
Lecture Notes in Artificial Intelligence
Subseries of Lecture Notes in Computer Science

Edited by J. Siekmann

L e c t u r e N o t e s i n C o m p u t e r S c i e n c e

Edited by G . Goos and J. Hartmanis

UBR UBR UBR UBR UBR

0 6 9 0 0 8 3 4 3 5 9 0

F. Schmalhofer G. Strube
Th. Wetter (Eds.)

Contemporary Knowledge
Engineering and Cognition
First Joint Workshop
Kaiserslautern, Germany, February 21-22, 1991
Proceedings

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

Series Editor

Jorg Siekmann
University of Saarland
German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3, W-6600 Saarbriicken 11, FRG

Volume Editors

Franz Schmalhofer
Deutsches Forschungszentrum fur Kiinstliche Intelligenz GmbH
Erwin-Schrodinger-StraBe, Postfach 2080, W-6750 Kaiserslautern, FRG

Gerhard Strube
Universitat Freiburg, Institut fur Informatik und Gesellschaft
Friedrichstr. 50, W-7800 Freiburg, FRG

Thomas Wetter
IBM Deutschland GmbH, Wissenschaftliches Zentrum IWBS
Wilckensstr. la, W-6900 Heidelberg, FRG

g 570 040

CR Subject Classification (1991): 1.2.0,1.2.4,1.2.6,1.2.8

ISBN 3-540-55711-3 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-55711-3 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. A l l rights are reserved, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, re-use of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other way,
and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German Copyright Law of September 9, 1965, in its
current version, and permission for use must always be obtained from Springer-Verlag.
Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1992
Printed in Germany

Typesetting: Camera ready by author/editor
Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
45/3140-543210 - Printed on acid-free paper

F o r e w o r d

T h e roo t s o f th i s b o o k can be traced back to a conversation I had with Gerhard
Strube at the German Workshop on Artificial Intelligence (GWAI) in September
1989. As spokespersons of the Special Interest Groups (SIG) Cognition and Knowl­
edge Engineering of the German Society for Informatics (GI) Gerhard and myself
were wondering whether any knowledge engineering tools could be applied or analy­
zed in cognition research and what insights and methods of cognitive science might
be relevant for knowledge engineers. To answer these and related questions we de­
cided to have a common workshop organized by the two SIGs. A t the next SIG
meeting on knowledge engineering in Apr i l 1990 at Berlin, I asked Franz Schmalho-
fer and Thomas Wetter to organize such a workshop together with Gerhard. This
joint workshop was then held February 21-22 at Kaiserslautern.

A t the w o r k s h o p , the first thing I learned was that the relationship between
our two disciplines is not a simple import/export business. For instance I was
told that repertory grids, the best automated knowledge elicitation technique of
al l , are not very popular with scientifically oriented psychologists. A n d imagine,
knowledge engineers imported it blue-eyed! On the other hand, I would never bore
and consequently nerve an expert with a repertory grid technique, even if some
psychologist told us that enraged experts tend to answer more to the point.

But how should knowledge engineers, being too busy to become a semi-expert for
each new application, keep up-to-date with cognitive science as well? Nor could we
require cognitive scientists to become knowledge engineers! Well , we have to keep
ourselves mutually informed about the hot spots, wil l say, problems, approaches,
trends, or shifts of paradigm in each discipline. This is exactly what we did at our
workshop.

• For instance, the last few years have witnessed a shift of paradigm in knowledge
engineering. It was recognized that expertise cannot be simply extracted from
the human expert and his books and mapped onto the machine. Neither is an
expert's head a container of thousands or millions of rules. Second-generation
knowledge engineering, as we might call it, is viewed as a creative process that
engages knowledge engineers and experts in (re-)constructing knowledge and
problem solving methods so that they can be made to run on a computer, re­
sulting in an expert support system rather than an expert replacement system.
While first-generation knowledge engineers might have been able to simply im­
port methods from other disciplines to extract the knowledge, cognitive science
is now becoming more important in the new paradigm. This subject came up
quite a number of times.

• A more specific issue concerned the generic problem solving methods which are
being adopted by more and more knowledge engineers. Are experts actually
in command of such generic procedures which they suitably instantiate for
their respective tasks? Or don't they distinguish domain-specific and generic
knowledge at all? Another question addressed to cognitive scientists inquired
their opinion on multimedia representations.

• As a second type of cooperation it was suggested that cognitive scientists
could take the knowledge engineer's methods, tools, or expert systems back
into their laboratories in order to experimentally determine their cognitive
adequacy, whatever is meant with this term.

• A subject where both disciplines were already cooperating is that of cases,
both as they arise during knowledge acquisition and as they are used for case-
based reasoning. Questions tackled were: How do humans proceed from cases
to more general rule-like knowledge? When do they reason by cases or by
analogies, when do they use heuristics or first principles? How does case-based
reasoning work, and how is it related to learning?

The workshop benefitted from international contributions from Canada, England,
France, Switzerland, and the U S A , demonstrating how knowledge engineering and
cognitive science are interwoven between those countries. But to be quite honest
with you, the (potential) reader of this book, I was not the only attendant of the
workshop who was surprised by the wide gap between our two disciplines.

T h e n w h y d i d we w r i t e th is book? Because by now we understand much better
which questions we should ask and which we should better forget. A n d although
Franz, Gerhard, and Thomas put lots of work and pain into organizing the workshop
and editing the book (and this foreword), it stil l does not answer all the questions
we raised. Reading this book wil l consequently not give you any final answers, but
hopefully provide you with intriguing stimulations for producing your own answers.
Those of you who are only interested in a quick import/export affair, need not go on
reading. Our book is intended for persons who are really interested in the cognitive
science aspects of knowledge engineering. But be warned: the articles reflect their
authors' different backgrounds. And they assume a certain familiarity with central
notions. For instance, you should have heard about K A D S or M O P S .

T h e b o o k is s t r u c t u r e d into three parts: The first one contrasts work in knowl­
edge engineering with approaches from the side of the "soft sciences". The second
part deals with case-based approaches in expert systems. Cognition research and
the cognitive adequacy of expert systems are discussed in the third part.

M y p e r s o n a l rou t e t h r o u g h this book , which I do not want to conceal from
you, deviates from this structure and is more oriented towards the course of the
workshop:

Franz Schmalhofer sets off to explain the paradigmatic shift leading to a second
generation of knowledge engineering approaches. He argues that the import/export
attitude which sometimes emerged during the workshop must be replaced by inter­
disciplinary approaches.

How he personally experienced the shift of paradigm in his knowledge acquistion
project is reported by Marc Linster. He sees the new task of cognitive scientists
in helping to find an adequate modelling terminology and later in evaluating the
resulting expert systems.

Gerhard Strubc picks up a panel discussion which, according to the opinion of many
participants, was the highlight of the workshop. It centered around the fuzzy notion
of cognitively adequate expert systems. Everybody claims to build such systems -
just like everybody claims to follow a model-based approach - but Gerhard elab­
orates at least three different readings of that notion. He argues why we should
strive at building "strong cognitively adequate" systems, and thus imposes certain
requirements on knowledge engineering paired with concrete advice on the first steps
to be taken.

Four articles present different methodological views on knowledge engineering. A l ­
though I would not call them completely incompatible, they demonstrate how far
the field is sti l l from having a consistent view of itself.

• In their very detailed survey on psychological literature, Brian Woodward,
Mildred Shaw, and Brian Gaines stress the cognitive processes going on while
knowledge engineering.

• Beate Schlenker and Thomas Wetter view knowledge acquisition as an itera­
tive process of scientific theory formation driven by falsification. They try to
reformulate a scientific paradigm in order to make it applicable for knowledge
engineering.

• Dieter Fensel argues that knowledge acquisition and qualitative social science
have common goals, and suggests how to adopt techniques developed by the
latter for knowledge engineering.

• Rolf Pfeifer, Thomas Rothenfluh, Markus Siolze, and Felix Steiner present the
most concrete approach. They suggest how to match think-aloud protocols
with generic problem solving models. Thus they partially answer one of the
questions I raised above.

The next three articles report on experiences with actually employed knowledge
acquisition systems. The tools developed by the three groups are candidates to be
taken back to the laboratories of cognitive scientists.

• Their work on knowledge acquisition front-ends that are to completely replace
the knowledge engineer drives Frank Puppe and Uie Gappa to pose two urgent
questions to cognitive scientists, namely the ones I already mentioned before:
How cognitively adequate are "canned" problem solving methods, and what
about graphical knowledge representations?

• Nigel Shadbolt presents problems that arose in designing an integrated knowl­
edge acquisition workbench in the ACKnowledge project. He discusses differ­
ent types of users whose different needs have to be taken into account.

• Geoffroy Dallemagne, Georg Klinker, David Marques, John McDermott, and
David Tung describe Spark, Burn, Firefighter, a knowledge-based software
engineering tool. It helps application programmers with workplace analysis,
selecting pieces to be automated and configuring these programs from available
mechanisms.

The last group of articles is about cases, as they arise during knowledge acquisition
and in case-based reasoning.

• Klaus-Dieier Althoff establishes the terminology and gives a survey of case-
based approaches as compared to machine learning. His article should help to
classify the following ones.

• In a short survey, Sonja Branskat gives the flavour of a tool she developed to
support the knowledge engineer in gradually transforming cases as they appear
in the real world, laden with context, to the formal and often decontextualized
representations used by case-based reasoners.

• Peter Reimann and Thomas Schult report on experiments they conducted to
find out how humans learn from examples in physics text books. In particular,
they deal with the basic mechanisms involved in learning from cases in complex
domains. Their results should carry over to knowledge engineers who typically
are confronted with such situations.

• Franz Schmalhofer, Chrisioph Globig, and J org Thoben describe how they built
a system implementing the generic problem solving method of skeletal plan
refinement. They elicited cases to acquire the skeletal plans employed by their
system. Their system is situated in the sense that new skeletal plans can be
acquired during normal operation. They relied on the expert's experience,
perception, and selected attention which enable him to identify the right cases
as a basis for refinement.

• Ralph Bergmann goes on to present the explanation-based learning method
used to automatically abstract cases into skeletal plans. They are partially
based on common sense knowledge.

• Michel Manago and Noel Conruyt describe their extension of the ID3 induction
algorithms to a frame-based knowledge representation language. They show
that mechanical learning techniques can be considerably enhanced when the
knowledge engineer imposes a suitable structure on the representation of cases.
Their paper includes a one-page comparison between learning and case-based
reasoning.

• From their cognitive science perspective, Dietmar Janetzko and Gerhard Strube
compare case-based reasoning approaches with those using generic problem
solving methods, coming up with suggestions of how to integrate both. By
transferring ideas from cognitive science into the knowledge engineering ter­
minology of the K A D S methodology, their article builds a bridge between the
two disciplines.

In his concluding remarks, Thomas Wetter does a tremendous job in bringing to­
gether many controversial arguments we encountered at the workshop and presents,
i f not a final word, a comparative assessment.

N o w y o u are asked! What is your opinion about this book, and more impor­
tantly, about the questions it raises, and the tentative answers it proposes? Please
let us know, possibly using the forum of our two special interest groups in the GI .
Hopefully, we thus get loaded with a lot of dynamite for a successor workshop.

St. Augustin, May 1992 Angi Voss

Table of Contents

Foreword V
A. Vofi

Part 1: Knowledge Engineering and Cognition in Comparison

Relations Between Knowledge Engineering and Cognition 3
F. Schmalhofer

Making Application Programming More Worthwhile 6
G. Dallemagne, G. Klinker, D. Marques, J. McDermott, andD. Tung

Using Information Technology to Solve Real World Problems 23
M . Manago andN. Conruyt

Facts, Fantasies and Frameworks:
The Design of a Knowledge Acquisition Workbench 39
N. Shadbolt

Mapping Expert Behavior onto Task-Level Frameworks:
The Need for "Eco-Pragmatic" Approaches to Knowledge Engineering . . . 59
R. Pfeifer, T. Rothenfluh, M. Stolze, and F. Steiner

Knowledge Acquisition and the Interpretative Paradigm 78
D.Fensel

Part 2: Case-Based Approaches to the Development of Expert Systems

Case-Based Reasoning and Model-Based Knowledge Acquisition 99
D. Janetzko and G. Strube

The Refitting of Plans by a Human Expert 115
F. Schmalhofer, Ch. Globig, and J. Thoben

Knowledge Acquisition by Generating Skeletal Plans from Real World Cases . 125
/?. Bergmann

Knowledge Acquisition from Cases 134
5. Branskat

Transforming Examples into Cases 139
P. Reimann and TJ. Shult

Case-Based Reasoning and Expert System Development 146
K.-D.Althoffand S.WeJi

Part 3: Cognitive Adequacy of Expert Systems

The Role of Cognitive Science in Knowledge Engineering 161
G. Strube

Knowledge Acquisition as an Empirically Based Modelling Activity 1 7 5
B. Schlenker and Th. Wetter

Shifting Positions: Moving from a Cognitive Science Point of View to a
Knowledge Engineering Stance 183
M. Linster

Two Questions from Expert System Developers to Cognitive Scientists . . . 1 9 0
F. Puppe and U. Gappa

The Cognitive Basis of Knowledge Engineering 194
J.B. Woodward, M.L.G. Shaw, andB.R. Gaines

Concluding Remarks

A Comparative Assessment of Selected Approaches in the
Focal Area of Knowledge Engineering and Cognition 225
Th. Wetter

About the Authors 253

Part 1:

Knowledge Engineering and Cognition

in Comparison

Relations between Knowledge Engineering and
Cognitive Science: From Import/Export to a Truly

Interdisciplinary Knowledge Acquisition Enterprise

Franz Schmalhofer

German Research Center for Artificial Intelligence
University Bldg 57

Erwin-Schroedinger Str.
W-6750 Kaiserslautern

email: schmalho@informatik.uni-kl.de

1. Introduction
Knowledge Engineering is generally known as the field that is responsible for the analysis and
design of expert systems and is thus concerned with representing and implementing the
expertise of a chosen application domain in a computer system. Research on cognition or
cognitive science, on the other hand, is performed as a basic science, mostly within the
disciplines of artificial intelligence, psychology and linguistics. It investigates the mental states
and processes of humans by modelling them with a computer system and combining analytic
and empirical viewpoints.
Early on, knowledge acquisition was known as the activity of making explicit the human
knowledge that is relevant for performing a task, so that it can be represented and become
operational in an expert system. Knowledge acquisition and the field of knowledge engineering
are consequently closely related to human cognition, which is studied in cognitive science. The
specific relationship between knowledge engineering and cognitive science has changed over
the years and therefore needs to be reconsidered in future expert system developments.
Although knowledge acquisition activities are at most twenty years old, there is already a
respectable history with noticeable successes and some initially disappointing failures to be
looked back upon. Actually, more progress was made by the analysis of the failures than with
the short term successes.

2. Early Knowledge Acquisition
Early knowledge acquisition was supported by knowledge acquisition systems such as
TEIRESIAS (Davis, 1978) which were designed as front-ends for existing expert systems (i.e.
MYCIN) and knowledge engineers viewed knowledge acquisition as the process of transferring
knowledge from a human expert to a program.

After it was observed that humans can hardly express their knowledge in distinct chunks, so
that each chunk can somehow be transformed into a rule (or some other syntactically defined
structure), which would then do "the right thing" in combination with an already existing expert
system shell (e.g. EMYCIN), knowledge acquisition became recognized as "a bottleneck in the
construction of expert systems" (Buchanan et al., 1983, p. 129): Not the development of the
original expert system (shell), but the acquisition of the domain specific rules for that shell
turned out to be the tough part in building a fully functional system.

mailto:schmalho@informatik.uni-kl.de

Since some of an expert's relevant knowledge is tacit or implicit (Schachter, 1987), experts
cannot directly verbalize all relevant rules. Knowledge engineers therefore concluded that some
special psychological method would be necessary in order to acquire the desired knowledge in
the form that was needed for rule-based (or other) systems.
For mining the expert's deeply hidden knowledge, various data collection and data analysis
methods were subsequently imported from psychology into knowledge engineering (Hoffman,
1989) and respective computer tools were built (Boose & Gaines, 1989). Some of these tools
were quite successful in constructing rules for relatively small application domains.
This early knowledge acquisition period was determined by the knowledge engineers who
emphasized the full implementation of small scale knowledge acquisition tools over a common
and cognitively founded design rationale for the expert system and its knowledge acquisition
components.
Knowledge engineering and cognitive science followed two separate research agendas during
this period and those slots of the research agenda which were difficult to fill from inside the
field of knowledge engineering were assigned to the field of cognition (e.g. supplying the rules
for some rule interpreter). The cooperation of the two disciplines thus consisted of quickly
importing selected research items (vague ideas, theoretical frameworks or methods) from the
other discipline in a relatively unreflected way. The use of repertory grids (Kelley, 1955) in
knowledge acquisition is probably a good example of such a type of import/export relation
between knowledge engineering and psychology which is one of the disciplines contributing to
cognitive science.
While the problem of transferring human expertise into computer programs was (at least
partially) solved, it was discovered that the knowledge acquisition problem had been incorrecdy
stated, right from the beginning. One piece of evidence for that is: Even after the successful
construction of an operational rule-base, the meaning of the individual rules remained a mystery
(Clancey, 1983; p. 241). The maintenance of larger expert systems was consequently
impossible. Since such systems were found to have several other disturbing deficiencies (e.g.
brittleness), the definition of knowledge acquisition needed to be changed.

3. Knowledge Acquisition as a Truly Interdisciplinary Task
One of the necessary changes in the definition of knowledge acquisition is already well
established: Knowledge acquisition is now understood as a modelling activity where models of
the conventional expertise in an application domain and models of the target expert system are
to be developed (Breuker & Wielinga, 1989). Unfortunately, the cognitive science issues which
have become important for successful knowledge engineering are hardly discussed in this
context. The nature of different types of models and their relationship to one another needs to
be determined: How should the models of existing or future artifacts (e.g. expert systems) be
related to models of natural systems (e. g. human cognition)? Can they be structurally similar or
even identical or do they need to be quite different? Since knowledge engineering deals with
such artifacts and cognitive science with the modelling of human cognition, the two fields need
to intensively cooperate to successfully address the question of the relation between the models.
Newell's (1990) assertion of describing human intelligence as a symbol system is equally
important for this discussion as Searle's (1981) views about intrinsic intentionality and human
commitment.

Another question, where the expertise of cognitive scientists needs to be respected by
knowledge engineers, is: What kind of mental models (Norman, 1983) do humans develop
about expert systems? How are the mental models of a domain expert, of a knowledge engineer
and of the future users of some target system related to one another? What kind of mental

models are users capable of and willing to maintain and how can the mental models about
different systems be related to one another? How can expert systems play the role of fancy
representations, which allow the communication of knowledge between the domain expert and
knowledge engineer on the one side and the users of the system on the other side?
Knowledge engineers must finally learn to appreciate that expert systems have to function in the
real world in order to become a success in business. Unlike the microworlds, in which
knowledge engineers liked to test their rapid prototypes, the real world refuses to be (correctly)
represented once and for all time by some formal specification. The future application
requirements can consequently only be partially predicted. This basic fact is often ignored.
Expert systems must be developed so that new types of inputs can be processed at the time
when the system is applied (Schmalhofer & Thoben, 1992). In other words, expert systems
must allow for situated applications (Clancey, 1991) and that means that they must be end-user
modifiable (Fischer & Girgensohn, 1990). These challenging demands can only be
successfully met, when the engineering science and the cognitive and social sciences cooperate
with the mutual respect for one another, which is required to make an interdisciplinary
enterprise a success.

References

Boose, J.H. & Gaines, B.R. (1989). Knowledge Acquisition of Knowledge-Based Systems:
Notes on the State-of-the-Art. Machine Learning. 4, 377-394.

Breuker, J. & Wielinga, B. (1989). Models of expertise in knowledge acquisition. In Guida, G .
& Tasso, C. (Eds.), Topics in expert system design, methodologies and tools (pp. 265 -
295). Amsterdam, Netherlands: North Holland.

Buchanan, B . G . , Barstow, D., Bechtal, R., Bennett, J., Clancey, W., Kulikowski, C ,
Mitchell, T. & Waterman, D.A. (1983). Constructing an Expert System, in: Hayes-Roth,
F. , Waterman, D. & Lenat, D .B . (eds.) Building Expert Systems. Reading
Massachussetts: Addison-Wesiey Publishing Company, Inc. pp. 127-167.

Clancey, W.J. (1983). The Epistemology of a Rule-Based Expert System - a Framework for
Explanation. Artificial Intelligence. 20. pp. 215-251.

Clancey, W.J. (1991). Situated Cognition: Stepping out of Representational Flatland. A L
Communications. 4. 2/3, 109-112.

Davis, R. (1978) Knowledge Acquisition in rule-based systems - knowledge about
representations as a basis for system construction and maintenance. In: Waterman, D .A .
& Hayes-Roth, F.(eds) Pattern-Directed Inference Systems. Academic Press, New
York.

Fischer, G. & Girgensohn, A. (1990). End-User Modifiability in Design Environments, Human
Factors in Computing Systems, CH1'90. Conference Proceedings (Seattle, WA) A C M ,
New York (April 1990), pp. 183-191.

Hoffman,R. A Survey of Methods for Eliciting Knowledge of Experts. In: SIGART Newsletter
108,19-21, 1989.

Kelley, G.A. (1955). The Psychology of Personal Constructs. New York: Norton.
Newell, A . (1990). Unified Theories of Cognition. Cambridge, Massachusets: Harvard

University Press.
Searle, J.R. (1981). Minds, Brains and Programs. In Haugeland, J. (Ed) Mind Design.

Cambridge Massachussets: London, 282-306.
Schachter, D.L. (1987) Implicit memory: history and current status. Journal of Experimental

Psychology: Learning. Memory and Cognition. 13. 501-518.
Schmalhofer, F. & Thoben, J. (1992). The model-based construction of a case oriented expert

system. Al-Communications. 5. 1,3-18.

Making Application Programming More Worthwhile

Geoffroy Dallemagnc, Georg Klinker, David Marques,
John McDermott, David Tung

Digital Equipment Corporation
111 Locke Drive

Marlboro, M A . 01752

e-mail:dallemagne@airg.dec.com

Abstract. We are designing and implementing an integrated programming frame­
work to assist application program developers with the automation of a broad range
of tasks. Our framework encourages the following activities:

• analyzing the situation in which automation is going to be introduced,

• capturing the results of the analysis as a model,

• building a workflow application program to manage all of the activities,

• configuring small collections of reuseable mechanisms to perform or assist with
some of the activities,

• customizing the configured mechanisms thus generating one or more application
programs,

• refining the resulting application programs on the basis of user reactions to them.

1 Introduction

Our research problem is how to make application programming more worthwhile. Our initial
explorations focused on making it easier — ie, making it more worthwhile by allowing less ex­
perienced people to create programs more quickly [see Klinker 90 and McDermott 90]. A
number of researchers have focused on the issue of how to make application programming eas­
ier [see Krueger 89]. The efforts most closely related to our own include [Bennett 85, Birming­
ham 88, Breuker 89, Chandra 83, Clancey 83, Davis 79, Eshelman 88, Klinker 88, Marcus 88,
Musen 91 and Yost 89]. Each of these research efforts has identified one or more problem-
solving methods and shown how the methods can be exploited in the development of applica­
tion programs that use them.
Recently it has become clear to us that our goal of making application programming easier was
under-constrained and needed to be married to the goal of making application programming
more effective. There is substantial evidence that many application programs that are devel­
oped are not used anywhere nearly as extensively as their developers anticipated [see, for ex-

mailto:dallemagne@airg.dec.com

ample, Leonard-Barton 87]. One significant factor in this under-utilization appears to be the
mismatch that often exists between the functionality provided by the application program and
the functionality that would actually be useful in its intended situation. Insight into why these
mismatches are so pervasive and ideas for reducing their magnitude are provided by research in
situated action [Suchman 87, Wenger 90].

This paper describes a framework for identifying homes for effective application programs and
for making the construction of those programs easier. A high level overview of our framework
is presented in section 2. Sections 3 through 7 provide more details. The framework includes a
place for workplace analysis (section 3), using the results of the analysis to model the
workplace (section 4), generating a workflow management application program (section 5), se-

\ lecting and configuring reusable mechanisms that can assist with some of the work (section 6),
customizing the mechanisms for the workplace thus generating one or more application pro-

i grams (section 7).

2 A n Application Programming Framework

Our framework (graphically depicted in Figure 1) assumes that some group wants computer as­
sistance with one or more of the tasks they perform. The framework is structured around a
small set of methods and tools ~ a few of which we have developed and the rest borrowed from
others. Our tools, which we call Spark, Bum, and FireFighter, help with the design, implemen­
tation, and refinement of application programs. They take leverage from a workplace analysis
methodology and a workflow manager; for the purposes of this paper, we wil l use B A M - 2

I (Business Architecture Methodology) to show the role a workplace analysis methodology
; plays1 and we will use E D G E (an event driven workflow controler) to show the role a
I workflow manager plays, but other workplace analysis methods and other workflow managers
I could serve just as well within our framework.

I The framework is designed to help a group of people who want automated assistance with
I some task. We refer to a group with shared responsibility for a task as a community of prac-
l tice. Our framework guides the community through a series of steps that wil l result in their

more easily creating effective application programs. The first step in our framework is
I workplace analysis. A facilitator, proficient in some workplace analysis methodology (eg,
) BAJM-2), helps the group identify the processes that are actually at play in their workplace, the

activities that comprise those processes, the agents who perform the activities, the resources
[consumed by the activities, and the products produced by the activities (see 1 in Figure 1). The
i second step in our framework is capturing the results of the workplace analysis in a model.
I Burn is used by one or more of the people in the group to record these results. Bum provides a
j knowledge acquisition tool designed to capture knowledge of the sort needed by a workflow
\ manager — ie, knowledge of what work is done under what circumstances, of the processes that
\ support that work, of the agents who perform the work, and of the pieces of work that flow
I among the workers (see 2 in Figure 1). Once these two tasks (the analysis task and the model­
s' ing task) have been performed, Bum uses the model to generate a workflow management appli-

\ * The creator of the BAM-2 methodology is Jane Roy; Digital Equipment Corporation sells BAMming as a serv-
\ ice.

cation program (see 3 in Figure 1) which helps the workers manually perform their work by
tracking who is to do what and when and by making resources available to the appropriate
worker at the appropriate time (see 7 in Figure 1).

Another step in our framework supports is identifying opportunities for automation. Spark is
used by one or more of the people in the group (the community of practice using our frame­
work) to do this identification. Spark has a library of mechanisms (reusable software struc­
tures) that can be used in composing application programs; associated with each mechanism are
descriptions of the kinds of situations in which that mechanism can provide assistance. The
trick is to make contact between the activity descriptions that Spark uses to index into its
mechanisms and the activity descriptions in the workplace model. Spark tries to help its users
make contact between these two sets of descriptions (see 4 in Figure 1). If an automation pos­
sibility is identified and if Spark has an appropriate set of mechanisms in its library, it passes
Bum a configuration of mechanisms that it believes, on the basis of its interactions with the
users, wil l allow an effective application program to be generated (see 5 in Figure 1). Bum is
used, as it was in the second task described above, to elicit relevant details about the workplace.
In this case, it provides a knowledge acquisition tool for each of the mechanisms selected by
Spark; each knowledge acquisition tool interacts with some of the people in the group who per­
form the activities to be automated and elicits from them the domain knowledge that its associ­
ated mechanism requires. The outcome of Burn's efforts is a program integrated into the
workflow management application program generated previously that automates a previously
manual activity (see 6 in Figure 1).

The remaining step in our framework is that of refining and maintaining the application pro­
grams that have been generated. As a consequence of using the framework described in this
paper, the group of workers wil l have created a workflow management application program
which helps them keep track of their work, and they wi l l have created activity-specific applica­
tion programs within the context defined by that workflow application. FireFighter's role is to
assist with the refinement and maintenance of these application programs (including the
workflow management application) to insure that the programs are and remain effective (ie, are
modified to reflect any changes in the work the group does or in the processes supporting the
work). Since both Spark and Bum deliberately use simple heuristics to configure and
instantiate the mechanisms, it is to be expected that several versions of each application pro­
gram wil l have to be generated before getting to one that satisfies the users. There are several
reasons why a mismatch between an application program and a task is likely: (1) Bum may
not elicit enough knowledge, (2) the mechanism configuration may not be appropriate for the
activity, (3) the task analysis may have been incorrect. FireFighter assists the users in deter­
mining and resolving these problems. It then re-invokes Burn to acquire more knowledge or
re-invokes Spark to modify the mechanism configuration (see 8 in Figure 1).

The following sections provide an example of the use of our framework in its current state. To
understand the sections, you need the following information about the task that our examples
focus on: A research group inside a large company is in charge of sponsoring research efforts
in various universities; this sponsoring is done through grants and involves several activities
including the selection of what researchers to sponsor and a fairly elaborate process, adminis­
tered by Tiera Washington, for actually presenting the grants. The research group decided to
see whether automation could smooth the process and thus free up time and the minds of its
researchers.

Task & Knowledge Application program
Mechanism Elicitation
Identification

Figure 1 An Application Programming Framework

3 A Methodology That Allows Workers to Describe Their Work

The task of processing a grant is comprised of many activities. The problems with automating
this task are first, understanding what work is actually done and what ought to be done, and
second, since not all of the activities comprising the task would benefit from or are suitable for
automation, determining what to automate and how to package the automation. As the work is
done in the real world (with all its incoherence) within a real organization by real people trying
to work together, understanding what activities comprise the work is at least a big task. But in
addition to being big, it is slippery in the sense that no collection of characterizations ever quite
do the activities or their interrelationships justice.

Our framework enjoins the use of some kind of workplace analysis methodology to initiate the
application programming enterprise. The methodology that we use in our own application pro­
gramming experiments is called B A M - 2 . The following characteristics make B A M particu­
larly attractive as a practical methodology:

• its result is a description of work produced by the collection of people (a community of prac­
tice) actually performing the work;

• rather than being an essentially unconstrained fabrication, the description produced is con­
strained to take into account most, if not all, of what is consumed and produced while the task
is being performed;

• a complete analysis of a task takes only a few days to do.

Figure 2 depicts the seven steps of the B A M methodology. The methodology assumes that the
people involved in performing a task or set of tasks have gathered together in the same room
with a B A M facilitator. In the first step (see Figure 2.1), the facilitator asks the workers to use
verb-noun phrases to begin to identify the work they do. The participants are encouraged not to
edit or filter what they say, but rather to be as spontaneous as possible; the idea is to break
away from preconceptions and vague abstractions as much as possible. When out example task
of sponsoring external research was BAMmed, the result of the first step was 66 verb-noun
phrases.

The next two steps group the pieces of work identified in the first step; pieces of work diat deal
with the same kind of thing are grouped (see Figure 2.2 and Figure 2.3). The purpose of these
steps is to provide the participants with a basis for describing activities in terms of what they
consume and produce. In our example, the work involved in sponsoring external research was
grouped into four subtasks: define a research program, issue a grant, finance the grant, and fol­
low the relationship. Defining a research program deals with whom to support and how much
support to provide; issuing a grant deals with creating a grant letter, getting it approved, and
getting a check to send the researcher; financing the grant deals with handling the financial
transactions required to get the check generated; and following the relationship deals with
monitoring the research, making suggestions, and figuring out how to exploit the results. This
grouping process forces participants to argue through each other's concepts and thus results in
a common understanding of the task.

At this point B A M focuses on what each subtask consumes and produces. The facilitator asks
the participants to identify all of the products produced by each subtask and then to identify ail
of the resources consumed (see Figure 2.4). This step draws attention to the objects manipu­
lated within a subtask (eg, grant letter, check voucher) and also draws attention to the stages

each of those objects goes through (eg, a grant letter template, an unsigned grant letter, a signed
grant letter). Then the participants are asked to identify, for each subtask, the customer for
each product and the producer of each resource. A subtask typically consumes some of its own
products (eg, issue grant consumes an unsigned grant letter to produce a signed one), it typi­
cally produces products for and consumes products of other subtasks within the broader task
(eg, issue grant produces a check voucher request which is consumed by the finance grant
subtask), and it typically produces products for and consumes products of activities outside the
task being B A M m e d (see Figure 2.5). Part of the role of this step is to uncover inadequacies in
the emerging task description. A product that goes nowhere is unneeded work; a resource that
comes from nowhere is a bottleneck. The participants collectively decide what is wrong with
their emerging picture.

The sixth step in die B A M process creates an event diagram for each subtask (see Figure 2.6).
The facilitator helps the participants interleave die products and resources by asking them to
identify the initial triggering event (the resource that starts it all) and the end product (the prod­
uct that justifies the existence of the subtask). Then the participants work back from the end
product, insuring that each product is preceded by the resources consumed in its creation, and
forward from the triggering resource, insuring that each resource is succeeded by the products
produced by its consumption. If not all of the products and resources of a subtask show up in
the main stream of the event diagram, one or more additional interleavings are created. These
secondary interleavings either correspond to a support function or to the discovery of an unno­
ticed subtask in which case the B A M facilitator returns to step three (see Figure 2.3) and helps
the participants further refine their picture.

When one or more event diagrams have been created for each subtask, each is converted to a
process diagram by noticing the product/resource boundaries in the event diagram. The idea is
that in the workplace being BAMmed, these boundaries demark units of work that "make
sense" in that workplace because each of these pieces of work (each function) has been defined
in terms of the way the resources in that workplace present themselves (see Figure 2.7).

4 Capturing the Results of the Workplace Analysis

Given tiiat a method like B A M can assist in creating a grounded understanding of some task in
some workplace, our next issues are how to capture that understanding and then exploit it to
provide useful automation. To capture the understanding, we provide in Burn a knowledge ac­
quisition tool that allows all the information uncovered during the BAMming to be stored as a
coherent collection of non-ephemeral declarative structures (ie, the different functions the work
decomposes into, the community of practice and its agents, the resources consumed and the
products produced are modeled). It is important to notice that, at this point, no information
about how any piece of work is performed is available. Thus the knowledge acquisition tool is
prepared to be told only about the "what" "who" "when" and "why" of the task, leaving the
"how" for later. As Figure 3 shows, the tool presents three interfaces to the user: Func­
tion/Activity, Organization/Agent, and Data; (a fourth interface, one which wi l l allow users to
enter information about the duration of activities, is not yet implemented). We wil l illustrate
the use of this tool for the issue grant subtask.

1) Spout the activi t ies

• • • •
• •

• • •
• •

2) Identify similari t ies

ID
I • •

•
•

• •

3) Group act ivi t ies

4) Identify products and resources

o c: z> c Z>
C Z C Z c z C Z CZl CZI r-~i i i H i C Z C Z C Z
• l=I CZI CZI i i cm r"~i HB C Z c z
• C Z c z CZJ c z r~ i i i C Z C Z C Z
C Z C Z C Z CZI CZl CZI r~~i i i C Z C Z HB
c z c z C Z CZI c z CZI B S i C Z C Z c z EIH
c z c z C Z CZI CZI E—1 m ilia

C Z c z HB c z
C Z

5) Producers and consumers

6) Bui ld an event d iagram

r's p's
r ~ i 1 I
r~—i r r ^ i

7) Extract act ivi ty d iagram

E23 E23 E22I CZZI mm B B
P r k p p p

r~~\/ \ r ~
B̂î îBI K̂Ẑ^̂] [̂ &̂&] Ĥ Ĥ̂ l̂ l̂^̂^̂Ẑ

r : p r p p

~ A /
r> P

V
Z 3 H H rosai
r p p

Figure 2 The BAM Methodology

With the Function/Activity interface, the user creates a function view for each subtask identi­
fied in step 3 of the BAMming. Each view is constructed with a simple graphical editor that
presents basic building blocks on the left and a drawing area on the right. For the Func­
tion/Activity interface in Figure 3.1, the building blocks are: Activity (a circle), Flow (an arrow
) and Subtask Port (a diamond); subtask ports allow the current view to connect, via resource
links, to other subtasks. The user describes a subtask by selecting a building block and creating
one or more instances of it in the drawing area; the user can describe the functions that com­
prise a subtask (identified in step 7), can identify other subtasks (identified in steps 5 and 6)
that either produce products for or consume products of the subtask being described, and can
indicate which functions are directly connected to one another or to functions in other subtasks
(also identified in steps 5 and 6).

Widi the Organization/Agent interface, the user creates a view for each organization or com­
munity of practice; the building blocks for these views are Agent, Group, Solid Line, and Dot­
ted Line (see Figure 3.2). Here the user inputs the knowledge about the players (identified in
steps 5 and 7), the user can also identify the fonnal relationships among the players. To associ­
ate players with functions, the user selects an agent in the organization view and then selects, in
the function view, whatever functions that player is involved with.

With the Data interface, the user creates a view that defines the products and resources pro­
duced and consumed by the subtask; the building blocks of this view are Object, Attribute, and
Has-a (see Figure 3.3). The first thing the user does when creating a data view is to create one
instance of each resource and product type (identified in step 4). The user can then indicate
what objects are produced and consumed by what functions by selecting an object in the data
view and then selecting, in the function view, whatever flows that object rides.

The model that is being created using this knowledge acquisition tool contains all of the infor­
mation required to generate a workflow management application program that wi l l run on
E D G E . To automatically generate such a program, the user goes to the function view and indi­
cates which functions are to be included; one (and perhaps the only) reason for excluding a
function or a subtask from the purview of the workflow manager is if the people responsible for
some of the functions do not have access to workstations connected to an E D G E server. Before
generating the application program, the knowledge acquisition tool checks the model to insure
that no essential information is missing (eg, to insure that an agent has been associated with
each function). The knowledge acquisition tool also generates a workflow management win­
dow for the workstations of each of the people involved.

5 Workflow Management Functionality

Together, the three views discussed in the previous section allow a user to enter information
that is required for any workflow management assistance. If someone enters information of the
sort we described, then based on that infonnation, Bum's workflow knowledge acquisition tool
generates a program that provides workflow assistance from a function/activity perspective. In
other words, the program keeps each person in the group apprised of what activities are cur­
rently in his or her work queue (see Figure 4 for an example of the kind of information each
person is provided with). Each time one of the members of the community of practice selects a

Figure 3 A Knowledge Acquisition Tool for the B A M Methodology

piece of work and tells the workflow manager that the work has been completed (by clicking
on the "Work Done" button), a message is sent to the person responsible for the next activity.
For example, if Tiera selects

Issue Grant Martin_03 Create V C R 04/01/91

and then clicks on "Work Done", the following message would appear on Jake's screen (since
the Approve V C R activity is always done after the Create V C R activity and Jake is responsible
for doing Approve V C R) .

Issue Grant Martin_03 Approve V C R 04/03/91

Assistance from a function/activity perspective is confined to reminders. That is, the people
who wi l l actually perform the work are informed when an activity instance is in their queue,
but they are not given any assistance beyond that. However, substantial additional assistance
can be provided i f assistance from a data perspective is coupled with assistance from a func­
tion/activity perspective. If the workflow manager can deal with data instances as well as with
activity instances, then not only can people be informed of what work is in their queue, but they
can also be provided with pointers to the data that they wil l operate on. For example, with re­
spect to the Approve V C R activity, Jake could be told where to find the V C R for Martin.

Finally, assistance from the organization/agent perspective can be coupled with the assistance
from the other two perspectives. Agents are the repositories of the knowledge needed to per-
fonn the activities. If an agent's understanding of how to perform some activity is put into an
application program, then that program becomes an instance of the agent. This allows the
workflow manager to direct some of the work to programs instead of to people. For example,
with respect to the Create V C R activity, Tiera, instead of having to display the specification for
some grant and then invoking her favorite editor on the template she instantiates when prepar­
ing a V C R , could instead rely on the workflow manager to display the grant specification and
invoke her editor for her on a blank V C R form. This is detailed in the following sections.

[EH] Personal Workflow Manager
Control Customize Sort Help

User Window

tiera's work

Task
Issue Grant
Issue Grant
Issue Grant

•t^t Issue Grant
Issue Grant
Issue Grant
Issue Grant

_ljris]t8Ltic e Ac ti yity Due
Santoro_02 Create Letter 12/19/90
Willow 01 Create Letter 01/21/91
M a l d e n U l Ask Approval 02/01/91
Ne>vton_02 Get Approval 02/20/91
Solo_03 Offer Grant Q3/t)5/9l
Martin_u3 Create V C R 04/t)l/91
Right 02 Create V C R 04/01/91

Timeframe
.8 1

<0C 3=iO

Down { ^kdc^Work j J C j j f l ^ ^ l Work Done j

Reload Quit

• «VVVVVYVVVV*4XVVVVVVV*VVAiAYY%VYVYA*YA\^

Figure 4 User interface for each Agent

6 Identifying Automation Opportunities

As indicated in the previous section, the task activities described in the workflow diagram of
Figure 3 represent possible opportunities for automation. If the user decides to explore the fea­
sibility of automating a task activity, he or she mouses on that activity and selects the "auto­
mate" option from the popup menu. In our example, the user chooses to automate the "Create
V C R " activity by clicking on that activity. This invokes Sparks browsing capability which as­
sists in identifying whether a given task activity has been previously automated in the context
of another task analysis. That is, Spark assists the user in identifying activities in its library that
are similar to the current one. The idea is that to the extent two task activities are similar, the
mechanisms implementing them are the same and can be reused for the task at hand.

Two activities are considered similar if they consume the same type of resources, produce the
same type of products, accomplish the same objective, and are performed by people with simi­
lar competencies. Two resources, products, objectives or agents are similar if their labels are
synonyms. Figure 5 identifies the resource, product, agent, and objective of the "Create V C R "
activity. The user must now relate these new tenns to the terms in Spark's vocabulary. That
vocabulary was defined in the process of previously perfomied task analyses (whenever a new
term is defined, it is added to Spark's vocabulary). In Figure 5 the user indicates that he wants
to identify Spark's term for "VCR" .

I S p a r k 4171
View Edit Format Help
Please find a synonym for each of the following terms:

Grant Letter (resource)
VCR (product)
Tiera Washington (agent)
Create VCR (objective)

I O K I I Rese l l l A b o r t 1

Figure 5 Terms defining the "Create VCR" activity

Spark uses simple heuristics to suggest a subset of its vocabulary to the user as candidate syno­
nyms. First, Spark's vocabulary is divided into diree classes: resource/product, agent, and ob­
jective. Only the terms from the relevant class are displayed. In our example, resource/product
is the relevant class. In reducing the set of relevant terms further, Spark takes into account the
tenns that are already identified for the activity in question. For example, Spark's synonym for
"Tiera Washington" is "Administrative Secretary". This reduces the set of candidate synonyms
for " V C R " to the terms denoting a resource consumed by an activity performed by an "Admin­
istrative Secretary". A third heuristic for reducing the set of relevant terms is to consider the
terms defined for the subtask. In our case, the "Issue Grant" subtask produces a "Congratula­
tion Letter" defined as a "Letter". This heuristic reduces the set of candidate synonyms to the
ones denoting the products of activities that — among other things — produce letters.

Figure 6 demonstrates the basic vocabulary that Spark considers relevant for the " V C R " re­
source after applying the above heuristics.

If the user does not see a synonym in the set of tenns provided by Spark, Spark can help the
user by

• demonstrating a candidate term's use within the context of other task analyses,

• displaying more general related terms,

• displaying more specific related terms,

• displaying all synoyms.

1 S p a r k
View Edit Format Help
Please click on the term or terms closest in meaning to VCR

Technical Article Review Message

Letter Book

Resume Form

QK 1 1 Reset! lAbort

Where used...
Other terms...
More detail...
All synonyms.
Use term

Figure 6 Spark's suggested synonyms for " VCR"

The user identifies "Check Voucher" as a synonym of " V C R " . This is shown in Figure 7. He
then identifies synonyms for the other tenns in Figure 5.

I S p a r k ?~
View Edit Format Help
Please click on the term or terms closest in meaning to VCR

Authorization Form Itinerary IPR

Timecard EBCF Workorder

Expense Voucher Check Voucher
Where used...
Other terms...
More detail...

O K I I Rese l l l A h o r t l All synonyms...
Use te rm
All synonyms...
Use te rm

Figure 7 Shared Resource Vocabulary detailing "Form"

Once all terms from the new task are identified, Spark checks whether a mechanism configura­
tion has been associated with those tenns (by the software engineer who created the mecha­
nism). In our example, other activities similar to "Create V C R " have been automated before
and their mechanisms can be reused. Three potentially relevant mechanism configurations are
shown in Figure 8.

1 S p a r k W 7 I
View Edit Format Help
Please choose one of the following programs:

invoke-SCRIBE
invoke-DECwrite
invoke-Document

I QK I I Resell lAbort I

Figure 8 Relevant Mechanisms

Each of the configurations can assist an "Administrative Secretary" in accomplishing the "Cre­
ate Form" objective. The resources are a "Fonn Specification" and a "Form Template" and the

product is a filled out "Form". Spark now asks the user to select one of the three configura­
tions. The user indicates the "invoke-DECwrite" configuration since DECwrite is Tiera's fa­
vorite editor. If Spark had not found a mechanism, that would have indicated that the automa­
tion opportunity might not be much of an opportunity; in order for the activity to be automated,
a software engineer would need to design one or more new mechanisms from the specifications
provided by the task model.

7 Tailoring Application Programs to the Workplace

; When the user selects "invoke-DECwrite", Spark infonns Bum that it is time for the user to
I interact with the knowledge acquisition tool associated with it. Bum activates the knowledge
I acquisition tool which asks the user to type a template for "VCR" ; that is, it asks the user, in
{ this case Tiera Washington, to type in the text that wil l be common to all V C R s (see Figure 9).
I For the "Create V C R " activity in our example situation, this is all the knowledge that needs to
| be supplied in advance of the task. Now when the workflow manager window informs Tiera
I that she should create a V C R , Tiera clicks the "Do" button, and two windows open before her
\ eyes: one displays the specification for the grant she is preparing (ie, recipient, amount of grant,

etc) and the other is a DECwrite window containing a copy of the template she had previously
created. She then fills in that blank form and saves it; that instance of the V C R flows with the

! subtask instance from that point on.

m DECwrite: $1 Sdual :[dallemagne. workflow, demolvcr_template.doc; |fU]|al
File Edit Search Type Elements Style Draw Links Customize Help %

Style: General TexUilock Page:
Font: Helvetica Size: 14.00

1

u , , I*. . . I B N B I M M M I E M M f l l l l S M I f l l l $
$i
k/V!

IT 1
$ VOUCHER CHECK REQUEST 1

TT

$ Date: $
To: '/Vv

i$ Address: \ ZIP code: : : ?\'V

Am ount: /V.

$: - DESCRIPTION:

1 >yv.

:$

C.C. MANAGER SIGN. FINANCE SIGN.

Badge No.: Badge No.: •$

ST

$

Figure 9 VCR template

The mechanisms that we have used to date in the context of a workflow manager are few and
simple. However, we are now focused on integrating work we have done on more interesting
mechanisms and knowledge acquisition tools [see Marques 91] with our work on workflow
managers.

8 Conclusion

To explore the value of our proposed application programming framework, we used the B A M -
2 methodology to analyze a small, but real, task in our own workplace. We then used Spark
and Bum, two tools we are developing, to introduce additional automation into that workplace.
We interacted with one of Burn's knowledge acquisition tools to create a model of our task,
given the information that came out of the BAMming. Bum then generated a workflow man­
agement application program for our task. We interacted with Spark to select a mechanism that
could provide assistance with one of the activities in the task — the activity of creating a V C R .
And finally, we interacted with another of Bum's knowledge acquisition tools, the tool associ­
ated with the mechanism Spark selected, to provide the knowledge that mechanism would need
to perform the activity. Bum then generated an application program to assist with the Create
V C R activity and made that program available from within the workflow management applica­
tion.

Thus the work reported in this paper marshals a small amount of data to support the following
claims:

• The potential usefulness of application programs is significantly increased i f they are viewed,
not as isolated pieces of automation, but as agents that need to be carefully situated within a
community of practice.

• A workplace analysis methodology that looks for structure in tasks by focusing on the re­
sources the task consumes and products the task produces can make it straight-forward to con­
struct an application program to manage workflow.

• A workflow management application program provides a context that allows other application
programs to be integrated within a community of practice.

We are now in the process of gathering more data by using our approch for several other tasks.
We are analyzing the B A M - 2 methodology; we are exploring the use of other workflow man­
agers — based on different paradigms; and we are analyzing and extending our library of
mechanisms and associated knowledge-acquisition tools.

Acknowledgments

We would be remiss if we did not mention co-workers in the project: Jane Roy is the architect
of the B A M - 2 methodology and Steve Kennedy is the architect of the E D G E workflow control­
ler. Glee Cameron, Patrice Gautier, Therese Mersereau, Charlie Reed and Tina Whitney are
members of our research group and made significant contributions.

References

[Bennett 85] Bennett, J. ROGET: A Knowledge-Based System for Acquiring the Conceptual
Structure of a Diagnostic Expert System. Journal of Automated Reasoning, 1,1, 1985.

[Birmingham 88] Birmingham, W. Automated Knowledge Acquisition for a Computer Hard­
ware Synthesis System. Proceedings of the 3rd Knowledge Acquisition for Knowledge-based
Systems Workshop. Banff, Canada, 1988.

[Breuker 89] Breuker, J., B . Wielinga, M . van Someren, R. de Hoog, G. Schreiber, P. de Graf,
B . Bredeweg, J. Wielemaker, and J. P. Billault. Model-Driven Knowledge Acquisition: Inter­
pretation Models. Deliverable task Al, Esprit Project 1098, Memo 87, VF Project Knowledge
Acquisition in Formal Domains, Amsterdam 1989.

[Chandra 83] Chandrasekaran, B . Towards a Taxonomy of Problem Solving Types. Al Maga­
zine, 4, 1,1983.

[Clancey 83] Clancey, W.J. The Epistemoiogy of a Rule-Based Expert System — a Framework
for Explanation. Artificial Intelligence, 20, 3, 1983.

[Davis 79] Davis, R. Interactive Transfer of Expertise: Acquisition of New Inference Rules.
Artificial Intelligence, 12, 2,1979.

[Eshelman 88] Eshelman, L . M O L E : A Knowledge-Acquisition Tool for Cover-and-
Differentiate Sytems. In S. Marcus (ed), Automating Knowledge Acquisition for Expert Sys­
tems. Kluwer, 1988.

[Klinker 88] Klinker, G. , C. Boyd, D. Dong, J. Maiman, J. McDermott, and R. Schnelbach.
Building Expert Systems with KNAGKT. Knowledge Acquisition, 1, 3, (299-320), 1989.

[Klinker 90] Klinker, G., C. Bhola, G. Dallemagne, D. Marques, and J. McDermott. Usable
and Reusable Programming Constructs. Proceedings of the fifth Knowledge-Acquisition for
Knowledge-Based Systems Workshop, Banff, Canada, November 1990.

[Krueger 89] Krueger, C. Models of Reuse in Software Engineering. Technical Report C M U -
CS-89-188, Department of Computer Science, Carnegie Mellon University, 1989.

[Leonard-Barton 87] Leaonard-Barton, D. The Case for Integrative Innovation: A n Expert
System at Digital. Sloan Management Review, Fall 1987.

[Marcus 88] Marcus, S. S A L T : A Knowledge-Acquisition Tool for Propose-and-Revise Sys­
tems. In S. Marcus (ed), Automating Knowledge Acquisition for Expert Systems. Kluwer, 1988

[Marques 91] Marques, D., G . Dallmagne, P. Gautier, G. Klinker, J. McDermott, D. Tung.
Some Data on the Effectiveness of Software Reuse, Submitted for publication.

[McDermott 90] McDermott, J., G. Dallemagne, G. Klinker, D. Marques, and D. Tung. Ex­
plorations in How to Make Application Programming Easier. Japanese Knowledge Acquisition
Workshop, Osaka, Japan, 1990.

[Musen 91] Musen, M . , and S. Tu. A Model of Skeletal-Plan Refinement to Generate Task-
Specific Knowledge-Acquisition Tools. Report KSL-91-05, Knowledge Systems Laboratory,
Stanford University, 1991.

[Newell 81] Newell, A . The Knowledge Level. Al Magazine, 2,1, 1981.

[Suchman 87] Suchman, L . Plans and Situated Actions. Cambridge University Press,1987.

[Wenger 90] Wenger, E. Toward a Theory of Cultural Transparency. PhD Dissertation, De­
partment of Information and Computer Science, University of California, Irvine, 1990.

[Yost 89] Yost, G. A Problem-Space Approach to Expert-System Specification. Proceedings of
the Eleventh International Joint Conference on Al, Detroit, Michigan, 1989.

Using information technology to solve real world
problems

Michel M A N A G O , Noel C O N R U Y T
ACKNOWLEDGE, 16 Passage Foubert, 75013, Paris, France.

Abstract. We present an induction algorithm, KATE, whose learning strategy is similar to the ID3
algorithm but which can handle examples described by several object, relations between objects, and use
background domain knowledge to constrain the search space. The efficient numeric learning techniques
used in ID3 have been combined with a rich symbolic knowledge representation language (frames) which
allows using known induction techniques for a broader range of applications.

1 Induction

Since the early 1980's, induction tools have been used to generate knowledge based
systems from databases. From a set of training cases, an induction system automatically
builds a knowledge base in the form of a decision tree or a set of production rules. For
instance, from a database of patients whose diseases are known, the induction engine
learns diagnostic rules that are then used to identify the disease of new incoming patients.

The ID3 algorithm [Quinlan, 1983] is such an induction system. Its descendants have
been used for building numerous real-life applications [Michie, 1989]. Nevertheless, all
the potential applications cannot be tackled by ID3. Its knowledge representation
capabilities are too limited to cope with the training data when it is made out of complex
entities and it lacks the ability to handle objects and relations. Due to the increasing
sophistication of Database Management Systems (relational and objet-oriented D B M S) ,
there is a clear gap between what can be achieved with ID3 and the needs to fulfil. This
was our motivation for developing an induction tool based on the ID3 algorithm but with
more powerful representation language. In the next section, we analyze why ID3 cannot
be used for an application in tomato plant diseases [INSTIL 88]. We show that the
problem with 1D3 does not arise from its induction algorithm but from its knowledge
representation formalism which fails to capture the true meaning of the information
contained in the data.

2 The Notion of Object

A diseased tomato plant can be affected by several different symptoms. Each symptom
is a complex entity, or object, whose description depends on both its type and on its
location. For example, a symptom of type spot is not described the same way as a
symptom of type hole since a spot has a color, and a hole does not. Likewise, a symptom
on a leaf is not described the same way as a symptom on a fruit since the position of the
symptom with respect to the nerves of the leaf is relevant for describing a symptom on a

leaf but not for describing a symptom on a fruit. For instance, the symptom tache-ou-
plage-sur-folioles (spot-on-leaves) is described by the following 17 features:

REPARTITION-SUR-PLANTE, REPARTITION-SUR-FEUILLE, NOMBRE, COULEUR, ZONATIONS, MESURE, LIMITES,

LOCALISATION-SUR-FOLIOLE, PROPORTION-SUR-FOLIOLE, REPARTITION-SUR-FOLIOLE, JAUNISSEMENT-

POURTOUR, MYCELIUM-FRUCTIFICATIONS, ASPECT-DU-MYCELIUM, TOUCHER, FORME, RELIEF *

Another symptom, chartere-exterieur-collet (canker-on-the-outside-of-the-stem), is
described by the 14 features:

ZONATIONS, TOUCHER, MESURE, FORME, LIMITES, RELIEF, LIEN-SYMPTOME-INTERNE, DEGRE-D-ATTAQUE,

MYCELIUM-FRUCTIFICATIONS, REPARTITION-SUR-PLANTE, LOCALISATION-SUR-EXTERIEUR-TIGE,

REPARTITION-SUR-EXTERIEUR-TIGE, NOMBRE. COULEUR**

These two complex objects (symptoms) share some common features such as COULEUR

(color) and FORME (shape). They also have some unshared features: JAUNISSEMENT-POURTOUR

(yellowing-around-the-edges) for the spot on leaves, LOCALISATION-SUR-EXTERIEUR-TIGE,

(location-on-the-outside-of-the-stem) for the canker on stem etc. In the tomato
application, there are 147 different kinds of symptoms. On the average, each kind of
symptom is described by 9 features. Furthermore, more than one symptom (out of these
147) can appear in the description of a training example (there are up to 6 symptoms for
the same example). How can we represent such an example with a vector of attributes?

A possibility is to introduce an attribute for each type of symptom (ex: exists-spot-on-
leaves) and an attribute for each one of its feature (ex: color-of-spot-on-leaves).
Unfortunately, since there are 147 different symptoms with an average of 9 features per
symptom, this leads to a total of 147 * 9 = 1323 attributes. Such a large number of
attributes generates so much computations that ID3 fails to find a solution (combinatorial
explosion). A t the root node, ID3 makes 1323 information gain computations, then for
each son 1322 computations and so on. In this application, the search space is thus very
large because each example is very complex to describe and not because there are too
many examples (there are less than 400). Unfortunately, ID3 is good at handling
databases with a large number of examples, but the examples are usually described by
less than 100 attributes. Since the mathematical complexity of ID3 is in O(n) with the
number of examples, and in O(n^) with the number of bits of information needed to
represent an example [Manago, 1988], it is clear that having a very large number of
attributes is a source of problems. In addition, with this choice of representation, it is
impossible to have two or more symptoms of the same type in the same example. For
instance, one cannot adequatly represent and example where there are two symptoms of
type spots-on-leaves with different colors and shapes.

* distribution-on--plant, distribuuon-on-leaf, number, color, spherical-zones, measure, limits,
localization-on-folioles, proportion-on-folioles, distribution-on-folioles, yellowing-of-edges,
mycelium-fructifications, aspect-of-mycelium, feel, form, scraps

** spherical-zones, feel, measure, limits, scraps, link-to-internal-symptom, state-of-damages, mycelium-
fructifications, distribution-on-plant, localization-on-the-outside-of-the-stem, distribution-on-the-
outside-of-the-stem, number, color

There is a second solution which seems to be a little more economical in terms of the
total number of attributes required to describe an example. In the first solution, when a
feature is shared by two different symptoms, two attributes are generated anyway. For
instance, canker-on-the-outside-of-the-stem and spot-on-leaves share the color feature but, with
the above choice of representation, the two attributes color-of-spot-on-leaves and color-of-
canker-on-stem are generated. We could thus take advantage of the fact that the symptoms
have some features in common in order to reduce the number of attributes. A special
attribute called "type-of-symptom", which has one of 147 values (the 147 kinds of
symptoms), is introduced. We then take the union of all the features for all the attributes
and associate an attribute to each one. This yields a total number of 80 attributes per
symptom. Thus, since there is an average of 9 feature per symptom, 71 attributes are, on
the average, marked as irrelevant. For example, color is not relevant for describing a
hole-in-leaves but it must still appear in the description of this symptom since it is useful
for describing some other symptom such as a spot-on-leaves. Since the same tomato plant
(i.e. an example) can have up to 6 different symptoms, these figures are multiplied by 6
which yields a total number of 480 attributes for describing all the symptoms in an
example, 429 of which are irrelevant.

As we have seen, in both cases we must introduce a special value to mark that an
attribute is not meaningful in a certain context. For example, i f we choose the first
representation, we must introduce a special value for the attributes of the symptoms
which do not exist (i.e. what is the value of color-of-spot-on-leaves in an example where
exists-spot-on-leaves = no?). If we choose the second representation, we must mark that a
feature is irrelevant for describing a certain kind of symptom (i.e. what is the value of
color when the symptom is hole-in-leaves?). This value, which we wil l call "irrelevant", is
processed by the induction engine in a special way so that it does not disrupt the
information gain computation.: the training examples with value "irrelevant" are
propagated in each branch of the node. This increases the complexity of the induction
algorithm which is no longer linear with the number of examples. Let us assume we have
chosen the second solution for representing the data. Consider a symptom :

TYPE-SYMPTOME COULEUR JAUNISSEMENT-

POURTOUR

REPARTITION

SUR-EXTERIEUR-TIGE

EX 109 TACHE-OU-PLAGE-SUR-FOLIOLES BRUN OUI I R R E L E V A N T

EX206 CHANCRE-EXTERIEUR-COLLET GRIS-BEIGE I R R E L E V A N T GENERALISEE

Fig.l An attribute-vector representation of an object of type "spot-on-leaves"

The set of attributes which describes the symptom is the union of all the features for all
the possible symptoms (80 attributes). On the average, there are 71 attributes with value
"irrelevant".Therefore, during induction, as soon as the type of the symptom is known,
ID3 makes 71 useless computations of information gain at each subsequent node of
the decision tree. Since there can be up to 6 symptoms per plant, there are 6 times as
much attributes and ID3 make 6*71=429 useless information gain computations at each
node of the tree.

Furthermore, the set of possible values for these features is also increased. For
instance, the set of possible colors for a symptom of type TACHE-OU-PLAGE-SUR-FOUOLES
is different from the one of a symptom of type CHANCRE-EXTERIEUR-COLLET. Using H^ ' s
attribute-value representation, the set of legal values for each feature is the union of the set
of values possible for the feature when it is attached to any symptom. The legal values for
the color attribute include the ones for a symptom of type TACHE-OU-PLAGE-SUR-FOLIOLES
and for a symptom of type CHANCRE-EXTERIEUR-COLLET. In the tomato domain
application, this yields an average number of 30 different possible values for each
attribute. Since in its computation of information gain, ID3 evaluate the entropy at each
branch (i.e. each possible value for the attribute), ID3 makes 429 * 30 = 12870 useless
computations of entropy for irrelevant features plus computations for irrelevant
feature values for the remaining relevant features at each node of the decision tree.

As we have seen, due to the fact that ID3 lacks the ability to use common sense
knowledge about the entities which describe the examples, it performs massive amounts
of totally useless computations. While these computations turn out to be marginal for
some applications, they cannot be afforded when the training data is complex since the
induction algorithm is in 0(n 2) with the number of attributes (combinatorial explosion).

3 Beyond propositional calculus

In the tomato application, there is more than merely constraining the search space
during induction. The fact that there are several objects in the training examples may drive
ED3 into learning incorrect rules. In order to represent that there are up to 6 symptoms per
example with an attribute-value vector, we introduce 6 attributes called exists-symptoml,

exists-symptom6 in the description of the examples. There are other attributes which
describe each symptom in more details (such as color-symptorn 1,..., color-symptom6,
etc.). Note that the choice of label "symptomr'...Msymptom6" for a given symptom on a
tomato plant is purely random. For instance, there are no objective reasons to decide that
a particular spot-on-folioles is to be called "symptoml" instead of "symptom2". There is
no ordering of the symptoms that forces a type of symptom to always have the same label
since any 6 out of the 147 symptoms may appear in an example. Unfortunately, the
choice of label has a strong impact on what can be learned. It can even drive the induction
engine into learning incorrect rules. Consider what would happen i f in every examples of
a disease " A " there is a spot-on-folioles called symptoml.

Ex1 (A): <exist-symptom1 = yes> <symptom1 s spot-on-folioles> <color-symptom1 = yellow> ...
<symptom1 = canker-on-stem> <exist-symptom2 = yes> <color-symptom2 = white>...

Ex2 (A): <exist-symptom1 = yesxsymptoml = spot-on-folioles> <color-symptom1 = brown> ...
<exist-symptom2 = yes> <symptom2 = hole-in-folioles> <color-symptom2 = irrelevant...

Ex3 (B): <exist-symptom1 = yes> <symptom1 = mold-on-fruit> <color-symptom1 = white> ... <exist-
symptom2 = yes> <symptom2 = spot-on-folioles> <color-symptom2 = brown>

ID3 might possibly learn the rule "IF <symptoml = spot-on-folioles> T H E N disease
A " . However, i f there is a "spot-on-folioles" that is called "symptom2" in an example of
disease " B " , the rule is syntactically consistent with the data but it is semantically

incorrect. This is due to the fact that ED3 consider the two attributes exist-symptoml and
exist-symptom2 as two different unrelated entities. The fact that both these attributes give
some information about the existence of a symptom is ignored. In fact, as far as ID3 is
concerned, these two attributes could just as well have been called X and Y since it only
cares about their numerical information gain and ignore the true symbolic meaning of the
information that they convey. What is needed here is a way to express a test of the form
"Is there any symptom of type spots-on-folioles?" instead of the tests "is symptoml of
type spots-on-folioles?", "is symptom2 of type spots-in-folioles?" etc. The induction
engine wi l l then compute information gain of this more generic test. In other word, this
application requires a more powerful knowledge representation language and a more
powerful pattern matching algorithm. The pattern matcher must handle variables and it
must be based on some form of first order logic instead of propositional calculus.

There are other reasons why ID3 cannot be used for this application. For example, it
fails to represent adequatly relations between objects. However, as we have shown, ID3
its induction mechanism is not inadequate but its knowledge representation formalism is
insufficient. Having noticed this fact, the obvious idea is to build an induction tool with
the same learning mechanism as ID3 (hill-climbing search strategy, heuristic preference
criterion based on entropy) but with a more powerful knowledge representation language.

4 Constraining Search During Induction

4.1 Representing Background Knowledge with Frames

About twenty years ago, researchers in knowledge representation came up with the
notion of frames [Minsky, 1975]. Rapidly, frame based languages invaded most of the
Artficial Intelligence tools: expert system shells, blackboard systems, image recognition
systems, natural language parsers, planing systems etc. The practical interest of these
languages has been well demonstrated: they are powerful, efficient, the knowledge is
made of modular reusable entities, the formalism is natural and it enables object-oriented
programming.

A frame can be viewed as a data structure. It represents a set of object (a class) or of
the objects themselves (the instances). Properties and relations are attached to the frame
and are called slots. Facets are attached to the slots. Facets enable representing different
kinds of information about the slots. For example, there are which state the actual value
of a slot, the type (or legal range of values) of a slot, procedures which deduce features
from other features in backward or forward chaining etc. Consider the following frame:

[TACHE-OU-PLAGE-SUR-FOLIOLES
own slots:

SUPERCLASSES {(VALUE (TACHE-OU-PLAGE SYMPTOME-SUR-FOLIOLES))}>
member slots:

<LOCALISATION-SUR-FOLIOLE
{(TYPE (FACE-SUP FACE-INF NERVURES LIMBE)

(CARDINAL 1 2)}>
<MESURE

{(TYPE (REAL 0.2 60))}> etc.]

Frames may be organized in a hierarchy of generality. The most general concepts
appear toward the roots of the hierarchy. The value facet of slot "SUPERCLASSES" indicates
that the concept of TACHE-OU-PLAGE-SUR-FOLIOLE (spot on leaves) inherits slots from its
two superconcepts TACHE-OU-PLAGES (spots) and SYMPTOME-SUR-FOLIOLE (symptom on
leaves). For instance, slot LOCALISATION-SUR-FOLIOLE has been inherited from
SYMPTOME-SUR-FOLIOLE and MESURE from TACHE-OU-PLAGES. This hierarchy of concepts
is entered manually and is part of the background knowledge. The hierarchy of symptom
can be organized both according to the location of the symptom or according to the kind
of symptoms (K A T E handles multiple inheritance).

The frame representation is modular and economical: once the superconcepts have
been declared, a new lower level concepts, such as FLETRISSEMENT-SUR-FOLIOLE, is
declared by simply stating that it inherits from the two superconcept FLETRISSEMENTS and
SYMPTOME-SUR-FOLIOLE which has already been defined for TACHE-OU-PLAGE-SUR-
FOLIOLE. A l l the slot declarations attached to the two superconcepts are transmitted to
FLETRISSEMENT-SUR-FOLIOLE. For complex problems such as the one we are describing,
having such a flexible, modular and economical representation is very important.

4.2 Using frames to constrain candidate nodes during induction

The notion of "slot" bears some similarities with the notion of "attribute" in ID3. The
difference lies in the fact that a slot is attached to an object. The slot LOCALISATION-SUR-
FOLIOLE of the object TACHE-OU-PLAGE-SUR-FOLIOLES is a different attribute (i.e. it has a
different range of allowed values and a different cardinal) than the slot LOCALISATION-SUR-
FOLIOLE of the object FLETRISSEMENT-SUR-FOLIOLE. The induction engine will behave
differently when it computes information gain for that slot depending on wether it is
attached to one object or the other. For instance, it wil l generate different branches at that
test node since the range of allowed slot values is different.

