇η)L2 = 0 for all η ∈ H1(Ω) and t ∈ (0, T ) a.e.

together with the variational inequality (17) and u(0, ·) = u0.
In particular µ = εw + γε2∆u− ψ′

0(u) ∈ L2(ΩT ).
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2 Cahn-Hilliard variational inequalities and PDE-

constraint optimization

Given discrete times tn = nτ, n ∈ N0, where τ > 0 is a given time step the backward
Euler discretization of the gradient flow equation (1) is given as

1
τ
(un − un−1) = −gradH−1E(un) . (18)

This time discretization has a natural variational structure. In fact one can compute
un as the solution of the minimization problem

min
u∈U

{E(u) + 1
2τ
‖u− un−1‖2H−1} . (19)

One hence tries to decrease the energy E but has to take into account that deviations
from the solution at the old time step costs where the cost depends on the norm on
Z = H−1(Ω). As Euler-Lagrange equation for (19) we obtain the backward Euler
discretization (18). We remark here that (18) might have solutions which are not
necessarily global minimizers of the minimization problem (19). In the case of the
Cahn-Hilliard model we need to minimize

∫

Ω

{

γε

2
|∇u|2 + 1

ε
ψ(u)

}

dx+ 1
2τ
‖u− un−1‖2

H−1 (20)

under all u ∈ H1(Ω) with
∫

Ω

− u =
∫

Ω

− un−1 = m. In order to compute the H−1-norm

of u− un−1 we need to solve a Poisson problem and hence we obtain, in the case of
the obstacle potential, the following PDE-constraint optimization problem

min

{

γε

2

∫

Ω

|∇u|2 + 1
ε

∫

Ω

ψ0(u) + τ
2

∫

Ω

|∇v|2
}

(21)

such that τ∆v = u− un−1 , (22)

|u| ≤ 1,
∫

Ω

− u = m,

with ∂v
∂n

= 0 on ∂Ω and
∫

Ω

− v = 0.

This formulation has the form of an optimal control problem where u is the control
and v is the state.

We now introduce Lagrange multipliers w ∈ H1(Ω) for the weak formulation of
(22), and κ ∈ R for

∫

Ω

− v = 0 and define the Lagrangian

L(u, v, w, λ) := γε

2

∫

Ω

|∇u|2 + 1
ε

∫

Ω

ψ0(u)+ τ
2

∫

Ω

|∇v|2−
∫

Ω

τ∇w ·∇v−
∫

Ω

(u−un−1)w+κ
∫

Ω

−v .

With this Lagrangian the equality constraints are incorporated. In fact the equality
constraints are obtained as the first variation of L with respect to w and κ. In
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particular, we obtain
∫

Ω

− u =
∫

Ω

− un−1 = m if we vary w by a constant. This implies

that w acts as a Lagrange multiplier simultaneously for the equality constraints (22)
and

∫

Ω

− u = m :=
∫

Ω

− un−1.

Introducing appropriately scaled Lagrange multipliers µ, namely with 1
ε
, for the

pointwise box-constraints we obtain the following version of the KKT-system where
(23), (25) and (26) have to be understood in its weak form.

τ∆(w − v) = κ in Ω,
∂w

∂n
=
∂v

∂n
on ∂Ω , (23)

∫

Ω

− v = 0 , κ = 0 , (24)

1
τ
(u− un−1) = ∆v in Ω,

∂v

∂n
= 0 on ∂Ω , (25)

w + γε∆u− 1
ε
ψ′

0(u)− 1
ε
µ = 0 in Ω,

∂u

∂n
= 0 on ∂Ω , (26)

µ = µ+ − µ−, µ+ ≥ 0, µ− ≥ 0, a.e. in Ω , (27)

µ+(u− 1) = 0, µ−(u+ 1) = 0, a.e. in Ω , (28)

and |u| ≤ 1 a.e. in Ω . (29)

Given (23)-(24) we obtain w −
∫

Ω

− w = v, i.e. v and w only differ by a constant. We

can replace v by w in (25) and we hence obtain in particular a time discretization
of (14), (15) using the complementary formulation (13). The Lagrange multiplier w
coincides with the chemical potential, and the scaled Lagrange multiplier µ coincides
with the subdifferential of I[−1,1]. Since the equations (23) and (24) are not needed
we omit them in the following.

In the following we consider the choice of ψ0(u) = 1
2
(1 − u2) and show that the

system (25)-(29) has a solution. Defining the admissible set

Uad := {u ∈ H1(Ω) | |u| ≤ 1,
∫

Ω

− u = m}

(20) or respectively (21)-(22) can be reformulated as

min
u∈Uad

E(u) := {γε

2

∫

Ω

|∇u|2 + 1
ε

∫

Ω

ψ0(u) + 1
2τ

∫

Ω

|∇(−∆)−1(u− un−1)|2} . (30)

Since 1
2
(1 − u2) is nonconvex the above minimization problem will in general omit

more than one solution. But one can show that for small τ > 0 the problem is
uniquely solvable. This is the content of the following lemma. Similar restrictions
on the time step in order to obtain uniqueness had to be imposed in a fully discrete
situation in [3] and [8].

Lemma 2.1 The minimization problem (30) has a solution. A unique solution
exists if τ ∈ (0, 4γε3).
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Proof: Since |u| ≤ 1 we obtain that
∫

Ω

ψ0(u) =
∫

Ω

1
2
(1−u2) is non-negative and there

exists a minimizing sequence (uk)k∈N ⊂ Uad for E, i.e.

E(uk)→ inf
u∈Uad

E(u) > −∞ for k →∞ .

Given that (E(uk))k∈N is uniformly bounded we can conclude that
∫

Ω

|∇uk|2dx is

uniformly bounded. Due to
∫

Ω

(uk −m)dx = 0 we can use Poincaré’s inequality for

functions with mean value zero, see e.g. [1], to obtain that (uk)k∈N is a bounded
sequence in H1(Ω). Using the fact that bounded sequences in H1(Ω) have weakly
converging subsequences and applying Rellichs theorem we obtain the existence of
a subsequence such that

ukj
⇀ u∗ in H1(Ω), ukj

→ u∗ in L2(Ω) for j →∞ .

