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‘Just look down there’ said Denny.

‘That seemingly endless convoy,

trailing along the dried up valley below,

look for all the world like ants.’

‘They ARE ants’ said his companion Minnie,

‘And so are we’.

And it was true.

They were both ants,

perched on the edge of a clod of earth

no more than six inches high.

‘Oh’, sighed Denny sadly,

‘I forgot’.

Robert Wyatt – Comicopera
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Summary

All life known consists of cells. Every cell contains DNA. DNA is just a code. A

code existent of four simple letters A, T, G and C. But the sequence composed of

these letters contains nearly all information needed to form a complete organism

as complex as a human being out of a single fertilized egg cell. And every single

cell — up to a few exceptions — of one organism contains exactly the same DNA

sequence as the fertilized egg, the genetic information. This genetic information

belonging to a cell or organism is called a genome. This code is executed by the

genes whereas a gene may contain structural, signalling or regulatory information.

Our comprehension of the genetic machinery regulating the expression of thou-

sands of different genes controlling cell differentiation or responding to various

external signals is still highly incomplete. Furthermore, recently discovered reg-

ulatory mechanisms like those mediated by microRNAs expand our knowledge

but also add an additional layer of complexity. Since all genes are primarily

transcribed into RNA, the genetic activity of gene differential expression can be

estimated by measuring the RNA expression. Several techniques to measure large

scale gene expression on the basis of RNA have been developed. In this work,

data generated with the microarray technology, one of the most commonly used

methods, were analyzed towards extracting novel biological regulatory structures.

In the following several aspects on the analysis of these large gene expression

data will be discussed. Since this is nowadays a common task, a lot has been writ-

ten about various methods in all its particulars, but often from a more technical

or statistical point of view. However, the aim of a biologist planning and carrying

out a microarray experiment lies on the acquisition of novel biological findings.

In fact, there is still a gap between the experimentalists and the methods devel-

oping community. The experimentalists are often not too familiar with the latest

fancy method based on modern statistics as it is used in e.g. information the-

ory whereas the developing community normally does not deal extensively with

current biological questions. Therefore, the author of this work tries to give an
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additional view on the field of microarray analysis and the applicability of diverse

methods. Hence, the focus is to discuss commonly used methods towards their

usage, the underlying biological assumptions and the possible interpretations,

pros and cons. Furthermore, beyond ordinary differential gene expression analy-

ses, this work also concentrates on an unbiased search for hidden information in

gene expression patterns.

In the first section of chapter 1, a general overview about the main biological

principles is given. The term transcriptome and its composition of several RNA

types will be introduced. Furthermore the mechanism controlling gene expression

will be presented. The chapter further explains the basic principles of microarray

technology and also discusses the advantages and limitations of this method.

Finally, by means of two different biological models, commonly used and a few

more specialized and less popular analysis methods will be presented. In doing

so, less emphasis is given on a complete and detailed mathematical description,

but more on a general applicability and the biological outcome of these tools.

Chapter 2 extensively discusses the usage of a blind source separation tech-

nique, independent component analysis (ICA), on a two class microarray dataset.

Monocytes extracted from human donors were differentiated into macrophages

using M-CSF (Macrophage Colony-Stimulating Factor). By applying ICA to the

data, so called expression modes or sub-modes could be extracted. According to

referring biological annotations, these sub-modes were then combined to meta

modes and elaborately discussed. In this way, several known biological signalling

pathways as well as regulatory mechanism involved in monocyte differentiation

could be reconstructed. Furthermore, a novel biological finding, the remaining

proliferative potential of macrophages could also be identified. The results of

this investigation were already published by the author [Lutter et al., 2008].

In chapter 3 again ICA was used, but in this case applied to time-dependent

microarray data, and results were compared to a very common analysis method,

hierarchical clustering. Time-dependent data was derived from human mono-

cytes infected with the intracellular pathogen F. tularensis. Using the clustering

approach, groups of genes referring to distinct timepoints were identified, and

a temporal behaviour of genetic immune response could be reconstructed. In

parallel, ICA was used to decompose the data into expression modes (analo-

gously to chapter 2). These modes were then mapped on the experimental time
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course. Compared to the clustering results, the ICA-based reconstructed immune

response was more detailed and temporal activity of distinct genes could be re-

solved more precisely. These findings were also published by the author [Lutter

et al., 2009].

In the following chapter 4, three different microarray datasets were used to

confirm a suggested regulatory mechanism. The observation that about 50%

of all microRNAs in humans and mice are intronic and therefore coupled with

the expression of protein coding genes, so-called host genes, allowed for the use

of established large-scale gene expression measurement techniques to approxi-

mate microRNA expression. Since a single microRNA can regulate up to dozens

of other protein-coding genes, the hypothesis that this expressional linkage in-

cludes an additional functional component was investigated. Using the ordinary

clustering algorithm ‘hierarchical clustering’ and an approach based on gene an-

notations, this hypothesis could be basically confirmed. The main results were

already outlined in a manuscript, which is currently under review.

Finally, in the last chapter, a short summary of the previous ones is given and

a conclusion is drawn. A short outlook about further developments within the

field of large gene expression data analysis is given and briefly discussed.

Taken together, the main contributions of this thesis are:

� This work provides an overview of the biology of gene expression and a

discussion of the major analysis methods with a focus on applications.

� Based on a two-class microarray experiment, the outcome of an independent

component analysis is investigated with respect to its biological relevance

[Lutter et al., 2008].

� By separating time dependent microarray data into independent compo-

nents, a method is presented that reconstructs a temporal regulatory net-

work with high biological impact [Lutter et al., 2009].

� A regulatory motif of conserved microRNA functionality is confirmed, al-

lowing for an expansion of the interpretation of gene expression data [manuscript

currently under review].
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Abbreviations

BSS blind source separation

C consensus model

Exp5 Exportin 5

fMRI functional magnetic resonance imaging

FP feature profile

GEM gene expression mode

GEP gene expression profile

GES gene expression signatures

GO gene ontology

GTF general transcription factor

IC independent component

ICA independent component analysis

LVS live vaccine strain

M-CSF mononuclear phagocyte colony-stimulating factor

MeSH Medical Subject Headings

miRNA microRNA

mRNA messenger RNA

NAT natural antisense transcript

ncRNA non-coding RNA

NMF non-negative matrix factorization

NO neurite outgrowth

NPC nuclear pore complex

PC principal component

PCA proinciple component analysis

pre-miRNA precursor miRNA

pre-mRNA precursor mRNA

pri-miRNA primary miRNA transcript
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PT pictar

RG response group

RISC RNA-induced silencing complex

RNPs RNA binding proteins

SAGE serial analysis of gene expression

SCD stem cell development

SG somitogenesis

SVM Support vector machine

TF transcription factor

TFBS transcription factor binding site

TS target scan

TSS transcriptional start site

UTR untranslated region
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1 Background

This work addresses the analysis of large scale gene expression data. In this chap-

ter we will outline the main biological mechanisms controlling gene expression,

introduce a widely used technique to measure gene activity and discuss several

commonly used analysis methods. First of all, however, since the perspective on

what a gene has, progressively being changing — and still changes — during the

last century, we will define the term gene as it is used in this work. According to

a recently proposed definition [Gerstein et al., 2007] a gene is a union of genomic

sequences encoding a coherent set of potentially overlapping functional products,

either RNA or protein. A brief overview of the principle steps in gene expression

and resulting gene products is given in figure 1.1.

1.1 Transcriptome

The transcriptome is defined as the collection of all gene transcripts in a cell

present at one time. This includes coding messenger RNA (mRNA) as well as

different types of non-coding RNA (ncRNA), with a broad variety of functions.

Thus, the transcriptome can be seen as a mirror of the genetic activity of a

cell. The transcription, as the initial cause of all cellular RNA (except viral

RNA etc), is a complex process regulated by several mechanisms. Compared

to the genome, the variety of the mRNA molecules even increases since each

gene may produce several types of mRNA by alternative splicing. Furthermore,

the lifespan of nearly all RNA molecules is limited and concerning mRNAs,

their degradation is controlled in a complex manner. All these processes change

their activity over time and directly or indirectly affect the composition of the

transcriptome, resulting in a highly dynamical and complex property of living

cells.

Regarding a living cell, the variety of different RNA types mirrors the multiple

functions RNA is responsible for. These functions cover transfer of information
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(mRNA, tRNA), structural and enzymatic formations (rRNA) as well as regu-

latory functions (ncRNA). In this work we will mainly concentrate on one part

of the transcriptome: the mRNA which can be extensively measured using mi-

croarray technology (see section 1.2). Since mRNA is the basis of translation, the

production of proteins, it is therefore an indirect indicator of effective gene ex-

pression. Here we will discuss the regulatory mechanisms controlling these diverse

parts of the transcriptome in more detail.

Figure 1.1: Several steps in gene expression. From one genomic region two different
primary transcripts are produced. Orange boxes denote protein coding sequences, blue
boxes denote for non-coding gene products. After splicing and/or processing five different
transcripts were produced, which finally lead to five different gene products. Proteins
are indicated by rounded rectangles. Main processing steps, which can be regulated are
also shown. For more details see text.

18



1.1.1 RNA-Types

In general RNA can be classified into two main categories: coding RNA and

ncRNA. Whereas the former can be easily characterized since it contains protein

coding sequences, the latter has a multitude of functional roles and is not trans-

lated into proteins. The functional roles of ncRNA are very diverse and, besides

others, ncRNAs are involved in splicing, translation and gene regulation. This

work is mainly based on the analysis of large scale mRNA expression profiles. In

the following, we will therefore mainly discuss two RNA types, mRNA as coding

RNA and microRNAs (miRNA) which have high impact on gene expression via

their influence on mRNAs. Further RNA types will be briefly described in section

1.1.1.3.

1.1.1.1 mRNA

The main proportion of the mammalian transcriptome is formed by the mRNA.

One mRNA always corresponds to a single gene which is defined ‘as the segment

of the DNA sequence corresponding to a single protein (or to a single catalytic

or structural RNA molecule for those genes that produce RNA but no protein)’

[Alberts et al., 2002]. The mRNA used to be primarily seen as the link between

a gene and corresponding protein. This perception becomes more and more out-

dated since recent research supposes that mRNA functionality is more complex

than expected (see chapter 4). However, in the simplest case, mRNA only trans-

ports genetic information from the DNA in the nucleus to a protein which is

produced in the cytoplasm. Therefore, a gene is transcribed by RNA polymerase

II into pre-mRNA and after several processing processes (see below) leaves the

nucleus as mature mRNA and is then translated into a peptide by ribosomes. The

mechanisms controlling transcription and translation will be discussed in sections

1.1.2 and 1.1.3. After transcription the eukaryotic precursor-mRNA (pre-mRNA)

is extensively processed. Processing includes modification of the 5’ and 3’ end as

well as ‘splicing’, a process to remove intron sequences from the primary tran-

script.

Shortly after the initiation of transcription a 5’-cap is added to the 5’-end of

the mRNA by a cap-synthesizing complex associated with the RNA polymerase.

The cap is exclusively added to mRNAs and helps to distinguish these from other
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types of RNA. Hence, it is essential for nuclear export and recognition by the

ribosome. Furthermore, it prevent mRNA from degradation by RNases.

With the end of transcription an enzyme called poly-A polymerase adds ap-

proximately 200 adenosine residues to the 3’-end of the transcript. The final

length of the poly-A tail is determined by so called poly-A-binding proteins, a

mechanism that is so far only poorly understood. However, the poly-A tail is im-

portant for termination of transcription, export from the nucleus, the translation

into protein and protection of the mRNA from degradation by exonucleases.

Protein coding sequences of eukaryotic genes are in many cases separated into

small pieces, the exons, which are interrupted by several stretches of non-coding

sequences, so-called introns. During RNA splicing, a process performed by the

spliceosome, the introns are removed from the pre-mRNA. This is a very complex

process catalyzed by a machinery consisting of five additional RNA molecules and

more than 50 proteins. This modular character of a gene subdivided in several

exons allows for multiple combinations of these, resulting in a variety of different

mRNA molecules from one gene. Therefore, one gene is able to produce a set

of different proteins, which are for instance in some case specific for different

tissues [Holmberg et al., 2000]. A further interesting attribute of splicing is the

generation of individual miRNAs located in intronic sequences and transcribed

together with the pre-mRNA [Baskerville and Bartel, 2005]. The functions of

these miRNAs will be discussed in the next sections.

1.1.1.2 MicroRNA

MicroRNAs are short, about 22nt long, noncoding RNA molecules. Since their

discovery [Lee et al., 1993; Wightman et al., 1993] hundreds of miRNAs have

been discovered in plants and animals [Lagos-Quintana et al., 2001; Reinhart

et al., 2002; Lim et al., 2003]. After identification of their posttranscriptional

gene repression by base-pairing [Hutvágner et al., 2001; Zeng and Cullen, 2003],

the abundant regulatory impact on gene expression emerged. Primary expres-

sion of mammalian mRNAs is mainly subdivided into two types. One way of

miRNA transcription is the transcription of miRNA genes that is controlled by

an independent promoter. These genes may lead towards poly-cistronic miRNA

transcripts with several co-expressed miRNAs [Lagos-Quintana et al., 2001; Lau

et al., 2001]. The co-expression of miRNAs seems to be linked with a common
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function [Ambros, 2008]. The second way how a miRNA can be expressed is co-

expression with protein coding genes. About half of the mammalian miRNAs, in

human more than 50 %, appear to be co-expressed. These so-called intronic miR-

NAs are mainly located within the intron of the host genes, but miRNAs located

in exons as well as in 3’UTRs (untranslated regions) have also been discovered

[Lagos-Quintana et al., 2003; Rodriguez et al., 2004]. The conserved linkage of

expression between a protein coding gene and a miRNA strongly suggests that

there is also a functional relationship between host gene and miRNA. This could

be already shown for two individual miRNAs [Barik, 2008; Zhu et al., 2009].

A general functional relationship between host genes and their intronic miR-

NAs is extensively analyzed in chapter 4. However, most miRNAs are therefore

transcribed by RNA polymerase II, aside from some human miRNAs within alu-

repetitive elements, which can be transcribed by RNA polymerase III [Borchert

et al., 2006].

Maturation of miRNAs occurs through sequential processing steps. After tran-

scription canonical primary transcripts (pri-miRNAs) forms ∼70nt duplex like

hairpin-loops, which are cleaved in the nucleus by the RNase III enzyme Drosha.

In case of intronic miRNAs Drosha cleavage was shown to occur closely related

to the splicing process [Kim and Kim, 2007]. A special type of intronic miRNAs,

so called mirtrons were processed within an alternative pathway. These, also

intronic miRNAs, mimic hairpin structures of pre-miRNAs and bypass Drosha-

mediated cleavage to enter the miRNA pathway during splicing [Ruby et al.,

2007; Berezikov et al., 2007].

After export of the miRNA precursor (pre-miRNA) from the nucleus to the

cytoplasm another RNase III enzyme called Dicer mediates the next processing

step [Zamore et al., 2000; Ketting et al., 2001]. Dicer recognizes the double-

stranded portion of the pre-miRNA, cuts both strands of the duplex and thereby

removes the loop of the hairpin. According to the current model, the end of the

pre-miRNA defining the mature ∼22nt long miRNA is defined during nuclear

cleaving by Drosha [Lee et al., 2003]. The so-called guide-strand is then selected

by the Argonaut proteins and integrated into a ribonucleoprotein complex, known

as the RNA-induced silencing complex (RISC). The active RISC, the complex

bound to single-stranded miRNA, identifies target mRNA sequences based on

complementarity and controls their expression by either degradation or inhibition
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Figure 1.2: Schematic representation of the miRNA pathway. The primary miRNA
transcript (pri-miRNA) derived from a miRNA gene or an intron of a protein coding
gene is cleaved by the RNase III enzyme Drosha. After this cleavage, the precursor
miRNA (pre-miRNA), which may also be derived from so-called mirtrons is exported
into the cytoplasm. Dicer, another RNase III enzyme cleaves the pre-miRNA and the so-
called guide strand is incorporated into RISC. For a detailed explanation of the miRNA
pathway see text.

of translation. A schematic representation of the miRNA pathway is shown in

figure 1.2. This regulatory mechanism will be discussed in more detail in section

1.1.3.

1.1.1.3 Further non-coding types of RNA

Besides mRNAs and the already discussed noncoding miRNAs several other

ncRNA types are known. They form a diverse group of RNAs including function-

ally well-understood RNAs such as tRNA and rRNA, as well RNA types with

more or less obscure functionality, like small nuclear RNAs (snRNAs), piwi-

interacting RNA (piRNA), and long non-coding RNAs (long ncRNAs). Since the

impact on gene expression of most of these RNA types is marginal, unknown or
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RNA type Function

miRNA
(microRNA)

(∼22nt length) gene regulation by translational
repressing or mRNA degradation

siRNA
(small interfering RNA)

(20-25nt length) RNA interference; taming of
transposons and combating viral infections

piRNA
(Piwi-associated RNA)

(25-30nt length) essential in the development
of germ cells

rRNA
(ribosomal RNA)

mediates decoding of mRNA to amino-acid se-
quences of protein

tRNA
(transfer RNA)

transfers a specific amino acid to a growing
polypeptide during translation

snRNA
(small nuclear RNA)

involved in several processes in the nucleus, like
splicing and maintenance of the telomeres

long-ncRNA
(longer non-coding RNA)

participate in various cellular processes, includ-
ing splicing and ribosome biogenesis

Table 1.1: Members of the ncRNA family, abbreviations and function.

not measureable by the methods discussed in this work, only a short overview of

known members of the eukaryotic ncRNA family can be found in table 1.1.

1.1.2 Control of Transcription

The process of copying one DNA strand into a complementary RNA strand

by the RNA polymerase enzyme is generally called transcription. In eukaryotes,

several RNA polymerases synthesize the different types of RNA. mRNA and most

miRNAs for instance are synthesized by RNA polymerase II. The whole process

can be subdivided into three main stages: initiation, elongation and termination.

Initiation summarizes the binding of the RNA polymerase enzyme to the DNA

by recognition of the promoter, separation of the duplex DNA structure and

initiation of the RNA synthesis process. During elongation, the RNA polymeraze

traverses the template strand from 3’ to 5’ generating the RNA copy of the coding
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strand in 5’ to 3’ direction. Elongation continues until the RNA polymerase

encounters a termination signal encoded on the DNA. The transcription stops

and the polymerase releases the DNA template as well as the newly synthesized

RNA.

Transcription is the first step in gene expression and is controlled by several

complex mechanisms. In the following, the main mechanisms will be briefly dis-

cussed.

1.1.2.1 Chromatin structure

In eukaryotic cells, the DNA is usually organized to a complex in the nucleus

called chromatin. The material of which chromosomes are made of. It is build of

DNA, histone and non-histone proteins, subdivided into nucleosomes. Transcrip-

tion of a gene is strongly dependent on the structure of the chromatin. Important

local alterations influencing transcription are histone modifications and nucleo-

some remodeling.

Histones can be modified through at least eight different ways [Kouzarides,

2007], which all have influence on transcriptional activity. For instance, histone

acetylation catalyzed by histone acetyltransferases alter the chromatin structure

in a way that allows for greater accessibility of the DNA. Hence DNA polymerase

and transcription factors have easier access to promoter regions. In contrast, his-

tone methylation inhibits translation through several different mechanisms [Sin-

gal and Ginder, 1999]. Since histone methylation patterns are heritable after cell

division, its role during differentiation processes is very important. Furthermore

histone methylation seems to have remarkable impact on the epigenetic memory

[Callinan and Feinberg, 2006]. Nucleosome remodeling is mediated by chromatin

remodeling complexes which also allows for greater accessibility of DNA packed

in chromatin to other proteins.

In general the chromatin structure controls gene expression on a basal level.

It is primarily accountable for accessibility of the DNA, thus protein coding as

well as regulatory sequences. It can further influence expression rates in various

ways, thereby forming the basic mechanisms of the gene expression regulatory

machinery.
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1.1.2.2 Transcription Factors

A protein that binds to the DNA or as a co-factor to the polymerase-DNA-

complex is termed a transcription factor (TF) if it is somehow required for initi-

ation or regulation of transcription in eukaryotes. There are general transcription

factors (GTF) that are required by the RNA polymerase II for DNA binding and

initiation of the RNA-synthesis. Not all of these GTFs actually bind to the DNA

but are part of the huge protein complex which directly interacts with the DNA

and the DNA polymerase.

Further DNA-binding proteins influence transcription in a variety of ways.

They can stabilize or block the binding of DNA polymerase, directly or indi-

rectly catalyze the acetylation or deacetylation of DNA (see 1.1.2.1) or recruit

co-activator or co-repressor proteins. TFs bind DNA at either promoter sequences

or cis-regulatory elements [Gill, 2001]. A promoter is defined as the nucleotide

sequence in the DNA to which RNA polymerase binds and starts transcription.

Promoters are found upstream of the transcriptional start site (TSS) and can

include regulatory elements several kilobases away from TSS. Besides the core

promoter, required to properly initiate transcription with the RNApol binding

site, it mainly consists of specific TF binding sites (TFBS). Cis-regulatory ele-

ments are short DNA sequences with specific TFBSs which can be located many

kilobases away from TSS. Together these sequences can be termed a ‘gene control

region’.

As the number of GTF is relatively small and similar for all polymerase II tran-

scribed genes, the amount and composition of additional regulatory proteins is

different for each gene. About 5-10% of all mammalian protein-coding sequences,

of estimated 20,000 to 25,000 human genes [Carninci and Hayashizaki, 2007], are

proposed to serve as regulators of gene transcription [Wilson et al., 2008]. Ex-

pression of each gene is controlled by a set of different TFs, whereas each of those

are in turn regulated by its own set of gene regulatory proteins. The resulting

exceedingly complex network controlling the expression of mammalian genes al-

lows for a diversity of spatial and temporal different transcriptional expression

patterns.
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1.1.2.3 non-codingRNA

In addition to transcriptional control mechanisms based on chromatin structure

or mediated by gene regulatory proteins, several ncRNAs have a functional role as

regulators of transcription [Carninci, 2008]. To date, there are several molecular

mechanisms identified, most of them only poorly understood. However, their

positive or negative influence on the transcription rate is shown [Morris et al.,

2008].

Among the various mechanisms identified by several studies are natural anti-

sense transcripts (NAT) and the specific binding to transcription factors and or

DNA sequences directly. Besides trans-NATs which mainly do not affect tran-

scription itself (e.g. miRNAs, see 1.1.3.3), cis-NATs for instance, may inhibit

transcription by histone modification within promoter regions [Osato et al., 2007].