Since a list of all the features which are relevant to describe an object in a given context
is found in the appropriate frame, K A T E never considers irrelevant features for the
information gain computation. For example, we may have a class frame called MEN with
boolean slot BEARDED and a class frame called WOMEN with boolean slot PREGNANT. Since
INSTIL and K A T E test for information gain of a slot attached, they never test the state of
pregnancy of an object who is known to be a man since PREGNANT is not a slot of the MEN
frame. In other word, they compute information gain of PREGNANT(WOMEN) and
BEARDED(MEN) instead of PREGNANT or BEARDED in general.

K A T E uses common sense domain knowledge, contained in the frames, when
building the decision tree in order to to constrain the set of features considered for the
information gain computation. In the tomato domain, considering every features generates
such a large number of computations that the induction algorithm fails to complete its
task. If at the first root of the decision tree, the most informative feature is the SIZE slot of
a symptom of type HOLE-IN-A-LEAF, at subsequent nodes in the tree only the slots of frame
HOLE-lN-A-LEAF are considered. Features such as COLOR, TEXTURE etc. which are irrelevant

for this concept are discarded. Thus, at different nodes of the decision tree, different
features are considered.

4.3 Constraining the Set of Branches for a Decision Node

Information gain is computed for a slot that is attached to a certain object type.KATE
computes information gain of COLOR(SYMPTOM-ON-LEAVES) and not information gain of
the COLOR attribute by itself as ID3 does. Two different frames may have different "type"
facets for the same slot when the range of legal slot values is different for two different
objects. The induction engine then uses this knowledge to constrain the set of branches
generated for the current candidate node in the decision tree.

Consider two kinds of MEN called PUNK-ROCKERS and BUSINESMEN (defined as
subclasses of MEN). Let us assume that the frames have been defined the following way:

[PUNK-ROCKERS <HAIR-COLOR {(TYPE (PURPLE BLUE GREEN BLOND BROWN RED))}>]
[BUSINESMEN <HAIR-COLOR {(TYPE (BLOND BROWN RED WHITE))}>]

When the induction engine computes information gain of HAIR-COLOR(PUNK-ROCKERS)
it does not consider the WHITE branch since there are no old PUNK-ROCKERS with white
hairs. Likewise, when it computes information gain of HAIR-COLOR(BUSINESMEN), it does
not compute the entropy of branches PURPLE BLUE and GREEN since there are no
BUSINESMEN with hairs dyed in funny colors. Background domain knowledge is used to
constrain the set of branches considered at a candidate node.

To summarize, the frame-based language is used to represent common sense domain
knowledge about the entities which describe the training examples. This knowledge is
used during induction to constrain the set of features that are relevant in a given context
(i.e. reduce the number of candidate nodes considered for the information gain
computation), and to constrain the set of values for these features (i.e. reduce the number
of branches for the candidate nodes). Note that our frame based language is, from a
theoretical perspective, a form of first order logic as shown in [Nilsson, 1980]. In
addition, any database which can be represented using ID3's attribute-value vectors can
also be trivially represented by frames: there is a single frame whose slots correspond to
the ID3 attributes. The induction engine then behaves exactly like ID3.

4.4 Handling Examples Described by Different Objects

As we have shown, the tests considered for the information gain computation at
different nodes in the decision tree are different. The procedure which dynamically
generates candidate nodes for the information gain computation is described below.

• When all the examples at the current branch of the decision tree contain an object
of the same type, information gain of the non relational slots of this object is
computed (i.e. nominals, ordered nominals, integers and reals). This can either
introduce a new object in the current path of the decision tree, or specialize an

object that already appears above the current node. Numerical tests are binarized
so as to maximize information gain.

• When some of the examples at the current test node do not contain an object of
the same type, information gain of the special test "Existst(type-of-the-object)" is
computed.

• Information gain of a relational slots is computed when the relation links two
objects that already appear in the current path (i.e. above the current node) or
when it introduce one new object. Relations that introduce two new objects are
not considered in order to constrain the search space.

The boolean test "exists(object-type)" which appears in the decision tree presented
below means "is there an object of that type in the example?". Each object that appears in
the tree can be indexed further down. The object's identifier is a variable which is bound
to the appropriate object in a training example. The induction engine can then index the
slots of that object at subsequent decision nodes.

File Edit Learn Window Graph

5
2

/ me3ure(tache-ou-plage-3ur-f oliole) < 0.15

. e>dst3(lache-ou-plage-3ur-foliole) = yes {

couleu^tache-oi

couleur(tache-oi
couleur(tache-oi

/ zon«tions(tach

„ 2onalion3(lach
x me3ure(tache-ou-plage-3ur-foliole) >= O.ISf

Fig. 2 When the training examples contain different objects, the special test "Exists(object-type)" is
considered when building the tree

This procedure for generating candidate nodes dynamically enables dealing with
examples described by different objects. Once information gain has been computed for all
candidate nodes, the one with highest information gain is retained as the current decision
node. The search strategy (hill-climbing) and preference criterion (maximize information
gain) remain the same as in ID3. The difference lies in the set of candidate nodes
generated by the algorithm: ID3 computes information gain for all the attributes which do
not already appear in the decision nodes above the current node, while K A T E does more
work to dynamically generate the set of candidate nodes which are considered.

5 Experimental Results

5.1 Diagnosis in Plant Pathology

In the tomato application, there is a small number of examples per concept (there are
less than 400 examples for 60 diseases). There are even some diseases for which there is
no examples since, according to the expert, it takes about 7 years to see all the diseases. It
is therefore meaningless to use a training set and a test set to measure the accuracy of the
learnt rules and extrapolate results which are not statistically significant. The rules have
been evaluated empirically by the human expert. One of his conclusions was that the rules
describing features of existing objects seemed to be meaningful. In fact, the first time the
system ran on the data, it found the exact rule he had given for the disease of "Moelle
noire". However, he did not like negative rules such as the one shown below:

IF exists(tache-ou-plage-sur-foliole) = no & exists(anomalie-de-la-forme-ou-de-la-taille-sur-foliole) = no &
exists(jaunissement-sur-foliole) - no & exists(autres-anomalies-sur-foliole) = no &
exists(jaunissement/dessechement-sur-foliole) = no & exists(dessechement/tache-ou-plage-sur-foliole)
= no & exists(fletrissement/jaunissement-sur-foliole) = no & exists(ravageurs-sur-foliole) = no &
exists(tache-ou-plage/autres-anomalies-de-coloration-sur-foliole) = no & exists(jaunissement/tache-ou-
plage-sur-foliole) = no & exists(fletrissement/tache-ou-plage-sur-foliole) = no & exists(fletrissement-sur-
foliole) = no & exists(dessechement-sur-foliole) « no & exists(autres-anomalies-de-coloration-sur-foliole)
= no THEN Oidium (0.20), Pvy (0.80)

This rule says "if there are none of these 16 symptoms, the disease is "Oidium" with a
probability of 0.2 or "Pvy" with a probability of 0.8. In this application domain,
considering that each year there are new diseases or variations in existing diseases
(mutation, changes in the climate etc.), the expert simply refuses to view his application
domain as a closed world. Although a purely negative rule is consistent with the training
data, it is totally meaningless for him. The final conclusion is that, for this application,
induction is not so useful for knowledge acquisition considering how difficult it is to
obtain training examples. However, this project showed that information technology can
be extremely interesting for the purpose of maintaining a diagnostic system. In this
domain, it is not unusual that a new disease appears or that an existing disease mutate and
presents some unseen features. Thus, maintaining rapidly the knowledge base from one
crop season to the other is of vital importance. As a consequence, the decision tree that is
generated by K A T E is not used for interactive consultation as it is usually done. Instead,
the on-line interactive questionnaire, that is normally used to collect the description of a
training example, is used for entering the full description of the case. The user then
chooses to record the description as a training example (the expert provides his diagnosis
in a second stage) or to consult the decision tree through K A T E ' s auto-consultation
mode. The expert system is then maintained by regenerating the decision tree as new
examples are integrated in the database.

5.2 Credit assesments

The french "Societe d'Informatique et de Systeme (SIS)" has tested K A T E on an
application delivered to one of France's major bank. The expert system's task is to

evaluate financial risks when the bank covers credit assessed by a supplier to one of its
customer. SIS is a large french servicing company with 20 years of experience in
business data processing and 6 years of experience in expert system technology. They
have performed a full comparison of knowledge acquisition with K A T E , knowledge
elicitation by interviewing the human experts and knowledge acquisition using statistical
analysis (scoring techniques) for this application.

The training set presented to K A T E contains 700 examples described by one object
with 31 slots: 12 slots with integer values, 2 slots with real value, 17 slots with nominal
values (with an average of 5 values per slot). There are 7 concepts to identify. The
problem is complicated due to the fact that, on the average, 80% of an example's
description is unknown. Considering the massive amount of unknown values, one cannot
associate to the value a probability that is computed on the rest of the training set as it is
described in [Quinlan, 1989]. When building the tree, K A T E propagates examples with
unknown values in each branch of a decision node. Furthermore, the customer has to
give a quick answer for a large number of cases and the information available is mostly
qualitative. The decision taken has to be explained and justified to the customer. The rule
that is extracted from the decision tree provides this explanation. The following table
summarize the results of the comparison between the panel of experts, K A T E , statistical
analysis, and knowledge elicitation (interview of experts).

board of experts K A T E knowledge elicitation statistical analysis
perfect (%) 91 70.3 73.2 48.6
good (%) 8.1 21.7 12.3 26.8
errors (%) 0.9 8 14.5 24.6
time required 14 60 25
men power 11 45 15
analyst 8 7 9
experts 1 8 2
specialist 2 30 4

Perfect means the exact answer that was expected, good means that the correct answer
was suggested with a probability above 0.5, errors means that the system answered
something incorrect, failed to answer or suggested the correct response with a probability
that was too low, time means the total time it took to build the system, men power means
the total men power that was required to build the application. The men power has been
broken in between the specialist of the method (knowledge engineers for knowledge
elicitation, specialists of the method for induction and statistical analysis), human experts
who have been interviewed or who have evaluated the learnt knowledge base and
computer analysts. The figures have been produced and published by the customer in a
more detailed comparative evaluation of the techniques for the purpose of building
financial applications [Perray, 1990].

14 men days were required to build the system from scratch using K A T E (from an
existing database). K A T E was ran three times and the background knowledge was
slightly modified in between each run. For instance, in between the first two runs, the
expert added some useful ratios such as the total revenue of the company divided by the

number of employees. The resulting tree was tested using K A T E ' s auto-consultation
mode on a test set of 400 unseen examples. K A T E made 70,3% perfect predictions (same
response as the expert) and an additional 21,7% correct predictions (the right answer was
suggested with the highest probability). 5% of the examples in the training set were
classified with uncertainty through auto-consultation which demonstrates that the human
expert has access to additional information or that there is some uncertainty in the domain.

Note that, for this application, the frame structure of K A T E is not useful. The data is
represented by a single object whose slots correspond to ID3's attributes. This proves our
claim that any applications that can be tackled using ID3 can also be tackled using an
induction tool with a more elaborated representation language such as KATE's .

5 .3 Military Applications

K A T E has also been used for a military decision support system (this last application
is classified). Let us simply state that, like for the tomato application, the training data is
represented by complex objects and that a flat attribute-based representation would not
have adequatly captured the information contained in the training data for this last
application. A second application for helping a human expert to identify objects in a 2-D
pictures has been being built. The database consists of 134 examples which belong to 14
different classes. There are currently 12 types of objects and an average number of 58
slots (8 relations, 9 integers, 41 nominals). The description of an example varies
depending on the type of the objects involved.

5 .4 Failure analysis in a telecommunication network

We have also used the method for an application which analyzes failures in a
telecommunication network. The database of examples contains 160 examples with 7
different faults described by a dozain features (mostly numerical). The fault analysis
system was tested on 8 files with 200 unsen cases each. The 8th fault for which there was
no examples in the training set, 75% saturated network, was in between two known
faults (network is 50% saturated, and network is fully saturated). K A T E outperformed an
existing system by over 20%. Some faults, such as general overload, were identified with
99% accuracy.

6 From induction to case-based reasoning

Consider the following database of examples:

EXAMPLE DISEASE SYMPTOM YELLOWING(SPOT) SIYE(SPOT)
Exl BOTRYTIS SPOT YES 18
Ex2 OIDIUM SPOT NO 16
Ex3 ALTERNARIOSE SPOT YES 2

K A T E works in two stages: it first learns the decision tree, such as the one shown
below, from the examples and then uses the tree (and not the examples) to predict the
disease of a new plant. Consider what happens i f the user does not know whether the
symptom is yellowing or not.

exist(spot) = y e s
no yes

yellow[ng(spot)= ???

yesy no

size(spot)=2 | frotryirs: e x i H

> r o / \ . < 10

oidium: ex l | alternar lose; e x a T H

Figure 3: A consultation of the tree

When consulting the expert system, he is first asked wether there is a spot. He
answers "yes". He is then asked wether the spot is yellowing. He answers "unknown".
K A T E proceeds by following both the "yes" and "no" branches and combines the
answers at the leaf nodes. In the "no" branch, it reaches the botrytis leaf node. In the
"yes" branch, we reach a test node and the user is queried for the value of the size of the
spot. He answers "2". The system follows the "<10" branch and reach the "alternariose"
leaf node. It then combines the leaf nodes and concludes that it is "botrytis" with a
probability of 0.5 and "alternariose" with a probability of 0.5. However, i f we consider
the example at the "botrytis" leaf node (ex2), we note that its size is 16 (which is greater
than 10). Therefore, the correct conclusion should have been alternariose with a
probability of 1 since the current case is much closer to ex3 than to ex2. Unfortunately,
the information about the size of ex2 was generalized away during the induction phase
and it is lost.

The problem described above is not a consequence of a flaw in the induction algorithm
nor is it consequence of a flaw in the decision tree formalism (we could have obtained the
same conclusion i f we had used production rules instead). It is a consequence of the fact
that we are reasoning using some abstract knowledge (an abstraction of the information
contained in the examples) instead of reasoning directly about the information contained
in the training cases. The reasoning system uses general knowledge and not the actual
examples. Note that this tree, or rules, could have been entered by hand instead of being
derived from the examples by induction. It is therefore a flaw of the knowledge-based
system approach to problem solving (reasoning about a problem using general
knowledge). We argue that in order to provide a general solution to this problem, we
need to use a case-based reasoning system instead of a knowledge based system.

One might object that i f we had the same configuration of unknown values in the
training cases (for instance, a fourth example with unknown size), the conclusion would

have been correct. Unfortunately, this is not realistic for many practical applications.
Consider an application where we try to assist a user in identifying an object on a photo.
We are dealing with three-dimensional objects from which we can only see one part (ex:
the right side). Furthermore, parts of the characteristics of the object may be hidden by
other objects which are on the first plan. What would be the size of the database training
example i f we wanted to enter all the configurations of unknown values which could
possibly occur on such a picture? We were faced to this problem in practice. In the
application we had to deal with, an object was described by an average of 58
characteristics. There were 91 different classes of objects to identify. Each characteristic
of the object could be hidden in any combinations. Therefore, there are:

C f = 3306

combinations of unknown values per class (i.e. a characteristic is known versus it is
unknown). In order to provide an exhaustive database of examples we must enter at least
3306 for each class of object to identify which comes to a total of 3306*91= 300846
examples. This is clearly not very practical and it is much more efficient, in this
application, to enter only 91 prototypical cases (reconstructed from several photos) and to
index them dynamically in order to retrieve the cases which best match the current picture.

A s pointed out in [Bareiss, 1989] "case-based reasoning is the usual name given to
problem solving methods which make use of specific past experiences rather than a
corpus of general knowledge. The key distinction between case-based methods and other
forms of automated reasoning is that in the former, a new problem is solved by
recognizing its similarities to a specific known problem then transferring the solution of
the known problem to the new one (...) In contrast, other methods of problem solving
derive a solution either from a general characterization of a group of problems or by
search through a still more general body of knowledge". We believe that this key
distinction is essential to understand the fundamental differences between induction and
case-based reasoning. The two technologies are often confused and some induction
products appearing on the market are presented with the label "case-based reasoning tool"
(for example, the REMIND™ product of Cognitive Systems inc.). In addition, in some
implementations, the distinction is fuzzy: some researchers working on induction have
developed systems which remember the training cases in order to be incremental such as
ID5 (Utgoff 1988), and some researchers working on case-based reasoning have
developed tools which build indexes into the case library in order to be more efficient
(ex: Leibowicz's U N I M E M) . Thus, the distinction is not technical but lies in how the
technology is used.

In order to provide a solution to problems such as photo-interpretation, we have made
some extensions to K A T E which allows it to do some form of case-based reasoning.
These extensions are part of the C A S - S Y S T E M tool. The distinction between the two
products is not the underlying technology (both use information metrics to find the most
discriminant characteristic) but how it is used. K A T E builds a static decision tree and
uses the tree for consultation. C A S - S Y S T E M reasons from the case library and

dynamically builds a path which corresponds to the current case. At the root node, it
computes information gain for all the features. It then ask the user for the value of the
most discriminant one. If the user answers, it develop the corresponding branch.
However, i f the answer is unknown, then the next best test is tried until the user is able to
answer.There are some links between the two technologies. C A S - S Y S T E M (case-based
reasoning) performs better than K A T E when there are unknown values during
consultation. It is incremental and new cases can be added without having to reconstruct a
decision tree like in K A T E . On the other hand, K A T E is able to extract knowledge from
the case library. It can detect inconsistencies in the case library (a leaf node covers two
different classes with some probabilities attached to the classes), it can be used by the
expert to notice that the case representation should be modified (add a feature to an object)
and so on. In addition, K A T E computes the tree once and for all and the consultation is
much faster than with C A S - S Y S T E M . Thus, K A T E and C A S - S Y S T E M are not
redundant but complement each other. For some applications it is better to use induction,
for some application it is better to use case-based reasoning.

7 Conclusions

K A T E is an extension of known induction techniques which works on databases
modelled by complex entities. The technical extensions that were brought into ID3

(dynamic generation of candidate nodes when building the tree, treating differently a
ground property and a relation for the information gain computation, testing for the
existence of an object etc.) are independent of the chosen knowledge representation
language (frames). With predicate calculus, the same technical problems and more would
have to be overcomed. The frame structure allows for efficient retrieval of all the relevant
features of an object in a given context and the legal range of values for these features.
This knowledge is used during induction to dynamically generate candidate decision
nodes and their branches before computing information gain.

The induction system can handle large databases of examples, handle complex data
described by several objects with relations, learn generalizations of all the concepts in a
single learning cycle and is resilient to noise in the training data. It has been validated for
building complex, large scale, real world applications in agronomy (diagnostic system),
banking (risk evaluation), military (decision support systems) and telecommunications
(failure analysis). However, the induction methology ("generalize and forget") was found
to be too restrictive in some applications. We then developped a case-based reasoning
tool, C A S - S Y S T E M , which uses the same basic technology but reasons directly on the
database of cases instead of reasoning on the decision tree which was induced from the
database. Our case-based reasoning approach is currently being tested at the Museum of
Natural History in a system which identifies marine sponges.

Acknowledgements

We would like to thank ACKNOWLEDGE for allowing us to publish this paper. Michel MANAGO
would also like to thank the European Economic Community which supported its PhD research (ESPRIT
contract P1063, the INSTIL project with the General Electric Company, CNRS and Cognitech).

ACKNOWLEDGE would like to thank all the organisms which supports its current research: ANVAR,
MRT, ANRT and DRRT. KATE is a trademark of Michel MANAGO.

References

Bareis R. (1989). Exemplar-Based Knowledge Acquisition: A Unified Approach to
Concept Representation, Classification, and Learning. Academic Press.

INSTIL (1989). Project Summary. ESPRIT Deliverable. Brussel, Belgium: Commission
of Economic Communities.

Manago, M . (1986). Object-oriented Generalization: A Tool for Improving Knowledge
Based Systems. Proceedings of the International Meeting on Advances in Learning, Les
Arcs, France.

Manago, M . & Kodratoff, Y . (1987). Noise and Knowledge Acquisition, Proceedings of
the Tenth. International Joint Conference on Artificial Intelligence (pp. 348-354). Milan,
Italy .-.Morgan Kaufmann.

Manago, M . (1988). Integration de Techniques Numeriques et Symboliques en
Apprentissage Automatique. PhD dissertation, University of Orsay, France.

Manago, M . & Kodratoff, Y . (1990). Induction of Decision Trees from from Complex
Structured Data. In G. Piateski-Shapiro & W. Frawley (Eds.), Knowledge Discovery in
Databases. Detroit, M i : A A A I Press.

Michie, D . (1989). New Commercial Opportunities Using Information Technology.
Proceedings of the third. International Gi-Kongress (pp. 64-71). Munich, West
Germany: Springer Verlag.

Minsky, M . (1975). " A framework for representing knowledge," in The Psychology of
Computer Vision, Winston P. H . ed, Mc Graw-Hill, New York 1975.

Nilsson, N . (1980). Principles of Artificial Intelligence. San Matteo, C A : Morgan
Kaufmann.

Perray, M . (1990). Etude Comparative Entre Trois Techniques d Acquisition des
Connaissances: Interview, Induction et Analyse Statistique pour Construire une Meme
Base de Connaissances. Proceedings, of the Journies Informatique et Intelligence
Artificielle. Paris, France.

Quinlan, J. R. (1983). Learning efficient classification procedures and their application to
chess end games. In R. S. Michalski, J. G. Carbonell & T. M . Mitchell (Eds), Machine
Learning: An Artificial Intelligence Approach (Vol. 1). San Matteo, C A : Morgan
Kaufmann.

Quinlan, J. R. (1986). Simplifying decision trees. Proceedings, of the first AAAI
Workshop on Knowledge Acquisition for Knowledge Based Systems (pp. 36.0 -
36.15). Banff, Canada.

Quinlan, J. R., (1987). Generating Production Rules from Decision Trees, Proceedings
of the Tenth. International Joint Conference on Artificial Intelligence (pp. 304-307).
Milan, Italy:.Morgan Kaufmann.

Quinlan, J. R. (1989). Unknown Attribute Values in Induction. Proceedings, of the Sixtl
International Workshop on Machine Learning (pp. 164-168). Ithaca, N Y : Morgan-
Kaufmann.

Utgoff, P. (1988). ID5 : A n Incremental ID3. In Proceedings of the fifth International
Conference on Machine Learning. Irvine, C A : Morgan Kaufmann.

F a c t s , f a n t a s i e s a n d f r a m e w o r k s : t h e d e s i g n

o f a k n o w l e d g e a c q u i s i t i o n w o r k b e n c h

Nigel Shadbolt

Artificial Intelligence Group

Department of Psychology

University of Nottingham

Nottingham NG7 2RD

Abstract This paper presents a number of core issues that are seen as fundamental to
the success and well-being of the knowledge engineering enterprise. In particular, it examines
the problems that dominate the current state of the art in knowledge acquisition (KA). These
include: the development of K A methodologies, the construction of software support tools for
K A , the integration of knowledge acquired from various sources, the problems of verification
and validation of the acquired knowledge, and the elimination of bias from expert knowledge.
Progress in our subject is likely to depend on our ability to advance our own knowledge and
understanding in these key areas. The paper describes work which we have been conducting in
the context of an ESPRIT project (P2576 ACKnowledge), and whose aim is to ameliorate some
of the problems identified.

Section 1 Introduction
Our ability to build effective knowledge based systems is less than we would wish. Our

understanding of many aspects of our subject is incomplete and doubtful. This does not prevent
some people from claiming too much — distinguishing fact and fantasy in knowledge engineering
can sometimes be a tricky business. The structure of this paper is based around a set assertions
which I believe to be currently true of knowledge acquisition, and which I shall now enumerate.

1. Knowledge acquisition is difficult
2. We have only the beginnings of a K A methodology
3. There is little reusability of our knowledge in experts systems
4. Few integrated knowledge acquisition environments exist
5. There is little synergy between acquisition techniques
6. It is difficult to translate between the results of different K A tools
7. It is hard to integrate the results of different acquisition sessions
8. It is difficult to verify and validate the results of acquisition
9. The acquisition techniques are sometimes inappropriately applied
10. Experts and their cognitive processes are poorly understood

I do not pretend that these are the only pressing issues that are relevant to knowledge
acquisition. However, I consider progress on these issues vital if we are to develop knowledge
acquisition into a stable component of an engineering discipline.

The outline of this paper will therefore be as follows. In section 2 I will examine the stale
of the art with regard to methodologies in K A . I will also discuss the emergence of model based
approaches to the K A process. In section 3 and throughout I will describe our own attempts
to produce an integrated workbench to support the knowledge engineer in the process of K A .

Separate sections have been given over to the discussion of knowledge transformation between
tools, section 4, and the problems of the integration of results from disparate sources, section 5.
Section 6 addresses the problem of evaluating and validating the results of K A . Finally sections
7 and 8 consider the problems of acquisition inherent in our techniques and our subjects.

Throughout I will refer to our own experience in building knowledge acquisition workbenches
as part of a large ESPRIT project ACKnowIcdgc 1. The philosophy of die ACKnowlcdgc approach
is discussed in Shadboll and Wiclinga (1990). In particular, discussion will focus around a system
ProioKEW 2, which wc have developed at the University of Nottingham and which was built
originally as one of a number of concept demonstrators for the ACKnowlcdgc project.

Section 2 Knowledge Acquisition: Methodologies,
models and frameworks

Many of the problems enumerated in section 1 can be traced back to the lack of robust,
comprehensive methodologies for the KA process. Whilst there arc a growing number of articles
and books available on 'how to do knowledge elicitation', these often contain advice of the most
general kind, and emphasise the pragmatic considerations of expert system development (cf for
example. Wclbank, 1983; Hoffman. 1987; Kidd, 1987 and Hart, 1986).

One of die most thorough attempts to provide a comprehensive KA framework is provided by
KADS - Knowledge Acquisition and Domain Structuring (sec Breuker and Wiclinga, 1987 for an
overview). KADS embodies various principles for the acquisition of knowledge and construction
of expert systems. These include two central tenets:

The analysis should be model-driven as early as possible.
The content of the model should be expressed at die cpisiemological level.

The first of these requires that one should bring to bear a model of how the knowledge is
structured early on in the KA process, and use it to interpret subsequent data. The notion of
model wc arc using is some abstraction of expert competence or performance. Indeed the view
now predominant is that K A is itself a modelling activity. KA is best regarded as a constructive
process — data about the expert's (or experts') behaviour arc used by the knowledge engineer,
along with other information, to construct a model, or an increasingly complex scries of models
embodying the desired behaviour of die system. These models can later be reused to provide
expectations regarding the general structure of problem solving systems.

The second insists that knowledge is formulated in terms of its role and function in problem
solving. This formulation should be independent of particular implementation issues. Moreover,
existing models of problem solving should be used, wherever possible, to organise the expertise.

The KADS use of models relics on distinguishing four knowledge layers which should be
discriminated in any expert system - human or otherwise. The first of these is domain knowledge
and describes the domain concepts, elements and their relations to one another. A second type
is task knowledge, which has to do with how goals and sub-goals, tasks and sub-tasks should be
performed in any problem solving. A third sort of knowledge is referred to as strategic. This is
used to monitor and control problem solving. Finally, inference layer knowledge is distinguished.

1 The A C K n o w l c d g c consortium comprises: Cap Scsa Innovation, Marconi Command and Control Systems, G E C - M a r c o n i
Research Centre, Telefonica, Compuias Expert Systems, Veritas Research, the University of Amsterdam, Sintcf, and the University
of Nottingham.
2 Elsewhere wc have described prototype versions of our knowledge engineering workbench (Rcichgclt and Shadboll, 1991, In
Press). This work was carried out by the author in conjunction with Han Rcichgclt and Nigel Major. Thanks arc also due to G E C
M R C , the University of Amsterdam and U K University of Aberdeen who made available tools which served to inspire some of the
components of P r o i o K E W .

This has to do with how the components of problem solving and expertise are to be organised
and used in the overall system. Within each KADS layer various structures or models can exist
that generate expectations about die nature and form of die knowledge instantiating that layer.

The use of knowledge level models to inform and direct the construction of KBSs is central.
In fact, a number of methodologies use models although die emphases are somewhat distinct
(Steels, 1990; Karbach at al 1990). Nevertheless, common to all is the attempt to abstract aspects
of expertise.

The KADS approach itself makes particular use of models of problem solving - or models
at the inference layer (Breuker and Wielinga, 1989). An alternative approach is to build task
layer representations (Bylander and Chandrasekaran, 1988). Here the aim is to use general,
invariant features of a task to guide K A . A number of researchers exploit the fact that many
KBS applications are built in similar, if not nearly identical domains (Eshelman 1989; Marcus,
1988). In this case one attempts to build reusable domain layer descriptions. Ultimately models
and structures at all of these levels will be important in any informed and directed knowledge
acquisition approach.

The use of mediating models to direct acquisition promises an additional advantage. It offers
die prospect of reusability (Neches at al 1991). The aim would be to standardise on libraries
of generic components — components derived in part from the models developed in K A . It is
argued that in this way declarative knowledge, problem solving techniques and reasoning could
all be shared among systems. As Ncche et al point out mere are currently a number of critical
impediments to reuse: heterogeneous representations, dialects within language families, lack of
communication facilities, and model mismatches at the knowledge level. Nevertheless, initiatives
are underway to ameliorate these problems and produce effective reuse.

Section 3 Knowledge engineering workbenches

A variety of systems now provide computer support for K A . There are software products that
implement specific acquisition techniques. An example is the implementation of the repertory grid
technique (cf, for example, Boose et al, 1989) which we will discuss later in this paper. It is time
consuming and labourious to apply manually, but die underlying algorithms arc straightforward.
Many other individual K A techniques have also been implemented. As implementations of
individual techniques any one of these products is limited in scope to the elicitation of certain
types of knowledge.

A second type of system, exploits die fact that common features can sometimes be found
both within and between domains. OPAL (Musen et al, 1987) is an expectation driven acquisition
system that elicits knowledge from experts in die domain of oncology treatment. The system
comprises templates, or knowledge frames, which the user fills with appropriate knowledge. Such
frames might contain, for example, the details of a particular drug treatment. These details can
be expected to instantiate slots in frames which have a similar structure across treatment regimes.
The MORE system (Kahn et al, 1986) is an abstraction from an original system M U D which
diagnoses oil drilling fluid problems. As such it incorporates templates about expected domain
components as well as the task structure and problems solving strategies that are general to all
particular instances of such applications. In both OPAL and MORE an attempt has been made
to reuse models of expert knowledge.

The disadvantage of these tools is die large amount of effort that needs to be spent building
customised acquisition tools for generic application domains. However, it is an important point

to discover whether associate domains really share the amounts of common structure required to
make the customised tools approach viable.

A further class of support tools provide a set of acquisition functions within a single system.
Examples of such software include Shelley (Anjcwicrden et al, 1990) and KEATS (Motta, Rajan,
Dominguc and Eiscnstadt, 1990). These combine a number of documentation and browsing aids
to help knowledge engineers find their way around acquisition material. They also include a few
particular clicitntion methods. What they lack, is any significant degree of integration between
the components, and any strong view as to the type of knowledge and knowledge level structures
that might underlie an application.

Wc can sec that each of these various types of support system is restricted in scope. The
aim of the ACKnowlcdgc project is to achieve integration between a wide range of acquisition
techniques, and to combine die best features of current support tools into a knowledge engineering
workbench (KEW). KEW will implement a range of elicitation techniques, incorporate machine
learning methods, be applicable across domains, and embody a principled or knowledgablc
approach to the entire acquisition process. To build such a workbench requires that we construct,
in effect, a knowledge-based system for knowledge acquisition (Shadbolt & Wiclinga, 1990).

To help us design KEW wc have built a number of concept demonstrators. One such concept
demonstrator, ProtoKEW, comprises: a number of KE and ML acquisition techniques, methods of
translating results from tool dependent formats into a common knowledge representation language,
techniques to support die integration and evaluation of disparate knowledge, and model directed
KA.

The best way to appreciate ProtoKEW is to consider its architecture as shown in Figure
1 below. Wc can sec that a number of distinct K E tools arc incorporated. These include:
laddering, concept sorting, and repertory grids3. Elsewhere wc describe these techniques in detail
(Shadbolt and Burton, 1990) and their implementation in ProtoKEW is described in Rcichgclt and
Shadbolt (1991, In Press). In addition to KE methods a number of machine learning algorithms
arc supported: AQ11. ID and CN2. All these machine learning methods arc similarity based
induction techniques, and provide for the automatic construction of classifier rules.

Figure 1 The architecture of ProtoKEW

laddering cud tort

trauform inuufcrm

truttformed knowledge bate*

:oKp»*d knowledge batei

3 More conventional KH techniques such as interviewing and protocol analysis have not been included in this demonstrator
although they will be found in the final ACKnowlcdgc workbench.

Individual K A tool results are transformed into distinct knowledge base "partitions" within
what is termed the Common Knowledge Base (CKB). The representation within the C K B is full
first order predicate calculus (FOPC). The CKB has an attendant theorem prover (die interpreter)
for die logic. The various transformed knowledge bases can be integrated within our FOPC
formalism to provide what we term "integrated knowledge bases". This process of integration
can proceed as far as the knowledge engineer wishes. The various C K B partitions (integrated or
not) can be viewed as logical theories capturing aspects of the domain of application. A theorem
proving capability allows us to evaluate components of die emerging knowledge base. Of course,
a FOPC inference engine is unlikely to be the final run-time implementation. However, this
logic based formulation can be used to produce a high level specification of the ultimate system.
As such it allows us to investigate the scope, coverage and consistency of the knowledge being
acquired.

Finally, in Figure 1 die Knowledge Engineering Knowledge Base (KEKB) is distinguished.
This embodies the knowledge about knowledge acquisition which is needed if our workbench
is to be an expert system for acquisition. Any software system that is going to fulfill this goal
will need to be informed by a variety of types of knowledge. A first type of knowledge has to
do with knowledge about the knowledge acquisition process itself. This would be advice and
guidance about what to do when. Knowledge about die knowledge acquisition tools themselves
constitutes a second type of knowledge. Thus, tools make assumptions about data, how it is
represented and analysed. The system and knowledge engineer should have explicit command
and use of this knowledge. A further type of knowledge is an account of how to integrate
results acquired from different tools into a consistent evolving application knowledge base. The
emerging application K B needs to be evaluated. Our system needs to know something about
how this might be achieved. And, of course, we should attempt to incorporate knowledge about
the components of expertise.

In order to provide a context for the discussion of die general K A issues highlighted by
ProtoKEW exemplars of a K E and M L method within ProtoKEW will be described — the
laddered grid and CN2.

Our implementation of the laddered grid method (Major and Reichgelt, 1990) supports die
expert and the knowledge engineer in the construction of a graphical representation of application
knowledge in terms of the relations between knowledge elements. The result is a two-dimensional
graph (or conceptual map) whose nodes are connected by labelled arcs. A number of settings
on die tool allow for different interaction protocols which expand and explore the graph in ways
that have been discovered to be natural and productive (Burton et al, 1987, 1988, Shadbolt and
Burton 1989).

Figure 2 shows part of a laddering session from the domain of respiratory tract diseases.
In ProtoKEW the tool uses a simple object-oriented language called CommonSloop (Reichgelt,
Major and Jackson, 1990) as its tool-specific knowledge representation language. Each node in die
laddered hierarchy is represented as an object in CommonSloop. An object can have user-defined
slots which are properties of the item in the node hierarchy. CommonSloop supports multiple
inheritance. Inheritance also follows a default principle; attributes associated with higher-level
objects are inherited by their children but can be overridden lower in the hierarchy.

Figure 2 Laddering in the respiratory tract diseases domain

[Optt»»« ")

) T # n T t * « ^ % a ^ T r T o v * ^ 3 ^ o ^ e c t a ^ r

I
Do yOu t ,nl 13 (J ' « V « n U U « b « l v « » n 11 » o " y lococCl I _po«v/»on l • tod p n a u a o c o c c a l _ p n a u » o n t a (V/M) n

ta d ' f ' a * - a r i t i » t a b*ti*«*n atapr-y locoeca I. pr>«<j»on t a and laQlonnalrea.dlaeaa* (Y/N) n
O d • Macecit >a ta battwaan p«av*»>ococca 1_pr»«\j»©r> la »n<j l * j i o m t i r t i . d l i t i u (V/N) n

9 » « f <f we can attribute* 'or c a c t « r < t > . p n » v » o n i « 9 .

i l . p n t u i o n i i i n t n a r than It* auO-c ! • » » « » • '•lancet? (V/N) n

. |M-tutM«.'»

A L L C J G Y H4y_rr/f»

\
• \ > COM)

lEGNWN*IRCS_OISEASf.
P N e i W 0 C 0 C C A L _ P N C l * « N U

— » G« AM-HE GAUVt. PNEUMONIA
\ ST4PMyi0C0CCAUPNtlN(WIA
PNflXOCYSTIS.PHClHONlA

g r u n - n s o « l 1 ve.pnauftonI• :
in p a r t i t i o n rtda

cougn.present - yvs
culture.taat - pa*uoa*onaa_aeruglnoaa
attoc.fever - high
t i i i m l : unotf

f r o » : rtdt
claae - claet
self i gram-mgat i ve_pneui>onia
super i bacterial.pneuaomas

The most suitable internal representations for a laddering tool arc structured object languages.
In such representations wc aim to bring together, under a simple indexing method, die associated
properties of objects. The use of inheritance allows us to exploit taxonomic relations in an
efficient way. Specialising objects by overwriting or adding attributes and their values provides
for a means of discriminating between objects. These features of structured object representations
clearly map onto the characteristics of die laddering technique itself. In this way different
representations afford different possibilities for die various types of KA tool.

Our second exemplar technique, die CN algorithm (Clark and Niblctt, 1989) was developed
to address certain problems inherent in the widely known A Q algorithm (Michalski, 1969). Both
algorithms operate by generating what is termed a complex. This is a conjunct of attribute tests
— for example temperature = high Sc cough = present. The complex covers, or is satisfied by,
a subset of the training examples. This complex forms die condition part of a production rule
"if condition then predict class", where class is the most common class in the training examples
which satisfy the condition.

In brief, the search method in CN proceeds by repeatedly specialising candidate examples
until one is located which covers a large number of examples of single class, and a few other
rules which cover a few of the other classes. CN is more robust than AQ since it can tolerate
noise in the domain — this can arise where an example has been misclassificd or perhaps an
atuibutc has no known value or else an incorrect one.

Figure 3 A rule set induced by CN for respiratory diseases

| UN-ORDERED RULE LIST |

IF breathlessness = discontinuous
AND heart-state = normal

THEN diagnosis = asthma [IS 0 0 0]

IF braathlessness = continuous
AND Hps-shape = normal

THEN diagnosis = coad [0 12 0 0]

IF heart-state = enlarged
THEN diagnosis = coad [0 9 0 0]

IF Hps-shape = pursed
THEN diagnosis = emphysema [0 0 3 0]

I (DEFAULT) diagnosis = asthma [IS 15 3 0]
1 CN> Execute
EVAL> a l l
Executing rules...

PREDICTED
ACTUAL asthma coad emphyse cor.pul Accuracy

asthma 15 0 0 0 100.0 X
coad 0 15 0 0 100.0 X

emphysem 0 0 3 0 100.0 I
cor.pulm 0 0 0 0 —

jOverall accuracy: 100.0 X
j Default accuracy: 45.5 X

Figure 3 shows a run of CN on a set of cases from ihe respiratory diseases domain. The
examples are described in terms of attribute value pairs with one attribute regarded as the assumed
outcome class. In die situation above we have determined that we are interested in generating
rules which discriminate cases in terms of their diagnostic category. The algorithm is run and a
set of rules produced. Figure 3 also shows die performance of these rules on the training set.

As a stand alone tool C N has limited utility for the knowledge engineer engaged in extensive
K A . However, by combuiing die technique with other simple K A methods we obtain synergy
— combinations of methods provide greater benefits than the tools used in isolation. Illustrative
is the example given in Shadbolt (1991) in which preprocessing of cases is carried out using
a sorting method — the expert decides which attributes in a case description are relevant for
a particular outcome class. Rapid re-presentation of rules back to an expert for critiquing has
proved to be very useful. This evaluation can suggest ways in which die case description is
deficient. This may leading, in turn, to the use of techniques such as repertory grids to obtain
more discriminating case descriptions.

The interaction of K A tools in this way will provide the foundations for effective synergy
between components of K A workbenches. However, to date relatively hide work has focused
on exploring the range of possible synergies between tools.

Section 4 Knowledge Interchange and Transformation
In order to construct expert systems out of die partial results of individual K A tools we need

a means to integrate the results together. Before this can proceed, however, we must have some
way of pooling the knowledge accrued within an acquisition workbench. There are two distinct
approaches that could be taken to this problem. These arc indirect and direct transformations.

Indirect transformation achieves communication through a common knowledge representation
language (CKRL). Each K A tool, represented as a circle in Figure 4, has a translator into and out
of the C K R L . The direct method allows for pairwisc translation between all K A tools. Whilst
direct translation is viable for small number of K A tools, beyond four or so the direct approach

leads to an explosion of translation possibilities. For each additional tool added using the indirect
method only two additional translations arc required.

In ProtoKEW wc have adopted the indirect transformation approach. As stated our CKRL is
the first order predicate calculus (FOPC). In addition to expressive power such a logic has a modci-
thcorctic semantics which allows one to determine the correctness (soundness) of the interpreter.
Moreover, in the present context, the use of logic as die C K R L has die added advantage that
it makes the problem of transformation and integration scmantically tractable, allowing us to
address the issue of whether the knowledge remains valid under die effects of transformation.

The process of transformation itself wc have come to see as an important additional stage
in die acquisition and refinement of knowledge. The tools wc build to support transformation
arc interactive in nature. Consider the knowledge base produced by die laddering tool in Figure
2. The tool specific knowledge base will contain a number of frames with different slots. Each
frame cither stands for a single object in die domain, or a class of such objects. What is the
logical translation of such a frame structure? It is fairly clear that concepts such as COAD or
PNEUMONIAS arc classes and as such arc translated into FOPC as one-place predicate. But arc
the leaf-nodes in such structures intended to be an individual object or a class of objects? The
user is asked for each leaf node what the intended interpretation is. In the case that die intended
interpretation is that the leaf nodes arc individuals then they arc translated into constants. Class
leaf nodes arc assumed to be non-empty, and wc add axioms to the effect that there exists some
object with the property denoted by die class-frame name.

Some parts of the translation can be automatic. The class superclass relation between two
"predicate" frames p and y is translated as ((Vr)(/;(*) — q{x))). Slots can normally be translated
automatically: a slot corresponds to a two-place predicate. The exact translation of a slot and its
filler depends on the type of filler. In most cases translation is straightforward4. A slot s with value
v is translated as (s(a. v)) in the case of a "constant" frame, and as ((Vx)(p(x) —* s(x, v)))in
the case of a predicate frame p.

In default inheritance the translation algorithm first determines whether any of the
descendants of the frame have an incompatible slot value. If so, these are ex­
plicitly stored as exceptions in the antecedent of a rule. Thus the expression
((Vx)((bactcrialpnc union ia(x)k,-^lcy ionnai res ({i$casc(x)) — gram stain(x, positive)))

This is not the end of the translation process. Additional interaction with the user can
serve to further elucidate the intended semantics of Figure 2. Consider die class VIRUS in
Figure 2, is it intended that the three children of this concept form an exhaustive list? The

4 Full details of this and oilier translations can be found in Rcichgclt and Shadbolt (In Press).

Figure A Knowledge transformation methods

INDlRfiCT DIRECT

answer, of course, very much depends on die context of acquisition, the scope of the elicitation
sessions, and the coverage of the intended system. In any event if the answer is affirmative,
our translation algorithm adds an axiom to die effect that any entity that is an instance of
die parent frame must be an instance of at least one of the children — ((Vx)(viru$(x) —•
(influenza(x) V laryngiiis(x) V common — cold(x)))).

During transformadon implicit assumptions often inherent in the context of the local knowl­
edge acquisition task have to be made explicit. Establishing the wider context in which the
knowledge is to be used is an important stage in acquiring and validating knowledge.

The declarative translation of a structure such as that shown in Figure 2, along with all
its slot and filler information is very substantial. Such a translation into FOPC affords certain
advantages — not least of which is that die notion of semantic consistency can be examined.
However, the original frame notation facilitates other sorts of computation. For example, it is
very easy within the structured object representation to determine if objects can be discriminated
in terms of their attributes and values, whether the attributes on an object have been specified to
a sufficient level of abstraction in the hierarchy. The lesson is that a variety of representations
enrich and extend the acquisition possibilities.

The issue of knowledge traiisformation and interchange within and between acquisition
workbenches is, of course, a large and complex one. Ginsberg (1991) has argued that knowledge
interchange between complex formalisms is fraught with dangers. One of which is the production
of semantically opaque translation programs. His own proposals are that we effect interchange
via a minimalist "first order predicate calculus, with specific notationai conventions to handle
variables, quantification, and so on". These ideas are close to our own. He also argues that there
remains an open research question about whether substantial knowledge sharing is possible at all.

Section 5 Knowledge Integration

Once any K A tool has produced its results and they have been subject to either direct or
indirect transformation there remains the issue of knowledge integration. How are wc to assemble
fragments of expertise into a consistent and evolving knowledge base?

Within ProtoKEW we have a very simple but appealing notion of integration — the merging
of logical theories. In ProtoKEW, the C K B contains a partitioning mechanism which allows one
to divide logical axioms into different partitions. In logical terms, each partition corresponds
to a different theory. While the system attempts to ensure consistency within a single partition,
it does not ensure consistency between partitions. The partitioning mechanism therefore allows
users to explore different theories simultaneously.

Integration of two partitions is achieved by copying one partition into a new partition, and
then incrementally trying to add the propositions from die other original partition. While adding
these new propositions two tests can be performed. We can ask the system to determine if the
new propositions are non-redundant and consistent. The redundancy test determines whether a
proposition is already entailed by die existing propositions in die partition. If a proposition fails
this test, then it is not added to the knowledge base. The consistency test involves determining
whether the proposition is consistent with die other propositions stored in the partition. Can the
system prove its negation from the information already in die knowledge base? If a proposition
fails this test, then a reason maintenance system (McAllester, 1980) is called on to ensure

consistency. If both tests arc performed successfully, then the user is guaranteed that die set
of propositions is minimal and consistent, at least within the limitations of die theorem provcr5.

In Figure 5 below wc can sec that two partitions in the respiratory diseases domain arc being
integrated. One partition called cases contains simple facts about a patient: the fact that he is
currently diagnosed as suffering from cor pulmonale, and the fact that his heart state is normal.
In a second partition diseases wc sec knowledge to the effect that all individuals who suffer from
cor pulmonale would have an enlarged heart state, and that a heart state cannot both be normal
and enlarged. Attempting to integrate these two partitions has resulted in the RMS being invoked
with the inconsistent set of propositions.

Figure 5 Integration of knowledge in the respiratory diseases domain

[TJ (Acquit' How taola T p tK«OMled f l« bast top I, »)) (Htla ~~) t Quit ~1

[9» M 1

•^rrxxj o a r l ' l i o n t o i " t * y i ' . a d-i»a«a*a
I f remi t i (r>« I n W ^ r i t v d c a r l t l ' o n Da C t l l » < P «ay

ESSES
[l i n M " " U » I] [Shm. C » T ") [ihfmt aartuiaw) [Show f f M U t l i] [ihtm f»r 1111 m / p r n m n) [Quit)

• i « t i ' l f . » i ' . v > : r'tdiut

Tha fal lovtaa araaaatttana 1

((• r . p . l M i i i l i k l l l . u t i l h) w i t h • • • p a r t t t a t u * m

((•II B) (•> (h » e « M _ , t a t a * normal) (- (• • • r t . t l a l * * t n l a r g t *)))) with M i a a a r t • l « t n »

(haart.atata a » H _ a » M h aaraal) with t u a a a r t itataa In

(l a l l al l i> < c « r . »a laxMta la a) (naart.atata • aalarga*))) wit a aupfort atatat i n

t " 1

i (*.» : - : v . p u > o r . » 1#

i < i-> C-.car'. *ta'.t x ^u»"^al
: c c t i l i l . i : •»
l t t ' l c i t ' 0 " : pram I fca

r t _ » ' . j » a « «

i-1 H i U - W a ' j a o i)))

The expert and knowledge engineer decide what piccc(s) of knowledge is suspect. In this
case wc sec that in Figure 6 the general rule that any sufferer of cor pulmonale has an enlarged
heart has been retracted. Notice, that in our implementation wc have acquired new information in
this process. Wc now believe dial at least some patients with cor pulmonale will not have enlarged
hearts. Moreover, wc have a justification of why this piece of knowledge is now believed —
namely that a counter example has been discovered.

5 It is in general impossible to determine automatically whether a set of propositions in classical first-order predicate calculus is

consistent. Any theorem provcr needs to contain hcunsucs to hall the search for a proof. Because these heuristics may terminate the

search for a proof loo early wc can never guarantee consistency for any set of propositions in K B .

Figure 6 Maintaining consistency in the respiratory diseases domain

[l i s t e a r t l t l e n t j [S h a w CM"") [Show n r t l l 1 o n | [Show preal c i t e] (Shew p « ^ m i o w / » r t < t c T t i Q f

(h u r L s t i U b U I . M l t h normal)
s u p p o r t - s t a t u e : i n
J u a t i f I c a t l o n : premise

(cor .pu)mona1« bM1_j»»(th)
s u p p o r t - s t a t u s : In
J u s t i f i c a t i o n : promise

(~ ((a l l x) (=> (c o r . p u l o w n a l e x) (h e a r t . a t a t e M e n l a r g e d))))
a u p p o r t - a t a t u a : I n
j u s t i f i c a t i o n : (((h e e r t . s t a t e b ! » _ * » < t h normal) ((a l l K) (=> (h e a r t _ s t a t e i

C (h e a r t _ » t a t t H e n l a r g e d)))) (cor .pula iona le b i 1 l . s r n t l h)))

((a l l «) (=> (h e a r t _ s t a t « M norma 1) (- (h e e r t . s t e t e * e n l a r g e d))))
s u p p o r t - i t a t u s : I n
J u a t t f I c a t l o n : premise

I
This type of integration ensures logical integrity. However, integration can mean a great

deal more than this. In the type of integration described above we have no idea whether our
integration provides better or more complete coverage of the domain application. There is no
concept of knowledge integration at the knowledge level — the role and function of knowledge
in problem solving. For a richer notion of integration we need to appeal to the idea of evaluating
die consequences of integration with respect to a model of problem solving.

Section 6 Evaluating and validating the results of acquisition
One obvious way of evaluating a knowledge base is by presenting different propositions in

die knowledge base to the expert. While this may in general allow one to detect certain false
propositions, it cannot guarantee that we find all errors. Moreover, wc are not guaranteed to find
missing pieces of knowledge. An alternative is to check die knowledge base against a number
of test cases, and to see whether it provides appropriate solutions for these cases. Adoption of
this approach leads to two further issues. First, one has to generate a comprehensive set of test
cases. Generating a satisfactory set of test cases is itself a non-trivial knowledge acquisition
task. Second, given inappropriate performance on a test case, the knowledge base needs to be
refined. If the system is able to derive a false conclusion, tools must be provided for retracting
whatever propositions were responsible for the conclusion, and, conversely, if the system fails
to derive a true conclusion, tools must be provided to add the relevant knowledge. We have
seen that ProtoKEW provides limited support for refinement via retraction of propositions using
RMS capabilities. Refinement by addition of missing knowledge is largely supported in our
ACKnowledge workbenches by appeal to die notion of model based validation.

As discussed in section 3 we arc aiming to build an active and directive knowledge
acquisition workbench. The evolution of such a system is a gradual process. Initially we
have used die knowledge engineer as the main controller of K A activity. Ultimately we hope
to encapsulate more and more knowledge about knowledge acquisition into our knowledge
engineering workbenches. CurrcnUy in ProtoKEW we have a mixed initiative system with control
very much in the hands of the knowledge engineer. The directive knowledge encapsulated in

Iteiv.-Eihliofhek

ProtoKEW is restricted to a number of compiled knowledge structures which can be used to
direct acquisition activity.

The type of structure that is available is illustrated in Figure 7 .

Figure 7 Directive models in ProtoKEW

The directive model under consideration is the interpretation model for heuristic classification
(Clancey, 1985). In the current version of ProtoKEW wc assume that selection of this object
has been made by the knowledge engineer from a library of such structures contained in the
workbench. It serves as a candidate for die type of problem solving observed in the application
domain6. The point to note about selection of this structure is dial it sets the context for subsequent
acquisition.

The directive model contains knowledge which can be used to inform acquisition. It shows
us both the inputs and outputs (representing as rectangles) of various processes (representing as
ellipses) that make up a generic type of problem solving. If we formulate our respiratory diseases
example in terms of this model wc would note four kinds of I/O classes: obscrvablcs, findings,
abstract solutions, and solutions. In our domain examples of knowledge that plays these roles
in problem solving might be

obscrvablcs — die patient has a respiratory rate of 25
obscrvablcs — the patient lias a blue hue to the tongue
findings — die patient has tachypnea
findings — die patient has central cyanosis
abstract solutions — die patient has COAD
abstract solutions — die patient has pneumonia
solutions — the patient has emphysema
solutions — die patient has staphylococcal pneumonia

In Shadbolt and Wiclinga (1990) wc describe how this selection might ultimately be automated.

The processes that operate on these metaclasses are: abstract, match and refine. Each of these
processes is in turn associated with a set of methods for effecting the change from input to
output. The process abstract is defined as abstracting observables into findings; a method which
can effect this is qualitative abstraction. Once again in our domain examples of knowledge that
plays these roles might be:

abstract — if the patient has a respiratory rate > 20 the patient has tachypnea
abstract — haemoptysis is the presence of blood in die sputum
match — if the patient has creamy yellow sputum then the patient may have staphylococcal
pneumonia
match — if the patient has cyanosis then the patient may have emphysema
refine — emphysema is a kind of COAD
refine — staphylococcal pneumonia is a kind of pneumonia

Expectations about the types of knowledge that may be implicated in problem solving is
precisely the sort of knowledge that can generate acquisition goals. In Figure 7 the abstract
solution metaclass has been selected and this has activated knowledge in ProtoKEW. This in turn
displays a knowledge acquisition goal tree in die window to the right of the directive model.
This goal tree indicates how knowledge might be acquired about this part of the expertise space.
The goal tree indicates that in this context we can use either laddering or a card sort to explore
die structure of the solution space. It is this knowledge that might lead the knowledge engineer
to select a particular acquisition tool for the task at hand. Knowledge acquired will be stored in
partitions which reflect the structure shown in die directive model.

As well as directing acquisition the directive model can serve as a template for the adequacy
of the knowledge accrued. For example, we might well discover that we have knowledge sufficient
to generate a wide class of data abstractions:

FEV1/FVC ratio < 70% is obstructive
peak expiratory flow rate = 500L/min is normal
central cyanosis is a blue hue to the tongue

But then discover that many of the findings are not used in die matching process — this may
well suggest incomplete coverage in this part of the problem solving model. In this sense models
could be used constandy in the refinement of knowledge bases.

An obvious area of development in ProtoKEW is to increase the range and use of directive
models. This has been done in die latest version of die KEW. Moreover, we have begun to
operationalise the directive models. We are implementing a language which describes the structure
of die directive models and serves as a means of invoking various K A tools to acquire certain
types of knowledge, and organise partitions of knowledge to reflect the process of problem
solving embodied in die model.

This has obvious implications for validation. It enables the knowledge engineer to determine
for parts of the overall problem solving process whether there is knowledge sufficient to solve
the role assigned to it. Validation and evaluation can take place in terms of local components
of expertise and reasoning. It is hoped that die extra principles of structure which the models
impose will be useful in dealing with die complexity of any knowledge base.

Section 7 Understanding acquisition techniques
Although a reasonable number of acquisition techniques are now available there are a number

of reasons to be worried about both the uptake and use of the techniques. To illustrate this point

I will examine the use of the repertory grid method in K A . The repertory grid is widely used
and has formed die basis of some influential KA environments.

In this techniques an expert is given, or is asked to generate, a set of elements. They arc
then usually presented with three elements, and asked to describe some way in which two arc
similar or different from the third. Thus the expert might be presented with the disease elements,
TB, lung cancer and asthma. The expert might judge that TB and lung cancer are similar in
that they arc often associated with haemoptysis (blood in the sputum). The dimension by which
these elements have been separated is called the construct. The ends of the construct arc called
poles and the construct is taken to be measurable, that is wc assume that elements can be rated
or ranked along die construct.

This process is continued with different triads of elements until the expert can dunk of no
further discriminating constructs. The result is a matrix relating elements and constructs. The
matrix is analysed using a statistical technique called cluster analysis. This reveals clusters of
elements and constructs which represent meaningful concepts. These concepts may not have
been articulated in the original elicitation session. We are also able to subject the results of
cluster analysis to die technique of entailment analysis (Gaines and Shaw, 1986) which generates
implications between constructs. For example, wc might find that die pole smoking related of die
construct smoking implicated implies dyspnea onset chronic on the construct onset of dyspnea.
Figure 8 shows our repertory grid tool.

Figure 8 The repertory grid tool in ProtoKEW

_pneu*otnorei IA . m
0 5 0

rent/dyspnea pereiele>nt

i - a » t i ittrva*
hrootc Orooth

. t ^ a i i / n o wneere
-nocturnal dyepnee/dyspnes anytime.
_ dttvaeee/dleoroer
- p u r u l e n t s p u l m assoc/purulent sputum unessoc

— dyspnea occupation rela ted/dyspnea occupation >
_ dyspnea acute onset/dyspnea enrome onset

""L sacking related/smofcinq unrelated
naamnotyete acsoe/hiiaaootysis urvjeaoc

M i l

j i j J J
* 3! !

i\ ij ;{ s
3j 2| lj &

j K X t u m a l dysonatayoyaonea a " y l « a e
_ d y » P « e * acute o n « « t / U y « u n « a chronic a n d
j » y * p n e a recurrenVdyaooe* persistent
_ 3 y * » n e a occuostlon relaUd/dyapnea occupation unrelated
_->hea*e/r>o

apwtua eeeoc/puruieAt eputue unassoc
its a s s o c / ^ s e » o p t y s i s unassoc
e ' * t e d / « p « o * '"a unrelated

oneufiot^gra*
lung cancer
pulmonary ant

Whilst the method can reveal very interesting patterns and results there are a number of areas
where bias and misinterpretation can occur. These include the selection of elements, constructs,
and measures. Thus elements need to be of die same cpistcmological type. Ideally they should be
representative for the purposes of elicitation. Wc have to take care lest die clement set chosen be
skewed or unrepresentative in some way. This is a difficult problem and considerable knowledge
of the domain may itself be required to select a suitable set. Constructs elicitation are no less

unproblematic. Yorke (1978) for example, has found differences depending on whether triadic
(sets of three elements) or dyadic (sets of two elements) are presented to the user in order to elicit
a construct. The labels that are ascribed to constructs and their poles are also problematic. The
knowledge engineer should be aware that these labels are likely to be highly polysemous. That
is they convey for the expert all sorts of assumptions, associations, implications, caveats and the
like. It is important that these meanings arc not lost or overlooked in the course of elicitation.
There are also problems inherent in the notion of measuring semantic distance. Consider our
example in Figure 8 above. Here we have a construct symptom onset — its poles are acute to
chronic. In fact in the domain this can range in time from the symptom appearing over the past
few hours to it having been present over months or years. What are we to do if an element has a
wide range of values? Moreover, not all constructs are well suited to a continuous interpretation.
Certain constructs have categorical values. These are more difficult to represent in continuous
dimensions. Finally, when the grids are subject to cluster analysis the numerical techniques
makes strong assumptions about the nature of semantic space.

A fuller description of the problems inherent in this technique can be found in Rugg and
Shadbolt (1991). We are not decrying these techniques. However, it is important to be aware of
the limits of any single method. This is one reason why we believe in combining techniques. It
might also be appropriate to consider reevaluating K A tools now that they are becoming widely
deployed. The aims of such research ought to be to produce an understanding sensitive of the
strengths and weaknesses of K A tools, techniques and methods in a variety of application contexts.

Section 8 Understanding experts and expertise

We have discussed a number of important issues central to K A . What of the experts
themselves? Work in the US by Arthur D Little, and in die U K at the University of Nottingham
has indicated the importance of expert differences. Kindle et al (1989) distinguish between:
"academics", "drones" and "samurai". Although in any particular situation one is likely to find
a mix of these types in any one individual expert.

To see how these categories can be important we will consider an application context.
Imagine we are building a system to assist in respiratory disease diagnosis. Our expertise will
come from a local teaching hospital, in such contexts a hierarchy of "experts" is often evident.
One can discern the "academic" who in this case might be the Professor of a Department of
Respiratory Medicine. The "drone" might correspond to the "houseman" or doctor who is on a
rotation around wards in a hospital. Both of these sorts of expert have qualified via traditional
medical training - the Professor will have made the subject his speciality. Finally, it is a medical
technician who will perform and initially analyse many of the routine tests — this is our "samurai".
The trairdng of the technician is not likely to be as long or as comprehensive as the other two types
of expert. However, they spend much of their working day rjerforming the same kind of task.

How are we to distinguish between these types of expert in terms of the expertise they might
embody? Certainly one important difference is in the desired outcome of any piece of problem
solving. The characteristic of the "academic" is the pursuit of the "true" solution - a conclusion
that follows from the systematic application of domain principles. For the "drone" the concern
is much more pragmatic - they require a solution that works given the resource constraints and
context within which they have to work. For the "samurai" the issue of an outcome is simply
performance - doing what they are expected to do, and to a level acceptable to the system within
which they operate.

In our example the characterisation given to a test, for example, a chest x-ray, is fundamen­
tally determined by the desired outcome. The medical technician may classify it as "abnormal"
and forward the case for further investigation. The houseman may look at the "abnormal" case
and decide that it is nevertheless not serious enough to warrant further testing because of the cost
associated with die tests that would determine the diagnosis completely. The Professor looking
at this same x-ray might decide that it represents an "interesting abnormality", it may present a
number of features not normally seen in this type of case.

The nature of die outcome is just one of a number of dimensions which distinguish die expert
types. Others include the problem solving environment in which they find themselves and die
types of problem they arc likely to encounter. The "academic" may have relatively large amounts
of lime to devote to a few pathological cases - seldom spending long on common or mundane
problems. The "drone" spends a lot of their time in a problem solving environment where there is
loo much information, the cases they deal with tend to reflect the mainstream. The "samurai" may
spend almost all of their time making judgements about a large number of cases. The judgements
they arc expected to make, however, arc between a relatively small number of categories. They
arc not called upon to provide detailed explanations and justifications for the decisions made.

The nature of the training between these various types of expert is very different. The
"academic" and "drone" are likely to have been taught by "academics" - die former going on
to specialise exclusively in one problem solving domain, whilst the latter may have received
additional training in a "journeyman" fashion. The "samurai" may have received some formal
instruction but by and large they lcam their problem solving from other "samurai".

Al l of the factors mentioned above obviously have an effect on die form in which die
knowledge is represented - both internally and in die way in which the expert can externally
communicate their knowledge. In the case of die "academic" die theory predominates. The
"academic" is likely to be fluent and articulate, able to talk about their problem solving - though
very often only in terms of die theory. For the "drone" heuristics dominate - the knowledge
may be systematic although it is likely that understanding of the deep principles of die domain
is patchy. Surface structure knowledge tends to predominate. For the "samurai" die knowledge
may be highly "automated" or "compiled". Consequently competence is implicit and the expert
may have great difficulty in articulating the basis of their expertise.

There is a crucial point in this for die knowledge engineer - depending on die type of expert
wc arc dealing with then die kinds of KA techniques that are most effective are likely to vary.
As will die form and content of die knowledge used by the cxpcrtt and in each case die context
of problem solving is all important.

A further depressing feature of much expert systems development is die neglect shown by
knowledge engineers of die principles of human cognition. Despite a number of researchers
writing explicitly on this material (Slater, 1987; Hoffman, 1987; Chi et al, 1988; Meyer and
Booker, 1991) little attention seems to be paid to the cognitive issues wc shall discuss below.
This is potentially disastrous. The problems indicated can be such as to vitiate any confidence
wc might have in die validity and robustness of the knowledge wc elicit.

One of the striking features of expertise is the amount of information which experts process
while developing their expertise, and die speed with which it can be recalled. A skilled radiologist,
for example, may have seen literally hundreds of thousands of X rays (Lcsgold et al, 1988); a
chess master will probably have seen a similar number of chess positions in various games (Chase
& Simon, 1973). The speed of recall is similarly impressive - in many domains it appears to be
virtually instantaneous, and die accuracy of recall can be equally high.

The impressive aspects of expert memory should not, however, blind us to the considerable
literature on limitations and bias in human memory. Memory is not a passive process like tape
recording; it is an acdve process, with many facets of selectivity and large scope for unconscious
bias.

Features such as primacy and recency effects, making die earliest and latest instances more
easily memorable than die intermediate ones, have been accepted as basic concepts in psychology
for decades. At a more sophisticated level, it has been known for over half a century that memory
of events or stories is subject to considerable distortion, to the point of reversing sequences of
events (cf Bartlctt 1958).

The selectivity of memory, its reconstructive nature and so on, mean that die knowledge
engineer should produce materials and approaches that can detect and correct these biases (cf for
example Hoffman 1987, Meyer et al 1990)

Not only is human memory subject to error, but also die way in which the information is
used. Humans are prone to systematic patterns of error across a number of apparendy simple
operations (Rips and Marcus 1977). For example, Modus Tollens states that if A implies B is
true, and not B is true then not A must be true. However, people, whether expert in a domain
or not, make errors on this rule. This is in part due to an inability to reason with contrapositive
statements. Also in part it depends on what A and B actually represent. In other words, we
arc affected by the content.

There have been many explanations for this sort of data but what is interesting is that
virtually all the research in this area shows dial at a fundamental level the basic laws of logic
and associated proof strategies are difficult for people to apprehend and follow (Wason 1961;
Johnson-Laird 1983).

This means dial one cannot rely on die veracity of expert reasoning. In assembling acquisition
material these kinds of experiment indicate die need to keep chains of implication simple when
asking die expert for knowledge or asking die expert to review or critique existing material.

There is also a considerable literature on human handling of uncertainty, most notably that
by Kahncman and Tversky (e.g. Kahncman, Slovic & Tversky, 1982). This body of research has
shown unequivocally dial in many situations people arc remarkably poor judges of probability,
and that experienced experts may be demonstrably inferior in performance to even the crudest
linear models. Problems arise when experts are asked to provide certainty values, judgements
of probability and weights of evidence. People arc known to undervalue prior probabilities,
to use die ends and middle of the probability scale rather than the full range, and to anchor
their responses around an initial guess (Kahneman et al, 1982). Cleaves (1987) and Hink and
Woods(1987) both review these sorts of problems and make suggestions about how these biases
might be ameliorated in die context of K A . The KA community must remain cogniscent of the
important findings emanating from psychology.

Section 9 Concluding remarks
In this paper I have tried to detail a number of key issues that confront die knowledge

engineering enterprise. I have concentrated, in particular, on die problems inherent in providing
computational support for die KA process. I have explored these in die context of our own
experience in building acquisition workbenches.

There is a large and difficult research agenda ahead of us. Nevertheless, in a number of areas
wc can sec the emergence of ideas that will, I believe, assume a central role in the future. These
include: die deployment of model based acquisition methods, reuse of knowledge structures

within and between application domains, and the development of knowledgeable knowledge
acquisition tools.

Finally, we should not forget that the formative influences on knowledge acquisition have
been eclectic and interdisciplinary. In the attempt to secure a sound basis for knowledge
engineering we must retain this broad based view of our subject.

Section 10 References

1. Anjewierden, A. , Wielemaker, J. & Toussaint, C. (1990) Shelley — Computer Aided
Knowledge Engineering. In B. Wielinga, J. Boose, B. Gaines, G. Schreiber & M . van
Someren, (ed), Current Trends in Knowledge Acquisition, pages 313-338. Amsterdam: IOS
Press.

2. Boose, J.H., Shema, D.B and Bradsi, J .M. (1989) Recent progress in AQUINAS: a knowledge
acquisition workbench, Knowledge Acquisition, volume 1(2), Academic Press, London.

3. Breuker. J. &. Wielinga, B. (1987) Use of models in die interpretation of verbal data.
In AJL. Kidd, (ed), Knowledge Acquisition for Expert Systems, a practical handbook, New
York: Plenum Press.