Since the terms
∫

Ω

|∇u|2dx and
∫

Ω

|∇(−∆)−1u|2dx are convex, we obtain that they

are weakly lower semi-continuous in H1(Ω), see e.g. [19]. Since
∫

Ω

ψ0(ukj
) converges

strongly we conclude that u∗ is in fact a minimum of E in Uad.
The functional E is strictly convex on U if and only if F (η) := E(η + un−1) is

strictly convex on Y. Since F is the sum of terms which are constant or linear and
of

γε

2

∫

Ω

|∇η|2 − 1
2ε

∫

Ω

η2 + 1
2τ

∫

Ω

|∇(−∆)−1η|2 (31)

we only need to show that (31) is strictly positive on Y \ {0}. Using the definition
of (−∆)−1 and Young’s inequality we obtain for all η ∈ Y

1
2ε

∫

Ω

η2 = 1
2ε

∫

Ω

(∇(−∆)−1η) · ∇η ≤ δ
4ε

∫

Ω

|∇(−∆)−1η|2 + 1
4δε

∫

Ω

|∇η|2 .

Choosing δ = 2ε
τ

we obtain

γε

2

∫

Ω

|∇η|2 − 1
2ε

∫

Ω

η2 + 1
2τ

∫

Ω

|∇(−∆)−1η|2 ≥
(

γε

2
− τ

8ε2

) ∫

Ω

|∇η|2 .

If τ < 4γε3 we obtain uniqueness from the strict convexity of E. �

Lemma 2.2 A solution u ∈ Uad of (30) solves the variational inequality

∫

Ω

γε∇u · ∇(η − u)− 1
ε

∫

Ω

u(η − u) + 1
τ

∫

Ω

(−∆)−1(u− un−1)(η − u) ≥ 0 (32)

for all η ∈ Uad.
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Proof: Computing the first variation of the first two terms in (30) in a direction
(η − u) is standard. In addition we have

d

dδ

∫

Ω

|∇(−∆)−1(u+ δ(η − u)− un−1)|2|δ=0

=
∫

Ω

∇(−∆)−1(u− un−1) · ∇(−∆)−1(η − u) =
∫

Ω

(−∆)−1(u− un−1)(η − u) .

Since the derivative of the functional in (30) has to be nonnegative in directions
η − u with u ∈ Uad we obtain (32). �

Lemma 2.3 Let u ∈ Uad be a solution of the variational inequality (32). Then
there exists a λ ∈ R such that for all η ∈ H1(Ω) with |η| ≤ 1 the inequality

∫

Ω

γε∇u · ∇(η − u)− 1
ε

∫

Ω

u(η − u) + 1
τ

∫

Ω

(−∆)−1(u− un−1)(η − u) (33)

− λ
∫

Ω

(η − u) ≥ 0

holds.

Proof: We argue similar as in the proof of Proposition 3.3 in [7]. Let f = 2
ε
u −

1
τ
(−∆)−1(u − un−1). Since u and un−1 are bounded by one in modulus we obtain

from the theory of elliptic equations that f is bounded. We now define for each
α ∈ R a function uα ∈ K := {u ∈ H1(Ω) | |u| ≤ 1} such that for all η ∈ K

∫

Ω

γε∇uλ · ∇(η − uλ) + 1
ε

∫

Ω

uλ(η − uλ) ≥
∫

Ω

f(η − uλ) + α
∫

Ω

(η − uλ) . (34)

Using standard theory of variational inequalities we deduce that (34) has a unique
solution, see e.g. [26]. We now introduce a function M : R→ R by

M(α) :=
∫

Ω

− uα .

For all η ∈ K and all α ∈ R we have the pointwise inequalities

(1
ε
− f − α)(η − 1) ≥ (1

ε
+ ‖f‖∞ − α)(η − 1)

and
1

ε
− f − α)(η + 1) ≥ (−1

ε
− ‖f‖∞ − α)(η + 1) .

Hence u ≡ 1 is a solution of (34) if α ≥ 1
ε

+ ‖f‖∞ and u ≡ −1 is a solution of (34)
if α ≤ −(1

ε
+ ‖f‖∞). We now obtain M(±(1

ε
+ ‖f‖∞)) = ±1. As in the proof of

Proposition 3.3 in [7] we obtain that M is monotone and continuous. Hence a λ ∈ R

exists such that M(λ) = m. We now choose η = uλ in (32) and η = u in (34) with
λ = λ. Adding both resulting terms leads to

∫

Ω

γε|∇(u− uλ)|2 + 1
ε

∫

Ω

|uλ − u|2 ≤ 0 ,
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where we use the fact that
∫

Ω

u =
∫

Ω

uλ. Hence u = uλ. Using this result and the

definition of f we conclude from (34) that u fulfills (33). �

Using regularity theory for obstacle problems we obtain similar as in the proof
of Lemma 3.2 in [7]

u ∈W 2,p
loc (Ω) for all p ∈ (1,∞) , u ∈ C1,α

loc (Ω) for all α ∈ (0, 1) .

Setting v = −(−∆)−1

(

u− un−1

τ

)

, w = v + λ ,

µ+ = ε(γε∆u+ 1
ε
u+ w)+ ,

µ− = ε(γε∆u+ 1
ε
u+ w)− ,

µ = µ+ − µ−

we obtain similar as for other optimization problems with bilateral constraints (see
e.g. [34]) the following result.

Remark 2.1 There exists a solution (u, v, w, µ) of the KKT system (23)-(29). In
particular there is a Lagrange multiplier µ with µ ∈ L2(Ω). Replacing ψ′

0(u) in (26)
by ψ′

0(u
n−1) gives a semi-implicite time discretization, see e.g. [8]. Arguing similar

as above a solution to the semi-discrete version exists which is in H2(Ω). In this
case the minimization problem related to (30) is always uniquely solvable, i.e. no
restriction on the time step is necessary.

3 Primal-dual active set approach

The goal of this section is to formulate a primal-dual active set method in order to
solve for a time step τ > 0 a spatially discretized version of

1
τ
(u− un−1) = ∆w in Ω ,

∂w

∂n
= 0 on ∂Ω (35)

together with (26)-(29). We now introduce for a c > 0 the active sets

A+ =
{

x ∈ Ω | u(x) + µ(x)
c
> 1

}

, A− =
{

x ∈ Ω | u(x) + µ(x)
c
< −1

}

and the inactive set I := Ω\(A+∪A−). The conditions (27)-(29) can be reformulated
as

u(x) = ±1 if x ∈ A± , µ(x) = 0 if x ∈ I . (36)

Formally, this leads to the following primal-dual active set strategy employing the
primal variable u and the dual variable µ.
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Primal-Dual Active Set Algorithm (PDAS-I):

1. Set k = 0, initialize A±
0 and define I0 = Ω \ (A+

0 ∪ A−
0 ).