Other ncRNAs can bind proteins involved in transcription, thus influencing their

activity [Storz, 2002]. Detailed explanations and further examples can be found in

a variety of recent articles [Barrandon et al., 2008; Carninci et al., 2008; Mattick

and Makunin, 2006].

1.1.3 Post-transcriptional control

Gene expression starts with transcription, which produces primary RNA tran-

scripts and is followed by several maturation steps. As shown above transcription

is controlled by various different mechanisms, while in principle each step can be

regulated independently. The single steps include processing of the primary tran-

scripts, splicing and export from the nucleus to the cytosol, where their cellular

localization can also be regulated. Furthermore, transcripts in the cytoplasm

may be selectively destabilized, activated, inactivated or degraded. Translation,

the process in which mRNA is finally translated into protein is also extensively

regulated.

All these regulatory mechanism that follow transcription and affect gene ex-

pression are referred to as post-transcriptional control. In this chapter we will

briefly discuss the main mechanisms of post-transcriptional control with strong

impact on the composition of the transcriptome and gene expression. Therefore,

we will basically focus on mRNA and miRNA.
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1.1.3.1 RNA transport and localization control

In eukaryotic cells synthesis and diverse pre-processing steps of RNA take place

in the nucleus. Several of the produced RNA types, including mRNA and pre-

miRNA, are exported to the cytoplasm where they serve as a template for protein

synthesis or influence the same in various ways. In general every RNA exported

from the nucleus must pass through the nuclear membrane via nuclear pore

complexes (NPC), but the distinct nuclear export pathways for different RNA

types vary [Cullen, 2003]. As far as the exact mechanisms are understood, nu-

clear RNA export is highly selective and is mainly mediated by a protein family

termed exportins (karyopherins). These exportins depend on the activity of a

small co-factor, the GTPase Ran [Allen et al., 2000]. In case of Drosha-processed

pre-miRNAs Exportin5 (Exp5) forms a heterotrimer with Ran and pre-miRNA,

whereas the binding of Exp5 depends on the RNA structure but not on the se-

quence. After passing the NPC Ran-GTP is hydrolyzed to Ran-GDP and the

pre-miRNA is released [Cullen, 2004].

In the cytoplasm pre-miRNAs undergo a final processing step: Dicer, a RNase

III enzyme, binds the double stranded pre-miRNA and cuts both strands of the

stem loop, generating a ∼22 nucleotide miRNA duplex. One strand is incorpo-

rated into RISC, whereas the other miRNA∗ strand is typically degraded [Bushati

and Cohen, 2007].

In contrast mRNA export does not depend on Ran and karyopherins but de-

pends on various other RNA binding proteins. Furthermore, the NPC recognizes

and transports only completely processed mRNAs. Presumably, the recognition

depends on cap-binding, poly-A-tail and further binding of appropriate proteins.

Key proteins mediating the export of mRNA are Tap and a small co-factor

termed Nxt (p15) that form a heterodimer. However, by recruitment of further

proteins like UAP56 and RNA-dependent ATPases the ribonucleoprotein com-

plexes (RNP complexes) is recognized by NPC and the intron free mRNA is

exported to the cytoplasm [Iglesias and Stutz, 2008].

An exported mRNA binds to ribosomes, which translate it into a polypeptide.

Some mRNAs are directed to specific intracellular locations. The direction is

controlled by specific sequences mainly within 3’ UTR, but also in the 5’ UTR,

recognized by RNA binding proteins (RNPs). These transport RNPs engage with

cytoskeletal motors for directed transport. During transport several mechanisms,
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presumably including small non-codingRNAs and further RNA binding proteins

inhibit the translation of transported mRNA [Besse and Ephrussi, 2008]. Be-

yond this spatial component, a temporal regulatory impact of these mechanisms

controlling gene expression is assumed.

1.1.3.2 mRNA degradation or turnover

The protein production is further regulated by the mRNA lifespan. In general

mRNA molecules are unstable and consistently degraded. Different eukaryotic

mRNAs have different half-lives, ranging from several minutes to more than 10

hours (β-globulin mRNA) [Alberts et al., 2002]. Several independent mechanisms

control mRNA turnover. Besides the common pathway, that is deadenylation

followed by exosome complex mediated degradation, there is also cleavage by

sequence-specific endonucleases or cleavage in response to the binding of comple-

mentary small interfering RNA (siRNAs) or miRNAs [Parker and Song, 2004].

Nearly all ∼200 bp long poly-A-tails of eukaryotic mRNAs are continuously

shortened by a variety of deadenylases in a 3’ to 5’ direction. Once the tail reaches

a critical length, the 5’ cap is removed and the mRNA is rapidly degraded.

Decapping allows for additional digestion in 5’ → 3’ direction by exonucleases.

Furthermore, after deadenylation the exosome, a huge protein complex containing

multiple exoribonucleases [Newbury, 2006], degrades mRNA from the 3’ end. This

protein complex is also involved in nonsense-mediated decay [Lejeune et al., 2003;

Lehner and Sanderson, 2004], a mechanism detecting nonsense mutations and

prevents the production of truncated or erroneous proteins by RNA degradation.

The rate of poly-A tail shortening varies from mRNA to mRNA and depends

on several RNA-binding molecules which can decrease or increase the rate of

deadenylation.

The cleavage of mRNA is mainly controlled by siRNA. Short double-stranded

RNA molecules processed by Dicer and integrated into RISC, bind to comple-

mentary mRNA sequences and induce enzymatic cleavage [Moazed, 2009]. This

process is strongly related to miRNA mediated translational control and will be

discussed in detail in the next chapter.

Many untranslated mRNAs assemble in related mRNPs that accumulate in

specific loci termed P bodies [Parker and Sheth, 2007]. P bodies interact with the

decay machinery and associated mRNAs can either be degraded after decapping,
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remain in the P body state or reentry translation. Although many questions

concerning the function of P bodies are unclear, their role in modulation of gene

expression is indisputable.

1.1.3.3 MicroRNAs

Shortly after their discovery in the 1990s, the interest in miRNAs extremely

increased due to the discovery of their impact on protein coding gene expression.

After a miRNA is embedded into RISC, it binds to specific sequences mainly in

the 3’ UTRs of mRNAs and inhibits translation or causes degradation initiated

by cleavage of the poly-A-tail [Grosshans and Filipowicz, 2008].

Recognition of target sites depends on extensive complementary pairing but

does not require a complete match over the full miRNA length. Most miRNA

binding sites identified so far include a complete 7-8mer pairing in the ‘seed’

region of the miRNA. This region is defined as the nucleotides 2-7 from the 5’ end

of the miRNA [Bartel, 2009]. Beside these canonical seed-matched sites several

6mer pairing sites and even seed mismatch sites are verified to be functional

[Brennecke et al., 2005]. However, sites with insufficient 5’ pairing seem to require

strong 3’ pairing, indicating that besides pairing the free energy also affects the

stability of the miRNA:mRNA duplex [Doench and Sharp, 2004].

MicroRNAs loaded into RISC modulate gene expression mainly by downreg-

ulation of the rate of translation. This can be achieved by two different mecha-

nisms: mRNA cleavage and translational inhibition. Cleavage of mRNA depends

on sufficient complementarity of the miRNA and is identical to the siRNA path-

way. In animals where miRNAs target mRNAs mainly by an imperfect match

the latter mechanism, which leads to translational repression, outbalances. Two

different modes of repression are currently discussed. Repression of initiation

of translation and repression of elongation of the polyaminoacid chain [Cannell

et al., 2008]. However, recently it has been shown that miRNAs can also activate

translation of target mRNA [Vasudevan et al., 2007].

Furthermore, repression of target activity can be classified into three main

categories: ‘Switch’, ‘fine tuning’ and ‘neutral’ [Flynt and Lai, 2008]. Whereas

switch refers to a inhibition of protein synthesis towards a target inactivity,

tuned targets still produce functional proteins but in a lower amount. Functional

miRNA:mRNA interactions without advantageous nor adverse consequences are
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denoted as neutral, since their effect on the phenotype is negligible. Differentia-

tion between tuning and switch depends on the impact of translational repression.

Properties modulating the impact are characteristics of the seed, GC-content

(guanine-cytosine content) and the number of functional binding sites within the

3’ UTR [Baek et al., 2008].

Like TFs miRNAs are affecting their target genes in different miRNA com-

binations and a single miRNA can target up to hundreds of different mRNAs

[Betel et al., 2008]. As a consequence, the combinatorial scope allows for complex

regulatory networks controlling the expression of thousands of protein coding-

genes. Considering that also TFs are targets of miRNAs and in turn control their

transcription, too, extensive linkage between both regulatory networks holds for

multiple sources of information to control expression of individual transcripts. So

far, little is known about global and local structures of these networks but recent

studies provide more and more insight into the architecture and components or

motifs it is composed of [Shalgi et al., 2007; Tsang et al., 2007; Yu et al., 2008].

1.2 Measuring gene expression

In the last chapter the mammalian transcriptome was briefly introduced and the

most prominent RNA types were discussed. Furthermore, we discussed the main

regulatory mechanisms controlling the expression of genes. In this chapter we will

shortly discuss several methods that are used to measure gene expression based

on RNA levels. In principle one can differentiate between methods measuring

the expression of single RNA molecules or large scale methods, which are able to

measure the expression of thousands of genes at once. In this work we exclusively

focus on the analysis of high throughput expression data. The most commonly

used method to measure large scale gene expression is the microarray technology

[Kawasaki, 2006]. Further methods are serial analysis of gene expression (SAGE)

[Anisimov, 2008] and Deep sequencing [Wang et al., 2009].

In the following sections the principles of microarray technology will be intro-

duced and the applicability as well as the main issues and restrictions will be

discussed.
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1.2.1 Microarray technology

A microarray or genechip is a tool which allows to measure the expression of

thousands of genes simultaneously. Although different techniques exist the tech-

nical principle is mainly identical. On a small support, consisting of a membrane

or glass slide, probes are immobilized by covalent bonds to a chemical matrix.

These probes can be short DNA fragments, cDNA or oligonucleotide sequences

organized in so-called spots, complementary to nucleotide sequences of known

transcripts. In spotted arrays probes are synthesized prior to deposition on the

array surface and are then ‘spotted’ onto glass. In oligonucleotide microarrays,

the probes are mostly synthesized directly onto the support.

Fluorescent-labeled cDNA molecules derived from isolated mRNA from each

cell type studied are then hybridized to the genechip. Within spotted arrays one

often hybridizes control and sample cDNA or cRNA labelled with two different

fluorescent dyes onto one chip, whereas in oligonucleotide arrays only one color

channel is used. Control and sample RNA are therefore hybridized to different

chips. The measured fluorescence intensities for each spot mirrors the relative

expression of the corresponding transcripts. Changes in gene expression can be

estimated by computational comparison of the measured expression levels.

In this work only one channel oligonucleotide microarrays as manufactured by

Affymetrix were used. Further reading about technical background, probe level

data and probe annotation can be found in [Affymetrix, 2001; Irizarry et al., 2003;

Liu et al., 2003]. After several normalization and preprocessing steps huge data

sets of gene expression are obtained [Sarkar et al., 2009]. Typically one denotes

the columns as the samples or gene expression profiles (GEPs) and the rows,

representing the expression level of each gene across all experimental conditions.

The proper analysis of such data is an elaborate task and will be extensively

discussed in the next sections.

1.2.2 Limitations

Microarray technology benefits from its high throughput characteristics, but un-

like methods like SAGE and Deep sequencing, it is a closed method that is

limited to the genes that are represented on the chip. However, not all genes or

transcripts are known yet or sequences are wrongly identified during genome an-
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notation. A further disadvantage, compared to gene expression profiling methods

like QPCR (quantitative PCR), is that it lacks accuracy. The main reason for

impreciseness in measuring the expression of a particular transcript is caused by

cross-hybridization, annealing of only partially complementary sequences. Fur-

thermore, probes designed from genomic EST information may be incorrectly

associated with a transcript of a specific gene.

Since a particular probe is mainly designed to match parts of the sequence

of known or predicted open reading frames, different splice forms of a single

genes can not be determined. Moreover, genechips only detect mRNA levels.

As described above, these are subjects to comprehensive post-transcriptional

regulatory mechanisms and though not obligatory translated into protein. These

restrictions to gene expression stay obscure within a microarray experiment.

1.3 Statistical methods and analysis models

The first sections in this chapter contained a brief summary of the regulation and

composition of the mammalian transcriptome. Several regulatory mechanisms

and their interactions were described, to show the complexity of gene expres-

sion regulation. In the last section microarray technology, a widely used method

that allows for the simultaneous measurement of the activity of thousands of dif-

ferent genes, was introduced. Microarray experiments produce high-dimensional

data with little replication, thereby causing several problems of statistical anal-

ysis. The complexity and huge amounts of data pose for several bioinformatic

challenges, ranging from pre-processing steps like background correction, data

normalization and filtering over to gene annotation and data warehousing [Autio

et al., 2009; Hackstadt and Hess, 2009; Stekel, 2003].

In this work we mainly focus on the statistical analysis of pre-processed gene

expression data. The goal is to extract meaningful biological information. Typical

biological goals addressed by microarray experiments include the identification

of co-expressed genes, identification of genes or groups of genes with expression

patterns related to experimental conditions (chemical treatment) or different cell

types (tumor vs wild type), or the identification of regulatory relationships (TF

- target gene).

In the field of microarray data analysis a lot of different statistical tools and
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methods have been developed to achieve the above mentioned goals of the biolog-

ical tasks. A common classification of these methods is the distinction between

supervised and unsupervised methods. Supervised methods use prior knowledge

about samples or genes to extract patterns or features specific to a given class

or to classify samples or genes [Lutter et al., 2006]. In contrast, unsupervised

methods screen the data for interesting novel biological regularities or relation-

ships. Additionally, one can also classify analysis methods as clustering methods,

projection methods or graphical model based approaches. However, all these

methods are widely discussed and precisely explained in a number of articles,

reviews and books [Quackenbush, 2006; Dougherty et al., 2005; Allison et al.,

2006; Berrar et al., 2003].

In the following, we will discuss several analysis methods based on the un-

derlying biological model conceptions. Concerning the biological background one

can distinguish between two main models: mapping models and mixture models.

Mapping models are based on the assumption that each measured gene expression

profile corresponds to a specific cellular state, chemical treatment or experimen-

tal condition, whereas mixture models are based on the assumption that a gene

expression profile is composed of several biological processes running in parallel.

Each process is responsible for a particular expression profile. In the following,

these model conceptions and the corresponding statistical tools used in this work

will be discussed. The applicability of these tools on microarray data and the bi-

ological questions that give rise to the use of a particular analysis method will

be discussed below.

As mentioned above, only Affymetrix oligonucleotide gene chips were used in

this work. Therefore, the following methods mainly refer to one channel gene

expression profile data. However, most of these methods can be applied in a

slightly modified way to two channel data as well.

1.3.1 Mapping models

Typically a microarray measurement is considered as a map of the cellular gene

expression, based on mRNA levels, at a distinct time point and under certain

— inner and outer — conditions. Inner conditions may refer to a developmental

stage or alteration in the genotype, whereas outer conditions may be chemical

treatments, starvation or physical stress. Different conditions cause the cell to re-
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act with a modification in gene expression. Changes in expression patterns can be

interpreted as the phenotypic expression of regulatory mechanisms. For instance,

comparing expression profiles of a TF knock-out experiment to wild type profiles

will produce a list of up and downregulated genes, which can be interpreted as

negatively or positively regulated TF target genes. Moreover, the differences in

the temporal expression profiles of differentiating cells provide information about

the activated or inactivated pathways.

Based on these model assumptions several statistical methods have been estab-

lished that generate interpretable biological results. The most commonly used of

these methods will be discussed in this work with regard to the above mentioned

underlying biological mechanisms. In the following the expression value of a gene

k in the nth of N experiments is written as xkn. Two different experimental con-

ditions can be denoted as “+” and “−”, which reads then as xk(+) and xk(−)

the expression of a gene k under two conditions for instance as treatment and

control.

1.3.1.1 Pairwise comparison

The most canonical approach in the analysis of different gene expression patterns

is to look for differentially expressed genes. The goal is to identify genes changing

their expression significantly from one state to another. Dependent on the size of

the dataset several methods are commonly used to identify these genes [Cui and

Churchill, 2003]. Three of these will be exemplary listed and shortly specified.

� A fold change denotes the relative change in gene expression between two

distinct experimental conditions ±. For a gene k it depends on the log-ratio

SignalLogRatiok = log2

xk(+)

xk(−)
(1.1)

If replicates for the conditions are available one typically uses the estimated

means xi = xi(±). The fold change for gene k can then be defined as

FoldChangek =

(
2SignalLogRatiok , SignalLogRatiok ≥ 0

−2−SignalLogRatiok , SignalLogRatiok < 0
. (1.2)

The fold change is not a statistical test, and does not provide any associated
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value that can indicate the level of confidence. Furthermore it is subject to

bias caused by improperly normalized data or outliers.

� The t-test is a simple statistical test to detect differentially expressed

genes. It compares two distributions, assumed to be Gaussian, to test

whether the means are different. Applied to a two class microarray ex-

periment it can be used to determine significantly differentially expressed

genes. The power of the test depends on the number of samples, and there-

fore, is low for microarray experiments where the sample size is typically

small. Furthermore, it may suffer from the same bias as the fold change if

the error variance is not truly constant for all genes.

� Significance analysis of microarrays (SAM) is a further, widely used method

to determine differentially expressed genes [Tusher et al., 2001]. It assigns

a score to each gene, relative to the standard deviation of repeated

measurements, based on changes in expression between two conditions. The

algorithm estimates a false discovery rate (FDR) using permutations of the

replicates that can be used to adjust a threshold to identify significantly

regulated genes. The test is more robust for small sample sizes then the

t-test, and does not assume normal distributions.

However, all of these methods only allow for a pairwise comparison of two differ-

ent conditions. They rank genes accordingly to their change in expression and —

if applicable — provide a significance measure. The biological meaning of these

lists has to be interpreted carefully. Depending on the quality of the data or

normalization errors false positives may occur. Furthermore, one can not distin-

guish between direct or indirect regulatory effects and, since cells react in many

different ways on different treatments, genes showing high differential expression

do not necessarily share a common function. Finally, these methods imply a rela-

tionship between differentially expressed genes and the experimental treatment.

But the strength in alteration of expression does not depend on the regulatory

impact a particular gene has. Hence, several potentially interesting genes may

not be detected within a pairwise comparison analysis.
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Figure 1.3: Hierarchical clustering of toy gene expression data. Relative expression
levels are color coded; red indicates positive and green negative values. Distances were
measured using four different similarity criterions: single-, complete-, average linkage
and Ward’s criterion. Depending on the criterion, the four resulting trees show different
topologies.

1.3.1.2 Hierarchical clustering

A somewhat related approach to the detection of differentially expressed genes

is the identification of similarities in gene expression patterns. However, unlike

comparing the expression of a single gene in different conditions, one here com-

pares the expression patterns of multiple genes with each other. One major goal

of this analysis is to identify genes with positively or negatively correlated ex-

pression patterns. Genes with a positive correlation in depending on different

conditions therefore may also share a common biological function or even are

commonly regulated. In contrast, negative correlation of two or more expressed

genes may indicate for more or less antagonistic functions.

A common approach to identify correlated genes is clustering. As clustering

one denotes the assignment of objects into groups (called clusters) depending

on a similarity measure. The objects assigned to the resulting clusters are more

similar to each other than objects from different clusters. Similarity is often

assessed according to several distance measures, such as euclidean distance or

Pearson correlation [Sturn et al., 2002].

Although a bunch of different clustering algorithms exist, in the field of mi-

croarray data analysis the most commonly used method is hierarchical clustering

[Quackenbush, 2001]. The algorithm iteratively connects genes accordingly to
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their similarity, beginning with the most similar ones. The result is a tree or

dendrogram where the branches connect the grouped genes. Cutting the tree at

a predefined threshold will give a clustering at the selected precision. Beyond the

choice of an appropriate distance measure between distinct genes, the similar-

ity between groups has to be defined, also. Usually the similarity between two

clusters can be determined as:

� Single linkage or nearest neighbour method. The distance between two

clusters i and j is defined as the minimum distance between the elements

of each cluster.

� Complete linkage or maximum neighbour method. The distance between

two clusters i and j is calculated as the maximum distance between an

element of cluster i and an element of cluster j.

� Average linkage unweighted pair group method (UPGMA). The distance

between two clusters is calculated based on the average values using all

elements of each cluster.

� Ward’s criterion. At each step in the analysis, the union of every possible

cluster i and j is considered and the two clusters whose fusion results in

minimum increase in ’information loss’ are combined. Information loss is

defined by Ward in terms of an error sum-of-squares criterion, ESS.

Although the algorithm is easy to understand and the results are intuitively in-

terpretable, it also lacks several issues. Depending on the height of the cut of

the tree, the size and number of distinct clusters varies. Defining the height that

results in the most relevant clusters can not be easily determined. Furthermore,

depending on the used distance metric or linkage method, the resulting den-

drograms vary (see figure 1.3). Hence, the interpretation of the different results

may be misleading or even false. The strength of his method is the unsupervised

identification of interesting gene expression patterns. A huge gene cluster show-

ing a distinct pattern can provide novel biological information about regulatory

mechanisms. By contrast, a single gene of potential interest may not be identified

since it is not assigned to a conspicuous cluster (see chapter 4).
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Figure 1.4: SVM classifier. (A) Binary classification. The data is linerly separable by
infinite hyperplanes, e.g. h1 . . .h3. (B) A SVM finds the optimal hyperplane hopt with
its normal vector wopt and the maximum distance to the support vectors (circles). (C)
The SVM is trained using a training data set. (D) A new object can the be classified.

1.3.1.3 Support vector machines

Beyond the identification of strongly differentially expressed genes or genes with

common regulatory patterns, one can also try to identify genes, that allow for

classification of the dataset. An appropriate and widely used method for this gene

selection task is the application of a support vector machine (SVM) [Schachtner

et al., 2007a; Herold et al., 2008]. This supervised learning approach estimates

an optimal hyperplane h which can be characterized by its normal vector w and

a constant b. After training using a finite set of training data, the hyperplane

separates the input data into two classes.

The SVM mechanism can be easily illustrated using geometric considerations

in a vector space. The training dataset consists of K gene expression profiles.