4. Breuker. J. &. Wielinga, B. (1989) Model driven knowledge acquisition. In P. Guida and
G. Tasso, (eds), Topics in the design of expert systems, Amsterdam:. North Holland.

5. Burton, A. , Shadbolt, N . , Hedgecock, A. & Rugg, G. (1987) A formal evaluation of
knowledge elicitation techniques for expert systems. In D Moralee, (ed), Research and
development in expert systems, IV, 136-145.

6. Burton, A. , Shadbolt, N . , Rugg, G. & Hedgecock, A. (1988) Knowledge elicitation techniques
in classification domains. ECAI-88, 85-90

7. Bylander, T. & Chandrasekaran, B. (1988) Generic tasks in knowledge-based reasoning:
The 'right' level of abstraction for knowledge acquisition. In B. Gaines and J.Boose, (eds),
Knowledge Acquisition for Knowledge Based Systems, volume 1, pages 65-77. Academic
Press, London, 1988.

8. Chase, W.G. & Simon, H.A. (1973) Perception in Chess Cognitive Psychology, 4, 55-81
9. Chi, M . , Claser, R. and Farr, M . (Eds) (1988) The Nature of Expertise. New Jersey: L E A .
10. Clancey, W. (1985) Heuristic classification. Artificial Intelligence, 27:289-350.
11. Clark, P. & Niblett, T. (1989) The CN2 induction algorithm. Machine Learning Journal,

3(4), pages 261-283.
12. Cleaves, D. A . (1987) Cognitive biases and corrective techniques: Proposals for improvin-

gelicitation procedures for knowledge-based systems. International Journal of Man-Machine
Studies, 27,155-166.

13. Eshelman, L. (1989) MOLE: A knowledge-acquisition tool for cover-and-differentiate sys­
tems. In S. Marcus, (ed), Automating Knowledge Acquisition for Expert Systems, pages
37-80. Dordrecht: Kluwer Academic Publishers.

14. Gaines, B. R. & Shaw, M . L. G. (1986) Induction of inference rules for expert systems.
Fuzzy Sets and Systems, 8 (3), 315-328.

15. Ginsberg, M . L. (1991) Knowledge Interchange Format: The KIF of Death. A l Magazine,
12(3), pp. 57-63.

16. Hart, A . (1986) Knowledge Acquisition for Expert Systems. London: Kogan Page.
17. Hink, R. F. and Woods, D. L . (1987) How humans process uncertain knowledge. A l

Magazine, 8, 41-53.

18. Hoffman, R. R. (1987) The Problem of Extracting the Knowledge of Experts from die
Perspective of Experimental Psychology. A l Magazine, 8, pp. 53-66.

19. Johnson-Laird, P. N . (1983) Mental models. Cambridge. Cambridge University Press.
20. Kahn, G„ Nowlan, S. & McDermott, J. (1986) Strategies for Knowledge Acquisition. PAMI

Special Issue on Knowledge Representation.
21. Kahncman, D., Slovic, P. and Tversky, A . (Eds) (1982) Judgement under uncertainty:

Heuristics and biases. New York: Cambridge University Press.
22. Karbach, W., Linstcr, M . & Voss, A. (1990) Model-Based Approaches : one label —one

idea? In B. Wielinga, J. Boose, B. Gaines, G. Schreiber & M . van Someren, (ed), Current
Trends in Knowledge Acquisition, pages 313-338. Amsterdam: IOS Press.

23. Kidd, A. L . (Ed.) (1987) Knowledge Acquisition for Expert Systems: A Practical Handbook.
New York: Plenum Press.

24. Kindle, K. W., Cann, R. S., Craig, M . R. and Martin, T. J. (1989) PFPS: Personal Financial
Planning System. In H. Schorr and A. Rappaport, (eds), Innovative Applications of Artificial
Intelligence MIT Press: Cambridge, Mass.

25. Lesgold, A., Rubinson, H. , Feltovich, P., Glascr, R., Klopfer, D. and Wang, Y . (1988)
Expertise in a complex skill: diagnosing X-ray pictures. In Chi, M.T.H., Glaser, R. & Farr,
M.J. (eds) The Nature of Expertise Lawrence Erlbaum; London.

26. McAllcster, D. (1980) An oudook on truth maintenance. Technical report, MIT A l L A B .
27. Major, N . & Reichgelt, H. (1990) Alto: An automated laddering tool. In B. Wiclinga,

J. Boose, B. Gaines, G. Schreiber & M . van Someren, (ed),Current Trends in Knowledge
Acquisition, pages 222-236. Amsterdam: IOS Press.

28. Marcus, S. (1988) Automatic knowledge acquisition for expert systems. New York: Kluwer.
29. Meyer, M . A. , Booker, J. M . and Bradshaw, J. M . (1990) A flexible six-step program for

defining and handling bias in knowledge elicitation. In B. Wielinga, J. Boose, B. Gaines,
G. Schreiber, M . van Someren, (eds), Current trends in knowledge acquisition. Amsterdam:
IOS Press.

30. Meyer, M and Booker, J. (1991) Eliciting and analysing expert judgement: a proactical
guide. Knowledge Based Systems Vol 5, Academic Press, London.

31. Michalski, R.S. (1969) On die quasi-minimal solution of hte general covering problem.
Proceedings of the 5th International Symposium on Information Processing (FCIP 69), Vol.
A3 (Switching Circuits), Bled, Yugoslavia, pages 125-128.

32. Motta, E., Rajan, T., Domingue, J. & Eisenstadt, M . (1990) Methodological foundations
of KEATS, die knowledge engineer's assistant. In B. Wielinga, J. Boose, B. Gaines, G.
Schreiber & M . van Someren, (cd),Currcnt Trends in Knowledge Acquisition, pages 257-
275. Amsterdam: IOS Press.

33. Musen, M . A. , Fagin, L . M . , Combs, D.M. & Shortliffc, E.H. (1987) Use of a domain model to
drive an interactive knowledge-editing tool. International Journal of Man-Machine Studies,
26, pages 105-121.

34. Ncchcs, R., Fikcs, R., Finin, T., Gruber, T., Paul, R., Senator, T. and Swartout, W. (1991)
Enabling Technology for Knowledge Sharing. A l Magazine, 12(3), pp. 36-56.

35. Reichgelt, H., Major, N . & Jackson, P. (1990) Commonsloop: The manual. Technical report,
A l Group, Dcpt Psychology, University of Nottingham.

36. Reichgelt, H. and Shadbolt, N.R. (1991a). Knowledgeable knowledge acquisition. In L.
Steels and B. Smith, Eds. AISB91 Springer-Verlag

37. Rcichgclt, H. and Shadbolt, N.R. (1991b). ProtoKEW: A knowledge-based system for
knowledge acquisition. In D, Slceman and N. Bemscn, Eds. Research directions in cognitive
science volume 5: Artificial Intelligence. Lawrence Erlbaum.

38. Rips, L. J. and Marcus, S. L . (1977) Supposition and the analysis of conditional sentences.
In Just, M . A. and Carpenter, P. A. (eds), Cognitive processes in comprehension. Hillsdale,
NJ: Erlbaum.

39. Rugg, G & Shadboll, N. (1991) On die limitations of the repertory grid technique. Technical
report, A l Group, Dept Psychology, University of Nottingham.

40. Shadbolt, N . & Burton, M . (1989) The empirical study of knowledge elicitation techniques.
SIG ART Newsletter, 108, April 1989, A C M Press.

41. Shadbolt, N. & Burton, M . (1990) Knowledge elicitation. In J. Wilson and N. Corlett, (eds),
Evaluation of Human Work: A Practical Ergonomics Methodology, pages 321-346. Taylor
and Francis.

42. Shadbolt, N. & Wielinga, B. (1990) Knowledge based knowledge acquisition: die next
generation of support tools. In B. Wiclinga, J. Boose, B. Gaines, G. Schreiber & M . van
Someren, (ed), Current Trends in Knowledge Acquisition, pages 313-338. Amsterdam: IOS
Press.

43. Slaucr, P. E. (1987) Building expert systems: cognitive emulation. Chichester: Ellis
Horwood.

44. Steels, L. (1990) Components of expertise. The Al Magazine, 11: 30-62.
45. Wason, P. C. (1961) Response to affirmative and negative binary statements. British Journal

of Psychology, 52 ,273-81.
46. Welbank, M . A . (1983) A Review of Knowledge Acquisition Techniques for Expert Systems.

British Telecom Research, Martlcsham Heath.
47. Yorkc, D.M. (1978) Repertory grids in educational research: some methodological consid­

erations. British Journal of Social and Clinical Psychology, 9, 108-21.

Mapping Expert Behavior onto Task-Level Frameworks:

The need for "Eco-Pragmatic" Approaches

to Knowledge Engineering

Rolf Pfeifer, Thomas Rothenfluh*, Marlcus Stolze & Felix Steiner
Al Lab, Computer Science Department

University of Zurich, Winterthurerstrasse 190
CH-8057 Zurich, Switzerland

Abstract

The main goal of this paper is to explore the possibilities of exploiting
psychological methods for the purpose of knowledge engineering. Hypotheses are
presented why both the pure "psychological" and the pure "engineering" positions
are not viable for building expert systems. A "middle-out" strategy is proposed that
preserves the best of both worlds while minimizing the problems of each. This
"middle-out" strategy consists of the application of so-called "task-level
frameworks". However, these frameworks do not sufficiently support one of the
most crucial tasks in the knowledge engineering process, namely the mapping of
the actual expert behavior onto conceptual models. In this paper, a new method
which makes this process easier and more reliable is described and a standardized
several-step procedure for mapping expertise-in-action protocols onto a task-level
framework is illustrated with a case study. It is concluded (a) that protocol analysis
is a good starting point for developing tools to support the knowledge engineering
process—if appropriate methods are available, and (b) that methods are only
appropriate if they are ecological on the one hand and pragmatic on the other.

Introduction

For more than a decade a sometimes heated debate has been going on over the problem of
knowledge acquisition in building expert systems. Acquiring knowledge from a domain expert
was recognized early on as a major task in developing an expert system. In fact it was
considered the most time-consuming one and thus the term "knowledge acquisition bottleneck"
was coined.

To cope with this bottleneck, a large variety of methods have been suggested—some
involving principles from psychology, others mostly inspired by computer science and
software engineering. The former typically assume that a human expert has a central role in the
knowledge engineering process. The main idea underlying this paradigm is that a successful
expert system wi l l have to include as much expert knowledge as possible, and that this expert
knowledge has to be extracted from a human expert. Proposals along these lines typically deal
with (a) interviewing techniques, (b) various knowledge elicitation techniques—from
observation to thinking-aloud methods, to video-recordings, to expert-guided novice problem

* Currently: CIS/LAIR, Ohio State University, U S A

solving (e.g., Diaper, 1989), (c) methods for knowledge modeling, and (d) methods for
protocol analysis.

Among the engineering-inspired approaches are the following: (a) Machine-learning
methods, for example rule-induction from a set of examples, (b) model-based reasoning
techniques (first principles approach, e.g., Davis, 1984, de Kleer, 1984), or (c) approaches
which focus on the aspect of decision support (e.g., Sol, Takkenberg & DeVries, 1987), rather
than on modeling expertise.

Proponents of the psychological perspective argue that human beings are the best problem
solvers known and it is thus best to model a problem solving system after humans. Moreover,
users of expert systems are—since they are human beings—most comfortable with a system
behaving like a human problem solver. If the system behaves like a human expert the
explanations wi l l be more natural and thus more comprehensible to the user. Moreover, if the
knowledge-base is to be tested, psychological methods can be applied, that is, the system's
solution and solution path can be compared those of experts in natural ways. We wil l situate
proponents of this approach in the expert camp.

Opponents of this "expert centered" view have put forward a number of arguments. First,
so the argument, it is not sensible to model the problem solving behavior of human experts
since different experts may differ widely in how they solve a particular problem. Second, the
knowledge-base developed in this way wi l l always be incomplete—it is hard to determine the
boundaries of a system. Third, what the user of a system needs is not human expertise in the
first place, but rather a system which supports his or her work. Fourth, it is very difficult for
experts to express and verbalize their knowledge and thus it is also very difficult for the
knowledge engineers to elicit this knowledge. And, last but not least, even experts may make
errors or are unable to correctly recall all their behaviors and reasoning steps—in short, they are
subject to the same psychological limitations as all other human beings. Proponents of this
view advocate the use of systems and software engineering for the development of expert
systems and are thus to be placed in the engineering camp.

While there are hard-liners in each camp there is—as is so often the case—a "middle-out"
strategy. It consists in the application of so-called task-level frameworks. This strategy will be
outlined below.

We wil l proceed as follows. First it is argued that neither a pure psychological nor a pure
engineering approach will work, but that a "middle-out" strategy has to be applied which allows
for both a more psychologically sound but still application-oriented knowledge engineering
process. One example of such a task-level framework, the componential framework, is then
introduced as a possible means to bridge this gap. Next, problems with task-level frameworks
are listed and possible approaches to deal with them are outlined. This is followed by a
discussion of a major problem which is not given adequate treatment in the literature, the one of
mapping expertise onto a task-level framework. How this process can be supported is
discussed in general. More specifically it is shown how protocol analysis can be exploited to
develop appropriate methods and tools to support the knowledge engineer in this mapping
activity. A concrete method for protocol analysis is then proposed and conclusions are drawn.

Three basic hypotheses concerning expert systems development

Earlier we stated that there are—in essence—two camps, the one who wants to include expert
knowledge (the expert camp) and the one who does not (the engineering camp). Both claim

that their approach to building expert systems is the best one. We claim that neither camp is
correct and that a third strategy should be used. The following three statements of the
hypotheses wil l be used as a starting point for our discussion. They are also intended to clarify
the reasons why there is a large gap between them and include a proposal on how to get the best
of both worlds.

Hypothesis 1: Psychological methods, in particular the ones from cognitive
psychology, typically yield results which cannot be directly exploited for expert
system construction because they serve a different purpose, and are frequently too
specific and low level.

Hypothesis 2: The pure engineering approach wi l l not work because of the
fundamental epistemological problems one needs to cope with in the domains
requiring intelligent behavior.

Hypothesis 3: If appropriate psychological methods were available they would be
used by knowledge engineers. What is needed are methods which are at the same
time ecological and pragmatic, that is, we need an eco-pragmatic approach.

Hypothesis 1: As is well-known the methods of cognitive psychology have been criticized
as being too narrow and thus producing only irrelevant results (e.g., Abelson, 1981; Neisser,
1982; Norman, 1988). Abelson and Neisser—although they are involved in very different
sorts of research—argue both in a sense for a direction of psychology that is more ecological,
that is, a kind of psychology which focuses on natural settings and avoids laboratory situations
which are too artificial. Although this "ecological view" of psychology is getting to be more
and more important there is still much skepticism if not scorn of this paradigm.

If we peruse the large body of literature of psychological studies of expert knowledge or
problem solving in general, we can draw a number of conclusions (for reviews of the field of
psychological expertise research, see Holyoak, 1990, or Waldmann & Weinert, 1990):

(a) The studies mostly pursue the scientific goal of understanding (rather than
engineering systems) and largely leave open what the results imply for the
construction of problem solving systems. Examples are the investigations by
Newell & Simon (1972), and Dorner (1976) on problem solving, or the studies on
novice/expert comparisons (e.g., Ch i , Feltovitch & Glaser, 1981, Elstein,
Shulman & Sprafka, 1978, Patel & Groen, 1986), to mention but a few.

(b) The studies are frequently not sufficiently ecological to be of relevance to expert
system construction. For instance, they frequently focus on tasks which are too
specific or are taken from domains which only remotely resemble the sorts of tasks
that are of interest for expert system development, such as chess, memory, writing,
motor behavior, algebra, high school physics, geometry, sports, etc., and which do
not easily generalize to other domains. Moreover, many of them are still confined
to controlled laboratory-like situations.

(c) Although some studies have resulted in methods for actually building systems,
they are at times motivated and used in a psychologically somewhat naive way
(e.g., Repertory Grids or Laddering techniques).

(d) There is a lot of research and there are many methods in psychology that try to
capture real-world problem-solving behavior. Protocol analysis is used here as a
pertinent example and wil l be discussed in more detail later on.

We would like to stress that from our discussion it does not follow that psychological studies of
expertise are uninteresting, quite the contrary. In fact, the review of Holyoak (1990) is highly
informative since—among other things—it dismantles a lot of folklore about expertise (e.g.,
that experts always solve problems with more ease than novices, that performance increases
continuously with practice, etc.). We are only saying that psychological studies have not
contributed much to improve knowledge engineering practice because of the methodology
applied. We also want to mention that since psychological studies of expertise add to our
understanding this might eventually lead to building better systems.

Hypothesis 2: Because of the difficulties just outlined, a pure engineering approach to
building expert systems has been proposed. "Engineering" in this context means that principles
from systems and software engineering, and computer science in general are to be used. The
resulting system consists of a collection of algorithms (mainly search, optimization, Bayesian
classifiers) that are linked to data bases which are, perhaps, augmented by a number of
production rules to support the interaction between user and data base. Another kind of "pure"
engineering approach is model-based reasoning. Model-based reasoning tries to model the
problem domain from "first principles" (Davis, 1984; de Kleer, 1984), i.e. without regard to
the ways in which this model is to be used. Of course, since these principles are typically given
by the laws of physics, for example of electronic circuits, and since the way a device works is
described in the technical manuals, no human expert is needed. At the most, the human expert
might be asked about technical details of a device, but his expertise of problem solving is not of
interest.

The reason why these pure engineering approaches do not work well outside the research
arena is that they do not give adequate consideration to the epistemological limitations that
humans and computers have (Steels, 1990; see also Simon's concept of "bounded
rationality"—Simon, 1969). Very briefly, these limitations concern time and space,
observation, and theory formation. Time and space are always limited: there is only so much
time that can be allocated to make decisions, and the amount of information which can be stored
is restricted (resource limitation). Thus a search process which would have to explore too
many alternatives, or computations which are too time consuming cannot be used. Observation
must be done through interaction with the real world. Sensory organs are prone to error and—
always, without exception—only partial information is available. Moreover, observations take
time and effort and only a limited number can be performed. Since theories—again—have to
be developed by interacting with the environment (physical, social) using limited resources,
they wil l , by necessity, always be restricted.

A pure engineering approach wil l only work under highly unrealistic assumptions. First, the
assumption must be made that all measurements and observations are correct and that all the
measurements which are necessary for a particular type of model can be made within the time
and cost limitations allocated to the problem solving process—an assumption which only holds
in the most trivial cases. Second, the use of such models typically leads to combinatorial
problems which are ignored in this approach. And third, it is assumed that indeed a good
domain theory and thus precise models are available. This assumption is also only true in a few
restricted, predominantly technical domains.

Hypothesis 3: Given that neither the "cognitive psychology solution" nor the "pure
engineering solution" seem to work as methods for building real life expert systems, an
alternative is needed. The assumption is that i f appropriate methods were available they would

be used. The requirements for these methods have to be (a) ecological, that is they must be
applicable with reasonable effort to realistic natural settings in which complex problem solving
takes place, and they (b) must be directed toward building working expert systems, that is,
they must be pragmatic. In other words, what we propose is an approach we wil l call "eco~
pragmatic".

If behavior is complex and subject to large variations, such as expert problem solving, it is
difficult to devise tightly controlled experiments without severe interference with the process to
be investigated. Reducing the problem to some highly constrained subtasks such as
recognizing specific patterns (e.g., in sound perception, or patterns of pieces of LISP code) is
likely not to provide the data needed to design a system for the complete problem solving
process.

Alternatively, methods are used which are not so much directed at studying expert behavior
but rather at eliciting certain parts—typically the declarative ones—of expert knowledge.
Examples are card sorting and grid laddering techniques for knowledge acquisition. These
techniques are a step in the right direction: First, they can be applied to real expert knowledge
with reasonable effort (the ecological aspect), even though only a small part—static concepts
and structures—of the expert knowledge is accessible in this way. Second, this knowledge can
be used—more or less directly—to actually build a system (the pragmatic aspect). On the
negative side, they ignore the vital aspects of problem solving knowledge, pf control, and of
strategies and wil l not be further studied in this paper.

Steps toward an "eco-pragmatic" approach: Task-level frameworks

Overview: We believe that knowledge engineering is paradigmatic for an interdisciplinary eco-
pragmatic field: it is neither pure engineering (as the term engineering might suggest), nor is it
pure psychology. There are psychological theories of problem solving (e.g., Newell & Simon,
1972, Dorner, 1976) but they are usually difficult to apply to a concrete problem with
reasonable effort. However, out of the expert systems community, a number of proposals have
been made for so-called task-level frameworks. They_comprise computational theories or
skeletons of theories of problem solving which are thus directly geared towards system
development. Examples of such frameworks are the theory of heuristic classification
(Clancey, 1985), generic tasks (Chandrasekaran, 1986), problem solving methods
(McDermott, 1988), K A D S (Breuker & Wielinga, 1989), and the componential framework
(Steels, 1990). Although the main purpose of these frameworks is the development of
systems, they are based partly on psychological evidence. But they are not meant to be
psychological theories of problem solving. Rather they are theories of problem solving which
are potentially applicable to humans or to machines. As such they provide appropriate means
for performing knowledge acquisition. Let us briefly illustrate this point.

An example - the "componential framework": In the "componential framework" (Steels,
1990), so-called tasks are mapped onto problem solving methods and actions. Actions are
methods which are executable without further decomposition. If an action can be found to
perform a specific task, it is executed. A simple example of an action, i.e. an executable
method, is "ask user" which performs data acquisition. This method can be applied whenever
data are needed which cannot be deduced or whose deduction would be too costly. If no
executable method is available the problem is recursively further decomposed into subtasks
until executable methods are available. The task "diagnosis", for example, is decomposed into
the subtasks "gather initial data" (inquire about the symptoms), "restrict context" (using general

information about the patient's age, medical history etc. and the initial symptoms, narrow
down context), "select" (select a particular diagnostic class, i.e. a disease). Now, for the
selection step, many methods are potentially applicable. Examples are "linear search",
"hierarchical classification", "weighted evidence combination", "Bayesian classification",
"discrimination" and "association". Which one of these methods is selected by the expert
depends on the pragmatic features of the task. Pragmatic features are concerned with the
amount, the quality, the availability and the cost of the input data, and the way in which the
desired output is defined (e.g., as concepts with necessary and sufficient conditions, or as
prototypes). The idea is to ask the expert about the sorts of problem solving methods he knows
about (e.g., Vanwelkenhuysen, 1989). At each decision point he typically has a choice of
several methods one of which he has to select. He can be asked about the reasons for selecting
one method over others. The important part here is that these reasons do not have to
correspond to the "real" reasons for choosing a particular method. Even post-hoc
rationalizations (e.g., Nisbett & Wilson, 1977) are fine as long as they are plausible and
consistent. In other words, the reasons do not have to be psychologically valid. Plausible
means that a potential user should be able to follow the rationale, and consistent means that
there should be no contradictions between the selection criteria in different situations. In this
way such a task-level framework can be used for knowledge acquisition purposes, that is, a
problem solving program may be developed through the interaction with a domain expert
without developing a psychological model of his problem solving behavior. Nevertheless, we
are applying, in a sense, a psychological method.

In addition to providing a structure at the conceptual level some task-level frameworks
include methods for mapping—at least parts of—the task-level analysis onto a computational
framework (Vanwelkenhuysen & Rademakers, 1990). But this aspect is of less concern for
the current arguments and will therefore not be further discussed.

Problems with task-level frameworks and what can be done about it

Problems

A number of problems with task-level frameworks are discussed by Steels (1990). They
include the fact that some are at too high a level of abstraction and thus leave many important
aspects unspecified (e.g., Clancey's inference structures leave the nature of the "heuristic
match" entirely unspecified) and others make too many assumptions about the problem solving
process (e.g., Chandrasekaran's "generic task approach"). Another problem—highly relevant
to our argument—concerns the lack of consensus between the different frameworks. It is
generally agreed that an abstraction level above the one of programming is needed, a proposal
which was originally made by Newell (1982) in his "knowledge level" hypothesis. But there is
only little agreement on the details (see below). A last problem we would like to mention—and
we consider it to be a major one—is the difficulty of applying task-level frameworks to a
specific problem at hand, or stated differently, mapping expert behavior onto the frameworks.

Experience with such frameworks and careful analysis of the literature shows that —
although such frameworks are a major step forward—important parts are still left open. In
trying to reconstruct the cognitive processes of the knowledge engineers there are major gaps to
be filled in. For example, in the description of the M O L E system (Eshelman, 1988) it is not
specified how a diagnostic problem is mapped onto the problem solving method "cover-and-
differentiate". It seems that this is largely done by "magic". What may be obvious to a good

knowledge engineer who has worked with a specific framework for a long time, remains
obscure to an outsider.

Approaches

There are essentially two ways in which these problems can be approached, namely (a) to
extend or refine task-level frameworks, or (b) to study the process of mapping expertise onto
task-level frameworks and develop ways of supporting this activity.

(a) Extending and refining task-level frameworks: It is clear that the final word on task-level
frameworks is not out and that extensions and refinements in several ways are still possible,
and to some extent needed. However, it is an interesting observation that, even though the
debate about the details of the various frameworks has been going on now for more than half a
decade, there is still a striking lack of consensus, as pointed out before. The main reason
seems to be that the knowledge level, which corresponds directly to Dennett's "intentional
stance" (Dennett, 1971), is highly underconstrained and no agreement can be achieved on the
precise nature of the constraints. There is an intrinsic arbitrariness at the knowledge level
which wi l l not go away, no matter how long one discusses the problems. So, one is lead to the
conclusion that, perhaps, the extending and refining the frameworks and to search for the
"right" one to eventually reach consensus, may not be the most appropriate goal. Experience
has shown that most task level frameworks can lead to usable practical systems. The main
difficulty which remains in all frameworks as a matter of principle (not merely because they are
insufficiently developed) is mapping the human expertise onto the framework. If the
framework is highly abstract the mapping process is severely underconstrained and thus the
application to a particular problem is very difficult. In order to provide a high degree of detail,
a great many models wi l l have to be developed and some of them wi l l always be missing or
incomplete. Even i f many such detailed models were available, the selection of the appropriate
structures would become another major problem for the knowledge engineer. But irrespective
of the level of detail, the mapping problem remains. And it seems to hold for all frameworks
that if you are clever, you can successfully apply the framework, if not, you fail. As far as we
know this mapping problem has not or only marginally been addressed in the literature. And
this leads us to the second line along which improvements are possible, which in our view, is a
promising one.

(b) Study and support of the mapping process: Rather than trying to refine the framework by
adding many types of models, we propose the following strategy. Start with a framework from
the literature: which one is not very essential. Study the ways in which experienced knowledge
engineers go about applying it to a particular problem. It is exactly in the analysis phase where
psychological methods wi l l be highly useful. Since the complexity of this task is so
overwhelming, the construction of an automated system is out of the question. It should be
pointed out that the goal in this case is not to develop a computational model of knowledge
engineering expertise but to better understand the process in order to support it by appropriate
computerized tools. Since task-level frameworks have been developed for modeling problem
solving behavior, we wi l l apply one of them, the componential framework, to this analysis.
This is a kind of "recursive" analysis of a task-level framework, similar to what has been
suggested by Bouchet, Brunet & Anjewierden (1989). So far nothing has been specified about
the particular method by which the experts, in our case the knowledge engineers, should be
studied. A more or less unbiased registration of the problem solving behavior of experts can be
obtained with expertise-in-action protocols, that is, think-and-talk-aloud protocols of experts

produced during their problem solving. We wil l use such protocols as empirical material for
mapping expert behavior onto the structures required by the componential framework.

A note on protocol analysis

Protocol analysis does not have a high reputation for being useful in the knowledge engineering
process. So we need to argue why we suggest to use it all the same. First we wil l point out
why it is not popular in expert systems circles and second we wil l show why we still think it
should be used. Perhaps it is worth mentioning that there are different ways to perform
protocol analysis. Two main approaches are content analytic methods and theory-based ones.
The former essentially perform statistical or interpretative analyses on the text (e.g., Holsti,
1969; Mayring, 1990), while the latter provide theoretical frameworks (such as our task-level
frameworks) onto which the protocol needs to be mapped. The remarks in the sequel only refer
to the latter type. Moreover, the kinds of protocols we are interested in most are "expertise-in­
action" ones.

Why protocol analysis is unpopular: There are a number of reasons why protocol analysis is
not popular among knowledge engineers. First, to most knowledge engineers the benefit from
protocol analysis does not justify the effort required (transcription, a lot of detailed work, see
e.g., Ericsson & Simon, 1984). A factor contributing to the low cost-benefit ratio is the simple
experience that protocol analysis is hard. The main reasons why protocol analysis is hard are:
(a) There are many omissions in the text. They have to be completed somehow to arrive at a
coherent "causal story" (see our example below) even though there is often insufficient support
for a particular assumption, (b) Assignments of instances to abstract variables (concepts,
categories) of the framework is initially to a large extent arbitrary, but gets successively more
constrained. Information appearing later in a protocol may invalidate previous assumptions
which may entail significant revisions of the initial assignments (truth maintenance), (c) Many
things have to be kept track of in parallel. This means that there is a considerable "cognitive
load" on the protocol analyst. In particular revisions are cognitively costly and tend to be
avoided.

A second reason why protocol analysis is unpopular has to do with the large variations in
expert behavior. In other words, since protocols from different experts on the same task tend
to be very different, the respective analyses wi l l also differ widely and it is not clear what
should be included in a system. A third reason is the incompleteness of the knowledge gained
from protocols. A protocol wil l only yield a very small part of the knowledge needed to build a
system (e.g., Shadbolt & Burton, 1989). A fourth reason concerns methodological problems
related to the nature of expertise, that is, it is questionable whether the method of protocol
analysis can be used to assess real expertise since it always starts from verbal accounts (Nisbett
& Wilson, 1977). A fifth one is that, given a particular protocol and a task-level framework,
different knowledge engineers would come up with different interpretations.

Why protocol analysis can be beneficially applied: In spite of these difficulties we argue that
protocol analysis can applied with great benefit. But we don't argue that it should be used
exclusively. It is useful for certain purposes like getting an initial idea of expert behavior in a
domain, in particular where control knowledge (when to do what), and basic difficulties are
concerned. It can also be helpful in trying to determine where the expert or the potential user
could be most effectively supported by tools. However, it can, for the reasons given before,
by no means replace the use of other methods.

Let us now briefly go over the caveats against protocol analysis and suggest remedies where
possible. The reasons given for why protocol analysis is hard can mostly be traced back to
insufficient methodology and insufficient tools. For example, there are currently no guidelines
as to how omissions are to be dealt with. We wil l suggest one way to deal with this problem.
Second there are only limited tools available to manage revisions, but this is a practical problem
rather than a fundamental one and no major difficulties seem to prevent the development of
appropriate tools. The fact that many things have to be kept in mind in parallel could perhaps
be supported by graphical means, but more investigation is needed on this point. Some tools
for supporting protocol analysis already exist (e.g.. the " K O D Station™"—Vogel, 1990; tools
within K A D S or Shelley—Breuker & Wielinga, 1989, Bouchet, Brunet, & Anjewierden,
1989). They provide powerful sets of tools but little guidance on how to map protocol
elements to predefined conceptual elements. Our own view is expert centered rather than tool
centered, that is, in our view tool support should start from an analysis of the user (in this case
the knowledge engineer) rather than from a catalog of things compiled by a knowledge engineer
that he or she thinks might be useful to have.

The problem of variability in expert behavior cannot be readily solved. In any case this is a
problem for knowledge acquisition in general and not only for protocol analysis, although in
expertise-in-action protocols individual differences tend to show up most strongly. There are
methods for integrating knowledge from different experts (e.g., Dym & Mittal, 1985) but they
are not without problems (e.g., Shaw & Gaines, 1989). The completeness of the knowledge
base can be assured by using additional methods. In any case, the goal of protocol analysis is
not to cover all the knowledge needed to build a system. The methodological point, that it is
questionable whether protocols do indeed capture expertise, is a fundamental one and will never
completely disappear, but it seems to apply least (compared to other forms of protocols) to
expertise-in-action protocols. The last point, the disagreement between different protocol
interpreters, can be taken into account by an appropriate methodology (see below).

In conclusion, for most problems with protocol analysis it appears that there are practical
solutions. But there is one highly significant reason why protocol analysis wil l—in spite of
difficulties—remain an important method: that is its highly ecological nature. Once experts
have been trained in thinking-aloud, the protocols can be taken in real-life settings; this is one of
the major reasons for using them. Moreover, they provide very rich sources of information and
experience has shown that the careful analysis of protocols can yield highly valuable insights
(Ericsson &Simon, 1984).

Protocol analysis for knowledge engineering support

Goals and preliminary remarks

The knowledge engineer can be supported in several ways in the task of mapping expert
behavior onto abstract models. The most extreme case would be an automatic system in which
the knowledge engineer would only have to provide the input (i.e., in our case the expertise-in­
action-protocols) to the system which would then do all the work, but this is clearly beyond
what is doable today (it is also highly questionable whether this would constitute a sensible goal
in the first place). A second kind of support is in the form of a number of computerized tools
including guidelines on how to use them. A third form is a set of verbal instructions. Our
approach is to start with an operational set of verbal instructions and use them—after careful
evaluation and validation—as starting points to build computerized tools.

The proposal is based on the following assumptions:

(a) The goal of protocol analysis is to produce a knowledge-level representation of
the problem solving process in terms of a task-level framework.

(b) A structured procedure based on the theoretical framework can be defined to
ensure more reliable encoding.

(c) If systematic studies (e.g., comparisons among different knowledge engineers,
among different frameworks) are to be performed, a method is needed to achieve
continuous consensus.

The results reported in this paper have been derived from a number of empirical studies.
However, they are still of a preliminary nature and a more systematic investigation is needed.
The main purpose is to stimulate the discussion and get feedback for a next "iteration cycle".
The theoretical points are illustrated with results of an empirical study

An example

In order to determine the precise nature of the difficulties with protocol analysis that were
described theoretically above, a number of experiments were conducted. In particular we had
experienced knowledge engineers analyze expertise-in-action protocols. We then analyzed the
protocols of these sessions in terms of the componential framework to gain a better
understanding of the process by which knowledge engineers analyze protocols and derived a
methodology that tries to overcome the observed difficulties.

The example that will serve as an illustration has been taken from an interview with an expert
repairing old-fashioned record players. Figure 1 gives an idea of the sort of device we are
discussing about. A segment out of the protocol which the knowledge engineers had to analyze
is given in Figure 2. Figure 3 shows an excerpt from a thinking-aloud protocol while
performing this protocol analysis task. A number of difficulties can immediately be identified.

Figure 1: Example of a record player

Thinking aloud protocol: Record player diagnosis ("Expert se-in-action")
(E = Expert; I = Interviewer/Customer)

E: You said "it sometimes happens", "it jumps". Now does it jump towards
the periphery or towards the center?

I: I think it exclusively jumps towards the periphery, no, towards the center,
excuse me.

E: Towards the center. Well before it was jumping the other w a y — t h e same
part of a piece was played over and over.

I: Yes but then it jumps ...

E: It is playing from the periphery towards the center, so when it jumps
toward the periphery it repeats.

I: You are right, of course, it jumps toward the periphery.

E: Now there has been the suspicion that it would not stand horizontally, but
it does not have that much weight, it would have to be really tilted. And
now there is a first conjecture perhaps, that the bearing is somehow sticky
and does not turn appropriately. But as far as I can tell this does no t . . .

I: ... seem to be the case?

E: Well, it is difficult to say because the forces are really small and it does
not seem really sticky.

I: What is your reason for saying this?

E: If it lies on this ring for holding the arm then it is stuck and if you move it
you can see its small uneven movements. This is because it does not rest
on the bearing but on this little bolt.
And therefore I lift it slightly and then I move back and forth sideways and I
feel that there is no real lateral resistance.

Figure 2: Transcript of a protocol (segmented)

The statement in line 1 of Figure 3 is typical for the non-monotonicity of the task.
Statement 2 relates to the fact that more and more information has to be added into the task
structure as the analysis proceeds. It is a clear indicator of missing editing facilities.
Statement 3 refers to the way the knowledge engineer proceeds. He is using a list of generic
problem solving methods (memorized or on a sheet of paper) which he can potentially use in
the task structure. So he not only uses the information in the protocol, but consults the
available methods in a sort of interactive process. Statement 4 represents an apparently
underconstrained situation. There are several plausible possibilities and the knowledge
engineer seems to postpone the decision (well, we'll see). It is not clear whether at this point
he actually writes something down or just makes a mental "note" (which he might be likely to
forget). In 5 the expert is trying to identify the domain model but he is uncertain. Statement 6
refers to his confusion and to the experimental situation itself (the "others" are the other
participants in the experiments).

Thinking aloud protocol: Protocol analysis ("Expertise-in-action")

1. Well I might as well put it here, but perhaps I will have to change it again,
later.

2. Well, this paper is going to be too small and I am not really sure what's
generic or domain specific. Well, we'll see as we go along.

3. Now, "get-symptoms" decomposes into "ask-user" and something like
"generate-new-observations".

4. Is this a subtask of "get-symptoms" or perhaps of something like "test-
hypothesis" or doesn't he have a hypothesis yet? Well, we'll see.

5. Well, but that thing with the weight, that's more like causal reasoning, so I
should put here two alternatives, well ...

6. space is getting tight, I am loosing track of things, I hope that the others
are no better. . .

Figure 3: Transcript of a protocol of a knowledge engineer analyzing a protocol
(the lines are numbered for reference purposes only).

From this informal analysis there are a number of conclusions which can be drawn. But
first let us analyze the "nature" of the task of protocol analysis itself by applying the
componential framework to it. Protocol analysis is a task with inputs (the protocol) and outputs
(the task structure) and thus lends itself to such an analysis. In order to determine the kind of
support that can be provided for this type of task, we must look at its pragmatic features. Let
us look at the protocol, that is, the input of the knowledge engineer's task: there is much
irrelevant data (text which is not relevant to the task), the quality is limited due to the abstraction
inherent in linguistic descriptions and due to practical problems (quality of recording and
transcript), a lot of potentially relevant information is missing (due to the method of thinking-
aloud), and additional information may be hard or impossible to get. The output, the task
structure, is highly underconstrained and many interpretations are possible. Problem solving
methods are very unstructured and a lot of common sense knowledge is involved. From this
description it follows immediately that the protocol analysis task cannot be automated in the
near future, since for most of the identified problems entailed by the pragmatic features there are
no implementable methods available. What is needed is a way to filter and to complete the
original data (in our case the raw text) in such a way that the mapping is more straightforward.

A n obvious conclusion from the example shown in Figure 3 is that there is too much
"cognitive load" on the knowledge engineer: there are things that have to be traced in parallel,
there is the interpretation of the plain text on the one hand and the search of appropriate
elements from the framework and the task-taxonomy on the other. This problem can be
alleviated by computerized tools. This could also solve to some extent the non-monotonicity
issue.

Such tools must allow for:

• easy modification (including consistency tracing) of the task structure

• ways of graphically represent the results to provide the knowledge engineer with
an overview of the task structure.

• ways of browsing through the taxonomies (tasks and problem solving methods)
to support top-down processing (thus enabling the knowledge engineer to do
interactive processing, i.e. bottom-up (from the protocol text) and top down
(from the concepts in the framework).

• ways of manipulating the protocol itself (marking, extracting, connecting,
editing, etc.).

Some of this is already available in some tools or tool-kits such as K A D S , Shelley or the K O D -
station. While tools are certainly an essential part of any system for protocol analysis, more is
needed. It seems that even with the availability of tools that essentially remove the large
cognitive load, the basic problem of the mapping of the raw text to the framework largely
remains.

A method of protocol analysis

Our proposal for a method of protocol analysis is based on a number of preliminary studies.
The method is designed for protocols in which there is relatively little reflection on the part of
the domain expert, as is the case in most expertise-in-action protocols. This implies that most
of the expert's actual behavior can be reconstructed from the protocol.

The basic idea of the method follows a three-step procedure: Phase I performs a
[K]nowledge-[G]uided [B]ehavior analysis in the form of a "re-narration" (KGB-phase);
Phase II then tries to achieve [C]onsensus [I]n the [A]nalysis among different knowledge
engineers (CIA-phase); Phase III [B]uilds [N]ew [D]escriptions in terms of the problem
solving language of the task-level framework (BND-phase).

The "re-narration" phase produces from the raw text an "edited" text. A basic problem of
behavior data is that on the one hand there is too much, and on the other there is not the "right"
data available. These are characteristic pragmatic features of the input to the analysis task, as
discussed above. Thus not only do we have the problem of data re-duction but also of data
pro-duction, or data completion. The output of the first phase, that is the "edited" text, is a
causally coherent story of the behavior of the expert, of what he does and thinks. The
instructions which encode our method are as follows:

Instructions Phase I: "Re-narration" (rephrasing)
Try to "re-narrate" what is happening in the protocol using the following
instructions. The purpose is to arrive at a coherent description of what
the expert does, says and thinks that contains as little interpretation of
his actions and thoughts as possible.

1. Eliminate "filler" sentences and obviously extraneous text.
2. Complete the text. In order to get a plausible story, actions may have to be

inferred. Using common sense reasoning turn the text into a coherent causal
story. It is a good strategy to visualize the situation.

3. If possible, use only a vocabulary which is close to behavior and to the
domain terminology. Choose whenever possible terms from the vocabulary
given (list of terms to be supplied). Avoid terminology from the taxonomy of
the task-level framework. Unless it is explicitly mentioned in the protocol
avoid terms like "hypothesis" or "goal".

4. The segmentation should naturally be determined by the behavioral level of
this description.

Figure 4 shows a sample output of phase I. A comparison of "edited" protocols (after
phase I) of the same protocol segment by different knowledge engineers showed that there are
a number of differences. This is undesirable if the protocols are to be compared and i f
conclusions are to be drawn about expert behavior. So whenever the protocols are analyzed by
several knowledge engineers there must be a so-called "consensus session" after the first phase.
In other words the knowledge engineers sit together, discuss their solutions and try to find a
consensus on one solution (phase II).

It is surprising how quickly—at least in our experiments—agreement could be achieved. And
agreement was virtually always unanimous, not by majority. Why this is the case, we do not
know. It just seems that communication is conducive to discovering plausible solutions. Thus,
preferably there should be at least two people doing the analysis. After agreement has been
achieved among the raters, phase i n can be tackled according to the following instructions:

"Edited" Thinking aloud protocol (after Phase 1)

Domain: Fault diagnosis of a record player
(E = Expert; 1 = Interviewer)

"Raw Text" "Re-narration"

E: So the arm sometimes jumps Restates initial complaint:
towards the periphery arm jumps toward periphery

now there is a possibility that the Considers possibility: sticky
bearing
bearing might somehow be sticky causes arm to jump
but as far as 1 can tell this does not moves arm back and forth

sideways

1: ... seem to be the case?

E: Well, it is difficult to say because the finds lateral resistance
normal
forces are extremely small and it
does not really seem sticky finds that this manual test is
if 1 move it back and forth sideways too insensitive
1 feel not real lateral resistance

Figure 4: Output of Phase I: Re-narration

Instructions Phase III: Problem solving analysis phase
(mapping the "edited" text onto the framework)

Try to map the "edited" protocol onto the task-level framework. There
will be no need to go back to the original text at any point (except to
revise the whole analysis). The goal of Phase HI is a task-structure
which describes the concrete task at hand.

0. It is a good strategy to do two tasks in parallel: (a) inserting the problem solving
terminology into the protocol, and (b) developing the graphical task structure1.

1. Try to identify the top-level task and decompose it into subtask as indicated by the
"components" framework.

2. Add the generic labels to the subtasks and to the problem solving methods.
Whenever possible, use labels from the taxonomy that is provided with the
framework.

3. Whenever there is no appropriate label in the taxonomy, invent a new meaningful
name.

4. Organize each problem solving method with a control regime.
5. For each problem solving method, identify the domain models, that is, the

knowledge needed to perform the task. Again, in labeling use the predefined terms
whenever possible.

6. For each task work out the epistemological problems and its associated pragmatic
features and try to integrate them into the selection criteria of the identified problem
solving methods.

7. Try to account for as many statements in the "edited" protocol as possible.

The output of phase III (see Figures 5 & 6) thus achieved is subject to less variation
according to our preliminary experiments if this method of protocol analysis is applied. But
more systematic tests are needed. The next step wil l be to follow the second phase up with a
second consensus session. It would be of interest to see if consensus can also be achieved as
easily as after the first phase. Moreover, the whole procedure would have to be done with
knowledge engineers from different theoretical backgrounds (K A D S , Componential
Framework, Generic Tasks, Problem Solving Methods etc.). If it turns out that the inter-group
reliability is high, this method would provide a good vehicle to be used in expert system
construction.

Since methods of protocol analysis vary with the nature of the protocol (e.g., expertise-in­
action, structured or a focussed interview, expert-guided problem solving, unstructured
conversation), the protocol needs to be classified first. Our method wi l l only work for
expertise-in-action or behavior observation protocols. The construction of a causal story
largely relies on this fact. It also restricts the applicability of the method. However, expertise-
in-action is among the most valuable data for gaining more insights into the ways humans deal
with the pragmatic features of a task.

1 Some of the steps and products mentioned in the instructions are of course not required for
the use of task-level frameworks, but serve purposes of documentation and enable discussion
with other knoweldge engineers and experts.

Output of Phase III: adding problem solving terminology (protocol)

Domain: Fault diagnosis of a record player

Restates initial complaint: arm jumps get-initial-symptoms
toward periphery

Has suspicion: sticky bearing cover-with-hypothesis:
causes arm to jump sticky bearing

moves arm back and forth test-hypothesis: sticky
bearing
sideways

finds lateral resistance normal evaluate-test-result:
negative,

but test insufficient

finds that this manual test is too hypothesis not rejected but
insensitive given less weight

Figure 5: Output of Phase III: Problem solving analysis phase

diagnose-and-repair

diagnose

get-symptoms

ask-user generate-
new-
observation

find-
covering-
hypo theses

find-by-
associadon
{association}

repair

sequential-
manipulation-
and-observation
{primitve actions}

test-
hypotheses
{functional
model}

find-by-
consultadons-
of-causal-model
{causal-model}

find-
explanations

Figure 6: Task structure (including the problem solving process) of the fault diagnosis task

Validation

It is clear that we have not said much about validity yet. In our case validity means to what
extent the analysis reflects the actual thinking processes of the expert. Validity could be
assessed by showing the final analysis back to the expert and getting his reactions. The expert
could also contribute to the consensus sessions. However, it has to be kept in mind that it is
not our goal to adequately describe the expert's reasoning, but that we aim at building expert
systems, which is a very different story. For the present purposes we are therefore not worried
too much about validity. What is more important is that the method is ecological (i.e.
applicable to real-life problem solving) and pragmatic (i.e. leads to systems).

Summary and conclusions

We first introduced a distinction between two extreme positions, the "engineering" and the
"expert" one. We argued that both suffer from significant problems and suggested that the use
of task-level frameworks, if applied appropriately, provides a means for getting the best of both
worlds. We identified a largely neglected problem, namely that of mapping expertise onto task-
level frameworks. The goal of our current efforts is to support precisely this process. As a
starting point we studied how expertise-in-action protocols can be mapped onto task-level
frameworks. We developed a methodology to make protocol analysis more effective and more
suitable for supporting this mapping activity. Given the high complexity of this activity,
support wi l l consist of a set of guidelines, mainly in the form of verbal instructions, plus a set
of computerized tools. There will be little in terms of automated systems.

It is concluded (a) that protocol analysis is a good starting point for developing tools to
support the entire knowledge engineering process — //appropriate methods are available, and
(b) that methods are only appropriate i f they are both ecological and pragmatic.

The methods developed on the basis of the approach outlined in this paper (using protocol
analysis) should not be viewed as final or complete. Rather they serve as a starting point for
further development: knowledge engineers must be studied carefully over extended periods of
time in how they use the tools. What parts do they use most, what parts not at all, and—very
importantly—how does the nature of their task change as they are using the tool. So, protocol
analysis is only a starting point, but because of its ecological nature we expect that the tools
developed on this basis can be naturally extended.

Acknowledgement

This work was partly supported by the University of Zurich, Tecan A G Hombrechtikon, and
the "Swift A l Chair" of the Free University of Brussels.

References

Abelson, R.P. (1981). Whatever became of consistency theory. Proceedings of the 3rd
International Conference of the Cognitive Science Society.

Bouchet, C , Brunet, E . , & Anjewierden, A . (1989). Shelley: A n integrated workbench for
K B S development. Proceedings of the 9th International Workshop on Expert Systems
and Their Applications, Avignon, 303-315.

Breuker, J .A., & Wielinga, B.J . (1989). Models of expertise in knowledge acquisition. In
G . Guida & C. Tasso (Eds.). Topics in expert system design, 265-295. Amsterdam:
Elsevier.

Chandrasekaran, B . (1986). Generic tasks in knowledge based reasoning: High level building
blocks for expert system design. IEEE Expert, Fall , 1986, 23-30.

Chi , M . T . H . , Feltovich, P.J., & Glaser, R. (1981). Categorization and representation of
physics problems by experts and novices. Cognitive Science, 5, 121-152.

Clancey, W. (1985). Heuristic classification. Artificial Intelligence, 27, 298-350.

Davis, R. (1984). Diagnostic reasoning based on structure and behavior. Artificial
Intelligence, 24 347-411.

de Kleer, J. (1984). How circuits work. Artificial Intelligence, 24, 205-281.

Dennett, D. (1971). Intentional systems. The Journal of Philosophy, 68, 87-106. (reprinted in
J. Haugeland (Ed.) (1981). Mind design (pp.220-242). Montgomery, V T : Bradford
Books.)

Diaper, D . (Ed.) (1989). Knowledge elicitation. Chichester: Ellis Horwood.

Dorner, D . (1976). Problemlosen als Informationsverarbeitung (Problem solving as
information processing). Stuttgart: Kohlhammer.

Dym, C .L . & Mittal, S. (1985). Knowledge acquisition from multiple experts. Al Magazine,
6(2).

Elstein, A . S . , Shulman, L . S . , & Sprafka, S.A. (1978). Medical problem solving: An
analysis of clinical reasoning. Cambridge, M A : Harvard University Press.

Ericsson, A . , & Simon, H . A . (1984). Protocol analysis: Verbal reports as data. Cambridge,
M A : MIT Press.

Holsti, O.R. (1969). Content analysis for the social sciences and humanities. Menlo Park,
C A : Addison-Wesley.

Holyoak, K . (1990). Symbolic connectionism: toward third-generation theories of
expertise. Techreport UCLA-CSRO-90-14 . (to appear in I.A. Ericsson & J. Smith (Eds.).
Toward a general theory of expertise: prospects and limits. Cambridge, M A : Cambridge
University Press.)

Mayring, P. (1990). Qualitative Inhaltsanalyse: Grundlagen und Techniken (2., durchges.
Auflage). (Qualitative content analysis: Foundations and techniques). Weinheim:
Deutscher Studien Verlag.

McDermott, J. (1988). Preliminary steps toward a taxonomy of problem-solving methods. In
S. Marcus (Ed.). Automating knowledge acquisition for expert systems (pp. 225-256).
Boston, M A : Kluwer.

Neisser, U . (1982). Memory observed. San Francisco, C A : Freeman.

Newell, A . (1982). The knowledge level. Artificial Intelligence, 18, 87-127.

Newell, A . , & Simon, H . A . (1972). Human problem solving. Englewood Cliffs, NJ : Prentice
Hal l .

Nisbett, R .E. , & Wilson, T.D. (1977). Telling more than we can know: Verbal reports on
mental data. Psychological Review, 84. 231-259.

Norman, D . A . (1988). The psychology of everyday things. New York: Basic Books.

Patel, V . F . , & Groen, G J . (1986). Knowledge-based solution strategies in medical reasoning.
Cognitive Science, 10, 91-116.

Shadbolt, N . , & Burton, A . M . (1989). The empirical study of knowledge elicitation
techniques. SIG ART Newsletter, 108, 15-18.

Shaw, M . L . G . , & Gaines, B . (1989). Knowledge acquisition: Some foundations, manual
methods, and future trends. Proceedings ofEKAW-89, Paris, France. 3-19.

Simon, H . A . (1969). The sciences of the artificial. Cambridge, M A : M I T Press.

Sol, H . G . , Takkenberg, C A . , & DeVries Robb€, P.F. (Eds.) (1987). Expert systems and
artificial intelligence in decision support systems. Dordrecht: Reidel.

Steels, L . (1990). Components of expertise. Al Magazine, 11(2), 28-49.

Vanwelkenhuysen, J. (1989). TroTelc: An expert system troubleshooting printed ciruit
boards. V U B A l Memo 89-17. Free University of Brussels, Belgium.

Vanwelkenhuysen, J., & Rademakers, P. (1990). Mapping a knowledge level analysis onto a
computational framework. Proceedings ECAI (pp. 661-666). Stockholm, Sweden.

Vogel, C . (1990). K O D : A method for knowledge acquisition and modeling. Tutorial at the
Tenth International Workshop on Expert Systems and Their Applications. Av ignon ,
France.

Waldmann, M . R . , & Weinert, F . E . (1990). Intelligenz und Denken (Intelligence and
thinking). Gottingen: Hogrefe.

Knowledge Acquisition and the Interpretative
Paradigm

Dieter Fensel
Institut fur Angewandte Informatik und Formale Beschreibungsverfahren

University of Karlsruhe, P.O. Box 6980, 7500 Karlsruhe, Germany
e-mail: Fensel@aifb.uni-karlsruhe.de

Abstract. The problems arising during the early steps of knowledge acquisition
are similar to problems in social research based on the interpretative paradigm.
Therefore the article shows the transfer of principles, methods, and techniques from
social science to knowledge acquisition. This transfer offers a methodological
foundation for the gathering and interpretation of knowledge and a framework
which guides the application of the different techniques for the different tasks of
incremental and model-based knowledge acquisition.

1. Introduction "Knowledge acquisition, however, is not only the »transfer of expertise«.
Knowledge acquisition is a creative process in which the systems builder
constructs qualitative models of human behaviours." [Musen]

Knowledge acquisition is the process which gathers and models knowledge for an expert
system. The problems [Ber87] arising in its course are well known:

- There is an insufficient understanding of experts' abilities to solve problems in their
field.
- Expertise is based on skill and implicit knowledge. Therefore it cannot directly be asked
for.
- Experts tend to justify their behavior like any other person. They try to construct good
reasons for their actions even if they do not know them.
- Experts are experts in solving problems, not in explaining their solutions.

The literature about knowledge acquisition offers some techniques to overcome these problems
but there is still no clarity "when and where to use these techniques" [NPB91]. This lack of
methodological foundation and framework which connects the different techniques with the
different tasks of the whole knowledge acquisition process is called the "mismatch problem"
[NPB91].

The difficulties described above relate knowledge acquisition to sciences such as psychology or
sociology. Both disciplines have a long tradition of questioning and observing people. As a
consequence they are familiar with problems similar to those described above. This article
attempts to show how knowledge acquisition can benefit from the principles, methods, and
techniques of these fields. Social research based on qualitative methods only will be subject to

mailto:Fensel@aifb.uni-karlsruhe.de

discussion here as two major assumptions of social science working with quantitative methods,
and oriented towards the normative paradigm, do not fit the described problems.

- Social research based on quantitative methods checks given hypotheses by
conducting surveys and observations.
- It works with a representative sample and tries to get general statements by applying
statistical methods.

Knowledge Acquisition is not mainly a process of checking already given hypotheses, and
normally, there is no representative sample of data.

The following section presents the main ideas of social science working with qualitative
methods. A n introduction to model-based and incremental knowledge acquisition is given in the
third section. The last section presents the application of principles, methods and techniques of
social science in the early phase of knowledge acquisition.

2. The main ideas of social science working with qualitative
methods1

If mathematical theorems are related to reality they are not sure and if they are
sure they are not related to reality. [Einstein]

The main idea of the interpretative paradigm [Blu66, Wil71, Blu73, May90a] is that human
behaviour is not specified by fixed social or cultural rules and norms as is asserted by the
normative paradigm. Every social activity or reaction of a person is based on a specific
interpretative process. People give situations a special meaning, and their activities are based on
this meaning. Therefore, in order to understand their activities, the researcher must understand
their interpretation. This paradigm has some consequences on the goals of social research as
described below.

w hypothesis

1 subject) [object J v / refutation V / / ~4

Figure 1. Separation of subject and object.

Overcoming the separation of subject and object: The main principle of the normative
paradigm is the separation of the researcher (subject) and the research object. This strict
separation seems to be necessary to get impartial results. Every subjective influence of the

*See [Att74, Bot75, Bru66, Den70, Den89, Dou73, Dou85, Ras79, and Wil71] as
introductions to principles and methods of qualitatively oriented social science written in
English.

researcher is regarded as a disturbance which must be minimized by standardization of the
elicitation process, for example. Based on this separation the coherence of the research process
is achieved by hypotheses which are the premisses of the process. The presumed hypotheses
are the means of connecting the two disjunct parts of the research process. The research activity
attempts to refute them. No answer is given where the hypotheses are coming from.

However, this principle of the classical natural sciences is not applicable to social sciences for
two reasons:

1. The examined object is a subject itself. The reduction of a human to a stimulus-
response-object ignores the fact that human reactions are conveyed by meaning. In other
words, the behavior is not direct, and humans do not only react. The behavior is a result
of an interpretation process. In addition, humans are active and also create meaning.

2. The researcher's subjectivity is an important tool for the research process. A s opposed
to natural science, the object of the investigation is not an extraneous object, but also a
subject which is a member of the same or a similar social community as the researcher is.
This common basis is tji£ premise for understanding the object of the research. A
substantial basis of the research process will be lost by the elimination of the researcher's
subjectivity.

common understanding based on "common sense"

Figure 2. Overcoming the separation of subject and object

"Understanding" as the goal of research: The task of the classical natural science is to
explain natural phenoma by causal reasoning. Asking for the meaning does not make sense.
This situation changes when humans become the objects of research. They interpret reality and
produce meaning by their activity. Examining a person means: try to understand him or her.
This may create some new problems for the research process:

- The researcher and his object do not speak the same language;
- They speak the same language but interpret it differently;
- Often there is a difference between the articulated meaning and the real meaning, e.g.
somebody is lying;
- Often there is a difference between conscious and tacit meaning.

The researcher consequently needs a "second socialization" that teaches him to think like
the person he wants to examine.

Theory production vs. theory revision: A n important principle of qualitatively oriented
social science is the openness of the examination. I want to show this principle by contrasting
it with quantitatively oriented social science. The task of elicitation and interpretation of data is
to refute presupposed hypotheses. The researcher can only perceive features of the object of
research which are within the range of his hypotheses, their operationalizations, and
measurements. The only influence the subject of research can have is on refuting some
hypotheses. In qualitatively oriented research, however no special theory or hypothesis is used
as premise of the research process. Based on some knowledge about the object of research
(prejudices), which must be kept open and flexible, the researcher must try to become familiar
with the new field. Hypotheses can be created during or after the examination. This has two
implications:

- The goal is not to verify given hypotheses but to create new ones.
- It is possible to gain new points of view about the object. More than only those features
may be found which become prominent due to the presumed hypothesis of the researcher
and his community.

Research as communication and context sensitivity of its results: Quantitatively
oriented social science postulates a qualitative difference between common sense understanding
and scientific explanation. It therefore works with standardized interviews, for example, in
order to reduce the subjective influence of the researcher as much as possible. Qualitatively
oriented social science claims on the contrary that this interaction is the main tool for
understanding the object of research and is not an error to be eliminated. No standardized
interview but an intensive and open talk enables the researcher to learn to think in the same way
as his research object does. Therefore scientific understanding is not a qualitatively different
way of understanding but an extented and methodologically well-defined common sense
understanding (cf. [Lam88]).

A similar methodological problem of the stimulus-response approach is that it ignores the
context sensitivity of its results. For example, thorough examinations of surveys show the
context sensitivity of peoples' opinions. They depend on the communication partner and on the
situation the interaction takes place in. This is not a problem of opportunism, but it shows
human complexity and ability to learn. A research method which produces an abnormal context
creates abnormal results. Reducing the influence of the researcher and the context of the
examination to an error to be minimized produces an uncontrolled influence on the object of
research. Therefore qualitatively oriented social science assumes that data do not exist
independently of their creation but as a result of a specific interaction between the researcher
and the object of his research. They are no literals but indexical expressions [Wil71]. The
influence of the researcher cannot be reduced but must be documented as an integrated part of
the result.

The research activity is an iterative process: Understanding is an iterative,
approximative and faulty process. A first judgement is the foundation for the first perception
and interpretation of the object of research. This interpretation creates a new understanding.
This procedure must be repeated several times. If the process works well it leads to an
increasing understanding. Because of the different types of socializations this process is
infinite. The process can be illustrated graphically by a spiral called hermeneutic circle.

The single-case approach: The research methods of the normatively oriented social science
are based on a representative sample of the examined domain. It establishes the general features
of this domain with the application of statistical procedures. Therefore it needs a large and
representative sample to reduce the statistical error of its results. This requires a standardization
of the elicitation process and data reduction as an interpretation technique, for example multiple-
choice tests. The collecting and interpreting of representative samples is not suitable for
understanding because it is a very time-consuming process. Qualitatively oriented social science j
uses the single-case approach. The researcher does not collect a representative sample but
tries to find some typical or interesting members of the examined group. Not reduction to
standardized attributes but the explication of the whole case with all its relevant features guides
the research process.

This shows the similarity of qualitative social science and the expert system building process:
"A single proband is not regarded as an insignificant and exchangeable member of a sample and
as a set of attributes defined by the researcher ... but the individuum is regarded as an expert j
of understanding and interpreting everyday life." [Lam89, p. 6] j

3. Incremental and model-based knowledge acquisition

The knowledge engineering literature shows the contrast of rapid prototyping and life-cycle
based approaches similar to earlier discussions in the field of software engineering. Rapid
prototyping has the advantage that it quickly leads to a running system which can be used to
evaluate the gathered knowledge. But it also leads to unstructured solutions, thus impeding
understandability and maintenance of larger systems. It also needs to simultaneously consider
knowledge aspects and their implementation in the used knowledge representation formalism.
Therefore the view on the knowledge is determined by the chosen implementation language.
Contrary to rapid prototyping, the application of the life-cycle paradigm leads to a well
structured development process and result. But this result is often not the one wished by the
client. Only the last phase produces a running system which can be used to evaluate the
requirements and their realization. Subsequently, both approaches are discussed, and a method j
of development which combines both approaches is described (cf [AFS90, A L F 9 1 , FAL91]);
this method tries to combine their advantages by avoiding their disanvantages. j

Model-based knowledge acquisition has two characteristical features. First, it
distinguishes between the analysis and design/implementation phases. The expertise is analysed
at the knowledge level independently of any details dealing with the subsequent technical
realisation. The efficient realisation of the expertise at the symbol level is the task of a
separate phase. The result of the analysis phase - the knowledge acquisition - is a model of the
expertise. Secondly, knowledge acquisition is further subdivided into two different steps. The j
task of the first phase is to get the so-called process knowledge [Mus89a, Mus89b], which j
corresponds to the problem-solving method used by the expert. The result of this phase is a \
model of the problem-solving methods and their interactions. This is a very critical situation
because the knowledge engineer must become familiar with a new field and task, and, besides,
a great deal of the problem-solving capacity of the expert is based on tacit knowledge or skill. j
This model serves as guidance for the acquisition of field-specific content knowledge
[Mus89a, Mus89b] in a second step. The domain knowledge is gathered as needed for the

problem-solving process. The result of the analysis phase is a model of the problem-solving
method expressed in terms which are specific of the field. This model is called a conceptual
model [Mus89a, Mus89b].

[Mor87] describes knowledge acquisition as an iterative, approximative and faulty
process and therefore calls it sloppy modeling. There is no complete and perfect model of
the expertise in the expert's head, but the expertise is based on experience, vague heuristics and
tacit knowledge. Therefore a model is created as a result of the knowledge acquisition process.
Knowledge acquisition shares these features with any other modelling process. Methods and
tools for knowledge acquisition must therefore meet the following requirements:

1. They must allow iterative modelling.
2. They must be suitable for detecting errors.
3. They must support error corrections.

The incremental development of a prototype, its evaluation and modification meet the above
given features. The disadvantages of rapid prototyping can be avoided if the prototype is not
meant to become the real final system, but is only used for analysing the expertise in the way
suggested by explorative prototyping (cf. [Flo84]). 2

In order to integrate the model-based and the prototyping point of view, an model-based and
incremental knowledge engineering process consisting of three phases is suggested.
Like in a life-cycle oriented approach three different phases are distinguished: analysis, design,
and implementation. Specifying the result of the analysis phase, the conceptual model, in an
operational language allows to integrate explorative and throw-away prototyping during the
analysis phase.

In the following the first phase, the analysis phase, is discussed in more detail. It is called
model-based and incremental knowledge acquisition. Before discussing the details of
it, the research paradigm to be followed by the knowledge acquisition process must be
determined. This is connected to the question: is knowledge acquisition related to natural
sciences or to the arts? The normative paradigm and its separation of subject and object as
practiced in natural science is unsuitable for the understanding process as it is conceived in
human sciences. The interpretative paradigm which deals with understanding is unsuitable for
causal explanations. [Bro89] proposes a complementary application of both paradigms due to
the ambiguity of the research topic, the human expertise. The content of the expertise is
"knowledge" of natural phenomena, like knowledge of mechanical faults or illnesses. This
knowledge exists as a human quality and hence as an object of cognitive sciences. The general
justification for the qualitative methods is the fact that, beside the model of a natural field, a
model of the problem-solving process in the human being is needed.

This general statement must be restricted by the differentiation of knowledge acquisition in
several steps. There are the three steps: theory production, theory instantiation, and
theory evaluation. Only for the first step an analogy to social sciences (oriented on the
interpretative paradigm) can be drawn. The other two steps violate the central principles of

2 She distinguishes three main kinds of prototyping: throw-away prototyping during the
analysis phase, throw-away prototyping during the design/implementation phase and the
stepwise development of a prototype to the target system. She calls the different kinds
explorative, experimental, and evolutionary prototyping [Flo84].

openness and theory production. In the following section the first step, which is called
knowledge elicitation according to [Add87] 3, wil l be discussed in detail.

Knowledge elicitation

r^- Elicitation

Interpretation

Theory = model of the
problem-solving method

Interview,
group discussion,
observation

content analysis
(Tool: hypertext)

Knowledge collection

Instantiated theory

Knowledge validation

used method
used technique
data flow

— Interactive
techniques

(Tool: e.g. MOLE)
Automatical
techniques

(Tool: e.g. ID3)

Executable
language (tool: e.g. KARL)

Figure 3. Incremental and model-based knowledge acquisition

The second step, the collection of content knowledge, is a theory-guided instantiation of a
formal theory with domain-specific terms. The model of the problem-solving method is
reformulated with structures, concepts, relations, and constraints of the specific domain (cf.

3"The terms elicitation and acquisition tend to be used interchangeably. However, there is a
clear distinction between elicitation and acquisition in the creation of a model. Elicitation is the
process of developing a model by interviewing the experts and observing their environment; it
is theory formation or model design. Acquisition is the process of collecting the detailed
information (facts) which fit into the framework defined by the model." [Add87]

[BWS87]). This violates the principle of openness and therefore prohibits the application
of qualitative methods or techniques. This is no disadvantage. The guidance by a theory can be
exploited for building powerful acquisition tools. For example, the model of the problem-
solving method guides the collection of domain knowledge by interactive tools like e.g. M O L E ,
M O R E , S A L T [Mar88], and P R O T E G E [Mus89a, Mus89b]. Automatical procedures like
conceptual clustering (cf. [MiS84]) can generalize examples to taxonomies of concepts and
relations.

The domain-specific theory is checked for correctness and completeness during the third step. It
tries to refute a given theory and therefore does not fit the interpretative paradigm either. There
are less operational criteria which can be applied for this process. This is comparable to
traditional software engineering where no effective and efficient procedures exists to show the
correctness of a program. A pragmatical answer to this problem is prototyping. A n
implemented program is used to check whether the specification satisfies the intentions of the
clients. Therefore, an operational language for the conceptual model is necessary to allow
explorative prototyping. Currently some research is done for a language (cf. [AFL91, AHS90,
F A L 9 1 , Lin90, K V S 9 1 , Wet90]) which enables the formulation of an operational conceptual
model based on the different knowledge types proposed by K A D S (cf. [BRW89]).