2. Set uk = ±1 on A±
k and µk = 0 on Ik.

3. Solve the coupled system of PDE’s (35), (26) to obtain uk on Ik, µk on A+
k ∪A−

k

and wk on Ω.

4. Set A+
k+1 :=

{

x ∈ Ω | uk(x) + µk(x)
c

> 1
}

,

A−
k+1 := {x ∈ Ω | uk(x) + µk(x)

c
< −1} and Ik+1 = Ω \ (A+

k+1 ∪ A−
k+1).

5. If A±
k+1 = A±

k stop, otherwise set k = k + 1 and goto 2.

Another reformulation of (27)-(29) is given with the help of a semi-smooth equa-
tion as follows

H(u, µ) := µ− (max(0, µ+ c(u− 1)) + min(0, µ+ c(u+ 1)) = 0 . (37)

A semi-smooth Newton method applied in a formal way to (35), (26), (37) is equiva-
lent to the above primal-dual active set method, see e.g. [23] for a different context.
It is known that for obstacle problems the iterations in (PDAS-I) in general are
not applicable in function space since the iterates µk are only measures and not
L2-functions, see [24]. The same is true for the non-standard obstacle problem (21),
as ∆uk as obtained in the iterations of (PDAS-I) in general is only a measure. In
the following section we introduce a finite element discretization of (25)-(29) and we
show that for the discretized system local superlinear convergence holds.

4 Finite element discretization

We now introduce a finite element approximation for the Cahn-Hilliard variational
inequality using continuous, piecewise affine linear finite elements for u and w. In the
following we assume for simplicity that Ω is a polyhedral domain. Generalizations
to curved domains are possible using boundary finite elements with curved faces.
Let {Th}h>0 be a triangulation of Ω into disjoint open simplices. Furthermore, we
define Th to have maximal element size h := maxT∈Th

{diam(T )} and we set Jh to
be the set of nodes of Th and pj ∈ Jh to be the coordinates of these nodes. The
finite element space of piecewise affine linear, continuous finite elements associated
to Th is now given as Sh := {ϕ ∈ C0(Ω) | ϕ|T ∈ P1(T ) ∀ T ∈ Th} ⊂ H1(Ω) where
we denote by P1(T ) the set of all affine linear functions on T . To each pj ∈ Jh

we associate the nodal basis function χj ∈ Sh with the property χj(pi) = δij . We
replace the L2-inner product (., .)L2 at some places by a quadrature rule given by
the lumped mass inner product (η, χ)h =

∫

Ω

Ih(ηχ) , where Ih := C0(Ω)→ Sh is the
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standard interpolation operator at the nodes. In the following, we consider either an
implicit or an explicit discretization of the term ψ′

0(u), i.e. we choose ψ′
0(u

∗) where
∗ ∈ {n− 1, n}. Then, the spatial discretization of (35), (26)-(29) is given as:

For n = 1, 2, 3, . . . and given u0
h ∈ Sh find iteratively (un

h, w
n
h , µ

n
h) ∈ Sh×Sh×Sh

such that

1
τ
(un

h − un−1
h , χ)h + (∇wn

h ,∇χ) = 0 ∀ χ ∈ Sh, (38)

(wn
h , χ)h − γε(∇un

h,∇χ)− 1
ε
(ψ′

0(u
∗
h), χ)h − 1

ε
(µn

h, χ)h = 0 ∀ χ ∈ Sh, (39)

µn
h = µn

h,+ − µn
h,− , µn

h,+ ≥ 0 , µn
h,− ≥ 0 , |un

h| ≤ 1, (40)

µn
h,+(pj)(u

n
h(pj)− 1) = µn

h,−(pj)(u
n
h(pj) + 1) = 0 ∀ pj ∈ Jh. (41)

Notice that (41) does in general not imply (28) pointwise in all of Ω. Choosing χ ≡ 1
in (38) provides the mass conservation

∫

Ω

− un
h =

∫

Ω

− un−1
h =

∫

Ω

− u0
h.

The discretization of (27)-(29) can also be introduced as in Section 3 with the
help of active nodes

An,+
h =

{

pj ∈ Jh | un
h(pj) +

µn
h
(pj)

c
> 1

}

, An,−
h =

{

pj ∈ Jh | un
h(pj) +

µn
h
(pj)

c
< −1

}

(42)

for any positive c. Then we define the set of inactive nodes as In
h = Jh\(An,+

h ∪An,−
h )

and require

un
h(pj) = ±1 if pj ∈ An,±

h , µn
h(pj) = 0 if pj ∈ In

h . (43)

As discussed in Sections 1 and 2 the equations (39), (42)-(43) can be rewritten
as a variational inequality as follows. Introducing the space

Kh := {η ∈ Sh | |η(x)| ≤ 1 for all x ∈ Ω} .

we search un
h ∈ Kh such that

(wn
h , ξ − un

h)h ≥ γε(∇un
h,∇(ξ − un

h)) + 1
ε
(ψ′

0(u
n−1
h ), ξ − un

h)h ∀ ξ ∈ Kh , (44)

In order to compute (un
h, w

n
h , µ

n
h) we now choose a discretized version of the primal-

dual active set method (PDAS-I), where we iteratively update active sets An,±
h,k for

k = 0, 1, 2, . . . . We drop for convenience sometimes the indices n, h. The following
discrete version of the primal-dual active set strategy is obtained using that µn

h(pj) =
0 on In

h,k in (39). Then (39) reduces roughly spoken to a discretized PDE for un
h

only on an interface determined by In
h,k. For determined un

h, w
n
h (39) determines µn

h

on the active set. Here one has to use that (·, ·)h is a mass lumped L2-inner product
to uncouple (39) in active and inactive. For the precise formulation we introduce
the notation

S̃h,k := {χ̃ ∈ Sh | χ̃(pj) = 0 if pj ∈ An,+
h,k ∪ An,−

h,k } = span{χi | pi ∈ In
h,k}.

12



Primal-Dual Active Set Algorithm (PDAS-II):

1. Set k = 0, initialize A±
0 and define I0 = Jh \ (A+

0 ∪A−
0 ).