Each gene expression profile is represented by a vector formed by N gene expres-
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sion values, labeled by two classes. Based on the data, an optimal hyperplane

is estimated, that has the maximum possible distance to the training vectors

(support vectors) closest to it (see figure 1.4B), and is then characterized by its

normal vector wopt. After estimating the optimal hyperplane a new vector x can

be classified according to the decision function (see figures 1.4C,D)

f(x) = sgn(〈x,w〉+ b), (1.3)

where

w =
X
m∈SV

ymαmxSVk (1.4)

and ym represents the class label, αm represents a hyperparameter and xSVk indi-

cates the support vectors closest to the separating hyperplane. The components

of wopt indicate the importance of a gene for the classification task. Genes with

small components in wopt can be removed as their associated unit vector lies

almost parallel to the hyperplane and therefore orthogonal to the optimal class

discrimination. Hence, in reverse one can now identify a minimum number of

genes, that allow for correct classification. These selected genes may then be

used as so-called marker genes, for instance in clinical approaches like cancer

classification.

In some cases it might be the case that the data is not linearly separable. In

these cases, one can either use soft margin hyperplanes, which allow for some few

points to be wrongly classified, or non-linear SVM, where the data is projected

into a higher dimensional space using a ‘kernel’ before classification [Scholkopf

and Smola, 2002].

Similar to the pairwise comparison methods, SVMs are based on the power

of single gene statistics. Thus, the quality of the trained classifier depends on

proper gene expression value normalization. Another problem that may occur is

overfitting, especially when the number of features (genes in this case) is large

compared to the number of training samples. Unfortunately this is mostly the

case in microarray data analysis. To avoid overfitting a preselection of genes,

based on gene ranking using pairwise comparison methods, can be applied. Fur-

thermore, in principle SVM are only able to be trained on two different classes.

However, apart from these more technical issues, one emerging problem of

SVMs is the potentially misleading interpretation of the selected genes. Genes,
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that are used to correctly classify the data, are not necessarily genes, strongly

related to the conditions under study and, by contrast, genes with a major bio-

logical role may not be applicable for classification.

1.3.2 Mixture models

The basic assumption in the previously discussed mapping models is that the

change in gene expression – more or less – directly corresponds to the different

conditions. However, according to our knowledge, one gene can be associated

with several functions. Thus, a single gene can produce different splice forms

with corresponding proteins related to specific tissues or functions [Holmberg

et al., 2000; Ryan et al., 2005] and further on, a distinct protein can be part

of several pathways or biological processes at once [Alberts et al., 2002]. The

composition of the transcriptome within a living cell is controlled by a couple

of biological processes, each of which causing its own specific gene expression

pattern, the so called gene expression mode (GEM). Hence, the expression of

a single gene may then be a result of more then one regulatory mechanism.

Therefore, we consider a GEP xn = (xn1, . . . , xnK), n = 1 . . . N, as the expression

level of K genes measured under N conditions resulting in a expression matrix

X = (x1, . . . ,xN), where the columns are formed by the GEPs and the rows

correspond to the expression patterns of the distinct genes.

According to this conception, a specific gene expression profile, measured at a

distinct condition is then the superposition of simultaneously running processes,

each represented by its own GEM. The goal of the following methods is the re-

construction of these GEMs. Unfortunately, the number and properties of the

underlying processes are unknown and therefore, the number of possible solu-

tions is infinite. Hence, one has to impose additional restrictions to the model.

In general this problem can be specified as a blind source separation (BSS) prob-

lem, where one tries to recover signals from several observed linear mixtures. In

our case mixtures refer to microarray measurements. The following methods are

based on decorrelation, independence or non-negativity of the unknown source

GEMs. All these methods were developed in the field of linear algebra and are

also successfully applied to other BSS problems like removing water artefact’s

from NMR spectra or functional RMI data analysis [Stadlthanner et al., 2003b;

Theis et al., 2005; Böhm et al., 2006].
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Figure 1.5: Illustration of the mixing model. K genes differentially contribute to three
independent GEMs. Dependent on three different conditions the GEMs are more or less
active and superimpose to the three measured GEPs.

1.3.2.1 Principal component analysis

One possible approach is to assume that the underlying GEMs forming a GEP

are decorrelated. Correlation is a basic statistical measure indicating the strength

and direction of a linear relationship between two random variables. Principle

component analysis (PCA) is a widely used method that allows for the decom-

position of several possibly correlated signals into an equal or smaller number of

uncorrelated variables. Mathematically speaking, a PCA is a linear transforma-

tion that projects multivariate data into a new orthogonal feature space where

the first principal component (PC) refers to the direction with the greatest vari-

ance and lies on the first new coordinate [Hyvärinen et al., 2001].

Given our data matrix X where the columns represent the GEPs measured in

a microarray experiment and the rows are formed by the single gene expression

patterns. PCA now finds an orthogonal transformation U such that

YT = XTU = VΣ. (1.5)

The columns of the matrix Y are the principal components, and the columns

of U form the set of orthonormal basis vectors of the PCs. The matrix Σ is a
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diagonal matrix containing the singular values of X.

As PCA extracts and sorts the PCs according to their variance in decreasing

order, a common application is dimensionality reduction. Given the noise present

in real data, one can concentrate on the first l components assuming they contain

almost all relevant information. In practice a reasonable determination of l is

problematic since the amount of noise is generally unknown and the number of

components required for a sufficient biological interpretation is hard to define.

However, the application of PCA as a preprocessing step for clustering, com-

pared to clustering of the original data does not necessarily improve cluster qual-

ity [Yeung and Ruzzo, 2001]. Since, in this work PCA is only applied as a neces-

sary preprocessing step for independent component analysis (see next section),

we here will refrain from a more detailed discussion of PCA.

1.3.2.2 Independent component analysis

The power of PCA is restricted to second order statistics. Independent compo-

nent analysis (ICA) uses the much richer requirement of statistical independence

to decompose a given set of measurements into independent source signals so-

called independent components (ICs) [Theis, 2002]. To solve this problem, several

ICA algorithms have been developed. In this work the two well-established algo-

rithms, JADE [Cardoso et al., 1993; Cardoso and Souloumiac, 1996] and FastICA

[Hyvärinen, 1999], implemented in MATLAB® [Mathworks, 2008] were used.

Applied to the analysis of large scale gene expression data, several model as-

sumptions have to be made [Lutter et al., 2008, 2009]. Briefly summarized, gene

expression of K genes in a living cell is controlled by M independent biological

processes running in parallel. Each process m ∈ {1, . . . ,M} forms a distinct GEM

represented by a row vector of K gene expression levels sm = (sm1, . . . , smK).

Note that one gene can be part of more than one process/GEM. The respective

GEMs superimpose to a measureable GEP (columns of our data matrix X). Al-

though, from our comprehension of the biology of a living cell, no single process

is completely isolated, and therefore all processes somehow interact between each

other. However, due to a certain autonomy of these processes one can assume

that the corresponding GEMs appear to be independent, to a first approximation.

ICA decomposes our data X into a matrix of M independent expression modes

S = (s1, . . . , sM) and the corresponding N ×M mixing matrix A including the
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basis vectors of our new feature space, which then reads as

XT = AS. (1.6)

Each microarray expression measurement xn (columns of X) results from a

weighted superposition of independent biological processes. The mixing matrix

A defines the weights with which the corresponding GEM contributes to the

measurements or GEPs.

In practice, statistical independence can not directly be determined and there-

fore, has to be approximated. A common approach to solve this is to approximate

independence by non-gaussianity. Non-gaussianity again can be measured by the

fourth-order cumulant, the kurtosis. A second measure of non-gaussianity is given

by negentropy, which is based on the information-theoretic quantity of entropy

[Hyvärinen et al., 2001]. Although further approximations exist, the algorithms

used in this work are either based on the kurtosis (JADE) or approximate non-

gaussianity using negentopy (FastICA). Furthermore, the reconstruction of inde-

pendent source signals due to a linear mixture model is limited to two ambiguities

[Hyvärinen et al., 2001]:

1. The energy of the variances of the independent signals can not be deter-

mined.

2. The order of the reconstructed independent components can not be deter-

mined.

Since microarray technology is only capable to measure relative gene expressions

(see section 1.2), the first ambiguity is primarily extraneous here. Note that this

still leaves the indeterminacy of the sign of the components. Typically, as a result

from an ICA one obtains ICs with positive and negative entries, but negative

gene expression does not exist. The negative expressions may be considered as

related to strongly repressed processes. But, since the sign is unknown, from our

gene expression mixture model, it is — without using additional knowledge —

impossible to determine whether a strong reconstructed signal corresponds to an

activated or repressed biological process.

The second ambiguity is almost equally negligible since we cannot assume

that there is any order of the biological processes. However, more relevant for a
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meaningful interpretation of the results is the relation of a GEM to a specific ex-

perimental condition. In case of a time course experiment, the temporal activity

of a particular process gives insight into the inner organization of a cell. For in-

stance, in [Lutter et al., 2009] it is shown how a time dependent cellular response

to bacterial infection could be reconstructed from determining the contributions

of the GEM to the GEP from the mixing matrix A.

A further limitation to ICA is the indeterminacy in the overcomplete case.

This means, that a unique reconstruction of independent components can only

be assured if the number of reconstructed signals is less or equal to the number

of used mixtures [Theis and Lang, 2002; Theis et al., 2004a]. Unfortunately,

the number of cellular processes is generally unknown. One reconstructed GEM

may therefore still represent a superposition of underlying processes. Using a

bootstrapping approach, it could be shown that sampled reconstruction is more

robust compared to a random model [Lutter et al., 2009] and the results may

therefore be interpreted as GEMs referring to single or superpositions of strongly

related processes.

1.3.2.3 Non-negative matrix factorization

As a result of an ICA analysis one obtains independent source signals with posi-

tive and negative entries. As mentioned the sign of these signals is undetermined,

provoking the discussed issue. The Non-negative Matrix Factorization (NMF)

techniques replace the assumption of statistical independence by a positivity

constraint concerning the entries of the matrices into which the measured GEPs

are decomposed [Schachtner et al., 2008]. This constraint of non-negativity seems

to be more adequate to microarray data, since gene expressions are measured by

strictly positive fluorescence intensities. Applied to our data matrix X, where

each column represents a GEP and each row a gene expression pattern, NMF

approximately factorizes a matrix X into a product of two non-negative matrices

W(K × L) and H(L×N) such that

X ≈WH (1.7)

where the common approach is to minimize ||X−WH||. The columns of W are

called metagenes, while rows of H constitute meta experiments [Brunet et al.,
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2004], where L is an integer parameter to be set. In analogy to the ICA mixing

model, the metagenes can be interpreted as a particular gene expression mode

that is characteristic for a specific biological process. The meta experiments con-

tain the mixing coefficients defining the contributions of each metagene to the

experiments. The results can be used to search for potentially interesting source

signals, which help to identify putative marker genes [Schachtner et al., 2007b].

For instance one can search for a specific pattern within the meta experiments

to focus only on the genes contained in the corresponding metagene.

However, it has been shown that non-negativity being the only constraint does

not lead to unique results [Lee and Seung, 1999, 2001]. As mentioned above,

since the number of underlying processes is not known, some more flexibility

concerning the number of estimateable sources would be of advantage. By varying

the number of estimated sources combined with extensive sampling reproduceable

results can be achieved. But in comparison to other well-founded methods, this

method still holds the drawback of manual thresholding [Schachtner et al., 2008].

However, in analogy with the ICA model, the number of biological processes to be

identified is unclear and, thus one may obtain either superpositions or partially

fragmented reconstructed GEMs.

One further solution to increase robustness, is to extend NMF algorithms by

additional constraints. In case of reconstruction of GEMs due to biological pro-

cesses, it is assumed that these processes only correspond to the expression of a

few genes, compared to a complete GEP measured with microarrays. Hence, a

sparseness measure can be proposed as most appropriate to suitably transform

gene expression profiles into interpretable underlying biological signals. Several

algorithms applying additional sparseness constraints have been proposed, but

either still do not deliver unique results or are extremely computationally exten-

sive [Li et al., 2001; Stadlthanner et al., 2007].

1.4 Conclusions

In this last chapter the basic principles of gene expressionwere outlined and the

widely used method of microarray technology was introduced. We then discussed

various analysis methods based on two different underlying models towards their

biological relevance. In most cases the outcome of these methods is a list of
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genes of interest. To further interpret these gene lists, a common approach is

to create graphs where the nodes represent genes and the edges between the

nodes represent distinct relationships between two genes. These relationships

can be defined in various ways. For instance one can use gene annotation as

provided by the Gene Ontology [Ashburner et al., 2000] or the MeSH database

[Nelson et al., 2004]. Another reasonable approach is to use text mining tools

as provided by Genomatix® [Genomatix, 2009] or protein-protein interaction

networks. The advantages of the representation of genes in a network a diverse.

On the one hand a network presentation allows for a more intuitive interpretation

of results, where genes related to a specific pathway or involved in a common

biological process become easily visible. On the other hand graphs allow for

additional analysis methods based on graph theory. These methods can be used to

identify interesting network structures or over-represented motifs. In the following

network representation will be repeatedly used to illustrate and to interpret the

results.
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2 Analyzing M-CSF dependent

monocyte/macrophage differentiation:

expression modes and meta-modes derived

from an independent component analysis

2.1 Background

Since microarray technology has become one of the most popular approaches

in the field of gene expression analysis, numerous statistical methods have been

used to provide insights into the biological mechanisms of gene expression regu-

lation. The high dimension of expression data and the complexity of the regula-

tory mechanisms leading to transcriptional networks still forces statisticians and

bioinformaticians to examine available methods and to develop new sophisticated

approaches. However, there are already appropriate methods using different ap-

proaches to examine the underlying biological mechanisms determining the gene

expression signatures and profiles measured by microarray experiments. Super-

vised methods using prior knowledge like Gene Set Enrichment Analysis (GSEA)

deliver useful results under certain conditions. But there is still a lack of reliable

data needed for non-classical analysis. Widely used unsupervised approaches, like

hierarchical clustering and k-means clustering, use correlations or other distance

or similarity measures to identify genes with similar behavior under similar con-

ditions. But these methods are not able to represent more complex structures

and interdependencies in the regulatory machinery.

In contrast to the algorithms mentioned above, independent component analy-

sis (ICA) explores higher-order statistics to decompose observed gene expression

signatures (GES), which form the rows of the input data matrix, into statisti-

cally independent gene expression modes (GEM), which form the rows of matrix

S according to the data model XT = AS. ICA solves blind source separation
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(BSS) problems, where it is known that the observed data set represents a linear

superposition of underlying independent source signals. But it can more generally

be considered a matrix decomposition technique which extracts informative fea-

tures from multivariate data sets like, for example, biomedical signals like EEG

(Electroencephalography) [Habl et al., 2000], MEG (Magnetoencephalography)

[Vigario et al., 1997] and fMRI (functional magnetic resonance imaging) [Yang

and Rajapakse, 2004; Keck et al., 2004; Theis et al., 2004b] recordings. ICA can

also be considered a projective subspace technique appropriate for noise reduc-

tion [Tomé et al., 2004; Gruber et al., 2006], or artifact removal [Stadlthanner

et al., 2003a, 2005] if generated from independent sources.

In this work we will concentrate on the linear case, in which each single mi-

croarray GES is considered a linear superposition of unknown statistically in-

dependent GEM. To decompose these mixtures into statistically independent

components, ICA algorithms like FastICA or JADE have been used. Typically,

these GEMs can be interpreted as being characteristic of ongoing, largely inde-

pendent biological regulatory processes. The philosophy behind can be expressed

as: co-expression means co-regulation. But the complexity of gene regulation and

the various interactions of cellular processes demands a new interpretation of our

ICA-derived components. In the following we use these extracted GEMs to gen-

erate sub-modes, which may provide biological pathway information. The genes

contained in these pathway-associated sub-modes can be regarded as more or less

self-contained parts of larger regulatory networks, which can be represented by

combining these sub-modes into meta-modes according to the functional role of

the associated genes.

Here we used M-CSF dependent in vitro differentiation of human monocytes to

macrophages as a model process to demonstrate that ICA is a useful tool to sup-

port and extend knowledge-based strategies and to identify complex regulatory

networks or novel regulatory candidate genes.

The major known pathways associated to M-CSF receptor dependent sig-

naling [Shi and Simon, 2006; Pixley and Stanley, 2004; Ross and Teitelbaum,

2005] include expansion of the role of the MAP-kinase pathway [Wada and Pen-

ninger, 2004; Bogoyevitch et al., 2004] and Jun/Fos, Jak/Stat and PI-3 kinase

[BehreDagger et al., 1999; Fox et al., 2003; Stephens et al., 2002] dependent signal

transduction. Up-regulation of immune-regulatory components involved in innate
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immunity response (e.g. MHC), specific (e.g. Fcγ) [Houde et al., 2003; Vieira

et al., 2002; Booth et al., 2001] and nonspecific (CRP, complement, galectins)

[Sobota et al., 2005; Swanson and Hoppe, 2004; Mina-Osorio and Ortega, 2004;

Lau et al., 2005; Dumic et al., 2006] opsonin receptors as well as charge and

motif pattern recognition receptors (e.g. SR-family, LRP, Siglecs etc.)[Fabriek

et al., 2005; Minami et al., 2001; Beutler, 2004; Lock et al., 2004], is characteris-

tic for monocyte/macrophage differentiation. Beyond this, an increase of mem-

brane biogenesis, vesicular trafficking and metabolic pathways including amino

acids, glucose, fatty acids and sterols, as well as increased activity of lysosomal

hydrolases that enhance phagocytotic function [Desjardins, 2003; Martin and

Parton, 2006], autophagy [Schmitz and Buechler, 2002] and recycling is trig-

gered through M-CSF signaling as a hallmark of innate immunity [Peiser et al.,

2002]. These mechanisms are tightly coupled to changes in cytokine/chemokine

response [Branton and Kopp, 1999] and red/ox signaling (NOS e.g. NADPH-

Oxidase, Glutathione, Thioredoxin, Selenoproteins) that drive chemotaxis migra-

tion, inflammation (e.g.NfκB), apoptosis (eg. Caspases, TP53, NfκB, ceramide)

and survival [Forman and Torres, 2002; Nordberg and Arner, 2001; Wang et al.,

2006a,b; Cathcart, 2004; Kustermans et al., 2005; Østerud and Bjørklid., 2003].

2.2 Results and Discussion

M-CSF dependent monocyte to macrophage differentiation involves the activa-

tion and regulation of many different cellular pathways. In this study we used

several microarray experiments and combined them to a data set, which we ana-

lyzed using the JADE algorithm. The extracted GEMs were labeled from 1 to 14,

according to decreasing energy. Note that the extracted GEMs show positive as

well as negative components. They are partitioned into a sub-mode containing the

negative signals only, denoted by i.1, and a corresponding sub-mode of the pos-

itive signals, denoted by i.2, respectively. These sub-modes were then combined

into so-called meta-modes according to the following super categories deduced

from the MeSH-filter used: Apoptosis, signal transduction, cell cycle and regula-

tory sequences, see table 2.1. Sub-classification and mapping to distinct pathways

was then performed with the extracted sub-modes using the BiblioSphere MeSH-

and GeneOntology-filter tools. Note that our method not only takes into account
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that one gene can be part of more than one pathway, but also that one pathway

can be involved in more than one cellular event. This cannot be achieved with

classical clustering tools.
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2.2.1 Signal Transduction

Within the meta-mode Signal transduction four sub-modes, 3.2, 6.2, 12.2 and 13.2

were combined together. The MAP-kinase pathway (figure 2.1) could be identified

as the major signal transduction pathway in sub-modes 3.2 and 12.2. Sub-mode

6.2 encompassed the functions signal transduction and cell communication. The

remaining sub-mode 13.2 could not be mapped to a defined pathway, but the

majority of genes within this sub-mode are associated with innate immunity and

defense functions. Among these we identified relevant genes, also related to signal

transduction, like CD86, BLNK. The transcription factors LMO2 and FLI1 were

unique in sub-mode 13.2 whereas MMP9, CD36, CTSK, C1QR1 and MYCL1 as

a TF were also present in several other sub-modes.

The 12 and 18 respectively, identified MAPK-pathway genes were all unique

within their sub-modes (table 2.1), except IL8 and DUSP1, which were present

in both sub-modes. IL8 is a member of the CXC chemokine family and thus one

of the major mediators of the inflammatory response. It is also a potent angio-

genic factor and has a signalling function in the FAS-pathway, whereas DUSP1

is assumed to play an important role in the human cellular response to envi-

ronmental stress, as well as in the negative regulation of cellular proliferation.

Another central gene of the MAPK-pathway is caspase-1 (CASP1), which was

represented in sub-mode 12.2 (figure 2.2). Caspase-1 is responsible for the matu-

ration of the multi-functional cytokine interleukin-1β and as member of the FAS

caspase cascade it is involved in FAS mediated cell death [Park et al., 2003].

Further remarkable genes associated with MAP-kinase in this sub-mode were

S100A8, S100A9, GADD45B, CTSK, SOD2 and the transcription factors JUNB

and ATF3, since they were all represented in other sub-modes or pathways, or

play a central role in the MAPK-pathway.

Sub-mode 3.2 combined the MAPK-pathway with the thioredoxin (TRX) re-

ductase/thioredoxin system. TRX is involved in a variety of oxidation reduction

reactions that regulate cell growth and survival decisions [Bishopric and Web-

ster, 2002]. It reduces ligand binding and DNA interaction by oxidizing cysteine

residues within the DNA binding domain of glucocorticoid hormone receptors.

Furthermore, TXNDC14 and TXNRD1 were found in this sub-mode. TRX also

seems to be up-regulated by NGF through MAPK1 [Masutani H, 2004]. Other

genes associated with the MAPK-pathway were: STK17A, SH3BP5, RPS6KA1,
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Figure 2.1: MAP kinase pathway analysis of the meta-modes. Yellow boxes correspond
to genes mapped to the apoptosis meta-mode, red boxes to regulatory sequences and blue
to signal transduction meta-mode, respectively. Solid arrows indicate direct and dashed
arrows indirect activation. (Detailed legend information can be found on the KEGG
website [Kanehisa et al., 2008]

CD44, G6PD, IL1RN and the transcription factors EGR2.

In sub-mode 6.2 all of the 29 genes involved in signal transduction were also

related to the MeSH-term cell communication. Five of those signalling genes

CFLAR, TXNDC1, YWHAZ, NOTCH2 and PSEN1 were also involved in the

negative regulation of cell death.