4. Knowledge Elicitation

The goal of knowledge elicitation is a model of the problem-solving method 4 The human
expertise which is partially based on skill, experience, and tacit knowledge must be transformed
into a formal and well understood theory. In the following the application of principles,
methods, and techniques of qualitatively oriented social science wil l be discussed. A similar
idea and examples for its succesful application can be found in [BeH89]. Bel l and Hardiman,
however, do not separate the different phases of knowledge acquisition because they do not use
the model-based approach. A n analogous suggestion is made by [Kor87], which refers to the
distinction of "formal" and "narrative thinking".

4.1. Principles for Knowledge Elicitation

Knowledge elicitation is not only concerned with "what" the expert is doing, but "why"
he is doing something, and what meaning it has for him. The goal is to find general patterns of
his behavior, the so-called problem-solving methods. They are to be elicited, systematized, and
generalized. The elicitation of the so-called process knowledge also shows the main difference
to traditional software engineering. Not only "what" the system should do but also "how" it is
done is a topic in knowledge elicitation. The "how" cannot be solved simply by an algorithmic
solution which is independent of a task and a domain. One needs specific knowledge, like
heuristics, on the part of the expert in order to build an efficient solution (cf. [Par86, AFS90]).
The principles of knowledge elicitation are:

Understanding: the task of the knowledge engineer can be described as a "second
socialization". He must learn new words and new meanings for old words. Based on his

4 This is similar to the idea of a "grounded formal theory" in social science (cf. [Lam88]).

common understanding and experience he must overcome his own way of thinking to learn to
think like the expert.

Openness and theory production: Process knowledge is knowledge implici t ly
encoded in human problem-solving abbility. It is based on skill and implicit knowledge.
Therefore, a formalized model of the problem-solving process can only be achieved as a result
of an open eliciting and modeling process. Any pre-judgement must be handed very carefully,
because a wrongly chosen problem-solving method will strongly decrease the effectivity of the
subsequent build system. In addition, this problem-solving method leads the further collecting
of the content knowledge.

Searching for implicit meaning: A n important part of the expert's problem-solving
capability is based on implicit knowledge. Therefore, not only his intentions have to be
considered, but also his unconscious motives. Understanding the expert means in particular
understanding unconscious parts of his expertise.

Understanding by communication: The influence of the knowledge engineer on the
expert is not a distortion which must be reduced. Explaining, structuring, and generalizing the
expertise during the knowledge elicitation process extends its reliability, validity, and
applicability. The learning process of the expert can improve the elicited knowledge. Sometimes
he learns so much about his own skills that an expert system is not needed anymore.

Process orientation: The modelling of expertise is an iterative, approximative, and faulty
process. Therefore the activities of knowledge elicitation, knowledge collection, and knowledge
evaluation have to be repeated several times. A s modelling a problem-solving method is an
infinite process, knowledge elicitation by itself is an iteration of the two activities elicitation
and interpretation.

Single case approach: Knowledge elicitation is usually based on the investigation of a
single expert, and not on that of a representative sample of experts. For this reason, the
information has to be interpreted and not reduced.

4.2. Methods and Techniques

This section does not give a complete survey of all methods and techniques of knowledge
acquisition (cf. [BRW84, DaH88, COR89, KaL90, Kid87, McH89, 01R87]) but shows
potential applications of methods developed by social scientists. Especially content analysis
techniques - "Qualitative Inhaltsanalyse" and "Objektive Hermeneutik" - are new possible
means of improving the interpretation step during knowledge acquisition. Because of the space
limitation the article only touches on the methods of group discussion and observation (cf.
[Gir84, Lam89, Man73]).

4.2.1. Interview

The standardized interview is an unnatural way of communication [Sch62], it is a means of
trying to get context-free and objective information about the examined object. Like in an
experiment, the central requirement is to obtain the same result under the same conditions.

Consequently the questions are determined before the interview and the interviewer provides
the stimulus the subject has to react to. Often possible answers are supplied, and the
interviewee has to choose among them. The ideal is a procedure which is free from all inter-
subjective influences. This kind of interview violates central principles of qualitatively oriented
social research and is therefore not one of its methods.

The narrative interview [Sch76] is the opposite type of interview. The person being
interviewed is invited to tell a story about a given topic. He has the active part during the
interview. The idea is that this active role of the person being questioned allows the researcher
to detect the implications which the story has for this person. The interviewed person decides
on which part of the topic he wants to discuss and stress. Everybody who tells a story wants to
make the meaning which the story has for him plausible. The selection of the parts and their
emphasis can help to comprehend the narrator's understanding. In addition, one can postulate
general patterns for the structure of every story. Every deviation of this scheme indicates hidden
meanings which can be recognized. The general patterns of a story produce some pressure on
the narrator - e.g. he has to choose between figures, to decide which details should be told,
what should be shortened - therefore the interviewer can restrict his interaction to stimulation.

Compiurisoa ©if A$ different interview typ&z

closed
interview +
theory
revision

open
interview +
theory
production

] standardized interview

depth interview

focussed int.

problem-centred interview

narrative interview

understanding

Figure 4. Comparision of the different interview types

The main purpose of the problem-centred interview [Wit82, Wit89] also is the production
of hypotheses. On the other hand a suggested hypothesis is a premise which becomes modified
during the interview. The suggested hypothesis is a guideline for the interview, providing it
with structure and direction. The main difference to the narrative interview lies in the more
active role of the interviewer. He tries to guide the flow of the narration by using examples of
stories and other techniques. The individual steps of the problem-centred interview are [Spo89]:

1. Starting the discussion.
2. General survey.
3. Specific survey:

•Reflection: the researcher formulates his own understanding and accepts
possible corrections of it.

- Questions: he asks questions about contradictory and incomplete parts of the
interview.
- Confrontation: the interviewee is confronted with his contradictions.

4. A d hoc questions: Asking about points of the interview guide which have not been
covered yet.

Further interview types are the focussed interview [Lam89, Spd89], which contains
qualitative and quantitative elements, the deep or intensive interview [Lam89], the
receptive interview [Lam89], the intensive interview with two researchers [Lam89]
and the ethnographic interview [Sp689].

Application of the different interview types

The degree to which an interview type conforms to the principle of qualitative social science or
knowledge elicitation can be used to construct a framework which guides its application during
different activities of knowledge elicitation. For example, the effort and closedness of the
techniques leads to the following order of their application. This order also shows how
focussed the research topic must be to allow the application of a interview type: narrative
interview, problem-centred interview and focussed interview. This contributes to overcoming
the mismatch problem as complained by [NPB91].

4.2.2. Group discussion and observation

There are mainly three arguments for applying group discussion as an elicitation technique.
First, it is possible to get a great amount of data in short time. Secondly, the members of a
group discussion stimulate each other, thus hidden meanings are more easily articulated than
during an interview. Thirdly, the creation of meaning and the ability of understanding it is the
result of social processes, they are results of interactions of many people. Group discussion
offers a better simulation for these social processes than, for example, an interview. Interviews
always produce an artificial context. There exists a lot of different kinds of discussion
techniques. [Lam90, p. 142] proposes the following features to catalogue them:

1. Criteria applied to select the group members:
- homogeneous vs. inhomogeneous groups
- artificial vs. natural groups
- groups with related and with unrelated members, e.g. randomly chosen samples
vs. a family.

2. Discussion style:
- thematical structuring vs. openness
- formal structuring vs. openness
- neutral or involved discussion leader
- directly or indirectly guided discussion

On one hand observation is certainly the best technique to get familiar with a domain. On the
other hand it is the most time-consuming technique. In the literature about knowledge
acquisition this technique is mainly discussed as protocol analysis. The normatively oriented
observation technique, which tries to create a context from an experiment in natural sciences is

discussed in [K6n73]. The unstructured and structured participative observation
oriented towards the interpretative paradigm is discussed in [Lam90, Gir84].

4.2.3. Content analysis

The topic of the content analysis is the analysis of past communications like texts, tapes, or
videos. Research guided by the normative paradigm looks for directly visible features of
interaction whereas research oriented towards the interpretative paradigm searches for the
meaning intended in the document. Therefore, in the first case, the content analysis helps to get
data, whereas in the second case, it is applied to interpret data which are gathered by
interviews, observation, or group discussion.

Normatively oriented content analysis is a research technique for the objective,
systematical, and quantitative description of the directly visible contents of interactions
[May90b, Sil62]. Frequency analysis counts the relative portion of square centimetres in a
newspaper dealing with the topic of research, for example. The valence and intensity
techniques extend analysis by measuring the point of view of the communication act, e.g.
whether it is pro or contra death penalty. Contingency analysis measures correlations of
different communication acts, e.g. the attitude towards abortion and foreigners.

The "Qualitative Inhaltsanalyse" of Mayring is a systematical analysis of past
communication acts based on theory and rules [May89]. It is used for interpreting results of
open interviews. The purpose is to recognise the intentions of the interviewee, that is the
meanings which he or she is conscious of. Figure 5 shows the life cycle of a complete
interpretation. The definition of the analysis units - phase 7 - determines the code unit, the
context unit and the interpretation unit. The code unit defines the minimal size of the
parts of a document which can be a member of a category, e.g. sentences, paragraphes, etc.
The context unit determines the maximal size of the document's parts which can be member of
the category, and the interpretation unit determines the temporal succession for interpreting
defined parts of the documents [May90b]. Step eight is the vital phase of text analysis.
[May90b] proposes four techniques for its execution.

- Summary: The goal is to reduce the material while exposing its main structure and
topics. Mayr ing discusses the macro operators generalization, construction,
integration, and selection.
- Explication: The goal is to extend the given parts of the documents by related parts
which are necessary to understand the intention.
-Structuring: The formally oriented structuring classifies the material formally,
e.g. it defines the introduction of the story, the different chapters, and the conclusion.
The content-oriented structuring classifies the material into different topics or
aspects which are discussed in the different parts. The type-oriented structuring tries
to organize the material by vital parts of it. It determines extreme, freuquent or
theoretically interesting parts of it. The scale-oriented structuring maps parts of the
documents as to values of variables like in valence or intensity techniques. A l l these four
techniques need a definition of the category used for the structuring and an
operationalisation by rules and examples.

Preparation of the material
1. Select the material

2. Analyze the situation the text is a result of

3. Describe the material formally

T Z
Formulate the goal of the research

4. Determine the direction of the analysis
i

5. Give a theoretical differentiation of the research topic

T
Interpretation of the single case

6. Determine the applied analysis technique and its detail
life-cycle (these different detail life cycles are not shown in this
paper).

7. Define the analysis units

4 ~
8. Real text interpretation by applying the used analysis
techniques

*
9. Check the results by comparing them with the theory and
further material

Generalization and evaluation
10. Generalize and create types

11. Apply the evaluation criteria

Figure 5. A life-cycle of the "Qualitative Inhaltsanalyse" of Mayring [May90b, p. 50].

The goal of the "Objektive Hermeneutik" by Oevermann is to discuss the implicit
meanings of a communication act which are called objective meanings [Lam88, Lam89,
O A K 8 3 , Sch89]. Understanding implicit meanings is a common sense-based ability, the
"Objektive Hermeneutik" tries to systematize this ability. It proposes a life-cycle and rules for
such an approach. It tries to carry out content analyses in a way like an engineering discipline.
A second difference to common sense understanding is the intensity of the approach. In
everyday life, some economic techniques are used which allow a rapid understanding to enable
quick reactions. These techniques are given by socialization. The "Objektive Hermeneutik"

does not use such economic techniques. It consists of four phases. Its third phase, the
sequential detail analysis , is presented in figure 6 in detail.

0. Explicate the context of the interaction: Show the alternatives which the
person thinks he has.
1. Paraphrase the impartial content based on "common sense".
2. Explicate the intention of die person. Look only for those meanings the
person would agree with you as being relevant. It is assumed that the person
is not lying.
3. Explicate the impartial meaning and its impartial consequences. Use the
context of the text, the context of the subject, and theoretical knowledge.
4. Explicate the function of the interaction by considering the different
interaction roles of its members.
5. Characterize the linguistic and grammatical features of the interaction.
6. Compare the interpretation with the interpretation of other text parts. Look
for general patterns.
7. Explicate general relations, create types and patterns.
8. Compare the results with the theory and the results of other parts.

[Lam90, AOK83]

Figure 6. The sequential detail analysis of the "Objektive Hermeneutik"

Further approaches: The "Hermeneutik", the science of understanding and interpreting
texts has a long tradition in arts and in law (cf. [Lam88, Lam89, May90b]). The approach of
Banner tries to differentiate several steps involved in such an analysis (cf. [May90b]). The
"Strukturelle Beschreibung" by Hermanns is a technique for interpreting the results of
narrative interviews [Lam89]. See [Lam88] for the procedure of Barton und Larsfeld,
[Lam88, May90a] for the procedure of building the so-called grounded formal theories of
Glaser and Strauss, and [Hei87] for the "Sozialwissenschaftlich-hermeneutische
Paraphrase" by Heinze und Klusemann. For more procedures also see in [Wit82].

Application of the different interpretation types

The "Qualitative Inhaltsanalyse" of Mayring can be used to look for meanings. The "Objektive
Hermeneutik" can be used to get implicit meanings. Because this is a very time-consuming
procedure it can be used only for some very important sections. The "Hermeneutik" by Danner
and the "structural description" by Hermanns can be used as a general framework for the
interpretation of texts.

4.3. Tools for knowledge elicitation - Is it possible to shift knowledge
elicitation to a theory-guided procedure?

Experience in software engineering shows that there is a need for combining bottom-up and
top-down procedures. This article also suggests this for the knowledge acquisition process. It
offers a mainly bottom-up approach for knowledge elicitation which has to transform the
narrative gestalt oriented thinking [Kor87] of the expert into a sound formal model and a
mainly top-down approach for the collection of domain knowledge, see also [MRD91]. The
main facility for bottom-up modeling is hypertext (cf. [MRE90] or A C Q U I S T [MRD91]).
Especially the context connections done by the text analysis require a non-linear organization of
the texts. Theory-guided tools for knowledge collection are e.g. M O L E , M O R E , S A L T
[Mar88], and P R O T E G E [Mus89a, Mus89b].

As an unguided bottom-up development is a very time-consuming process it is necessary to
think about integrating top-down elements not only into the knowledge collection but also into
the knowledge elicitation process. The K A D S group proposes a library of so-called
interpretation models (i-models) which are generic problem-solving methods (cf.
[BWS87, HJK89]). This library can contribute to elicitating the expert's process knowledge.
But until now there have been some problems with this approach. First, there is no clear list of
criteria for selecting the optimal i-model. Second, the i-models are only vaguely described and
still lack a clear semantics. Third, there are no good i-models for synthetical problem solving.
Fourth, real-life applications often require combining different i-models. Finally, i f the
knowledge engineer wants to select a well suited i-model which can be used for building a
conceptual model, he must be familiar with the problem. Therefore he needs some open
techniques, even i f he can reuse an existing i-model or a shell with a fixed problem-solving
method. These open techniques, especially the narrative interview or the "Objektive
Hermeneutik", are very time-consuming procedures. But the problem of knowledge elicitation
is also a very ill-structured, and therefore complex, problem.

5. Conclusion

Knowledge elicitation, which is one step in a model-based and incremental knowledge
acquisition, and qualitatively oriented social science show great similarities. Therefore
principles, methods, and techniques of qualitatively oriented social science can be applied to
knowledge elicitation. These similar features are created by the required openness in eliciting
knowledge which is involved in the problem-solving ability of humans. As shown, this can be
used for formulating principles for knowledge elicitation and obtaining categories to construct a
framework which helps to improve the application of the various elicitation and interpretation
techniques. The literature about knowledge acquisition offers a variety of techniques, but the
question of when and for what purpose a technique should be chosen still remains to be dealt
with in a more exhaustive manner. In addition, the article introduces interpretation techniques
from the field of qualitatively oriented social science which can also be used for knowledge
elicitation. The purpose is to contribute to shifting knowledge elicitation from an art to an
engineering discipline.

Acknowledgement

I thank Jurgen Angele, Dieter Landes, Andrea Schneider, Rudi Studer, and especially Angi
VoG for helpful comments, Christiane Rest and Gabi Rudnich for their support in correcting my
manuscript.

References

[Add87] Addis, T.R.: A framework for knowledge acquisition. In Proceedings of the first
European Workshop on Knowledge Acquisition for Knowledge-based Systems (EKAW'87),
Reading University, September 2-3, 1987.
[AFL90] Angele, J.; Fensel, D. ; Landes, D. ; Neubert, S.; and Studer, R: Knowledge
Engineering in the Context of Related Fields of Research. In O. Herzog et.al. (eds.), Text
Understanding in LILOG, Springer-Verlag, Lecture-Notes in Artificial Intelligence no. 546,
Berlin, 1991, pp. 490-500.
[AFL91] Angele, J.; Fensel, D.; Landes, D.; and Studer, R: K A R L : A n executable language
for the conceptual model. In Proceedings of the 6th Banff Knowledge Acquisition for
Knowledge-Based Systems Workshop, vol. I, Banff, October 6-11, 1991.
[AFS90] Angele, J.; Fensel, D.; and Studer, R.: Applying software engineering methods and
techniques to knowledge engineering. In D. Ehrenberg, D. et.al. (eds.), Wissensbasierte
Systeme in der Betriebswirtschaft, Reihe betriebliche Informations- und
Kommunikationssysteme, no. 15, Erich Schmidt Verlag, Berlin, 1990.
[AHS90] Ackermann, H . ; van Harmelen, F.; Schreiber, G.; and Wielinga, B . : A formalisation
of knowledge-level models for knowledge acquisition. In International Journal of Intelligent
Systems, 1990, Forthcoming.
[Att74] Attewell, P.: Ethnomethodology since Garfinkel. In Theory and Society, 1, 1974, p.
179-210.
[BeH89] Bell , J.; and Hardiman, R.J.: The third role - the naturalistic knowledge engineer. In
D. Diapper (ed.), Knowledge Elicitation - principles, techniques and applications, El l is
Horwood Series in Expert Systems, Chichester, 1989.
[Ber87] Berry, D.C. : The problem of implicit knowledge. In Expert Systems, vol. 4, no. 3,
August 1987.
[Blu73] Blumer, H . : Der methodologische Standpunkt des symbolischen Interaktionismus. In
Arbeitsgruppe Bielefelder Soziologen (eds.), Alltagswissen, Interaktion und gesellschaftliche
Wirklichkeit, Bd. I: Symbolischer Interaktionismus und Ethnomethodologie, Rowohlt,
Reinbeck bei Hamburg, 1973, pp. 80-188.
[BoT75] Bogdan, R.; and Taylor, S. J.: Introduction to qualitative research methods, John
Wiley & Sons, New York, 1975.
[Bro89] Bromme, R.: Aufgaben- und Problemanalyse bei der Untersuchung problemlosenden
Denkens. In G . Juttemann (ed.), Qualitative Forschung in der Psychologie, Roland Asanger
Verlag, Heidelberg, 1989.
[Bru66] Bruyn, S. T.: The Human Perspective in Sociology, Prentice-Hall, New Jersey, 1966.
[BrW84] Breuker, J.A.; and Wielanga, B.J . : Techniques for Knowledge Elicitation and
Analysis. Report 1.5 Esprit Project 12, University of Amsterdam, Department of Social
Science Informatics) and Laboratory for Experimental Psychology, July 1984.
[BrW89] Breuker, J.; and Wielinga, B . : Models of Expertise in Knowledge Acquisition. In G .
Guida et.al. (eds.), Topics in Expert Systems Design, Elsevier Science Publisher B . V . , North-
Holland, 1989.
[BWS87] Breuker, J.; Wielinga, B. ; Someren, M.v. ; de Hoog, R.; Schreiber, G. ; de Greef,
P.; Bredeweg, B . ; Wielemaker, J.; and Billault, J.-P.: Model-Driven Knowledge Acquisition:
Interpretation Models. Esprit Project P1098, University of Amsterdam, 1987.

[COR89] Knowledge elicitation techniques for knowledge-based systems. In D. Diapper (ed.),
Knowledge Elicitation - principles, techniques and applications, Ellis Horwood Series in Expert
Systems, Chichester, 1989.
[DaH88] Davis, M . ; and Hakiel, S.: Knowledge harvesting: A practical guide to interviewing.
In Expert Systems, vo. 5, no. 1, February 1988.
[Den70] Denzig, N . K . : The Research Act, Aldine Publishing Company, Chicago, 1970.
[Den89] Denzin, N . K . : Interpretative Interactionism, Sage Publications, Newbury Park, C A ,
1989.
[Dou73] Douglas, J.D. (ed.): Introduction to sociology, The Free Press, New York, Collier
Macmillan Publisher, London, 1973.
[FAL91] Fensel, D. ; Angele, J.; and Landes, D. : K A R L : A Knowledge Acquisition and
Representation Language. In Proceedings of expert systems and their applications, 11th
International Workshop, Conference "Tools, Techniques & Methods", 27-31 Mai , Avignon,
1991.
[Dou85] Douglas, J.D.: Creative Interviewing, Sage Publications, Beverly Hills, C A , 1985
[Flo84] Floyd, C : A systematic look at prototyping. In R. Budee et. al. (eds.), Approaches to
Prototyping, Springer-Verlag, Berlin, 1984.
[Gir84] Girtler, R.: Methoden der qualitativen Sozialforschung, Hermann Bohlaus Nachf.
Gesellschaft mbH, Graz, 1984.
[Hei87] Heinze, T.: Qualitative Sozialforschung, Westdeutscher Verlag, Opladen, 1987.
[HJK89] Hickman, F.R.; K i l l i n , J.L.; Land, L . ; Mulhall , T.; Porter, D. ; and Taylor, R . M . ,
Analysis for Knowledge-Based Systems: a practical guide to the KADS methodology, Ell is
Horwood Limited, Chichester, G B , 1989.
[Hof89] Hoff, E . - H . : Datenerhebung als Kommunikation: Intensivbefragung mit zwei
Interviewern. In G . Juttemann (ed.), Qualitative Forschung in der Psychologic Roland
Asanger Verlag, Heidelberg, 1989.
[KaL90] Karbach, W.; and Linster, M . : Wissensakquisition filr Expertensysteme. Techniken,
Modelle und Softwarewerkzeuge, Carl Hanser Verlag, Miinchen, 1990.
[Kid87] Kidd, A . L . (ed.): Knowledge Acquisition for Expert Systems. A Pratical Handbook,
Plenum Press, New York, 1987.
[K6n73] Konig, R.: Die Beobachtung. In R. Konig (ed.), Handbuch der empirischen
Sozialforschung, vol. 2, Grundlegende Methoden und Techniken, part 1, Deutscher
Taschenbuchverlag, 3. Aufl . , Stuttgart, 1973.
[Kor87] Kornell, J.: Formal thought and narrative thought in knowledge acquisition. In Int. J.
Man-Machine Studies, vol. 26, no. 2, 1987, pp. 203-212.
[KVS91] Karbach, W.; VoB, A . ; Schuckey, R.; and Drouven, U . : M O D E L - K : prototyping at
the knowledge level. In Proceedings of expert systems and their applications, 11th International
Workshop, Conference "Tools, Techniques & Methods", 27-31 Mai, Avignon, 1991.
[Lam88] Lamnek, S.: Qualitative Sozialforschung, Band 1, Methodologie, Psychologie
Verlags Union, Miinchen, 1988.
[Lam89] Lamnek, S.: Qualitative Sozialforschung, Band 2, Methoden und Techniken,
Psychologie Verlags Union, Miinchen, 1989.
[Lin90] Linster, M . : Declarative problem-solving procedures as a basis for knowledge-
acquisition: a first proposal. In Arbeitspapiere der Gesellschaft fiir Mathematik und
Datenverarbeitung (GMD), no. 448, June 1990.
[Mar88] Marcus, S (ed.): Automating Knowledge Acquisition for Experts Systems, Kluwer
Academic Publisher, Boston, 1988.
[Man73] Mangold, W.: Gruppendiskussion. In R. Konig, Handbuch der empirischen
Sozialforschung, vol. 2, Grundlegende Methoden und Techniken, part 1, Deutscher
Taschenbuch Verlag, 3. Aufl . , Stuttgart, 1973.
[May89] Mayring, P.: Qualitative Inhaltsanalyse. In Qualitative Forschung in der Psychologie,
G. Juttemann (ed.), Roland Asanger Verlag, Heidelberg, 1989.
[May90a] Mayring, P.: Einfuhrung in die qualitative Sozialforschung, Psychologie Verlags
Union, Miinchen, 1990.

[May90b] Mayring, P.: Qualitative Inhaltsanalyse, Deutscher Studien Verlag, Weinheim, 2.
Aufl . , 1990.
[McH89] McGraw, K . L ; and Harbison-Briggs, K . : Knowledge Acquisition. Principles and
Guidelines, Prentice-Hall International, Inc., Englewood Cliffs, NJ, 1989.
[MiS84] Michalski, R.S.; and Stepp, R.E.: Learning from Observation: Conceptual Clustering.
In R.S. Michalski et.al. (eds.), Machine Learning. An Artificial Intelligence Approach,
Springer Verlag, Berlin, 1984, pp. 331-364.
[Mor87] Morik, K . : Sloppy modeling. In K . Morik (ed.), Knowledge Representation and
Organisation in Machine Learning, Springer-Verlag, Berlin, 1987.
[MRD91] Motta, E. , Rajan, T., Domingue, J., and Eisenstadt, M : Methodological foundations
of K E A T S , the Knowledge Engineer's Assistant. In Knowledge Acquisition, vol. 3, no. 1,
March 1991, pp. 21-47.
[MRE90] Motta, E. ; Rajan, T.; and Eisenstadt, M . : Knowledge acquisition as a process of
model refinement. In Knowledge Acquisition, vol. 2, no. 1, March 1990, pp. 21-49.
[Mus89a] Musen, M . : Conceptual models of interactive knowledge acquisition tools. In
Knowledge Acquisition, vol. 1, nr. 1, March 1989, pp. 73-98.
[Mus89b] Musen, M . : Automated Generation of Model-Based Knowledge-Acquisition Tools,
Morgan Kaufmann Publisher, San Mateo, C A , 1989.
[NPB91] Nwana, H . S.; Paton, R. C ; Bench-Capon, T. J. M . ; and Shave, J. R.: Facilitating
the Development of Knowledge Based Systems. In Al Communications, vol. 4, no. 2/3,
June/Sept. 1991, pp. 60-73.
[OAK83] Oevermann, U . ; Allert, T.; Knau, E . ; and Krambeck, J.: Die Methode einer
"objektiven Hermeneutik". In P. Zedler et.al. (eds.), Aspekte qualitativer Sozialforschung,
Leske Verlag + Budrich GmbH, Opladen, 1983.
[01R87] Olson, J.R.; and Rueter, H . H . : Extracting expertise form experts: methods for
knowledge acquisition. In Expert Systems, vo. 4, no. 3, 1987.
[Par86] Partridge, D . : Aritificial Intelligence. Application In The Future Of Software
Engineering, Ellis Horwood Limited, Great Brtain, 1986.
[RaS79] Rabinow, P.; and Sulliva, W . M . (eds.): Interpretative Social Science. A Reader,
University of California Press, Berkeley, 1979.
[Sch62] Scheuch, E. , K . : Das Interview in der Sozialforschung. In R. Konig (ed.), Handbuch
der empirischen Sozialforschung, I. Band, Ferdinand Enke Verlag , Stuttgart, 1962.
[Sch76] Schutze, F.: Zur Hervorlockung und Analyse von Erzahlungen thematisch relevanter
Geschichten im Rahmen soziologischer Feldforschung - dargestellt an einem Projekt zur
Erforschung von kommunalen Machtstrukturen. In Arbeitsgruppe Bielefelder Soziologen
(eds.), Alltagswissen, Interaktion und gesellschaftliche Wirklichkeit, Bd. 2: Ethnotheorie und
Ethnographie des Sprechens, Rowohlt, Reinbeck bei Hamburg, 1976.
[Sch89] Schneider, G. : Strukturkonzept und Interpretationspraxis der objektiven Hermeneutik.
In G. Juttemann (ed.), Qualitative Forschung in der Psychologie, Roland Asanger Verlag,
Heidelberg, 2. Aufl . , 1989.
[Sil62] Silbermann, A . : Systematische Inhaltsanalyse. In R. Konig (ed.), Handbuch der
empirischen Sozialforschung, Bd. 4: Komplexe Forschungsansatze, Deutscher Taschenbuch
Verlag, Stuttgart, 1962.
[Sp689] Sporing, W : Qualitative Sozialforschung, B . G . Teubner-Studienskripten, Stuttgart,
1989.
[Wet90] Wetter, T,: First Order Logic foundation of the K A D S Conceptual Model. In Current
Trends in Knowledge Acquisition, B . Wielinga et. al. (eds.), IOS Press, Amsterdam, 1990.
[Wil71] Wilson, T.P.: Normative and interpretative paradigms in sociology. In J.D. Douglas
(ed.), Understanding everyday life, Routledge & Kegan Paul, London, 1971.
[Wit82] Witzel, A . : Verfahren der qualitativen Sozialforschung, Campus Verlag, Frankfurt a.
M . , 1982.
[Wit89] Witzel, A . : Das problemzentrierte Interview. In G . Juttemann (ed.), Qualitative
Forschung in der Psychologie, Roland Asanger Verlag, Heidelberg, 1989.

Part 2:

Case-based Approaches to the

Development of Expert Systems

Case-based Reasoning and
Model-based Knowledge-Acquisition

Dietmar Janetzko & Gerhard Strube
University of Freiburg

Dept. of Cognitive Science

This chapter outlines two different yet complementary approaches to enhance cognitive adequacy
in the process of knowledge engineering: model-based knowledge acquisition and case-
based reasoning. Although both differ with respect to methods, goals and scientific background,
arguments are advanced that a linkage of both approaches will result in a significant contribution
to the methodology of knowledge acquisition for expert systems. To combine case-based reasoning
techniques with conventional rule-based approaches poses the problem of when to use which
technique. A conceptual framework for turn taking in problem solving is outlined that involves both
heuristics of turn taking and architectural options for knowledge-based systems that impose
constraints on turn taking.

Introduction

Concerning knowledge-acquisition the development of the first artificial intelligence (Al) systems
started with a misunderstanding. Neither has elictation of knowledge taken place in early examples
of expert systems, as the domain expert and the system programmer usually were the same person,
nor has there been an encoding of knowledge, as the knowledge was just programmed in (Riesbeck,
1988). Thus, the problems linked to the crucial steps of what has later been coined knowledge
acquisition have not been realized in their full extent.

When A l systems left the laboratories and set out to conquer real world domains the difficulties of
knowledge acquisition became obvious. As a first reaction, primary attention has been given to
increase the efficiency of knowledge elicitation. Methods to speed up knowledge elicitation
(Hoffman, 1987), or tools that enable the domain expert to state his knowledge without help from
a knowledge engineer (e.g. Boose & Bradshaw, 1987) are among the most prominent research
objectives that are undertaken in that spirit. The attention given to knowledge elicitation contrasts
sharply with the fact that the model of problem solving underlying most expert systems remained
untouched. This line of research has been referred to as the mining view of knowledge engineering
(Breuker & Wielinga, 1989). Breuker & Wielinga advocate an alternative approach, which they call
the modeling view. Building a knowledge-based system is no longer understood as filling a shell

with knowledge. According to the modeling view, a specification of expertise is built that defines
a mapping between the real world of expertise and the artificial world of computer systems.

There is general agreement that the modeling view is currently one of the most promising
approaches to knowledge engineering (Schmalhofer & Bergmann, 1990; Ueberreiter & VoB, 1991).
Nevertheless, there is a substantial body of work directed at various aspects of knowledge
acquisition not yet covered by studies inspired by the modeling view. Some of these take up the
controversial issues whether techniques for knowledge acquisition might eliminate the knowledge
engineer. There is a debate on whether knowledge engineering is just a variety of software
engineering, or an approach in its own right based on its own methodology and equipped with
methods that give it a clear-cut profile (Becker, 1991). Finally, the question how cognitive science
can contribute to the development of theories and tools of knowledge engineering has been
discussed at length.

This article attempts to outline relationships between cognitive science research and approaches to
knowledge engineering based on the modeling view. Our focus lies in the area of case-based
reasoning, which is rooted both in cognitive science and computer science. Special attention is given
to turn taking, i.e. change of the mode of problem solving (case-based, rule-based etc.). The paper
is organized as follows: The first part gives a brief account of case-based reasoning and sketches
basic notions of K A D S , the most advanced example of the modeling view. Then, case-based
reasoning is specified anew in terms of the modeling view. Since turn taking is of special importance
for linking case-based reasoning with model-based approaches to knowledge engineering, we review
results of cognitive science that refer to this issue, and discuss the conditions (heuristics and
architectural options) under which case-based reasoning or rule-based reasoning is (or should be)
used to solve a given problem.

The Modeling View of Knowledge Engineering

The acquisition of knowledge and the maintenance of knowledge-based systems are the two basic
tasks of knowledge engineering. Knowledge acquisition, in turn, is usually subdivided in knowledge
elicitation and knowledge encoding (cf. Christaller, Gusgen, Hertzberg, Linster, VoB & VoB, 1988).
The elicitation and encoding of knowledge results in a knowledge-base which is at the heart of
knowledge-based systems. The two-phase model of knowledge acquisition gives the impression of
being straightforward and simple. However, there is a number of difficulties related to this approach
that have instigated research efforts directed at a methodology for knowledge acquisition. Among
the problems that necessitate further research is the task-modeUmismatch (Kurbel, 1989), which
occurs when a knowledge-based system cannot solve the problems it is intended to solve because
the model of expertise realized in the knowledge-base of the system is fundamentally inadequate.
Often, this happens i f elicitation and encoding of knowledge has been fitted to some particular
expert-system shell. In this case, even slight changes of the knowledge base or the inference rules
of the system can only be carried out at the price of time-consuming efforts. Partly in response to
this problem, Breuker & Wielinga (1987) proposed a distinction between an analysis and design
phase. The analysis phase leads to a description of expertise at the 'knowledge level' (Newell,
1980), called the conceptual model. The conceptual model is a functional specification of all kinds

of knowledge (concepts, inferences, tasks, goals) and their relations being used for building a model
of expertise. The conceptual model is a means to assess the completeness and consistency of the
model of expertise that is realized in the knowledge-based system. Only after a conceptual model,
at least a preliminary one, has been specified, work may advance into the design phase. Here, the
conceptual model is translated into a design model, which provides the base for implementation.

To design a detailed specification first, is in accord with the conventions of software engineering
(Pressman, 1987). At the same time, the specification of a conceptual model means to step away
from common knowledge-engineering approaches like rapid prototyping that usually lack a
conceptual level (Christaller et al., 1988, Kurbel, 1989). According to Karbach, Linster & Voss
(1989), the use of a conceptual level entails a number of advantages with regard to knowledge
acquisition and the maintenance of knowledge-based systems:

• Precise specification of the type of problem-solving

• Support of systematic elicitation of the required knowledge

• Opportunity of specification-guided implementation

• Better documentation of the implemented system

The Four-Layer Model of Expertise

Among the first to advocate and develop a detailed methodology of a model-based approach to
knowledge engineering were Joost Breuker and Bob Wielinga (e.g. Wielinga & Breuker, 1984).
Their approach, called K A D S (Knowledge Acquisition and Documentation Structuring), is intended
to provide epistemological primitives for the description of expertise at the knowledge level. Thus,
K A D S allows for the development of conceptual models of expertise independent of particular im-
plementational constraints. Though partially inspired by cognitive science (e.g. Norman, 1983),
K A D S models do not strive for genuine cognitive modeling of expertise. The reconstructive
description of expertise used in K A D S comprises four layers of knowledge (four layer model of
expertise):

Domain Layer: The knowledge at the domain layer covers concepts, relations and structures. In a
domain like toxicology, for example, alcohol, vomiting, and gastric lavage are concepts. There are
various classes of relations (subsumption relations, causal relations, empirical associations), e.g.,
causal relations between toxins and symptoms. Concepts and relations can be represented in an
inheritance hierarchy (Voss, Karbach, Drouven, Lorek, & Schukey, 1990). Relations build up
structures, i.e., networks of relations. Domain layer knowledge is static and task-independent,
because procedural knowledge about a particular task is not represented at the domain layer.

Inference Layer: At the inference layer, knowledge is classified according to its functions in the
model of expertise. The two basic objects on the inference layer are meta-classes and knowledge
sources. Meta-classes constrain the range of potential roles concepts of the domain layer can take

during problem solving. In the domain of toxicology, for example, toxins, symptoms and therapies
are meta-classes. It is possible to build a hierachy of meta-classes; concepts may belong to more
than a single meta-class. Knowledge sources are functional descriptions of primitive inference steps.
Each knowledge source refers to a relation defined at the domain layer. Meta-classes are used to
provide a specification of the knowledge which is expected at the input and produced at the output
of aknowledge source. Examples of knowledge source applications are the operations match, select,
or classify.

Task Layer: At the task layer, knowledge encoded at the inference layer is coordinated in order to
achieve a defined goal. The three basic objects on the task layer are goals, tasks and control
elements. Goals are states the system strives to reach. The representation of goals takes the form of
concepts with specific attributes. Procedures used to achieve a goal are called tasks. According to
the systematic ordering and decomposition of goals and subgoals, which result in a goal-
tree, tasks are classified by building task-structures. Control elements are data structures
representing information that dynamically changes during the process of problem-solving.

Strategic Layer: The pursuit of goal achievement by carrying out, or rearranging a sequence of tasks
is done at the strategic layer. Knowledge at the strategic layer is used to model features of expertise
like early recognition of problems and dead ends for a particual strategy chosen, change of the
strategy in problem solving, and other aspects that pertain to the control of problem solving. Goal-
trees and task-structures are used to represent the strategies required to model these properties of
expertise.

In K A D S , the notion of a conceptual model refers to the task-oriented description of expertise at all
four layers. KADS-models may be used in two directions: Following the constructive direction, a
conceptual model is an intermediary between the elicitation and interpretation of knowledge in the
analysis phase and the design model and implementation of the design phase. If the domain layer
is separated from a conceptual model, the resulting knowledge structure is called interpretation
model. Thus an interpretation model is a domain-independent abstraction of a domain-dependent
conceptual model. Interpretation models are representations of generic types of problem solving and
can be collected in libraries. Following the selective direction, the addition of concepts and relations
from a new domain to some suitable interpretation model chosen from a library results in a new
conceptual model. In a word, knowledge engineering according to the modeling view provides the
feasibility of taking either a bottom-up or a top-down approach. Apart from coarse-grained methods
(e.g., some expert-system shells), which proceed in a top-down fashion, knowledge engineering
according to the mining view is mostly dedicated to bottom-up approaches. Methodologies and
methods developed with the modeling view in mind are doubtlessly more sophisticated and less
prone to problems. However, important features of human expertise, which give flexibility and
efficiency to human problem solving, are currently out of the scope of research within the modeling
view. In the next section, we shall portray some of these features within the framework of case-
based reasoning.

Experience and Episodic Knowledge

The ability to accumulate experience available for subsequent use in problem solving is still one of
the most striking differences of reasoning in man and machine. The endeavor to endow computers
with that faculty is an ongoing research enterprise, with a growing influence on knowledge engineer­
ing. Case-based reasoning is a research paradigm that addresses the issue of experience and its
impact on reasoning (Slade, 1991). In particular, case-based reasoning aims at pursuing two goals
for research, the description and explanation of the development and use of experience in humans,
and the design of computer programms that are equipped with the same talents.

Remindings of previous cases can be used to solve current problems (e.g., Kolodner, 1991). This
is not surprising as we use this kind of reasoning every day. Recent years have witnessed a growing
interest in this type of problem solving in cognitive science and artificial intelligence (Caplan &
Schooler, 1990, Strube & Janetzko, 1990). The knowledge used in case-based reasoning can usually
be traced back to specific episodes, i.e., to the temporal and local conditions under which the
relevant facts occured (e.g., 'I came across a similar problem in Detroit last summer, when I was...')
This kind of knowledge has been termed episodic knowledge (Strube, 1989). Alternatively, but with
more emphasis placed on the use in problem solving, this knowledge is referred to as special
purpose knowledge (Shavlik, DeJong, & Ross, 1987).

In contrast, the type of knowledge typically used in knowledge-based systems is or pretends to be
universally valid (e.g., ' A robin is a bird'). Common ways to represent semantic knowledge are
production rules, frames, semantic networks, and constraints. When used in problem solving the
advantages and disadvantages of episodic and semantic knowledge are quite different. Semantic
knowledge provides the advantage of universal application and the disadvantage of costly
adjustments to solve a specific problem. That is, reasoning from first principles when coping with
a simple or well-known problem may become an expensive expedition into the problem space.
Episodic knowledge, on the other side, has the disadavantage of being useful only within a narrow
range of problems and the advantage of shortcutting processes of reasoning. This relationship has
been termed the operationalitygenerality trade-off '(Shavlik, DeJong, & Ross, 1987). A lesson lerned
from this comparison is that the use or non-use of either general or episodic knowledge is not in
itself an advantage or disadvantage for the process of problem solving. High performance with
regard to the speed, accuracy and reliability of results calls for the retrieval and use of the
appropriate type of knowledge. In the next section, we will pursue the question in which way models
of case-based reasoning make use of episodic knowledge. In subsequent sections we shall return to
the issue of when to use episodic and semantic knowledge in order to combine the advantages of
both.

The Basic Model of Case-Based Reasoning

There is general agreement among researchers in case-based reasoning that the feasibility of this
kind of knowledge-based problem solving is tied to a number of computational steps, which outline
the current topics of research in case-based reasoning:

• How are cases represented, i.e., how to find adequate representations of episodic knowledge,
and interfaces with general knowledge?

• How are cases retrieved from memory (e.g., from a case library)?

• What measure of similarity is appropriate to select a suitable case in memory (= source case)
given a current case (= target case)?

• How is (partial) carry-over of the solution of a source case done to the target case?

• How may (parts of) the solution of a source case have to be adapted to the constraints of the
target case?

• How can general knowledge be automatically acquired from episodic knowledge?

• How should a case library be organized (and re-organized)?

Most of these issues have already become the subject of research in other areas of artificial
intelligence and cognitive science. Therefore, case-based reasoning provides a framework of
research to link those areas and their results. This is especially true for K A D S , which places
emphasis on different aspect of knowledge engineering in comparison to case-based reasoning
(Bartsch-Sporl, 1991). K A D S belongs essentially to the province of software engineering, but aims
at a specification of a set of epistemological primitives in order to improve knowledge engineer­
ing. The long-term perspective of K A D S is to become the accepted industrial standard for the
development of knowledge-based systems. Rooted in cognitive science, case-based reasoning is a
unifying approach of theories of knowledge representation, learning and problem solving. A possible
way of uniting both approaches through re-specifying case-based reasoning in K A D S is presented
in Figure 1. This results in an inference structure of case-based reasoning, which integrates meta-
classes (e.g., problem statement) and knowledge sources (e.g., reorganize). Strategies of turn taking
are both failure-driven and achievement-driven. A similar inference structure for K A D S has been
suggested by Bartsch-Sporl (1991).

assessment of
solution

assess
solution

target &
solution

apply solution to
target

modified solution
& target

I
modify solution

of source

I
source &

target

I
select appropriate

case

set of sources &
target &

assessments

store target &
solution in

case-library I
case-library

assess similarity
source - target

assess previous
success of

^ source

assess computatio-]
nal costs of case-

modification

problem statement

I
reorganize

i
target-case

i
select features/

indices

i
retrieval frame &

target case I
assess retrieval

frame

I
assessments

I
retrieve source

I
set of sources &

target

target &
no solution
target &
no solution

Figure 1: Case-Based Reasoning Inference S t ruc tu re

From Case-Based Reasoning towards a Theory of Problem Solving

Our framework for case-based reasoning has the power to encompass a number of different models
of tasks (retrieval, representation, similarity judgements, etc.) and types of problem solving (case-
based, rule-based, constraint-based etc.). The combination of a case-based reasoner with a rule-
based orfrom-scratchreasoner (Carbonell, 1983, Hinrichs, 1988, Koton, 1988, Rissland & Skalag,
1989) has drawn attention to the fact that high performance in problem solving depends on selecting
the appropriate strategy of reasoning. Hence, the potential flexibility of hybrid expert systems is
available only if they are equipped with facilities for demand-driven selection of the problem
solving strategy. Which conditions and criteria make a particular one the strategy of choice depends
on the theoretical perpective taken. We shall discuss two perspectives on turn taking, the cognitive
scientist's perspective and the knowledge engineer's perspective. Both these perspectives yield
answers that differ more in emphasis than in principle. In fact, results of cognitive science may serve
to design a conceptual framework for turn taking, and the same conceptual framework may stimulate
further empirical research in cognitive science. We return to that issue later.

Turn Taking in Problem Solving: The Cognitive Scientist's Perspective

From the perspective of the cognitive scientist, the question when to use a certain strategy of
problem solving is answered by searching for conditions which systematically correspond with the
preferred use of that strategy in natural problem solving. We now discuss some of the conditions that
have been under study.

Conditions of Learning. In a series of experiments, Caplan & Schooler (1990) looked for the
conditions that make a human problem solver use either episodic knowledge via episode-
based processing, or semantic knowledge via rule-based processing. Their subjects first learned to
use a microcomputer drawing package ('Fullpaint'), and then had to cope with a series of drawing
tasks. Caplan & Schooler concentrated on the influence of different conditions of training schedules
and complexity of training examples. Training instructions were provided in a random or an
organized order and with or without an analogical model. The analogical model introduced the
various functions of Fullpaint with the help of icons. Practise trials differed in visual and logical
complexity both of which varied high and low. Performance was measured by using paper-and -
pencil tests and recording actual use of Fullpaint. In paper-and-pencil and problem-solving tests
theanaiogical model condition yielded better performance than the no-model condition when
practise trials were logically complex. When practise trials were logically simple the no-
model condition yields better performances than the model condition both in paper-and-
pencil- and problem-solving-tests. Caplan & Schooler dicussed their results in light of the encoding
specifity hypothesis (Tulving & Thompson, 1973), which states that performance is best when the
kind of processing used at encoding and retrieval are identical. If conditions of learning encouraged
case-based reasoning, performance was best when problem solving in the tests was also of a case-
base type (e.g., working with examples or cases). The reverse was true for rule-based learning.

Level of Expertise. Do experts prefer one way of problem-solving over another? Experimental
findings indicate that the relationship between the level of expertise and the preferred mode of
problem-solving depends on a number of different conditions. In fact, this relationship is by far more
intricate than the question seems to presuppose. First of all, we may assume that experts have a great
number of episodes or cases at their disposal. Additionally, experts have been shown to actually use
episodic knowledge, i.e. cases, in problem solving (Voss, Greene, Post & Penner, 1983). But
growing expertise is also accompanied by the acquisition of rules (Glaser, 1986). However, this is
far from being necessary (Brehmer, 1980). Formation of rules becomes more likely if the expert has
to give formal accounts of his activities regularly. Having acquired abody of rules, experts predomi­
nantly engage in rule-based processing, unless problems come up that are extraordinarily hard or
exceptional. In contrast, several investigators have demonstrated that novices make extensive use
of examples (e.g., Anderson, Farrell & Sauers, 1984, Reed, Dempster & Ettinger, 1985). Ross
(1984) suggests that preference of case-based over rule-based reasoning results from the extent of
similarity between the current and a previously solved problem.

Peculiarities of the domain. Rule-based problem solving has met with remarkable success in a
number of domains, especially technical ones. Hence, rule-based reasoning is usually regarded as
a universal way of problem solving, some domains like history are i l l suited for this method. It is
therefore not possible to grasp the essentials of each and every potential domain of application and
transform it into a body of detailed and efficient rules. In some domains instable causal relation­
ships, or a vast number of variables make rule-based simulations and predictions nearly impossible.
Case-based reasoning is therefore of special importance for both problem solving and decision
making in the domains of law, history, or politics (Neustadt & May, 1986). A recent example has
been analyzed by Enzensberger (1991), who points out how Saddam Hussein was compared (via
case-based reasoning) to Hitler in the Gulf War, and that the comparison suggests that measures that
would have been the right answer to Hitler probably were the right reaction against Saddam. At the
same time, domains like history and politics are rich in hypothetical reasoning. This is an important
feature of human reasoning which only tentatively has been subject to modeling in knowledge-
based systems (e.g. Rissland, 1986):

Previous Case: "We know Israel's reaction in similar situations in the past."

Hypothetical Case: "But what about Israel's reaction nowadays, if . . ."

Summing up. Which kind of strategy is adopted for the solution of a given problem, depends not on
a single factor, but upon a variety of influences. Obviously, expertise does not call for a particular
problem solving strategy. Case-based reasoning, for instance, may become a last resort to the novice
who has no rules available, or it may be the hallmark of expertise when tackling exceptional and
highly complex problems. Experts and novices alike, however, need to have access to both case-
based and rule-based knowledge, and their use of a strategy depends (at least partly) on the effort
required to access that knowledge.

Another relevant factor in deciding which problem solving strategy to use is the prognostic
evaluation of the strategies at hand. To our knowledge, no experimental evidence exists how human
experts proceed, i.e., do they access both rules and cases, and evaluate both these approaches
afterwards, or do they access only the knowledge that promises a solution readily? The majority of
existing case-based reasoning systems attempt a two-step procedure. First, they select in a combined
step of selection/evaluation a set of cases from a case-library that are similar to the problem at hand.
In a second step, the cases in the selection set are evaluated with respect to their computational costs,
etc. (Bareiss & King, 1989). Retrieval of information from long-term memory has been framed in
a similar way (e.g., Raaijmakers & Shiffrin, 1981).

Turn Taking in Problem Solving: The Knowledge Engineer's Perspective

Decision making with respect to selection of a problem-solving strategy, i.e., turn taking, seems to
be a function of the whole system of problem solving and not tied to a single facility or "turn-
taking-decision-maker." The complexity of the issue calls for a careful treatment of results from
cognitive science. Basically, we have two options: A direct way of using results from cognitive
science is to look for results that can be translated in a straight-forward manner into heuristics. An
indirect way of using results from cognitive science is to think about architectural options for
knowledge-based systems that allow for flexible turn taking behavior as observed in humans. Thus,
knowledge engineering might be inspired by cognitive science as far as heuristics and architectural
options is concerned without necessarily striving for cognitive modeling of turn taking in natural
problem solving.

Turn Taking in Problem Solving: Heuristics

Clear-cut criteria, or at least heuristics that motivate the preference of one type of problem-
solver over an alternative one, are highly desirable for designers of knowledge-based systems. Turn-
taking heuristics might be understood as conflict resolution strategies analogous to those used in
rule-based systems (Jackson, 1986). Typically, conflict resolution strategies are used within the
framework of a rule-based problem solver; their task is to decide which rule, i.e., step of reasoning,
will be given priority when two or more rules could be applied. In a hybrid system, however,
conflict resolution strategies are required as well between different problem solvers to organize turn
taking, e.g., between case-based and rule-based reasoners. The following sample of heuristics should
be judged with care, however, because only the interplay between the heuristics and the architecture
of the system will suffice to motivate turn taking.

Specifity. If a case (source case) has initially been retrieved from the case library that is equivalent
to the problem (target case) to a large extent, the likelihood for case-based reasoning rises.
Weighting of features may be introduced to account for the fact that both corresponding and non-

corresponding features of source and target case differ in their importance for problem solving and
in the computational costs spent when adapting the source case to the target case.

Efficiency. The solutions of the cases that have been retrieved must be evaluated. If the source cases
have not met with success, case-based reasoning should only be used if the prospect of using rule-
based reasoning is even worse. Of course, measures of efficiency may be extended to aspects like
processing time, neglected conditions, financial consequences, etc.

Domain. If the target case belongs to a domain or subdomain where case-based reasoning has
formerly been applied successfully the probability to use case-based reasoning rises.

Turn Taking in Problem Solving: Architectural Options

Conflict resolution strategies between problem solvers vary according to a number of aspects related
to the architecture of a system that integrates several problem solvers.

• Turn taking may be failure-driven or achievement-driven.

• Strategies of conflict resolution may be realized in a hierarchical architecture with a higher,
or meta-problem solver excercising control over the other, basic ones (case-based, rule-
based, etc.). Alternatively, conflict resultion strategies may be realized in a heterarchical
architecture, where the different problem solvers settling turn taking among themselves. This
way of controlling the behavior of the system is akin to Selfridge's (1959) pandemo-

model (albeit not to its implementation in those days), or to Minsky's (1985) society of mind.

• Either division of labor is possible among the various problem solvers, or each problem
solver works on each step of a problem on its own.

• We need a set of defined points of turn taking. These are points in the flow of control of
problem solving where the result of a test is used to decide whether or not the mode of
problem solving has to be changed. Points of turn taking have to fulfil three requirements:

- They have to be distributed across the whole process of problem solving.

- It is not useful to install too great a number of points of turn taking. This would result
in high computational costs, similar to someone who solves a problem and spends a lot
of time and energy thinking about possible alternatives to solve the problem all the while.

- To keep computational costs low, the test used by points of turn taking should be a
natural part of the process of problem solving (e.g. computation of the degree of
specifity, similarity, estimated distance to the solution, etc.)

control scheme could possibly be implemented, where all the basic problem solvers take turns
regularly, and the meta-problem solver pops up and decides upon turn taking among them only when
too much computing resources have been used.

A combined scheme seems also possible for failure-driven and achievement-driven control of turn
taking. In fact, only an intelligent combination of both options allows for a sufficiently flexible
behavior. A purely failure-driven approach is doomed to fail, because each basic problem solver
may face problems and - consequently - no problem solver would attempt to solve the problem. This
might be called giving up too early. Strict failure-driven turn taking will rule out every problem
solver, unless it takes into consideration both the extent of the problem and the expected achieve­
ments of each basic problem solver. Likewise, a purely achievement-driven approach will not
succeed, if a problem solver runs into lengthy computations and does not take into account to change
the mode of problem solving. This might be labeled giving up too late.

Cognitive Science and Knowledge Engineering

We hope to have shown how methods and results from cognitive science may be applied to the field
of knowledge engineering. We have done so, of course, in a selective way. Cognitive science has
produced a multitude of papers that might be applied to knowledge engineering for case-
based expert systems. Issues of assessing similarity between cases have been treated by Tversky
(1977), or Osherson (1987). Modification of cases might profit from research on analogical mapping
(Falkenhainer, Forbus & Gentner, 1990; Holyoak & Thagard, 1989). Turning around, we recognize
that research in cognitive science is instigated in many ways by 'applied* problems, e.g., in
knowledge engineering. Transfer in both directions is the essence of the interplay between applied
and basic research.

One of the peculiarities of knowledge engineering as an applied science is that it draws on a variety
of basic fields of research in addition to cognitive science, notably computer science/AI and
mathematical logic. From the perspective of knowledge engineering, therefore, any offerings from
cognitive science have to stand their ground against the alternatives offered by those other basic
disciplines. Cognitive science is pressed by that to develop its own profile of research. Although
similar in many ways to A l because of the programming techniques used in cognitive modeling,
cognitive science is still distinct from A l because it focuses on modeling human information
processing and experimental methods for testing its models, thus becoming a natural science rather
than a branch of engineering.

Bibliography

Anderson, J. R., Farrell, R„ & Sauers, R. (1984). Learning to program LISP. Cognitive Science, 8,
87-129.

Bareiss, R., & King, J. A . (1989). Similarity assessment in case-based reasoning. In D A R P A (Ed.),
Proceedings of a Workshop on Case-Based Reasoning (pp. 67-71). Holiday Inn, Pensacola
Beach, Florida, May 31 - June 2,1989. San Mateo, C A : Morgan Kaufmann.

Bartsch-Sporl, B . (1991). K A D S for (all) Cases. In B . Ueberreiter & A . VoB (Eds.), Materialien
KADS Benutzer Trejfen. Miinchen: Siemens.

Becker, B . (1991). Gibt es eine Methodologie der KI? Vortrag gehalten aufder 10. Friihjahrsschule
Kunstiche Intelligent 23-10.3.1991. Gunne.

Boose, J. & Bradshaw, J. (1987). Expertise transfer and complex problems: using AQUINAS as a
knowledge acquisition workbench for knowledge-based systems. International Journal of
Man-Machine Studies, 26, 3-28.

Brehmer, B . (1980). In one word: Not from experience. Acta Psychologica, 45,223-241.
Breuker, J., & Wielinga, B. (1987). Use of models in the interpretation of verbal data. In A . L . Kidd

(Ed.), Knowledge acquisitionfor Expert Systems: A practical handbook (pp. 17-44). Pitman:
London.

Breuker & Wielinga (1989). Models of expertise in knowledge acquisition. In G. Guida, & C. Tasso
(Eds), Topics in expert system design (pp. 265-295). Amsterdam: North-Holland.

Breuker, J., Wielinga, B. , van Someren, M . , de Hoog, R., Schreiber, G., de Greef, P., Bredeweg, B.,
Wielemaker, J. Billaut, J.-P., Davoodi, M , & Hayward, S. (1987). Model-driven knowledge
acquisition: Interpretation models. Deliverable task A l , Esprit Project 1098, Memo 87, V F
Project Knowledge Acquisition in Formal Domains.

Breuker, J., & Wielinga, B . (1989). Models of expertise in knowledge acquisition. In G. Guida, &
C. Tasso (Eds.), Topics in expert system desing: Methodologies and Tools. Amsterdam:
North-Holland.

Brooks, L . R. (1987). Decentralized control of categorization: The role of prior episodes. In U .
Neisser (Ed.), Concepts and conceptual development (pp. 141-174). New York: Cambridge
University Press.

Caplan, L . J., & Schooler, C. (1990). Problem solving by reference to rules or previous episodes:
The effects of organized training, analogical models, and subsequent complexity of
experience. Memory & Cognition, 18,215-227.

Carbonell, J. (1983). Learning by analogy: Formulating and generalizing plans from past experience.
In R. Michalski, J. Carbonell, & T. Mitchell (Eds.), Machine Learning: An Artifi­
cial Intelligence Approach (pp. 137-161). Palo Alto: Tioga Press.

Ceci, S. J., & Liker, J. K . . (1986). A day at the races: A study of IQ, expertise, and cognitive
complexity. Journal of Experimental Psychology, 115, 255-266.

Christaller, T., Gusgen, H.-W., Hertzberg, J., Linster, M„ VoB, A . , & VoB, H . (1988). Expertise und
ihre Modellierung auf dem Rechner. etz, 109,1002-1006.

D A R P A (Ed.). (1989). Proceedings of the Second Workshop on Case-Based Reasoning, Holyday
Inn, Pensacola Beach, Florida. San Mateo, C A : Morgan Kaufmann.

di Piazza, J. S., & Helsabeck, F. A . (1990). Laps: Cases to models to complete expert systems. Al
Magazine, 11 (3), 80-107.

Enzensberger, H . M . (1991). Hitlers Wiederganger. Der Spiegel, 45 (6), 26-28.

Falkenhainer, B., Forbus, K. D., & Gentner, D. (1990). The structure-mapping engine: Algorithm
and examples. Artificial Intelligence, 41, 1-63.

Feigenbaum, E. A . (1984). Knowledge engineering: The applied side of artificial intelligence.
Annals of the New York Academy of Science, 246, 91-107.

Glaser, R. (1986). On the nature of expertise In F. Klix, & H. Hagendorf (Eds.), Human memory and
cognitive capabilities (pp. 915-928). Amsterdam: Elsevier.

F. Hayes-Roth, D. Waterman, & D. Lenat (Eds.). (1983). Building expert systems. Reading, M A :
Addison-Wesley.

Hinrichs, T. R. (1988). Towards an architecture for open world problem solving. In Proceedings of
a Workshop on Case-based Reasoning, Holy day Inn, Clearwater, Florida (182-189). San
Mateo, C A : Morgan Kaufmann.

Hoffman, R. R. (1987). The problem of extracting the knowledge of experts from the perspective
of experimental psychology. Al Magazine, Summer 1987, 53-67.

Holyoak, K . J., & Thagard, P. (1989). Analogical mapping by constraint satisfaction. Cognitive
Science, 13,295-355.

Jackson, P. (1986). Introduction to Expert Systems. Reading, M A : Addison-Wesley.
Karbach, W. (1989). Modellbasierte Wissensakquisition. KI, 4, 13.
Karbach, W., Linster, M . , VoB, A . (1989). OFFICE-Plan: Tackling the synthesis frontier. In

Proceedings ofGWAI(pp. 379-387). Berlin: Springer.
Karbach, W., VoB, A. , & Tong, X . (1988). Filling in the knowledge acquisition gap: Via KADS ' s

models of expertise to ZDEST-2's expert systems. In Proceedings of the Second Euro­
pean Knowledge acquisition workshop, 31:1-17. Bonn: Gesellschaft fur Mathematik und
Datenverarbeitung.

Kolodner, J. L . (Ed.). (1988). Proceedings of a Workshop on Case-based Reasoning, Holydaylnn,
Clearwater, Florida. San Mateo, C A : Morgan Kaufmann.

Kolodner, J. L . , & Simpson, R. L . (1986). Problem solving and dynamic memory. In J. L . Kolodner
& C. K . Riesbeck (Eds.), Experience, memory and reasoning (pp. 99-114). Hillsdale, N.J.:
Lawrence Erlbaum.

Koton, P. (1988). Reasoning about evidence in causal explanations. In Proceedings of a Workshop
on Case-based Reasoning, Holydaylnn, Clearwater, Florida (pp. 260-270). San Mateo, C A :
Morgan Kaufmann.

Kaplan, D., Leslie, J., & Schooler, C. (1990). Problem solving by reference to rules or previous
episodes: The effect of organized training, analogical models, and subsequent com­
plexity of experience. Memory & Cognition, 18, 215-227.

Kurbel, K . (1989). Entwicklung und Einsatz von Expertensystemen. Berlin: Springer.
Minsky, M . (1985). The society of mind. New York: Simon & Schuster.
Musen, M . A . (19&9). Automated Generation of model-based knowledge acquisition tools. Pitman:

London.
Neustadt, R., & May, E. (1986). Thinking in time: The use of history for decision makers. New

York: The Free Press.
Norman, D. A . (1983). Some observations on mental models. In D. Gentner, & A . Stevens (Eds.),

Mental Models. Hillsdale, NJ: Lawrence Erlbaum.
Osherson, D. N . (1987). New axioms for the contrast model of similarity. Journal of Mathematical

Psychology, 31, 93-103.
Pfitzner, K . (1990). Die Auswahl von Bibliothekslosungen mittels induzierter Problemklassen. In

Beitrage zum 4. Workshop Planen und Konfigurieren, Vim, Mai 1990.

Pressman, R. S. (1987). Software engineering. New York: McGraw-Hill.
Raaijmakers, J. G. W., & Shiffrin, R. M . (1981). Search of associative memory. Psychological

Review, 88, 93-134.
Reed, S. K. , Dempster, A. , & Ettinger, M . (1985). Usefullness of analogous solutions for solving

algebra word problems. Journal of Experimental Psychology: Learning, Memory and
Cognition, 11,106-125.

Riesbeck, C. K . (1988). An interface for case-based knowledge acquisition. In J. L . Kolodner (Ed.),
Proceedings of a Workshop on Case-based Reasoning, Holyday Inn, Clearwater, Flori­
da (pp. 312-326). San Mateo, C A : Morgan Kaufmann.

Riesbeck, C. K. , & Schank, R. C. (1989). Inside case-based reasoning. Hillsdale, NJ: Erlbaum.
Rissland, E. L . (1986). Learning how to argue: Using hypotheticals. In J. L . Kolodner & C. K .

Riesbeck (Eds.), Experience, memory and reasoning. Hillsdale, NJ: Lawrence Erlbaum.
Rissland, E. L . , & Skalag, D. B. , (1989). Combining case-based and rule-based reasoning: A

heuristic approach. In Proceedings of the International Joint Conference on Artificial Intel­
ligence 1989, August 1989, Detroit.

Ross, B . H . (1984). Remindings and their effects in learning a cognitive skill. Cognitive Psychology,
16, 371-416.

Selfridge, O. G. (1959). Pademonium. A paradigm for learning. In The mechanisms of thought
processes. London: H . M . Stationery Office.

Shavlik, J. W., DeJong, G . F., & Ross, B. H . (1987). Acquiring special case schemata in
explanation-based learning. Proceedings of the Ninth International Annual Conference of
the Cognitive Science Society (pp. 851-860). Hillsdale, NJ: Erlbaum.

Schmalhofer, F. & Bergmann, R. (1990). Case-based knowledge acquisition: Extending expert
problem solutions for technical planning tasks. Paper presented at the Gl-Workshop
Knowledge Engineering. Berlin 26.4-27.4.1990.

Schulz, A . (1989). Software-Lifecycle und Vorgehensmodelle. Angewandte Informatik, 4, 137-
142.

Shavlik, J. W., DeJong, G. F., & Ross, B . H . (1987). Acquiring special case schemata in
explanation-based learning. In Proceedings of the Ninth Annual Conference of the Cognitive
Science Society (pp. 851-860). Hillsdale, NJ: Lawrence Erlbaum.

Strube, G. (1989). Episodisches Wissen. Arbeitspapiere der GMD, 385,10-26.
Strube, G., & Janetzko, D. (1990). Episodisches Wissen und fallbasiertes SchlieBen: Aufgaben fur

die Wissensdiagnostik und die Wissenspsychologie. Schweizerische Zeitschrift fur
Psychologie, 49,211-221.

Thagard, P., & Holyoak, K . J. (1989). Why indexing is the wrong way. In D A R P A (Ed.),
Proceedings of a Workshop on Case-Based Reasoning (pp. 36-40). Holiday Inn, Pensacola
Beach, Florida, May 31 - June 2,1989. San Mateo, C A : Morgan Kaufmann.

Tulving, E., & Thompson, D. M . (1973). Encoding specifity and retrieval processes in episodic
memory. Psychological Review, 80, 352-373.

Ueberreiter, B . & VoB, A . (1991). (Eds.) Materialien KADSBenutzer Treffen. Miinchen: Siemens.
Voss, J. F., Greene, T. R., Post, T. A . , & Penner, B . C. (1983). Problem solving in the social. In G.

Bower (Ed.), The psychology of learning and motivation: Advances in research theory. New
York Academic Press.

VoB, A . , Karbach, W., Drouven, U . , Lorek, D„ & Schukey, R. (1990). Operationalization of a
synthetic problem. Task 1.2.1 Report. ESPRIT Basic Research Project P3178 REFLECT.
Bonn: Gesellschaft fur Mathematik und Datenverarbeitung.

Wielinga, & Breuker (1984). Interpretation models for knowledge acquisition. In T. O'Shea (Ed.),
Advances in Artificial Intelligence. Amsterdam: North-Holland.

Wielinga, B. , & Breuker, J. (1986). Models of expertise In Proceedings of the European Conference
on Artificial Intelligence, Brighton, 1986 (pp. 306-318).

Wippich, W. (1982). Erinnerungen erinnern: Ein automatischer Vorgang? Zeitschrift jur
experimented und angewandte Psychologie, 29, 517-530.

Dipl. Psych. Dietmar Janetzko
Prof. Dr. Gerhard Strube

Institut fur Informatik und Gesellschaft
Abteilung Kognitionswissenschaft
Universitat Freiburg
Friedrichstr. 50
D-7800 Freiburg i.Br.

The Refitting of Plans by a Human Expert

Franz Schmalhofer, Christoph Globig, Jorg Thoben

German Research Center for Artificial Intelligence
University Bldg 57

Erwin-Schroedinger Str.
W-6750 Kaiserslautern

email: schmalhc>@informatik.uni-kl.de

Abstract. During the course of the development of a Case-Oriented Expert
System for situated applications additional cases were needed. The required cases
were obtained by having a human expert refit old solutions to new problems and the
structural relations between source and target cases were analyzed: A higher degree
of reuse of the old cases was found when the expert could apply derivational
reasoning and a uniform design rationale (i.e. the solution of the source was
generated by the expert himself) than when the expert could only analyze structural
relationships (i.e. the source solution was constructed by some one else). Except
with very obvious cases, it was also found, that different experts perceive different
cases as the most similar source to a given target problem. The results also indicate
for user-situated applications of expert systems.