2. Solve for (uk, wk) ∈ Sh × Sh the system

1
τ
(uk − un−1

h , χ)h + (∇wk,∇χ) = 0 ∀ χ ∈ Sh , (45)

(wk, χ̃)h − γε(∇uk,∇χ̃)− 1
ε
(ψ′

0(u
∗
h), χ̃)h = 0 ∀ χ̃ ∈ S̃h,k , (46)

uk(pj) = ±1 if pj ∈ A±
k . (47)

3. Define µk ∈ Sh via

µk(pj) (1, χj)h = ε(wk, χj)h − γε2(∇uk,∇χj)− (ψ′
0(u

∗
h), χj)h ∀ pj 6∈ Ik, (48)

µk(pj) = 0 ∀ pj ∈ Ik. (49)

4. Set A+
k+1 := {pj ∈ Jh | uk(pj) +

µk(pj)

c
> 1}, (50)

A−
k+1 := {pj ∈ Jh | uk(pj) +

µk(pj)

c
< −1} and Ik+1 = Jh \ (A+

k+1 ∪ A−
k+1). (51)

5. If A±
k+1 = A±

k stop, otherwise set k = k + 1 and goto 2.

Lemma 4.1 For all un−1
h ∈ Sh and A±

k there exists a unique solution (uk, wk) ∈
Sh × Sh of (45)-(47) with ∗ = (n − 1), i.e. the semi-implicit case, provided that
Ik = Jh \ (A+

k ∪ A+
k ) 6= ∅.

Proof: The idea of this proof is to consider the discretized version of (21) and (22)
under the constraint u = ±1 on Ak and follow the existence proof as in Section 3.
Hence, we define Sh,m := {χ ∈ Sh |

∫

Ω

− χ = m}, where m :=
∫

Ω

− un−1
h ,

SI
h := {u ∈ Sh | u(pj) = 1 if j ∈ A+

k , u(pj) = −1 if j ∈ A−
k } ,

and SI
h,m := SI

h ∩ Sh,m. Since Ik 6= ∅ we conclude SI
h,m 6= ∅. The discrete inverse

Laplacian (−∆h)
−1 : Sh,0 → Sh,0, η

h 7→ (−∆h)
−1ηh is defined via

(∇((−∆h)
−1ηh),∇χ) = (ηh, χ)h for all χ ∈ Sh,0 . (52)

Since the homogeneous problem only has the trivial solution and Sh,0 is finite di-
mensional, the linear equation (52) has a unique solution. We define uk ∈ SI

h,m as
the solution of the minimization problem

min
η∈SI

h,m

{ 1
2τ

(∇(−∆h)
−1(η−un−1

h ),∇(−∆h)
−1(η−un−1

h ))+γε

2
(∇η,∇η)+1

ε
(ψ′

0(u
n−1
h ), η)h}

(53)
which exists uniquely since the Poincaré inequality similar as in the proof of Lemma
2.1 implies coerciveness. Computing the first variation of the minimisation problem

13



(53) gives for uk ∈ SI
h,m

0 = 1
τ
(∇(−∆h)

−1(uk − un−1
h ),∇(−∆h)

−1χ̃) + γε(∇uk,∇χ̃) + 1
ε
(ψ′

0(u
n−1
h ), χ̃)h (54)

for all χ̃ ∈ S̃h,k with
∫

Ω

− χ̃ = 0. Now we define wk ∈ Sh as

wk = −(−∆h)
−1

(

uk − un−1
h

τ

)

+ λk (55)

where λk ∈ R is uniquely given by any nodal basis function χj ∈ Sh with pj ∈ Ik by

λk = { 1
τ
((−∆h)

−1(uk−un−1
h ), χj)h +γε(∇uk,∇χj)+ 1

ε
(ψ′

0(u
n−1
h ), χj)}/(1, χj). (56)

Using the definition of the discrete inverse Laplacian, see (52) and the fact that
∫

Ω

− uk =
∫

Ω

− un−1 now gives that (45) holds. Furthermore (54), (52) and (55) imply

that (46) holds for all χ̃ ∈ S̃h,k with
∫

Ω

− χ̃ = 0. For χ̃ ∈ S̃h,k which do not satisfy the

integral constraint
∫

Ω

− χ̃ = 0 we set χ̂ := χ̃− αχj with pj ∈ Ik and α ∈ R such that
∫

Ω

χ̂ = 0. With this choice of χ̂ as a test function in (54) we can conclude with the

help of (52), (55) and (56) that (46) holds for all χ̃ ∈ S̃h,k. Hence (45)-(47) has a
solution.

It remains to prove uniqueness. Let us assume that (45)-(47) has two solutions
(uk,1, wk,1), (uk,2, wk,2) ∈ Sh×Sh. Then we obtain for the differences v = uk,1− uk,2,
z = wk,1 − wk,2 by testing (45), (46) for (uk,1, wk,2) and (uk,2, wk,2) with v and z
respectively, after taking differences:

(v, z)h + τ‖∇z‖2L2 − (z, v)h + γε‖∇v‖2L2 = 0 .

Since
∫

Ω

− uk,1 =
∫

Ω

− uk,2 =
∫

Ω

− un−1 we obtain v ≡ 0 in Ω and hence uk,1 = uk,2. The

identities (45), (46) imply that necessarily the identities (55) and (56) have to hold.
This implies that also wk is unique. �

Now µk is uniquely defined by (48), (49) and hence taking Lemma 4.1 into
account we obtain that a unique solution of (45)-(49) exists.

In the following we require the condition Ik = Jh \ (A+
k ∪ A−

k ) 6= ∅, which
guarantees that there is a u ∈ Sh which can fulfill

∫

Ω

− u = m. Otherwise (45) is not

solvable.

Remark 4.1 In order to solve (45)-(49) the main computational effort is to solve
the system (45), (46) which has a specific structure. The discretized elliptic equation
(45) for w is defined on the whole of Ω whereas the elliptic equation (46) is defined
only on the inactive set, see Figure 1. The two equations are coupled in a way
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∂uk

∂n
= 0

←ε→

uk = −1 uk = +1

A−
k A+

k

Ik

∂uk

∂n
= 0

Ω

Figure 1: The system (45)-(46) leads to an equation for uk on the inactive set Ik

and for wk on the whole of Ω.

which leads to an overall symmetric system which will be used later when we propose
numerical algorithms.