2.2.2 Regulatory Sequences

The MeSH-term regulatory sequences is described as nucleic acid sequences in-

volved in gene expression regulation. This meta-mode combines genes mapped to
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Figure 2.2: BiblioSphere pathway view shows the mapped Genes of sub-mode 12.2.
Genes passed the MAPK filter are highlighted blue. Cited relationships between two
genes make up the edges. Display of edges is restricted to those that constitute the
shortest path from the central node. If a gene that codes for a transcription factor is
connected to a gene that is known to contain a binding site for this transcription factor
in its promoter, the connecting line is colored green over half of its length near the gene
containing the binding site. Arrowheads at the ends of a connecting line symbolize that
gene X regulates gene Y.

the TP53-pathway (sub-mode 14.1) and genes related to the oncogenes JUN/FOS

(sub-mode 4.1 and 10.1), which are members of a family of transcription factors

containing the basic-region-leucine zipper or bZIP motif. The BiblioSphere soft-

ware did not define a specific pathway for sub-mode 11.2, but there were a couple

of peptidases and proteinases like LYZ, GGH and CPM as well as a remark-

able number of classical targets for the SREBP transcription factors, regulating

cholesterol and fatty acid metabolism: SQLE, CYP51A1, HMGCR, FDFT1, IN-

SIG1, IDI1, SC5DL and LDLR.

Sub-mode 14.1 represented an intersection of genes involved in gene expression

regulation and the TP53 pathway. Genes which fulfill both criteria were ADM,

CCND2, CD59, CDC42, DUSP6, GADD45A, GCH1, IER3, NDUFV2, PIM1,
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SLC2A3 and UBE3A. Moreover, sub-mode 14.1 received high significance values

(Z-Score) for the three other meta-mode categories and was also the sub-mode

with the highest amount of genes represented in other sub-modes as well. This

can be interpreted as an evidence for the complex and networked nature of gene

expression regulation and the interactivity of cellular pathways.

The transcription factor JUN also known as c-Jun belongs to the family of c-

Jun N-terminal kinases (JNKs) which are important for development and survival

of macrophages [Himes et al., 2006]. Sub-modes 4.1 and 10.1 combined twelve

genes with a known relationship to the JUN/FOS pathway: CCND2, CREM,

CXCL1, GADD45A, IL1RN, JUN, MAPK13, MARCKS, RALA, PLAU, S100A8

and SOD2.

2.2.3 Differentiation, Cell Cycle

The meta-mode cell cycle was completely governed by the TP53 pathway. Al-

though all three sub-modes 5.2, 11.1 and 12.1 represented TP53 related genes, the

intersection of genes was marginal. Only the genes DUSP6, PCNA and PRKCA

were mapped to the TP53 pathway and were also present in the sub-modes 5.2

and 12.1. Sub-mode 11.1 represented genes specialized in cell cycle pathways reg-

ulating the interphase and in particular the G1 phase, since it contained the

genes PPP1R15A, DUT, CD44, CDKN1A and SMC4L1. Sub-modes 5.2 and 12.1

mainly represented genes involved in cell growth and proliferation.

Sub-mode 5.2 was characterized by the TP53 related genes DHFR, VCAN,

APP, EIF2AK2 and the transcription factor HMGB2 and HMGB3. Here, the

latter has not been mapped to TP53 pathway but is mentioned here because of

its strong relation to HMGB2.

The unique TP53 genes in sub-mode 12.1 were: CAMK1, CTSB, GSTN1,

NME1, HMGCR, GSN, CYP51A1 and IL1RN.

2.2.4 Survival/Apoptosis

Apoptosis related pathways play a major role during the differentiation of mono-

cytes to macrophages. Here we introduce the term “survival/apoptosis” for the

MeSH term apoptosis, because the identified apoptosis pathways here function as

survival mechanisms for the differentiating cells. It has been shown, that an ab-
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sence of M-CSF induces apoptosis in cultivated monocytes [Becker et al., 1987].

Since apoptosis is regulated through many different pathways and regulatory

mechanisms, we could identify seven sub-modes (2.1, 3.1, 6.1, 8.1, 9.2, 13.1, 4.2)

related to apoptosis. These could be classified to four different pathways involved

in the regulation of apoptosis: TP53 pathway, BAX pathway, FAS-pathway and

calreticulin (CALR) regulated apoptosis. Three of these sub-modes represented

only one pathway. Sub-modes 2.1, 6.1 were mapped to the TP53 pathway and

sub-mode 4.2 is governed by CALR regulated apoptosis, whereas the others could

be mapped to more than one pathway.

Due to the strongly networked nature of biological regulatory mechanisms, a

lot of genes involved in more than one pathway can be regarded as connections

between those. Toshiyuki and Reed [Toshiyuki and Reed, 1995] showed that the

human BAX-gene is directly regulated by TP53 (TP53), whereas BAX is par-

ticipating in the regulation of endoplasmatic reticulum Ca2+ [Scorrano et al.,

2003] as well. In this way it acts as a gateway for selected apoptotic signals.

This was represented by the sub-modes 3.1, 8.1 and 13.1 which could comparably

be mapped to the TP53 and BAX pathway. Sub-mode 8.1 here combined the

most interesting combination of genes. The genes CCL3, CCND3, PAICS, FYB,

AKAB1, IL1RN, CXCL1, MT1A and the TFs EGR2 and ATF3 could be impli-

cated with BAX. These genes overlapped with five of the seven genes mapped

to the TP53 pathway: ATF3, BAX, CSPG2, EIF5B and IL1RN. Furthermore,

the metallo-thioneins which are suggested to regulate DNA binding activity of

TP53, MT1A, MT1F, MT1B and MT1X were represented in this sub-mode [Os-

trakhovitch et al., 2006].

The role of CALR as a major Ca2+-binding (storage) protein in the lumen

of the endoplasmatic reticulum is well known [Arnaudeau et al., 2002]. Conse-

quently, one might imagine that CALR is involved in the regulation of apoptotic

signals. The following genes of sub-mode 4.2 are related to CALR: SLC11A1,

CD93, PROCR, NME1 and ATP2B1. All of these genes, except ATP2B1, passed

the MeSH-filter apoptosis. The link to the TP53 pathway is the transcription fac-

tor FOXO1A (also found in sub-mode 6.1) and PRKCB1, which is also involved

in various other cellular signaling pathways.

The member of the TNF-receptor superfamily FAS plays a central role in

the regulation of programmed cell death. Sub-mode 9.2 contained eleven genes

56



related to FAS: GSTM1, RALGDS, ALOX5, VCAN, S100A9, S100A8, VIL2,

LY75, STAB1, HEBP2 and CD44.

2.2.5 Otherwise Classified

Although not all sub-modes could be mapped to specific meta-modes, the re-

maining sub-modes still provide useful information. While the genes sorted to

sub-modes 7.1 and 7.2 deliver no significant pathway information, they share com-

mon behavior. Genes of sub-mode 7.1 were all down-regulated in macrophages

or up-regulated in monocytes, respectively, whereas genes of sub-mode 7.2 were

up-regulated in macrophages. Among these, known marker-genes for the different

cell types could be identified: MNDA, FCN1 and the S100 calcium binding pro-

teins S100A8, S100A9 and S100A12 as monocyte and IGF2R, TSPAN4, MMP9,

CTSK, MMD, TNS1 and CALR as macrophage genes.

Furthermore, the sub-modes 5.1, 4.1, 8.2 and 14.2 contained Major Histocom-

patibility Class (MHC) genes. Whereas the sub-mode 5.1 genes HLA-A and HLA-

C belong to MHC class I, the MHC genes of the three other sub-modes belong

to MHC class II which are: HLA-DQB1, HLA-DQA1, HLA-DPB1, HLA-DPA1

and HLA-DMB.

2.3 Conclusions

It has been stated [Liebermeister, 2002; Chiappetta et al., 2004] that the use

of ICA for the analysis of gene expression data is a promising tool, but there

is still a lack of a careful discussion of the results. Here we emphasized the

exploration of the biological relevance and obtained a detailed insight into the

networked structure of the underlying regulatory mechanisms. Two MAP kinase

related pathways could be identified as the main regulatory pathways during

differentiation: the classical MAP kinase pathway and the JNK and p38 MAP

kinase pathway, see figure 2.1. These results confirm expectations, according to

which the MAP kinase pathway is activated by the M-CSF stimulus and functions

as the main signal transduction pathway triggering macrophage differentiation

and related pathways.

The conspicuous presence of TP53 associated pathways in M-CSF induced

monocyte differentiation is associated with a dramatic regulation of cell-cycle and

57



apoptosis related genes. This leads to the assumption that human mononuclear

phagocytes, which are considered to be arrested to non-proliferating cells, still

preserve proliferative potential [Martinez et al., 2006].

Furthermore, we could show that ICA is able to distinguish between monocytes

and macrophages concerning differential gene expression. This helpful attribute

can be used to find specific marker genes not only for different cell types as it is

shown here, but also for different tissues or normal and tumor cells.

Moreover, we were able to identify different regulatory mechanisms during

M-CSF dependent differentiation. Although signal transduction pathways are

mainly regulated by protein modifications like phosphorylation or acetylation,

genes associated to specific pathways involved in macrophage differentiation

could be separated into sub-modes only by analyzing gene expression signatures

and their related gene expression modes. Furthermore, this analysis could be

improved by combining gene expression sub-modes extracted from different mi-

croarray experiments into informative gene expression meta-modes. The results

are in full agreement with the experimental literature on M-CSF dependent dif-

ferentiation [Schmitz and Grandl, 2007] and illustrate the potential power of such

information-theory-based, unsupervised and data-driven analysis.

To fully explore the potential of such information-theory-based unsupervised

analysis tools and especially to determine the suitability and reliability of ICA

for the analysis of microarray datasets, further investigations are needed. The

algorithms still suffer from the fact, that the number of estimated independent

components, i.e. the extracted gene expression modes, depends on the number

of available gene expression signatures and the dimension of the related gene

expression profiles. Therefor, the availability of greater datasets should lead to

advancements, and as shown here, greater datasets can be obtained by the careful

combination of smaller datasets.

2.4 Methods

2.4.1 Dataset

For our analysis we combined the gene-chip results from three different experi-

mental settings. In each experiment human peripheral blood monocytes were iso-

lated from healthy donors (experiment 1 and 2) and from donors with Niemann-
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Figure 2.3: Histograms and expression signatures of an untransformed (A) and loga-
rithmically transformed (B) microarray expression data set.

Pick type C disease (experiment 3). Monocytes were differentiated to macrophages

for 4 days in the presence of M-CSF (50 ng/ml,R&D Systems). Differentiation

was confirmed by phase contrast microscopy. Gene expression profiles were deter-

mined using Affymetrix HG-U133A (experiment 1 and 2) and HG-U133plus2.0

(experiment 3) GeneChips covering 22215 probe sets and about 18400 transcripts

(HG-U133A). Probe sets only covered by HG-U133plus2.0 array were excluded

from further analysis. In experiment one pooled RNA was used for hybridization,

while in experiment two and tree RNA from single donors were used. The final

data set consisted of seven monocyte and seven macrophage expression profiles

and contained 22215 probe sets. After filtering out probe sets which had at least

one absent call, 5969 probe sets remained for further analysis. The complete data

set is publicly available in the NCBI Gene Expression Omnibus [Barrett et al.,

2007] through the accession number GSE9801.
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2.4.2 Preprocessing

The bulk of preprocessing has been done using the Affymetrix GeneChip Operat-

ing Software (GCOS), where default presets were used. Additionally, we applied a

logarithmic correction to the data. This has been done because effects with mul-

tiplicative behavior, which may contain biological relevant information, become

linear after logarithmic transformation. Another reason is that, untransformed

microarray expression profiles have a strongly skewed, hence unbalanced distri-

bution. This means, that there is a large amount of expression values near zero

whereas only very few genes show high expression levels (figure 2.3). To avoid

adverse effects caused by such unbalanced distributions, we applied a logarithmic

transformation. The final data are usually represented as a data matrix whose

columns represent expression signatures of N genes while the rows represent M

corresponding gene expression profiles.

2.4.3 JADE-based extraction of gene expression modes

The Joint Approximative Diagonalization of Eigenmatrices (JADE) algorithm

has been proposed by Cardoso and Souloumiac [Cardoso et al., 1993; Cardoso

and Souloumiac, 1996]. It is a nearly exact algebraic approach to perform ICA.

The algorithm JADE is based on fourth-order cumulant tensors Tz of pre-

whitened input data z = Qx given by

Cum(zi, zj , zk, zl) = E{zizjzkzl} − E{zizj}E{zkzl}

− E{zizk}E{zlzj}

− E{zizl}E{zjzk} (2.1)

with the kurtosis κ
(4)
i = Cum(zizizizi) being the corresponding autocumulant.

Associated with these cumulants is a fourth-order signal space (FOSS) which

defines the range of all mappings Tz : M→ Tz(M)

mij → [Tz(M)]ij =

m−1X
k,l=0

Cum(zi, zj , zk, zl)Mkl (2.2)

The corresponding matrices [Tz(M)]ij will be called cumulant matrices in the

following. Note that the dimensionality m of the FOSS equals at most the number
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of sources.

A spectral representation of the cumulant matrices can be obtained using the

column vectors of the whitened mixing matrix with the corresponding eigenvalues

related to the kurtosis of the independent components. This spectral representa-

tion can be used to obtain an eigenmatrix decomposition of the cumulant tensor

according to

Tz(E
(q)) = µqE

(q) (2.3)

with 0 ≤ q ≤ m2 symmetric eigenmatrices E(q) = uqu
T
q and uq the q-th column

of the mixing matrix U, and µq being a scalar eigenvalue. After whitening, a

m × m - dimensional orthogonal matrix D = [d(0) . . .d(m−1)], which jointly

diagonalizes all eigenmatrices of Tz, is found by maximizing the joint diagonality

criterion

c(D) =

m2−1X
q=0

˛̨̨
Diag

“
DTE(q)D

”˛̨̨2
(2.4)

where Diag(.) denotes the vector of diagonal matrix elements. The joint diago-

nalizer D is then equivalent to the whitened mixing matrix U, hence the unknown

independent component expression mode can be estimated easily.

2.4.4 Sub-modes and meta-modes

As result of an ICA analysis of a set of gene expression signatures representing

the rows of the transpose data matrix XT , we obtain a matrix S of independent

components (the rows of S) which represent independent gene expression modes

(GEMs) as well as a matrix A of basis vectors of the new feature space. To de-

duce meaningful biological information from the GEMs, the discovery of specific

biological processes, which determine the modes, is the goal of our expression

mode analysis. After decomposing the data matrix with ICA, each GEM has

been split into two sub-modes which can be considered to feature genes which

are co-expressed, thus co-regulated by the underlying regulatory process. A GEM

consists of scores of gene contributions to the sub-modes which account for the

observation that excitatory as well as inhibitory regulations exist. In order to

extract the most significant genes, various statistical tools can be applied which,
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Figure 2.4: Maximum-likelihood Pearson fit of the EM-densities, for EM number 3 in
(a) and number 12 in (b). The corresponding four moments are µ(y3) = 1.4, σ(y3) = 1.0,
skewness(y3) = −0.95 and kurtosis(y3) = 4.0 for (a) and µ(y3) = −0.84, σ(y3) = 1.0,
skewness(y3) = 0.49 and kurtosis(y3) = 4.4 for (b).

however, often suffer from the small M large N case. Therefore, in most cases a

threshold is simply applied, or, after ranking, a fixed number of top and bottom

genes are chosen and further analyzed [Lee and Batzoglou, 2003]. The rational

behind these methods is that each extracted gene expression sub-mode is best

represented by its most active genes. However, the choice of threshold or num-

ber of active genes is non-trivial, and will influence the results considerably. In

this study we assume instead that mapping to distinct pathways is most non-

ambiguous by using a relatively small number of genes.

Here, we took a different approach by selecting genes that are extremal with

respect to some probabilistic model. For each GEM y(i) ∈ R, where i indexes

the genes, we calculated the first four central moments corresponding to mean,

standard deviation, skewness and kurtosis of the underlying data distribution.

These shape parameters are then used to fit a density according to the Pearson

family [Nair and Sankaran, 1991] using maximum-likelihood, see figure 2.4. We

chose a Pearson density as prior since it allows for flexible modeling with respect

to these first four moments, which seemed crucial as for example skewness varies

considerably between modes, see figure 5, and high kurtotic as well as close-to-
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Gaussian modes were present.

EM ndown nup

1 68 112
2 59 59
3 69 79
4 54 64
5 74 47
6 88 65
7 54 68
8 43 64
9 59 51

10 51 38
11 64 59
12 71 62
13 43 73
14 79 34

Table 2.2: Number of selected
down- and up-regulated genes
in each gene expression mode
(GEM).

We then used the estimated Pearson densities

to determine the 1 − α and α percentiles for

α = 1%. Samples that lie below the 1-percentile

are denoted as significantly down-regulated genes,

and genes above the 99-percentile as significantly

up-regulated genes. The corresponding sub-modes

were labeled as i.1 for down-regulation and i.2 for

up-regulation. In table 2.2 we list the number of

significant genes in each sub-mode.

2.4.5 Mode analysis

We analyzed the gene sub-modes with Biblio-

Sphere (http://www.genomatix.de). BiblioSphere

is a data mining tool intended to provide gene re-

lationships from literature databases and genome-

wide promoter analysis. The probe sets were

mapped to transcripts and to known genes with

use of the Genomatix database. To uncover the bi-

ological meaning of the genes in the sub-mode, we applied the MeSH-Filter (Med-

ical Subject Headings) to our data, which is the National Library of Medicine’s

controlled vocabulary thesaurus. We decided to use the category biological sci-

ences as filter criterion. Co-citations between the genes of the sub-mode were

taken into account by using the literature mining tool of the BiblioSphere soft-

ware. Interesting terms were identified through Z-Scores which indicate over-

representation of genes in the referring biological categories. Z-Scores are given

by Z − Score = (n − n̂)/σn where n is the number of observed genes meeting

any given criterion, n̂ is the corresponding expected number and σn gives the

standard deviation of n. All terms mentioned in this work are significant with

respect to the Genomatix guidelines.

Depending on our filter analysis we defined several meta-modes, where we

combined sub-modes with similar categories. In some cases we subclassified sub-

modes within one meta-mode. In this way 4 meta-modes could be generated,

whereas 17 of 28 sub-modes could be mapped to at least one meta-mode. For some
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meta-modes we displaced the MeSH-Term category with additional categories

with respect to the underlying biology.

Additionally we used the KEGG pathway database for biochemical pathway

analysis to more thoroughly characterize the biological relevance of a meta-mode.

The genes corresponding to the meta-modes were mapped on database pathways

using Pathway-Express which is part of the Onto-Tools provided by Intelligent

Systems and Bioinformatics Laboratory [Draghici et al., 2007].
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3 Analyzing time-dependent microarray data

using independent component analysis derived

expression modes from human Macrophages

infected with F. tularensis holartica

3.1 Introduction

Environmental stimuli or the activity of the internal state of cells induce or

repress genes via up- or down-regulation of corresponding expressed mRNAs.

Gene expression is controlled by a combination of mechanisms including those

involving networks of signalling molecules, transcription factors and their binding

sites in the promotor regions of genes, as well as modifications of the chromatin

structure and different types of post-transcriptional regulation. The expression of

each gene thus relies on the specific processing of a number of regulatory inputs.

High-throughput genome-wide measurements of transcript levels have become

available with the recent development of microarray technology [Stekel, 2003]. In-

telligent and efficient mathematical and computational analysis tools are needed

to read and interpret the information content buried in these large data sets (see

section 1.3).

Traditionally two strategies exist to analyze such data sets. If prior knowl-

edge about classification of the samples is available, a supervised, also called

knowledge-based, analysis can identify gene expression patterns, called features,

specific to a given class, which can be used to classify new samples. Without any

hypothesis, unsupervised, i.e. data driven, approaches can discover novel biolog-

ical mechanisms and reveal genetic regulatory networks in large data sets. Such

unsupervised analysis methods for microarray data analysis can be divided into

clustering approaches, model-based approaches and projection methods. Clus-

tering approaches group genes by some measure of similarity. A fundamental
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assumption of such clustering approaches is that genes within a cluster are func-

tionally related. In general, no attempt is made to model the underlying biology.

A drawback of such classical methods is that clusters generally are disjunct but

genes may be part of several biological processes. Model-based approaches try to

explain the interactions among the biological entities with the help of hypoth-

esized concepts. Parameters of the model can be trained from expression data

sets [Friedman, 2004]. With complex models not enough data may be available

to properly estimate the parameters, hence overfitting may result. Projective

subspace methods try to expand the data in a basis with desired properties.

Projective subspace methods commonly used are principal component analysis

(PCA), independent component analysis (ICA) or non-negative matrix factor-

ization (NMF). Note that often PCA is a necessary preprocessing step for ICA

algorithms. Here we focus on the well-known stochastic FastICA algorithm to

analyze our time-dependent gene expression profiles (GEPs).

ICA decomposes the GEPs into statistically independent gene expression modes

(GEM), the so-called independent components (ICs) [Cichocki and Amari, 2002].

The algorithm FastICA assumes a linear superposition of these unknown GEMs,

also called source signals, forming the observed GEPs measured with microarray

gene chips. Each retrieved GEM is considered to reflect a basic building block

of a putative regulatory process, which can be characterized by the functional

annotations of the genes that are predominant within the component. Each GEM

thus defines corresponding groups of induced and/or repressed genes. Genes can

be visualized by projecting them to particular expression modes which help to

highlight particular biological functions, to reduce noise, and to compress the

data in a biologically meaningful way.

In this work microarray data of human macrophages, deduced from human

monocytes by M-CSF triggered differentiation and infected with a F. tularensis

holartica strain called LVS (live vaccine strain), were analyzed. Our aim was to

determine the global gene expression profile of human macrophages from three

different donors infected in vitro with F. tularensis LVS. Expression profiles were

followed over a period of 72h, resulting in a series of ten experiments. To mon-

itor assay and hybridization performance, a set of quality parameters (poly-A

controls, hybridization controls, percent present, background and noise values,

scaling factor) were assessed. None of them exceeded the given ranges, indicat-
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ing that our data is of high quality. An analysis of these experiments using the

FastICA algorithm [Hyvärinen, 1999] is reported in this work.

3.2 Methods

3.2.1 Sample preparation and expression level calculation

Human monocytes were obtained from three healthy donors by diagnostic leuka-

pheresis and counterflow elutriation as described previously [Langmann et al.,

2003] under full GLP (good laboratory practice) conditions. The cells were cul-

tured on plastic petri dishes in macrophage SFM medium (Gibco BRL, Karl-

sruhe) and allowed to differentiate for 5 days in the presence of 50 ng/ml recom-

binant human M-CSF (R&D Systems, Wiesbaden, Germany) to macrophages.