1. Introduction

In order to overcome the brittleness of first generation expert systems, it has recently been
proposed to develop Case-Oriented Expert Systems (COEx-Systems), which allow situated
applications (Schmalhofer & Thoben, 1992). One prerequisite for developing such a system is
that a sufficient number of prototypical cases are available for the desired competence of the
system. Since originally we had only very few cases, we had an expert generate solutions to
additional prototypical problems by having him refit old solutions, so that they would become
solutions for those problems.
The current paper first reviews the integrated knowledge acquisition method (Schmalhofer,
Kuhn & Schmidt, 1991) for COEx-Systems together with their general characteristics. We then
present a structural analysis of the refitted plans. Finally several conclusions with respect to the
development of expert systems and the situated applications of old cases are drawn.

2. Case-Oriented Expert Systems for Mechanical Engineering Planning Tasks

In the knowledge acquisition phase for such COEx-Systems, model-based abstractions are
formed from concrete past experiences, so that they can be reused in novel situations. Human
expert judgments concerning the classification and similarities of the concrete past experiences
are applied to obtain an abstraction hierarchy of problem classes (Bergmann & Schmalhofer,
1991; Schmalhofer, Reinartz & Tschaitschian, in press) and supplementary knowledge from

written materials is used to obtain explicit operator definitions (Schmidt, 1992) so that
associated skeletal plans can be constructed (Bergmann, 1992; Friedland, 1985).

The knowledge acquisition for such systems thus yields an abstraction hierarchy of problem
classes with associated skeletal plans which allow for a situated utilization of past experiences
in future tasks. During the knowledge acquisition phase, these past experiences have been
interpreted by one or several experts within some uniform rationale. More details about such
systems can be found in Schmalhofer & Thoben (1992). The respective knowledge acquisition
procedures and tools were summarized by Schmalhofer, Bergmann, Kiihn & Schmidt (1991).
The model of expertise or problem solving model (Breuker & Wielinga, 1989), which underlies
COEx-Systems for planning tasks has been described by Kiihn & Schmalhofer (1992).

Our research group has recently been developing such a system for production planning
problems in mechanical engineering. Without going into any details of this application domain,
we can state that production planning is a typical planning problem: For example, the mold of
the workpiece defines the given state and the goal workpiece defines the goal state of the
manufacturing problem. A number of different types of operations (chucking, unchucking,
cutting operations) are available for transforming the mold (given state) to the goal workpiece
(goal state). The operations themselves are quite complex requiring the specification of a
number of different parameters (such as cutting path specification, specific cutting parameters,
toolholders, etc.). It is therefore very useful to classify and abstract operations to different types
of macro-operators.

Workpiece

Geometry
Drive Shaft Drive Shaft Pinion Shaft Axle Shaft Axle Shaft

Geometry
gi g2 g3 g4 gs

Vorkpiece
material

w1 w2 w3 w4 W1 w2 w3 w4 w1 w2 w3 w4 w2 w3 w4 w1 w2 w3 w4

d1 3 3 1 3 3 1 4 4 2 4 4 2
* • * * *

m3

d2 5 5 7 9 5 5 7 9 5 5 7 9 6 6 8 10 6 6 8 10
* * *

ml m4 m5

d3 5 5 7 9 5 5 7 9 5 5 7 9 6 6 8 10 6 6 8 10
* * * * * *

1
C
(0

2

Table 1 (after Schmalhofer & Thoben, 1992): A number of specific problems are used in order
to delineate the competence of the future expert system. From the factorial combination of three
types of manufacturing machines (dj,d2, and di), and workpieces with five different types of
geometries (gj, g2, g3, g4, and gs) and materials (wj, W2 wj, and W4) fifty-two problems were
identified as meaningful. The numbers 1 to 10 indicate the abstract problem classes to which a
specific prototypical problem belongs. An abstraction hierarchy for these problem classes is
shown in Figure 1. See text for further explanation.

Since a production plan strongly depends upon the specific geometry of the workpiece (g), the
workpiece material (w), and the particular machine (d), which are to be used when
manufacturing the workpiece, we denote production problems with the descriptors g, w, and
d. By using different indices with these descriptors we can thus refer to a given manufacturing
problem.

In Table 1 sixty production problems are specified through the factorial combination of 3
manufacturing machines (di, d2, and d 3) , five different geometries (gi, g2, g3 , g4> and gs) and
four different workpiece materials (wi , W2, W3, and W4). Fifty-two of these problems (all
problems whose cells are marked by a number between 1 and 10) are the prototypical
problems, which delineate the desired competence of the future expert system. Problems with
the same number were assigned to the same abstract problem class. The abstraction hierarchy of
these ten abstract problem classes is shown in Figure 1.

Since only five production plans were originally available for the 52 prototypical problems, i.e.
the cases m i , m2,1113,1114, and ms (see Table 1), an expert refitted these plans (refitting roots)
and his subsequently generated plans (refitting children) for 16 of the 52 prototypical problems.
He also constructed one production plan from scratch (g5W4di). In Table 1, the problems with
associated refitted plans are indicated by the asterisks.

3. Plan Refitting
Figure 2 identifies the different source cases which the expert used for finding solution plans
for the 16 target problems: The source-target case relation is indicated by an arrow. Whereas
case m3 was five times used as a direct source, the cases mi , m2, and 1114 were each only used
once as a direct source and case ms was never used as a source. On 8 occasions one of the
cases which had already been tested in the real world (tested source case or refitting root) were
used as source and 8 times a solution plan which the expert had generated himself (i.e. a
refitting child) was used as source (self-generated source case).

/

(5)

\

r
g ^ 3 (5)

r 9 iw,d3 (5)

y
r

g ^ ^ j . (5)

J
9lW4 d2 (9)

t12: 5 tvMa (9)

/ •

m 2 (5)

V g 2wi d3 (5)

ma (5)

(6)

9 S W 3 d 2 (8)

r

g 5w 3

d3 (8)

g 3 w 3 d i 0)

V g 3w4 di (0)

g 3 ^ 3 (5)

t,«: 9 3W2d2
(5)

t2: g ^ d . (3)

>

(3)

9 2*4d3 (9) - t17: g 2 ^ 3 ^ (7)

t3: g 5 ^ d i

Figure 2 (after Schmalhofer & Thoben, 1992): The source case - target case relation is shown
for the 17 tasks (tj to tjj) which were solved by the expert. In parentheses the abstract problem
class that a specific task is associated with (see Figure 1) is noted. Task was solved from
scratch, so that there is no source case associated with it. Whereas the cases mi, m2, mj, and
m4 served as refitting roots, the other cases are denoted as refitting children.

The task numbers ti to t\-j indicate the temporal order in which the 16 refitting and the one plan
construction task (t3) were performed by the expert. These numbers show that the immediately
preceding target solution was very often used as the source for the next target problem. For
example the solution to task t£ was used as a source for t*j and the solution to t\4 was used as
the source for tis. On other occasions somewhat earlier preceding target solutions were used as
the source for the current target problem. For example, the last but one target solution was used
as the source for task ti3. These temporal relationships indicate that for the refitting of old
plans, the expert tried to maintain a fresh memory of the modification processes by which he
constructed the old plan.

When the expert remembers his reasoning (i.e. the derivations), by which he constructed or
modified the old plan, he can perform derivational refitting processes (Carbonell, 1986). When
the old cases was generated by somebody else, as for example the tested source cases mi , m2,
m3, rri4 and ms (i.e. the refitting roots), the expert is more likely to perform only structural
refitting processes (Hammond, 1989). Another important observation was: The plans which
were obtained by modifying an already existing plan were completed by an order of magnitude
faster than the plan which was produced from scratch (t3).

3.1 Different Types of Modifications between Source and Target Plans

We also analyzed more detailed structural relations between the source and target plans.
Thereby it was distinguished between the refitting of tested source cases (i.e. refitting roots),
where the expert was very likely to only use structural analogies and the refitting of self-

generated source plans (i.e. refitting children), where the expert could at least to a certain degree
also apply derivational analogies.

z z n r r i —

c
™3 g3w2d2

g3wld2

Figure 3: Shown are the structural relations between the tested source case msfor problem
g3wjd2 and the resulting target plan for problem g3W2d2. See text for further explanation.

Figure 3 shows the structural relationships between the operators of the tested source case m3
and the refitted plan for the manufacturing problem g3W2d2. The Figure shows the structural

relationships between corresponding operators of the source plan m3 for problem g3Wid2 and
the target plan for problem g3W2d2 at the macro level. The ovals represent chucking and
unchucking operations. A l l cutting (macro-)operations are indicated by rectangles. Within these
rectangles, 1) the toolholder together with cutting tool, 2) the cutting path, and 3) the cutting
parameter v c are symbolically represented from left to right. Shaded symbols in the target plan
indicate changes from the source to the target. The solid lines with arrows indicate which
operations of the source were reused in the target plan. The dashed lines indicate substantial
changes in the individual operations themselves.

The first two cutting operations of the source plan (see left side of Figure 3) were splitted apart
and the resulting components were rejoined across the original operations of the source plan.
Two new operations were thus created, which differ in all three parameters from the operations
in the source case (see right side of Figure 3). As a consequence, the third cutting operation of
the source was completely eliminated from the target.

The execution order of the fourth and the fifth cutting operation of the source was also changed
in the target. While the cutting path remained identical, cutting tool and cutting parameters were
adjusted to the new workpiece material. The same modification was performed for the sixth and
the seventh operation, except that these operations were not reordered in the target plan.

(unchuck j

• p

c
g5w3d2

unchuck

g5w3d3

Figure 4: Shown are the structural relations between a self-generated source and the resulting
target case. See text for further explanation.

Figure 4 shows the structural relationships between the self-generated source plan g5W3d2 and
a target plan which is refitted for a machine which allows parallel processing. Whereas the
chucking operations as well as the first two cutting operations remain identical, the third and
fourth operations of the source are now executed in parallel in the target plan. In addition, one
of the toolholders is changed. This source-target pair thus shows a large degree of reuse of the
operations and the execution sequence of the old plan.

3.2 Comparison of Structural Relations among Four Different Plan Pair
Groups
We compared the structural relations among four different groups of plan pairs. The first group
consisted of the 8 pairs, which contained tested source cases (ti, ty, t6, ts, t n , ti4, tis, and
ti6). The second group of plan pairs contained the 8 pairs with self-generated source plans (t2,

The 16 actual modification tasks The 1 lmost similar case pairs

type of change source is
refiffing root

source is
refitting child

source is
refiffing root

source is
refitting child

additional chuckings 0.25 0.13 0.00 0.14

eliminated chuckings 0.00 0.13 0.00 0.14

new parallel executions 0.13 0.25 0.25 0.29

new serial executions 0.13 0.25 0.25 0.14

splitted operations 0.75 0.00 0.50 0.00

joined operations 1.13 0.00 1.25 0.00

reordering of operations 0.75 0.50 1.00 0.43

cutting path changes 3.75 0.25 6.75 1.43

cutting parameter changes 5.63 4.25 8.75 2.86

toolholder changes 4.88 2.50 8.50 1.57

cutting tool changes 5.25 4.00 8.00 2.86

total number of case pairs 8 8 4 7

total number of cuts
in source 61 57 34 46

total number of cuts
in target 53 55 36 41

Table 2: Average number of different types of changes from the source to the target case for the
16 performed modification tasks (see Figure 2) and 11 most similar case pairs from the
abstraction hierarchy.

t5> *7, t9> tio» ti2, ti3, and tn). The abstraction hierarchy of problem classes (see Figure 1 and
for more details Schmalhofer & Thoben (1992)) was used for defining the third and fourth
group of plan pairs. More specifically, for each of the 16 target plans, the most similar plan
according to the abstraction hierarchy was selected as a hypothetical source case and the
structural relations of these case pairs were analyzed. Group 3 contains the plan pairs, where
the source plan was mi , m2,1113, or 1114 (i.e. the refitting roots): 1113 - giwid3, mi - giwid3, m2
- g2Wid3, m3 - g3W2d2- Group 4 contains the plan pairs, where the source plan was a self-
generated plan: g3W3di - g3Widi, g 3 W 3 d i - g3W2di, giwid3 - giwid2, givM2 - g i W 4 d 3 ,

g 5 W 3 d 2 - g5W3d3, g5W3d2 - g2W3d2, glW4d3 - g2W4d3.

The results of this analysis are shown in Table 2. In general, fewer structural changes were
observed between the (real or hypothetical) source and the target case, when the source case
was also self-generated (i.e. a refitting child) than when the source case was generated by
somebody else (i.e. a refitting root). And as expected, changes of the operations themselves
occurred less frequendy than parameter changes (e.g. cutting parameter changes).

3.3 Assessing the Expert 's Consistency in the Source-Case Selections

In order to assess the expert's consistency in selecting the same source case as the most similar
one to a given target problem, further data were collected from the expert who had performed
the 16 refitting tasks (HW). In addition an additional expert (RL) had to perform the same task.
The task consisted in selecting the most similar source from the cases mi , m2, m3,1114 and ms
to each of the 16 target problems, for which a plan modification was performed. In addition,
the similarity between the source and target problem had to be estimated by a number between 1
and 7. Whereas 1 meant the lowest similarity, 7 indicated the highest possible similarity. Table
3 shrjws the results in comparison to the actually used source case. For self-generated source
cases, the refitting roots (see Figure 2) were also determined.

From Table 3 it can be seen that the cases which were identified as most similar by H W
correspond in only 50 percent to the actually selected source case or root of the source case (i.e.
the refitting root) in the refitting task. There is also only a 47 percent consistency between the
two experts. However, when only those cases, which were identified as most similar with a
similarity rating of 7 are considered, the two experts agreed in 100 percent of the cases. More
details have been reported by Thoben, Schmalhofer & Reinartz.

4. Conclusion

Our main purpose for having an expert refit old plans to new problems was to obtain a
sufficient number of cases for developing a Case Oriented Expert System for production
planning in mechanical engineering. Although there is now a sufficient number of cases
available for constructing skeletal plans for the important set of medium level problem classes
(i.e. for all classes with a solid node in Figure 1), further prerequisites must be satisfied.
Unlike case-based reasoning which does not make such strong prerequisites, Case Oriented
Expert Systems require that all prototypical cases follow the same design rationale. This
requirement arises from the fact, that several layers of more and more abstract skeletal plans are
to be constructed from these cases, so that deductive justifications will exist for the resulting
state and operator sequence abstraction mappings (Bergmann & Schmalhofer, 1992). We wil l
consequently have to test, whether the cases of the refitting roots (mi, m2, m3,1114, and tn$)
follow the same design rationale as the cases generated by the expert HW.

problem HW RL

task target case
actually used
source with
(refitting root)

most similar
case identified

most similar
case identified

ti g3w3dl m3 m5 : 5 m3:l

t2 g3wldl g3w3dl (m3) m4: 6 m3:2

U g3w4dl m3 m4 3 m3 :1

t5 g3w2dl g3w3dl (m3) m4 4 m3:3

t6 glw2d3 ml ml 3 m2:6

h glwld3 glw2d3 (ml) ml 4 m2:6

t8
g2wld3 m2 m2 7 m2:7

t9 glwld2 glwld3 (ml) ml .4 m2:6

Wo glw4d2 glwld2 (ml) ml :6 ml :5

til g5w3d2 m4 m5 :7 m5:7

tl2 glw4d3 glw4d2 (ml) ml :7 ml :7

*13 g5w3d3 g5w3d2 (m4) m5 :7 m5:7

tl4 g3w2d3 m3 m3 :7 m3 :7

tl5 g3w2d2 m3 m3 :7 m3 :5

tl6 g2w4d3 m3 m2 :3 m2:3

t 17 g2w3d2 g2w4d3 (m3) m2 :4 m5 :4

Table 3: Consistency assessment between two experts (HW and RL) and two different tasks:
Actual source selection and most similar case identification with similarity judgement.

Our study also yielded a typology for the structural relations between the old and the refitted
plans. In some situations refitting purely consisted of small scale modifications (e.g. parameter
changes) of the building blocks (i.e. macrooperators) of a plan, while the global structure of the
plan (e.g. a complete or partial execution order) was maintained. Under other circumstances,
the global structure of the plan was modified according to some well justifiably rationale. In still
other situations, rather creative processes were applied: Operations were splitted and rearranged
in different ways and the execution order was changed in a quite unpredictable way (see Figure
3). Such changes may be an indication for different underlying design rationales. The
inconsistencies between different experts are another indication for idiosyncratic planning
rationales.

The expert's refitting task is also similar to the task a user would perform with the expert
system. As the expert in our study, the user (or the system) has to select the most similar

abstract (or concrete) plan and refine (or refit) it to the problem at hand. From the observation,
that different experts preferred different plans to be most similar to a given problem, we may
conclude that expert systems should accommodate such differences in personal user
preferences. In other words expert systems should be more user-oriented and user-situated
applications should also be possible in expert systems.

Acknowledgments
This research was supported by grant ITW 8902 C4 from B M F T (German Ministry for Science
and Technology) and by grant Schm 648/1 from D F G (German Science Foundation). We
would like to thank Dipl.-Ing. Ralf Legleitner and Hans-Werner Hoper for serving as experts in
this study. Thomas Reinartz helped in analyzing the recorded materials. The comments of Angi
Voss and Stefan Wess on a previous version of this paper are also much appreciated.

References

Bergmann, R. (1992). Knowledge Acquisition by generating skeletal plans from real world
cases. In Schmalhofer, F., Strube, G., & Wetter, T. (Eds.), Contemporary Knowledge
Engineering and Cognition (pp. $pages). Berlin/Heidelberg: Springer-Verlag.

Bergmann, R. & Schmalhofer, F. (1991). CECoS: A case experience combination system for
knowledge acquisition for expert systems. Behavior Research Methods. Instruments. &
Computers, 2 1 142-148.

Bergmann, R. & Schmalhofer, F. (1992). Learning Plan Abstractions: Formal Model and
Method. In Biundo, S. & Schmalhofer, F. (Eds.), Proceedings of the D F K I Workshop
on Planning. DFKI-Document D-92nn, pp. 20-24.

Breuker, J. & Wielinga, B . (1989). Models of expertise in knowledge acquisition. In Guida, G.
& Tasso, C. (Eds.), Topics in expert system design, methodologies and tools (pp. 265 -
295). Amsterdam, Netherlands: North Holland.

Carbonell, J.G. (1986). Derivational analogy: A theory of reconstructive problem solving and
expertise acquisition. In Michalski, R.S., Carbonell, J.G., & Mitchell, T . M . (Eds.),
Machine Learning: An artificial intelligence approach (Vol. 2, pp. 371-392). Los Altos,
C A : Morgan Kaufmann.

Friedland, P.E. & Iwasaki, Y . (1985). The concept and implementation of skeletal plans.
Journal of Automated Reasoning. 1. 161-208.

Hammond, K . (1989). Case-based planning. London: Academic Press.
Kiihn, O. & Schmalhofer, F. (1992). Hierarchical skeletal plan refinement: Task-and inference

structures. In Bauer, C. & Karbach, W. (Eds) Proceedings of the 2nd K A D S User
Meeting (pp. 201-210) Miinchen: Siemens A G .

Schmalhofer, F. & Bergmann, R. (1992). Plan Recognition by Constructing Skeletal Programs
as Abstractions from Symbolic Execution Traces, manuscript, D F K I Kaiserslautern.

Schmalhofer, F. , Bergmann, R., Kiihn, O., & Schmidt, G . (1991). Using integrated
knowledge acquisition to prepare sophisticated expert plans for their re-use in novel
situations. In Christaller, T. (Ed.), GWAI-91: 15. Fachtagung Kunstliche Intelligenz
(pp. 62-73). Berlin: Springer-Verlag.

Schmalhofer, F., Kiihn, O., & Schmidt, G. (1991). Integrated knowledge acquisition from text,
previously solved cases, and expert memories. Applied Artificial Intelligence.
311-337.

Schmalhofer, F., Reinartz, T. & Tschaitschian, B. (in press). Intelligent documentation as a
catalyst for developing cooperative knowledge-based systems. In Wetter, Th., Althoff,
K . D . , Boose, J. , Gaines, B . Linster, M . & Schmalhofer, F. (Eds) Current
Developments in Knowledge Acquisition: EKAW-92 Heidelberg: Springer-Verlag.

Schmalhofer, F. & Thoben, J. (1992). The model-based construction of a case oriented expert
system. Al-Communications. 5, 1, 3-18.

Thoben, J., Schmalhofer, F., & Reinartz, T. (1991). Wiederholungs- Varianten- und
Neuplanung bei der Fertigung rotationssymmetrischer Drehteile (DFKI-Document No.
D-91-16). Kaiserslautern, Germany: German Research Center for Artificial Intelligence.

Knowledge Acquisition by Generating Skeletal Plans

from Real World Cases

Ralph Bergmann
German Research Center for Artificial Intelligence

University Bldg 57
Erwin-Schroedinger Str.
D-6750 Kaiserslautern

email: bergmann@informatik.uni-kl.de

Abstract. Although skeletal plan refinement is used in several planning systems, a
procedure for the automatic acquisition of such high-level plans has not yet been
developed. The proposed explanation-based knowledge acquisition procedure
constructs a skeletal plan automatically from a sophisticated concrete planning case.
The classification of that case into a well-described class of problems serves as an
instrument for adjusting the applicability of the acquired skeletal plans to that class.
The four phases of the proposed procedure are constituted as follows: In the first
phase, the execution of die source plan is simulated, and explanations for the effects
of the occurred operators are constructed. In the second phase, the generalization of
these explanations is performed with respect to a criterion of operationality which
specifies the vocabulary for defining abstract operators for the skeletal plan. The
third phase, a dependency analysis of the resulting operator effects, unveils the
interactions of the concrete plan which are substantial for the specified class. In the
forth phase, the concept descriptions for the abstract operators of the skeletal plan
are formed by collecting and normalizing the important constraints for each
operation that were indicated by the dependencies. With this procedure sophisticated
planning solutions from human experts can be generalized into skeletal plans and
consequently be reused by a planning system in novel situations.

1. Introduction
Many planning problems can be subdivided into more or less specific classes of problem
types, in which each class has its own general solution plan (Tu, Kahn, Musen, Ferguson,
Shortliffe & Fagan 1989). A l l plans of one class can thus be said to use the same solution idea,
viewed from a higher level of abstraction. Such an abstract plan is called skeletal plan by
Friedland and Iwasaki (1985) and is defined as follows:

A skeletal plan is a sequence of abstract and only partially specified steps which, when
specialized to specific executable operations, will solve a given problem in a specific problem
context. Skeletal plans exist at many levels of generality and are applicable to different classes
of planning problems. They capitalize on beneficial interactions and avoid detrimental
interferences between the single operations of a plan. Skeletal plan operations just need the right
level of generality in the respective situation, to maintain and replay important interactions and
eliminate irrelevant details which are easy to reconstruct.

mailto:bergmann@informatik.uni-kl.de

Classical planning mechanisms such as specialization rules, (Shortliffe, Scott, Bischoff,
Campbell, Melle & Jacobs 1981) or heuristic approaches (Friedland & Iwasaki, 1985) may be
applied for obtaining a concrete plan from a good skeletal plan. A skeletal plan is refined to a
concrete plan by specializing abstract operators independent of each other, so that the search in
the space of concrete operators becomes feasible. This requires that the important interactions
between operators, which always occur even in simple realistic planning tasks, must be taken
into account during the construction of the skeletal plans. Therefore, the quality of the skeletal
plan data base mainly determines the quality of the results of such a planning system.

Nevertheless, the problem of the acquisition of skeletal plans has not yet been solved. In
O P A L (Musen, Fagan, Combs & Shortliffe 1987), the knowledge acquisition system for the
O N C O C I N expert system, oncological therapy protocols, which function as skeletal plans in
this domain, must be constructed and entered manually with support of a graphical editor. For
Friedlands M O L G E N planner the situation is similar. The acquisition and debugging of skeletal
plans has been identified as a major problem (Stefik, 1981). This is because constructing
skeletal plans is a modelling task which requires the definition of a terminology sufficiently
abstracting from details which are irrelevant for the planning task. Usually neither an abstract
planning terminology nor skeletal plans described in terms of such a terminology are directly
available in real world domains. Schmalhofer and Thoben (this volume) have studied domain
experts who are requested to construct skeletal plans for mechanical engineering. Their
approach to the manual construction of skeletal plans seems to be successful but is quite time-
consuming for the expert.

This current paper investigates explanation-based learning (EBL) (Mitchell, Keller, Kedar-
Cabelli 1986; DeJong & Mooney 1986) in order to establish an automatic knowledge
acquisition method for obtaining skeletal plans from real world problem solutions for a given
class of problems. A theory that describes important aspects of the operator effects is used to
simulate the execution of the plan and to derive an explanation of how the plan solves those
problem features that define the problem class.

In the following sections, the real world application domain of mechanical engineering is
introduced together with an example, and the representation of skeletal plans is discussed. The
proposed method for an automatic knowledge acquisition is subdivided into four phases: a plan
simulation and explanation phase, a generalization phase, a dependency analysis, and a
normalization into the skeletal plan representation. In the final discussion the benefits and the
limitations of this approach are evaluated in a general manner.

2. Production Planning in Mechanical Engineering
The planning domain used as the field of demonstration is mechanical engineering, more
specifically the production of rotational parts on a lathe. Presently, the design of mechanical
work pieces is widely supported by C A D systems, and computer controlled lathes (CNC-
machines) are used for manufacturing such parts. The planning process itself cannot be
performed automatically since a lot of different kinds of domain knowledge are required for the
construction of good plans. The characteristics of the complexity of this domain and the
planning process are presented in detail by Schmalhofer and Thoben (this volume) through a set
of planning tasks from a catalogue of a supplier of machining centers and tools. For the
demonstration of the automatic approach to the acquisition of skeletal plans, only a simplified
version of an already existing real world planning problem is introduced for clarity. Figure 1
shows an example of the work piece to be produced together with a production plan which
consists of one chucking and four cutting operations.

Example Plan

movement route cutting tool

o
a

CSSNL

CCLNL

removed material

Formalization of (he plan;
chuck (lathe__dog, 30Kg\ left)
cutCCSSNL',

form(linear,(64t17), (21,17)),
speed(450,0.45))

cutCCCLNU,
foim(linear,(64,14),(39,14))f

spced(450,0.45))
cutCCCLNU,

form(linear,(64.10),(39,10)),
speed(450.0.45))

cutCCCLNL',
form(linear,(39,10),(39,17)),
speed(l50,0.25))

Formalization of the desired workpiece
surface(#l,form(linear, (3,0), (0,3))) A
centerholc(# 1,7̂ n3mm') A
surface(#2,form(linear, (0,3), (0,20))) A
facing_area(#2) A

surface(#3,form(linear,'(0f20), (18,20))) A
surface(#4,form(linear, (18,20), (21,17)))A
surface(#5,form(linearf (21,17), (39,17)))A
surface(#6,form(linear, (39.17), (39,10)))A
tolcrancc(#6,low) A
surface(#7,form(Hnear, (39,10), (64,10)))A
surface(#8,form(linear, (64,10), (643))) A
facing_area(#8) A
surface(#9,form(linear, (64,3), (61,0))) A
centerhole(#9,'Zen3mm',) A

Figure 1:
In this example, a mold is fixed with a lathe dogf and material is removed in four steps,
in which two cutting tools with different shapes are used. The material that is removed
by each step is indicated by the shaded areas on the sketch of the mold. Note that this
graphical sketch is only a two-dimensional sectional drawing of the
three-dimenstional rotational part.

desired |*—18 | - * _ 18
workpiect

•25 dimensions

The formal description of the example is presented on the right side of this Figure. In this
representation, the plan is defined as a sequence of operators together with their parameters.
The workpiece is represented, similar to world states in STRIPS (Fikes & Nilsson, 1971), as a
conjunction of predicate facts, in which each fact expresses one isolated attribute of the
workpiece, such as a coherent surface area or a technological feature (centerhole, facing area or
material) (Bergmann, Bernardi, Klauck, Kiihn, Legleitner, Schmalhofer & Schmidt 1990).
This representation of cases, which can easily be derived from the data representations C A D
systems employ, is used as the input for the skeletal plan construction procedure.

2.1 Skeletal Plans in Mechanical Engineering
A skeletal plan consists by definition of a sequence of abstract operators or operator classes.
Extensionally, an operator class is formed by grouping some concrete operators together.
Intentionally, an operator class needs to be described by a combination of relevant attributes that
all operators of that class have in common. A conjunction of constraints to some operator
features, such as inductive methods of concept formation usually construct, are a useful manner
for defining operator classes for a skeletal plan. In mechanical engineering, for example, a
subclass of chucking operators may be formed by the following conjunctive description of three
operator features:

chucking with centerholes and
chucking position on the left side and
two fixations.

2.2 Acquisition of Skeletal Plans
Automatic acquisition of skeletal plans by analysis of cases is itself a knowledge-intensive
process. Knowledge is required to explain the functioning of the problem solution, to identify
interactions between the operators, and a terminology is needed to construct the descriptions of
operator classes. Therefore this automatic process is embedded into an integrated knowledge
acquisition method, which has been described by (Schmalhofer, Schmidt & Kiihn, 1991b;
Schmalhofer, Bergmann, Kiihn & Schmidt, 1991a).

Within this integrated knowledge acquisition method, an interactive tool named C O K A M
(Case-Oriented Knowledge-Acquisition Method from Text) (Schmidt & Schmalhofer, 1990) is
used to extract information from text and the expert's common sense knowledge, guided by
cases of problem solution. The formalization of this elicited knowledge serves as a model of
operators which already contains the basic terms on which operator abstractions can be
composed. This operator theory is required to be mostly complete and tractable to enable the
application of the explanation-based learning procedure.
Another interactive knowledge acquisition tool named CECoS (Case-Experience Combination
System) (Bergmann & Schmalhofer, 1991) yields a hierarchically structured set of problem
classes from a set of prototypical cases through human expert judgements. The expert
judgements are obtained so that a useful skeletal plan exists for each of the classes. A n
intensional definition of this class hierarchy, together with the classification of the origin case
used for skeletal plan generation, is used to adjust the level of generality for the generated
skeletal plan.

3. The Generation Procedure
The automatic generation of skeletal plans is based on an understanding of how a specific plan
solves the given problem, and on recognizing those dependencies between the actions of the
plan that are significant for a general solution for the whole problem class. A sequence of
operator classes is constructed, so that the significant dependencies are maintained. The
following detailed description of this approach is divided into four distinct phases.

3.1 Phase-I: Simulation and Explanation
This phase uses a domain theory that describes the applicability and the effects of operators for
simulating the execution of the target plan. This theory formally represents each operator as a
set of rules, in which the successor world state is created by the execution of the STRIPS like
add- and delete actions of the rules' consequences. For example, two rules like Rl and R2
describe two effects of chucking operators with different generality. Rl models the general
effect of the execution of a chucking operator, whereas R2 models the more specific
consequence of a special chucking operator that requires centerholes.

Rl: IF operator(chuck(x t 0ol,xl,x2))THEN R2: IF operator(chuck(xtoohxl,x2)) A
DELETE(unchucked),
ADD(chucked)

requires_centerholes(xtool) A
two_centerholes T H E N
ADD(chuck_precision(high))

Additionally, a set of axioms is provided to infer the conditions of these rules from the
descriptions of the world states. With the axioms Al and A2 the condition of rule R2 can be
inferred to be true for the first operator in the example in Figure 1.

Al: (3cl,c2,xl,x2,x3,x4. (centerhole(cl,xl,x2) A centerhole(c2,x3,x4) A c l * c2)) ->
two_centerholes.

A2: requires_centerholesOathe_dog).

With a complete theory for all operators in the target plan, its execution is successfully
simulated by sequentially applying all rules for the operators Opi, . . . ,Op n of the plan:

Op i Op2 O p n

Sini • S i • S 2 Sn-1 • S g o a l

From the initial state Sini (the mold in mechanical engineering) all intermediate states that result
after the execution of each operator, and the final state Sgoal (the target workpiece) are
computed. The proofs that exists for the applicability of each operator rule can now be seen as
an explanation of each effect, which depends on operator attributes as well as on world state
attributes.

3.2 Phase-II: Generalization
These proofs are generalized using E B L (Mitchell, Keller & Kedar-Cabelli, 1986; DeJong &
Mooney 1986), which yields separate and more general concepts for the produced effects. The
operationality criterion for E B L determines the vocabulary for expressing the generalized
concepts and establishes the constraints from which the operator classes are constructed. These
terms are initially provided through the application of C O K A M . As a result of this
generalization, a set of conditions is found which ensures more generally that the situations
Sl , . . . ,Sn-l and Sgoal are created in the same manner. Look at the following example of four
E B L generalized concepts for the effects of the first operator from Figure 1.

Cl: chucked <-
operator(chuck(xtool» xl,x2)).

C3: chucking_precision(high) <—

operator(chuck(xtool» xl,x2)) A
requires_centerholes(xtool)A

centerhole(cl,x3,x4) A
centerhole(c2,x5,x6) A
c l * c 2 .

C2: chucking_jposition(xpos) <—
operator(chuck(xtool»x 1 ,x pos)X

C4: chucking_fixations(xn) <—
operator(chuck(xtool»xl,x2)) A

number_of_fixations(xtool,xn)-

3.3 Phase-Ill: Dependency Analysis
The task of the dependency analysis is to identify those effects of the operators which are
necessary to guarantee that those features of the workpieces which are named as relevant for the
classification of the workpiece, are created by every specialization of the skeletal plan.
Therefore, the interconnections between the separate concepts which were identified in the
second phase are determined and analyzed. A directed graph is constructed in which all existing

dependencies between the concepts are explicidy noted as arcs. A dependency arc between two
concepts Cx and Cy exists, i f the concept Cx describes an effect which is a necessary condition
which occurs in the formation of concept Cy. Figure 2 shows a graphical representation of the
dependency graph that results from the analysis of the example in Figure 1. For example, the
dependency of the concept Mtolerance(#6,low))" on the concept "chucking_precision(high)"
states that it is necessary to have a high chucking precision in order to produce surface #6 with
a low tolerance. Note that all the concepts are always related to one operator and usually require
certain constraints on them. Thereby, the dependencies between two concepts also express
dependencies between two operators. In the example mentioned above, the cut-operation which
creates the surface #6 is dependent on the chucking operator.

Figure 2: Dependency Graph for example case

For generating a skeletal plan, which is tailored to a definite problem class specified by
important features of workpiece and mold, all concepts on which the class-relevant features are
dependent, have to be identified. This is achieved by computing the least subgraph which
contains all relevant features of the problem class, and in which all dependency predecessors of
the concepts in the subgraph are themselves part of the subgraph. In Figure 2, the gray marked
concepts, together with their links, form the subgraph, which results from a description of the
classification of the examples in Figure 1. A n overgeneralization that may have resulted from
the independent treatment of the operators must be avoided in order to ensure that the operator
classes which are to be generated for the skeletal plan can in fact be specialized independently
for the solution of a new planning problem. Therefore, the concepts of the determined subgraph
are unified along their dependency arcs, which yields one general concept of the plan for the
whole problem class. For the example in Figure 1 a fragment of this concept is sketched as
follows:

surface(#6,....) A surface(#7) A low_tolerance(#6) <—
operator(l,chuck(xtooll» xl,x2)) A ; From concept Cl: "chucked"
operator(1 ,chuck(xtool2>*3,left)) A ; From concept C2 : "chuckingposition"
operator(l ,chuck(xtool3> x4,x5)) A ; From concept C3: "chuckingprecision"
requires_centerholes(xtool3) A ; From concept C3: "chuckingprecision"
centerhole(cl,x6,x7)) A ; From concept C3: "chuckingprecision"
centerhole(c2,x8,x9)) A ; From concept C3: "chuckingprecision"
c l T£ C2 A ; From concept C3: "chuckingprecision"
operator(2,cut(...)) A \ From concept "surface(#5...)"

3.4 Phase-IV: Normalization into Skeletal Plan Representation
This phase builds the skeletal plan in its final representation by identifying independently
solvable sub-formulas from the concept of the plan which expresses only local constraints on
one operator. By analyzing the occurrence of variables in the conditions of the plan concept, all
conditions are separated into:
• one set J^Enable which collects all conditions that only relate to features of the problem

description,
one set & O p i for each operator Opi where the conditions only specify parameters which
directly correspond to one operator.

The set of constraints ^Enable formally describes the class of problems for which the skeletal
plan can be used, and thus functions as an application condition for the skeletal plan. The
skeletal plan itself is built of the sequence of constraints ROpi> which exactly describe the
required classes of operators. A further simplification of the constraint set is performed by the
application of some rewrite reduction rules. Thereby, more operational descriptions of the
operators classes are obtained.
For the example in Figure 1 the following skeletal plan with application conditions is generated.

1. Skeletal plan: operator(l,chuck(xtool, xl,left)) A requires_centerholes(xtooO
operator(2,cut(...)) A ...

operator(5,cut(...)) A ...
2. Application condition: centerhole(cl,x3,x4)) A centerhole(c2,x5,x6)) A c l * c2 A

A prototype of the described method was implemented on a Apple-Macintosh-II computer using
the L P A - P R O L O G environment (Bergmann 1990). This prototype creates skeletal plans for
cases like the one in Figure 1.

4. Discussion
The automatic knowledge acquisition approach presented in this paper makes use of the idea to
automatically prepare large amounts of already formally available knowledge for further use in
an expert system. Especially for real world planning tasks such as mechanical engineering, the
reuse of manually optimized plans in a more general way becomes possible without involving a
domain expert in a time-consuming knowledge acquisition process. Qualitatively high skeletal
plans can be generated i f the origin plans are qualitatively good. Because of the explanation of

the goal achievement, the beneficial interactions between operators are discovered and can be
maintained for the abstract solution.
Since a knowledge-intensive learning paradigm such as explanation-based learning is the core
of this method, a large amount of knowledge has to be provided to enable its application. The
requirements on the available domain theory are very high in the sense that a correct and
tractable theory is needed which is complete enough to allow the simulation of the full plan. It
seems hopeless to acquire such a theory automatically, even if inductive learning methods were
applied. Therefore the skeletal plan generation procedure has to be integrated with other, non-
automatic methods such as C O K A M and CECoS and works well i f the requirements mentioned
on the theory can be fulfilled in the application domain at hand.
Another question is concerned with the usefulness of the skeletal plans that are automatically
acquired by this procedure. A skeletal plan is useful if it provides an abstraction that reduces the
computational complexity of a planning process (Korf, 1988), and if it can be applied to a large
class of problems. Since complexity reduction and wide applicability are somehow competing
properties for a single abstraction we are engaged to find a hierarchy of skeletal plans.
Therefore the utility based on the generality of a skeletal plan should be judged with respect to
the problem class, for which the skeletal plan is constructed. If automatically obtained skeletal
plans are compared with those that were acquired manually with considerable effort, a major
weakness of generalization procedure can be identified. The described procedure is able to
construct skeletal plans by abstracting single operations of a plan as far as the domain theory
contains abstract descriptions of operator effects. If such a sufficient operator model can be
supplied, the automatically generated operations can compete in utility with those constructed
manually. If only a shallow operator theory such as in the case of the STRIPS domain is
provided, the resulting skeletal plan for the most specific problem classes is the same as a
macro-operator composed of all operators in the plan (Fikes, Hart & Nilsson, 1972).
Another kind of abstraction that appeared important for planning could not be performed by the
proposed skeletal plan generation procedure. It is unable to collapse sequences of concrete
operations into one single abstract operation. The bounds of the operations are always
transfered from the concrete plan to the skeletal plan. Knoblock^ (1990) approach to operator
abstraction shows exactly the same deficits while Madler (1991) tries to find "eyes of a needle"
in the state space to combine sequences of operations into one single abstraction.
Further research to improve this automatic knowledge acquisition should consequently deal
with the problem of finding more appropriate abstractions, for example by changing the plan
representation language. Since this seems to be a knowledge-intensive process that cannot be
applied in a isolated fashion, the interactions between such automatic and manual knowledge
acquisition methods must be further examined and developed.

Acknowledgments
I would like to thank Franz Schmalhofer for many helpful discussions and for significantly
contributing to this paper.
This research was supported in part by grant ITW 8902 C4 from the B M F T (German Ministry
for Science and Technology) and by grant Schm 648/1 from the D F G (German Science
Foundation).

References

Bergmann, R. (1990). Generierung von Skelettplanen als Problem der Wissensakquisition.
Unpublished masters thesis. Universitat Kaiserslautern.

Bergmann, R., Bernardi, A . , Klauck, C , Kiihn, O., Legleitner, R., Schmalhofer, F. , &
Schmidt, G. (1990). Formulierung von Anforderungen zur Darstellung von Werkstucken
und Spezifikation einer Makroreprasenation. Internes ARC-TEC Diskussionspapier Nr.
8.

Bergmann, R. & Schmalhofer, F. (1991). CECoS: A case experience combination system for
knowledge acquisition for expert systems. To appear in: Behavior Research Methods,
Instruments and Computers.

DeJong, G. , & Mooney, R. (1986). Explanation-based learning: A n alternative view. Machine
Learning, 1, pp. 145-176.

Fikes, R.E., & Nilsson, N.J. (1971). STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2, pp. 189-208.

Fikes, R.E., Hart, P.E., & Nilsson, N.J . (1972). Learning and executing generalized robot
plans. Artificial Intelligence, 3, pp. 251-288.

Friedland, P.E., & Iwasaki, Y . (1985). The concept and implementation of skeletal plans.
Journal of Automated Reasoning, 1, pp. 161-208.

Knoblock, C. A . (1990). Learning abstraction hierarchies for problem solving. Proceedings
Eight National Conference on Artificial Intelligence, 2.

Korf, R.E. (1988). Optimal path-finding algorithms. In: Search in Artificial Intelligence.
Kanal, L . , Kumar, V . (eds.), Springer, N Y .

Madler, F. (1991). Problemzerlegung als optimalitatserhaltende Operatorabstraktion. In:
GWAI-91, 15. Fachtagung fiir Kiinstliche Intelligent Th. Christaller (ed.). Springer,
Berlin.

Mitchel l , T . M . , Keller , R . M . , & Kedar-Cabelli , S.T. (1986). Explanation-based
generalization: A unifying view. Machine Learning, 1, pp. 47-80.

Musen, M . A . , Fagan, L . M . , Combs, D . M . , & Shortliffe, E . H . (1987). Use of a domain
model to drive an interactive knowledge editing tool. International Journal of Man-
Machine Studies, 26, 1, pp. 105-121.

Schmalhofer, F., Bergmann, B . , Kuhn , 0 . & Schmidt, G . (1991a) Using integrated
knowledge acquisition to prepare sophisticated expert plans for their re-use in novel
situations. In: GWAI-91, 15. Fachtagung fiir Kiinstliche Intelligenz. Th. Christaller
(ed.). Springer, Berlin.

Schmalhofer, F., Kiihn, O., & Schmidt, G . (1991b). Integrated knowledge acquisition from
text, previous solved cases and expert memories. Applied Artificial Intelligence , 5, pp.
311-337.

Schmalhofer, F. , & Thoben, J. (this volume). The model-based construction of a Case-
Oriented Expert System. Contemporary Knowledge Engineering and Cognition. F .
Schmalhofer, G . Strube & Th. Wetter (eds.).

Schmidt, G. , & Schmalhofer, F. (1990). Case-oriented knowledge acquisition from text. In:
Current Trends in Knowledge Acquisition, Wielinga, B . , Boose, J. , Gaines, B . ,
Schreiber, G., van Someren, M . (eds.), IOS Press, May 1990, pp. 302-312.

Shortliffe, E .H . , Scott, A . C . Bischoff, M . B . , Campbell, A . B . , Melle, W., & Jacobs, C D .
(1981). ONCOCIN: An expert system for oncology protocol management. Proceedings
of 7th International Joint Conference on Artificial Intelligence, Vancouver, Canada, pp.
878-881.

Stefik, M . (1981). Planning with constraints (M O L G E N : part 1). Artificial Intelligence 16,
pp.111-139.

Tu, S.W., Kahn, M . G . , Musen, M . A . , Ferguson, J.C., Shortliffe, E . H . , & Fagan, L . M .
(1989). Episodic skeletal-plan refinement based on temporal data. Communications of the
ACM, 32, 12, pp. 1439-1455.

Knowledge Acquisition from Cases

Sonja Branskat
Institute for Applied Information Technology

German Research Center for Mathematics and Data Processing
PO Box 1240 5205 St. Augustin 1

Abstract . This paper presents a hypermedia, domain independent system
supporting the acquisition, formalization, and representation of cases. The system
assists a knowledge engineer in a step by step transformation of an informally
represented case into a formally represented one. Each case consists of five compo­
nents: context, task, solution trace, solution and evaluation of the solution. The
knowledge engineer builds a formalization sequence of case descriptions. An
attribute/value description is considered to be formal. The data structure is derived
from Memory Organization Packages. The sequence itself documents the formal­
ization process.

1. Introduction
Many techniques for knowledge elicitation are based on protocoling the expert when he works
on a case (Neale, 1988). A knowledge engineer (KE) analyses the transcript and transforms it
into a formal knowledge base. While the K E creates different knowledges bases (protocols on
video- or tape-records, transcripts and models of expertise on paper and a knowledge base in a
computer-based programming-language), only the formalized knowledge base on a computer is
accessible by a user (expert, K E or customer). Due to the media break during the formalization
the process itself is not transparent and cannot be re-examined. There is no access provided
from formal knowledge elements to any underlying informal elements. As a consequence a user
cannot look up the meaning or the context of the concepts that the interviewed expert had in
mind (Karbach and Linster, 1990).

The system U F A , presented in this paper, promises to substantially reduce i f not discard the
media break. U F A , implemented in HyperCard, is designed to systematically support the
formalization of cases. The support facilitates integrated documentation, transparency of the
formalization process, and avoids any media break.
Further approaches using hypermedia for knowledge acquisition are described in (Gaines and
Linster, 1990), (Linster and Gaines, 1990).

2. Representation of Cases in U F A
In U F A the K E represents cases in a formalization sequence analogous to the generalization and
specialization hierarchy of the Memory Organization Packages (MOPs) (Schank, 1985). MOPs
are widely used to represent cases in case-based reasoning systems. While Schank's norm-
based MOP-hierarchy consists of formal cases in different generalization states, a sequence in
U F A consists of different formalization states of the same case. In the formalization sequence
successive descriptions of the same case

explanation link

evaluation
solution

solution trace

problem

context

caseC

13> explanation link

formalization link

formalization link

scene-
links

caseC informal. 1

exemplar link

o
S
©

3

o
3

formalization link

caseC. informal

Figure 1: Case model and formalization sequence.

C: case Cinformai caseCinformaij, case Cinforma\k, ... , case Cforma\ (see Figure 1)
have an increasing degree of formalization. This sequence documents the formalization process.
The sequence starts with an informal case description and ends with a complete formal
description.

A case model is proposed, in which each case consists of five components: context, task,
trace of the problem solving process (called solution trace), solution and evaluation of the solu­
tion as shown in Figure 1. Each case is represented in a M O P . Scene-links connect the com­
ponents of a case. Formalization links connect a case description (e.g. case ^informalk) w * t n

its more formal case description (e.g. case Cformal.k+1)• Explanation links connect a case de­
scription (e.g. case ^informal.k) w ^ t n * t s n e x t * e s s formal description (e.g. case
^informal.k-1)- Exemplar links connect the case description of the first formalization state (case
^informal.l) w i * h t n e initial informal description (case Cinformai).

3. Formalizat ion of Cases in U F A : an Example
To demonstrate U F A an example is given in the domain of business graphics. In business
graphics one visualizes quantitative relations between data with graphical techniques to obtain
optimal information presentation. For the case air pollution the scanned graphic is a first
informal description of the component solution. Four circular charts present the contribution of
cars to air pollution differentiated into four different groups of chemicals.

In the first step the K E identifies the components: context, problem, solution trace, solution
and evaluation and generates a new M O P in U F A (case Cinformaj) to describe the components.
He describes the component solution with the scanned graphic as an informal description.

In the second step the K E generates a new M O P (case Cinforma[j) and connects it with a
formalization link to the initial case description (case ^informal)- On the first formalization layer
he differentiates the domain independent structural component solution into domain dependent
structural subcomponents: the charttype that is used, the colors that are used and the labelling of
the chart. Using the function add subcomponent (see Figure 2) he generates new fields to
describe these subcomponents. Using the function add annotation (see Figure 2) he creates an
annotation card for the selected subcomponent of the component solution and describes it with a
picture and free text. With the function go back U F A returns from the annotation card to the
component solution. Buttons labelled A (see Figure 2) access any annotation card for this
subcomponent.

case: air polution component: solution

[add subcomponent) [delete component) [moue subcomponent j

(add annotation] [goto newt component] (attribute / ualue]

charttype: look at picture

choose-of-colors: It is a black and white diagram. The part belonging to the motor
vehicles is black. This s\rtssts the portion of the cars compared to the rest.

label: look at picture

1 0
CD
CD

order-of-data: the order stresses the importance of the toxin substances: The
last chart, the significant substance, looks like a full stop.

Figure 2: The component solution of the case air pollution: the formalization links and the
textfields for the already generated subcomponents.

At the outset of the third step the K E creates a new M O P (case Cinformai2) a n d connects it
with an explanation link to its more informal version (case Cinforma[j). He uses a formal­
ization link to connect (case Cinforma[j) to its more formal version (case C(nformai 2)• He
decides to copy the subcomponents of the old description (case ^informal.l)to ^ c components
of the more formalized case description (case C-informal.2)- T n e K E creates a new
subcomponent of the component solution, in order to describe the solution in a more formal
way by adding the order the data are presented. He describes the new structural component
order-of-data directly on the solution card using the text field popping up with the creation of a
new subcomponent.

A few formalization steps later the K E describes the subcomponent charttype with circle-
chart and decides, that multiple circle-chart should be a value of the attribute charttype. He
declares this in U F A using the function att/value (see Figure 2) and expanding the range of
values of this attribute. The case is formalized if all components are described with attributes

and values (see Figure 3). The formalization process is finished, as now all relevant knowledge
enclosed in graphics and text has been transformed into a formal, computer accessible and
retrievable notation.

air pollution I

case: air polution component: solution

[add subcomponent) (delete component) (moue subcomponent)

(add annotation) (goto newt component) (attribute / ualue J

charttype: (chart multiple-circle)

choose-of-colors: (main-statement black) (subordinate-statement white)

label: (circle-segments relative-values) (additionar-to-circles
glossary-entry-below)

order-of-data: (order Increasing-importance)

Figure 3: The component solution of the case air pollution; a complete formalized version.

Evolving a linear sequence of case descriptions the K E uses further functions to develop a
domain dependent model for cases. He can:

explain the concepts and formalizations he has used in a hypermedial terminological
dictionary,
define terms of concepts as synonym and replace them by a term he chooses,
define domain dependent subcomponents as attributes and define values for them; he can
use functions to check, if no attribute is associated with a value that is not allowed,
determine the order of all domain dependent characteristics of a component,
get an overview over the degrees of formalization that the system provides.

4. Conclus ion
U F A shows a way how to bridge the media break. It supports the K E by stepwise transforming
a "natural" representation of cases into a formal M O P like representation using only one media.
The formalization process is completely documented within U F A . U F A can easily be extended
to handle video or tape-records. However, it is necessary to gain more experience using U F A to
give a more detailed evaluation.

5. Acknowledgement
I am grateful to Marc Linster, Barbara Becker, Thomas Christaller and all the other members of
the Artificial Intelligence Research Division of the German National Research Centre for
Computer Science (GMD) and Brian Gaines for making valuable comments on a previous
version of this article.

Literature

Karbach W., Linster M . . ; Wissensakquisition fiir Expertensysteme; Carl Hanser Verlag, Bonn
(1990).

Linster, Marc and Gaines, Brian (\990)Supporting Acquisition and Interpretation of
Knowledge in a Hypermedia Environment, Tech. Rept. 455, Arbeitspapiere der G M D ,
G M D , July 1990

Gaines, Brain and Linster, Marc (1990) Development of Second Generation Knowledge
Acquisition Systems; Introduced to EKAW90.

Neale, I .M. (1988) First generation Expert Systems: a review of Knowledge Acquisition
Methodologies; The Knowledge engineer review 3 , pp. 105-146.

Schank, R.C.; Dynamic memory: A theory of reminding and learning in computers and people;
Cambridge University Press (1985).

Transforming examples into cases

Peter Reimann & Thomas J. Schult

Psychologisches Institut der Universitat
Niemensstr. 10

D-7800 Freiburg

e-mail: reimann@cogsys.psychologie.uni-freiburg.dbp.de

Abstract: Our work is concerned with a central process in knowledge acquisition
for case-based expert systems: understanding examples of expert's problem
solving traces, in our case worked-out examples in physics textbooks. Based on
evidence from psychological research, an active, expectation-driven strategy for
example processing is developed. The strategy deals with the initial phases of
learning, exploiting case knowledge before relying on general knowledge. We
report on first attempts to realize this strategy as a cognitive computer model.

1. Introduction

Knowledge acquisition was and wil l for some time be the major impediment to the wide-spread
application of knowledge-based systems in real-world domains. Several ways were suggested
to automate this task using machine learning techniques. The traditional approach uses induc­
tion to abstract principles out of a large set of examples (e.g., Quinlan, 1983). Recently, it has
been suggested to circumvent the knowledge acquisition bottleneck to a certain extent by
equipping expert systems directly with one of the main aspects of expertise: experience in form
of cases. Case-based expert systems do not need difficultly to acquire rules, whether they stem
from interviews with an expert or from the application of machine learning techniques. Instead,
they attempt to solve new problems by mapping to solutions of former problems and adapting
the old solution to a new problem. First commercial expert system shells including C B R com­
ponents are, for example, ART-IM and ReMind.

The power of a case-based expert system lies mainly in the amount and quality of the cases
stored as well as in the indexing of the cases. The knowledge acquisition process for a C B R
expert system amounts to provide the cases and fine-tune the indexing. This task is not neces­
sarily easier than pressing an expert for the verbalization of rules. The complexity of this kind
of knowledge acquisition is directly proportional to the structure of the cases one wants to store
in case memory. If this structure is simple - for example, flat attribute-value lists - then case ac­
quisition is almost trivial. If the structure is more complex - for example, i f cases contain de­
scriptions of causal relations - then case acquisition is more demanding and may require
application of knowledge acquisition and machine learning techniques similar to those that
have been developed for rule-based expert systems.

In any case, it is desirable to automate the case acquisition process as much as possible. This is
a challenging problem if cases have a complex structure. For instance, Redmond (1989a) de­
scribes the difficulties involved in transforming records of experts' troubleshooting behavior

mailto:reimann@cogsys.psychologie.uni-freiburg.dbp.de

into a case description that is useful for a case-based troubleshooting expert system. In our re­
search, we study how humans acquire case knowledge not from observing an expert directly
but from solution traces as they are provided by worked-out examples in textbooks. Insights
into the process of transforming worked-out solution examples into cases is relevant for re­
search in knowledge acquisition for case-based expert systems to the extent that (a) learning
from experts and learning from solution examples impose similar problems (Redmond 1989b),
or (b) that leaiTiing from solution examples is a component of the knowledge acquisition task.

2. Models of Example Elaboration Strategies

In order to shed light on the acquisition of cases from solution examples, we consider how hu­
mans tackle this learning task. We identify successful human strategies and model components
of these strategies with computer simulations. The examples are solutions to mechanics prob­
lems as they appear in a textbook on college-level physics widely used in the US. Successful
learning from these examples can best be understood as an active elaboration of the solutions
steps, as an empirical study revealed (Chi, Bassok, Lewis, Reimann & Glaser, 1989).

Worked-out examples may be difficult to understand because they do not contain the necessary
information to perform sensible generalizations. In particular, examples do often not contain
the reasons for why a certain step in the solution is performed. Consider the example solution
provided in Figure 1. In statement 6, it says that the forces shown in the force diagram are "all
the forces acting on the body". Yet, the example contains no procedure that describes how this
could be determined by the student. In the absence of rationales for problem solving decisions,
it is hard to decide what the essential features of an example are and what the superficial ones
are, i.e., those one can generalize over.

(1) The left figure shows an object of weight W hung by massless strings. (2) Consider the knot at the
junction of the three strings to be "the body". (3) The body remains at rest under the action of the three
forces shown in the right figure. (4) Suppose we are given die magnitude of one of the three forces. (5)
How can we find the magnitude of the other forces? (6) F A , F B and F c are all the forces acting on the
body. (7) Since the body is unaccelerated, F A + F B + F c = 0. (8) Choosing the x- and y-axes as shown,
we can write this vector equation as three scalar equations: (9) F A x + F B x = 0, and (10) F A y + F B y + F C y

= 0. (11) The third scalar equation for the z-axis is simply: (12) F A z = F B z = F C z = 0 (...)

Figure 1: A worked-out example for a mechanics problem (Halliday & Resnick, 1985)

Even so this learning problem is typically one of novices (students) who want to acquire prob­
lem solving knowledge by studying a textbook, a knowledge engineer may encounter similar
problems when observing an expert's problem solving behavior without being able or willing
to interrupt and ask for the reasons for decisions taken by the expert, or when studying written

materials such as textbooks to become more familiar with a domain. On the following pages,
we wil l outline a computational model of how human problem solvers analyze worked-out ex­
amples so that they can use them effectively for problem solving by analogical transfer to sim­
ilar problems. To a certain extent, this model can also be seen as a method for automatic
knowledge acquisition from text. It should be mentioned that as these pages are written this
model of apprenticeship learning is yet a conceptual one, only parts of which are in the stage of
becoming implemented.

The general design of the strategy is based on insights into the process of text comprehension
and understanding (e.g., Brown, Collins, & Harris, 1978) as well as on research concerning the
dynamic character of human memory and its influence on problem solving and understanding
(Schank, 1982). To account for the specific sort of text on which learning is based in our case,
worked-out examples in mechanics, we further rely on observations made by Chi et al. (1989).
There it was analyzed how students acquire problem solving knowledge concerning mechanics
by studying worked-out examples. The study revealed important differences between success­
ful and not so successful students, success measured in terms of correct solutions to problems.
Successful students mentioned more often that they didn't understand a certain part of the
worked-out example. Besides this difference in monitoring understanding of the example text,
successful students also engaged in a series of activities to overcome their problems: They elab­
orated on the relations between a particular step in the example and the goals behind that step.
They further attempted to come up with a specification of conditions that could explain why the
operator under question was applied. Finally, they elaborated on the effects the application of
an operator had beyond those mentioned in the example. The not so successful students dis­
played either none or considerably less of these elaborative inferences.

To capture the essential differences between successful and less successful learning from ex­
amples in form of computational models, we treat the process of example elaboration as a plan
recognition task where the understanding system has to encode a given example solution in
terms of problem solving goals, operators, and relations to domain concepts. Figure 2 shows
the main components of the model.

Example •
Internal
Format

Example
Understander

Solution \
Model r

Rule Interpreter
-±.f Abstract

' Domain
Knowledge

Problem
Solver

Indexer/
Retriever Case

Memory

— Problem

Solution

Figure 2: Model Components

It comprises modules for example comprehension and problem solving. The problem solving
component demonstrates the competence of the system. It attempts to solve new problems
building on knowledge mainly acquired by learning from examples. Both the problem solving
module and the example understanding module are hybrid systems, combining a case-based ap-

proach with general but weak inference methods. The abstract domain knowledge comprises
an object hierarchy for problems concerning particle dynamics and a rule-based problem solver
for this domain.

Most important for the current discussion is the example understander. This component takes a
worked-out example as input (in a propositional format) and generates a model of the example
solution that is then stored into case memory. To construct the example solution model, the sys­
tem calls up case knowledge about former examples and abstract domain knowledge. The gen­
eral control decision is to rely on case knowledge first. Two strategies are contrasted: an active,
expectation-driven one that leads to a hierarchical representation of an example and allows for
problem solving by derivational analogy (Carbonell, 1986), versus a passive example process­
ing strategy leading to a flat representation that enables the problem solver to use an example
by transformations based on syntactical similarities. We want to illustrate the details of how
these knowledge sources are used in the context of the active comprehension strategy.

3. Active Example Elaboration Strategy

In order to motivate our active elaboration strategy, we have to introduce the case structure that
the elaboration strategy has to acquire from examples. We adopt the case model as described in
Alterman (1988) because this case representation supports flexible analogical problem solving.
If cases are represented in such a form and if corresponding retrieval and adaptation processes
are defined, the case-based reasoner can deal with problems such as Steps-Out-Of-Qrder, Fail­
ing-Preconditions, Failing-Outcome, and Differing-Goals. In Figure 3, the main features of this
case structure are depicted. The task of the elaboration strategy is to build a case representation

that contains as many as possible of the nodes and links which are part of the fully developed
case structure from a solution example . Many of these features have to be inferred by the ex­
ample understander since they are not mentioned explicitely in the example text.

Under the active strategy, the system monitors its understanding of the example by checking
for the steps in the example solution whether they cohere with its knowledge about problem
solving in the domain. It tests its understanding in an active, expectation-driven manner: The
system predicts the next example step and compares its prediction with the step actually appear­
ing in the example. Problems in understanding are identified by false or missing predictions.
Having identified an understanding problem the system tries to explain the offending part of the
example, thus resorting to a cognitively more demanding mode of example processing. This in­
cludes attempting to derive the action(s) observed in the example from its concrete and abstract
knowledge about the domain as well as to come up with alternate solution plans. In summary,
this strategy reflects many aspects of the performance of successful subjects from the study of
Chi et al. (1989) and incorporates general principles of comprehension (e.g., Brown et al.,
1978).

We are currently implementing this strategy in a system called A X E , the Active eXample Elab­
orate, using K E E and CommonLisp. A X E "reads" an example statement by statement and at­
tempts to formulate expectations about the content of the next statement. A statement
comprises propositions describing either (a) a goal selection, or (b) an operator selection (law,
equation, inference rule), or (c) a problem solving state. Thus, A X E tries to predict (a) which
goal wi l l be worked on next, (b) which operator wi l l be applied, or (c) what effects a goal or
operator selection wil l have on the solution. These predictions - or expectations - are generated
as follows.

Step 1 - Case-based expectation formation: After having read the first lines of an example
where the problem is described in terms of objects and their relations, values given, and values
desired, A X E performs a look-up in its case memory to find out whether it has encountered a
similar example before. Case memory has the structure of a MOP-based memory (Schank,
1982) that indexes problem statements and solution steps as they occur in worked-out exam­
ples. If A X E finds a similar example, it wi l l be used to derive expectations for the new one, e.g.,
to predict the next state of the current example. For instance, after statement (7) in the example
in Figure 1, A X E might expect a rotation of the reference frame, i f in a similar case the frame
did not remain in the default orientation. Later this expectation would turn out to be inappro­
priate.

Step 2 - Rule-based expectation formation: If no similar example is found, A X E attempts to for­
mulate a prediction by using its abstract domain knowledge in a forward-reasoning mode. A X E
can at times predict the class of operators instead of a specific operator since its knowledge
about domain operators is organized in a rule hierarchy. After Step 1 or 2, A X E does either have
an expectation about the next state of the example solution or has failed to derive an expecta­
tion. Having no expectation is considered a failure and the system continues with Step 5, trying
to repair this failure. If an expectation has been derived, it continues with Step 3.

Step 3 - Comparison: In the next step, the expectations about the example solution state are
compared with the actual situation as described in the example statement. This comparison
leads to an evaluation of the expectation. It may be (a) specific, (b) too general, or (c) insuffi­
cient, depending on whether a specific state can be predicted (a), or whether only a general state
of affairs can be predicted (b), or whether the expectation covers only part of the effects result­
ing from the application of the operator (c). It is further determined whether the expectation is
correct or wrong. For the example mentioned in step 1, a specific but wrong prediction would
be identified.

Step 4 - Continuation: In the case of a specific and correct hypothesis, A X E goes on and tries
to formulate expectations for the next example state. Before that, the correctly predicted oper­
ator instantiation is stored into case memory in terms of its differences to the operator instanti­
ation retrieved.

Step 5 - Case-based repair: In all the other cases (no expectation, wrong, insufficient or too gen­
eral expectation) A X E tries to learn from the expectation failure. The failure-driven repair is
performed first in a case-based manner, relying on case knowledge before attempting to use
more general, but search-intensive repair strategies. A X E looks into case memory to see wheth­
er it has made a similar expectation failure before and has encountered a similar example state
before. This information is used to update the example solution model. The now successfully
explained solution step is stored into case memory, and the system goes on predicting the next
example statement.

Step 6 - Rule-based repair: If an expectation failure cannot be explained using case memory
content, the system attempts to reconstruct the plan that might underlie the actions taken in the
example part. This mode of example processing is particularly important during initial learning,
since in this stage the learner possesses only a few cases and therefore cannot always recognize
an example as the "same old story". During plan reconstruction, the system resorts to its ab­
stract domain knowledge and tries to find an operator or a sequence of operators that could have
generated the problem solving state as displayed in the current example statement. If A X E finds
a sequence that connects the statement in the example with a currently active problem solving
goal, it stores the sequence into case memory. In effect, the system can from now on substitute
matching for search when encountering similar example parts.

For the example mentioned in steps 1 and 3, A X E would learn that the default frame must not
necessarily be rotated in order to fulfill the goal to orientate the reference frame so that the re­
sulting equations become simplified.

Step 7 - Copying the example solution step: If the plan reconstruction attempts fail, the system
wil l store the specific representation of the example statement (an operator and its bindings) un­
der the recent goal it was working on. Although A X E does not understand why this step was
taken, it can at least copy the solution step when encountering a similar situation in a problem
solving context.

An additional step - counter/actual reasoning: Whenever A X E succeeds either in predicting a
part of the example solution (Step 1 or 2) or in recovering from an expectation failure (Step 5
or 6), it engages in a kind of counterfactual reasoning. After having established goal-action
links by solution step recognition or reconstruction, stalling from the goal it is asked: What oth­
er means exist to realize this goal? And why were they not chosen in the example solution? To
come up with answers to these two questions, alternative solution paths are generated by work­
ing forward form the respective goal and applying domain rules. Doing that, A X E looks for
problems with the alternative solution plans, problems that can be classified into categories
such as failed constraint, excessive costs, failed result, or bad side effect (Collins, 1987). The
first step of the alternative sequence with the explanation of why it encountered a problem is
stored in case memory. B y learning from counterfactual reasoning, the system acquires decision
heuristics, thus enriching the necessary conditions of operators with further justifications. Ev i ­
dence for reasoning similar to this counterfactual inference component was found in the most
successful student of the Chi et al. (1989) study.

Having implemented the central components of an active example processing strategy, we hope

to be able to demonstrate in the next step that a passive strategy can be modeled as a subset of
the components making up the current learning model and that these differences in learning wil l
lead to expected differences in analogical problem solving. That is, the active learner when
working on a new problem should be able to retrieve from its case memory example solutions
or parts of them based on features that go beyond literal similarity and should be able to adapt
the example steps in a more flexible and correct manner than it is possible for the passive learn­
er.

Acknowledgement: The research reported here is supported by a grant from the Deutsche For-
schungsgemeinschaft to the first author (Re 814/1-1).

4. References

Alterman, R., Adaptive planning. Cognitive Science, 11, (1988), 393-421.
Brown, J.S., Collins, A . , & Harris, G. , Artificial intelligence and learning strategies. In Learn­

ing Strategies, H . O'Nei l l (Ed.), New York, Academic Press, 1978, pp. 107-139.
Carbonell, J.G., Derivational analogy: A theory of reconstructive problem solving and

expertise acquisition. In Machine Learning. An artificial intelligence approach, Vol.
2, R.S. Michalski, J.G. Carbonell, & T .M. Mitchell (Eds.), Los Altos, C A , Kaufmann,
1986, pp. 371-392.

Chi, M.T .H. , Bassok, M . , Lewis, M . , Reimann, P., & Glaser, R., Self-explanations: How
students study and use examples in learning to solve problems. Cognitive Science,
73,(1989), 145-182.

Collins, G.C., Plan creation: Using strategies as blueprints. Ph.d. thesis, Yale University, 1987.
Halliday, D. , & Resnick, R., Fundamentals of Physics. New York, John Wiley & Sons, 1985.
Quinlan, J.R., Learning efficient classification procedures and their application to chess end

games. In Machine Learning, R.S. Michalski, J.G. Carbonell, & T.M. Mitchell
(Eds.), Palo Alto, Tioga Press, 1983, pp. 463-482.

Redmond, M . , Learning from others' experience: Creating cases from examples. In Proceed­
ings Case-Based Reasoning Workshop, San Mateo, C A , Morgan Kaufmann, 1989a.