The discretization of (27)-(29) can also be formulated with the help of the semi-
smooth function H , see (37), as a nonlinear equation

H(un
h(pj), µ

n
h(pj)) = 0 ∀ pj ∈ Jh . (57)

Using the approach of [23] we can interpret (PDAS-II) as a semi-smooth Newton
method for the system (38), (39), (57) and the following local convergence result for
the semi-implicit discretization.

Theorem 4.1 Let (u, w, µ) ∈ Sh×Sh×Sh be a solution of (38), (39), (57) with ∗ =
(n−1) such that {pj ∈ Jh | |u(pj)| < 1} 6= ∅. Then the semi-smooth Newton method
for (38), (39), (57) and hence (PDAS-II) converges superlinearly in a neighborhood
of (u, w, µ).

Proof: Showing the existence of a solution to (38), (39), (57) is equivalent to the
problem of finding a zero of the mapping

G : Sh × Sh × Sh → Sh × Sh × Sh

where for (u, w, µ) ∈ Sh × Sh × Sh we define G = (G1, G2, G3) via

(G1(u, w, µ), χ)h := (u− un−1
h , χ)h + τ(∇w,∇χ) ,

(G2(u, w, µ), χ)h := (w, χ)h − γε(∇u,∇χ)− 1
ε
(ψ′

0(u
n−1
h ), χ)h − 1

ε
(µ, χ)h ,

(G3(u, w, µ), χ)h := (H(u, µ), χ)h .

The min-max-function H(u, µ) is slantly differentiable and a slanting function
is given by DH(u, µ) = (0, 1) if |u + µ

c
| ≤ 1 and DH(u, µ) = (−c, 0) otherwise,
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(see [22]). As a consequence G is slantly differentiable. Moreover similar as in [22]
we can derive that the primal-dual active set method (PDAS-II) is equivalent to a
semi-smooth Newton method for G. We now get local superlinear convergence of
(PDAS-II) if we can show that the slanting function of G is invertible in a suitable
neighbourhood of (u, w, µ) and the inverses are uniformly bounded ([11, 23]).

The semi-smooth derivative (slanting function) of G is invertible at (û, ŵ, µ̂) ∈
Sh × Sh × Sh if and only if we can show injectivity, i.e. that a unique solution
(u, w, µ) ∈ Sh × Sh × Sh of the following linear system exists

(u, χ)h + τ(∇w,∇χ) = 0, ∀χ ∈ Sh , (58)

(w, χ)h − γε(∇u,∇χ)− 1
ε
(µ, χ)h = 0, ∀χ ∈ Sh . (59)

u(pj) = 0 if pj ∈ Â :=

{

pj ∈ Jh |
∣

∣

∣

∣

û(pj) +
µ̂(pj)

c

∣

∣

∣

∣

> 1

}

, (60)

µ(pj) = 0 if pj ∈ Î := J \ Â , (61)

Testing (58) with w, (59) with u and using (µ, u)h = 0 we obtain

τ(∇w,∇w) + γε(∇u,∇u) = 0 . (62)

This implies that u and w are constant. Then (58) gives u ≡ 0. Using the fact that
there exists a pj ∈ Jh with |u(pj)| < 1 and µ(pj) = 0 we can guarantee that Î 6= ∅
for (û, ŵ, µ̂) out of a suitable neighborhood of (u, w, µ). Hence testing in (59) with
χj where pj ∈ Jh implies w ≡ 0 and finally (61) and (59) yield µ ≡ 0.

The semi-smooth derivatives only differ if the active and inactive sets change.
Since only a finite number of different choices of these sets are possible we obtain that
the inverses are uniformly bounded for all (û, ŵ, µ̂) with a non-vanishing inactive set
Î. Since we can find an open neighborhood of (u, w, µ), where the condition Î 6= ∅,
we proved the theorem. �

Remark 4.2 Let (u, w, µ) be a solution to (38), (39), (57). The proof of Theorem
4.1 requires a neighborhood of (u, w, µ), where the active sets do not vanish. This
can limit the size of the neighborhood in which local superlinear convergence can be
guaranteed. However in numerical simulations the mesh size always has to be chosen
such that at least eight points lie across the interface. Hence the above mentioned
condition never led to any problems in practice.

Remark 4.3 Theorem 4.1 holds also for the implicit discretization if τ ≤ 4γε3.

Proof: The proof follows align with 4.1 if one can show injectivity. Equation (59)
changes to

(w, χ)h − γε(∇u,∇χ)− 1
ε
(µ, χ)h + 1

3
(u, χ)h = 0

The same testing as above leads to τ(∇w,∇w) + γε(∇u,∇u) − 1
ε
(u, u)h = 0 and

testing (58) with u yields (u, u)h = τ(∇w,∇u). Then, if τ ≤ 4γε3 we obtain with
Young’s inequality injectivity. �
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5 Numerical results

In this section we discuss four test examples and numerically analyse the behaviour
of the PDAS-algorithm. In the first test example we consider two concentric circles,
where the exact sharp interface solution is known, and compare semi-implicit and
implicit discretization.

The second example is a four-circle problem where concave as well as convex
sections appear in the interface. Time evolution is given not only for u but also for
w and the Lagrange multiplier µ. With this example we compare the PDAS-method
with a standard solver for the Cahn-Hilliard inequality, namely with a projected
block Gauss-Seidel method [4]. It turns out that the PDAS-method is more efficient
and reliable. In particular, the speed up is gained by a linear algebra solver which
is not based on a Gauss–Seidel method. Moreover, we have not seen a difference in
CPU-time between the semi-implicit and implicit discretization, and in the latter
case have not faced such a severe restriction on the time step τ as indicated by the
analysis. The number of PDAS-iterations for each time step were rather depending
on τ than on the mesh size h, never exceeded 11 and after the interface settles 2− 4
iterations were sufficient. For the number of iterations there was nearly no difference
between an adaptive and a uniform grid. But of course in CPU-time adaptivity was
much more efficient. In the third test example we considered random initial data,
i.e. a starting situation without pure phases. Here and in our last example, a
3D simulation, we observed that even with large topological changes the maximum
number of PDAS-iterations stayed always below 10.

Before we present the examples we discuss some numerical issues as there are
mesh generation, adaptivity in order to resolve the interface, choice of the parameter
c, initialization of the active sets and the linear algebra solver. Also we describe
shortly the mentioned projected Gauss–Seidel type algorithm.