Finally, the cells were infected with F. tularensis LVS. Three independent F. tu-

larensis LVS infection experiments were chosen for further analysis. The infection

rates and the percentage of living cells were comparable in all three experiments.

Total RNA was extracted from cultured cells according to the manufacturer’s

instructions using the RNeasy Protect Midi Kit (Qiagen, Hilden, Germany). Pu-

rity and integrity of the RNA was assessed on the Agilent 2100 bioanalyzer with

the RNA 6000 Nano LabChip® reagent set (Agilent Technologies, USA). The

RNA was quantified spectrophotometrically and then stored at -80 ◦C. At each

timepoint enough total RNA could be isolated for DNA-microarray analysis and

subsequent realtime RT-PCR verification experiments. The quality assessment

of RNA samples is a major point in DNA-microarray analysis. All RNAs were

of superior quality without any signs of mRNA degradation. The RNA integrity

number (RIN) was close to the optimum (10) in all experiments.

Gene expression levels were measured using Affymetrix GeneChip® HGU133

Plus 2.0 Arrays. Array comparison analysis was carried out by calculating ex-

pression levels and fold changes using Affymetrix GeneChip Operating Software

(GCOS). Expression values after 0.5h, 1h, 2h, 3h, 6h, 9h and 12h of incubation

with 100 MOI (multiplicity of infection) F. tularensis LVS were compared to the

1h control incubation. Furthermore, infected and control probes were compared

after incubation at 24h, 48h and 72h.
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3.2.2 Model assumptions

The transcription level of all genes in a cell is the result of the action of several

regulatory processes which in parallel control the response of a cell to external

stimuli. Matrix decomposition techniques set out to factorize a set of observed

GEPs into components according to some specified constraints to assure unique

decompositions. Such constraints then lead to either statistically uncorrelated

(PCA) or even statistically independent (ICA) components. The latter may of-

ten be identified as regulatory processes governed by signalling pathways which

are only weakly coupled to each other and can be considered as acting indepen-

dently of each other to a first approximation. Each such process can then be

represented by a vector of expression levels of up- or down-regulated genes, the

gene expression modes (GEMs). Under each experimental condition, the differ-

ent regulatory processes then linearly superimpose the expression levels of each

gene according to the different GEMs to result in the observed GEPs measured

by a microarray sample. The justification of such simplifying assumptions comes

from the ”biological meaning” of the resulting expression modes extracted by

such matrix decomposition techniques. If such GEMs can clearly be identified

with known signalling pathways within a cell for the problem at hand, the model

decomposition is justified. Otherwise non-linear decompositions might need to

be considered. For such matrix factorization algorithms to be applied, centered

data, i.e. 〈x〉 = 0, will be assumed for simplicity. This can always be achieved by

subtracting a time averaged expression level from each data point.

3.2.3 ICA model

Given the state of a cell at the time of experiment is governed by M regulatory

processes S = (s1, . . . , sM )T which are considered reasonably independent of

each other and operate in parallel, and where each of them is represented by a

row vector of K gene expression levels, i.e. sm = (sm1, . . . , smK), then S forms

a M × K matrix whose rows consist of statistically independent GEMs. Each

such mode forms a component expression pattern or component signature, in

which the contribution of each gene to the envisaged independent regulatory

processes is reflected via its expression level. Within a microarray experiment,

the level of expression of all genes xn = (xn1, ...., xnK) is measured under N
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different experimental conditions, resulting in a microarray expression matrix

X = (x1, . . . ,xN )T , where the rows form the GEPs xn. Hence, a microarray

data matrix X can be formed with N rows, representing GEPs, and K columns,

representing the expression levels of a gene across all experimental conditions.

Assuming that different experimental conditions cause different expression levels

of each gene within the independent regulatory processes, each observed GEP,

i.e. each row of X, results as a weighted superposition of the independent GEMs,

represented by the rows of S. In matrix notation this model then reads

X = APDS, (3.1)

where A represents the N ×M matrix of mixing coefficients and here we set

N = M . The under-determined or over-determined cases with N 6= M is more

difficult and will not be considered here. The N columns of A may be considered

to form a new representation with basis vectors am = (am1, . . . , amN ), also called

feature profiles (FP), where each amn defines the weight with which the nth GEM

contributes to the mth observed GEP. In addition, the matrices P and D account

for trivial permutation and scaling indeterminacies.

By approximating the negentropy as a measure of statistical independence, the

FastICA algorithm computes a de-mixing matrix W such that

Y = WX, (3.2)

where Y represents a matrix of transformed variables y1, . . . ,yN , which cor-

respond to the extracted independent components or GEMs subject to scaling

(D) and permutation (P) indeterminacies [Comon et al., 1994]. They are ex-

tracted from the data by the algorithm as statistically independent as possible,

and represent close approximations of the unknown expression signatures of the

hypothetical underlying regulatory processes represented by s1, . . . , sN .

3.2.4 Stability Analysis

The number of GEMs extracted by the FastICA algorithm corresponds to the

number of experiments, i.e. the number of different microarray data sets avail-

able. As the number of underlying independent regulatory processes contributing

to any observed set of expression signatures is generally unknown, the GEMs
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Figure 3.1: The means and the standard deviations of the differences d of all clustered
row vectors w ∈ W to the corresponding code book vector cp for each independent
component (IC) compared to a null model of randomly sampled clusters.

extracted, due to the independence constraint enforced by the data matrix de-

composition, may, at least to some extent, still represent superpositions of such

underlying regulatory processes being searched for. This fact results in fluctu-

ations in the estimated GEM upon repeated decomposition of the given data

matrix. Unfortunately, these fluctuations also sometimes confounds the imme-

diate and straightforward biological interpretation of such modes. Despite this

it is the hope of every matrix decomposition analysis that the resulting GEMs

provide for a more intuitive and insightful interpretation of the observed states

of the cell under the experimental conditions and environmental stimuli to which

it was exposed.

Because FastICA belongs to the class of stochastic matrix decomposition algo-

rithms, the robustness of its results needs to be assured. To test the robustness of

the resulting GEMs, we performed a bootstrap analysis. To do so, we randomly

generated 50 sub-samples with a sample size 25% smaller than the original data

set. As a consequence, repeating the analysis L = 50 times might render some or

all of the extracted components to differ slightly in the various repeats. We then
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estimated the robustness of these repeatedly extracted GEMs.

We combined the rows wl
n to a set W of row vectors, where l represents a

particular ICA run and n is the nth row of the de-mixing matrix Wl. Because

W = A−1 each row vector wn contains the weights with which each observed

GEP is combined to an extracted GEM. Using a projective k-means clustering

[Gruber et al., 2006] the resulting row vectors are then clustered into N clusters

according to the following metric representing our distance or similarity measure:

d(w,v) :=

vuut1−

 
wTvp
‖w‖‖v‖

!2

w,v ∈ W (3.3)

.

Now we use the centers of gravity of each cluster as code book vectors cn, n =

1, . . . , N for our stability analysis. The result of the clustering can be described

by the sets Wn = {w ∈ W | s(w) = cn} with s(w) = arg minn d(w, cn).

We evaluated the quality of each cluster Wn by calculating the 1st and 2nd

moment of the distance distribution within each cluster, i.e. the empirical mean

and standard deviation of all distances between the code book vector cn of

cluster n and the data vectors within the cluster using the distance measure

d as defined above. In particular, meann = mean({d(w, cn) | w ∈ Wn}) and

varn = var({d(w, cn) | w ∈ Wn}) (figure 3.1). As a null model we randomly

sampled N clusters from W with size L. For each sampled cluster we calculated

the mean and standard deviation of all distances between the sampled vectors

and the respective projective centroid.

3.2.5 Grouping genes

Each estimated GEM contains the gene expression levels of all genes within any

given microarray experiment, i.e. every experimental condition chosen. Assuming

that the genes involved in a hypothetical regulatory process represented by the

GEM show relatively high expression within this GEM, then those genes are of

utmost interest which correspond to the most or the least expressed. Only genes

whose expression level exceeded the mean expression level plus five times the

standard deviation of the considered GEM were retained for further analysis.

These genes have been grouped together into gene groups of size between 35 and
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94 genes, containing the most strongly expressed or suppressed genes. Remember

that one gene may be involved in more than one regulatory process, i.e. its

expression level may be high or low in several gene expression modes.

3.2.6 Biological relevance

Further information about the biological relevance of the genes and their regula-

tion mechanisms can be gathered from public databases such as Gene Ontology

(GO) (available at http://www.geneontology.org/). The biological information

available within GO can be further explored using software tools like Onto-

Express [Draghici et al., 2007] (available at http://vortex.cs.wayne.edu/Projects.

html) or Genomatix BiblioSphere (see http://www.genomatix.de/).

BiblioSphere provides further biological information by structuring input data

into biological pathways, i.e. networks of interacting genes thereby delivering

systems biology knowledge to organize genes within groups into functional net-

works. The interaction network is a data-mining solution in which relationships

from literature databases, genome-wide promoter analysis and verified gene in-

teractions are combined. Results can be classified by tissue, Gene Ontology and

MeSH (see http://www.nlm.nih.gov/mesh/).

Statistical rating by Z-scores indicate over- and under-representation of genes

in the certain biological categories which are organized into hierarchies. For each

term in the hierarchy, a statistical analysis is performed based on the number

of observed and expected annotations. With each associated GO or MeSH term

a Z-score is provided measuring the relevance of the functional term within the

context of the group of genes under consideration. Z-scores are given by Z-score

= (n − n̂)/σn, where n is the number of observed genes meeting any given

criterion, n̂ is the corresponding expected number and the standard deviation

σn measures the fluctuations of n around the mean. The Z-score of this term

helps to estimate whether a certain annotation, or group of annotations, is over-

or under-represented in the tested set. Such score helps to determine whether the

accumulation of annotations in a certain branch of the hierarchy is meaningful.
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Figure 3.2: Functional gene networks resulting from a hierarchical clustering analysis.
Expression levels for each gene are color-coded. Overexpression is colored red, under-
expression blue. The stripes from left to right code for early, middle and late response.
Cited relationships between two genes make up the edges. Display of edges is restricted
to those that constitute the shortest path from the central node. If a gene coding for a
transcription factor is connected to a gene with a predicted binding site in its promoter,
the connecting line is colored green over half of its length near the target gene. Arrow-
heads at the ends of a connecting line symbolize regulation. Hand-annotated gene-gene
relationships are indicated by a circle in the center of the connection line.

3.3 Results

3.3.1 Pathways biostatistics

For a knowledge-based pathway analysis, all expressed genes from the three LVS

infection experiments were mapped to 78 manually annotated biomedical path-

ways. To avoid a proband specific bias and to determine a global expression pro-
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file, only those genes were retained which displayed similar responses (up-/down-

regulation) in all three probands across all measurements. This analysis resulted

in 54 genes (52 induced genes, 2 repressed genes) indicating that Chemokine sig-

naling, interleukin 1 and TNF-response as well as NFκB signaling are the major

pathways strongly influenced by LVS. Prostaglandin synthase 2 and superoxide

dismutase 2 are also induced. Lysophospholipase 3 and zinc finger protein 589

are the only repressed genes detected.

3.3.2 Hierarchical clustering

As a further analysis method, we performed a hierarchical clustering on the data

set and selected clusters of differentially expressed genes which show similar time

dependent behavior over all three donors. This resulted in 3 clusters correspond-

ing to an early (35 genes), a middle (54 genes) and a late (89 genes) response.

Resp. MeSH Term Z-score Percent.
ER Inflammation 53.03 31%
ER Sepsis 24.32 26%
ER Systemic Inflammatory Response Syndrome 22.97 26%
ER Reperfusion Injury 20.86 14%
ER Shock 18.31 20%
MR Inflammation 22.6 9%
MR Cell Transformation, Neoplastic 14.45 17%
MR Cell Transformation, Viral 10.26 7%
MR Leukemia-Lymphoma, T-Cell, Acute, HTLV-I-Assoc. 9.56 2%
MR HTLV-I Infections 8.85 2%
LR Leukemia, Promyelocytic, Acute 155.37 9%
LR Leukemia, Nonlymphocytic, Acute 81.32 12%
LR Leukemia, Myeloid 65.03 15%
LR Leukemia 52.06 18%
LR Translocation, Genetic 42.02 7%

Table 3.1: Terms and Z-scores resulting from a hierarchical clustering and MeSH filter-
ing. ER = early response; MR = middle response; LR = late response. Also the fraction
of the genes associated with each MeSH term is given in %

To further define the regulatory network between these genes and to search for

interdependent activation waves, Genomatix BiblioSphere analysis was carried

out with these data sets. Functional analysis based on the MeSH Filter “Disease”

resulted in the following top five terms with good Z-scores for each of the three

response terms (table 3.1). To gain a focused view on a disease related network,
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genes related to the top terms of each cluster were combined. This resulted in

a network of 49 genes which was analyzed again using BiblioSphere (figure 3.2).

The corresponding regulatory network is centered around TNF. As can be seen,

the expression levels of genes encoding TNF, as well as TNF-interacting pro-

teins like (TRAF1, TNFAIP8), adhesion molecules (ICAM1) and kinases increase

rapidly and decline at later times thus representing an early response. At these

early times, signal transducer and activator of transcription genes (STAT1/2)

are predominantly weakly expressed. In a second signaling wave, the expression

levels of TNF induced genes such as the transcription factor NFκB (NFκB1,

NFκB2, NFκBIA) and their target genes (IRF7, NUP98, MAPK3K8) increase

during an intermediate time interval representing a middle response. During a

final late response, TNF expression declines and expression of the concomitant

signaling genes decreases (NFκB1/2, Rel). Late cytokine response, represented by

the interferon-induced proteins (IFI2/3, MX1/2), is continually increased during

the kinetic experiment. An overlap between these regulatory models and the top

54 genes from the pathway analysis concerning inflammation associated genes

like ICAM1, IRAK2, JAG1, NFKB1, NFKB2, TRAF1 and TNF is observed.

3.3.3 ICA analysis

As a result of the ICA analysis, we obtained N = M expression modes which

represent the hypothetical gene regulatory processes. To identify relevant pro-

cesses represented by the extracted GEMs, we analyzed time dependent patterns

formed by the FPs setting up the mixing matrix A. To avoid a proband spe-

cific bias we filtered out FPs similar among all three probands. Therefore we

split up each FP into proband specific temporal patterns and compared them by

calculating correlations. Only those FPs which show a high correlation (above

0.8) between all probands specific patterns were used for further analysis. To

find FPs comparable to the clusters derived by the hierarchical clustering ap-

proach, we identified those with temporal patterns showing high early, middle or

late response activity (figure 3.3). We have chosen three FPs for each response

type respectively, and merged the extracted gene groups from the corresponding

GEMs to three response groups (RG) called early (149 genes), middle (171 genes)

and late (158 genes).

The biological relevance of these RGs was explored using the Genomatix soft-
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Figure 3.3: Feature profiles with similar temporal patterns for all three probands
(Prb 1-3). Blue, green and red bars. Shown are only those, used for time dependent
response analysis: top: early response, middle: middle response, bottom: late response.
Gene response groups were created from the corresponding gene expression modes. See
text for a detailed explanation.

ware. We analyzed each RG using the MeSH Filter “Disease”. This resulted in a

list of the most related MeSH terms (see table 3.2). They are strikingly different

to the MeSH terms derived from hierarchical cluster analysis, and in accordance,

the ICA derived terms show noticeably higher Z-scores (Inflammation, Systemic

Inflammatory Response Syndrome). Furthermore, ICA results show Inflamma-

tion as the highest ranked term in all three responses. The percentage of genes

associated to MeSH-terms is consistently higher in ICA derived RGs.

The additionally derived network can be seen in figure 3.4. The early response

is largely governed by the pro-inflammatory cytokines (TNF, IL13, IL1B) and

chemokines (CXCL2, CXCL3, CXCL5, CCL2-5, CCL8) as well as up-regulation

of NFκB. This is followed by activation of TNFα and NFκB induced proteins like

TRAF1, MMP9 and the major histocompatibility complex proteins HLA-DRB1,

HLA-A and HLA-B. During late response, again the activity of the chemokines

CXCL1 and CXCL5 were discovered, as well as the IL8 related genes MRC1,

MX1 and CCL18. Here again, the accordance to the 54 top regulated genes
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Figure 3.4: Functional gene network resulting from the ICA analysis. Stripes from left
to right code for early, middle and late response group. If a gene is a member of one or
more of the response groups the stripe is colored red. Edges between two genes denote
co-occurrence within one abstract. Display of edges is restricted to those that constitute
the shortest path from the central node. ’TF’ stands for transcription factor, ’ST’ means
gene is part of Genomatix signal transduction pathway, ’IN’ means input gene and ’M’
marks a gene which is part of a metabolic pathway.
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Response MeSH Term Z-score Percentage
ER Inflammation 93.74 52%
ER Bacterial Infections and Mycoses 49.36 48%
ER Arthritis 44.51 40%
ER Joint Diseases 43.63 40%
ER Systemic Inflammatory Response Syndrome 42.95 33%
MR Inflammation 64.35 49%
MR Bacterial Infections and Mycoses 30.61 40%
MR Systemic Inflammatory Response Syndrome 27.35 23%
MR Sepsis 25.69 21%
MR Arthritis 24.78 33%
LR Inflammation 46.98 47%
LR Arthritis 27.7 40%
LR Joint Diseases 27.22 41%
LR Rheumatic Diseases 26.15 41%
LR Gram-Negative Bacterial Infections 24.66 30%

Table 3.2: Terms and Z-scores resulting from an ICA analysis and MeSH filtering. ER
= early response; MR = middle response; LR = late response. Also the fraction of the
genes associated with each MeSH term is given in %

is striking through a complete overlap of the associated highest ranked MeSH

Terms: “Inflammation”, “Arthritis”, “Joint Diseases”, “Bacterial Infections and

Mycoses” and “Systemic Inflammatory Response Syndrome”.

A further attribute of ICA based analysis is the grouping of genes into non-

exclusive clusters. Hence, genes influencing more than one specific process can

be found in more than one RG. Some of those interesting genes are the cytokines

IL1B and IL8 or the surface protein coding genes CD36 and CD44 which were

identified as presumably key players for gene regulatory networks involved in

LVS infection response.

3.4 Discussion

Using the data-driven ICA approach, additional novel pathways were identified

in addition to pathways similar to the ones deduced from classical hierarchical

clustering approaches. Among the early responders, the pro-inflammatory cy-

tokines TNFα and CCL2 were induced, which confirm previous findings about

the secretion of large amounts of these inflammatory cytokines in a similar in

vitro model using murine macrophages and human cell lines [Loegring et al.,

2006]. Furthermore, in a murine macrophage cell line model, testing immediate
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responder genes by microarray analysis within the first 4 hours after infection

with F. tularensis LVS, TNFα was found to be the main signal transducer whose

expression level was found to be increased along with genes representing cytokine

signaling-, enzyme- and transcription factor-families [Andersson et al., 2006]. The

differences observed between our early responder genes and the immediate re-

sponders found in the murine model system emphasize the need of a multi-time

point kinetic model of macrophage response to F. tularensis LVS infection with

a well established microarray analysis method.

The virulence of F. tularensis depends on its ability to escape into the cytosol

of the host cell, which reacts with the assembly of the caspase-1 dependent in-

flammosome complex. This process is closely related to the secretion of IL1b,

IL18 and IL33, by which the induction of IL1b was also found with our analysis

[Henry and Monack, 2007]. Recently, a natural killer (NK) cell cytokine, IFNγ

dependent activation pathway was found to be relevant for the specific immune

response to F. tularensis LVS infection [López et al., 2004]. We found a significant

up-regulation of the IFNγ receptor 2 in macrophages, which in turn sensitizes

these cells for the NK-cell derived IFNγ to result in a specific response.

These data show that, with the help of in vitro model systems using microarray

analysis, the mechanism of F. tularensis LVS response can be well characterized

and disease specific pathways discovered and identified. Moreover we could show

that NFκB plays a major role regulating the immune response to F. tularensis

LVS infection.

In comparison to the commonly used hierarchical clustering method, we found

that our calculations using ICA resulted in higher clustering resolutions. The

response specific MeSH terms derived through an ICA analysis are more closely

related to the experiment (Bacterial Infections and Mycoses, Gram-Negative Bac-

terial Infections) and all three response groups show Inflammation as the most

highly ranked MeSH term. Moreover, the nonexclusive clustering attribute of

ICA leads to a more detailed insight into time-dependent patterns of the im-

mune response.
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4 Intronic microRNAs support their host genes

by mediating synergistic and antagonistic

regulatory effects

4.1 Introduction

Gene regulation via microRNAs (miRNAs), small ∼22 nucleotide long RNA

molecules, is a strongly conserved mechanism found in nearly all multicellular

organisms including animals and plants [Carrington and Ambros, 2003]. Incor-

porated in a protein complex mainly built of Argonaute proteins, miRNAs bind

preferably to complementary regions within the 3‘ UTRs of mRNAs, their target

sites. About 37% of known mammalian miRNAs are located within the introns of

protein coding genes, so-called host genes [Griffiths-Jones et al., 2006]. This has

to be appreciated as a vague estimate since the amount of annotated miRNAs

varies strongly from 117 for bos taurus to 695 for homo sapiens, and expectations

of the functionally active fraction of the genome presumes amounts of miRNAs

far above these numbers [Pheasant and Mattick, 2007; Birney et al., 2007]. For

instance, the proportions for mouse (44%) and human (53%), two of the best

studied mammals, were strikingly larger. Furthermore, intronic miRNAs appear

to be conserved across several species [Ying and Lin, 2005; Rodriguez et al.,

2004; Saini et al., 2008]. These miRNAs are transcriptionally linked to their host

gene expressions and processed from the same primary transcript [Baskerville

and Bartel, 2005]. Besides Drosha-processed miRNAs, a second type of intronic

miRNAs, termed mirtrons, is known, that bypass Drosha cleavage by splicing

[Ruby et al., 2007; Chan and Slack, 2007] but exhibit the same co-expression

patterns with their host genes.

In animals, and more recently also in plants, it has been found that exact

complementarity of target sites is not required for functional regulation. Unlike
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perfect matching, which leads to cleavage of the mRNA, partial complementarity

of the target mRNA mainly leads to inhibition of ribosomal translation. How-

ever, due to the noncatalytic character of the miRNA-mediated regulation, both

mechanisms have similar inhibitory effects [Levine et al., 2007]. MiRNA-mediated

gene regulation can be categorized into ‘switch’, ‘tuning’ and ‘neutral’ [Bartel,

2004, 2009] effects. Switch regulation describes a knock-down of protein levels

under a specific functional threshold caused by effective translational inhibition

or cleavage of the target mRNA. In contrast, tuning does not inhibit target ac-

tivity completely but tunes expression in a way such that miRNA targets are

adjusted to a specific expression level required under specific cellular conditions.