Redmond, M . , Combining explanation types for learmng by understanding instructional
examples. In Proceedings of the 11th Annual Conference of the Cognitive Science
Society, Hillsdale, NJ. , Erlbaum, 1989b.

Schank, R.C. , Dynamic memory. A theory of reminding and learning in computers and people.
New York, Cambridge University Press, 1982.

Case-Based Reasoning and Expert System
Development1

Klaus-Dieter Althoff, Stefan WeB

University of Kaiserslautern
Dept. of Computer Science

P.O. Box 3049, D-6750 Kaiserslautern
Federal Republic of Germany

e-mail: /a5rnam^@informatik.uni-kl.de

Abstract. As a supplementation to other papers within this chapter on case-based
approaches to Knowledge Engineering, we discuss some general aspects of case-
based reasoning. We differentiate it from other case-using approaches and argue for
the use of case-based reasoners within integrated knowledge engineering environ­
ments.

1. Introduction

Developing expert systems which can solve complex real world problems is still a difficult task.
Therefore, knowledge engineering people need flexible methods and powerful tools which
support them in doing this hard work. Within this paper we give a short introduction to such a
flexible method, namely case-based reasoning, which might be one key issue in building, e.g.,
integrated knowledge engineering environments to offer the support needed. Cases are exam­
ples which have occurred in reality and consist of a problem description, a solution, and the
underlying justification (derivation) for that solution. From a simplifying point of view, case-
based reasoning means solving novel problems based on the adaptation of already known simi­
lar problem solutions. For being able to improve the problem solving capabilities of a system,
cases must be memorized and integrated with already available empirical knowledge.

As concerned with problem solving, learning, and the acquisition of cases, case-based reason­
ing is within the focus of different fields of research, e.g. Cognitive Psychology, Machine
Learning, and Knowledge Engineering. Apart from these strong commonalities, all those fields
have their own view on the case-based reasoning approach. From a Cognitive Psychology
point of view, it can be seen as a model of human problem solving. Within the Machine
Learning community, case-based learning means an inductive learning method with a special
kind of hypotheses generation. Verbatim examples are collected to learn (mainly) implicit con­
cept descriptions which are then processed by the use of analogical reasoning. For the field of
Knowledge Engineering, case-based reasoning implies a dynamic view on knowledge model-

1 The work presented herein was partially supported by the Deutsche Forschungsgemein-
schaft, SFB 314: "Artificial Intelligence - Knowledge-Based Systems", projects X 6 and
X 9 .

ing which overcomes the strict distinction between knowledge acquisition and application
which, actually, is the underlying assumption of the model-based approach to knowledge ac­
quisition. The automation of the knowledge acquisition and adaptation processes is the transi­
tion to learning. In the sense of automatic knowledge modeling, this has already been suggested
by Morik [Mor87]. Thus, the case-based reasoning approach can be roughly characterized by
the notions of learning ability, adaptation, and integration of knowledge acquisition and appli­
cation. Case-based reasoning is a well-suited method for dealing with any kind of inhomoge-
neous solution spaces.

In this paper, we discuss some general aspects of case-based reasoning. Since case-based rea­
soning is a hot research topic many scientific contributions within this field have to be consid­
ered. Many different research communities have, at least partially, similar interests and/or
methods, e.g. Machine Learning, Cognitive Psychology, Statistics, Pattern Recognition,
Neural Networks, and Knowledge Engineering. In the next section we summarize the basic
characteristics of case-based reasoning. Commonalities and important distinctions between
case-based reasoning and other approaches are presented in section 3. Finally, we argue for the
use of case-based reasoning within integrated knowledge engineering environments.

2. Case-Based Reasoning

Introduced to the community by Kolodner [Kol80, KSS85] and Schank [Sch82], the basic
problem solving model of case-based reasoning grew out of several projects at Yale University.
There exists a strong overlapping with research work done so far in the field of analogical rea­
soning. In its simplest form, case-based reasoning is similar to approaches known from statis­
tics and pattern recognition (e.g. nearest neighbor classification) [cf. e.g. Tou81]. A general
overview of case-based reasoning is given in [Sla91] and [RS89]. Important research goals
concerning case-based reasoning from a Cognitive Psychology point of view are presented in
[SJ90].

2.1. Cases

What is meant by the notion of 'case' is one of the central questions in case-based reasoning.
From a psychological point of view, cases are abstractions of events or processes which can be
limited within space and time. Such knowledge is also known as episodic knowledge [cf.
Str89]. Once the abstraction mapping is fixed, cases are often identified with their underlying
events or processes.

For us, a case is an "example which has occurred in reality", i.e. a problem that occurred and
has been solved by a certain kind of problem solving mechanism (human expert, expert system
etc.). Therefore, the "observed" solution is empirically justified. Such cases are then mapped
onto the respective case representation which, of course, reflects only a part of the "problem
solving reality". In this sense, cases include implicit problem solving heuristics which can be
interpreted with respect to different purposes.

For being able to describe cases in more detail, at least three different levels of abstraction
should be differentiated [cf. Ric89 and And89]:

• a cognitive level (knowledge level)
• a representational level (algorithmic level)
• an implementational level

Within the context of diagnosing an engineering system, a case is the behavioral result of pro­
cesses that have their origin on the cognitive level. On the representation level, this could be
abstracted into a sequence of attribute-value pairs. Finally, on the implementation level a case is
implemented using lists, structured objects, or a special subgraphs.

Since there is no general agreement concerning formal descriptions of cases, we give a defini­
tion which is very general but, nevertheless, sufficient for our purposes here [cf. also VC89].

Def in i t ion
A case is a triple (P,S,J) where P is a problem description, S the solution for the de­
scribed problem, and J the justification of the solution. A case corresponds to a real event
or process which can be limited within space and time.

Justifications are an explicit representation of the problem solving process. They can be more or
less complex. The simplest kind of justification is an "empty" one resulting in a case-based rea-
soner which could only find solutions for problems it has "seen" before. For classification
tasks this approach is often sufficient and known as case-matching (classification! interpre-
tive/precedent-based) case-based reasoning [cf. Ham89a]. E.g., in a simple diagnostic situation
a case might read as follows: the problem is described by means of the observed symptoms, the
solution is the achieved diagnosis, and the justification is empty.

If more than transfer of unmodified solutions is needed, justifications, as an additional knowl­
edge source, must be available. They can range from a simple problem solving trace to a com­
plete explanation using some kind of deep reasoning model. Thus, a justification always in­
cludes a procedure or a theory which allows the interpretation of the (static) trace. This ap­
proach is often called case-adaptation (problem solving) case-based reasoning [cf. Ham89a].
For a diagnostic task, a justification could be the temporal order by which the symptoms have
been ascertained, and for a planning task, a more or less complete dependency graph.

2.2. P rob lem Solving

We now describe the basic problem solving cycle which characterizes the case-based reasoning
paradigm (retrieve, compare, adapt, repair, generalize; cf. [Syc91]). Cases are knowledge
sources as well as rules or deep models and, therefore, have to be considered during expert
system development, too. Once a case has been acquired, it is stored in a case library (case
memory). During problem solving it might be retrieved from the memory i f its problem de­
scription is similar (enough) to the actual problem at hand. If the case can be applied to the cur­
rent problem its solution must be adapted based on some simple strategies (identical solution
transfer, "patching", etc.), or on a more complex underlying domain theory using the available

justifications. If the adaptation has been successful the completed case can be incorporated into
the case memory. Thus, i f the same problem occurs again it can be directly solved by retrieving
this case and applying its stored solution. If the adaptation process has not been successful this
case can be stored as a negative example to warn the problem solver not to go this direction if,
e.g., the same problem has to be solved again. Additionally, i f the system can find out the
cause of the failure (explain the failure), it might be able to correct (repair) the wrong solution.

Both the adaptation and the repair processes require a problem solver of their own. Such prob­
lem solvers can use general strategies and a more or less complex domain theory to reach their
respective goals. In the worst case, they must be as powerful as from-scratch problem solvers.
Therefore, the integration of case-based reasoners into broader problem solving architectures is
an important research goal (cf. section 4).

2.3. Similarity and Retrieval

Besides the underlying case representation, storage and retrieval of cases are of fundamental
importance for the quality and efficiency of case-based problem solving mechanisms. Cases
should be stored in memory such that fast retrieval of sufficiently similar cases is possible.
They can be organized using a simple list, a data base, a discrimination [cf., e.g., Kol83a+b],
or dependency graph. Similar cases can then be found by means of a similarity measure. This
could be realized as an explicit mathematical function, as a pair of insert and retrieval proce­
dures for the case memory, or as a combination of both.

2.4. Learning

A case-based reasoning system has to handle, at least, three different learning tasks. This en­
compasses learning from positive examples which might have been presented by an expert,
learning from its own problem solving success, as well as from failure. Within the case-based
reasoning community many different learning strategies have been used to handle these tasks.
This includes rote learning for the integration of new cases or problem solving experiences into
the case memory, explanation-based generalization to single out relevant features to be used as
indices [RS89, Ham89b, BM88], generalization of implicit concept descriptions by means of
partial matching (indexing, similarity functions) [Kol83a+b, PBH90, PG91], specialization of
implicit concept descriptions (forgetting of cases according to certain selection criteria
[AKA91], or competitive learning of feature relevances [AW91]), and generalization of feature
values [Sal91].

3. Other Case-Using Approaches

Up to now, cases as a knowledge source for solving certain kinds of problems have been used
in many different fields. We want to give an overview together with a rough classification of
the respective approaches. This allows for an easy differentiation between them. Since many
underlying notions of and connections between these approaches are not well understood up to
now, we w i l l not introduce a formal framework. Here, much work is still to be done.

Additionally, we do not want to differentiate between the case-based approach and approaches
known as exemplar-based or instance-based.

One main aspect of case-based reasoning is that the underlying basic problem solving method is
analogical reasoning. In general, analogical reasoning means transforming and extending exist­
ing domain knowledge to solve a similar task within another domain using similar methods.
The known domain is often called base and the new one target. Fundamental characteristics of
the analogical process are the mechanisms which determine the similarity of the tasks and trans­
fer the methods and/or features from the base to the target domain, respectively. In principle,
case-based reasoning can be seen as a special kind of analogical reasoning.

Historically, different research communities have concentrated on these inference mechanisms.
For instance, Kolodner [cf. Kol89] points out that the focus within case-based reasoning has
been mainly on case representation and retrieval, whereas within analogical reasoning the solu­
tion transfer has been treated in more depth. This is due to different basic assumptions concern­
ing base and target domain. For case-based reasoning, they are normally identical, for analogi­
cal reasoning, on the other hand, it is mostly an essential feature to have different base and tar­
get domains [cf. Bur89, SD90]. For the rest of the paper we will not differentiate between these
two approaches.

X
Real-Life
Connection Kind of Heuristic Interpretation

Rules Abstract Explicit Single

Cases Concrete Implicit Multiple

Fig.l - Contrasting Cases and Rules

Case-based reasoning and inductive reasoning have in common that both reason from cases,
and that the conclusions achieved are normally uncertain. Case-based, inductive, and explana­
tion-based learning all learn from cases and can use preexisting domain knowledge for hy­
potheses generation. For the pure form of explanation-based learning the domain theory is as­
sumed to be complete and correct. Here cases are used to focus the deductive process. Case-
based reasoners mainly learn from the comparison of two cases (i.e. the learning procedure is
fundamentally incremental) whereas inductive learners often compare several cases during one
learning step. Some inductive learning systems are also able to learn incrementally. While most
case-based reasoners store all the cases verbatim within an abstraction hierarchy (case memory)
[cf. Sal91], most inductive learners forget all the cases which have been the basis for the gen­
erated hypotheses. Other machine learning approaches do both the learning of explicit concept
descriptions, and the verbatim storing of cases [cf., e.g., SS88, Fis89]. Additionally, some

case-based reasoning approaches try to improve their implicit concept descriptions by selec­
tively removing cases from the case library [cf. K A 8 8 , A K A 9 1] .

Cognitive Level Protocol of a process

Diagnostic process of Friday, the 6th of August,
to find out why the lamp in our living-room was
not shining.

Representation Level Sequence of attribute-value pairs

lamp-12 <- off
switch-3 <- on
bulb-7 <- okay
voltage <- not available
defect <- short-circuit-6

Implementation Level List of the respective implementation language

((lamp-12 off) (switch-3 on) (bulb-7 okay)
(voltage none) (defect short-circuit-6))

Fig.2 - An Exemplary Case

From a Machine Learning point of view, case-based reasoning is not so well understood as,
e.g., inductive learning. Up to now, there is no general agreement concerning the overall
learning task which is addressed by case-based reasoning. Rather, there is a focus on defining
and understanding particular mechanisms like reasoning by analogy and reasoning from cases.
As a reason for this, Shavlik and Dietterich point out in [SD90] that research work in the field
of case-based reasoning has been mainly motivated by concerns for cognitive plausibility rather
than by a desire to construct practical systems.

Another reason is that most machine learning systems make a (strong) separation between
learning and problem solving [cf. SD90]. Learning involves analyzing training examples or
problem solving experiences to extract functions or rules, problem solving involves applying
the learned functions or rules to solve new problems. In case-based reasoning, by contrast,
problem solving is performed by directly inspecting the training examples (cases) and solving
new problems by analogy with these past cases. This appears to be a major distinction of case-
based reasoning and other machine learning approaches. However, there are also strong simi­
larities between case-based problem solving and the well-known rule-based approach, because
often it is not possible to differentiate between cases and rules (including their processing) on

the levels of representation and implementation. Therefore, we suggest to define on a cognitive
level what should be the difference between cases and rules. This allows some simple classifi­
cations which, as we hope, are helpful to answer some basic questions.

Cognitive Level Rule of Thumb

If you turn on a lamp and it does not shine,
probably the bulb is defect.

Representation Level Sequence of attribute-value pairs

lamp <- off
switch <- on
defect <- bulb
probability <- high

Implementation Level List of the respective implementation language

((lamp off) (switch on) (defect bulb) (probability
high))

Fig.3 - An Exemplary Rule

A production rule is a well-known knowledge representation scheme and most implemented
systems within the Artificial Intelligence community have used it. We will give a very general
definition of what a rule (of thumb) is, because we need it for contrasting purposes only. In
section two, cases have been defined as episodic knowledge which consists of a problem de­
scription, a solution, and a justification for that solution. Normally, rules do not appear to be
episodic knowledge but, rather, have been extracted from such knowledge, i.e. rules are more
general than cases. Thus, a rule does not necessarily have a direct correspondence to one spe­
cific event, but is the result of a generalization process based on a number of different events.

Definition
A rule is a pair (C,A) where A is an action and C a condition which must be fulfilled to
do action A .

Compared to the definition of a case, there is a correspondence between C and A , on the one
hand, and problem description P and solution S, on the other hand. From another point of
view, a rule could be described as an explicit kind of problem solving heuristic which can be
contrasted by the more implicit heuristics being included in a case. Thus, the intended use of a

rule (normally) is clear whereas a case can be applied in many different ways to solve similar
problems. The reason for this is that a case includes a justification which can be interpreted with
respect to a current purpose whereas rules (normally) have lost their justification. A l l these
aspects are summarized in figure 1.

Though cases and rules differ concerning their complexity on the cognitive level this is not nec­
essarily reflected on the representation and implementation levels. Therefore, figures 2 and 3
present an exemplary case as well as an exemplary rule which, in principle, differ on the cogni­
tive level only.

Of course, case representations are often much more complex (cf., e.g., [Ber91]) and, addi­
tionally, other representational and implementational descriptions would have been possible.

Based on the above definitions, figure 4 gives a rough classification of methods which use
cases and/or rules. Apart from the differentiation between cases and rules, we think that the
distinction of exact and partial matching is of importance as well. An underlying assumption is
that the analogy-based approach applies reasoning between different domains and, therefore,
needs more general knowledge than it is offered by cases. For instance, the approach Michalski
describes in his paper on two-tiered concept meaning [Mic89] would be classified as an anal­
ogy-based (matching) approach.

X Exact Matching Partial Matching

Rules
Standard Rule-Based

Approach
Analogy-Based

Approach

Cases
Standard

Data Base Approach
Case-Based

Approach

Fig.4 - Matching of Cases versus Matching of Rules

Using the table given in figure 4, an inductive learning system could be classified as a standard
rule-based or analogy-based approach (we do not want to differentiate between the processing
of decision trees and rules here). Additionally, approaches known as instance- or exemplar-
based as well as those known from statistics, pattern recognition, or neural networks would be
classified as case-based approaches.

The above classification can be refined by differentiating between two kinds of partial match­
ing, namely matching based on generalized indices (as it is used in most case memories [cf.
Sch82, Kol83a+b, RS89]) and graded matching based on similarity measures [cf. SW88,
A K A 9 1 , AW91]. While the motivation for the indexing approach is more oriented to cognitive
psychology, the second one has its roots in mathematics/statistics. It applies to both approaches

that one part of important information is represented explicidy, and another part not (cf. Fig. 5).
Thus, their transparency and understandability cannot be evaluated independent from the used
application.

X
Similarity of

Cases
Computation of

Similarity

Case
Memory

Explicit
Neighbors are similar

Implicit
By insert and retrieval

procedures

Similarity
Function

Implicit
By computed value

Explicit
By used Function

Fig.5 - Similarity: Computation versus Representation

In the past, many statistical and pattern recognition procedures have been developed which use
similarity functions, as well as instance- and exemplar-based (case-based) reasoning ap­
proaches, but only apply pure syntactical methods for clustering or classification tasks. For a
closer inspection of the relations between similarity, uncertainty, and case-based reasoning cf.
[RW91].

4. Conclusions

Case-based reasoning represents a specific method for solving a certain class of problems,
especially for the treatment of inhomogeneous solution spaces. Within such solution spaces,
cases correspond to homogeneous (i.e. "small" changes of the problem descriptions result in
"small" changes of the solutions/justifications) subspaces.

Case-based reasoning is a well-suited approach if cases are an important knowledge source
within the underlying domain, and the available experts reason from cases (even a formal dis­
cipline as mathematics uses case-based reasoning, e.g. to find a certain proof [Ker89]). In ad­
dition, many domains are "case-based" in their overall structure, e.g. law, medicine, economy.
Within these domains often a lot of "softcases" exist which can be easily adapted to solve novel
problems. On the other hand, case-based reasoning is not well-suited in domains mainly con­
sisting of "hardcases" (cases which can only be treated by heavily using common sense knowl­
edge, or a huge amount of domain knowledge).

Partly in response to this problem, it is now widely recognized that a case-based reasoner can
"play" different "roles" (the added lists of implemented systems are not intended to be com­
plete, rather they represent an exemplary selection and classification) within a knowledge engi­
neering environment:

• Case-based reasoning can be used as a stand-alone problem solver (no cooperation, e.g.
C Y R U S [K0I8O], M E D I A T O R [Sim85, Kol89], PROTOS [Bar89, PBH90], C A S E Y
[Kot88], C H E F [Ham89b], P A T D E X [AdM+89, WeB91, AW91])

• Case-based reasoning can be combined with several other separate problem solvers
(input-output cooperation, e.g. G R E B E [BP91], JULIA [HK91])

• Case-based reasoning can be one among several cooperating completely integrated prob­
lem solvers (cooperation at all levels of problem solving, e.g. P R O D I G Y (?) [VC91a,b],
C A B A R E T (?) [RBD+91], C R E E K (?) [Aam90,91], D3 (?) [PG91, Pup90], M O L T K E
(?) [AMR90, AW91,Alt91])

The first role reflects the early phase of case-based reasoning research where a lot of stand­
alone systems have been implemented. Those systems cannot meet all the requirements which
normally are posed by real world applications. For overcoming these shortcomings, actually the
combination with other problem solving mechanisms (reasoning from rules, constraints, deep
models etc.) is a hot research topic ("mixed paradigm reasoning", cf. [RSk89]). Up to now,
such combinations are normally restricted to cooperations in an input-output manner. A deeper
integration is an important research goal of many groups but, currently, no completely inte­
grated systems are available. A l l the systems within the third list are only examples which try to
achieve this goal (and, therefore, are (question-) marked). Thus, Knowledge Engineering re­
searchers are asked to develop integrated architectures which make use of case-based reason­
ing.

A first suggestion for the integration of case-based reasoning and model-based knowledge ac­
quisition is given in [JS91], whereas an overview of the integration of case-based, model-
based, and compiled knowledge is given in [SZP90]. Schmalhofer et al. make a suggestion
concerning the use of cases within an integrated knowledge acquisition process for the prepara­
tion of expert plans which can be reused in novel situations [SBK+91]. The M O B A L system is
an interesting example for the integration of manual and automatic knowledge acquisition meth­
ods [Mor90]. In [dl091] de la Ossa presents an approach for the automatic adaptation of a
given diagnostic knowledge base with respect to changes in the physical system which is to be
diagnosed. A case-based approach to theory revision using self-questions and experiments has
been suggested by [Oeh91].

We mentioned above that, from a Machine Learning point of view, it is difficult to classify
case-based reasoning, because its learning task is not well-defined. Shavlik and Dietterich
[SD90] argue that the reason for this has been the motivation of case-based reasoning by con­
cerns for cognitive plausibility rather than by a desire to construct practical systems. However,
from a Knowledge Engineering point of view, case-based reasoning has some important advan­
tages over standard Machine Learning approaches, namely, apart from a strong focus on cogni­
tive plausibility, the overcoming of the separation of learning and problem solving.

5. Acknowledgement

Thanks go to especially to Prof. Dr. Michael M. Richter, and our research group at Kaiserslau­
tern, for many very engaged discussions which have been very helpful for our work on case-

based reasoning. Alvaro de la Ossa, Dietmar Janetzko, and Franz Schmalhofer have given help­
ful comments to earlier versions of this paper. Additional insights have come from discussions
with Dieter Fensel, Katharina Morik, Stefan Wrobel, and Angi Voss.

6. References
[Aam90] Aamodt A . A Computational Model of Knowledge-Intensive Learning and

Problem Solving. In: [WBG+90], pp 1-20
[Aam91] Aamodt A . A Knowledge-Intensive, Integrated Approach to Problem Solving and

Sustained Learning. PhD. Thesis, University of Trondheim, 1991
[AdM+89] Althoff K - D , De la Ossa A , Maurer F, Stadler M , WeB S: Adaptive Learning in

the Domain of Technical Diagnosis. Proc. Workshop on Adaptive Learning, F A W
Ulm,1989

[Aha91] Aha D W . Case-Based Learning Algorithms. In: [Bar91], pp 147-158
[AKA91] Aha D W , Kibler D , Albert M K . Instance-Based Learning Algorithms. Machine

Learning , 6, pp 37-66, 1991
[Alt91] Althoff K - D . Eine fallbasierte Lernkomponente als integrierter Bestandteil der

MOLTKE-Werkbank zur Diagnose technischer Systeme. Dissertation, University
of Kaiserslautern (forthcoming)

[AMR90] Althoff K - D , Maurer F , Rehbold R. Multiple Knowledge Acquisition Strategies in
M O L T K E . In: [WBG+90], pp 21-40

[And89] Anderson JR. A Theory of the Origins of Human Knowledge. Artificial
Intelligence - Special Volume on Machine Learning -, 40, pp 313-352, 1989

[AW91] Althoff K - D , WeB S. Case-Based Knowledge Acquisition, Learning and Problem
Solving for Diagnostic Real World Tasks. Proc. EKAW-91,1991

[Bar89] Bareiss R. Exemplar-Based Knowledge Acquisition. Academic Press London,
1989

[Bar91] Bareiss R (ed). Proc. 3rd DARPA Workshop on Case-Based Reasoning, 1991
[Ber91] Bergmann R. Knowledge acquisition by generating skeletal plans from real world

cases. In this volume
[BM88] Barletta R, Mark W. Explanation-Based Indexing of Cases. Proc. AAAI-88, 1988
[BP91] Branting L K , Porter B W . Rules and Precedents as Complementary Warrants.

Proc AAAI-91, pp 3-9
[Bur89] Burstein M H . Analogy versus Case-Based Reasoning. In: [Ham89a], pp 133-136
[dl091] de la Ossa A . Integrating Strategic Knowledge Acquisition and Reasoning About

Change for Knowledge Adaptation. Proc. KAW-91, 1991
[Fis89] Fisher D . Noise-tolerant conceptual clustering. Proc. IJCAI-89, pp 825-830.

Morgan Kaufmann, 1989
[Ham89a] Hammond K (ed). Proc. of the 2nd D A R P A Workshop on Case-Based

Reasoning. Holliday Inn, Pensacola Beach: Morgan Kaufmann, 1989
[Ham89b] Hammond K . Case-Based Planning. Academic Press London, 1989
[HK91] Hinrichs TR, Kolodner JL. The Roles of Adaptation in Case-Based Design. In:

[Bar91],pp 121-132
[JS91] Janetzko D , Strube G . Case-based Reasoning and Model-based Knowledge

Acquisition. In this volume
[Ker89] Kerber M . Some Aspects of Analogy in Mathematical Reasoning. SEKI-Report

SR-89-12, University of Kaiserslautern, 1989
[KA88] Kibler D , Aha D W . Learning Representative Exemplars of Concepts: A n Initial

Case Study. Proc. Fifth International Workshop on Machine Learning, Morgan
Kaufmann, 1988

[K0I8O] Kolodner JL. Retrieval and organizational strategies in conceptual memory: A
computer model. PhD. Thesis, Yale University, 1980

[Kol83a] Kolodner JL. Maintaining Organization in a Dynamic Long-Term Memory.
Cognitive Science, 7, pp 243-280, 1983

[Kol83b] Kolodner JL. Reconstructive Memory: A Computer Model. Cognitive Science, 1,
pp 281-328, 1983

[Kol84] Kolodner JL. Retrieval and organizational strategies in conceptual memory.
Hillsdale, NJ: Lawrence Erlbaum Associates, 1984

[K0I88] Kolodner JL (ed). Proc. of a DARPA Workshop on Case-Based Reasoning.
Morgan Kaufmann Palo Alto, 1988

[Kol89] Kolodner JL. The Mediator: Analysis of an Early Case-Based Problem Solver.
Cognitive Science, 13, pp 507-549, 1989

[Kot88] Koton P. Reasoning about evidence in causal explanations. Proc. AAAI-88,
1988, pp 256-261

[KSS85] Kolodner JL, Simpson R L , Sycara K P . A process model of case-based reasoning
in problem solving Proc. IJCAI-85, pp 284-290. Los Angeles, C A : Morgan
Kaufmann, 1985

[Mic89] Michalski RS. Concept meaning, matching and cohesiveness. In: [V089]
[Mor87] Morik K . Sloppy Modeling. In: [Mor89], pp 107-134,1987
[Mor89] Morik K (ed). Knowledge Representation and Organization in Machine Learning.

Springer Berlin Heidelberg New York, 1989
[Mor90] Morik K . Integrating Manual and Automatic Knowledge Acquisition - BLIP . In:

McGraw & Westphal (eds). Readings in Knowledge Acquisition - Current
Practices and Trends, pp 213-232, Ellis Horwood, 1990

[Oeh91] Oehlmann R. Case-Based Theory Revision: Learning from Self-Questions and
Experiments. Talk given at the University of Kaiserslautern, August 1991

[PBH90] Porter B W , Bareiss R, Holte RC. Concept Learning and Heuristic Classification
in Weak-Theory Domains. Artificial Intelligence, 45,1990

[PG91] Puppe F, Goos K . Improving Case Based Classification with Expert Knowledge.
Proc. GWAI-91, Springer, 1991

[Pup90] Puppe F. Problemlosungsmethoden in Expertensystemen. Springer Verlag, 1990
[RBD+91] Rissland E L , Basu C, Daniels JL, McCarthy J, Rubinstein Z B , Skalag D B . A

Blackboard-Based Architecture for Case-Based Reasoning: A n Initial Report. In:
[Bar91],pp 77-92

[Ric89] Richter M M . Prinzipien der Kunstlichen Intelligenz. Teubner Verlag, 1989
[RS89] Riesbeck C K , Schank R C . Inside Case-Based Reasoning. Lawrence Erlbaum

Associates, 1989
[RSk91] Rissland E L , Skalag D B . Combining Case-Based and Rule-Based Reasoning: A

Heuristic Approach. Proc IJCAI-89, pp 524-530,1989
[RW91] Richter M M , WeB S. Similarity, Uncertainty and Case-Based Reasoning in

P A T D E X . Festschrift for Woody Bledsoe, Kluwer Academic Publishers, 1991
[Sal91] Salzberg S. A Nearest Hyperrectangle Learning Method. Machine Learning, 6, pp

251-276, 1991
[SBK+91] Schmalhofer F , Bergmann R, Kiihn O, Schmidt G . Using Integrated Knowledge

Acquisition to Prepare Sophisticated Expert Plans for Their Re-Use in Novel
Situations. Proc. GWAI-91, 1991

[Sch82] Schank R C . Dynamic Memory: A Theory Of Learning in Computers and People.
Cambridge, U K : Cambridge University Press, 1982

[SD90] Shavlik JW, Dietterich T G (eds). Readings in Machine Learning. San Mateo:
Morgan Kaufmann, 1990

[Sim85] Simpson R L . A Computer Model of Case-Based Reasoning in Problem Solving.
PhD. Thesis, Techn. Rep. GIT-ICS/85/18, Georgia Inst, of Technology, 1985

[SS88] Sharma S, Sleeman D. REFINER: A Case-Based Differential Diagnosis Aide for
Knowledge Acquisition and Knowledge Refinement. Proc. EWSL-88, pp 201-
210, 1988

[Sla91] Slade S. Case-Based Reasoning: A Research Paradigm. Al Magazine Spring 1991
[Str89] Strube G. Episodisches Wissen. Arbeitspapiere der GMD, 385, pp 10-26, 1989
[SW88] Stanfill C, Waltz D. The memory based reasoning paradigm. In: [K0I88], pp 414-

424
[SJ90] Strube G , Janetzko D. Episodisches Wissen und fallbasiertes SchlieBen: Aufgaben

fiir die Wissensdiagnostik und die Wissenspsychologie. Schweizerische
Zeitschriftfur Psychologie, 49 (4), pp 211-221, 1990

[Syc91] Sycara K P . Case-Based Reasoning. Overview of an course in case-based reason­
ing at the European Summer School on Machine Learning, 1991

[SZP90] van Someren M W , Zheng L L , Post W. Cases, Models or Compiled Knowledge: a
Comparative Analysis and Proposed Integration. In: [WBG+90], pp 339-355

[Tou81] Tou JT. Application of pattern recognition to knowledge system design and diag­
nostic inference. Pattern Recognition - Theory and Application. Reidel D
Publishing, 1981

[VC89] Veloso M , Carbonell JG. Learning Analogies by Analogy - The Closed Loop of
Memory Organization and Problem Solving. In: [Ham89a]

[VC91a] Veloso M , Carbonell JG. Learning by Analogical Replay in P R O D I G Y : First
Results. In: Proc. EWSL-1991, pp 375-390

[VC91b] Veloso M , Carbonell JG. Variable-Precision Case Retrieval in Analogical Problem
Solving. In: [Bar91]

[V089] Vosniadou S, Ortony A (eds). Similarity and Analogical Reasoning. Cambridge
University Press, 1989

[WBG+90] Wielinga BJ , Boose J, Gaines B et al. Current Trends in Knowledge Acquisition
(Proc. EKAW-90) . IOS Press Amsterdam, 1990

[WeB91] WeB S. P A T D E X / 2 : ein System zum adaptiven, fallfokussierenden Lernen in
technischen Diagnosesituationen. S E K I Working Paper SWP-91-01, University
of Kaiserslautern, 1991

Part 3:

Cognitive Adequacy of

Expert Systems

The Role of Cognitive Science
in Knowledge Engineering

Gerhard Strube

Department of Cognitive Science

Institute of Computer Science and Social Research

Albert Ludwig University, Freiburg

Friedrichstr. 50, D-7800 Freiburg i.Br., Germany

strube @ cognition, iig. uni-freiburg. de

Abstract. It is argued that knowledge engineering should take a cognitive

stance, i.e. it should aim for cognitively adequate systems. The notion of

cognitive adequacy is unfolded from an idealized, absolutely strong meaning

(i.e., a complete model of a human expert) down to the very weak notion of

conforming to recognized ergonomic standards. Various ways are proposed

to enhance cognitive adequacy in the model-based framework of knowledge

engineering. Finally, the relevance of these concepts for expert system

application is discussed.

Knowledge engineering, as the name says, is an engineering science. As such, the

objective for knowledge engineering is to develop techniques to elicit knowledge from ex­

perts, or to acquire knowledge from texts, cases, and other sources (automatically, or

through the mediating work of a knowledge engineer), to organize it and thus render

domain-specific knowledge ready for knowledge-based systems, to validate the knowl­

edge-base, and to maintain its usability and integrity over the years.

This task is certainly demanding enough to stifle ideas that would lead to further

degrees of complexity. To insist that knowledge engineering should aim for a (psychologi­

cally valid) cognitive model of expert knowledge therefore seems an altogether unsane

recommendation. Cognitive modeling should be left to psychology, and to cogni-

tive science in general, unless - well, unless it could be shown to significantly enhance the

quality of knowledge engineering with respect to its own genuine objective. Costs have

to be compared, of course, to the return on investments that can be expected. More­

over, the question of the feasibility of cognitive modeling, by itself and in the context of

knowledge engineering, has to be adressed. Loosely spoken, why bother with cogni­

tive modeling?

I believe that there are three good reasons to give knowledge engineering a 'cogni­

tive* orientation, namely, because it provides knowledge-based systems with

• enhanced validity,

• added flexibility and stability, and

• better security and ease of use.

Validity. It is important to recognize that validity refers to both declarative and procedural

knowledge, i.e., to the facts and rules that comprise the knowledge base as well as to the

kind of reasoning employed in the inference component of the system. To my mind,

knowledge engineering has concentrated too much on the content of knowledge, leaving

the reasoning process to the programmers. (Take conflict resolution in production-

rule systems as an example. Because it is a technical problem, it has received much

attention in computer science. But no one, to my knowledge, has ever demonstrated that

kind of conflict, let alone the resolution strategies, in human experts.) On the other hand,

we know far too little about the kind of reasoning employed by experts. Still, we have

evidence for mental simulation (Stigler, 1984), evidence of experts running scenarios in

their heads (Ceci & Liker, 1986). I believe that knowledge engineering must try to

understand which ways of reasoning are employed by experts in the field, and when.

Hybrid systems may encompass different problem solvers as well as different representa­

tions of domain knowledge, and the question is which kind of reasoning is to be applied

at a given time (Janetzko & Strube, this volume).

Therefore, validity refers to the content and representational format of domain-

specific knowledge, to the strategies of reasoning employed, and to the conditions of use

for both. In today's reality, however, knowledge bases are often confined to only a narrow

facet of domain-relevant knowledge. The usual perspective taken by the knowledge

engineer, which is shaped by the tools available, as well as by the means provided for

knowledge representation, is prone to ignore relevant areas of expert knowledge altogeth­

er. Conceptual models and a cognitive modeling approach, on the other hand, ensure an

initial broadness that, although it must be narrowed down eventually, helps to think about

which areas might be left out, and which are indispensable. Even where relevant aspects

have to be omitted, the cognitive modeling approach ensures that this wil l not go unno­

ticed. In short, the cognitive stance in knowledge engineering is bound to yield systems that

are more valid with respect to real, i.e., human expert knowledge, and whose 'blind zones'

are known and can be taken into account when putting the system to use.

Flexibility & stability. Human experts command a variety of ways to reason from a given

set of facts, rules, and the like. The flexibility gained through selective application of

different reasoning strategies, which in turn utilize different parts of knowledge - e.g.,

general rules, or specific cases - is one of the hallmarks of human cognition and perhaps

the most important single cause of our success in thinking and problem solving. It follows

that the cognitive approach to knowledge engineering must strive for variety in reasoning,

and must likewise try to embody domain-specific knowledge in multiple representation

formats in the knowledge base. This is certainly demanding, and costly as well. But it

pays by providing a means to the solution of a problem where simple, single-minded

approaches get stuck. Modem expert system technology aims for enrichment of systems

through 'deep' models of parts of the domain (e.g., models of apparatus), and through

incorporation of examples or libraries of cases already solved.

Expert system technology, at this point, is more cognitive than knowledge engineer­

ing. Take C B R (case-based reasoning) as an example: There is already a considerable

literature on representation of cases, and on reasoning from cases (e.g., D A R P A , 1988;

Riesbeck & Schank, 1989), but we lack techniques for assessing and structuring episodic

knowledge. We even lack systematic evaluation of well-known methods like proto­

col analysis when applied to episodic knowledge.1

To name but one of the cognitive problems that are involved, remembering a case results in a verbal
protocol that looks like a protocol from 'thinking aloud' during solving an actual problem. But
memory may act as a filter, or worse, may give rise to reconstruction, thus mixing general knowledge
with specific recall. Therefore, a memory protocol may provide even more indirect evidence as the
thinking-aloud technique (Ericsson & Simon, 1984).

In addition to the flexibility gained through enrichment by C B R and the like,

enhanced stability can be the result. (It need not be so, because added complexity may

bring along problems of coordination, arbitration, etc.) Multiple knowledge enables not

only us humans, but any system to cross-check results, which amounts to an evalutation

of the solution proposed, and makes the system more robust and more dependable.

Ease of use. A system that models the reasoning of real experts provides a sound base for

giving explanations to its user, explanations that are both correct and understandable. By

contrast, it is difficult to see how a system whose reasoning is utterly un-human might

arrive at explanations that fulfil both requirements. (It is, however, easy to conceive that

a system of that kind could give 'intuitive' explanations that are fictitious, or correct ones

that are cryptic.) Researchers agree that giving adequate explanations is perhaps the crucial

feature of a good expert system2. A cognitive approach is necessary, at least to some

degree, to make the explanation component of a system useful. Of course, explanation

makes further requirements, like natural language interaction (which in turn gains much

from a cognitive approach).

Although I would agree that consistency is the key feature to user-friendliness in

knowledge-based systems, I feel that cognitive adequacy brings us a step further. The

added security and ease of use that result from a cognitively adequate explanation facility

are well worth the effort.

It would be wrong to conclude that the cognitive stance in knowledge engineer­

ing is all pro's without the con's. Here are some cautions against:

• Cognitive modeling is an extremely expensive endeavour, costly in time, and hence,

money. The gains must be substantial indeed to warrant the effort. Yet my opinion

is that there is much to be gained: theoretically, because a cognitive model helps us

to understand the expert, and human expertise in general, and practically, because a

valid model of expertise is bound to score better in solving real-world problems.

2 'Explanatory capabilities are crucial to the ultimate acceptance of expert systems' (Buchanan &
Shortliffe, cited after Swartout, 1990, p. 298).

• It may simply be impossible to construct a cognitive model in many projects. We

still know very little about the nature of expertise, and practical reasons may often

forbid the attempt to construct a full model. Sometimes, however, much is won by

even little steps in the right direction. Whenever we know that we cannot obtain the

ultimate goal, it may be advisable to take a step or two in that direction.

• A cognitive model may not be necessary, indeed, it may turn out to be adverse, or

harmful, to the task. Of course, that might come true for very specialized, very

technical domains only. Still, we must remember that our prime objective is not to

model the expert, but to provide expert system tools for novices and experts alike.

Therefore, diagnosing faults in a complex device may be more efficiently done by

means of a (correct) engineering model than by modeling the cognitive process­

es of human experts. Still, I believe that modeling the expert is a commendable

strategy in most of the cases.

To sum up, it costs, but (at least usually) pays, to strive for a system that employs

cognitively adequate representations of knowledge and problems, and equally adequate

ways of processing that knowledge. Yet i f we make a stand for cognitive modeling in

knowledge engineering, we must try to define what it is that we aim at. Therefore:

What does it mean to be cognitively adequate?

There is certainly room for disagreement when answering the above question. For

instance, does the term cognitive pertain to human thinking exclusively, or not? Whole

wars of definition could be envisaged. Yet my objective in this chapter is much more

humble than that. The following is no more than an attempt to scale different degrees of

'nearness' to human cognition, and to explore the consequences of each, i f attained in

knowledge engineering and expert systems.

Strong and weak cognitive adequacy. If strong adequacy is claimed, the system is

supposed to function like a human expert, at least in a circumscribed domain. In short,

strongly adequate systems employ the very same principles of cognitive functioning as

human experts do. If this is not the case, but the system has been carefully built with the

human user in mind, it may be credited with weak cognitive adequacy. In this sense,

'weakly adequate' means the same as 'well-adapted to the user', or 'easy to use'.

Weak cognitive adequacy. This is, or rather, should be, the trivial case. A system so

characterized is ergonomic and user-friendly. Consistency of the user interface, recognized

graphical standards, a clear language for commands, help texts, etc., make the system easy

to use. Note, however, that the system may differ considerably from the experts (whose

knowledge it attempts to represent) and from its users (if those are different from the expert

group). Still, the systems tries to give users a comfortable feel, which may be achieved

through symbols or words familiar to the user. The drawback is that the user's understand­

ing of system messages may be at odds with what the system actually does.

Remember the Apple Macintosh's first version of the trash can, for instance. Its

behavior - it worked simply as a delete command, so files could not be regained - irritated

many users and was corrected in later versions. In expert systems, the possible damage is

vastly greater. Users may interpret the systems explanations wrongly; they may, for

instance, arrive at inadequate degrees of confidence in the system. Users of expert systems,

i f they are not experts themselves, might be lured by 'intuitive' surfaces into unwarranted

conclusions about the scope of the system's knowledge. Indeed, the more 'intelligent' a

system behaves on the outside, the less it is expected to lack common sense.

Much the same difficulties that emerge in the translation process from system

operations to explanations given to the user, also arise in the process of knowledge

engineering, i.e., translation of human expert knowledge into the formalism used by the

system to represent and utilize it. If the basic notions of the expert are incompatible with

those that the system can represent, knowledge engineering becomes complicated, to say

the very least. In addition, verification of the knowledge base is next to impossible,

because the system's knowledge entities cannot be compared with those of the expert.

M y opinion is that weak cognitive adequacy is something every good program attains

to, and that it is definitely not enough for expert systems. Indeed, I believe that to remain

at that very low level of cognitive adequacy would become an obstacle to knowledge

engineering, and a source of severe errors to the user.

Strong cognitive adequacy, absolute and relative. Strong cognitive adequacy comes in

(at least) two degrees, absolute and relative. This is to mean, that an absolutely adequate

system of the 'strong' family claims to be a model of the human expert's knowledge and

way of reasoning in every relevant aspect. For relatively strong adequacy, that claim is

reduced to the assertion that the kind of knowledge representation and reasoning as used

in the system can be found in human experts, too.

The notion of absolute cognitive adequacy is, of course, an ideal not even fulfilled

in the most ambitious projects of cognitive science, for which it amounts to the long-

range strategic goal of cognitive modeling. But it is not an objective for A l systems,

although some authors, like Charniak and McDermott in their well-known textbook, claim

that for the ultimate achievement of A l . To the contrary, it is obvious that expert systems

need not (nor should they) have all human faculties at their disposal, not even all cognitive

abilities. It would be nice i f expert systems had some common sense, however, and the

little we know about that suggests that we would need all human knowledge, and, per­

haps, the human body even, to arrive at common sense, therefore it does not seem feasible

to have common sense (which we would like) without all the complexity of human

cognition (which is a highly impractical, i f not impossible task to do). This line of

argument serves to reduce the quest for cognitively adequate systems to what I have termed

relatively strong cognitive adequacy above.

To construct cognitively adequate systems in the strong sense, then, amounts to

employ knowledge representations and methods of reasoning that can be demonstrated to

be used by human experts, too. As we have argued, this wi l l not amount to a complete

model of the human expert, and it need not amount to that. Still, we should take care not

to ignore kinds of reasoning and forms of representation that seem essential for natural

expertise.

As far as we know, human experts have insight into the causal relationships in the

domain, and they use it mainly when other, easier approaches fail, or when they are asked

to explain their results. This kind of knowledge may be captured by causal, or 'deep'

modeling. Apart from that, their experience yields heuristic rules that may reflect statisti­

cal properties, e.g., the relevance and typicality of certain symptoms with respect to some

diagnostic category. Rule-based systems usually represent this kind of expert knowledge.

But experts, as far as we know, often and in many domains, like to think 'analogically', i.e.,

use visual imagery. This aspect is not easily captured in technical systems, which by

definition lack the sophisticated visual apparatus shaped in billions of years of evolution.

Expert systems, as far as I know, have not yet been enriched with this kind of representa­

tion, although there are quite a few experimental approaches to imagery. Finally, experts

often work along the same lines as they did when they solved a similar problem, and they

like to refer to specific case studies in knowledge engineering interviews in order to explain

procedures, or to illustrate certain principles. This characteristic trait of human exper­

tise has attracted much attention recently, and given rise to the construction of systems that

employ case-based reasoning.

An important, though mostly neglected, characteristic of natural expertise is meta­

knowledge, or reflection. Human experts generally differ from the inexperienced, because

they are always 'oriented' during their work. They do not lose sight of the solution they

seek, as novices often do, they seldom make errors, and they are quite good at estimating

how near they are to a solution (Gruber & Strube, 1989). Meta-knowledge also lets them

switch between strategies, an ability that is highly desirable in technical systems, too.

To sum up, I believe that being cognitively adequate in the weak sense is mandatory,

yet not sufficient, for modern expert systems. We must strive to use representations of

domain-specific knowledge that are both practical and understandable to human users.

Not surprising, it turns out that this is what human experts usually have arrived at. We

should further try to implement kinds of reasoning that are used by human experts. At least

some combinations, like using a case library of previously solved problems together with

case-based reasoning techniques, promise to cut down the potentially enormous amount

of search space and time, required by purely rule-based systems. We should also try to

include at least a moderate degree of reflection, or meta-knowledge, in the system, which

is both a hallmark of human expertise and a necessity for control in hybrid systems.

Admittedly, we cannot make an expert system into a complete model of the human expert,

but we should attempt to include representations and reasoning strategies that are essential

to human experts.

Towards cognitively adequate systems

Starting with ergonomics. Aiming at weak adequacy first, let us start with ergonomic

design of the knowledge base and its user interface. It needs consistency. It also needs

flexibility, which in turn requires 'intelligent' adaptation of the system, hence, a certain

degree of A l . User modeling, in the meantime, has become a field of its own (e.g., Kobsa,

1985), but the approach of classifying users and designing the interface according to some

typology is not sufficient and in need of enhancement. - Modern user interfaces are also

characterized by windowing and graphics. Pen-based input wi l l spread rapidly, while I

doubt whether speech output wil l ever become popular. (Hearing a soft female voice saying

'Your prin-ter ist out of pa-per' repeatedly is noi going to make your computer interac­

tion more pleasant, after the initial surprise wears off.) The use of natural language,

however, is bound to increase as even portables include the high-performance processors

and huge amounts of memory needed for the task. Here is another field where A l comes

in.

'Knowledge ergonomics9. The next step wil l not take us further from weak cognitive

adequacy, yet it is a crucial step because it wi l l bring us to knowledge. Naturally enough,

the kind of knowledge used by an expert system, even i f its machine representation may

differ from the one we use in our heads, must be linked to our way of thinking. There are

many means that together serve to accomplish this task, although no single one is suffi­

cient.

The basic requirement is that the terminology used by the system must be consistent

(see above) and should agree as well as possible with the terminology used by experts in

the field. The usual techniques of extracting terminological knowledge from textbooks

fulfil that requirement only partially. For instance, important concepts may lack verbal or

formal definition, as in the field of interpreting aerial pictures a 'gently rolling plain'

(Hoffman, 1987). The basic problem, however, applies to the status of terms or concepts

with respect to their role in problem solving. Here is where proposals like K A D S come in

(Breuker & Wielinga, 1985; KADS-I I , 1990). Although K A D S is not primarily aimed at

being cognitively adequate, its meta-terminology serves to structure a given domain and

define the functional role of the concepts, too.

In addition, tools should be available to make the system understandable to its users.

This concerns mostly what is called the explanation facility of an expert system. Explana­

tion, of course, should not be limited to a 'rule 463 fired' style of system messages. Use

of the domain terminology in explanations is important. The system's line of reasoning

should be displayed, as well as the causal dependencies in the knowledge base used by

the system. Graphical components may enhance that facility through visualization of causal

dependencies, and can in turn be integrated with browsers.

A further tool to enhance the cognitive ergonomics and general usefulness of an

expert system is an ' as i f mode of functioning. This function is common in spreadsheets,

where you can run simulations, and compare the effects of certain modifications. The

same should be extremely useful for knowledge-based systems in order to assess the effects

of certain pieces of knowledge, of different kinds of reasoning, or just different preference

orders in reasoning. A n 'as i f mode opens a system to the user for exploration. It also

enhances a system's usefulness in training.

What else? In order to make a system approximately cognitively adequate, we must embed

the characteristics of human problem solving in its knowledge base and inference engine.

• Deep modeling. Pure surface modeling, i.e., reliance on statistical rules, is not

enough. Although this kind of rules is used by experts, and serves to get quickly at

'most probable' diagnoses, etc., human experts also have the capability to generate

causal explanations for any problems using 'deep', functional models of the domain.

Especially for untypical problems, deep modeling is a must for expert systems. Apart

from considerations of efficiency, functional models of the domain are a necessary

part of cognitively adequate systems, because only functional models serve to

generate true explanations of a problem and its solution.

• Episodic knowledge and case-based reasoning. Human knowledge acquisition

makes good use of examples, and learning proceeds fastest when rules and examples

are combined (Schmalhofer & Kiihn, 1988). Human experts are known to rely on

episodic knowledge almost exclusively in domains like law and judgement, and

substantially in domains like medical treatment (Strube & Janetzko, 1990). Case-

based reasoning has therefore become a major field of research, as conferences (e.g.,

D A R P A , 1988) and recent textbooks (Schank & Riesbeck, 1989) show. Integration

of C B R into traditional, rule-based approaches to expert system construction has

become an important step in the direction of systems that are cognitively more

adequate (see Janetzko & Strube, this volume).

• Meta-knowledge. Cognitive control of one's strategies of reasoning, monitoring of

one's own way toward a solution, and careful deployment of cognitive resources is

one of the hallmarks of human experts (Gruber & Strube, 1989). The present state

of expert system technology, however, largely ignores this aspect. Still, I hope that

recent developments in software engineering, above all the debate on OOP and multi-

agent systems, may stimulate discussion of intelligent distribution of resources.

• Learning. Although machine learning and expert systems have remained separate

fields up to now, automatic knowledge acquisition, and hence, incorporation of

components for learning, has become a hot issue for expert system technology. I ' l l

focus on automatic knowledge acquisition during the system's active life time, i.e.,

on acquiring new and additional knowledge.

Human experts continuously change and amplify their knowledge. This is done

via two different processes: (1) Explicit communication (mainly verbal) of rules or

equivalent (i.e., general) knowledge, and (2), learning from experience through re­

use of solution paths already successful in previous cases, and through generalization

from specific experience. Much the same classification holds for machine learning.

Modern expert systems should provide means for learning directly from the user.

That feature should also include checking procedures for integrability of new rules

into the knowledge base, i.e., checks for logical consistency (still a hard problem),

and in case of inconsistencies, prompting the user to specify conditions of applicabili­

ty in order to circumvent inconsistency. (I am assuming here that AI 's means of

dealing with inconsistency do not yet approach the power of our abilities to be both

rational and inconsistent.) In addition, an expert system should include facilities to

generalize from experience (at least some simple, well-known algorithm, like EBG) ,

and the capability to adapt and re-use previously computed solutions to similar

problems, in other words, case-based reasoning. The German Ministry of Research

and Technology's project F A B E L (1 9 9 1) is an example of building systems in that

spirit.

Approximating strong cognitive adequacy in knowledge-based systems, as may be

guessed from the paragraphs above, is neither easy, nor is it cheap. Even those factors

necessary for weak cognitive adequacy, i.e., the ergonomic features, are on a par with the

most ambitious features to be found in other software with respect to complexity and

demands on the hardware. So my message is once more to take at least some steps into the

direction of greater cognitive adequacy, for this wil l enhance usability, and therefore

acceptance. This brings us to our last issue, viz., concepts of expert systems usage that fit

with the design goal of cognitive adequacy.

How to use cognitively adequate expert systems

Design of information-processing systems must include a philosophy of its application.

This means that the designer must consider the role of the system in the organization of

work on the problems the system is intended to help with. In other words, the system's

integration into the greater mixed man-machine system has to be thought about.

Expert systems technology started out with the goal of systems that could replace

costly experts. While this is still a valid conception in certain environments (e.g., for doing

routine diagnostics in computer-integrated manufacturing), the general trend has shifted

to emphasize expert systems as general tools in the hands of experts (Becker &

Paeteau,1991). This philosophy of expert system application makes communication

between man and machine much easier, since the gap in terminology and knowledge

between expert and non-expert is eliminated. In addition, non-expert users are usually not

able to assess the limitations and constraints of an expert system's reasoning. Experts,

however, to have the necessary prerequisites to evaluate systems, and to take their basic

presuppositions into account. A n expert system is a complex tool that needs sophistication

on the side of the user, too. Seen as sophisticated tools, expert systems are also more

benevolent in social perspective, since they do not aim at replacing highly skilled workers,

but enhance the quality of work. Still, in order to become a tool as good as possible, expert

systems must be given the ability to explain their ways of reasoning and, most importantly,

evaluate alternative solutions (see the 'as if-mode discussed earlier in this chapter).

Cognitively adequate systems will simply be the better tools.

Goals for knowledge engineering

How can knowledge engineering help us to get systems that are cognitively more

adequate? I believe that we should follow three promising lines at least:

• continue to follow the modeling approach (e.g., K A D S) , which are not implementa­

tion-specific, in order to provide a framework for terminological classes that could

perhaps be modified to become cognitively more adequate in itself - a cognitve

orientation need not be adverse to enginnering needs (see Linster, this volume),

• enrich present-day knowledge engineering techniques with methods specifically

devised or adapted for episodic knowledge, thereby integrating case-based ap­

proaches with more traditional lines of expert systems design, and finally,

• integrate knowledge engineering and machine learning. This is not meant to take a

stance in the long-standing discussion about the benefits and shortcomings of

automatic knowledge engineering v. knowledge acquisition as mediated by

knowledge engineers. Indeed, I believe that machine learning methods are a desirable

complement to work that can and should be done by knowledge engineers.

A l l this, and still more so the issues to be tackled along the way to strongly adequate

cognitive systems, is expensive with respect to both effort and costs. But the benefits to be

expected from those efforts might be even greater: It pays to have cognitively adequate

systems. I wish knowledge engineering would follow that direction.

References

Becker, B . , & Paeteau, M . (1991). Von der kognitiven zur interaktiven Adaquatheit? In:
T. Malsch (Ed.), Informatisierung und gesellschaftliche Arbeit Berlin: Edition
Sigma.

Breuker, J.A., Wielinga, B . W., et al. (1987). Model-driven knowledge acquisition:
Interpretation models. Deliverable task A l , Esprit Project 1098. University of
Amsterdam.

Charniak, E. , & McDermott, D. (1985). Introduction to Artificial Intelligence. Reading,
M A : Addison-Wesley.

D A R P A (1988). Case-Based Reasoning. Proceedings of the 1st Workshop on Case Based
Reasoning. Clearwater, F L .

Ericsson, K . A . , & Simon. H . A . (1984). Protocol analysis. Verbal reports as data. Cam­
bridge, M A : MIT Press

[FABEL](1991). F A B E L : Intergration von modell- und fallbasierten Entwicklungs-
ansatzen filr wissensbasierte Systeme. Antrag fur ein Verbundvorhaben an den
Bundesminister fur Forschung und Technologie (BMFT), Bonn.

Gruber, H . , & Strube, G. (1989). Zweierlei Experten: Problemisten, Partiespieler und
Novizen beim Losen von Schachproblemen. Sprache und Kognition, 8, 72-85.

Hoffmann, R. (1987). The problem of extracting the knowledge of experts from the
perspective of experimental psychology. Al Magazine, 8 (2), 53-67.

Janetzko, D., & Strube, G. (this volume). Case based reasoning and model-based knowl­
edge acquisition.

[KADS-II] (1990). KADS-I I . Espiit II Technical Annex for Project P5248. Meylan,
France: Cap Gemini.

Kobsa, A . (Ed.)(1985). Benutzermodellierung in Dialogsystemen. Berlin: Springer.
Riesbeck, C , & Schank, R.C. (1989). Inside case-based reasoning. Hillsdale, NJ: Erlbaum.
Schmalhofer, F., & Kuhn, O. (1988). Acquiring computer skills by exploration versus

demontration. 10th Annual Conference of the Cognitive Science Society. Montreal.
Hillsdale, NJ: Erlbaum.

Stigler, J. F. (1984). 'Mental abacus': The effect of abacus training on Chinese children's
mental calculation. Cognitive Psychology, 16, 145-175.

Strube, G. , & Janetzko, D. (1990). Episodisches Wissen und fallbasiertes SchlieBen:
Aufgaben fiir die Wissensdiagnostik und die Wissenspsychologie. Schweizerische
Zeitschriftfur Psychologic 49,2\\-221.

Swartout, W. (1990). Explanation. In S.C. Shapiro (Ed.), Encyclopedia of Artificial
Intelligence (vol. 1, pp. 298-300). New York: Wiley.

Acknowledgements. I wish to thank all the participants of the KEKOG workshop for an
inspiring discussions of the ideas presented here, and especially Angi Vofi, who commented
on the first draft of this paper.

Knowledge Acquisition as an Empirically
Based Modelling Activity

Beate Schlenker and Thomas Welter

I B M Germany, Scientific Center
Institute for Knowledge Based Systems

Wilckensstr. l a
W-6900 Heidelberg

Germany
W E T T E R @ D H D I B M 1 .bitnet

When knowledge engineering is consequently looked upon as scientific
discovery, certain prescriptions can be derived about how to observe ex­
pertise and how to deal with intermediate stages of the modelling process.
These prescriptions concern roles played by underlying assumptions, theo­
ries and paradigms of cognitive science and their respective implications
upon conduction and interpretation of individual experiments, and the
language(s) used in the modelling process. Most essentially, scientific dis­
covery is characterized by planned feedback, including theory based iden­
tification of contradicting or falsifying evidence. Some of these
characteristics clearly differ from principles suggested in K A D S for the
respective modelling activities.

1.0 Considerations on Theory of Science and Underlying
Assumptions
The process of knowledge acquisition can be characterized as the knowledge engi­
neer's attempt to get to know the epistemological structure of the domain to be mod­
elled (Woodward, Shaw, and Gaines 1991). To this end the knowledge engineer has
to learn something about the concepts and problem solving strategies used by the ex­
pert in the respective domain. One problem is that the knowledge engineer is a novice
in the respective domain of expertise. Furthermore the expert's concepts and problem
solving strategies are not directly observable, but have to be derived from (mainly
verbal) data. In cognitive psychology (and A l) it is widely respected (e.g. Gigerenzer
1981; Clancey 1989) that modelling empirical phenomena requires both, specific as­
sumptions about mechanisms underlying the phenomena and a foundation of the

modelling process in theory of science. If the knowledge engineer does not make these
theoretical concepts explicit, he will interpret the expert's observable behavior with
uncontrolled bias and his interpretations will not be reproducible by others.

The specific assumptions we make draw upon specific theories or paradigmata from
cognitive psychology as background knowledge. This knowledge is not further put
under question during the modelling process. One possible background or basic as­
sumption (the one we use) may be to describe higher cognitive processes such as
learning as information processing behavior (information processing paradigm).
Methods used in cognitive psychology to elicit data and to infer knowledge about the
underlying cognitive processes are considered as background knowledge as well. The
methods come along with their respective refinements of the information processing
paradigm. Concurrent think aloud protocols are e.g. in accordance with the "working
memory'-refinement of the information processing paradigm. In the framework of the
so defined knowledge the knowledge engineer constructs models about entities whose
existence "on the expert's mind" would explain his behavior. 1

Concerning the foundations of the process to arrive at such a model one possibility
to reduce the knowledge engineer's bias and to make the modelling process more ob­
jective is to apply the general "empirical method" (cf. Schulz, Muthig , and Koeppler
1981) to knowledge acquisition. This implies the use of Popper's falsification strategy
(1966), according to which hypotheses or theories have to be formulated in a way that
they can be falsified in principle. The knowledge engineer's misconceptions can thus
be identified during the phase of model construction. The proposed "empirically
based method" of knowledge acquisition consists of a sequence of operations and re­
lated rules that are applied to test the appropriateness of models used to reconstruct
part of the perceivable reality. The process of model construction can be character­
ized as a process of incremental refinement from a rough general to a complex and
more detailed and accurate one.

Since model development includes correction by falsifying evidence, the knowledge
engineer has to define observable evidence against his hypothesis before having any
data extracted from the expert. This implies both the selection of a data extraction
method and the a priori definition of an encoding schema. A n encoding schema is
principially determined by the observation method used and the theoretic foundation
which it is built upon. Contrary to methods like K A D S , where the static models are

1 We might speak of concepts, relations, processes ... instead of entities. But this would
constrain the variation of model structures admitted in our approach more than necessary
(given the information processing paradigm) and desirable given the subsequent consid­
erations about language.

imported in order to form the model of expertise, using the strategy of planned feed­
back means dynamic model development.

2.0 Planning the Process
We don't treat a requirements analysis as part of the following process. Given the
requirements the following activities occur several times in a cyclic process until a re­
sult meets external criteria, which we assume to have been specified as part of the
requirements. Furthermore the information processing paradigm and the relatedness
of observation and underlying theory are not put under question. As to the rest, the
strategy of planned feedback means dynamic model development. In the following
the modelling steps are listed.

1. Construction of hypotheses forming a theory that explains the knowledge under­
lying the expert behavior. This can be knowledge concepts as well as knowledge
structures or problem solving strategies.

2. Formulation of a discriminating experiment. This includes the derivation of ob­
servable behavioral consequences that would be supported by the hypothesized
underlying cognitive structures or processes as well as the behavior representing
the falsification of the hypothesis. It also includes how to encode the raw obser­
vations.

3. Definition of a criterion for empirical evidence to distinguish between support and
falsification of hypotheses.

4. Evaluation of a hypothesis according to empirical data. That is rejection of the
hypothesis in case of falsification.
a. In case of falsification: Continue with 1; construct new hypothesis
b. In case of support: Continue with 6

5. Check whether the model meets external criteria.
a. If not: Continue with 1; refine hypotheses
b. If yes: stop.

2.1 Falsification

We suggest to distinguish essential falsification from incidential falsification. We
suggest to call Popper's falsification in the strict sense using only one contradicting
evidence incidential falsification. Following Popper in a strict sense would mean that
a hypothesis or theory would have to be given up in case of only one unexpected item
occurring in an observation. For reasons which are probably inherent to the field of
human cognition, incidential falsification wi l l always occur. That is, theories wil l
permanently be falsified before they can be applied. Therefore criteria have to be es­
tablished according to which sets of observations are considered as falsifications. Such

an essential falsification provides the feedback that the model has to be rejected or
modified. The term essential falsification means that a considerable amount of falsi­
fying items is needed in order to reject a hypothesis or theory. Statistical evidence
cannot be used in the usual sense of observing a random sample of subjects, since the
investigations made are mainly single case studies aiming at modeling individual ex­
pertise. Hence, criteria have to be established which arc plausible with respect to the
method applied (e.g. its characteristic noise). One could also think of external criteria
for essential falsification, such as ratings of another expert or consent from the party
that ordered the knowledge acquisition activity. The empirical data are then com­
pared to the evidence criterion and the hypothesis or theory is refuted in case of es­
sential falsifying evidence. Otherwise the hypothesis or theory can be kept until a
better one is found.

It should be pointed out that our strategy of planned feedback and the incorporation
of falsifying experiments can be seen as competing with an approach which might be
derived from Woodward et al. (1992), where the observer considers possible causes
of misconception, bias, etc. and tries to avoid them by compensating means either in
planning investigations or interpreting observations. This anticipatory attitude or
procedure is, however, hypothesis-driven. Hypotheses are not made about the model
itself but about factors influencing the construction of the model. A n d hypotheses are
never systematically challenged or tested in the process; they are just imported.

3-0 Development of the Modelling Language
It has turned out as another essential side condition of such an approach that the
language used for denoting the model must not be prescribed in the beginning. A s
Heisenberg (1989) has pointed out, the need for the means to describe the phenomena
under study emerges from the process of investigating them. E.g. quantum mechanics
would not have reached its present state of cognition, if the term "impulse" would not
have been discovered and understood as being applicable also in situations where
mass, speed, or both don't make sense2 . In our case this means that we must avoid
to prescribe a formal language for the model of the phenomenon to be investigated.
We must even try to be mentally independent of such languages (to the extent that
humans are capable of thinking independently of any language). It must be part of
the investigator's attitude and awareness that situations will occur where he has to
overcome the language he used in former iterations. On the other hand, a formal
language must be arrived at in the end. For the model to be executed on a computer,

2 i.e. essentially in such situations where the wave aspect is more useful than the particle
aspect and the impulse of a wave emerges more or less naturally from its spectrum.

it must be written in a language whose formal semantics is known. For the present
purpose this should be operationalized in two ways. A denotational semantics allows
to argue about properties such as truth conditions of sentences that might be part of
the model. A procedural semantics allows to map the elements of the model onto op­
erations offered by some abstract machine, which then simulates the behavior of the
model. Agreement between denotational and procedural semantics in the example of
truth conditions means that the simulation supplies "true" exactly for the sentences
found true on the basis of the denotational semantics.

For practical purposes the direction into which the language should be developed, or
maybe better, the sector in which the intermediate languages should lie, is thus con­
strained by the need for formal semantics.

4.0 Skill Requirements for Empirically Based Modelling

Reviewing all these requirements, it becomes obvious that the task we are describing
is nothing less than scientific discovery. That means that the knowledge engineer
doing his work according to these suggestions needs to have at least the following
skills:

• sufficient psychological knowledge to design experiments for a large number of
purposes

• some basic knowledge of theory of science and theory of cognition to do observa­
tion, interpretation, hypothesis formation, and experiment planning in a princi­
pled way

• sufficient knowledge in semantics of formal languages to proceed from informal
first notations to full fledged formal languages.

In any case it is obvious that the suggested approach needs both very high skills and
very much effort. So it may be asked whether less expensive methods should be gen­
erally preferred. In practice many projects which can be carried through by straight­
forward use of K A D S would never have been approved on the basis of cost estimate
of what we are suggesting. There are, however, general considerations and specific
situations where our suggestion should nevertheless be applied.

5.0 Comparison of Empirically Based Modelling and Modelling in
K A D S

In the following the "empirically based method" as described above is compared with
some modelling aspects of K A D S . Although in K A D S no explanation of the under-

lying cognitive structures but functional models are intended, Breuker & Wielinga
(1987) claim to explore the nature of expertise. Another intention of K A D S is to
support systematic knowledge engineering. Since data used for model verification are
extracted by psychological methods, a critical analysis of some specific assumptions
and actions in K A D S seems helpful. The general consideration addresses the re­
striction by language. If we understand the K A D S layers as constituents of a lan­
guage and the interpretation models (IMs) as building blocks for future applications,
then the scope of what can be expressed is definitively fixed. Whatsoever detail iden­
tified as characterizing an application under study has to be expressed in K A D S
layers and I M s . Details not fitting into this frame can either not be expressed or have
to be deformed.

5.1 Variety of Models in the Approaches

The process of empirically based modelling may in some case well arrive at a model
which replicates the K A D S layers (domain, inference, task, strategy), because these
are not implausible and definitely within the information processing paradigm. They
do, however, not exploit its variation - frames with their tight coupling of entity and
inference would not be covered by the K A D S layers. Hence the empirically based
modelling might arrive at models outside the scope of K A D S .
Obviously the IMs further constrain the search space (which is the intention in
K A D S and not per se a deficiency). However, among those empirically developed
models which do replicate the K A D S layers, only some will also replicate one of the
existing IMs.

5.2 Aspects of Validation and Control in the Process

What is more severe than the limitation of expressiveness is the principle lack of
feedback indicating that something has been missed. I.e. K A D S representations
which look appealing may be essentially deficient without any systematic chance to
detect the deficiency.