1. Mesh generation and adaptivity

For all the simulations presented in this paper the finite element toolbox ALBERTA
[35] was used for mesh generation, the assembly of the matrices and administration.
To generate the adaptive meshes we used the mesh adaption strategy of Barrett,
Nürnberg, Styles [4]. Experiments showed that it is essential to ensure that at least
eight vertices are present on the interfaces to avoid mesh effects, see also [9]. We
hence refine on the interface down to a level where eight vertices are present and
coarse in the areas where the concentration u is constant. For given parameters ε
and γ this results in an upper bound hfine ≤ ε

√
γ π

9
, where hfine is the refinement

level on the interface. Since we want to avoid too coarse meshes we additionally
define hcoarse := 10 · hfine and choose a tolerance tol. Afterwards the mesh adaption
is done the following way: For each element T ∈ T h calculate the indicator ηT :=
|min

x∈T
|u(x)| − 1|. Then, a triangle is marked for refinement if it, or one of its

neighboring elements, satisfies ηT > tol · 10−1 and if hT > hfine. A triangle is
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marked for coarsening if it satisfies ηT < tol · 10−3 and hT < hcoarse.

2. Choice of the parameter c

To determine the active sets we have to choose the parameter c > 0. In the unilateral
case the selection of c > 0 has no influence on the iterates after the first iteration
and can be chosen arbitrary, see [23]. However this is no longer true in the case of
bilateral bounds. This is discussed for obstacle problems in [6]. If c is chosen too
small we observe cases in which the iterates oscillated and the algorithm did not
converge. Figure 2 shows the values of u at various PDAS iterations in one time
step of a simulation in one space dimension with h = 1

512
, τ = 10−5, πε = 0.2 and

c = 0.01. In the 8th iteration the algorithm breaks down because all vertices are in
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Figure 2: Oszillations in 1D if c is too small.

the active set and the system no longer exhibits a valid solution, compare Remark
4.1. Redoing the simulation with c = 0.2 fixed the problem and after two iterations
the time step was completed with only marginal changes to u since the initial data
was close to a stationary solution. The same phenomenon was observed in higher
space dimensions.

A heuristic approach showed that it is sufficient to ensure that no vertex can
change from the positive active set A+ to the negative inactive set A− and vice
versa in one iteration. This can be achieved by selecting a PDAS parameter c large
enough, depending on the magnitude of the Lagrange multiplier µ.

In all the simulations a value of c = 10 was sufficient when the interfaces were
already well developed and adequate initial guesses for the active sets were known.
Therefore, if not mentioned otherwise c = 10 is chosen in the calculation. In simu-
lations with distortions or jumps in the concentration u larger values depending on
the mesh size were necessary. Choosing the parameter c larger had no discernible
influence on the simulation.

When using adaptive meshes for the PDAS algorithm a choice has to be made for
every newly created vertex if it should belong to the active or inactive set. For now
we restrict ourselves to the following: If all neighboring vertices are active then this
vertex should be active too. In every other case we set the new vertex to inactive.

3. Initialization of active sets

As mentioned previously the application of a PDAS-method to the interface evo-
lution has the advantage that the good initialization due to the information of the
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previous time step leads to a large speedup. At the first time step n = 1 the active
set An,±

0 is initialized using the given initial data u0
h. Since in the limit the active

sets describe the sets where u is strictly active a good approximation of A1,±
0 is given

by the active set of u0
h. Hence we choose A1,±

0 =
{

pj ∈ Sh | |u0
h(pj)∓ 1| ≤ 10−8

}

.
For time steps n ≥ 2 we can exploit in addition µn−1

hn−1
. Due to possible grid

changes from time step n − 1 to time step n one may have to apply additionally
the standard interpolation Ihn

to the new grid Shn
, i.e. with u−1 := Ihn

un−1
hn−1

and

µ−1 := Ihn
µn−1

hn−1
initialize the active set An,±

0 as in (50) and (51). However less time
consuming to initialize the active set is the following way, which is applied in this
paper: if an edge between two positive or two negative active vertices is bisected,
choose the new vertex is set respectively active and otherwise set the new vertex as
inactive.

4. Solver for the equation system (45)-(46)

For moderate mesh sizes direct solvers for sparse equation systems perform quite
well. We use a Cholesky decomposition of the system by means of the multifrontal
method by Duff and Reid [17] which is realized in the software package the UMFpack
[13], [14]. This method is a generalization to the frontal method of Irons [25].
One crucial point of this method is that the decomposition steps of the matrix are
computed but not directly applied to the system matrix. Furthermore an elimination
tree and pivoting strategy are used which make use of the sparsity of the system.
For further discussion of the method refer to [28], [15]. We solved the whole reduced
symmetric sparse system (45)-(46) with (47) by UMFpack all at once.

Up to now in our numerical experiments this direct solver performed better than
e.g. a block SOR method. The application of other methods like, for example
a cg-method for a preconditioned Schur-Complement or block multigrid method,
are currently under investigation. In the first tests, which were of moderate size,
UMFpack was still faster. The limit of the UMFpack up to now was the available
memory. However large 3D problems have not been investigated yet thoroughly.

5. Gauss–Seidel type algorithm for the variational inequality (pSOR)

The following Gauss–Seidel type algorithm is often used for solving the Cahn-Hilliard
variational inequality, see [31], and is implemented in the same hardware and soft-
ware environment as our method. Hence to obtain a comparison within the same
setting we use this method as a reference method. This method is based upon the
discretization of the variational inequality (16)-(17) by a semi-implicit backwards
Euler method in time and by using continuous piecewise linear elements in space,
compare [8]. This results in the same discretization as we introduced in this paper,
namely (38) and (44):

For n = 1, 2, 3, ... and given u0
h ∈ Kh find (un

h, w
n
h) ∈ Kh × Sh such that

1
τ
(un

h − un−1
h , χ)h + (∇wn

h ,∇χ) = 0 ∀ χ ∈ Sh,

γε(∇un
h,∇(ξ − un

h))− (wn
h , ξ − un

h)h + 1
ε
(ψ′

0(u
n−1
h ), ξ − un

h)h ≥ 0 ∀ ξ ∈ Kh .
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As is known for obstacle problems (see e.g. [31]) one can apply for this nonstan-
dard variational inequality a projected block-Gauss-Seidel or a projected block-SOR
method (pSOR). This has been studied in [4], where also convergence has been
shown. The blocks are determined by the 2× 2 blocks corresponding to the values
(un

h(pj), w
n
h(pj)), which are merged for each vertex. In our numerical experiments

we use the pSOR-method with overrelaxation using ω = 1.3 for comparison with
the PDAS-method. As stopping criteria ‖uk − uk−1‖2 ≤ 10−7 and a maximum of
50000 iterations is used.