By neural targets one denotes miRNA-mRNA interactions, that are functional

but without any advantageous nor adverse consequences to the cell. Since the

neutral regulation does not have any effect on the phenotype, it will further on

not be discussed in this work. MicroRNA-mediated regulatory mechanisms are

known to appear in animals from early developmental stages to maturated adult

tissues. They play a role in a variety of biological processes including cell differ-

entiation, stem cell maintenance, proliferation as well as regulation of apoptosis

[Stefani and Slack, 2008; Hwang and Mendell, 2006].

It is a common paradigm in biology that conservation on the genome level also

implies a conservation of function. Therefore we hypothesize that the widespread

appearance of the transcriptional junction of a protein coding gene and the reg-

ulatory miRNA implies a common function. Specifically, the co-regulation of a

miRNA with its host gene may include two different main functions: (i) An an-

tagonistic effect is achieved by miRNA mediated downregulation of genes with

perturbing effects on a pathway or biological process activated by the host gene.

The combined expression of an effector gene and a miRNA, which blocks trans-

lation of such antagonistic gene products, is a simple but elegant way to promote

and support host gene functionality (Figure 4.1A). (ii) A synergistic effect is

achieved by adjusting the protein expression levels of intronic miRNA targets

towards intended optimal concentrations. A specific ratio between host and tar-

get gene products then allows for effective and optimized cooperative actions of

co-regulated genes (Figure 4.1B). In humans, a functional relation between the

host gene GRID1 and the intronic miR-346 has been shown recently [Zhu et al.,

2009] and the here proposed antagonistic effect has been proven for the intronic
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Figure 4.1: The two proposed regulatory mechanisms of functional host to miRNA
relationships. Genes are marked by ellipses, miRNA by rounded rectangles. Host miRNA
relations are indicated by an edge with a dot. MicroRNA target regulation is indicated
by a blank triangle. A minus denotes knock down of the target gene, whereas tilde
denotes regulatory tuning. Activating effects on a biological process is shown by an
arrowhead, inhibition is indicated with stops. Expression is color coded, co-expression
is indicated green and anticorrelated expression red.(A) An antagonistic effect can be
achieved by miRNA mediated downregulation of a gene with perturbing effect on a
pathway or biological process regulated by the host gene. (B) Synergistic effect by
miRNA mediated fine tuning of a target gene with common contribution of host and
target gene to a pathway or biological process.

miR-338 and its host gene AATK [Barik, 2008].

In this work, we investigated the functional relation between miRNA host

genes and putative targets of corresponding intronic miRNAs with a data-driven

approach based on large-scale gene expression data and a knowledge-based ap-

proach using gene annotations. Genes sharing a common function, such as being

involved in the same biological pathway, tend to share similar regulatory mech-

anisms and therefore appear as co-expressed genes in their expression profiles

[Allocco et al., 2004]. Thus, genes with correlated time-dependent expression

patterns are likely to be involved in functionally related cellular processes with

synergistic effects. In contrast, anticorrelated expression pattern would promote

the assumption that the participant genes take part in related, but antagonistic

processes. Furthermore, functional gene annotations as provided by the Gene

Ontology (GO) [Ashburner et al., 2000] give information about a common or

strongly related function of two genes, for instance hosts and targets. We hypoth-

esized that functional relations between miRNA host genes and related target

genes appear in significant correlated expression patterns and we expected, that

host and target gene sets are closer related in the GO as randomly sampled sets,
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for both antagonistic and synergistic motifs as introduced in figure 4.1.

4.2 Results and Discussion

4.2.1 Targets of similarly expressed host genes show correlated

expression patterns

We studied the relationship between host and target genes, in three different

mouse developmental microarray datasets (see methods): embryonic stem cell de-

velopment (SCD), somitogenesis (SG) and neurite outgrowth (NO). We chose de-

velopmental datasets since regulatory effects of miRNAs are known to be strongly

present in developmental processes [Gangaraju and Lin, 2009]. During cell dif-

ferentiation, groups of genes driving specific developmental processes are often

commonly regulated, arising in the phenotypic effect of similar expression pat-

terns of these genes in time course data. A synergistic relationship between host

and the miRNA target genes of differentiating cells is then indicated by posi-

tively correlated gene expression patterns. In reverse, antagonistic processes are

expected to show anticorrelated or weakly correlated expression patterns between

host and related target genes.

Since we argue that correlated expression indicates for potential common host

gene functions, we initially tested for correlations between host gene expressions.

In order to generate statistically robust results, independent of data and pre-

diction errors, we did not analyze single gene expression patterns but argue on

groups of correlated genes. Therefore, for each dataset we identified all miRNA

host genes and clustered their time courses according to correlations above 0.8

(see methods). Within all analyzed cell differentiation datasets, host genes tend

to be co-expressed in clusters. As a result of our clustering we obtained seven

host gene clusters with more than 5 host genes (see table 4.1).

Intriguingly, some host genes appear to be clustered together preferentially

across the experiments. The genes H19, Igf2, Lpp, Plod3, and Rnf130 were clus-

tered together in the two clusters SCD I and NO I, and the genes Chm, Copz1,

Dnm1, Nupl1, and Sf3a3 together in the clusters SG I and NO II.

For each host gene cluster we identified the intronic miRNAs and all their

expressed targets. Most prediction tools for miRNA target site prediction vary in

qualitative and quantitative manner. In order to get more confident predictions,
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Figure 4.2: Clustered heat maps for the seven host gene cluster (H) and the corre-
sponding target gene expression profiles (T). For all three time course datasets only
clusters with more than five host genes are shown. Each row corresponds to one gene
expression pattern, each column to a measurement. Time dependent measurements are
shown in ascending order from left to right. The expression level of each gene is stan-
dardized so that the mean is set to 0 and the standard deviation is 1. Expression levels
above and below 0 are color-coded; red indicated for high and green for low expression
levels, respectively; black for zero expression values. Biological replicates of the three
datasets are in order from Rep. 1 to Rep 2 and Rep. 3, respectively. Hierarchical cluster-
ing with euclidean distance metric and average linkage is used. Colored subtrees in the
dendrogramm denote for co-expressed (green) or anticorrelated (red) gene expression of
predicted targets. (Somitogenesis) The dataset splits up into three host gene cluster,
SG I with 13, SG II with 21, and SG III with 7 host genes. (Neurite Outgrowth)
Two cluster with 10 (NO I) and 17 (NO II) host genes could be identified with similar
behaviour of host and target genes in both replicates. (Stem Cell Development) Two
host gene clusters containing 9 (SCD I) and 8 (SCD II) hostgenes were identified. All
host and target genes show similar behaviour in all three replicates. For each dataset,
flipped expression patterns between the host/target clusters are striking (SG I vs. SG
II; NO I vs. NO II; SCD I vs. SCD III). 85



we used a consensus model (C) of several miRNA target prediction tools (see

methods). A detailed list of all analyzed miRNAs/clusters in this work including

host genes, loci, a correlation and a GO similarity based score is available as

Supplementary Table 1.

For the seven clusters we performed a hierarchical cluster analysis based on the

expression data of the target genes (see Figure 4.2). All resulting trees mainly

split up in two subclusters: one subcluster of genes with similar or positively

correlated expression patterns and one with opposing or anticorrelated expression

compared to the host genes, respectively. Furthermore, within each dataset, the

resulting trees of at least two target gene groups appeared to show completely

flipped expression patterns of the main subclusters (SG I vs. SG II; NO I vs. NO

II; SCD I vs. SCD III).

These results fit well to the observation that miRNAs dampen the output

of preexisting mRNAs or optimize required protein output as it is proposed

for metazoans [Bartel and Chen, 2004]. Additionally, in [Farh et al., 2005] it

was shown that genes preferentially expressed at the same time and place as a

miRNA tend to avoid sites matching the miRNA. By contrast, co-expression of

a transcripts with evolutionary conserved miRNA binding site would then arise

from a functional requirement.

The clear discrimination between the two expression patterns suggests a grad-

ual order of differentiating cells, whereas miRNAs function as enhancers of ro-

bustness in gene regulation [Rhoades et al., 2002; Tsang et al., 2007]. A plausi-

ble explanation would be that shortly after initiation of the differentiation pro-

cess, genes that arrange the differentiating cell towards its new function are

up-regulated. In this stage miRNAs are activated to inhibit processes required

for self-renewal of stem cells but were perturbed during differentiation. After this

‘reprogramming’ the cell adopts new functions and stabilizes. In this phase genes

are up-regulated which now fulfill the cell’s new responsibilities and simultane-

ously block activity that was only required for differentiation.
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Figure 4.3: Results of the host gene cluster based expression analysis. Grey bars denote
the number of all identified host gene clusters including unclustered hosts with expressed
target genes, predicted by Pictar (PT), TargetScan (TS) and our consensus model (C).
Orange bars denote the number of clusters with significantly correlated target gene
expression patterns. The relative fraction of significant clusters for each dataset and
miRNA target prediction tool is denoted.

4.2.2 MicroRNA host gene cluster and related target genes show

significant correlations of their expression patterns and

functional similarities

In order to confirm the above observed and to show statistically that gene ex-

pression patterns of host genes are significantly correlated with the patterns of

their predicted target genes, we determined the correlation distribution for each

cluster by calculating correlation coefficients between all hosts and all expressed

putative target genes. These distributions were compared to 500 sets of randomly

sampled target genes (see methods). To avoid any bias by our consensus model,

we additionally used two further independent prediction tools, namely Pictar

(PT) [Krek et al., 2005] and TargetScan (TS) [Lewis et al., 2003]. For each host

gene cluster and each single host gene, expression patterns were compared to ex-

pression of predicted targets. Only clusters with predicted and expressed targets

in the respective dataset were used in the following analyses.

Results can be seen in Figure 4.3. Concordant for all used methods and all

analyzed datasets, we determined that up to 44% of the identified host gene

clusters were significantly positively correlated or anti-correlated to their target

gene expressions. Comparing the the three datasets, we only found marginal

differences. The average amount of host gene clusters with significant correlated
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Figure 4.4: As an example, figure(A) shows the distributions of correlation coefficients
ρ between host and target gene expression patterns (blue) of Cluster NO I and corre-
lation coefficients ρ between the same host genes and sampled target genes (red). The
medians are illustrated by blue and red lines, respectively. ∆m indicates the difference
between the two medians. A missing relation between host and target gene expression
would result in a difference ∆m = 0. The distributions of ∆m taken over all significant
clusters of the three datasets are shown in the two histograms for targetscan (B) and
our consensus model (C). Estimated densities of positive and negative ∆m distributions
indicating for antagonistic or synergistic regulatory effects are shown by the orange and
green line. Missing distances of ∆m = 0 in both distributions indicate that all sig-
nificant clusters deviate from the null model (sampled data). Both distributions show
bimodal shape with equal maxima on both sides, indicating that positive and negative
correlations are approximately equally distributed over all analyzed clusters.

target expression varies between 27% and 30%.

Comparing the three tools, PT performs strikingly weaker (15%) than TS

and the consensus model with regard to the mean fraction of host gene clusters

with significant correlated predicted target expressions (37% and 34%). Since the

number of targets predicted with PT for each host gene is in average considerably

smaller compared to the two other methods, false positive predictions have a

larger effect on the determined p-values.

Taking into account that the consensus model graph is less dense as well as

noteably smaller than the TS graph, it performs best in this analysis with an

equal fraction of significantly regulated clusters. However, our results are consis-

tent over all datasets and all different miRNA target site prediction tools.
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4.2.3 Functional relation between host and target genes includes

synergistic as well as antagonistic effects

The previously shown results so far indicate a nondirectional functional relation

between host genes and intronic miRNAs, but do not provide any information

on positive or negative correlations. Since these results show that PT predictions

agree with the two other tools, but due to the small size of the graph and therefore

its lack of robustness, we excluded PT from this analysis.

To test whether one or both of the two proposed functional effects — synergis-

tic or antagonistic — may be identified in our data, we calculated the distance

between the medians of the correlations between the host and predicted tar-

get genes and the correlations between the hosts and randomly sampled targets

(Figure 4.4A and methods). The resulting distances ∆m combined from all three

datasets can be seen in Figure 4.4B and 4.4C. Both distance distributions show

a bimodal distribution with a local minimum at ∆m = 0, but no significant shift

towards a negative or positive correlation. Hence, based on the assumption that

high positive or negative correlation of gene expression patterns indicated similar

or opposite functions, we infer that both proposed effects, knock down and fine

tuning, appear to be equally represented in our data.

Since our investigation is only based on mRNA expression data and further

information on protein levels is missing, the real impact on translation stays

obscure in this analysis. However, in [Baek et al., 2008] it could be shown that

most of miRNA-mRNA interactions function as fine scaling adjustions to the

proteome. Considering the fact that our experimental analysis was only based

on mRNA expression data, only knock down effects are directly visible. But in

agreement with previous work [Selbach et al., 2008], the massive appearance

of positively correlated miRNA and target expression strongly indicates tuning

effects of varying translational repression.

4.2.4 Host and target gene sets display enriched functional similarity

The significantly correlated expression patterns between host genes and miRNA

target genes support the notion that intronic miRNA regulation improves host-

associated biological functions by either tuning or dampening the expression of

target genes. We assume that this relation is also apparent via shared functional
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PT TS C
Hosts targets p targets p targets p

SCD I 9 7 0.0305 275 < 10−4 82 0.1425
SCD II 8 68 0.0578 771 < 10−4 109 < 10−4

SG I 13 149 < 10−4 1521 < 10−4 377 < 10−4

SG II 21 189 < 10−4 1956 < 10−4 486 < 10−4

SG III 7 39 < 10−4 617 0.0008 258 < 10−4

NO I 10 51 0.0016 864 0.0109 112 < 10−4

NO II 17 67 0.0046 1274 < 10−4 218 < 10−4

Table 4.1: Host gene cluster size and number of target genes, predicted with the three
methods Pictar (PT), TargetScan (TS), and our Consensus model (C), respectively.
The p-values determined by a comparison of functional GO similarities between host
and predicted targets to randomly chosen sets of target genes of identical size are shown.

annotations. To test this hypothesis, we determined the commonly used func-

tional similarity of gene products based on Gene Ontology (GO) [Schlicker et al.,

2006] between a single or multiple host genes and their set of target genes. We

then calculated the significance of the mean functional similarity by comparing

the target set with randomly sampled sets of miRNA target genes (see methods).

We analyzed the previously defined clusters SCD I – NO II and calculated

mean functional similarities between the host and target gene sets. Results are

shown in Table 4.1. All host gene clusters display a significantly higher functional

similarity (p < 0.05) to their predicted TS target genes as compared to the null

model of randomly chosen target genes. Only the two clusters SCD I and SCD II

exceed the significance level of 0.05 for consensus model and PicTar predictions,

respectively.

To check whether a high functional similarity can be found for all host-target

relations independent of expression patterns, we additionally calculated the func-

tional similarity score for all host genes and their predicted target gene sets. We

expected the most robust results for the largest network of predicted microRNA

target gene associations, since the score is given by the mean of all host gene -

target gene pairs. In Figure 4.5A, we plotted the frequency distribution of sim-

ilarity scores for TS. We found that the scores are well distributed within the

range of 0 and 5. We compared each similarity score with a null model, where the

same number of target genes is randomly selected from all miRNA target genes

as provided by TS. For the host gene Copz1 for example, we found a significantly
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Figure 4.5: Functional similarity of host and target gene sets as predicted by Tar-
getScan. (A) Frequency distribution of the functional similarity score for all 75 host-
target relations. For each single host gene and its set of target genes, we calculate a mean
score based on the GO annotation ’biological process’. The mean functional similarity
of the host gene Copz1 to its predicted targets is 2.48 (blue line). (B) Comparison of
the real functional similarity score the host gene Copz1 with a null model distribution.
For the null model, a random set of microRNA target genes of the same size has been
chosen 1000 times and the functional similarity score has been calculated. The real score
of Copz1 deviates significantly from the null model distribution, resulting in a high z
score. (C) Z scores for all annotated host genes. A total of 21 out of 75 host genes show
z scores > 2 and thus display a significantly higher functional similarity as expected
from a random sample of target genes.

larger functional similarity to its targets as compared to 1000 randomly selected

sets of microRNA targets (see Figure 4.5B).

For all annotated host genes with available annotations for the respective tar-

gets, we calculated p-values and z scores, as measures of deviation from the null

model. We found that surprisingly many host-target relations deviated from the

null model, with high z scores as can be seen in Figure 4.5C. As many as 57 of all

75 host genes annotated in the ontology ‘biological process’ exhibited a greater
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similarity to their targets (z > 0) than expected by chance, 30 of them with a

p-value < 0.05. For those pairs of host and target genes, a strong correlation

in terms of their annotated ‘biological process’ existed. For the other prediction

tools used on in this study, a similar trend to high z scores could be observed (see

supplementary figure 1). However, these predictions comprise less annotated host

genes (48 and 45 for PicTar and consensus model, respectively) and also about

10 times less links, rendering significant deviations less possible (see methods for

details).

With the use of GO gene annotations we could show that intronic miRNA tend

to target genes that are functionally more similar to the host genes than ran-

domly chosen genes. The strong bias towards positive correlations and absence of

significant dissimilarities agrees with both former proposed regulatory principles

(figure 4.1A,B). Notably, GO terms are not classified on their antagonistic effects

on each other but on biological relations. For instance, two pathways with con-

flicting regulation on a cellular process like ‘cell growth’ are both children of the

parental term and therefore close within the GO tree. Furthermore, two genes

can have opposed regulatory effects on one pathway and would be still grouped

together in the same term.

4.3 Conclusion

The results of this work show that the genomic linkage between intronic miR-

NAs and their host genes coincides with a functional relation. Using a data-

driven as well as a knowledge-based approach, miRNA host genes and related

target genes were analyzed towards functional relations. Expression patterns were

obtained from three developmental datasets. Correlated expressions of host and

miRNA target genes deviated significantly from a random model. Both, positively

and negatively correlation patterns have been observed in approximately equal

amounts. An independent GO analysis of the predicted miRNA-mRNA interac-

tion network confirmed that host and predicted target genes tend be annotated

with similar or related terms, compared to a random model. Taken together,

results indicate for either synergistic or antagonistic regulatory effects mediated

by either downregulation of genes with an opposed function or fine-tuning of

miRNA targets, co-operative to the host gene.
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4.4 Material and Methods

4.4.1 Microarray data and preprocessing

All analyzed datasets were taken from the GEO [Barrett and Edgar, 2006]

database: (i) The stem cell development (SCD) datasets consists of three cell

lines (R1, J1, V6.5) differentiated into embryoid bodies (EB) at 11 time points

from t=0h until t=d14. From each time point and each cell line 3 technical repli-

cates were measured (combination of three cell line differentiations GSE2972,

GSE3749, GSE3231). (ii) Within the somitogenesis dataset (SG) gene expression

was measured from synchronized C2C12 myoblasts at 13 timepoints from t=0h

until t=6h (GSE7012). (iii) The neurite outgrowth (NO) and regeneration dataset

consists of transcriptional activity, measured from dorsal root ganglia during a

time course of neurite outgrowth in vitro under two conditions: untreated and

under potent inhibitory cue Semaphorin3A. Measurements were taken at 5 time

points from t=2h until t=40h including two technical replicates (GSE9738).

Affymetrix raw data were preprocessed using Bioconductor‘s R package sim-

pleaffy [Wilson and Miller, 2005]. Data was normalized and detection calls were

determined. Expression values were calculated using the RMA algorithm. Each

dataset was filtered independently to remove all probesets with an absent flag in

more then two third of all datapoints within the whole experimental setup.

Gene names and gene symbols for each probeset were derived from the Bio-

conductor Affymetrix Mouse Expression Set 430 annotation data (moe430a.db).

Gene symbols represented by more than one probeset were set to the median

expression values.

4.4.2 Expression profile based analysis

Host gene cluster were defined upon a correlation-based adjacency matrix. For

each microarray dataset we selected all known miRNA host genes and calculated

a correlation matrix based on their expression profiles. Each entry representing

a correlation coefficient above 0.8, was set to 1, all others to 0. This adjacency

matrix now forms a graph of host genes. A host gene cluster was then defined

as a maximal connected subgraph of this graph. This equals nearest neighbour

method applied to hierarchical clustering algorithm with a defined cutoff of 0.8
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of the dendrogramm. For each host gene cluster containing M host genes, the

N corresponding target genes were determined upon the three miRNA target

prediction tools.

We calculated the cluster specific miRNA degree di = #Ti/#Hi where #Ti is

the number of target genes and #Hi the number of host genes of cluster i.

Depending on the respective expression profiles, we calculated the M × N

cross-correlation coefficients between all hosts and all targets. As a null model

we randomly sampled N targets for 500 times. For each sample we calculated all

M × N correlations. Statistically significant differences between the correlation

distributions of our clusters and sampled data were estimated by determining

p-values using Wilcoxon‘s rank sum test.

Distances between the medians of the correlation distributions were calculated

as

∆m = median(Cc)−median(Cs) (4.1)

with Cc being the correlation distribution between the host and the target genes

of one cluster and Cs being the correlation distribution between host genes and

sampled target genes of one cluster.

Hierarchical cluster analysis was performed using Matlab‘s Bioinformatics tool-

box (http://www.mathworks.com) using average linkage with Euclidean distance

metric.

4.4.3 Intronic miRNAs and target prediction

A list of all murine intronic miRNAs and their host genes was downloaded from

the miRBase website (http://microrna.sanger.ac.uk). Predictions made by PT

were downloaded from the UCSC genome browser (http://genome.ucsc.edu) and

TS conserved miRNA target site predictions were downloaded from the TS web-

site (http://www.targetscan.org). Redundant gene to miRNA relationships were

removed from both datasets.

The Consensus model prediction graph used in our analysis was built of five

different miRNA target site prediction tools. Additionally to PT and TS we

used predictions from PITA [Kertesz et al., 2007], Miranda [Betel et al., 2008]

(http://www.microrna.org), and targetspy (Sturm et al, submitted). From all

predictions based on RefSeq transcript IDs, we filtered out only miRNA-transcript
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Figure 4.6: Properties of the three miRNA-target bipartite graphs. (A) The relative
densities, number of existing edges divided by all possible edges, in percent of the three
graphs for Pictar (PT), TargetScan (TS), and consensus model (C). (B) Log-log plot
of number of predicted miRNA targets for all three different prediction graphs. (C)
Log-log plot of cluster specific miRNA target recovery for all three different prediction
graphs (for details see text). (D) The mean of the numbers of predicted miRNA targets
of the complete graphs (grey), and cluster-specific recovery of miRNA targets (orange):
Mean of the sums of all identified targets of one host gene cluster divided by the sums
of all host genes of the cluster.

relations that were predicted by a minimum of four different tools. Transcript

mapping to gene symbols was done using a local copy of the RefSeq database

(September 2008) [Pruitt et al., 2007].

