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Diffractive jets production in pp-collisions
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Abstract. We consider the exclusive diffractive dissociation of a proton into three jets with large
transverse momenta in the double-logarithmic approximation of perturbative QCD. This process
is sensitive to the proton unintegrated gluon distributionat small x and to the proton light-cone
distribution amplitudes. According to our estimates, an observation of such processes in the early
runs at LHC is feasible for jet transverse momenta of the order of 5 GeV.
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1. We explore the possibility to observe hard exclusive diffractive dissociation of a
proton into three hard jets in proton-proton collisions

p(p1)+ p(p2) → jet(q1)+ jet(q2)+ jet(q3)+ p(p′2) . (1)

In this process one proton stays intact and the other one dissociates into a system of three
hard jets separated by a large rapidity gap from the recoil proton, see Fig. 1.

Note that we are interested inexclusivethree–jet production which constitutes a small
fraction of the inclusive single diffraction cross section. The exclusive and inclusive
mechanisms have different final state topologies and can be distinguished experimen-
tally. A characteristic quantity is e.g. the ratioRjets of the three-jet mass to the total in-
variant mass of the system produced in the diffractive interaction. Exclusive production
corresponds to the region whereRjets is close to unity. This strategy was used recently
at the Tevatron [1] where central exclusive dijet production, pp̄→ p+ jet + jet + p̄, in
double–Pomeron collisions was measured for the first time.

Exclusive dijet production in the central region has much incommon with the exclu-
sive Higgs boson production process,pp̄→ p+H + p̄. In [2] it was argued that studies
of exclusive dijet production and other diffractive processes at the early data runs of the
LHC can provide valuable checks of the different componentsof the formalism. Indeed,
this was the main motivation for Tevatron experiment. The exclusive 3-jets production in
single diffraction (1) offers another interesting examplesince factorization of hard and
soft interactions in this case is less complicated. In particular, the fluctuation of a proton
projectile into a state with small transverse size, which isthe underlining mechanism for
(1), suppresses secondary soft interactions that may fill the rapidity gap. Thus one can
get an access to the gluon distribution at smallx in a cleaner environment, having no
problems with gap survival probability and factorization breaking that introduce major
conceptual theoretical uncertainties in the calculationsof diffractive Higgs production.

Our approach to exclusive three-jet production derives from experience with coherent
pion diffraction dissociation into a pair of jets with largetransverse momenta which was
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FIGURE 1. Proton dissociation into three jets. The unintegrated gluon distribution includes the hard
gluon exchange as indicated by the dashed square.

measured by the E791 collaboration [3, 4]. The qualitative features of the E791 data have
confirmed some earlier theoretical predictions [5, 6, 7]: a strong A-dependence which
is a signature for color transparency, and a∼ 1/q8

⊥ dependence on the jet transverse
momentum. These features suggest that the relevant transverse size of the pionr⊥
remains small, of the order of the inverse transverse momenta of the jetsr⊥ ∼ 1/q⊥.

We have shown [8, 9] that collinear factorization is violated in dijet production due
to pinching of singularities between soft gluon (and quark)interactions in the initial
and final state. However, the nonfactorizable contributionis suppressed compared to the
leading contribution by a logarithm of energy so that in the double logarithmic approx-
imation lnq2

⊥ lns/q2
⊥ collinear factorization is restored. Moreover, to this accuracy hard

gluon exchange can be “hidden” in the unintegrated gluon distributionF (x,q⊥). Thus,
in the true diffraction limit, for very large energies, hardexclusive dijet production can
be considered as a probe of the hard component of the pomeron.The same interpre-
tation was suggested earlier in [10] within thekt factorization framework. The double
logarithmic approximation turns out to be insufficient for the energy range of the E791
experiment, but might be adequate for the LHC. Here we present an estimate for the
cross section for the reaction (1) based on the generalization of these ideas.

2. At leading order the jets are formed by the three valence quarks of the proton, see
Fig. 1. We require that all three jets have large transverse momenta which requires at
least two hard gluon exchanges. One of them can be effectively included in the high-
momentum component of the unintegrated gluon density (the bottom blob) as indicated
schematically by the dashed square, but the second one has tobe added explicitly since
the hard pomeron only couples to two of the three quarks of theproton.

Our notation for the momenta is explained in Fig. 1. We neglect power corrections in
transverse momenta of the jets and also proton and jet massesso thatp2

1 = p2
2 = p′22 =

q2
1 = q2

2 = q2
3 = 0. The jet momenta are decomposed in terms of momenta of the initial

particles

qk = αkp1 +βkp2 +qk⊥ , k = 1,2,3. (2)



The three–jet invariant mass is given by

M2 = (q1+q2+q3)
2 =

~q2
1⊥

α1
+

~q2
2⊥

α2
+

~q2
3⊥

α3
, ζ =

M2

s
= β1+β2+β3 . (3)

wheres= (p1 + p2)
2 = 2p1 · p2 is the invariant energy. Assuming that the relevant jet

transverse momenta are of the order of 5 GeV, the typical values of theζ variable at
LHC are in the rangeζ ∼ 10−6÷10−5.