5.1 Test cases

Example 1: Two concentric circles

The distinction we made in Section 4 between the explicit and implicit discretization
of the free energy term leads to differences in the evolution process. We use a radial
symmetric situation where the exact sharp interface solution is known to compare
these two schemes. The initial data are such that the interface is described by two
concentric circles with radii 0 < r1(0) = 0.05 < r2(0) = 0.15 < 1. They both
will shrink over time -the smaller faster than the larger circle- until the smaller one
vanishes. Then the solution remains stable due to mass conservation.

In the limit ε→ 0 the Cahn–Hilliard model describes the evolution of the sharp
interface Mullins–Sekerka model, see [9], [32]. The radial symmetric sharp interface
solution is discussed in [36], [12]. In above situation the exact sharp interface solution
can be calculated as solution of an ODE

r′1 = − 1

r1

σ

r1r2

r1 + r2
ln(r1)− ln(r2)

, r′2 = − 1

r2

σ

r1r2

r1 + r2
ln(r1)− ln(r2)

where σ = π
8
. For the comparison between the semi-implicit and implicit discretiza-

tion we used an equidistant mesh. In Figure 3 we plotted the sum of both radii
for fixed ε = 0.0039 and varying time step width τ . In the implicit case we can
choose even larger τ and already gain a good approximation of the evolution unlike
for the semi-implicit case where a smaller time step width is necessary to achieve
the desired result. This has been also observed when considering the convergence
with respect to ε to the sharp interface with a fixed time step. The time step can
be chosen larger in the implicit case.

Example 2: 4-circles problem

In this example we realize a concave as well as a convex section of the interface,
which is a situation of large interest. The initial data on Ω = (0, 1)2 consist of four
circular interfaces of width επ. The centres and radii are chosen in such a way that
three of circles intersect and one is detached. The values ±1 are connected by a sine
profile which is given as the lowest order term in an asymptotic expansion of the
Cahn-Hilliard variational inequality, see e.g. [9]. In Figure 4 we show the inital data
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Figure 3: (r1 + r2)(t) for different τ with ε = 0.0039.

for two different interface width. The initial active sets show a value of 0 on each
inactive vertex and a positive resp. negative value on each active vertex. We set
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Figure 4: Initial data for πε = 0.1 (left) and πε = 0.05 (right).

Tend = 0.02 for all the following simulations. In Figure 5 and Figure 6 the evolution
of u, w and µ in time is plotted. Here we used a semi-implicit discretization with
an adaptive mesh with hfine = 0.01 for πε = 0.1 and hfine = 0.005 for πε = 0.05
respectively, the time step τ = 10−5. Simulations with equidistant mesh give the
same results. The columns from left to right show the values of u, w, µ and the
mesh after 5, 50, 100, 110 and 200 time steps.

Table 1 shows that for a small number of vertices the pSOR algorithm is still
fast but with an increasing number of vertices its performance quickly deteriorates.
Using the corresponding block SOR-method in combination with the PDAS-method,
the resulting solver is even a bit slower for large time steps. The direct solver on
the other hand lowers the runtime extremly. Moreover we see that there is nearly
no difference in CPU-time between semi-implicit and implicit discretization. The
severe restriction on the time step for the implicit case as stated in Lemma 2.1 has
not been observed. Only for πε = 0.05 the choice τ = 10−4 failed even for very large
parameter c = 1010.

When we compare the runtimes used on the fixed mesh with 16641 vertices we
notice that the simulations with πε = 0.2 used up almost double the time of the
one with πε = 0.1. The reason lies in the size of the inactive set, which is roughly
spoken the interface with width πε. Hence for πε = 0.2 the system (45)-(46) which
has to be solved is of larger dimension.

In addition in Table 1 the total, the averaged and the maximal number of PDAS-
iterations are listed for the semi-implicit discretization. The numbers for the implicit
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Figure 5: Time evolution of Example 2 with πε = 0.1.
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Figure 6: Time evolution of Example 2 with πε = 0.05.
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πε h τ CPU–Time in seconds PDAS-iterations
semi-impl. impl.

(J ) pSOR PDAS PDAS total average max

0.2 0.02210 10−4 57.1 10.7 11.2 74 3.5 5
(4225) 10−5 270.9 29.7 63.6 450 2.2 4

10−6 703.3 195.0 202.6 2958 1.5 3
0.01105 10−4 1071.6 69.4 39.5 100 4.7 7
(16641) 10−5 5522.9 203.3 199.2 577 2.8 4

10−6 13506.2 1353.6 1325.6 3795 1.9 3
adaptive 10−4 5.2 2.9 2.9 72 3.4 5
(≈ 2000) 10−5 23.1 17.6 17.5 447 2.2 4

10−6 70.2 117.9 117.8 2968 1.5 3

0.1 0.01105 10−4 1374.6 17.9 17.8 70 3.3 6
(16641) 10−5 4179.5 103.4 105.6 409 2.0 5

10−6 10111.0 793.1 727.6 2922 1.5 4
0.00552 10−4 — 130.3 134.5 91 4.3 10
(66049) 10−5 — 750.7 754.5 524 2.6 6

10−6 181285.1 4905.4 4813.2 3362 1.7 5
adaptive 10−4 45.1 5.1 5.1 69 3.3 7
(≈ 3600) 10−5 74.5 27.7 28.2 403 2.0 4

10−6 390.2 198.7 194.0 2897 1.4 3

0.05 0.00552 10−4 11145.0 126.6 — 88 4.2 7
(66049) 10−5 72715.0 592.0 597.3 497 2.4 6

10−6 192554.4 3911.3 4013.2 3275 1.7 5
adaptive 10−4 737.1 13.6 — 85 4.0 7
(≈ 7000) 10−5 602.3 76.8 73.4 503 2.5 6

10−6 1478.2 467.6 478.1 3260 1.6 5

Table 1: CPU–Runtimes and iteration counts for Example 2.

discretization are nearly the same except for the failures and hence not listed. The
average number of PDAS-iterations depend more on the time step than on the
mesh. This is an expected behavior since when we use larger time steps the active
sets change on a bigger scale than with smaller time steps. In most of the above
simulations the maximum number of iterations was needed in the first time step.
The reason is that the mean curvature of the interface is high in the beginning of
the time evolution, resulting in fast movement of the interface region. Even taking
a rather large time step, like for example τ = 10−4 for πε = 0.05, the maximum
number of necessary iterations per time step keeps low and never exceeded 11. The
averaged numbers of iterations are much smaller since the time evolution of the
interface becomes slow for larger t, resulting in only one or two PDAS-iterations.