These genome-wide predictions can be represented by a network (bipartite

graph), where the two different sets of nodes are formed by the miRNAs and the

target genes, respectively, and the predicted interactions are formed by the edges.

The three graphs vary primarily in their absolute sizes. PT with 242 miRNAs and

1335 overall predicted targets is very small compared to TS (382 miRNAs, 8879

targets) and consensus model (219 miRNAs, 3249 targets). In figure 4.6A relative

densities for all graphs and in figure 4.6B all degree distributions are shown. For

each cluster a mean miRNA target recovery was calculated as the fraction of the

number of all predicted and recovered target genes of one cluster through the

number of clustered host genes. These distributions again are strikingly similar

whereas the mean still varies strongly (Figure 4.6C,D).

The fraction of the cluster-specific miRNA degree compared to the complete

95



graph miRNA degree of consensus model is very high (76%) compared to the

other methods (TS: 50%, PT: 27%). Since TS predicts the highest number of

targets per miRNA, one also expects a relatively huge recovery of target genes

within the dataset. The PT graph is the densest graph of all but also the smallest

one, hence the weak recovery of targets. One reason for the high target recovery

of the consensus model might be that the used prediction tools for the consensus

model score are all trained upon validated data. Therefore, the resulting miRNA-

target predictions contain more training data as the PT and TS, which results

in the high recovery rate.

4.4.4 Functional similarity of host genes and target gene sets

We assume that host genes confer regulatory control by translational inhibition

of the respective intronic microRNA target genes in possibly related biological

processes. To test this hypothesis for all hosts and target genes, we compare

the similarity of their respective annotations. Functional gene annotations as

provided by the GO [Ashburner et al., 2000] classify genes according to their

function, associated biological processes or appearance within defined cellular

components. They are organized hierarchically, typically in a directed acyclic

graph. To each gene more than one classification term can be assigned.

The functional similarity between a host and a target was defined by Resnik’s

measure as described in [Schlicker et al., 2006] and calculated using the Pro-

Cope software suite [Krumsiek et al., 2008]. This method scores relationships

between genes by common appearance within one or more terms or, more ab-

stract, by analyzing their distance within the GO graph. For genes with multiple

term annotations the maximum scoring GO term pair was used. The functional

similarity between a host and a set of targets was determined as the mean of all

single host-target scores. For our study, we downloaded the most recent GO files

and mouse gene annotation lists from the GO website (January, 2009).

In order to assign statistical significance of the functional host-target similar-

ities in our network, we compared the average similarity of each host to all of

its targets against 10.000 randomized networks. To evaluate the host-cluster to

target relations we compared the average host-target similarities in the real net-

work against 10.000 networks with randomized target sets for each host cluster.

We calculated a p-value as the relative number of samples with higher scores.
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The z score was calculated as the deviation of the real score s from the mean m

of the sampled distribution, divided by its standard distribution σ, z = s−m
σ

.
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5 Discussion

The analysis of gene expression is a challenging task in modern biology. Microar-

ray technology allows for large-scale measurements of the expression of thousands

of genes at once. Based on different biological models, various methods have been

developed to analyze these data in an appropriate manner. In this work we dis-

tinguished between mapping and mixing models. Mapping models compare the

expression values of different measurements directly in order to either identify

differentially regulated genes, prevalently appearing expression patterns or to

extract potential marker genes. In contrast, mixing models follow a different ap-

proach. The underlying assumption here is that a single gene expression profile

is composed of several superimposing expression modes. These expression modes

therefore represent specific biological processes responsible for a distinct cellular

task.

The different methods applied range from classical statistic approaches, such as

the t-test, clustering methods like hierarchical clustering, to methods developed

in linear algebra like ICA. In this work two of these methods, ICA and hierar-

chical clustering were applied to different microarray datasets following diverse

biological questions.

In chapter 2 two different classes of gene expression profiles, derived from

monocytes and M-CSF dependent differentiated macrophages, were analyzed.

Statistically independent GEM were extracted from the observed expression pro-

files using ICA. From each GEM a group of genes was deduced, henceforth called

sub-mode. These sub-modes were further analyzed with different database query

and literature mining tools and then combined to form so called meta-modes.

With these a knowledge-based pathway analysis was performed and a well-known

signal cascade could be reconstructed. Although there exists lot of other work

applying ICA to microarray data [Liebermeister, 2002; Lee and Batzoglou, 2003;

Chiappetta et al., 2004], a detailed biological discussion of the results is mostly

missing. In this work, a special focus was to test the ICA derived results for
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biological relevance, and to provide a reasonable approach for interpretation.

The results show that ICA is an appropriate tool to uncover underlying bio-

logical mechanisms from microarray data. Most of the well known pathways of

M-CSF dependent monocyte to macrophage differentiation could be identified

by this unsupervised microarray data analysis. Moreover, recent research re-

sults like the involvement of proliferation associated cellular mechanisms during

macrophage differentiation, could also be corroborated.

Chapter 3, again deals with the application of ICA to microarray data. How-

ever, in contrast to chapter 2 ICA was applied to kinetic gene expression profiles

and compared to the more commonly used method of hierarchical clustering. The

dataset consisted of human monocyte derived macrophages from three different

donors infected with the intracellular pathogen Francisella tularensis.

Results were compared using pathway analysis tools, based on the Gene On-

tology and the MeSH database. It could be shown that both methods lead to

time-dependent gene regulatory patterns, which fit well to known TNFα induced

immune responses. In comparison, the nonexclusive attribute of ICA results in

a more detailed view and a higher resolution in time dependent behavior of the

immune response genes. Additionally, NFκB could be identified as one of the

main regulatory genes during the response to F. tularensis infection.

A less methods and more biology oriented approach applied to microarray

data was discussed in chapter 4. Since up to 53% of mammalian miRNAs appear

to be located within introns of protein coding genes, the linkage between their

expression and the promoter-driven regulation of their host gene was analyzed.

Therefore, the study investigated this linkage towards a relationship beyond tran-

scriptional co-regulation. Using measures based on both annotation and experi-

mental data, it could be shown that host genes and their intronic miRNAs are

often functionally related.

The study showed that miRNA target genes tend to show expression patterns

significantly correlated with the expression of their host genes. By calculating

functional similarities between host and predicted miRNA target genes based on

GO annotations, it could be confirmed that many miRNAs link the annotated

function of their host genes with that of the target genes. Additionally, these

results indicate that miRNAs support host gene activity in an either synergistic

or antagonistic manner.
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The result of the latter analysis also brings a new perception to the analysis

of gene expression data. The so far common paradigm to map these large scale

data to protein associated gene functionality may be extended by the knowledge

of intronic miRNA functionality. This is especially interesting since most com-

monly used microarrays are not only limited to the detection of protein coding

genes, but can also deliver information about further non-coding gene regulatory

mechanisms.

Taken together, this work shows that the analysis of microarray data, depend-

ing on the applied method can lead to diverse biological findings. Thereby, it is

less important to use the most sophisticated tool, but more important to carefully

reflect on the aim of the experiment to choose the appropriate method. However,

developing new analysis tools or assigning methods developed in other fields to

the analysis of large scale gene expression data is still a demanding task. On the

one hand, it is still necessary to overcome open problems like noise reduction

in the data and, on the other hand, to improve the biological outcomes and to

provide more meaningful results.

Furthermore, in some cases a specific tool outperforms a commonly used one as

shown in chapter 3, and should therefore be preferentially used. Hence, newly de-

veloped methods have to be proven carefully in their applicability and compared

to commonly used ones.

Finally, we now will give a short outlook on how to overcome several issues,

improve diverse methods and on future directions in large scale gene expression

data analysis. For instance, investigations on ICA algorithms, including subspace

analysis, will allow for a more adapted mixing model of the underlying biological

processes [Gruber et al., 2009]. Remaining dependencies of extracted biologi-

cal processes may be identified, hence delivering a more adapted view on large

regulatory networks. Further exploration of the mixing coefficients derived with

matrix factorization methods, as described in chapter 3 or in [Schachtner et al.,

2008], from time dependent data may carry out improvements in the reconstruc-

tion of time dependent regulatory networks. A promising idea is the application

of non-negative tensor factorization (NTF) methods [Cichocki et al., 2007], that

allow for the use of higher dimensionality in the mixing model. Thus, varieties

within biological replicates may be identified. For instance, processes running in

different cell lines with different rates may be more precisely reconstructed.
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As the knowledge about miRNAs and the comprehension of their impact on

gene expression grows, the perspective on analyzing mRNA data will certainly

change. Therefore, existing theoretical analysis methods have to be extended and

development of new tools should be conducted with respect to this entity. As ba-

sically presented in this work, the use of graph theoretic approaches and network

representation exhibit a promising approach to future investigations. Using in-

formation from diverse sources, such as microarray analyses, TF and miRNA

regulatory networks, as well as gene annotations, large regulatory networks can

be created. These networks can then be further analyzed and optimized, as for

instance by predicting missing links via applying a Boolean approach. Following

a modern systems biology approach with a high crosstalk between experimental

and theoretical work, will also lead to improvements concerning the biological

relevance of these models. Small subnetworks and motifs will give rise to pointed

experiments that may in turn be used to upgrade the models.

Finally, recently developed experimental methods, like deep sequencing, will

certainly improve the quality of gene expression data. This relatively new open

method allows for large-scale measurements of the transcriptome, independent

of the RNA type and may also deliver information about so far unknown tran-

scripts. However, this technique will also demand new model assumptions and

sophisticated analysis techniques.

In conclusion, we want to point out that the wide field of transcriptome anal-

ysis still offers lots of starting points for new investigatory approaches leading

to further findings that will extend our understanding of the gene regulatory

machinery forming a complete organism out of a single fertilized egg cell.
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Table 3 - Signal transduction genes
SYMBOL NAME Pathway CLU ProbeSet
ADAM10 ADAM metallopeptidase domain 10 Cell C. 6.2 214895 S AT
ADM adrenomedullin MAPK 12.2 202912 AT
AIF1 allograft inflammatory factor 1 13.2 209901 X AT
ALDH1A1 aldehyde dehydrogenase 1 family, member A1 12.2 212224 AT
ARF1 ADP-ribosylation factor 1 Cell C. 6.2 208750 S AT
ARFGEF1 ADP-ribosylation factor guanine nucleotide-exchange factor 1(brefeldin A-

inhibited)
6.2 216266 S AT

ATF3 activating transcription factor 3 MAPK 12.2 202672 S AT
BCL3 B-cell CLL/lymphoma 3 3.2 204908 S AT
BID BH3 interacting domain death agonist 3.2 204493 AT
BIRC1 baculoviral IAP repeat-containing 1 13.2 204860 S AT
BLNK B-cell linker 13.2 207655 S AT
C1QR1 complement component 1, q subcomponent, receptor 1 13.2 202878 S AT
CAMKK2 calcium/calmodulin-dependent protein kinase kinase 2, beta 3.2 212252 AT
CASP1 caspase 1, apoptosis-related cysteine peptidase (interleukin 1, beta, conver-

tase)
MAPK 12.2 211368 S AT

CCL3 chemokine (C-C motif) ligand 3 MAPK 12.2 205114 S AT
CD163 CD163 antigen 13.2 215049 X AT
CD36 CD36 antigen (collagen type I receptor, thrombospondin receptor) 13.2 206488 S AT
CD44 CD44 antigen (homing function and Indian blood group system) MAPK 3.2 217523 AT
CD58 CD58 antigen, (lymphocyte function-associated antigen 3) 6.2 216942 S AT
CD83 CD83 antigen (activated B lymphocytes, immunoglobulin superfamily) MAPK 12.2 204440 AT
CD86 CD86 antigen (CD28 antigen ligand 2, B7-2 antigen) 13.2 205686 S AT
CFLAR CASP8 and FADD-like apoptosis regulator Cell C. 6.2 211317 S AT
CSPG2 chondroitin sulfate proteoglycan 2 (versican) 12.2 221731 X AT
CTSK cathepsin K (pycnodysostosis) MAPK 12.2,13.2 202450 S AT
CXCL1 chemokine (C-X-C motif) ligand 1 (melanoma growth stimulating activity,

alpha)
MAPK 12.2 209774 X AT

CYP1B1 cytochrome P450, family 1, subfamily B, polypeptide 1 3.2,6.2 202435 S AT
DDX3X DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked 6.2 212514 X AT
DUSP1 dual specificity phosphatase 1 MAPK 12.2 201041 S AT
EGR2 early growth response 2 (Krox-20 homolog, Drosophila) MAPK 3.2 205249 AT
EREG epiregulin 3.2 205767 AT
FABP5 fatty acid binding protein 5 (psoriasis-associated) 13.2 202345 S AT
FCGR1A Fc fragment of IgG, high affinity Ia, receptor (CD64) 13.2 214511 X AT
FLI1 Friend leukemia virus integration 1 13.2 204236 AT
G6PD glucose-6-phosphate dehydrogenase MAPK 3.2 202275 AT
GADD45B growth arrest and DNA-damage-inducible, beta MAPK 12.2 209305 S AT
GDI2 GDP dissociation inhibitor 2 Cell C. 6.2 200008 S AT
H2BFS H2B histone family, member S 3.2 209806 AT
HOMER3 homer homolog 3 (Drosophila) Cell C. 6.2 215489 X AT
HPSE heparanase 13.2 219403 S AT
IER3 immediate early response 3 12.2 201631 S AT
IFITM3 interferon induced transmembrane protein 3 (1-8U) 12.2 201315 X AT
IGFBP7 insulin-like growth factor binding protein 7 MAPK 12.2 201163 S AT
IL1RN interleukin 1 receptor antagonist MAPK 3.2 212657 S AT
IL2RG interleukin 2 receptor, gamma (severe combined immunodeficiency) 3.2 204116 AT
IL8 interleukin 8 MAPK 3.2,12.2 202859 X AT
JUNB jun B proto-oncogene MAPK 12.2 201473 AT
KLF10 Kruppel-like factor 10 3.2,12.2 202393 S AT
LMO2 LIM domain only 2 (rhombotin-like 1) 13.2 204249 S AT
M6PR mannose-6-phosphate receptor (cation dependent) 6.2 200900 S AT
MAP3K2 mitogen-activated protein kinase kinase kinase 2 Cell C. 6.2 221695 S AT
MAPK1 mitogen-activated protein kinase 1 MAPK 3.2 208351 S AT
MCP membrane cofactor protein (CD46, trophoblast-lymphocyte cross-reactive

antigen)
6.2 207549 X AT

MGLL monoglyceride lipase 12.2 211026 S AT
MMP9 matrix metallopeptidase 9 (gelatinase B, 92kDa gelatinase, 92kDa type IV

collagenase)
13.2 203936 S AT

MTSS1 metastasis suppressor 1 13.2 203037 S AT
MYCL1 v-myc myelocytomatosis viral oncogene homolog 1, lung carcinoma derived

(avian)
13.2 214058 AT

continued on next page

1



continued from previous page
SYMBOL NAME Pathway CLU ProbeSet
NEK3 NIMA (never in mitosis gene a)-related kinase 3 13.2 211089 S AT
NFKBIE nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor,

epsilon
3.2 203927 AT

OGT O-linked N-acetylglucosamine (GlcNAc) transferase Cell C. 6.2 207564 X AT
PDE4B phosphodiesterase 4B, cAMP-specific (phosphodiesterase E4 dunce homolog,

Drosophila)
12.2 203708 AT

PECAM1 platelet/endothelial cell adhesion molecule (CD31 antigen) 13.2 208981 AT
PLEK pleckstrin 12.2 203471 S AT
PPP1R15A protein phosphatase 1, regulatory (inhibitor) subunit 15A 12.2 37028 AT
PRNP prion protein (p27-30) 6.2 215707 S AT
PSEN1 presenilin 1 (Alzheimer disease 3) Cell C. 6.2 207782 S AT
PTGER2 prostaglandin E receptor 2 (subtype EP2), 53kDa 12.2 206631 AT
PTPRO protein tyrosine phosphatase, receptor type, O 13.2 208121 S AT
RALGDS ral guanine nucleotide dissociation stimulator MAPK 12.2 209050 S AT
RIPK2 receptor-interacting serine-threonine kinase 2 MAPK 12.2 209545 S AT
RPS6KA1 ribosomal protein S6 kinase, 90kDa, polypeptide 1 MAPK 3.2 203379 AT
S100A8 S100 calcium binding protein A8 (calgranulin A) MAPK 12.2 202917 S AT
S100A9 S100 calcium binding protein A9 (calgranulin B) MAPK 12.2 203535 AT
SCAMP1 secretory carrier membrane protein 1 6.2 206668 S AT
SCAP2 src family associated phosphoprotein 2 Cell C. 6.2 216899 S AT
SELL selectin L (lymphocyte adhesion molecule 1) MAPK 12.2 204563 AT
SEPT2 septin 2 6.2 200778 S AT
SH3BP5 SH3-domain binding protein 5 (BTK-associated) MAPK 3.2 201811 X AT
SLA Src-like-adaptor 13.2 203761 AT
SLC3A2 solute carrier family 3 (activators of dibasic and neutral amino acid transport),

member 2
3.2 200924 S AT

SNAP23 synaptosomal-associated protein, 23kDa 6.2 214544 S AT
SOD2 superoxide dismutase 2, mitochondrial MAPK 12.2 215223 S AT
STK17A serine/threonine kinase 17a (apoptosis-inducing) MAPK 3.2 202693 S AT
TALDO1 transaldolase 1 3.2 201463 S AT
TLK1 tousled-like kinase 1 3.2 202606 S AT
TLR4 toll-like receptor 4 Cell C. 6.2,13.2 221060 S AT
TNFAIP3 tumor necrosis factor, alpha-induced protein 3 3.2, 12.2 202644 S AT
TNFAIP6 tumor necrosis factor, alpha-induced protein 6 12.2 206026 S AT
TPP1 tripeptidyl peptidase I 6.2 214196 S AT
TSC22D1 TSC22 domain family, member 1 12.2 215111 S AT
TXN thioredoxin MAPK 3.2 208864 S AT
TXNDC thioredoxin domain containing Cell C. 6.2 208097 S AT
TXNIP thioredoxin interacting protein 6.2,13.2 201008 S AT
TXNRD1 thioredoxin reductase 1 3.2 201266 AT
UCP2 uncoupling protein 2 (mitochondrial, proton carrier) 13.2 208997 S AT
VAMP3 vesicle-associated membrane protein 3 (cellubrevin) 6.2 201337 S AT
YWHAZ tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein,

zeta polypeptide
6.2 200641 S AT

ZNFN1A1 zinc finger protein, subfamily 1A, 1 (Ikaros) 6.2 205039 S AT
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Table 4 - Regulatory sequences genes
SYMBOL NAME Pathway CLU ProbeSet
ABCA1 ATP-binding cassette, sub-family A (ABC1), member 1 4.1 203505 AT
ABCG1 ATP-binding cassette, sub-family G (WHITE), member 1 10.1 204567 S AT
ACAT2 acetyl-Coenzyme A acetyltransferase 2 (acetoacetyl Coenzyme A thiolase) 11.2 209608 S AT
ADM adrenomedullin TP53 14.1 202912 AT
ALDH1A1 aldehyde dehydrogenase 1 family, member A1 4.1,11.2 212224 AT
ALDH2 aldehyde dehydrogenase 2 family (mitochondrial) 4.1 201425 AT
ALOX5AP arachidonate 5-lipoxygenase-activating protein 10.1 204174 AT
ARTS-1 type 1 tumor necrosis factor receptor shedding aminopeptidase regulator 11.2 210385 S AT
C3AR1 complement component 3a receptor 1 4.1, 14.1 209906 AT
CALR calreticulin 10.1 214315 X AT
CCND2 cyclin D2 JUN/FOS,TP53 10.1, 14.1 200953 S AT
CDC42 cell division cycle 42 (GTP binding protein, 25kDa) TP53 14.1 208727 S AT
CPM carboxypeptidase M 11.2 206100 AT
CREM cAMP responsive element modulator JUN/FOS 10.1 207630 S AT
CTSK cathepsin K (pycnodysostosis) 4.1 202450 S AT
CTSL cathepsin L 14.1 202087 S AT
CXCL1 chemokine (C-X-C motif) ligand 1 (melanoma growth stimulating activity,

alpha)
JUN/FOS 10.1,14.1 209774 X AT

CXCR4 chemokine (C-X-C motif) receptor 4 4.1 211919 S AT
CYP51A1 cytochrome P450, family 51, subfamily A, polypeptide 1 11.2 216607 S AT
EBP emopamil binding protein (sterol isomerase) 11.2 202735 AT
FBP1 fructose-1,6-bisphosphatase 1 10.1 209696 AT
FDFT1 farnesyl-diphosphate farnesyltransferase 1 11.2 208647 AT
FYB FYN binding protein (FYB-120/130) 4.1 211795 S AT
G0S2 G0/G1switch 2 14.1 213524 S AT
G1P2 interferon, alpha-inducible protein (clone IFI-15K) 4.1 205483 S AT
GADD45A growth arrest and DNA-damage-inducible, alpha JUN/FOS, TP53 10.1, 14.1 203725 AT
GCH1 GTP cyclohydrolase 1 (dopa-responsive dystonia) TP53 14.1 204224 S AT
GGH gamma-glutamyl hydrolase (conjugase, folylpolygammaglutamyl hydrolase) 11.2 203560 AT
GM2A GM2 ganglioside activator 4.1 212737 AT
HLA-DMB major histocompatibility complex, class II, DM beta 4.1 203932 AT
HLA-DQA2 major histocompatibility complex, class II, DQ alpha 2 4.1, 14.1 212671 S AT
HLA-DQB1 major histocompatibility complex, class II, DQ beta 1 4.1 212998 X AT
HMGCR 3-hydroxy-3-methylglutaryl-Coenzyme A reductase 11.2 202540 S AT
HPSE heparanase 14.1 219403 S AT
HSPA1B heat shock 70kDa protein 1B 11.2 200800 S AT
IER3 immediate early response 3 TP53 14.1 201631 S AT
IL1RN interleukin 1 receptor antagonist JUN/FOS 10.1 212659 S AT
INSIG1 insulin induced gene 1 11.2 201625 S AT
JUN v-jun sarcoma virus 17 oncogene homolog (avian) JUN/FOS 4.1,10.1 201466 S AT
LCP2 lymphocyte cytosolic protein 2 (SH2 domain containing leukocyte protein of