The relevant Feynman diagrams can be divided into three groups which differ by
the attachments of thet-channel gluons to the quark lines. Accordingly, we have three
different contributions to the amplitude (for the details see [11]):

M = −i 27π5sα2
s

[

ei jk
(1+N

N

)2

4N!(N2−1)

]

∫

Dα ′ ×

(

L1
δ (α1−α ′

1)

q4
1⊥

F (ζ ,q1⊥)

+L2
δ (α2−α ′

2)

q4
2⊥

F (ζ ,q2⊥)+L3
δ (α3−α ′

3)

q4
3⊥

F (ζ ,q3⊥)

)

, (4)

where
∫

Dα ′ =
∫ 1

0 dα ′
1dα ′

2dα ′
3δ (1−∑α ′

i ) corresponds to the integration over the quark
momentum fractions in the incident proton,ei jk describes the color state of the final
quarks,N = 3 is the number of colors. The dimensionless quantitiesLi are expressed in
terms of the leading-twist light-cone nucleon distribution amplitudes.

3. The differential cross section can be written as

dσ =
|M |2

25(2π)8s2

dα1dα2dα3δ (1−α1−α2−α3)

α1α2α3
d2~q1d2~q2dtdφt (5)

wheret = (p2− p′2)
2 is the Mandelstamt variable of thepp scattering andφt is the

azimuthal angle of the final state proton. In our kinematics,for large transverse momenta
of the jets and smallt, one can neglect effects of azimuthal correlations betweenthe jets
and the final proton. Hencedφt integration is trivial and gives a factor 2π . For thet
dependence we assume a simple exponential form,dσ/dt ∼ ebt, and useb∼ 4÷5GeV2

for the slope parameter which is a typical value which describes HERA data for hard
exclusive processes: DVCS and vector meson electroproduction at largeQ2. Thus, the
integration over the proton recoil variables gives a factor

∫

dtdφt →
2π
b .

Since our calculation is only done to double logarithmic accuracy, we use the simplest
model for the unintegrated gluon distribution as given by the logarithmic derivative of
the usual gluon parton distributionxg(x,Q2)

F (x,q2
⊥) =

∂
∂ lnq2

⊥

xg(x,q2
⊥) . (6)

In our numerical estimates we use the CTEQ6L leading-order gluon distribution [12].
The integration over the phase space of the three jets was done numerically, restricting

the longitudinal momentum fractions to the region

0.1≤ α1,α2,α3 ≤ 0.8 (7)



and requiring that the transverse momentum ofeach jet is larger than a given value
q0 = q⊥,min. For q0 = 5 GeV we obtain for the integrated three-jet cross section atthe
LHC energies

σLHC
3− jets= 4pb·

(

fN(q0)

4.7 ·10−3GeV2

)2(

αs(q0)

0.21

)4(

5GeV

q0

)9

. (8)

Assuming the integrated luminosity for the first LHC runs in the range 100 pb−1 to
1 fb−1 an observation of this process at LHC seems to be feasible. Note that the effective
powerσ ∼ 1/q9

0 (fitted in theq0 = 3÷8 GeV range) is somewhat stronger than the naive
power counting predictionσ ∼ 1/q8

0. This effect is due to the strongζ dependence of
the unintegrated gluon distribution: larger values ofq0 imply larger invariant masses
M2 of the three-jet system (3) and consequently largerζ = M2/s. The sizeable cross
section forq0 = 5 GeV is in fact an implication of the expected rise of the LO gluon
distribution more than two times asζ is decreasing by roughly a factor of 50 when going
from Tevatron to LHC. The existing parameterizations of theLO gluon distribution at
ζ ∼ 10−6 differ from each other by∼ 30%. The unintegrated gluon distribution (6)
enters as a square in the prediction for the cross section, therefore, the study of exclusive
three-jet events at LHC may provide a valuable constraint for the gluon distribution at
small momentum fractions.

A comparison of the three-jet exclusive production at LHC and the Tevatron can be
especially illuminating in this respect since other uncertainties do not have significant
impact on the energy dependence. For Tevatron kinematics, assuming the valueq⊥min =
3 GeV, our estimate for the cross section (fitted in the rangeq0 = 2÷4.5 GeV) is

σTevatron
3− jets = 50pb·

(

fN(q0)

4.7 ·10−3GeV2

)2(

αs(q0)

0.255

)4(

3GeV

q0

)9

. (9)
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