In Figure 7 we plot the time against the number of used PDAS-iterations per
time step as well as against the number of changed vertices per time step for the
above simulation with πε = 0.1, τ = 10−5, in the semi-implicit and implicit case for
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an adaptive mesh with hfine = 0.00552. In the first few time steps the evolution
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Figure 7: PDAS-iterations and vertices changing sets per time step.
smoothens the interfaces and the concave part is moving quickly. These two facts
result in an increased number of neccessary PDAS-iterations. After that typically
two to four iterations are sufficient. The steps where we only need two iterations
are optimal in a way that if there is any change in the active set we need at least
these two iterations. Only when there are no changes in the sets just one iteration
is sufficient. What we can observe in these plots is the expected rise in iteration
numbers when there is a big change in the active set. The second peak is due to the
disappearance of the bubble in the upper right quadrant. If we use an equidistant
mesh for the above example, the results and numbers of PDAS-iterations stay nearly
the same, although in the adaptive case we have to adapt the starting active set due
to a grid change in time (see 3.).

However, instead of circa 10 minutes CPU-time for an equidistant grid only 76
seconds CPU-time is needed in the adaptive case to determine a solution up to
T = 0.02. Further speed up can be obtained as mentioned before by a different
linear algebra solver.

Example 3: Random initial data

In applications one often has to consider initial data which are a random pertur-
bation of a equally distributed concentration u. Therefore we give also results on
an equally distributed mass on Ω = (0, 1)2 with a stochastic distortion. As trans-
lation away from 0 we choose 0.2 and 0.7 as the range of values created and define
u0(x) := 0.5 · σ(x) + 0.2, where σ : R → [−1, 1] denotes a random number gen-
erator. Consequently there is no pure phase initially, i.e. all vertices are inactive,
and the resulting equation system (45)-(47) is as large as possible. For this sim-
ulation we used the implicit discretization and a uniform mesh with h = 0.00552,
τ = 10−5, Tend = 0.005, πε = 0.05 and c = 10. In each timestep where a new
active set emerges, we observe larger values in the Lagrangian multiplyier µ, namely
max |µ| ≈ 20. Figure 8 shows u, w and µ after 0, 5, 50 and 500 time steps. Already
after 5 time steps the phase separation can be clearly seen. In Figure 9 we see that
in the early stage of this simulation one PDAS iteration is sufficient since there is
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no active set present and we just have to solve the equation system. After that a
larger number of iterations is neccessary because there are quite a few topological
changes in the active set and a huge amount of vertices is changed from inactive to
active. However there have never been more than 10 PDAS-iterations necessary. Af-
terwards when the interfaces are well developed an average amount of 2-3 iterations
is sufficient.
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Figure 9: PDAS-iterations and vertices changing sets per time step for random
initial data.

Example 4: Three dimensional simulation

Finally we give an example in 3D. Therefore we expand Example 2 to initial data
consisting of four balls in Ω = (0, 1)3. Figure 10 shows the 0–level sets of u of such
a simulation with τ = 10−5, πε = 0.1 and c = 10 after 0, 20, 50, 100, 300 and 700
time steps on an adaptive mesh with the semi-implicit primal-dual active set solver.
The simulation up to Tend = 0.0007, i.e. 70 time steps, where a coupled system

n = 0 n = 20 n = 50

n = 100 n = 300 n = 700

Figure 10: 3D simulation with 4 spheres as initial data
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corresponding to roughly 120000 grid points has to be solved, took 11.8 hours with
a total of 184 PDAS-iterations. This is less than half the computation time used
by the pSOR method which used 27.6 hours. Additional speed up -which is not
possible for the pSOR-method- can be obtained by a different LA-solver. Even for
this three dimensional problem with the topological changes a maximal number of
only four PDAS-iterations in each time step is sufficient for the simulation.
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[22] Gräser, C. and Kornhuber, R., On preconditioned Uzawa-type iterations
for a saddle point problem with inequality constraints, Domain decomposition
methods in science and engineering XVI, 91–102, Lect. Notes Comput. Sci.
Eng., 55, Springer, Berlin 2007.

[23] Hintermüller, M., Ito, K. and Kunisch, K. The primal-dual active set
strategy as a semismooth Newton method, SIAM J. Optim. 13 (2002), no. 3,
865–888 (electronic) (2003)

29



[24] Ito, K. and Kunisch, K., Semi-smooth Newton methods for variational in-
equalities of the first kind, Mathematical Modelling and Numerical Analysis 37,
no. 1 (2003), 41–62.

[25] Irons, B.M. A frontal solution scheme for finite element analysis, Int. J. Nu-
mer. Methods Eng. vol. 2 (1970), 5–32.

[26] Kinderlehrer, D. and Stampacchia, G. An introduction to variational
inequalities and their applications, Academic Press 1980.

[27] Kuhl, E. and Schmid, D.W., Computational modeling of mineral unmix-
ing and growth: An application of the Cahn-Hilliard equation, Computational
Mechanics 39, no 4 (2007) pp. 4394-451 (13).

[28] Liu, J.W.H., The multifrontal method for sparse matrix solution: Theory and
practice, SIAM Review 34 (1992), 82–109.

[29] Lowengrub, J. and Truskinovsky, L., Quasi-incompressible Cahn-
Hilliard fluids and topological transitions, R. Soc. Lond. Proc. Ser. A Math.
Phys. Eng. Sci. 454, no. 1978 (1998), 2617–2654.

[30] Novick-Cohen, A., The Cahn-Hilliard equation: mathematical and modeling
perspectives, Adv. Math. Sci. Appl. 8, no. 2 (1998), 965–985.

[31] Ockendon, J. and Elliott, C.M., Weak and Variational Methods for Mov-
ing Boundary Problems, Pitman Research Notes in Mathematics, 59 (1982).

[32] Pego, R.L., Front migration in the nonlinear Cahn–Hilliard equation, Proc.
Roy. Solc. London, Ser. A 422 (1989), 116–133.

[33] Tremaine, S., On the origin of irregular structure in Saturn’s rings, Ast.
Journal 125 (2003), 894–901.
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