76kDa)
14.1 205269 AT

LDLR low density lipoprotein receptor (familial hypercholesterolemia) 11.2 202068 S AT
LOC440607 Fc-gamma receptor I B2 10.1 214511 X AT
LYZ lysozyme (renal amyloidosis) 11.2, 14.1 213975 S AT
MAPK13 mitogen-activated protein kinase 13 JUN/FOS 10.1 210058 AT
MARCKS myristoylated alanine-rich protein kinase C substrate JUN/FOS 4.1, 14.1 201670 S AT
MMP14 matrix metallopeptidase 14 (membrane-inserted) 10.1 160020 AT
NISCH nischarin 4.1 201591 S AT
NP nucleoside phosphorylase 14.1 201695 S AT
PDGFC platelet derived growth factor C 4.1 218718 AT
PFKFB3 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 14.1 202464 S AT
PHLDA1 pleckstrin homology-like domain, family A, member 1 14.1 217996 AT
PIM1 pim-1 oncogene JUN/FOS, TP53 10.1, 14.1 209193 AT
PLAU plasminogen activator, urokinase JUN/FOS 10.1 211668 S AT
PROCR protein C receptor, endothelial (EPCR) 14.1 203650 AT
PTGS1 prostaglandin-endoperoxide synthase 1 (prostaglandin G/H synthase and cy-

clooxygenase)
11.2 215813 S AT

RALA v-ral simian leukemia viral oncogene homolog A (ras related) 10.1 214435 X AT
RDX radixin 4.1 212397 AT
RPS6KA4 ribosomal protein S6 kinase, 90kDa, polypeptide 4 11.2 204632 AT
S100A12 S100 calcium binding protein A12 (calgranulin C) 14.1 205863 AT

continued on next page
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continued from previous page
SYMBOL NAME Pathway CLU ProbeSet
S100A8 S100 calcium binding protein A8 (calgranulin A) JUN/FOS 10.1 202917 S AT
SHMT2 serine hydroxymethyltransferase 2 (mitochondrial) 10.1 214437 S AT
SLC11A1 solute carrier family 11 (proton-coupled divalent metal ion transporters), mem-

ber 1
10.1 210423 S AT

SOD2 superoxide dismutase 2, mitochondrial JUN/FOS 4.1 215223 S AT
SPINT2 serine peptidase inhibitor, Kunitz type, 2 14.1 210715 S AT
SQLE squalene epoxidase 11.2 209218 AT
TNFAIP6 tumor necrosis factor, alpha-induced protein 6 14.1 206026 S AT
TRAPPC2 trafficking protein particle complex 2 4.1 209751 S AT
TRIB3 tribbles homolog 3 (Drosophila) 14.1 218145 AT
UGCG UDP-glucose ceramide glucosyltransferase 4.1,10.1 204881 S AT
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Table 5 - Differentiation and cell cycle genes
SYMBOL NAME Pathway CLU ProbeSet
AGA aspartylglucosaminidase TP53 11.1 204333 S AT
ALCAM activated leukocyte cell adhesion molecule 12.1 201951 AT
ALOX5 arachidonate 5-lipoxygenase 11.1 204446 S AT
APP amyloid beta (A4) precursor protein (peptidase nexin-II, Alzheimer disease) TP53 5.2 214953 S AT
ATP1B1 ATPase, Na+/K+ transporting, beta 1 polypeptide 12.1 201242 S AT
CD44 CD44 antigen (homing function and Indian blood group system) TP53 11.1 210916 S AT
CDKN1A cyclin-dependent kinase inhibitor 1A (p21, Cip1) TP53 11.1 202284 S AT
CSPG2 chondroitin sulfate proteoglycan 2 (versican) TP53 5.2 221731 X AT
CTNNB1 catenin (cadherin-associated protein), beta 1, 88kDa 11.1 201533 AT
CYP51A1 cytochrome P450, family 51, subfamily A, polypeptide 1 TP53 12.1 216607 S AT
DUSP6 dual specificity phosphatase 6 TP53 5.2,12.1 208892 S AT
DUT dUTP pyrophosphatase 5.2,11.1 209932 S AT
EIF2AK2 eukaryotic translation initiation factor 2-alpha kinase 2 TP53 5.2 204211 X AT
EPRS glutamyl-prolyl-tRNA synthetase 12.1 200842 S AT
EREG epiregulin 11.1 205767 AT
F8 coagulation factor VIII, procoagulant component (hemophilia A) 5.2 205756 S AT
FCGR1A Fc fragment of IgG, high affinity Ia, receptor (CD64) 5.2 216950 S AT
FCGR3A Fc fragment of IgG, low affinity IIIa, receptor (CD16a) 5.2 204007 AT
FYN FYN oncogene related to SRC, FGR, YES 5.2 210105 S AT
GCLC glutamate-cysteine ligase, catalytic subunit 12.1 202923 S AT
GGH gamma-glutamyl hydrolase (conjugase, folylpolygammaglutamyl hydrolase) 5.2, 12.1 203560 AT
GSN gelsolin (amyloidosis, Finnish type) TP53 12.1 200696 S AT
HMGB2 high-mobility group box 2 TP53 5.2 208808 S AT
HMGB3 high-mobility group box 3 5.2, 11.1 203744 AT
HMGCR 3-hydroxy-3-methylglutaryl-Coenzyme A reductase TP53 12.1 202540 S AT
IL1RN interleukin 1 receptor antagonist TP53 12.1 212659 S AT
ITGA4 integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VLA-4 receptor) 5.2 205885 S AT
LDLR low density lipoprotein receptor (familial hypercholesterolemia) 5.2 202068 S AT
LMNB1 lamin B1 5.2 203276 AT
LYZ lysozyme (renal amyloidosis) 5.2 213975 S AT
MCM5 MCM5 minichromosome maintenance deficient 5, cell division cycle 46 (S.

cerevisiae)
5.2 216237 S AT

NME1 non-metastatic cells 1, protein (NM23A) expressed in TP53 12.1 201577 AT
PCNA proliferating cell nuclear antigen TP53 5.2,12.1 201202 AT
PDCD4 programmed cell death 4 (neoplastic transformation inhibitor) 5.2 212593 S AT
PICALM phosphatidylinositol binding clathrin assembly protein 11.1 212511 AT
PPP1R15A protein phosphatase 1, regulatory (inhibitor) subunit 15A TP53 11.1 37028 AT
PRKCA protein kinase C, alpha TP53 5.2 213093 AT
RRM1 ribonucleotide reductase M1 polypeptide 5.2 201477 S AT
RUNX3 runt-related transcription factor 3 TP53 11.1 204198 S AT
SELL selectin L (lymphocyte adhesion molecule 1) 5.2 204563 AT
SLA Src-like-adaptor 12.1 203761 AT
SLC7A1 solute carrier family 7 (cationic amino acid transporter, y+ system), member

1
12.1 212295 S AT

SMARCA3 SWI/SNF related, matrix associated, actin dependent regulator of chromatin,
subfamily a, member 3

TP53 5.2 202983 AT

SMC4L1 SMC4 structural maintenance of chromosomes 4-like 1 (yeast) 11.1 201664 AT
SOX4 SRY (sex determining region Y)-box 4 11.1 201417 AT
SPTBN1 spectrin, beta, non-erythrocytic 1 5.2 212071 S AT
SRD5A1 steroid-5-alpha-reductase, alpha polypeptide 1 (3-oxo-5 alpha-steroid delta 4-

dehydrogenase alpha 1)
TP53 11.1 204675 AT

TFDP1 transcription factor Dp-1 5.2 212330 AT
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Table 6 - Survival/Apoptosis genes
SYMBOL NAME Pathway CLU ProbeSet
ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting

enzyme)
TP53, BAX 13.1 205746 S AT

ALOX5 arachidonate 5-lipoxygenase BAX, FAS 3.1, 9.2 204446 S AT
ALOX5AP arachidonate 5-lipoxygenase-activating protein BAX 3.1 204174 AT
ATF3 activating transcription factor 3 TP53, BAX 8.1 202672 S AT
BAX BCL2-associated X protein TP53 3.1, 8.1,13.1 211833 S AT
BCL2A1 BCL2-related protein A1 4.2 205681 AT
BTG1 B-cell translocation gene 1, anti-proliferative 13.1 200920 S AT
C1QR1 complement component 1, q subcomponent, receptor 1 CALR 4.2 202878 S AT
CACYBP calcyclin binding protein 2.1 210691 S AT
CALR calreticulin 4.2 214315 X AT
CCL3 chemokine (C-C motif) ligand 3 BAX 6.1 8.1 205114 S AT
CCND2 cyclin D2 4.2 200953 S AT
CD36 CD36 antigen (collagen type I receptor, thrombospondin receptor) CALR 4.2 209555 S AT
CD44 CD44 antigen (homing function and Indian blood group system) TP53, FAS 9.2 204490 S AT
CD83 CD83 antigen (activated B lymphocytes, immunoglobulin superfamily) BAX 13.1 204440 AT
CHMP5 chromatin modifying protein 5 2.1 219356 S AT
CSPG2 chondroitin sulfate proteoglycan 2 (versican) TP53, FAS 9.2 221731 X AT
CTSD cathepsin D (lysosomal aspartyl peptidase) TP53, BAX 3.1 200766 AT
CXCL1 chemokine (C-X-C motif) ligand 1 (melanoma growth stimulating activity,

alpha)
BAX 6.1 8.1 204470 AT

CXCR4 chemokine (C-X-C motif) receptor 4 BAX 3.1,13.1 217028 AT
CYP51A1 cytochrome P450, family 51, subfamily A, polypeptide 1 TP53 2.1 202314 AT
DNM2 dynamin 2 4.2 202253 S AT
DNTTIP2 deoxynucleotidyltransferase, terminal, interacting protein 2 6.1 202776 AT
DUSP1 dual specificity phosphatase 1 TP53, BAX 13.1 201041 S AT
EGR2 early growth response 2 (Krox-20 homolog, Drosophila) BAX 8.1,13.1 205249 AT
EIF5B eukaryotic translation initiation factor 5B TP53 8.1 201027 S AT
ERCC1 excision repair cross-complementing rodent repair deficiency, complementation

group 1
4.2 203719 AT

F8 coagulation factor VIII, procoagulant component (hemophilia A) 9.2 205756 S AT
FAS Fas (TNF receptor superfamily, member 6) TP53 9.2 204780 S AT
FCGR1A Fc fragment of IgG, high affinity Ia, receptor (CD64) 3.1 216950 S AT
FLJ22386 leucine zipper domain protein 13.1 218394 AT
FOXO1A forkhead box O1A (rhabdomyosarcoma) BAX 4.2, 6.1, 13.1 202724 S AT
FYB FYN binding protein (FYB-120/130) BAX 8.1 211795 S AT
FYN FYN oncogene related to SRC, FGR, YES BAX 13.1 210105 S AT
GADD45A growth arrest and DNA-damage-inducible, alpha TP53, BAX 3.1, 6.1 203725 AT
GRB10 growth factor receptor-bound protein 10 9.2 209409 AT
HEBP2 heme binding protein 2 FAS 9.2 203430 AT
HLA-DQA1 major histocompatibility complex, class II, DQ alpha 1 TP53 2.1, 3.1, 13.1 213831 AT
IER3 immediate early response 3 P53 6.1 201631 S AT
IGFBP7 insulin-like growth factor binding protein 7 2.1 201163 S AT
IL1RN interleukin 1 receptor antagonist TP53, BAX 8.1,13.1 212659 S AT
ING1 inhibitor of growth family, member 1 TP53, BAX 13.1 208415 X AT
IRS2 insulin receptor substrate 2 BAX 13.1 209185 S AT
ITGAL integrin, alpha L (antigen CD11A (p180), lymphocyte function-associated

antigen 1; alpha polypeptide)
BAX 13.1 213475 S AT

JAG1 jagged 1 (Alagille syndrome) P53 6.1 209099 X AT
LAMP1 lysosomal-associated membrane protein 1 BAX 3.1 201551 S AT
LNK lymphocyte adaptor protein 4.2 203320 AT
LRMP lymphoid-restricted membrane protein 3.1 35974 AT
LY75 lymphocyte antigen 75 FAS 9.2 205668 AT
MAP2K3 mitogen-activated protein kinase kinase 3 4.2 215498 S AT
MAP3K5 mitogen-activated protein kinase kinase kinase 5 6.1 203836 S AT
MCL1 myeloid cell leukemia sequence 1 (BCL2-related) 4.2 200798 X AT
NDUFA5 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 5, 13kDa TP53 2.1 201304 AT
NEDD8 neural precursor cell expressed, developmentally down-regulated 8 2.1 201840 AT
NFKB2 nuclear factor of kappa light polypeptide gene enhancer in B-cells 2 (p49/p100) TP53, BAX 13.1 207535 S AT
NME1 non-metastatic cells 1, protein (NM23A) expressed in CALR 4.2 201577 AT
OLR1 oxidised low density lipoprotein (lectin-like) receptor 1 13.1 210004 AT
PCBP2 poly(rC) binding protein 2 13.1 213263 S AT

continued on next page

6



continued from previous page
SYMBOL NAME Pathway CLU ProbeSet
PCNA proliferating cell nuclear antigen TP53 2.1 201202 AT
PDE4B phosphodiesterase 4B, cAMP-specific (phosphodiesterase E4 dunce homolog,

Drosophila)
13.1 203708 AT

PER2 period homolog 2 (Drosophila) 6.1 205251 AT
PLEK pleckstrin 13.1 203470 S AT
PPP1R15A protein phosphatase 1, regulatory (inhibitor) subunit 15A TP53, BAX 13.1 37028 AT
PRKACB protein kinase, cAMP-dependent, catalytic, beta 3.1 202741 AT
PRKCB1 protein kinase C, beta 1 4.2 209685 S AT
PROCR protein C receptor, endothelial (EPCR) CALR 4.2 203650 AT
PSMB8 proteasome (prosome, macropain) subunit, beta type, 8 (large multifunctional

peptidase 7)
9.2 209040 S AT

RAD23B RAD23 homolog B (S. cerevisiae) 2.1 201222 S AT
RALGDS ral guanine nucleotide dissociation stimulator FAS 9.2 209050 S AT
REL v-rel reticuloendotheliosis viral oncogene homolog (avian) BAX 13.1 206036 S AT
RNASE2 ribonuclease, RNase A family, 2 (liver, eosinophil-derived neurotoxin) 9.2 206111 AT
RSL1D1 ribosomal L1 domain containing 1 2.1, 4.2 212018 S AT
S100A8 S100 calcium binding protein A8 (calgranulin A) TP53, FAS 9.2 202917 S AT
S100A9 S100 calcium binding protein A9 (calgranulin B) TP53, FAS 9.2 203535 AT
SERBP1 SERPINE1 mRNA binding protein 1 9.2 210466 S AT
SFRS5 splicing factor, arginine/serine-rich 5 13.1 212266 S AT
SLC11A1 solute carrier family 11 (proton-coupled divalent metal ion transporters), mem-

ber 1
CALR 4.2,9.2 210423 S AT

SOD2 superoxide dismutase 2, mitochondrial TP53 2.1 216841 S AT
SOX4 SRY (sex determining region Y)-box 4 13.1 201417 AT
SPTBN1 spectrin, beta, non-erythrocytic 1 13.1 212071 S AT
STEAP3 STEAP family member 3 9.2 218424 S AT
SUB1 SUB1 homolog (S. cerevisiae) 2.1 214512 S AT
TANK TRAF family member-associated NFKB activator 2.1 209451 AT
TGFB1 transforming growth factor, beta 1 (Camurati-Engelmann disease) TP53, BAX 13.1 203085 S AT
TNFSF10 tumor necrosis factor (ligand) superfamily, member 10 TP53, BAX 2.1, 3.1, 6.1 202688 AT
TNFSF13 tumor necrosis factor (ligand) superfamily, member 13 BAX 3.1 210314 X AT
TRIB3 tribbles homolog 3 (Drosophila) 4.2 218145 AT
UBE1C ubiquitin-activating enzyme E1C (UBA3 homolog, yeast) 2.1 209115 AT
VIL2 villin 2 (ezrin) TP53, FAS 9.2 208623 S AT
WARS tryptophanyl-tRNA synthetase 6.1 200629 AT
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B Intronic miRNAs

B.1 Intronic miRNAs and host genes

Host Gene miRNA locus

1110001A07Rik mmu-miR-301 intron
2010111I01Rik mmu-miR-24-1 intron
2010209O12Rik mmu-miR-671 exon
2610203C20Rik mmu-miR-125b-1 intron
6230410P16Rik mmu-miR-135a-1 antisense
Aatk mmu-miR-338 intron
Acadvl mmu-miR-324 antisense
Akt1s1 mmu-miR-707 intron
Ank1 mmu-miR-486 intron
Arpp21 mmu-miR-128b intron
Arrb1 mmu-miR-326 intron
Astn1 mmu-miR-488 intron
Atp5b mmu-miR-677 intron
Bcl7c mmu-miR-762 antisense
Calcr mmu-miR-489 intron
Cdkl1 mmu-miR-681 intron
Chm mmu-miR-361 intron
Col27a1 mmu-miR-455 intron
Col7a1 mmu-miR-711 intron
Copz1 mmu-miR-148b intron
Copz2 mmu-miR-152 intron
Ctdsp1 mmu-miR-26b intron
Ctdspl mmu-miR-26a-1 intron
Cutl1 mmu-miR-721 intron
D16H22S680E mmu-miR-185 intron
Dnaja1 mmu-miR-207 intron
Dnm1 mmu-miR-199b antisense
Dnm2 mmu-miR-199a-1 antisense
Dnm3 mmu-miR-199a-2 antisense
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Dnm3os mmu-miR-199a-2 intron
Dusp19 mmu-miR-684-1 antisense
Dvl2 mmu-miR-324 intron
Eda mmu-miR-676 intron
Egfl7 mmu-miR-126 intron
Elmo3 mmu-miR-328 antisense
Evl mmu-miR-342 intron
Ftl1 mmu-miR-692-2 exon
Gabre mmu-miR-452 intron
Gpc1 mmu-miR-149 intron
Gpc3 mmu-miR-717 intron
Grid1 mmu-miR-346 intron
Grik3 mmu-miR-692-2 intron
Grm8 mmu-miR-592 intron
H19 mmu-miR-675 intron/exon
Hnrpk mmu-miR-7-1 intron
Hoxc5 mmu-miR-615 intron
Htr2c mmu-miR-764 intron
Huwe1 mmu-miR-98 intron
Iars2 mmu-miR-215 antisense
Igf2 mmu-miR-483 intron
Inpp5b mmu-miR-698 exon
Irak1 mmu-miR-718 exon
Lpp mmu-miR-28 intron
Map2k4 mmu-miR-744 intron
Mcm7 mmu-miR-25 intron
Mest mmu-miR-335 intron
Mib1 mmu-miR-1-2 antisense
Myh6 mmu-miR-208 intron
Nfyc mmu-miR-30c-1 intron
Nr6a1 mmu-miR-181b-2 antisense
Nrd1 mmu-miR-761 intron
Nupl1 mmu-miR-719 exon
Pank1 mmu-miR-107 intron
Pank3 mmu-miR-103-1 intron
Pde2a mmu-miR-139 intron
Pdia4 mmu-miR-704 exon
Plod3 mmu-miR-702 exon
Ppargc1b mmu-miR-378 intron
Prmt2 mmu-miR-678 exon
Psmb5 mmu-miR-686 exon
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Ptk2 mmu-miR-151 intron
Ptprn2 mmu-miR-153 intron
R3hdm1 mmu-miR-128a intron
Rab11fip5 mmu-miR-705 exon
Rb1 mmu-miR-687 intron
Rcl1 mmu-miR-101b intron
Rfx1 mmu-miR-709 intron
Rnf130 mmu-miR-340 intron
Robo2 mmu-miR-691 intron
Rtl1 mmu-miR-434 antisense
Sf3a3 mmu-miR-697 intron
Sfmbt2 mmu-miR-297b intron
Slit2 mmu-miR-218-1 intron
Slit3 mmu-miR-218-2 intron
Smc4 mmu-miR-16-2 intron
Srebf2 mmu-miR-33 intron
Tln2 mmu-miR-190 intron
Tmem49 mmu-miR-21 3’ UTR/ exon
Trpm1 mmu-miR-211 intron
Trpm3 mmu-miR-204 intron
Ttc28 mmu-miR-701 intron
Ttll10 mmu-miR-429 intron
Wdr82 mmu-let-7g intron
Wnk1 mmu-miR-706 intron
Wwp2 mmu-miR-140 intron
Xpo5 mmu-miR-693 intron
Zc3h7a mmu-miR-689-2 antisense
Zranb2 mmu-miR-186 intron
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B.2 MicroRNA host gene cluster

Each row defines one cluster.

Somitogenesis dataset:
1110001a07rik, Chm, Copz1, Dnm1, Gpc1, Iars2, Mcm7, Nupl1, Pank1, Prmt2,

Sf3a3, Xpo5, Zranb2

2010111i01rik, Calcr, Chm, Ctdsp1, Cutl1, Dnm1, Dnm3, Dnm3os, Dusp19,

Dvl2, Evl, Gabre, Igf2, Mest, Rab11fip5, Rb1, Slit2, Smc4, Srebf2, Ttc28, Wwp2

6230410p16rik, Arrb1, Chm, Elmo3, Htr2c, Irak1, Pde2a

Chm, Psmb5

Ctdspl, Igf2

Dnaja1, Rcl1, Tmem49

Neurite outgrowth dataset:
1110001a07rik, Pank1, Slit2, Ttc28,

Aatk, Bcl7c, Copz2, Ctdsp1, H19, Igf2, Irak1, Lpp, Plod3, Rnf130

Acadvl, Igf2

Astn1, Atp5b, Chm, Copz1, Dnaja1, Dnm1, Evl, Igf2, Map2k4, Nrd1, Nupl1,

Psmb5, Rb1, Rcl1, Sf3a3, Tmem49, Zc3h7a

Stem cell development dataset:
Acadvl, Elmo3, Gpc3, H19, Igf2, Lpp, Plod3, Rab11fip5, Rnf130

Dnaja1, Hnrpk, Igf2, Nfyc, Psmb5, Rcl1, Sf3a3, Xpo5

Igf2, Wnk1
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B.3 Functional similarity
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