5.2.1 Model selection vs. model construction
In contrast to the dynamic process in the empirically based approach with its means
of feedback, modelling in K A D S is intended as top-down process driven by the in­
terpretation models. Interpretation models are matched with verbal data gathered by
psychological methods in order to find the appropriate interpretation model for the
domain. This is critical since the method of verification does not imply any possibility
to control the knowledge engineer's bias in interpreting the verbal data. Plausibility
is used as the only test criterion for the appropriateness of the constructed conceptual
model. Therefore model selection according to plausibility can lead to a situation
where different knowledge engineers select different interpretation models for the

same domain with every knowledge engineer having a plausible explanation for his
decision. This reveals a certain arbitrariness of model selection in K A D S .

5.2.2 Observation and interpretation
First of all it has to be clarified that elicited data are directly used in K A D S , while
encoded items are generated in the empirically based approach. The K A D S view im­
plies that verbal data have an inherent truth. It contradicts the empirical view of data
as verbalizations interpreted on the predefined background knowledge (cf. Clancey
1989).

5.2.3 Justification of elicited material
For the selection of methods to elicit verbal data, Breuker & Wielinga (1987) have
developed a table (p.23) which statically assigns methods to required data types such
as procedural or static knowledge. This again reflects the attitude that elicited data
can be both collected from the expert and applied in selecting or filling an I M irre­
spective of their context of elicitation and without need of theory and situation based
interpretation. In other words: elicited data are justified in themselves and as they
occur.

In the empirically based approach elicitation methods and their respectice encoding
prescriptions are dynamically designed or selected according to the needs to support
or falsify an actual hypothesis. Each method entails guidelines to remove subjectivity
and bias as far as possible based on known characteristics of the methods. A s an
example of such criteria, Ericsson & Simon (1984) name protocol segmentation and
separate encoding of the segments in arbitrary order as a means to achieve objectivity.
A n encoded item is hence justified by having been produced from an authentic re­
cording of verbal data by means of theoretically justified procedure. A s the next step
wil l show, this does not mean that such an item is never put under question again.

5.2.4 Justification of the use of elicited material in model formation
Use of verbal data in K A D S means model matching as long as an I M still has to be
selected or slot filling once the decision for an I M has been made. In the latter case
the attitude is confirmatory, i.e. the use of verbal data is justified when the knowledge
engineer managed to use it for his model construction.
In the empirically based approach the use of encoded items is never finally justified.
The use of items to develop a theory respectively its model formulation in some di­
rection may be hypothetized at some stage in the development and may have to be
withdrawn at later stages by falsifying evidence concerning those hypotheses of the
model, to which the items contributed. Therefore, the use of items can be described
as temporarily justified as long as no falsifying evidence has occured.

5.2.5 Justification of models of expertise
Principally, in both approaches the justification of a full model is the sum of the in­
dividual justifications outlined above. This does not yet entail that a justified model
is correct or useful. There is a weak notion of correctness in K A D S , of the kind that
all verbal data can be explained by a model. In the empirically based approach there
is no claim that a model wil l ever be correct. It would only be used as an acceptable
approximation as long as there is no falsifying evidence. Usefulness has to be judged
on the basis of requirements, which have not been part of this outline.

Breuker, J . A . & Wielinga, B . J . (1987) Use of models in the interpretation of verbal
data. In A . K i d d (ed.), Knowledge Acquisition for Expert Systems: A Practical
Handbook, (p. 17-44). New York: Plenum.

Clancey, W . (1989) The frame of reference problem in the design of intelligent ma­
chines. To appear in K . van Lehn & A . Newell (eds.), Architectures for Intelligence:
The Twenty-Second Carnegie Symposium on Cognition. Hillsdale: L E A .

Ericsson, E . A . & Simon, H . A . (1984) Protocol Analysis. Verbal reports as data.
Cambridge, Mass.: The M I T Press.

Gigerenzer, G . (1981) Messung und Modellbildung in der Psychologic Miinchen:
Reinhardt.

Heisenberg, W . (1989) Ordnung der Wirklichkeit. Miinchen: Piper.

Popper, K . R . (1966, 1989) Logik der Forschung. 9. Auflage. Tubingen: Mohr .

Schulz, Th . , Muthig , K - P . , Koeppler, K . (1981) Theorie, Experiment und
Versuchsplanung in der Psychologic Stuttgart: Kohlhammer.

Woodward, B . J . , Shaw, M . L . G . , Gaines, B . R . (1992) The Cognitive Basis of Know­
ledge Engineering, in this volume

Shifting Positions: Moving From a Cognitive Science
Point of View to a Knowledge Engineering Stance

M a r c Lins ter
A l Research D i v i s i o n

G M D
P 0 B o x 1240

D-5205 St. A u g u s t i n 1

A b s t r a c t

After a short overview of knowledge acquisition highlights, we review experiences that we
had in our knowledge acquisition project. We conclude that automated knowledge acquisition
does not work without a documentation of the purpose that the knowledge will fulfill once it is
acquired. This can be done for example through a description of a method of problem-solving.
The remainder of the paper gives a more detailed account of the motives (outside the actual
experiences with KRITON) that lead to these conclusions. After outlining several requirements,
we delineate the role of cognitive science research in our current approach.

1 A Review of Work in Knowledge Acquisition that
Influenced Us

We give a short overview of developments in knowledge acquisition that we consider as cornerstones.
There is no intention of completeness. We only want to situate our work, and explicate our bias.

The systematic construction of knowledge-based systems—henceforth called knowledge engineering—
started out from early work on TEIRESIAS [Davis, 1982] and first developments of engineering
guidelines for knowledge-based systems, for example [Buchanan et a/., 1983]. A considerable effort
has been invested to obtain systematic support for the development of knowledge-based systems.
To widen the knowledge-acquisition bottleneck researchers have investigated a multitude of methods:
cognitive-science oriented techniques for the systematic elicitation of knowledge, for example protocol
analysis, or personal-construct analysis; dedicated tools for the acquisition of knowledge for special
tasks, for example OPAL [Musen et a/., 1987]; method-specific knowledge-acquisition tools such
as ETS [Boose, 1985]; workbenches to support conceptualization, such as ProtoKEW [Shadbolt,
1992]; learning systems to develop domain-models, for example, BLIP [Morik, 1987]; and knowledge
acquisition methodologies, such as KADS [Wielinga et a/., 1992].

In the course of these developments, a change of focus occurred. Whereas early work viewed the
development of knowledge-based systems as a transfer activity from a human mind into a computer-
accessible representation—this is best illustrated by Feigenbaum's bottleneck metaphor or Boose's
expertise transfer system ETS—current work views knowledge engineering as a process of construct­
ing models [Clancey, 1989]. At the same time, the mining view of knowledge acquisition, whose
optimistic variant states that extensive and deeper knowledge elicitation provides the key to exper­
tise, gave way to a more pragmatic view, stating that the knowledge acquisition process is guided
by the requirements of system building. / / we were able to obtain the detailed data of the knowledge

that drives human expert behavior, we would not know how to handle it [Breuker and Wielinga, 1989,
p. 267].

2 Experiences in Our Knowledge Acquisition Project

This shift of positions can be illustrated very well using GMD's knowledge-acquisition project. Ini­
tially we focussed on automated knowledge-elicitation tools that relied heavily on cognitive-science
motivated techniques. The first such tool that we developed at GMD was called KRITON. KRITON
made it obvious that automated knowledge acquisition without an underlying method of problem-
solving does not work, no matter how pretty and elaborated the knowledge-acquisition techniques
or interfaces are.

The next sections give a more detailed account of the reasons and intermediary steps which lead to
that conclusion.

2.1 The Approach Taken in KRITON

The knowledge acquisition tool KRITON [Diederich and Linster, 1989; Linster, 1989] includes several
knowledge elicitation techniques that cooperate with the goal to acquire a large coherent body of
knowledge: (1) T E X T ANALYSIS and INTERVIEW for the acquisition of static domain features;
and (2) PROTOCOL ANALYSIS for the acquisition of procedural and associative knowledge.

The T E X T ANALYSIS component reads texts from a file. Nouns are highlighted and made mouse-
sensitive. The user can include them into a hierarchy describing the way the text presents the
organization of the concepts of the domain, or the way the expert sees their organization. The text
analysis is a computer support to get started in a knowledge acquisition process.

The INTERVIEW component edits and completes the initial information gathered by the TEXT
ANALYSIS. Relying heavily on the repertory-grid technique [Gaines and Shaw, 1981], it acquires
attributes describing the concepts of the domain.

Several other techniques are used in the INTERVIEW to complete the description of the concepts,
such as explicit inheritance, explicit generalization, and explicit completion.

PROTOCOL ANALYSIS helps acquire procedural and associative knowledge. It is based on the
work of Ericsson and Simon [1984]. It concentrates on the analysis of transcripts of recordings of
thinking-aloud protocols. To analyze protocols in KRITON, they are transcribed with the pauses of
speech. Using the assumption that pauses of speech represent delimiters that separate the transcript
into coherent segments, these segments are transformed into operator-argument structures that are
then combined into rules to make the inference steps, implicitly contained in the protocol, explicit.

T E X T ANALYSIS and INTERVIEW work on a common data structure: a semantic net consisting
of labeled edges and attributes. The user has total freedom to define relationships as edges or as
attributes. PROTOCOL ANALYSIS produces rules describing how the concepts in the semantic net
are used in a problem-solving process.

In a prototypical acquisition session the user starts out with analyzing a background text and building
a taxonomy representing the most important and frequently used concepts of a domain. These will
then be attributed and described in the INTERVIEW. The taxonomy can be edited to fit new facets of
the domain unraveled during the INTERVIEW. After this one can go back to the T E X T ANALYSIS
to complete the taxonomy or go directly into the PROTOCOL ANALYSIS. New concepts appearing
in rules are introduced into the taxonomy in the INTERVIEW. The result of an acquisition process
with KRITON is a dense network describing structural relations (stemming from INTERVIEW and
T E X T ANALYSIS) or associative relations (stemming from PROTOCOL ANALYSIS).

2.2 Consequences and Subsequent Work

KRITON provides good analysis facilities to define an initial vocabulary and to get a first start when
building a knowledge-based system.

Experience though showed that to move beyond the initial knowledge acquisition, a tool needs strong
guidance—it must be goal driven. In KRITON it is not clear in which directions the taxonomies and
the protocols have to be elaborated, as no meta-knowledge about the purpose of the knowledge is
available to the system. As the system has no information about the role an element of the semantic
net plays, it cannot inquire about the typical relations that are needed between problem-solving
concepts of certain roles.

In subsequent developments we focussed on making KRITON knowledge-based, to give it explicit
information about which kind of knowledge to acquire [Diederich and Linster, 1989]. We introduced
pre-defined template-like domain structures, which had to be filled by the knowledge acquisition pro­
cess. The process is guided by a program called WATCHER, using meta-knowledge about expected
domain structures to trigger elicitation tools. For example, the WATCHER uses the rule "classes and
instances must be discernible on the basis of their attributes" to trigger a differentiating repertory-
grid-based interview for elements of the knowledge base requiring attributes or values. However, a
reconsideration showed that the previous rule expresses knowledge structures needed by a classifi­
cation problem-solving method. This led us to an analysis of the relation between problem-solving
method and knowledge-acquisition tool. For example we analyzed the combination of the problem-
solving method heuristic association with the repertory-grid based interview tool of KRITON. It
showed that strong guidance for the acquisition tool emanates from the problem-solving method.

First experiences with KADS [Karbach et al., 1989] led to the assumption that flexible, configurable
problem-solving methods are needed, instead of pre-defined, selectable ones. The knowledge-needs,
derived from the methods of problem-solving, seemed a good basis to guide the knowledge acquisi­
tion tools in their task. This set the stage for the research questions that we are exploring today:
the exploitation of the properties of explicit problem-solving methods for (automated) knowledge
acquisition.

3 How Does This Relate to Our Positions on Cognitive
Science?

Initially, we aimed at developing descriptions of human reasoning, and transform these into opera­
tional systems. This was the purpose of the elicitation tools in KRITON. It left us with unstructured
heaps of knowledge bits that each, in context, made a lot of sense. However, as decontextualized
knowledge units, they are worthless.

Thus, we changed our positions, and moved from a cognitive-science oriented point of view to a
stance that emphasizes the engineering aspect of the development of knowledge-based systems. We
decided not to view the knowledge of a system as consisting of discrete, atomic elements that each
had the property of being knowledge. We assumed Clancey's point of view, stating that knowledge
is something that an observer ascribes to a human agent in order to describe and explain recurring
interactions that the agent has with its environment [Clancey, 1989, p. 288]. For us this meant that
the results of knowledge acquisition systems must be viewed in the context of the purpose of the
agent. We are fully aware that we cannot capture the totality of this purpose. However, we can try
to define certain frameworks explicating those parts of the purpose that we are aware of and that we
can express.

The decision that we took, to frame the acquisition of knowledge with methods of problem-solving,

is thus motivated by three arguments:

1. Knowledge is not composed of discrete elements that each on their own, independently of
purpose, context, or interpreter are knowledge.

2. It is pointless to try to acquire knowledge that one cannot represent in a machine [Breuker and
Wielinga, 1989, p. 267].

3. Knowledge elicitation, without the documentation of a purpose, gets stuck all too soon.

This entailed a change in focus in our project. We are now using the framework of a problem-solving
method to give meaning to knowledge-bits such as rules, clauses, or frames; and we are using that
framework to guide automated knowledge acquisition.

3.1 Where Does that Put Cognitive Science?

At first sight, one may think that cognitive science is out of the ball park now. This is not true
at all. Even if today we focus on the engineering of intelligent systems, and even if we say that we
are building these systems in ways that must not necessarily coincide with human mechanisms of
intelligence, then the process of building these systems is nevertheless a process of construing the
ways one or several intelligent agents solve the problems of a real-world task.

Thus our engineering implements must satisfy requirements from two sides: (1) they must be com­
puter accessible, so that we can closely link their role in the process of modeling-to-make-sense
[Clancey, 1989, p. 289] with their task in modeling-to-implement-systems; and (2) they must make
sense as mediating devices in the social interaction processes between knowledge engineer and human
expert (s).

We discuss the second point to explain in some detail why we still need cognitive science, even if we
tackle the problem from an engineering point of view.

In a knowledge-acquisition situation observed behavior (e.g., thinking-aloud protocols, video footage,
repertory grids or answers to focussed questions) is being analyzed and rationalized using knowledge-
structuring primitives, such as rules, frames, knowledge sources, or tasks. This is a constructive
process of building a model. The model is the result of construing behavior with the help of primitives
aiming at making sense. Knowledge acquisition is a creative process of discussion between knowledge
engineer and expert. The model is the result of this interaction.

To enable this process, the meaning of the knowledge-structuring primitives must be accessible to all
participants of the discussion. Especially, they must be able to see that a model accounts for observed
behavior. This is easier for the knowledge engineer than for the domain expert, as the primitives do
have well-defined semantics in terms of the underlying operational knowledge-representation system.
One cannot expect the domain expert to be a programmer. This implies that the semantics of the
terms of the model must be intuitively accessible to the expert, that is, they must be adequate for
the task.

To make the discussion more proficient, the meaning of the primitives should be such that a model
can be tested against new situations, that is, that it can be validated. Potential contradictions
between the model and a new situation lead to reconsideration, extension or structural changes of
the model.

Furthermore, an ideal set of primitives should be such that a model provides guidance in the discus­
sion, just as an agenda keeps track of unresolved issues. A formal analysis of a model might point
to open ends, ambiguous or underconstrained decision points.

This implies that even though the model must not necessarily be a truthful reconstruction of human
reasoning processes, the primitives that are used to build the models must in a certain sense be
cognitively adequate to mold human knowledge and problem-solving processes, even if these are
created in the actual knowledge engineering process.

3.2 Today's Situation

Today we are analyzing modeling frameworks like KADS, to find out whether they suffice these
requirements. For example when re-modeling the cancer-chemotherapy administration task of 0N-
COCIN with KADS [Linster and Musen, 1992] we analyzed how KADS knowledge-structuring prim­
itives (i.e., concept, instance, and relation on the domain layer; meta class, knowledge source, and
inference structure on the inference layer; task and task structure on the task layer) can be used
as rationalization tools for observed behavior (i.e., medical documents of cancer chemotherapy and
knowledge structures of ONCOCIN). Furthermore we examined how KADS models guide the acqui­
sition process, and in how far they support a constructive discussion between expert and knowledge
engineer. An analysis of this modeling process, the cognitive processes and potential biases involved
is presented in [Woodward, 1991].

To close the loop of conceptual modeling a la KADS (i.e., modeling to make sense) and modeling to
implement systems several implementations have been developed, such as MODEL-K [Karbach et al.,
1991] or OMOS [Linster, 1991]. The operational modeling language OMOS bridges the gap between
modeling as a process of making sense and modeling as a process of implementing knowledge-based
systems, by providing KADS-oriented knowledge-structuring primitives for methods and domains.
They are operational and provide immediate feedback for automated knowledge acquisition tools
[Kuhn et al, 1991] (see Figure 1).

Disambiguation, complete
definition in a formal

language

Model building, Implementing
making sense svstems

Testing of knowledge bits
in context, formal analysis

Figure 1: The interaction between model building to understand ill-structured situations and behaviors, and modeling
to implement systems.

Our recent work on OMOS and MODEL-K has emphasized the system-building aspect of knowledge
engineering. We have been looking for knowledge-structuring primitives that are operational and
that provide guidance in the construction process. We now must analyze these results again from
the cognitive science point of view. We need to know in how far our terms are cognitively adequate
building blocks for the modeling of expertise. Furthermore we want to analyze the knowledge- creation
aspect of our current view on knowledge engineering. We want to know in how far a knowledge
engineering process relying on these primitives creates the knowledge for a knowledge-based system,
and how these knowledge-structuring primitives influence the discussion process between expert and
knowledge engineer. This involves the analysis of the cognitive activities of knowledge engineering
[Woodward et al., 1992] in KADS-like frameworks, and the role of epistemic knowledge-structuring
primitives in frameworks that were devised to analyze the model-building processes (e.g., [Wetter

and Woodward, 1990]). This will help us answer questions like: What kind of knowledge can we
acquire into our models? How will our models be biased? How can we use well-defined techniques
from cognitive science to support model-building and the creation of operational systems?

Acknowledgements

This work has been influenced strongly by discussions led in the A l Research Division of GMD.
Barbara Becker, Werner Karbach, and Angi VoC were involved in the development of many of the
arguments of this paper. Thomas Christaller and Angi VoC commented on earlier versions.

References

[Boose, 1985] John H. Boose. A knowledge acquisition program for expert systems based on personal
construct psychology. International Journal of Man-Machine Studies, 23:495 - 525, 1985.

[Breuker and Wielinga, 1989] Joost Breuker and Bob Wielinga. Models of expertise in knowledge
acquisition. In Giovanni Guida and Carlo Tasso, editors, Topics in Expert System Design, Method­
ologies and Tools, Studies in Computer Science and Artificial Intelligence, pages 265 - 295. North-
Holland, Amsterdam, 1989.

[Buchanan et al, 1983] B. G. Buchanan, D. Barstow, R. Bechtal, J. Bennett, William Clancey,
Casimir Kulikowsky, Tom Mitchell, and Donald Waterman. Constructing an expert system. In
F. Hayes-Roth, D. Waterman, and D. Lenat, editors, Building Expert Systems, pages 127 - 167.
Addison Wesley Publishing, London, 1983.

[Clancey, 1989] William J . Clancey. The knowledge level reinterpreted: Modeling how systems in­
teract. Machine Learning, Special Issue on Knowledge Acquisition, 4(3, 4):285 - 292, 1989.

[Davis, 1982] R. Davis. Application of meta-level knowledge to the construction, maintenance. In
R. Davis and D.B. Lenat, editors, Knowledge Based Systems in Artificial Intelligence. McGraw-
Hill, New York, 1982. Doctoral dissertation, Computer Science Department, Stanford University.

[Diederich and Linster, 1989] Joachim Diederich and Marc Linster. Knowledge-based knowledge elic­
itation. In Giovanni Guida and Carlo Tasso, editors, Topics in Expert System Design, pages 323
- 352. North-Holland, Amsterdam, 1989.

[Ericsson and Simon, 1984] A. Ericsson and Herbert Simon. Protocol-Analysis - Verbal Reports as
Data. MIT Press, Cambridge, 1984.

[Gaines and Shaw, 1981] Brian R. Gaines and Mildred L.G. Shaw. New directions in the analysis
and interactive elicitation of personal construct systems. In Mildred L. G. Shaw, editor, Recent
Advances in Personal Construct Technology, Computers and People, pages 147 - 182. Academic
Press, London, 1981.

[Karbach et al., 1989] Werner Karbach, Marc Linster, and Angi VoC. OFFICE-Plan, tackling the
synthesis frontier. In Dieter Metzing, editor, Proceedings of GWAI89, volume 216 of Informatik
Fachberichte, pages 379 - 387, Heidelberg, Septembre 1989. Gesellschaft fuer Informatik, Springer
Verlag. Also published as WEREX-Bericht nbr. 23.

[Karbach et al., 1991] Werner Karbach, Angi VoC, Ralf Schukey, and Uwe Drouven. MODEL-K: Pro­
totyping at the knowledge level. In Proceedings of the First International Conference on Knowledge
Modeling and Expertise Transfer, Sophia Antipolis, France, 1991.

[Kiihn et al., 1991] Otto Kiihn, Marc Linster, and Gabi Schmidt. Clamping, C O K A M , KADS and
OMOS. In Duncan Smeed, Marc Linster, John H. Boose, and Brian R. Gaines, editors, Proceedings
of EKAW91. University of Strathclyde, 1991. Also published as Technical Memo TM-91-03 of
DFKI, Kaiserslautern.

[Linster and Musen, 1992] Marc Linster and Mark Musen. Use of KADS to create a conceptual
model of the ONCOCIN task. Knowledge Acquisition, Special Issue on KADS, 1992.

[Linster, 1989] Marc Linster. Towards a second generation knowledge acquisition tool. Knowledge
Acquisition, 1(2):163 - 183, 1989.

[Linster, 1991] Marc Linster. Knowledge acquisition based on explicit methods of problem-solving.
PhD thesis, University of Kaiserslautern, Kaiserslautern, 1991. Submitted.

[Morik, 1987] Katharina Morik. Acquiring domain models. International Journal of Man-Machine
Studies, 26:93-104, 1987.

[Musen et al., 1987] Mark A. Musen, L. M . Fagan, D. M . Combs, and E. H. Shortliife. Use of
a domain-model to drive an interactive knowledge-editing tool. International Journal of Man-
Machine Studies, 26:105 - 121, 1987.

[Shadbolt, 1992] Nigel R. Shadbolt. Facts, fantasies and frameworks: The design of a knowledge
acquisition workbench. In Franz Schmalhofer, Gerd Strube, and Thomas Wetter, editors, Con­
temporary Knowledge Engineering and Cognition, Lecture Notes in Computer Science. Springer,
Heidelberg, 1992.

[Wetter and Woodward, 1990] Thomas Wetter and Brian Woodward. Towards a theoretical frame­
work for knowledge acquisition. In John H. Bosse and Brian R. Gaines, editors, Proceedings of the
5th Banff Knowledge Acquisition Workshop, pages 35/1 - 35/25, Calgary, 1990. AAAI , University
of Calgary.

[Wielinga et al., 1992] Bob Wielinga, Guus Schreiber, and Jost Breuker. KADS: A modelling ap­
proach to knowledge engineering. Knowledge Acquisition, Special Issue on KADS, 1992.

[Woodward et al., 1992] Brian Woodward, Mildred Shaw, and Brian Gaines. The cognitive basis of
knowledge engineering. In Franz Schmalhofer, Gerd Strube, and Thomas Wetter, editors, Con­
temporary Knowledge Engineering and Cognition, Lecture Notes in Computer Science. Springer,
Heidelberg, 1992.

[Woodward, 1991] Brian Woodward. Developing K-ONCOCIN: A case study in the cognitive pro­
cesses of knowledge engineers. In John II. Boose and Brian R. Gaines, editors, Proceedings of the
Knowledge Acquisition Workshop 91 (KAW91), Calgary, 1991. AAAI , University of Calgary.

Two Questions from Expert System Developers to
Cognitive Scientists

Frank Puppe, Ute Gappa

University Karlsruhe
Institut fiir Logik, Komplexitat und Deduktionssysteme

Postfach 6980, W-7500 Karlsruhe
Germany

Abstract: (1) Are the well-known "strong" problem solving methods in
expert systems cognitively adequate enough for the experts which have to
formalize their knowledge accordingly? and (2) How significant are adequate
graphical representations offered by some knowledge acquisition tools for the
internal model of the experts?

In this paper we concentrate on one of the many forms of cooperations between the displicines
of knowledge engineering and cognition: Proposals from the knowledge engineering field
should be evaluated with respect to their cognitive validity. In particular, we exemplify this
approach by asking two questions: about the cognitive significance of strong problem solving
methods and of graphical display forms of the knowledge. Both questions reflect basic
approaches of our research. We also give some reasons, why we are asking these questions.
However, we don't provide any answers.

There are three basic knowledge acquisition types for expert systems:

• Indirect knowledge acquisition: A "knowledge engineer" acquires the knowledge from
experts ("knowledge holders") and formalizes it for the expert system.

• Direct knowledge acquisition: The knowledge holders formalize their knowledge by
themselves.

• Automatic knowledge acquisition: The knowledge is transformed automatically from
already existing knowledge (e.g. from the literature or from cases).

Indirect knowledge acquisition is susceptible to communication problems and quite expensive,
in particular with respect to the maintenance of the knowledge bases. High quality automatic
knowledge acquisition is impossible with the current state of the art. Therefore, direct
knowledge acquisition seems to be the most promising path. It has also the motivational
advantage, that the knowledge holders are given complete authorship and reputation for their
knowledge bases. However, direct knowledge acquisition can only succeed, if the expense of

the knowledge holders for learning and using given knowledge acquisition and maintenance
facilities remains acceptable low. This requires:

• cognitive adequacy of the underlying problem solving methods,
• simple to use and effective knowledge acquisition tools.

Although it is not necessary, that the problem solving methods of expert systems are those of
the experts, the methods should be at least easily understandible. Otherwise experts wil l have
much difficulty to express and formalize their knowledge. Therefore, an exchange with cogni­
tive science could be quite useful: On the one hand, the existing problem solving methods
should be tested for their cognitive plausibility, and on the other hand, constructive results from
cognitive science could lead to the development of easy to understand problem solving
methods.

classification

certain
classification

decision
tables

classification with certain 0->S knowledge
and riven observations

decision
trees

classification with certain
0->S knowledge

heuristic
classification classification with 0->S knowledge

model based
classification

set covering
classifcation

classification with S->0 knowledge

functional
classification

classification based on a
functional system model

statistical
classification

classification with knowledge derived from a
large representative collection of cases

case based
classification

classification with case collections and
additional knowledge for similarity measure

Fig. 1: Overview on well known classification problem solving methods (from [Puppe 90]).
Abbrevations: O = Observations; S = Solutions.

Hierarchy i

O b j e c H i

[Object 111

106J112 |

Object 1121

(0 1 1 3 K

Object 114

'—• Object 1141 I

1 Object 115

=•1 Graph

I O b l e c t T

| Object 5 j I O b i e c t T

t Object 4 I

Hierarchy and Graph

O b j e c t F o r m

A t t r i b u t e 1 Nemeofthe object J () [OK :

r C a n c e l :

A t t r i b e t e 2 O elternetive 1 O elternetive 3 O elternetive 5

<§> alternative 2 O elternetive 4 O elternetive 6

A t t r i b u t e 3 Thl31s en example text. 6

I

iii

A t t r i b u t e 4

A t t r i b u t e 5

A t t r i b u t e 6

A t t i i b v t e 7

I pop-up- menu option"!

| number 1 | until

| Object 1

Object 2
Object 3
Object 4

Additional attribute 1 DC Additional attribute 2

Object Form

5EI

"I Object 2 "1

si 1 Table Ul=

R o v s ' — , C o l u m n s O b j e c t 1 0 O b j e c t 2 0 O b j e c t 3 0

j S e c t i o n i i l j i l i H i M ^ ^ lillllillijijlliiliillp lijiliillilijiiljljljij lijlll&lliiliiilil iiiifiijiiilHiiiiiiiji
O b j e c t 1

Att r ibu te Value 11 X X
Att r ibute Value 12 X lilli
At t r ibu te Value 13 iii:;

O b j e c t 2 m
W-

W«l

Att r ibu te Value 21 10 12
m
W-

W«l [S e c t i o n 2 l i i '& i . iMiUi ! h w w i "a M & i Y i ' . ' i f r i i i ; . ! iw '!'$! liLi't!' | I'M1' f i V

m
W-

W«l
O b j e c t 3
O b j e c t 4 ! i

Att r ibute Value 41 high j i i ffi|l{
At t r ibu te Value 42 low

O b j e c t 5 1 i ! ! i
At t r ibute Value 51 i j j O

01 liiiiiipiiiiiiiijiiiiiiiii! Niii>Hi«iiiiiiiHiii|it£iiIiliItiiIiiEiiiifiNfi i|t|iiriz|iiiHitIiIiIfiiiiifiIisicHeis§

Table

Uiili

Fig. 2: Generic graphical primitives (from [Gappa 91])

Examples for such an exchange are the psychological studies about the decision making process
of physicians [Elstein 78, Kassirer 78, 82, Feltovich 84]. Among other things, they revealed
the consistent use of the hypothesize-and-test strategy (early generation and goal-directed
evaluation of diagnostic hypotheses) and of the differential-diagnosis strategy (taking into
account always several competitive hypotheses simultaneously) by physicians. In accordance
with the progress of expert system research, it would be desirable to test complete problem
solving methods, of which the above mentioned strategies are only parts. An overview on well
known classification problem solving methods is shown in Fig. 1 from [Puppe 90], where the
methods also are described in detail.

One precondition for examining hypothesized cognitive models of experts is the
formalization and implementation of their problem solving models, which we tried in our
classification expert system shells M E D 2 nesp. D3 [Puppe 87, D3 91].

However, adequate problem solving methods are only part of the story. In addition
adequate, maybe graphical knowledge acquisition tools are needed in order to help domain
experts to understand the underlying problem-solving model and to structure and formalize their
knowledge by themselves with only limited assistance from "knowledge engineers". Graphical
knowledge acquisition environments should allow to directly enter knowledge in specialized
versions of basic graphical primitives like hierarchies, graphs, forms and tables shown in Fig.
2 from [Gappa 91], where the primitives are also described in more detail. Our other question
to cognitive scientists concerns the significance of such graphics for the internal model of the
experts. Do they normally visualize their knowledge in such graphical representations and are
there other basic primitives than those in Fig. 2?

References:

[D3 91] Bamberger, S., Gappa, U., Goos, K., Meinl, A., Poeck, K., and Puppe, F.: The Diagnostic Expert
System Shell D3, Manual, Version 1.0 (in German; translation to English in preparation), Universitat
Karlsruhe, Institut fur Logik, Komplexitat und Deduktionssysteme, 1991.

Elstein, A., Shulman, L., and Sprafka, S.: Medical Problem Solving, Harvard Univ. Press, 1978.
Feltovich, P., Johnson P., Moller, J., and Swanson, D.: LCS: the Role and Development of Medical

Knowledge in Diagnostic Reasoning, in Clancey, W. und Shortliffe, E.(eds.): Readings in Medical
Artificial Intelligence, Addison-Wesley, 1984 (1980).

Gappa, U.: A Toolbox for Generating Graphical Knowledge Acquisition Environments, in: Proc. of The World
Congress of Expert Systems, Vol. 2, 797-810, Pergamon Press, 1991.

Kassirer, J., Kuipers, B., and Gorry, G.: Towards a Theory of Clinical Expertise, American Journal of Medicine
73: 251-259, 1982.

Kassirer, J. and Gorry, G.: Clinical Problem Solving: a Behavioral Analysis, Annals of Int. Med. 89, 245-255,
1978.

Puppe, F.: Requirements for a Classification Expert System Shell and Their Realization in MED2, Applied
Artificial Intelligence 1: 163-171,1987.

Puppe, F.: Problem Solving Methods in Expert Systems (in German; translation to English in progress)
Springer, 1990.

The Cognitive Basis of Knowledge Engineering

J. Brian Woodward, M . L . G . Shaw, and B .R . Gaines
Knowledge Science Institute

Department of Computer Science
University of Calgary

2500 University Dr. N W .
Calgary, Alberta

C A N A D A , T 2 N 1 N 4

e-mail: woodward®cpsc.ucalgary.ca

Abstract. The goal of knowledge engineering is to create an artificial system
which reflects knowledge-like qualities. Current tools, techniques and procedures
in knowledge engineering concentrate on the elicitation and representation of
knowledge structures. This concentration of effort reflects the current emphasis on
the epistemological and computational/representational characteristics of knowledge
engineering. A different, yet complementary perspective is offered in this paper.
Knowledge engineering is defined as a human activity system, characterized as a
cognitive environment or network which deals with complex epistemological
domains. Rather than viewing knowledge engineering as entirely concerned with
knowledge content, those processes which produce the knowledge in the
knowledge engineering environment are viewed as the focus of attention. Memory,
judgment and choice, text comprehension, and social cognition and communication
represent a selection of cognitive science domains which offer research findings of
importance for knowledge engineering. Based on these research findings, the
groundwork is laid for the development of cognition-support tools for
knowledge engineering.

1. Introduct ion and Purpose

The domain of knowledge engineering has focused on the acquisition and modelling of
knowledge. This is not a surprising statement but it raises an important issue which this
paper addresses. The terms 'acquisition' and 'modelling' would first suggest an emphasis
on the processes and procedures related to knowledge engineering but a closer look
suggests that the focus is rather on the outcome of these processes. The 'knowledge' focus
dictates that whatever processes are developed, or adapted, they must result in structures
which somehow 'capture' or 'represent' identified forms of 'knowledge'. The tools,
techniques and procedures developed to acquire knowledge are classified as either 'domain-
specific' or as 'generic'. The term 'domain- specific' denotes a tool, technique or procedure
which has developed out of knowledge engineering within a defined domain (eg. Opal: see
Musen, 1989). The content, or the specific knowledge structures of the domain, guide and
determine the tool, technique or procedure to be used. Generic tools (eg. K S S O : Gaines,
1988) are those which are considered to be useful and appropriate in a wide variety of
domains. In this case, the tool guides the type of content which wi l l be specified from the
domain. The results of these tools are knowledge-specific structures.

This paper presents arguments and research support for the development of a different
category or class of knowledge engineering tool: cognition-based tools. This type of tool is
characterized by a de-emphasis of the 'knowledge' itself with a greater emphasis on the
cognitive activities abundant in knowledge engineering activity which produce knowledge
structures. These cognitive processes inherent in the knowledge engineering process
establish the cognitive basis for knowledge engineering. The selection is based on sites of
cognitive activity not solely on domain tasks or knowledge centred generic processes.
Rather than emphasizing processes which identify domain tasks and knowledge structures,
this approach emphasizes the support for the cognitive process activity in knowledge
engineering.

Knowledge engineering is viewed as a body of activity which is characterized by intense
cognitive activity as well as a strong emphasis on knowledge structures. Section 2 presents
the main premises for viewing knowledge engineering from a cognitive processing
perspective rather than from a knowledge perspective. Knowledge engineering is defined
as a human activity system consisting of different sites and levels of cognitive activity. The
cognitive processes occurring at each site and between sites constitutes part of the cognitive
environment. The focus of this paper is on the cognitive processes of the knowledge
engineer. Section 3 presents research on the processes involved in understanding new,
complex domains (a usual experience for knowledge engineers). Sections 4 through 7
present cognitive research relevant for knowledge engineering: memory, text
comprehension, judgment and choice, and social cognition.

2. Knowledge Engineering Viewed as a Collection of Cognitive Processes

2.1 The Current Focus in Knowledge Engineering

The domain of knowledge engineering reflects a strong emphasis on the acquisition and
modelling of knowledge structures and the processes to manipulate and transform them.
These aspects may be categorized as the epistemological nature of the domain.
Epistemological and accompanying ontological discussions are concerned with the concepts
selected to express the various structures for acquisition and modelling. This emphasis
reflects the importance of concepts like the 'knowledge level' (Simon, 1988) and the
research on 'expertise' and expert knowledge (eg. Johnson, 1986). Results of these studies
centre predominantly on expert-novice differences in conceptualizing the domain problem,
in the knowledge structures used in finding a solution, and, to a lesser extent, in the
different methods used to solve the problems.

Discussions concerning the nature of knowledge also characterize the domain of knowledge
engineering. These discussions include the role of different types or forms of knowledge in
meeting tasks demands. The K A D S (Wielinga, et al, 1989) methodology in knowledge
acquisition is based on a strong epistemological foundation. A parallel approach to the
development of re-useable problem solving structures and processes is represented by role-
limiting methods (see Marcus, 1988) and generic tasks (Chandrasecaran, 1988). This
research points to the need for identifying usable knowledge structures and the processes
by which these structures are manipulated.

A related issue is that of knowledge representation. Representation frameworks abound and
they wi l l not be discussed here (see Brachman and Leveque, 1985). The discussion of
forms and structures of knowledge logically lead to the issues of how to represent that
knowledge in a form useful for modelling. Selected epistemological constructs act as the
basis for knowledge structures and are used to impart meaning. Formal languages and
representational frameworks determine what is computationally tractable. Epistemic

concepts are used to develop formal structures and these structures are used to order and
arrange the knowledge of a given domain.

2.2 The Cognitive Aspect of Knowledge Engineering

Knowledge engineering activity has been largely focused on the epistemological and
representational aspects of knowledge. A different, yet complementary view would identify
knowledge engineering as the interaction of cogniting agents with the emphasis on the
cognitive processes used in knowledge engineering. The knowledge-intensive approach in
current knowledge engineering forces us to view the outcome or the product of our efforts
as most important. The 'knowledge* is 'acquired', 'transferred', 'captured' and
'modelled'. This emphasis directs our attention away from the processes that 'produce',
'organize', and 'represent' the knowledge: away from notions of learning, comprehending,
and communicating. Perhaps these processes are taken for granted; perhaps they are
considered invariable. This emphasis is clearly displayed in our tools, techniques and
procedures in that they focus on structures of knowledge and the processes used to
manipulate them. Few of our tools address the complexity of the cognitive processes used
to develop the knowledge structures although many of our knowledge acquisition tools
support them.

Perhaps another reason for our present emphasis is the inconclusive nature of cognitive
processes. Perhaps we understand these processes far too little or view them as problems
and sources of noise to use them effectively in our work in knowledge engineering. We try
to avoid the biasing nature of the knowledge engineer's presence in the development of
knowledge-based systems. Our approach is to develop methods to 'capture' the expert's
knowledge automatically and directly, thus eliminating the influence of the knowledge
engineer. This view might alter i f cognitive processes were viewed as a necessary
component to knowledge engineering in that we cannot fully understand knowledge and its
re-creation i f we fail to understand those cognitive processes involved.

Wetter and Woodward (1990) have identified the importance of incorporating an
understanding of cognitive processes in the development of a theory of knowledge
acquisition. In order to develop a method of knowledge acquisition in a principled manner,
the epistemic concepts must be clearly defined, the epistemic concepts must have a basis in
psychological occurrence, and the representational formalism must reflect the intended
epistemic and psychological meaning.

Rather than viewing the domain of knowledge acquisition from the epistemological or
representation perspective, this paper addresses the domain from the cognitive perspective.
This perspective is viewed as complementary to the epistemological and representational
ones in that it helps to complete the picture. The cognitive perspective is characterized by an
emphasis on cognitive processes, their identification and support, rather than on the
identification and production of knowledge structures. The question here is not 'Where's
the knowledge ?' but 'What cognitive processes produce the knowledge?'

2.3 Knowledge Engineering as a Set of Cognitive Processes

This section sets out the premises for viewing knowledge engineering as a set of cognitive
processes rather than as a set of activities which acquires and models knowledge in one
form or another.

First, knowledge engineering represents an ordered collection of cognitive activities. From
an information processing point of view, cognitive activities are explained as processes of a
"physical symbol system (eg. human brain) consisting of a representation system and the

processes to manipulate it" (Aitkenhead and Slack,1985). This is a broad definition which
includes human cognition as well as physical symbol systems which display cognition-like
processes. Cognitive activities may be ordered and contained within one physical symbol
system or shared between interacting physical symbol systems.

Second, the purpose of knowledge engineering is to use cognitive processes to produce a
model which demonstrates cognitive properties. This premise suggests a comparison point
between the goals of cognitive psychology and those of artificial intelligence in that the
outcomes of each arc considered models. Aitkenhead and Slack (1985) point out that in
those disciplines concerned with cognitive processing and modelling the formulation of
information processing models are evaluated against a body of experimental data. In
artificial intelligence, the goal is to build computer-based models of performance which are
evaluated against criteria such as computational efficiency and logical coherence. The focus
of the former is on the final model and its ability to account for evidence of cognitive
structures and processes. The focus of the latter is on the computational attributes and
usefulness of the final model. Viewing knowledge engineering as a set of cognitive
processes means that we emphasize the information processing activities which lead to a
final model rather than the characteristics and content of the final model.

Third, knowledge engineering is done in a cognitive environment. The environment defines
a set of situations in which information is generated and produced, provided, manipulated,
organized, re-organized and re-represented. The environment also defines those processes
and structures which are used to generate, manipulate, comprehend, and organize the
information. These processes are concerned with meaning, not just information. In this
sense, the environment we are defining here might be called a 'knowledge' environment
but that would suggest we are interested more in the outcome of the meaning or in asking
'what is the meaning' of a certain piece of information. However, we are more interested in
asking 'how is the meaning' of a certain piece of information determined. Consequently,
our interest is on the cognitive processes of developing meaning. In this environment,
humans are involved and they supply many of he cognitive processes.

Fourth, the cognitive environment is characterized by sites and levels of cognitive activity.
The environmental structure determines the locations of activity and the types of cognitive
activity which occur at those locations. Sites refer to those clearly distinguishable points of
cognitive activity (eg. the knowledge engineer, expert). Level refers to various combination
of sites which are in interaction. Interaction of cognitive processing sites entails another
level of cognitive activity which is distinguishable from cognitive activity occurring at a
single site. For example, single site activity (eg. the expert) may reflect processes leading to
making a choice about a course of action. Interaction of sites requires the use of social
cognition processes. Presently, our field is much more fascinated with the cognitive
processes of the expert but less so with those of the knowledge engineer and the user. In
fact, we try to eliminate the cognitive effect of the former and ignore that of the latter. Why
do we wish to develop our understanding of cognitive processes at one significant site in
knowledge engineering and not others ? The expert's cognitive processes as well as those
of the knowledge engineer and the user are open for our observation and study because
they a part of the knowledge engineering environment. Addressing cognitive processes
separately and in interaction may bring us better understanding of the knowledge
engineering process.

Fifth, an understanding of the cognitive environment acts as a basis for developing tools,
techniques, and procedures to support and/or replace these processes. With our emphasis
on the cognitive aspects of knowledge engineering, the focus of potential support processes
is based on our understanding and careful elucidation of those cognitive processes which
are characteristic of sites and levels of cognitive activity. Rather than emphasize knowledge

support we are suggesting a complementary view of cognition support as a basis for tool,
technique, and procedure development For example, in addition to asking questions based
on the domain content and problem-solving heuristics, it is useful to ask questions which
are formed to reflect different cognitive processes (eg. LaFrance, 1986).

3. Cognitive Characteristics of the Domain of Knowledge Engineering

3.1 Understanding Complex Domains

The role of the knowledge engineer is cognitively demanding in that the knowledge
engineer is expected to enter into the epistemological structure of a domain far enough to
build a model of that domain. Even i f the domain is restricted in scope, the knowledge
engineer must become familiar with the problem-solving structures in the domain and the
underlying assumptions of the domain of interest. These demands are similar to expert
development within that domain in that the knowledge engineer, as a novice, must quickly
become familiar with the necessary epistemological concepts and problem-solving
processes in order to adequately model the domain or part thereof. When a knowledge
engineer enters a new, complex, epistemological domain, he/she uses a variety of cognitive
processes to first understand and comprehend the basic structures and assumptions of the
domain and second, to model this understanding. It is these cognitive processes which
require identification and description so that tools, techniques, and procedures may be
developed as aids and supports to the knowledge engineer alone or in interaction with the
expert.

The development of problem-solving skill in medicine acts as a case in point. Research on
how medical students and interns come to develop expertise in a complex epistemological
domain parallels the cognitive demands placed on the knowledge engineer when he/she
enters a new domain. Evans (1989) stresses that addressing the complex domain of medical
problem-solving reflects four critical issues:

"l)the relation between domain knowledge and problem-solving behaviour, 2) the
sources of bias and misconception in problem representation and decision-making;
3) the role of discourse in structuring the acquisition of data..., and 4) the
identification of formal methods for the evaluation of performance" (p. 2).

These same issues are of importance to the knowledge engineer and to knowledge
engineering activity. The point here is that the knowledge engineer is required to learn
something about the domain in order to make knowledge engineering decisions. The
cognitive demands placed on a knowledge engineer when he/she enters a new domain are
similar to novices in that domain who are in the process of developing a greater
understanding of the domain. The rest of this section presents research support for a
number of cognitive processes involved when an individual is developing understanding in
a complex domain.

3.2 Cognitive Processes in Understanding

The biomedical domain is characterized as epistemologically rich. Many of the concepts and
families of concepts are highly interdependent, forming extremely complex epistemological
networks. Meaning and understanding of the concepts alone as well as the interactions of
these concepts are necessary for understanding the domain. Understanding is often
hampered not only by the complexity but by the ill-structured nature of the domain. A
number of researchers have reported the difficulties of understanding complex systems

(Flood, 1987) as well as the requirements and methods for overcoming these difficulties
(Cairns and Woodward, 1988). The novice and the knowledge engineer are similar when
they embark on conceptual analyses of clusters of complex concepts.

Patel et al (1989) identified a number of cognitive processes used in developing a functional
relationship between biomedical knowledge and clinical reasoning. The following cognitive
processes were viewed as necessary for developing an understanding of how to incorporate
models of biomedical knowledge in diagnosing clinical cases. These processes included
comprehension of text-based propositions, construction of consistent and coherent
explanations, and selection of relevant and irrelevant facts based on clear discrirrination
principles. These findings are based on novice-expert interactions and they represent points
of distinction between novice and experts in the domain. Knowledge engineers resemble
novices (or even sub-novices) when they first enter a new domain. The cognitive processes
used by novices, which distinguish them from experts, are identified as correlates of poor
understanding, diagnostic performance, and explanatory performance.

Another set of studies (Feltovich et al, 1989,1984; Spiro et al, 1988,1990) addresses the
nature of conceptual understanding in biomedicine. More specifically, the studies address
how deep models of complex ideas develop and how problems may arise with these
models, during their development, which lead to misconceptions. The results have shown
developmental patterns for a variety of biomedical misunderstandings. The results support
three main reasons for misunderstandings: multiplicity, interdependency and
oversimplification. The first refers to the fact that many influences contributed to the
acquisition and maintenance of misconceptions such as learner style and ability, the
methods of education, and practices of biomedical science research. The second
characterizes misconceptions as reciprocating networks based on basic component ideas
which are faulty. These networks tend to support each other or positively reinforce each
other so that misconceptions are promulgated throughout the network. The final pattern
suggests that due to human information processing capacity, the complexity of the concepts
is reduced by selecting, collapsing or relating concepts in a way which changes the
meaning.

3.3 Cognitive Demands on the Novice

Complex concepts make unusual cognitive demands on the novice. Feltovich et al (1989)
describe four main demands on:

1. working memory because of the large number of nested or looped steps or goals,
or because of the large number of variables to be considered, processed, and/or
reconciled;
2. formal representation in the sense that the degree of abstraction necessary for
understanding is often onerous (eg. representing the concept of rate or acceleration);
3. intuition or prior knowledge in the sense that new concepts can conflict with
prior meanings and/or relationships among concepts; and
4. notions of regularity because many concepts can be ill-structured and highly
variable in how they are used or they may be very strongly dependent on other
concepts for their meaning.

These same demands are placed on the knowledge engineer. These cognitive demands
affect knowledge engineering activity by leading to misconceptions which may be
perpetuated into the final system i f not 'caught' by the expert (assuming there exist specific
procedures for the expert to use to 'catch' the misconception). Also, when complex
conceptual domains are addressed, complexity reduction occurs. Many researchers have
studied the processes whereby humans use particular procedures to reduce the complexity

of conceptual information. (Kahneman and Tversky, 1973; Kahneman et al, 1982; Coulson
et al, 1986; Spiro, 1980).

Feltovich et al (1989) distinguishes conceptual bias from those biases in judgment and
decision-making (Kahneman et al, 1982) in that the family of 'reductive biases' are used
solely to reduce complexity rather than reflect judgment processes. Six reductive biases
were identified. 'Static' bias occurs when a dynamic system is viewed as a static model.
'Step-wise' bias describes the situation where a continuous process is broken down into
discrete, identifiable steps resulting in a loss of meaning. 'External agent' bias is the
attribution of essential intrinsic characteristics of entities or processes to external influences.
'Prior analogy' bias occurs when new concepts are given meaning based on already held
concepts or simple models within the domain or from other domains. 'Common
connotation' bias occurs when technical terms are reduced in meaning based on the day-to­
day use of the term or concept. Finally, 'restriction of scope' bias refers to the belief that
general principles are taken to apply only under certain circumstances based on a repeated
co-incident relationship.

3.4 Methods of Information Presentation

One important issue addressed in the research in the biomedical domain is the need to select
the 'right' concepts for presentation (Feltovich et al, 1989). Due to the complex, i l l -
structured nature of certain facts of a domain, the tendency is to present information initially
in a simple overview format and then to incrementally increase the complexity so that
models are built to a point of greater sophistication (Glaser, 1984). The reason to select the
right concepts is due to a perceived failure of this incremental approach. These researchers
found that students used the simplified models to 'filter-out' or arrange later material so that
developing an understanding of the complexity did not occur. Also, they found that the
initial simplification promoted further simplification of ideas. The tendency was to under-
dimensionalize. The recommendation is to select key concepts, to ensure that they are
understood, and then to build around the key concepts. Criteria for selection of these key
concepts are the perceived importance of the concept by the community, the degree of
centrality of the concept in the literature and for clinical cases, a high degree of difficulty in
understanding the concept, and the concept has cross-context application.

A second issue emerging from the biomedical research suggests the use of abnormality
models of information processing. This type of model is extremely useful in identifying,
describing and correcting processes which result in some form of misunderstanding. These
models frame a conceptual misunderstanding in terms of the processes used to develop it.
These types of models appear to have a real application in knowledge engineering. Often
the knowledge engineer needs to use the expert as the best guide to conceptual verification;
however, only content is addressed. Procedural models of common processing biases or
distortions (abnormalities) might be used by the knowledge engineer in verification of
knowledge-based systems.

3.5 Summary

The biomedical research demonstrates the value of studying the cognitive processes of
learning in the context in which they occur. In most cases the research was carried out in
the classroom and teaching hospitals associated with medical schools. If we are to learn
more about the cognitive processes involved in knowledge engineering, the actual context
becomes the laboratory.

Also, the research presented from the biomedical field provides an example of the
importance of understanding the cognitive processes involved when an individual attempts

to comprehend a complex epistemological domain. Knowledge engineers are constantly
confronted with this task and the cognitive demands placed on them are onerous. This
research has indicated that identifiable cognitive processes are involved in the
understanding of complexity and has provided some direction for the development of
cognition support tools, techniques and procedures for knowledge engineering.

The following sections of the paper identify and describe other sets of cognitive processes
apparent in knowledge engineering activity.

4. M e m o r y

4.1 Types of 'Memory'

Commonly agreed upon mechanisms of memory (Potter, 1990) support memory as a three
phase phenomenon. Processes are postulated for information registration or encoding, for
retrieval or remembering, and for forgetting. Temporal architectures have also been
postulated (Crowder, 1982). Gorfein and Hoffman (1987), Klatzky (1980), and Crowder
(1976) provide good evaluations of the memory research. For knowledge engineering,
specific issues and questions arise from this research.

Snodgrass (1989) asks 'How many memories?'. This question was originally asked by
Tulving (1985) but Snodgrass developed a memory arrangement based on 3 types of
memory tasks. The first is called 'episodic' memory which is essentially 'remembering
that' something had occurred or that something was said. The memories reflect traces of
autobiographical events, important to the individual and retained by the individual because
of some relevance pointer. The second memory task is that of 'semantic' memory or
'knowing that' something is true or false or something is known or believed to have
occurred. This type of memory is more encyclopedic and is indexed by a number of
conceptual pointers so information is retained because it points to some other piece of
information. The third memory is that for 'knowing how'. Snodgrass describes this
memory as a 'procedural' memory in that what is retained is a perceptual/motor sequence of
actions which have been acquired and demonstrated by completing actions, by doing.

The concept of multiple memories suggests that events, occurrences and information are, in
some manner and form, 'retained' by the individual in different memory 'locations'. The
processes of representing and retaining information in each of the three memories are
considered different tasks, but Snodgrass admits to knowing little about the degree of
independence or interdependence among the memory types. The concept of different
memories also brings up other questions: under what circumstances are the different
memory tasks activated (eg. recall, cued recall, recognition tasks), how is information in
each memory represented, and what processes are used to access die different memories?
Answers to these questions may lead directly to processes which may be supported in the
knowledge engineering process.

4.2 Environment X Memory Research

Smith (1988) presented anecdotal evidence for episodic memories which were cued or
triggered by environmental stimuli. Bjork and Richardson-Klavehn (1989) present research
on the context-memory relationship drrecdy. They studied aspects of various contextual
influences on how information is initially retained and how information is available, based
on contextual retrieval cues. They contend that generating ideas or becoming aware of new
information is done within a defined, current, episodic context Features of the context are

incorporated with the new information in memory. Recall probabilities are seen as a
function of the strength of association to the current context. Matching episodic contexts
ensures better recall of information.

It is necessary also to distinguish between aspects of the episodic context that are
meaningfully related to the information retained and those aspects of the context which are
independent and incidental to that information. Baddeley, (1982) distinguished 'interactive'
and 'independent' forms of contextual information or patterns. 'Integrated' and 'isolated'
distinctions were made by Eich (1985) and Hewitt (1980) categorized contextual patterns as
'intrinsic' or 'extrinsic' to the meaning of the retained information. Bjork and Bjork (1988)
proposed three aspects of context. That information which was clearly and strongly
associated with the target information was labelled 'integrated' information. 'Influential'
information was that which had strong associations to the target information in the sense
that it influenced the degree of meaningfulness of the target information. "Incidental'
information was not only independent or isolated from the target information but did not
influence the interpretation of that information. These three distinctions are used to
describe context-target relationships. Finally, these researchers postulate two types of
cognitive processing during recall of information. The data driven process (also see
Jacoby, 1983) posits a type of task which forces the individual to respond to perceptual
information only (eg. identify words or word fragments or supply missing structures).
This is usually considered an indirect form of memory. Conceptually driven tasks (see
Roediger and Blaxton, 1987) demand constructive, semantically-based processes as a basis
for direct recall of information. These three main dimensions (concept-target relationships,
type of context, and type of recall task) form a taxonomy of recall which suggests 12
different methods of structuring a recall situation to increase the effectiveness and efficiency
of recall activity.

Memory recall situations are common ones in knowledge engineering activity in the
knowledge acquisition phase. The concept of multiple memories has application (eg. L a
France, 1986) in that structured recall situations established by the knowledge engineer
affects the retrieval processes of the expert. Also, structures such as the Bjork and
Richardson- Klavehn's taxonomy and can act as a basis for developing support tools and
procedures to aid in recall for the expert, the knowledge engineer and even for the user.

4.3 Retrieval and Organizational Strategies

Kolodner (1984) outlines a number of principles of memory retrieval and storage. Those of
particular interest to knowledge engineers are presented and discussed. The first principle
states that human remembering is often a process of re-construction. A n individual must re­
assemble or recreate the necessary structures and events which 'must have happened' rather
than directly retrieving what actually did happen. The 'actual' event, with all its salient
features, is not 'stored' in memory. When asked to recall a situation, an individual w i l l
produce a cogent assembly of plausible items. A second principle suggests that the process
of remembering mirrors a progressive narrowing or focusing-in on a description of the
recalled event. In other words, an individual begins with salient features (as perceived in
the recall context) and begins a type of choice or selection task in order to eventually select
the full event (for reconstruction) to meet the current recall demands (eg. E - M O P S are
considered by Kolodner to be the basic structures which organize events in memory).

The issue of contextual information is raised in a third principle. In order to retrieve the
appropriate information from memory, an individual first requires some information or
knowledge about the contexts associated with the target items. The original context is seen
as having a powerful link with other salient features of information (previously discussed).
A fourth principle suggests that retrieval often requires a search for something other than

what was requested. In order to successfully retrieve and re-construct an event or episode,
it is often necessary to locate intermediate or ancillary information which may act as indices
for the required information. Finally, a fifth principle suggests that conceptual categories
contain or hold generalized information only and that details may be generated at the time of
recall.

Each of these principles raise issues of interest for the knowledge engineering environment.
Naive assumptions about what an expert offers in response to questions lul l the knowledge
engineer into believing that he/she has 'captured' the necessary knowledge from the expert.
Tools, techniques and procedures based on these principles may aid the knowledge
engineer to clearly identify what knowledge has been gained, what further knowledge is
necessary and what knowledge is suspect The effects of the knowledge engineer's
questions are not studied yet this process is the main method for gathering expert
information.

A more detailed analysis of retrieval processes is necessary to identify supportable
processes. Kolodner (1984) suggests two main types of retrieval activity. Processes for
constructing and further specifying the context for search represent the first type. She calls
these processes 'executive' strategies. 'Instantiation' strategies represent the second type of
process. These processes direct search and the application of constructive strategies.
Elaboration, transformation, and relation have been identified. One event may enable
another, act as a precondition for another, may result from another, act as a reason for
another. A n event can be linked to another event in a larger episode of events, related in a
sequence of events, act as a preceding or following event or act as a standard event. Similar
relationships have been distinguished by Schank (1975) and by Graesser and Clark (1985).

Kolodner (1984) also discusses the important aspect of event 'features'. These features are
aspects of events which are associated with the target information and unique features
usually make the best indices for memory retrieval strategies. Also, good features are able
to relate events and provide context relationships. The indices are then used for searches.
Access to information retained by an individual can be more efficient through the use of key
features. One method of retrieval is through responses to questions (eg. Lehnert, 1978)
which are based on key features and which emphasize the appropriate format or form of the
answer as opposed to the content of the answer. Good answers are seen as responding to
the intent and content of the question. Using the model of instantiations (Kolodner, 1984),
experts may be given tasks where they are required to identify a variety of relationships
between events as well as the features of events.

Transformational processes Kosslyn (1980) themselves deserve a closer look for their
particular relevance to knowledge engineering. In contrast to comparison processes, which
juxtapose memory structures and return a match/mismatch or measure of similarity,
transformational processes change the contents of a structure. 'Alterations' are one form of
transformation which add or delete structures or parts thereof or they act to reorganize the
structure. 'Productions* use old data structures to generate new structures or replace old
ones. 'Derivations' are new structures which have been generated by inferential processes.

The preceding discussions of retrieval and organizational processes have reflected a set of
'content-free' processes. Retrieval processes based on semantic meaning also provide a
basis for understanding how some structures are implicitly activated. The basic assumption
(Nelson, 1979) is that words are tokens which are connected to a larger number of related
concepts but that these concepts can be connected to a larger number of related concepts.
Hitting the trigger activates a network of concepts. The questions arise, however, as to
what information is actually stored and can be activated quickly (implicitly) and what must
be re-generated. Graesser and Clark (1985) have reported that some semantic forms of

knowledge are not likely to be stored (see section on text comprehension). For implicitly
activated concepts, the cue 'set' is of great importance. The larger, more diverse, the set of
cues, the greater the network of related entities and the greater the time and confusion in re­
generating the unstored information. A complex stimulus triggering multiple
representations in memory can lead to a wealth of information but the representations
themselves may be of a different form and structure (Snodgrass, 1989; Collins and Loftus,
1975).

Do our knowledge engineering methods attempt to access different memory structures and
do they support an understanding of how these structures may change during the
knowledge engineering process ? Our borrowed tools, techniques and procedures were not
generally developed with an understanding of memory structures and processes in mind.
Also, the issue of context-memory relationships has been neglected even though its effect is
of great importance to knowledge engineering. A n understanding of how new structures
are developed and incorporated into new episodic experiences or how related concepts
become incorporated into representations is not supported in knowledge engineering tools.
Determining which concepts are related directly and which indirectly to decision making are
of concern to the knowledge engineer but the tools used are rudimentary and are focused on
the knowledge, not the processes.

5. Text Comprehension

5.1 Cognitive Processes in Text Comprehension

The reader appears an active participant in text comprehension. Perceptual processes
(processes which react to visual stimuli and which reflect modular stimulus processing)
occur during comprehension and are considered mandatory, automatic and immediate
(Swinney and Osterhout, 1990). Cognitive processes, on the other hand, reflect inference
processes based on prior world knowledge, plausibility, and pragmatics. The cognitive
activity drives analysis and acts as the basis for viewing readers as constructive learners
(Wittrock, 1979) or 'active agents' (Anderson, 1970). These cognitive processes and their
influences are of interest to better understand the cognitive demands placed on the
knowledge engineer.

Inferential processes constitute a class of cognitive processes used in text comprehension to
understand concepts, to differentiate between concepts, and to make connections between
and among concepts. A s someone reads, he/she attempts to make the text meaningful,
usually by making predictions (Smith, 1982) and then by determining i f the predictions
hold true. The elimination of possible meanings until the correct one is found is a process
of inferencing based on prior knowledge and on the goal of the reader (van Dijk and
Kintsch, 1983; Lesgold and Perfetti, 1978). These types of processes are of interest to us
because to make meaningful the information contained in domain textual material, onerous
inferential demands are placed on the knowledge engineer.

It is very common for readers to fail in making all the necessary inferences during text
comprehension (Britton et al, 1990). Comprehension failure increases as the text becomes
less of a narrative, with common inference patterns, and more expository. It is common for
a knowledge engineer to read expository and or instructional texts. Making the appropriate
inferences depends in large part on prior knowledge of the domain, so considerable
inferential demands are placed on the knowledge engineer. The more inferences required of
the reader by the text, the less likely the inferences wi l l be made and the less likely the
meaning captured. Making the necessary distinctions of concepts and making the necessary
inferences of these concepts requires familiarity with the domain: something which the

knowledge engineer does not initially have and may never develop sufficiently during the
knowledge engineering activity of the project.

5.2 Inference Making During Text Comprehension

Content-based inferences are those which can be made on the basis of perceived word
meaning (semantics), as the word is used in the sentence (syntax), or in the context of
understanding (pragmatics). Seifert (1990) distinguishes three types of inferences:
anaphoric inferences or inferences based on pronouns (see Clark and Haviland, 1977),
instrumental inferences or inferences about action (see Singer, 1980), and pragmatic
inferences or contextually driven connections (see Graesser, 1981). These three types of
content inference are generated on the bias of the kind of world knowledge (and specific
domain knowledge) needed to understand a certain kind of text.

Thematic inferences (Seifert et al, 1986) and schematic structures (Schank, 1982; Schank
and Abelson, 1977; and Rumelhart and Ortney, 1977) are those inferences generated less
on the basis of content and more on the basis of abstract patterns of goals and plans
suggested by the text (Seifert, 1990). The relations between concepts are implied more by
an abstract conceptualization or structure than by the semantic links in the text. In many
cases, these themes are determined by the processing goals (Holyoak and Novik, 1988) of
the comprehender. Skimming a text vs searching a text for a specific point may lead to
different inferencing paths (Seifert, 1990). The processing goals of the knowledge engineer
may vary at different points in the knowledge engineering process (i.e. during each pass
through the text). Misconstruing the meaning, generating incomplete or erroneous inference
paths, and selecting or constructing partial or incomplete thematic and schematic structures
hampers the knowledge engineering process.

The difficulties of the knowledge engineer are further defined by Garner (1985) who notes
that the comprehension of technical, expository prose is "little assisted by content-
schematic knowledge, in that the very novelty of the material ensures that the readers wi l l
be unable to fit much of the new information into their old in-head information"(p.l0). Van
Dijk and Kintsch (1983) suggest a series of comprehension stages for technical prose. The
first step involves a focus on specific content (based on single, individual propositions) to
build a 'microstructure. Then, the task is to produce or derive a 'macrostructure' of
important content through the application of three types of inferencing rules - deletion,
construction and generalization. Procedures for supporting this set of inferencing activity
may help overcome the need for domain knowledge in initial comprehension activity.

Types of content-based inferences are more dependent on stored knowledge than on
generated or infered knowledge. When reading technical prose, comprehension is strongly
based the capacity of the reader to make the correct content-based inferences. Knowing
what types of structures are usually stored versus those that are usually generated from
stored information helps in determining what processes may be constructed to aid the
knowledge engineer. Graesser and Clark (1985) have reported a systematic study of those
structures which appear to be stored and those which are not. Those concepts that are
known to be directly stored may be elicited. Those concepts can then act as anchors to
derive those concepts which have not been directly stored. Knowing which concepts are
likely derived gives the knowledge engineer the opportunity to challenge, test or validate
them in another manner. Different processes are also necessary for eliciting different types
of concepts (eg. causal, goal).

Causal inferences are also of interest Myers and Duffy (1990) describe a popular
mechanism for the development or generation of causal inferences during text
comprehension. First, a network representation is constructed. This network results from

those initially identified concepts in the text Tentative relationships are constructed on the
basis of the surface meaning of the text. Sets of inferences are then generated from these
antecedents and they become part of the network. More inferences are drawn as more
related information becomes available through more text. In particular, causal antecedents
are believed held in short term memory awaiting a link or connection to another concepts
which satisfies causal chain properties (Fletcher and Bloom 1988; Trabasso and Sperry,
1985). These causal inferences display four particular properties (Trabasso et al, 1989).
The first property is 'temporal priority , in that a cause never happens after the effect. The
property of 'operativity' states that the cause must be active at the time when the
consequence occurs. The third property suggests that a cause must be seen as necessary for
the event to occur. Finally, given a set of antecedent conditions, a cause must be
'sufficient' for the consequent to occur.

For text comprehension in knowledge engineering, it is important for the knowledge
engineer to generate the appropriate causal inferences while reading the text. However,
given the complexity and newness of the content in the domain, it is entirely likely that the
knowledge engineer wi l l fail to make the necessary causal inferences. Some research
findings (Graesser and Clark, 1985; L i u , 1989; Trabasso et al, 1988) suggest that it is
possible to improve text comprehension by inviting causal inferences by such procedures
as systematically posing questions to the reader. Procedures which flag the need for a
causal inference or to identify when one is missed would aid the knowledge engineer
during comprehension.

5.3 Role of Text Structures in Comprehension

Grammatic and semantic structures in the text have been shown to influence text
comprehension. Rumelhart (1980) suggests that when text comprehension is appropriately
completed, it is done so because structures in the text have helped to organize knowledge
into units which activate the required cognitive processes so that new information is easily
processed. When comprehension fails, it is partially due to the reader not having the
appropriate schemata for the text content; the reader having the appropriate schemata but no
textual cues to trigger its generation or retrieval; or, the reader finds or constructs a
consistent interpretation of the text but not the one which was intended (see also Spilich et
al, 1979).

Haberland and Graesser (1990) have found that when goal hierarchies were easily
portrayed in the text passages subsequent statements were easier to comprehend. When
readers are forced to assume or identify goal hierarchies on their own, there tends to be a
greater failure rate in making the appropriate inferences. Poor text construction leads to
poor text comprehension in a number of other ways as well (Garner, 1988):

Expert generated text comes in many forms. Highly structured text often reflect
assumptions that the reader has the necessary background knowledge for sufficient
comprehension. In this type of text, goal hierarchies and cause-effect indicators may not be
as prevalent as they may be in more introductory material. Procedures which flag these
types of indicators in richly technical material (Woodward, 1990) support the knowledge
engineer's inferencing processes.

5.4 Meta-Cognition and Comprehension Failure

Comprehension of technical, expository text can also be affected by factors or cues external
to the text (Rothopf, 1982). Metacognition, or stable knowledge the reader has about
him/herself, about the comprehension task, and about the strategies employed affect the
success of comprehension. Flavell (1981) identified four metacognitive components and

their relationships to success in text comprehension. Meta-cognitive experiences of the
reader refer to those thoughts of how the reader is approaching the goal of reading,
questions about how the comprehension is progressing, or the intrusion of other thoughts
into the comprehension process. Cognition 'goals' refer to the variety of reasons for
reading (eg. skimming, identifying assumptions). Finally, the cognitive strategies of the
reader refer to the types of processes the reader uses while reading the text (eg. highlighting
passages or writing down key words). Steinberg (1984) offers a compendium of cognitive
processes which may be used during text comprehension.

Another critical meta-cognitive process for a reader is that of detecting comprehension
failures (see Baker and Brown, 1984a, 1984b; and Brown et al, 1986 for reviews). Often
readers do not pay attention to all the words of a sentence or passage. Also, sentences are
often mis-parsed due to a partial match between text-based terms and the relevant
knowledge structures (Reder and Cleermans, 1990; and see also a summary of error
detection research, Garner, 1988). Finally, the necessary inferences may not be made by
the reader. Under these circumstances, comprehension wi l l be incomplete and the reader
may fail to note the discrepencies. Comprehension failure can only be rectified or corrected
if the reader becomes aware of the errors or aware of the partial nature of the inferences. If
detection fails as well,then few connections or inferences are likely to be made. Markman
(1977) has called this state of affairs the 'delusion of comprehension'.

5.5 Summary

Most of the research in natural language processing in the field of knowledge engineering
addresses the understanding and use of natural language as a basis for knowledge
acquisition for knowledge-based systems. Wetter and Nuse (1992) have identified many
conceptual and practical difficulties with this approach. Essentially, text-based information
used for knowledge engineering purposes is removed from its pragmatic context.
Knowledge structures present in the pragmatic context for writing the text may or may not
relate directly with the knowledge structures in the domain or with the pragmatic context in
the knowledge engineering domain. The resulting formal knowledge has experienced two
critical transformations: the domain knowledge into natural language and the natural
language into a formal language. This approach to natural language focuses on generated
knowledge structures and their relationship to domain knowledge.

This paper suggests an alternate, but complementary, approach to the used of text-based
natural language by suggesting the development of tools, techniques and procedures which
aid and/or identify the cognitive inferencing processes during text comprehension. Rather
than focusing on 'extracting' the knowledge from natural language, the focus is on
identifying and supporting the cognitive processes involved in knowledge engineering
activity. There appear to be well defined and substantiated processes which can focus tool,
technique and procedure development.

6. Judgment and Choice

6.1 Judgment and Choice in Knowledge Engineering

Making judgments and choosing alternatives are complicated and complex processes. In
many cases, humans complete these complex processes quickly, with less than complete
information, and with little consideration of their own thought processes. Limited human
information processing capacity requires that we reduce the complexity of the information
environment by a number of methods, which consequently result in loss of information and
meaning. The expert's domain displays its own inherent patterns but the knowledge

engineer and the expert (and the user) structure their own patterns for the domain to make
evaluative and predictive judgments and to deal with their own uncertainty about the
patterns displayed by the domain.

A common type of judgment made in knowledge engineering is that of 'probable cause'.
Einhorn and Hogarth (1981) have identified a number of factors which affect this type of
judgment Aspects of the context in which the judgment is made is considered a major
factor. The causal context sets the stage for how various causal candidates emerge as
distinct from the entire causal context Causal clues such as temporal order, co-variation,
contiguity in time and space, and the similarity of cause and effect reflect a number of
imperfect indicators of causal relations which influence judgment A third major factor is
that of the judgmental strategy used to combine the information from the causal context
with the causal clues. A final factor is the role of alternative explanations which may act to
discount or reduce the strength of particular causal patterns.

Probability theory has been used as a contrast point to human causal reasoning processes.
Tversky and Kahneman (1980) have shown that 'base rate' information is often ignored
when making predictive judgments unless it is seen as relevant in the causal context
Judgment errors such as reversing the probabilities of two related events (Eddy, 1982)
have also been identified. Issues of plausibility of combined, predicted events present the
effects of taking multiple connected predictions into account (Kahneman and Tversky,
1973; Slovic et al, 1976). Accurate judgments become scarce as multiple predictions are
requested. Finally, research has shown how people update judgments upon receiving new
information (Edwards, 1968). When new information forces a review of a prior judgment,
it has proven difficult to evaluate the new evidence against two alternative hypotheses,
especially when one has not been well specified. When updating beliefs (Fischhoff and
Beyth-Marom, 1983), it is not common to make simultaneous evaluations of that evidence
for all alternative hypotheses.

The interaction effects between task demands and human judgment processes helps explain
some of the difficulties individuals have with making judgments under certain
circumstances. Cue availability constitutes one contextual variable reflecting aspects of task
demand (Hogarth, 1987) which strongly influence predictive and evaluative judgments. In
the knowledge engineering domain, judgments are made by the expert, knowledge engineer
and the user. Availability of appropriate cues (Tversky and Kahneman, 1973) can affect
judgments of relative frequency and information presentation patterns can affect the salience
of context and cues. Often the degree of variability of a variable is strongly distorted by
contextual effects, thus affecting resulting judgments. For example, people tend to base
their estimates of frequencies and probabilities on absolute vs relative frequencies (Estes,
1976)

Within the knowledge engineering domain it is possible to identify and outline those
judgment processes which are not normally completed effectively by the expert, knowledge
engineer and the user. Statistical models have been developed or adapted (Meyer and
Booker, 1991) but other types are possible. Hogarth (1987) has described different
methods for combining information to stabilize judgment processes. Processes of
judgment and choice are viewed as conflict resolution models in that the selection of
competing alternatives requires a resolution of conflicting information. 'Compensatory'
models directly address the conflict created by the differences by allowing trade-offs on the
choice dimensions. Examples are the linear model, additive difference model, and the ideal
point model. Each model sets a tactical approach to combining information. 'Non­
compensatory' approaches are those which do not allow trade-offs on choice dimensions.
Examples of these types of models are the conjunctive, disjunctive, lexicographic, and
ehmination-by-aspects models.

The field of decision analysis focuses on identifying the intellectual tasks required for
making decisions and the field has developed a variety of mathematically and logically
based theories, procedures and techniques. This approach stresses the organization of
information in a manner which is more conducive to making correct judgments and
decisions. A main problem is figuring out what the information means and what relevance
it has to the decisions under investigation. The intellectual tasks are identified as systems
analysis or decision analysis. The main steps are to identify the problem (its overall analytic
structure) and to formalize parts of it Secondly, the analyst picks an appropriate subset of
analytic tools and structures. Finally, the elements and relations identified in the first step
are refined (von Winterfeld and Edwards, 1986).

Based on this approach, a number of techniques and procedures have been developed to aid
decision making. Decision trees identify steps, sequences of judgment points, and the
possible paths (see Holloway, 1979; Behn and Vaupel, 1982). Event and fault trees are
similar techniques. Influence diagrams (Howard and Matheson, 1980) present a graphic
picture of interactions of variables in a model without imposing a tree structure. The study
of uncertainty measurement has also produced a number of models of how to model and
represent uncertain information (eg. value and utility measurement, group probability
assessments). Finally, this approach has spawned such techniques as multiattribute utility
theory (Edwards and Newman, 1982) and sensitivity analysis (von Winterfeld and
Edwards, 1986). Techniques in knowledge acquisition based on a decision analysis
approach have been developed (Bradshaw and Boose, 1989a; Bradshaw et al, (1989b).

6.2 Judgmental Bias and Decision Aids

Hogarth and Makridakis (1981) have listed a number of sources of bias and have identified
their effects on judgment and decision making processes. In the information acquisition
stage of decision making, cue clarity and availability, selective perception, cue frequencies,
concrete information domination, illusory correlations, data presentation form (primacy,
recency, mode, mixture, display and context), and framing are listed as sources of bias. In
the processing stage of decision making, inconsistency (of strategy application),
conservatism (low revision), non-linear extrapolation, heuristics, anchoring and
adjustment, representativeness, law of small numbers, justifiability, regression bias, 'best-
guess' strategy, complexity of relationships, emotional stress, social pressures, and
inconsistent information sources are identified as sources of bias. In the output stage of
decision making, question format, scale effects, wishful thinking and illusion of control are
seen as biasers. Finally, in the feedback stage, incomplete outcomes, misperception of
chance fluctuations, success/failure attributions, logical fallacies in recall and hindsight bias
contribute to faulty judgments.

Specifically in the knowledge engineering environment, Meyer and Booker (1991) and
Cleaves (1986) have identified expert bias under two categories: motivational and
conceptual. Cleaves developed a number of monitoring and corrective procedures for use
with experts to reduce bias. 'Mechanical' procedures manipulate the task or adjust the
judgments after knowledge elicitation. 'Behavioural' procedures use interviewing and
group interaction techniques to encourage full understanding, identification and control of
biasing processes. Visual props to emphasize visual patterns rather than verbal
expressions, varying the format of the requested judgment, using differences between
actual and essential values, and combining judgments from several individuals constituted
mechanical means of bias reduction. Behavioural means included focusing on specific
biases in interviews, breaking down complex relationships, training experts in die types of
biases, exhorting experts to give reasons for judgments and using group settings for
developing consensus. Meyer and Booker (1991) developed similar methods to reduce

elicitation biases and they have developed a variety of statistical methods for combining
judgments and for reducing biasing effects with groups of experts.

7. Social Cogni t ion and Communica t ion

7.1 Effects of Domain Content on Cognitive Processes

In scientific and technical domains judgments are based on ideas, concepts and/or concrete
objects. Using concepts and ideas about concrete entities or well established principles and
laws requires a set of cognitive processes or inference processes as a basis of making
decisions about something external to the decision maker him/herself. In social domains
where decision making needs to include judgments about people a different set, or perhaps
an additional set, of cognitive processes come into play. In domains such as law or
banking, judgments are made by people about other people. In addition to inferences about
ideas, concepts, concrete objects, inferences are made about intentions, characteristics, and
motivations of people. This section presents a sampling of research from the areas of social
cognition and communication and addresses its application to knowledge engineering.
Knowledge engineers may make social decisions about the expert and/or the user. The
expert makes social judgments about the knowledge engineer's abilities and extent of
domain knowledge. If the expert's domain involves making judgments about people then
social cognition processes also come into play in the expertise. In this sense, then, the
social characteristics of the domain affect the types of cognitive processes involved in
decision making.

7.2 Causal and Dispositional Attributions

This area accounts for a full 11% of all social psychological research (Kelley and Michela,
1980), consequently, a wealth of models and a strong theoretical foundation exists for this
area of social cognition. With respect to the knowledge engineering domain, this field of
research addresses the question of how the expert, knowledge engineer and user infer a
correspondence between observed behaviour and the intentions that produced it.
Correspondent inference theory (Jones, 1985) provides a basis for understanding the
cognitive processes involved in attributing intentions and dispositions. Attribution theory
(Kelley, 1983) discusses those cognitive structures and processes involved in attributing
cause.

Kelley (1983) offers two sets of inference processes and structures which account for how
people arrive at causal attributions. The first assumes there is information from multiple
sources and that covariation of an observed effect and possible causes can be perceived.
The second assumes that the perceiver is faced with a single observation and must then use
the configuration of factors that are plausible causes of the observed effect This first set of
processes is named the 'covariation' principle. Kelley likened this set of cognitive
processes to an A N O V A analysis. 'Consensus' information is required in that the number
of people who make similar decisions is taken into account in the decision making
processes. 'Consistency' information about how often the single decision maker in
question made similar judgments under similar conditions is used as well. Finally,
information concerning the 'distinctiveness' of the choice which provides a sense of
whether or not a different choice is made due to small changes in one factor. If each of
these three factors is considered as having two values (high and low), then a 2 X 2 X 2
A N O V A pattern helps explain this principle. Shaver (1981) points out however, that this
approach does not help in distinguishing the truly causal from covarying but non-causal
relationships and Langer (1978) has suggested that causal attributions are elicited by types
of questions and context demands and are not usually emitted.

The second set of processes describes the ' configuration' principle. This principle bases its
strength on proposed underlying structures or causal schemata to help explain casual
attributions. Fiedler (1982) points out that a causal schemata does not really exist but it acts
as a useful psychological construct for explanation and prediction. One schemata is that of
Multiple Sufficient Cause which is evoked when the decision maker can predict effects
from the presence or absence of causal contenders. Depending on the presence or absence
of multiple contenders, this schemata helps to sort out and order the various combinations
of causes. Two important principles are connected with this particular schemata. The
'discounting' principle outlines when one cause or set of possible causes has sufficient
strength to discount others. The 'augmentation' principle outlines under what conditions
causal contenders support one another.

Schemata of this type support decision making when information is incomplete, when
causal 'shorthands' are required for complex situations, and when similar decisions are
required across different content areas (Fiske and Taylor, 1984). Reeder and Brewer
(1979) postulate 'implicationaT schemata to refer to the perceiver's prior conceptions about
categories of behaviours. 'Partially restricted' schemata reflect extremes of behaviour. If a
person's behaviour is seen as an extreme type of behaviour then it is difficult for the person
to be seen acting in the opposite extreme. 'Hierarchically restricted' schemata assign a
behaviour or individual to a category which keeps the individual from being seen as better
or worse that than category. For example very skilled people experience a range of
outcomes depending on motivation and task demands but low skilled people are never seen
as having greater aptitude or skill. 'Fully restrictive' schemas are categorical attributions
which identify stable levels of an attribute (eg. neatness).

Other research has supported the free occurrence of causal attributions. This research
applies to knowledge engineering activity. Lau and Russell (1980) devised a method for
identifying attributional structures through content analysis of newspaper stories. Think
aloud protocols were analyzed for causal attributions from the responses of parole decision
makers while they were reviewing cases (Carroll and Weiner, 1982). During problem
solving, when prior expectations were not confirmed, the causal attributions made by
subjects were identified and analyzed (Pyszczynski and Greenberg, 1981; Hamilton,
1988).

7.3 Cognitive Components of Causal Attribution

In the previous section the structures of attribution were presented. This section reports on
the research which identifies the processes of attribution. The logic of attributions is
addressed, the inference processes as well as the knowledge used when making causal and
dispositional attributions is summarized.

Hansen (1985) distinguishes attributional content from process. Concepts like covariation
and configuration (causal schemata) are considered aspects of logic. How the actual
attributions are made constitute the process (see also Newscombe and Rutter, 1982a,
1982b). The knowledge structures used when making attributions is seen as the content
(see also Galambos et al, 1986). Kelley's (1983) covariation model has been contrasted
with Hewstone's and Jaspars (1987) logical model for identifying necessary and sufficient
conditions for causal attribution. The logical model helps delineate all possible combination
of causes for consideration. The 'abnormal conditions' model identifies 'counterfactual'
criteria and 'contrastive' criteria to establish an opportunity to compare the normal to the
abnormal.

Cognitive processes for causal attribution are based largely on the research exemplified by
Tversky and Kahneman (1980). Attributional heuristics for causal information processing

such as representativeness, anchoring and adjustment, and availability have been identified
and are discussed in more detail in another section of this paper. The concept of
attributional salience is addressed by Taylor and Fiske (1978). This work identifies the
process by which causal attributions refute judgments based only on immediately
perceivable information. The mechanism suggests that this type of information can become
overly represented in subsequent explanations. In other words, new information which is
drawn direcdy from the immediate context may, under certain circumstance, become over
represented in subsequent explanations and render a prior attribution null and void.

Causal schemata are assumed to affect perception, memory and inference (Fiske and
Taylor, 1984). They are viewed as working in a top-down manner to simplify and/or
amplify information and they act to identify salient information for attributional processes.
Knowledge-based causal attribution (Abelson and Lalljee, 1988; Leddo and Abelson,
1986) focuses on the content of causal schemata. This approach tries to draw distinctions
between the process of explaining events and the process of understanding them. It has
been found that this process requires an understanding of how an individual forms an
action plan, the goals of the plan sequence, how that particular plan could be seen to
achieve the goal and those particular conditions which initiate the goal (Read, 1987).

7.4 Meaning Interpretation in Communication

Most of the work on meaning interpretation emphasizes the semantic aspect of language
generation and comprehension. This approach is based heavily on the semantic qualities of
memory (Kolodner, 1984). Semantically-based categories hold conceptual items which are
related through inferences that can be drawn about the categories and concepts. Semantic-
based meaning is coupled with words and phrases. In any context, meaning is generated
through the use of stored concepts in interaction with a variety of inference processes.
Frames (Minsky, 1975), scripts (Schank and Abelson, 1977), schemas (Rumelhart, 1980),
mental models (Johnson-Laird, 1980,1983), causal memory (Genter and Stevens, 1983),
situation models (van Dijk and Kintsch, 1983), and E - M O P S (Kolodner, 1984) are
examples of semantic memory structures and their accompanying inference processes.
These semantic approaches have influenced knowledge engineering computational and
representational structures.

However, Grice (1975) places the emphasis not on word meaning but on implications of
utterances. In studying communication, linguistic mechanisms have remained front stage in
the form of much research in phonology, syntax and semantics. These three fields have
produced a number of approaches which concentrate on the meaning and knowledge
structures in linguistic forms. The assumptions of these approaches state that knowledge is
encoded in the utterances or with the utterances. However, semantic representations of
sentences cannot be regarded as corresponding very closely to to thoughts because
sentences can be used convey a great number of different thoughts (Sperber and Wilson,
1988). Semantics provide a basis for understanding some of the message but little of the
meaning. Semantics do not cover the time and place of the utterance, the identity of the
speaker or the speaker's intention. Semantics, as studied by the grammar, only help define
the range of possibilities of interpretation. The pragmatics of communication, the
interpretation of utterances, helps to choose among the possibilities.

Sperber and Wilson (1988) put forward the mutual knowledge hypothesis. In order to
reduce misunderstandings and to increase the recreation of meaning between two people,
the context must be shared. Does the expert assume that the knowledge engineer knows X ?
Does the knowledge engineer know that the expert knows that he knows X ? To generate
the correct interpretation of an utterance, the one intended by the speaker (Grice, 1975),
every item of contextual information used in the interpretation of the utterance must be

known by both individuals and each must know that they know. The speaker and the
listener must use specific strategies to interpret utterances so to identify the intent of the
communication. Misunderstandings commonly occur not only because of semantic
confusion but because of pragmatic confusion as well. It is critical for the knowledge
engineer to establish an environment with the necessary contextual attributes to ensure that
meaning is not impaired.

Without capturing the intention, mistaken facts are no different from true facts. The goal of
communication, especially in a domain like knowledge engineering which demands that
knowledge is understood, is to ensure that the intentions of statements are clear. When the
expert gives an explanation of an event, what are his/her intentions? It is to inform, to
teach, to impart understanding, is it to fill-in the background? Knowledge engineers
attribute intentions to the experts and users and the experts attribute intentions to the
knowledge engineers. A knowledge engineer may review written protocols for
communication intentions or he/she can ask the expert for his/her intentions. In a shared
cognitive environment like knowledge engineering, all participants have the capacity for
making the correct assumptions about the meaning of utterances but they do not always do
so. Sperber and Wilson (1988) remind us that the current task determines what information
is used for communication. When situational demands trigger cognitive processes, stored
information wi l l only be used i f it is necessary, the default is to use information directly
inferable from the immediate context

8. Elaborative Paths

The purpose of this paper was to develop a view of knowledge engineering as a set of
cognitive processes to complement the predominant 'knowledge' perspective. Knowledge
engineering was characterized as a set of cognitive activities used to understand complex,
epistemologically rich domains. Selected research in the fields of text comprehension,
memory, judgment, and social cognition provided examples of a variety o f cognitive
processes which have a high probability of occurrence in knowledge engineering activity.
The question now is how can this perspective be developed and tested? What are the
promising paths?

One of the basic premises outlined in section 2 of the paper described the concept of a
cognitive environment Viewing knowledge engineering as occuring in such an
environment requires much more elaboration as to what constitutes such an environment.
Identifying and defining the various sites of cognitive activity and the manner in which
these sites interact appears to be an essential component of the cognitive basis of
knowledge engineering. One of the main issues reflects the need to develop a common
understanding of how meaning is produced within, among, or between interacting sites.
Also, within this framework, the user of the final system becomes a much more important
factor. A more elaborate and systematic description of the cognitive network of knowledge
engineering is necessary.

A second path is suggested by the need to empirically identify the critical cognitive
processes involved in knowledge engineering. Four likely candidates of cognitive research
were presented in this paper but little evidence is available to substantiate the use of many
of the cognitive processes suggested in the presented research. Also , this paper addressed
only those processes attributed to the knowledge engineer, not the other cogniting agents
involved in knowledge engineering. A much more systematic endeavour is required which
wi l l result in a system of cognitive processes for knowledge engineering. The various
models of cognitive processes from the cognitive science research domain need to be

applied in the knowledge engineering domain to determine those which best explain the
cognitive processes of knowledge engineering.

A parallel approach to the one mentioned in the previous paragraph is to test the utility of
cognitve process models by developing tools, techniques, and procedures for use in
knowledge engineering. This approach is a pragmatic one and may appeal more to
knowledge engineers than to cognitive scientists. The development of this type of artefact
would support (and may, in some cases, replace) the cognitive processes identified in
knowledge engineering. The emphasis of these tools would centre on the cognitive activity
in knowledge engineering rather than on the development of knowledge structures.
Surveying the tools, techniques, and procedures already in use (formally and informally)
by knowledge engineers and experts (even users) which could be classified as cognition-
support tools would aid in this approach.

Another very critical issue raised in this paper focused on the very onerous tasks faced by
the knowledge engineer when entering a new domain. The issue of how an individual deals
with complexity, especially epistemological complexity, is central to the cognitive process
view of laiowledge engineering. Research on expertise sheds some light on this issue for
the expert, but we have very little information on how the knowledge engineer and the user
deal with the same complexity from a cognitive process point of view. The biomedical
research presented in this paper addresses some of the same issues for knowledge
engineers. Among other ideas is the importance of understanding how misconceptions
develop and spread. For example, the process of comprehending technical prose might be
enhanced by structuring the prose in ways which reduce the inference demands on the
reader. Some clear paths for research and study have been identified but what is needed is
to view knowledge engineering as a laboratory for the study of applied cognitive processes.

Finally, there appears a wealth of cognitive science knowledge available to knowledge
engineers: however, challenging problems exist. The first observation is that few of the
studies reported in cognitive science are in a form direcdy useful to knowledge engineers.
This is not surprising but it is problematic for knowledge engineering. Methods are
required for translating single cognitive science research results and for organizing and
presenting a variety of studies into a form useful to knowledge engineers. Another related
issue includes developing a valid approach to selecting relevant and promising cognitive
science work for application in knowledge engineering. This development requires a
thorough understanding of the theoretical foundations of cognitive science and the
pragmatic demands of knowledge engineering.

Once cognitive models have been identified for translation into knowledge engineering,
another serious problem arises. How does a cognitive science model produce an
operational tool, technique, or procedure in knowledge engineering? Does the model retain
its meaning in the new context? Does the 'engineering1 alter or negate the model's meaning
and application? Also, even i f the result is successful, other issues arise. These issues are
related to the unprincipled importing and combination of knowledge tools which may have
contradictory or incompatible assumptions about knowledge. Engineering cognitive science
models into knowledge engineering tools, techniques, and procedures requires a principled
model or methodology of knowledge engineering.

Cognitive Science offers a great deal of well-developed knowledge to the domain of
knowledge engineering but a principled, coordinated framework for identifying, selecting,
organizing, translating, engineering cognitive science results into useful knowledge
engineering tools, techniques, and procedures is necessary for the full benefits to be
realized.

9. References

Abelson, R.P . and Lalljee, M . (1988). Knowledge structures and causal explanations. In
D . Hil ton (Ed.), Contemporary Science and Natural Explanation:
Commonsense Conceptions of Causality. Harvester Press: Brighton.

Aitkenhead, A . C . and Slack, J . M . (1985) Issues in Cognitive Modeling. Lawrence
Erlbaum Associates: London.

Anderson, R . C . (1970). Control of student mediating processes during verbal learning and
instruction. Review of Educational Research, 40, 349-369.

Baddeley, A . D . (1982). Domains of recollection. Psychological Review, 89, 708-729.
Baker, L . and Brown, A . L . (1984a) Cognitive monitoring in reading. In J. Flood (Ed.)

Understanding Reading Comprehension: Cognition, Language and
the Structure of Prose (pp. 21-44). D E : International Reading Association:
Newark.

Baker, L . and Brown, A . L . (1984b) Metacognitive skills in reading. In P .D. Pearson (Ed.)
Handbook of Reading Research (pp. 353-394). Longman: New York .

Behn, R . D . and Vaupel, J.W. (1982) Quick Analysis for Busy Decision Makers.
Basic Books: New York.

Bjork, R . A . and Richardson-Klavehn, A . (1989) On the puzzling relationship between
environmental context and human memory. In C. Izawa (Ed.) Current Issues in
Cognitive Processes: The Tulane Flowertree Symposium on
Cognition (pp. 313-344). L E A : Hillsdale, N J .

Bjork, E . L . and Bjork, R . A . (1988). On the adaptive aspects of retrieval failure in
autobiographical memory. In M . M . Gruneberg, P .E . Morris, and R . N . Sykes
(Eds.). Practical Aspects of Memory n. Wi ley : London.

Brachman, R .J . and Levesque, H . J . (Eds.). Readings in Knowledge
Representation. Morgan Kaufman Publishers: Los Al to , California.

Bradshaw, J . M . and Boose, J . H.(1989a) Decision analysis techniques for knowledge
acquisition: combining information and preference models using Aquinas.
International Journal of Man-Machine Studies, 32, 121-186.

Bradshaw, J. M . , Covington, S.P., Russo, P.J., and Boose, J .H. , (1989). Knowledge
acquisition techniques for intelligent decision systems: integrating A x o d and
Aquinas in D D U C K S . Proceedings of the A A A I Uncertainty Workshop,
August 18-20, Windsor, Ontario, Canada.

Britton, B . K . , V a n Dusen, L . , Glynn, S .M. , and Hemphill, D . (1990) The impact of
inferences on instructional text. In Graesser, A . C . and Bower, G . H . (Eds.),
Inferences and Text Comprehension (pp. 53-70). Academic Press: New
York.

Brown, A . L . , Armbruster, B . B . , and Baker, L . (1986) The role of metacognition in
reading and studying. In J. Orasanu (Ed.), Reading Comprehension: From
Research to Practice (pp. 49-75). Erlbaum: Hillsdale, N J .

Cairns, K . V . and Woodward, J .B. (1988) Life Choices simulation: model and
methodology. Systems Practice, 1(1), 47-64.

Carroll, J.S. and Weiner, R . L . (1982) Cognitive social psychology in court and beyond.
In A . H . Hastorf and A . M . Isen (Eds.), Cognitive Social Psychology.
Elsevier/North-Holland: New York.

Chandrasecaran, B . (1988) Generic tasks as building blocks for knowledge-based systems:
the diagnosis and routine design examples. The Knowledge Engineering
Review, V o l . 3(3), p 183-210.

Clark, H . H . and Haviland, S.E. (1977) Comprehension and the given new contract. In
R . O . Freedle (Ed.), Discourse Production and Comprehension (Vol. 1).
Ablex: Norwood, N . J .

Cleaves, D . A . (1986). Cognitive biases and corrective techniques: proposals for improving
elicitation procedures for knowledge-based systems. In proceedings of the First

A A A I Knowledge Acquisition Workshop for Knowledge-Based
Systems: Banff, Canada.

Collins, A . M . and Luftus E.F . (1975) A spreading activation theory of semantic
processing. Psychological Review, 82, 407-428.

Coulson, R.J . , Feltovich, P.J. , and Spiro, R.J . (1986) Foundations of a
Misunderstanding of the Ultrastructural Basis of Myocardial Failure: A
Reciprocating Network of Oversimplifications. Report #1 Conceptual
Knowledge Research Project, Southern Illinois University School of
Medicine, Springfield, I L

Crowder, R . G . (1976). Principles of Learning and Memory. Erlbaum: Hillsdale,
N . J .

Crowder, R . G . (1982). The demise of short term memory. Acta Psychologica, 50,
291-323.

Eddy, D . M . (1982) Probabalistic reasoning in clinical medicine: problems and
opportunities. In D , Kahneman, P. Slovic, and A . Tversky (Eds.). Judgment
Under Uncertainty: Heuristics and Biases. Cambridge University Press:
New York.

Edwards, W . (1968) Conservatism in human information processing. In B . Kleinmuntz
(Ed.) Formal Representation of Human Judgment. Wi ley : New York .

Edwards, W . and Newman, J.R. (1982). Multiattribute Evaluation. Sage: Beverly
Hi l ls , C A .

Eich, E . (1985) Context ,memory, and integrated item/content imagery. Journal of
Experimental Psychology: Learning, Memory and Cognition, 11, 764-
770.

Einhorn, H.J . and Hogarth, R . M . (1981). Behavioral decision theory: processes of
judgment and choice. Annual Review of Psychology, 32, 53-88.

Estes, W . K . (1976) The cognitive side of probability learning. Psychological Review,
83, 37-64.

Evans, D . A . (1989) Issues of cognitive science in medicine. In D . A . Evans and V . L . Patel
(Eds.), Cognitive Science on Medicine: Biomedical Modeling (pp. 1-16).
M I T Press: London.

Fiedler, K . (1982) Causal schemata: review and criticism or research on a popular
construct. Journal of Personality and Social Psychology, 42, 1001-13.

Feltovich, P.J., Spiro, R.J . , and Coulson, R . L . (1989). The nature of conceptual
understanding in biomedicine: the deep structure of complex ideas and the
development of misconceptions. In D . A . Evans and V . L . Patel (Eds.), Cognitive
Science on Medicine: Biomedical Modeling (pp. 113-172). M I T Press:
London.

Feltovich, P.J., Johnson, P .E. , Moller , J .H. , and Swanson, D . B . (1984) L C S : the role
and development of medical knowledge in diagnostic expertise. In W . J. Clancey
and E . H . Shortcliffe (Eds.) Readings in medical Artificial Intelligence:
The First Decade. Addison-Wesley: Reading, M A .

Fischhoff, B . and Beyth-Marom, R. (1983) Hypothesis evaluation from a Bayesian
perspective. Psychological Review, 90, 239-260.

Fischhoff, B . , Slovic, P, and Lichtenstein, S. (1978) Fault trees: sensitivity of estimated
probabilities to problem representation. Journal of Experimental
Psychology: Human Perception and Performance, 4, 342-355.

Fiske, S.T. and Taylor, S.E. (1984). Social Cognition. Random House: New York .
Flavell , J .H. (1981) Cognitive monitoring. In W.P . Dickson (Ed.), Children's Oral

Communication Skills (pp. 35-60). Academic Press: New York.
Fletcher, C.R. and Bloom, C P . (1988). Causal reasoning in the comprehension of simple

narrative texts. Journal of Memory and Language, 27, 235-244.
Flood, R . L . (1987). Complexity: a definition by construction of a conceptual framework.

Systems Research, 4(3), 177-185.

Gaines, B .R . (1988) Knowledge acquisition systems for rapid prototyping of expert
systems. INFOR, 26(4), 256-285 (Nov.).

Galambos, J .A. , Abelson, R.P., and Black, J .B. (Eds.) (1986). Knowledge
Structures. Erlbaum: Hillsdale.

Garner, R. (1985). Metacognit ion and Reading Comprehension. Ablex: Norwood,
N J .

Garner, R. (1988). Strategies for reading and studying expository text. Educational
P s y c h o l o g i s t .

Gentner, D . and Stevens, A . L . (1983) Mental Models. Erlbaum: Hillsdale, N J .
Glaser, R. (1984) Education and thinking: the role of knowledge. Amer ican

Psychologis t , 39, 93-104.
Gorfein, D.S . and Hoffman, R.R. (1987). Memory and Learning: The Ebbinghaus

Centennial Conference. Erlbaum Associates: Hillsdale, N J .
Graesser, A . C . and Clark, L . F . (1985) Structures and Procedures of Implicit

Knowledge . Ablex: Norwood, N J .
Graesser, A . C . (1981) Prose Comprehension Beyond the Word. Springer-Verlag:

New York.
Grice, H.P. (1975). Logic and conversation. In P. Cole and J . Morgan (Eds.), Syntax

and Semantics 3: Speech Acts. Academic Press: New York .
Haberland, K , and Graesser, A . C . (1990) Integration and buffering of new information. In

Graesser, A . C . and Bower, G . H . (Eds.), Inferences and Text
Comprehension (pp. 71-88). Academic Press: New York.

Hamilton, D . L . (1988). Causal attribution viewed from an information processing
perspective. In D . Bar-Tal and A . W . Kruglanski (Eds.), The Social
Psychology of Knowledge. Cambridge University Press: Cambridge, U K .

Hansen, R . D . (1985). Cognitive economy and commonsense attribution processing. In
J .H. Harvey and G . Weary (Eds.), At t r ibu t ion : Basic Issues and
Applicat ions. Academic Press: Orlando, F L .

Hewitt, C . (1985) The challenge of open systems. Byte, 10, 223-42.
Hewstone, M . and Jaspars, J .M.F. (1987). Covariation and causal attribution: a logical

model of the intuitive analysis of variance. Journal of Personality and Social
Psychology , 53, 663-72.

Hogarth, R. (1987) Judgment and Choice (2nd Ed). Wi ley : New York .
Hogarth, R., and Makridakis, S. (1981) Forecasting and planning: an evaluation.

Management Science, 27(2).
Holloway, C A . (1979). Decision M a k i n g Under Uncertainty: Models and

Choices. Prentice-Hall: Englewood Cliffs, N J .
Holyoak, K . and Novik, L . (1983) Unpublished manuscript. Referenced in Seifert,

C.M.Content-based inferences. In Graesser, A . C . and Bower,
G.H.(Eds.),Inferences and Text Comprehension (p. 118). Academic Press:
New York.

Howard, R . A . and Matheson, J.E. (1980) Influence Diagrams. Stanford Research
Institute International: Menlo Park, C A .

Jacoby, L . L . (1983). Remembering the data: analyzing interactive processes in reading.
Journa l of Verbal Learning and Verbal Behaviour , 22, 485-508.

Johnson, P .E. (1986) Specification of expertise: Knowledge acquisition for expert
systems. In proceedings of the First A A A I Knowledge Acquis i t ion
W o r k s h o p for Knowledge-Based Systems: Banff, Canada.

Johnson-Laird, P . N . 91983) Mental Models. Cambridge University Press: Cambridge,
U K .

Jones, E .E . (1985) Major developments in social psychology during the past five decades.
In G . Lindzey and E . Aronson (Eds.), Handbook of Social Psychology
(Vol.l)(3rd Ed). Random House: New York.

Kahneman, D . L . and Tversky, A . (1973). On the psychology of prediction. 1
Psychological Review, 80, 273-251.

Kahneman, D . L . , Slovic, P. and Tversky, A . (Eds) (1982) Judgment Under
Uncertainty: Heuristics and Biases. Cambridge University Press: New
York.

Kelley, H . H . and Michela, J .L. (1980). Attribution theory and research. Annual Review
of Psychology, 31, 457-503.

Kelley, H . H . (1983). Perceived causal structures. In J .M.F. Jaspars, F .D . Fincham, and
M . Hewstone (Eds.), Attribution Theory and Research: Conceptual
Development and Social Dimensions. Academic Press: London.

Klatzky (1980). Human Memory: Structures and Processes (2nd Ed.) W . H .
freeman: San Fransisco.

Kolodner, J .L . (1984) Retrieval and Organizational Strategies in Conceptual
memory: A Computer Model. L E A : Hillsdale, N J .

Kosslyn, S . M . (1980) Image and Mind. Harvard University Press: Cambridge, M A .
L a France, M (1986) The knowledge acquisition grid: a method for training knowledge

engineers. In proceedings of the First A A A I Knowledge Acquisition j
Workshop for Knowledge-Based Systems: Banff, Canada.

Langer, E.J . (1978). Rethinking the role of thought in social interaction. In J .H. Harvey,
W J . Ickes and R.F . K i d d (Eds.), New Directions in Attribution Research
(Vol. 3). Erlbaum: Hillsdale, N J .

Lau, R.R. and Russell, D . (1980) Attributions in the sports pages. Journal of
Personality and Social Psychology, 39, 451-63.

Leddo, J., and Abelson, R.P. (1986). The nature of explanations. In J .A. Galambos, R.P.
Abelson, and J.B. Black (Eds.), Knowledge Structures. Erlbaum: Hillsdale,
N . J .

Lehnert, W . G . (1978) The Process of Question Answering. L E A : Hillsdale, N J .
Lesgold, A . M . and Perfetti, C . A . (1978) Interactive processes in reading comprehension.

Discourse Processes, 1, 323-336.
L i u , L . (1989) Reading Between the Lines: The Assessment and Promotion of

Comprehension by the Use of Questions. Unpublished Doctoral
Dissertation: University of Chicago.

Marcus, S. (Ed.)(1988) Automated Knowledge Acquisition for Expert Systems.
Kluwar Academic Publishers: Norwell, Mass.

Markman, E . M . (1977) Realizing that you don't understand: elementary school children's
awareness of inconsistencies. Child Development, 50, 643-655.

Meyer, M . A . and Booker, J . M . (1991). Eliciting and Analyzing Expert Judgment:
A Practical Guide. Academic Press: New York.

Minsky, M . (1975) A framework for representing knowledge. In P . H . Winston (Ed.), j
The Psychology of Computer Vision. M c G r a w - H i l l : New York.

Musen, M . A . (1989) Conceptual models of interactive knowledge acquisition.
Knowledge Acquisition, V o l . 1(1), p 73-88.

Myers, J .L and Duffy, S .A. (1990) Causal inferences and text memory. In Graesser, A . C .)
and Bower, G . H . (Eds.), Inferences and Text Comprehension (pp. 159-
174). Academic Press: New York.

Nelson, D . L . (1979) Remembering pictures and words: appearance, significance, and j
name. In L . Cermak and F . Craik (Eds.). Levels of Processing in Human
Memory. Erlbaum: Hillsdale, N J .

Newscombe, R .D . and Rutter, D.R. (1982a). Ten reasons why A N O V A theory and j
research fail to explain attribution processes: 1 conceptual problems. Current j
Psychological Reviews, 2, 95-107.

Newscombe, R . D . and Rutter, D.R. (1982b). Ten reasons why A N O V A theory and]
research fail to explain attribution processes: 2 methodological problems. Current
Psychological Reviews, 2, 153-70

Patel, V . L . , Evans, D . A . ,and Groen, G J . (1989). Biomedical knowledge and clinical
reasoning. In D . A . Evans and V . L . Patel (Eds.), Cognitive Science on
Medic ine : Biomedical Mode l ing (pp. 53-112). M I T Press: London.

Potter, M . (1990). remembering. In D . N . Osherson and E . E . Smith (Eds.), Th ink ing
(pp. 3-32). M I T Press: Cambridge, M A .

Pyszczynski, T . A . and Greenberg, J . (1981). Role of disconfirmed expectancies in the
instigation of attributional processing. Journal of Personality and Social
P sycho logy , 40, 31-8.

Read, S J . (1987) Constructing causal scenarios: a knowledge structure approach to causal
reasoning. Jou rna l of Personali ty and Social Psychology, 52, 288-302.

Reder, L . M . and Cleermans, A . (1990). The role of partial matches in comprehension: the
moses illusion revisited. In Graesser, A . C . and Bower, G . H . (Eds.), Inferences
and Text Comprehension (pp. 233-258). Academic Press: New York.

Reeder, G .D. and Brewer, M . B . (1979). A schematic model of dispositional attribution in
interpersonal perception. Psychological Review, 86, 61-79.

Roediger, H . L . and Blaxton, T .A . (1987). Retrieval modes produce dissociations in
memory for surface information. In D.S. Gorfein and R.R. Hoffman (Eds.).
M e m o r y and Cognit ive Processes: The Ebbinghaus Centennial
Conference, L E A : Hillsdale, N J .

Rothkopf, E . Z . (1982) Adjunct aids and the control of mathemagenic activities during
purposeful reading. In W . Otto and S. White (Eds.) Reading Expository
Mater ia l (pp. 109-138) Academic Press: New York.

Rumelhart, D .E . and Ortney, A . (1977) The representation of knowledge in memory. In
R . C . Anderson, R J . Spiro, and W . E . Montague (Eds.), Schooling and the
Acquis i t ion of Knowledge. Erlbaum: Hillsdale, N J .

Rumelhart, D .E . (1980) Schemata: The building blocks of cognition. In R J . Spiro, B . C .
Bruce and W . F . Brewer, (Eds), Theoretical Issues in Reading
Comprehension (pp. 33-58). Erlbaum: Hillsdale, N J .

Schank, R . C . (1975). Conceptual Information Processing. American Elsevier: New
York.

Schank, R . C . and Abelson, R.P. (1977) Scripts, Plans, Goals , and
Unders tanding. Erlbaum: Hillsdale, N . J .

Schank, R . C . (1982) Dynamic M e m o r y : A Theory of Reminding and Lea rn ing
in Computers and People. Cambridge University Press: Cambridge.

Seifert, C M . (1990) Content-based inferences in text. In Graesser, A . C . and Bower,
G . H . (Eds.), Inferences and Text Comprehension (pp. 103-122). Academic
Press: New York.

Seifert, C M . , Abelson, R.P., and McKoon , G . (1986) The role of thematic knowledge
structures in reminding. In J .A. Galambos, R.P Abelson, and J .B. Black (Eds.),
Knowledge Structures. Erlbaum, Hillsdale, N J .

Shaver, K . G . (1981). Back to basics: on the role of theory in the attribution of causality. In
J .H. Harvey, W . J . Ickes and R.F . K i d d (Eds.), New Directions in
Att r ibu t ion Research (Vol. 3). Erlbaum: Hillsdale, N J .

Simon, H . A . (1988) Cognitive architectures and rational analysis:Comment. In K .
vanLehn (ed), Architectures for Intelligence: The Twenty-Second
Carnegie Symposium on Cognit ion. Lawrence Erlbaum Associates:
Hillsdale.

Singer, M . (1980) The role of case-filling inferences in the coherence of brief passages.
Discourse Processes, 3, 185-201.

Slovic, P. Fischhoff, B . , and Lichtenstein, S. (1976). Cognitive processes and societal
risk taking. In J.S. Carroll and J.W. Payne (Eds.) Cognit ion and Social
Behavior . Erlbaum: Hillsdale, N J .

Smith, F. (1982). Understanding Reading (3rd Ed.). Holt, Rinehart, and Winston:
New York.

Smith, S .M. (1988). Environmental context-dependent memory. In D . M . Thomson and
G . M . Davies (Eds.) Memory in Context: Context in Memory. Wiley: New
York.

Snodgrass, J.G. (1989). How many memory systems are there really?: some evidence
from the picture fragment completion task. In C. Izawa (Ed.) Current Issues in
Cognitive Processes: The Tulane Flowertree Symposium on
Cognition (pp. 135-174). L E A : Hillsdale, N J .

Sperber, D . and Wilson, D . (1988) Relevance: Communication and Cognition.
Basil Blackwell: Oxford, U K .

Spilich, G.J., Vesonder, G.T., Chiesi, H . L . , and Voss, J.F. (1979). Text processing of
domain-related information for individuals with high and low domain knowledge.
Journal of Verbal Learning and Behaviour, 18, 275-290.

Spiro, R.J. , Feltovich, P.J., and Coulson, R . L . (1988) Seductive reductions: the hazards
of oversimplification of complex concepts. Report #4 Conceptual Knowledge
Research Project, Southern Illinois University School of medicine, Springfield,
IL .

Spiro, R J . (1980) Constructive processes in prose comprehension and recall. In R J .
Spiro, B . C . Bruce, and W . F . Brewer (Eds.), Theoretical Issues in Reading

Comprehension. Lawrence Erlbaum Associates: Hillsdale, N J .
Spiro, R J . , Feltovich, P.J., Coulson, R . L . , and Anderson, D . K . (1990) multiple

analogies for complex concepts: antidotes for analogy-induced misconceptions in
advanced knowledge acquisition. In S. Vosniadou and A . Ortony (Eds.)
Similarity and Analogical Reasoning. Cambridge University Press:
Cambridge, U K .

Stanovich, K . E . (1980). Toward an interactive-compensatory model of individual
differences in the development of reading fluency. Reading Research
Quarterly, 16, 32-71.

Steinberg, R J . (1984) What should intelligence tests test? Implications of a triarchic theory
of intelligence for intelligence testing. Educational Researcher, 13, 5-15.

Swinney, D . A . and Osterhout, L . (1990). Inference generation during auditory language
comprehension. In Graesser, A . C . and Bower, G . H . (Eds.), Inferences and
Text Comprehension (pp. 17-34). Academic Press: New York.

Taylor, S.E. and Fiske, S.T. (1978). Salience, attention and attribution: top of the head
phenomena. In L . Berkowitz (Ed.), Advances in Experimental Social
Psychology (Vol. 11). Academic Press: New York.

Trabasso, T, and Sperry, L . L . (1985) Causal relatedness and importance of story events.
Journal of Memory and Language, 24, 419-427.

Trabasso, T, van den Broek, P .W. and Suh, S .Y. (1989) Logical necessity and transitivity
of causal relations in stories. Discourse Processes, 12, 1-25.

Trabasso, T, van den Broek, P .W. and L i u , L . (1988) A model for generating questions
that assess and promote comprehension. Questioning Exchange, 2, 25-38.

Tulving, E . (1985). How many memory systems are there? American Psychologist, 4,
385-398.

Tversky, A . and Kahneman, D . L . (1973). Availability: a heuristic forjudging frequency
and probability. Cognitive Psychology, 5, 207-232.

Tversky, A . and Kahneman, D . L . (1980). Causal schemas in judgment under uncertainty.
In M . Fishbein (Ed.) Progress in Social Psychology. Erlbaum: Hillsdale,
N J .

van Dijk, T . A . and Kintsch, W . (1983). Strategies of Discourse Comprehension.
Academic Press,: New York,

von Winterfeldt, D . and Edwards, W . (1986) Decision Analysis and Behavioral
Research, Cambridge University Press: Cambridge. U K .

Wetter, Th. and Nuse, R. (1992) Use of natural language for knowledge acquisition:
strategies to cope with semantic and pragmatic variation. IBM Journal of
Research and Development: Special Issue on A l .

Wetter, Th . and Woodward, J.B. (1990) Towards a theoretical framework for knowledge
acquisition. Proceedings of the Fifth A A A I Knowledge Acquisition
Workshop for Knowledge-Based Systems: Banff, Canada.

Wielinga, B . , Akkermans, H . , Schreiber, G . and Balder, J. (1989) A knowledge
acquisition perspective on knowledge-level models. Proceedings of the Fourth
A A A I Knowledge Acquisition Workshop for Knowledge-Based
Systems: Banff, Canada.

Wittrock, M . C . (1979). The cognitive movement in instruction. Educational
Researcher, 8, 5-11.

Woodward, J .B. (1990) Knowledge acquisition at the front end: defining the domain.
Knowledge Acquisition, 2(1), 73-94.

Concluding Remarks

A Comparative Assessment of Selected
Approaches in the Focal

Area of
Knowledge Engineering

and Cognition

Thomas Wetter

I B M Germany, Scientific Center
Institute for Knowledge Based Systems

Postfach 10 30 68
W-6900 Heidelberg

Germany
W E T T E R @ D H D I B M l . b i t n e t

Introduction

A workshop on knowledge engineering and cognition by its very nature brings to­
gether researchers and practitioners with quite different perspectives. Each of the
perspectives sets the stage for a specific way to approach problems. The perspective
taken may be as crucial for the solutions that are achieved as the problem itself is.
A s a result, it may turn out - as was the case concerning some of the approaches
presented at the workshop - that different groups arrived at contradictory results for
seemingly identical problems.

It is the intention of this analysis to identify reasons for such apparent contradictions.
I am not about to remove contradictions but hope to trace them back to their causes
and hence clarify them. This basically involves an analytical approach, namely
understanding why something happens. But it does also have a constructive facet:
given a situation where a researcher or practitioner has to make a selection to inves­
tigate, refine, or apply an approach, the situation so far has shown that in many cases
he will find positive and negative votes concerning whether the approach works jux­
taposed in an unrelated way. The aim of the analysis is to distinguish situations where
an approach does or does not work.

The prevailing structure of this article wil l be to examine a number of criteria and to
characterize as many individual contributions according to as many criteria as seem
to apply.

Among the reasons for different researchers and practitioners to proceed fundamen­
tally differently and to arrive at different results that are hard to compare is that both
knowledge engineering and the study of cognition are imbedded in a cluster of dif­
ferent disciplines and their respective methods and criteria. Among them are

• informatics 1 ([Dallemagne], [Manago] , [Branskat]) 2

• artificial intelligence ([Bergmann], [Puppe])
• cognitive and social psychology ([Fensel], [Woodward] [Thoben], [Glowalla])
• cognitive modelling ([Reimann], [Janetzko])

This list is not exhaustive, since some of the disciplines tend to lie somewhere in be­
tween. According to their traditions, the approaches may be focussed upon

• software development and its tools, re-usable building blocks and results, and the
process of managing software projects,

• sophisticated computational methods to solve complex problems,
• individual and social processes and their impact upon applying and communi­

cating knowledge,
• computational models of knowledgeable behavior.

Consequently, the approaches may judge their respective results according to

• exploitation of human and computational resources,
• appropriateness of representation and inference,
• assessment of processes and contents addressed by the involved agents,
• plausibility of models, similarity with observed phenomena.

Some readers may expect to find the term "computer science" here. But we are not really
dealing with a science of computing machinery but with a science of the well founded use
of information. Therefore, the term "informatics" that is more common in Europe has
been preferred to the traditional American "computer science".

Arguments presented in this text may draw upon oral contributions during the workshop
in February, 1991 or papers in this textbook prepared after the workshop. In the latter
case, the source is referenced as [First_author92]. In the former case, when there is no
corresponding written contribution, or when it does not play a role, the respective work­
shop participant is referenced as [Participant]. Of course I take full responsibility for
possibly having misunderstood or over-interpreted some detail of the oral presentations.

If we consider this topic more generally again, some of the approaches are predomi­
nantly product oriented (informatics and artificial intelligence), others address the
extent of capturing the processes involved in human knowers (cognitive and social
psychology), and a third group mainly aims at abstract formal models of the real
world (cognitive modelling). To label these approaches in a much too rough but still
suggestive way, we could talk about engineering, formal theories, humanities, and
science approaches. Formal theories may of course play a role in all four. In A l ,
their inherent properties are an essential point of interest. A n engineer may use the­
ories for constructing objects in the real world with desired properties. In the hu­
manities and more so in science, the descriptive and predictive power of formal
theories with respect to phenomena in the real world is the most essential criterion.
Given this, it would be more of a surprise than an expected result that the different
approaches arrive at comparable or even similar results. One of the major outcomes
for the workshop participants, and hopefully for the readers of this book, might be
to understand which role each of the disciplines plays with respect to the other disci­
plines involved.

Consequently, the strategy of presentation in this chapter is to try and pick up one
point of contrast after the other and to collect the controversial opinions and results
from the individual contributions. This may draw upon oral contributions at the
workshop or written material in the respective text in these proceedings. In the latter
case I only briefly refer to a segment from the individual contribution.

The different attitudes that the involved disciplines take and the methods they apply
form one organizational scheme for the subsequent text. There is a second scheme
orthogonal to this one, namely to identify objects and individuals playing certain
parts in the process of knowledge engineering. It is their properties, activities, con­
tributions, etc. that can be analyzed from the different perspectives of the disciplines.
Individuals obviously are experts and knowledge engineers but also researchers in
knowledge engineering 3 . Objects may be tools or methods that knowledge engineers
use.

Outline of Presentation

The text is organized as follows: there wil l be two major parts centering around the
two groups of human protagonists of the play: the experts and the knowledge engi­
neers. The part concerning the characteristics of the expert's role in the play will
address the three aspects of:

3 The role of users of the final systems has not been an issue at the workshop and is only
addressed in [Strube]. Therefore a comparative assesssment is not required.

1. development of expertise, including the aspect of intermediate states
2. change of expertise through the effects of knowledge acquisition activities
3. representation of expertise, with special emphasis on

• case vs. theory based representation
• common sense foundation of expertise

The part analyzing the knowledge engineer 's role has two sections:
4. his possibilities, limitations, skills etc., including

• details of how to play the role
• the degree to which he must become a domain expert of his own
• his biases

5. methods and tools that can support his activity, with the models of problem solv­
ing as the most prominent examples:
• their origins in artificial intelligence, psychology, or directly from knowledge

engineering
• their nature
• the activities involved in using them
• the required skill

Finally, we will discuss shifts of positions that happened in long ranging projects and
speculate about reasons why different approaches arrived at different and seemingly
contradictory results.

1. Development and Nature of Expertise

A major group of arguments can be gathered around "encoding specifity"
([Tulvi73]). Encoding specifity roughly means that memorizing some information
cannot be separated from memorizing the context (place, mode of presentation, etc.)
of the information. Encoding specifity has been used by [Glowalla] and can explicitly
be found referenced by Janetzko and Strube ([Janet92]). Glowalla also draws upon
neural architecture considerations in this context, which make it plausible that the full
setting of the "information itself", the way it comes across the individual and the sit­
uation or context where it is embedded, influence the way it is encoded.
[Woodward] also uses related arguments under the terminology "environment vs.
memory" (also "ecologic memory").

Taking these arguments in their full strength would imply that the individual does
not have much of a choice regarding the way his knowledge becomes represented in
his mind - one might even use the term "brain" here.

On the other hand, [Schmalhofer] reports experimental evidence for a learning proc­
ess of going gradually into the depth of a "body of knowledge" as opposed to going
gradually into the breadth. Since there is no reason to believe that systematically
"shallow details" from the full horizontal range of a domain precede "deep details", i.e.

that all environments "choose" to "present" first shallow and then deep material, a
second active mechanism (aside from the more passive specific encoding) may exist.
According to [Schmalhofer], deep representations can arise from application of prior
knowledge or from being confronted with a combination of material (cases, justifica­
tions, theory, etc.). The former does not lend itself for a systematic argument (we
will return to this point when discussing common sense parts of expertise), because it
leads to an infinite regress when trying to clarify the origin and nature of the prior
knowledge. The latter is further specified by [Schmalhofer] as mechanisms for filling
holes in representations. It remains open as to how much this process is active and
how much is passive. [Schmalhofer] also encountered the correction of miscon­
ceptions which again can be interpreted as due to active or passive processes.

For the focal area of cognition and knowledge engineering, two implications from the
recent discussion are important.

First, if only passive mechanisms occur, it is hard to argue that basic representations
can change. This is crucial for the subsequent discussion as to whether cases or theo­
ries are the basic representation. If e.g. material only occurs in the form of cases,
there is no reason to believe that the individual can arrive at a theory, as has been
postulated in [Janct92].

Secondly, we can ask whether intermediate representations persist or are extinguished
when more advanced ones emerge in the individual. If we have to be aware of active
revisions, as postulated for the process of developing mental models, early represent­
ations may vanish. If a metaphor of adding and compiling applies, early represent­
ations would not be extinguished but just "buried", and could be retrieved by
adequate "digging", as postulated in Kolodners models of memory and recall (for
references to both schools of thought, cf. [.Janet92]).

2- Change of Expertise under Knowledge Acquisition Activities

It has been claimed (e.g. by Becker and Bartsch-Sporl ([Becke90])) that being exposed
to knowledge acquisition activities changes the knowledge in the expert. This aspect
has not been addressed at the workshop. But a posteriori reflection of its contrib­
utions supplies systematic support for some of the above arguments namely about
encoding specifity. If indeed the way how the material is presented to the knowledge
engineer co-determines the representation, knowledge engineering as a discipline must
be aware that its activities fundamentally determine its results. If certain predominant
elicitation methods are applied over and over again, experts may be incapable of re­
sisting the format of presentation associated with the methods. In other words, the
methods will start to encode into the expert that which they claim to elicit from him.

na
tu

re
 o

f
ex

pe
rt

is
e

de
ve

lo
pm

en
t

(1
)

ca
se

s
vs

 t
he

or
y

co
m

m
on

 s
en

se

co
gn

Fi

q.

2
co

an

Al

pa
ss

iv
e

ac
ti

ve

m
ec

ha
ni

sm
s

m
ec

ha
ni

sm
s

no
t-

G
lo

w
al

la

Pf
ei

fe
r

Be
rg

m
an

n
ro

CO
 o

G
lo

w
al

la

Re
im

an
n

Sc
hm

al
ho

fe
r

W
oo

dw
ard

Ja

ne
tz

ko

(1
)

in
cl

ud
in

g
"c

ha
ng

e
of

 e
xp

er
ti

se

un
de

r
kn

ow
le

dg
e

ac
qu

is
it

io
n

ac
ti

vi
ti

es
"

Fi
gu

re
 1

.
N

at
ur

e
of

 ex
pe

rti
se

This is different and more critical here than in cognitive science because of its impact
on software products.

In Figure 1 and in the following figures, a topic of the size of approx. one section is
broken down into several steps. Leaf notes of the resulting trees represent individuals
and their contributions. Abbreviations in boxes (cognitive science), m/(ormatics),
^l(rtificial) /(ntelligence), psychology) and soc(ia\) sciences) denote the disciplines
from which the results have been derived. The depth of the tree may vary according
to the degree of differentiation of the positions, "not" above Pfeifer denotes that
common sense as part of expertise is refuted in the contribution of Pfeifer et al. (see
below).

3. Forms and Representation of Expertise

Cases vs. Theories

In this section, "theory" wil l be used in the sense of Janetzko's and Strube's
([Janet92]) "semantic knowledge". For "case" we follow Althoff's and WeB'
([Altho92]) definitions. Concerning cases, an important aspect of differentiation will
be to what extent abstraction takes place; we wil l speak of authentic cases when no
conscious or explicit reduction, omission, or comprehension of detail occurs.

Apar t from the transient role of cases or episodes during development of expertise (cf.
section 1.) these same cases and episodes are also increasingly discussed as constitu­
ents or carriers of fully developed expertise. This is the subject of the present section.
In a related and more fundamental text, Althoff and WeB ([Altho92]) provide the
terminological basis for the distinction between case based reasoning and inductive
learning, between case and rule based reasoning, and between case based and
analogical reasoning. Their terminological and partly mathematical apparatus wil l be
used here and there in the subsequent set of direct comparisons between approaches
presented in this book.

We follow the top level distinction of [Altho92] that cases can be used directly for
reasoning (case based or analogical reasoning) or as material from which to construct
general knowledge by induction.

To continue with the distinctions that we encounter:

• Case and rule based reasoning may occur in isolation or they can be combined
or fully integrated in different ways.

• Cases can be taken as such or as concrete exemplars from which abstractions are
generated and used for reasoning.

Let us set out with reasoning from authentic cases, i.e. a more or less pure approach
according to the first two distinctions. Rcimann and Schult ([Rcima92]) supply con­
siderable detail from the cognitive psychology literature and from their own work
about learning from the solutions of exemplary tasks. They have isolated those be­
havioral patterns that characterize successful learners. Their methodological contrib­
ution is to describe these patterns and to work towards formal and executable models
and simulation of such models.

Successful learning involves more elaboration, reflection, and self assessment of the
learner and results in hierarchical arrangements of the example tasks or cases. These
observations from mechanics resemble results known from text comprehension. In
contrast, Reimann and Schult find that passive learning supplies flat case collections
organized by similarity measures.

While [Reima92] classify the form of learning that results in a hierarchical represen­
tation as successful, and the form resulting in flat collections as less successful,
Al thoff and We8([Altho92]) report other psychological investigations without any
preference for one of the forms. This deviation between the findings reported in
[Reima92] and [Altho92] can be interpreted in several ways but can probably not be
decided at present. The hypothesis of [Reima92] in favor of hierarchical organization
may turn out to be generally valid and happened not to be detected in the investi­
gations quoted in [Altho92]. In this case, cognitive science comes up with a well
founded recommendation for architectures of case based reasoners. This architecture
may resemble Kolodner's (for more detail and references, cf. Janetzko and Strube,
[Janet92])

It may, however, turn out as well that there are fields where hierarchical organization
is superior and others where similarity based retrieval should be preferred. This is not
implausible, because in contrast to some other domains, the rather regular domain
of classical mechanics used by [Reima92] may have intrinsic structures supporting the
development of a hierarchical indexing structure. In this case, both types of archi­
tectures will coexist, and it now becomes part of the knowledge engineer's skill to de­
termine the demands of the domain he is encountering. [Rcima92]'s contribution to
the resolution of this question could consist in a move towards testing (in domains
other than mechanics) whether the cognitive models correctly predict the retrieval of
cases.

While Reimann and Schult ([Reima92]) are looking deeply into human cognition and
how it acquires and represents cases, Branskat ([Brans92]) rather assumes the prac­
tical informatics perspective to provide a knowledge engineer's workplace. Her
hypercard implemented tool supports the step by step transition from informal case
descriptions to M O P s to be used in a case based rcasoner. In other words,
[Branskat] sets out from one of the above plausible hypotheses how cases may be

stored, namely through hierarchical indexing in Kolodner's sense, and supplies a tool
for the generation of respective knowledge bases.

The common feature of these three contributions, which also distinguishes them from
all others presented aside from a short part of Manago and Conruyt ([Manag92] see
below) is that they focus on sets of authentic cases, as opposed to abstractions from
cases or theories derived from cases.

We now vary the pure form of solely reasoning from non-abstracted cases. The first
variation is brought into play in Janetzko and Strube ([Janet92]). They refer to re­
search results in cognitive psychology which imply that human individuals apply both
cases or episodes and general knowledge, each at its respective time, and report about
conditions when it is necessary to "take a turn" from case to theory based reasoning
or vice versa. This contribution suggests both, a hybrid architecture where cases and
a theory co-exist and a special form of inference is to take a turn from one form of
reasoning to the other, and a K A D S interpretation model of such a hybrid system, i.e.
a form that has proved useful for the process of engineering systems.

This theoretical concept for a hybrid architecture should not be mistaken for the fully
implemented two systems K A T E and C A S - S Y S T E M in [Manag92]. K A T E is an
induction system enhanced by pre-structuring of the cases. C A S - S Y S T E M is a case
based reasoner based on authentic cases. K A T E and C A S - S Y S T E M exist next to
each other, not as an integrated hybrid reasoner. But K A T E has proved in large real
applications (with certain drawbacks to be reported below), and C A S - S Y S T E M has
been created to overcome some of these practically relevant shortcomings. Both these
systems in [Manag92] are precisely described in data processing terminology ("...dy­
namically builds a path...", "...computes the tree..."), as opposed to the psychological
backbone of [Janet92] /s argumentation.

The second variation away from pure case based reasoning does not change the ar­
chitecture but proceeds from authentic cases to forms of systematic useful ab­
stractions. The two contributions of Schmalhofer et al ([Schma92]) and Bergmann
([Bergm92]) complement each other in isolating the essence of a case from incidental
detail to support knowledge engineering for a system architecture that reasons from
abstract cases, which in this case are skeletal plans.

Let us start with [Schma92] who supply a frame in which [Bergm92] fills a certain
slot. Starting point of the work of [Schma92] are concrete observations in a domain
of mechanical engineering about how humans memorize problem categories and
partly specified solution "skeletons". Concretely, a technical drawing of a rotational
part is a problem description, for which the solution in form of a fully specified
working plan to produce the part is required.

A possibly surprising result is that problem classes and skeletal solutions are memo­
rized - or at least can be elicited - separately. One reason may be that the attribution
of a skeletal solution plan to a problem definition is not just to match the visual pat­
tern of the drawing to an equally visual skeletal plan from a library but involves
considerations about material properties, the number of pieces to produce, etc.

Secondly, problem classes result in a hierarchical organization, which is, however,
fully different from Kolodncr's indexing in both contents and method of construction.
While Kolodner's indices are the extensions of concrete memorizing activities for in­
dividual events, [Schma92] /s classes and their distinctions each reflect whole catego­
ries of similar problems characterized e.g. by workpiece material or machine type.
Furthermore, an index in Kolodner's sense comes into existence by having to distin­
guish a concrete new individual element from concrete known elements. The classes
in [Schma92]are derived by psychometric methods, which determine distances be­
tween individual yet prototypical elements based on similarity assessments of pairs
("hierarchical clustering"). As an independent criterion that the clusters in [Schma92]
make sense, it turns out that production plans follow naturally (although not trivially)
and exemplars from a library of solutions can be identified for classes that make
sense, whereas such workplans do not exist for senseless classes.

A l l activities described in [Schma92] are supported by dedicated tools. We are facing
an informatics style workplace, whose only shortcoming might possibly be that it has
so far only proven useful for the one application outlined, namely working plans for
rotational parts. Generalization may be feasible, but there is no evidence yet.

For the transition from expert generated concrete plans to abstract skeletal plans,
Bergmann ([Bergm92]) adds an A l based set of automatic tools which realize expla­
nation based learning to derive abstract descriptions of operations concretely en­
countered in workplans and dependency graphs between the abstract operators. This
allows for the final skeletal plans to have beneficial dependencies (e.g. required se­
quences in order to ensure preconditions for operators) preserved and detrimental
ones removed.

In this context, [Thoben] has pointed out at the workshop that the term "variant
planning" from engineering sciences is, according to his observations, misleading for
the description of the mental use of known cases. While variant planning in engi­
neering modifies fully worked out cases to satisfy a slightly deviating requirement,
human use of cases more resembles the application of partially instantiated abstract
patterns and their instantiation, as can be realized on the basis of Bergmann's ab­
stracted skeletal plans.

Bergmann's tools draw upon theories from A l , including some common sense ideas.
They provide results of well understood formal quality: for a generated skeletal plan

ca
se

s
v
s
 t

he
or

y

th
eo

ry

au
th

en
ti

c
ca

se
s

a
n

a
lo

g
i

ca
l

re
as

on
in

a
c

a
s

e
b

a
s

e
d

re
as

on
i
ng

in
f

in
f

ab
st

ra
ct

io
n i

co
gn

i
n
f
|

co
gn

A
l

i
n
f

co
gn

ma
ch

.
le

ar
ni

ng

Al
th

of
f

Br
an

sk
at

Ma
na

go

Ja
ne

tz
ko

Re

im
an

n
Sc

hm
al

ho
fe

r
Be

rg
ma

nn

Ma
na
go

in
f

co
gn

Ja
ne

tz
ko

••
su

gg
es

te
d

ar
ch

it
ec

tu
re

|
*

•
im

p!
em

en
te

d
al

te
rn

at
iv

es

F
ig

ur
e

2
.

C
as

es
 v

s.
 t

he
or

y

it can be guaranteed that all specific plans which it represents can be derived as spe­
cializations. A t present, the automatic procedure cannot, however, "collapse se­
quences of concrete operations into a single abstract operation", a capacity which the
human expert has.

For the comparison with the next approach it makes sense to rephrase this work as
follows: general theoretical considerations are applied to improve the usefulness of
case collections. A t first sight, the opposite seems to be true for the core part of
Manago and Conruyt ([Manag92]): cases are used for automatic induction of general
regularities.

Practical experience with predecessors of K A T E have, however, led to a transition
from "blind" induction to the prestructuring of the case format. The major argument
is a practical one: purely mechanical induction is not feasible beyond a certain num­
ber of features of the objects to be learned. Common sense is used to reduce the
number of combinations that make sense. Although formally different, the ap­
proaches of [Bergm92] and [Manag92] hence share the strategy of reducing their re­
spective "search spaces" by making use of human knowledge about implausible or
physically impossible combinations before the initiation of mechanical processes.

The positions that the contributions in this book take about case vs. theory based
reasoning are not as controversial as we will find later in this text concerning different
model based approaches to knowledge acquisition. They nicely exploit large parts of
the possible spectrum, but all except [Manag92] have not yet undergone sufficient
comparative or large scale practical evaluation to reveal far ranging differences.

Common sense

Positions at the workshop widely diverged about the common sense contents of ex­
pertise.

Fundamentally, [Glowalla] claimed that a considerable part of expertise is made up
of common sense. This would be supported by [Bergmann]'s observation that the
constraints superimposed on skeletal plans to transfer them into realistic, fully speci­
fied ones carry many traits regarding what has been discussed as formal theories of
common sense ([Hobbs85]), such as that there can only be one form of fixture
(chucking) at a time (in the domain of production plans for manufacturing rotational
parts).

Another support comes from observations of [Schmalhofer] already briefly discussed
above that deep knowledge (inasmuch as expertise is deep) can develop on the basis
of prior knowledge, which ends up in common sense sooner or later. I.e. expertise
itself would at least be founded on common sense. A n d given the position of devel-

opment as adding and compiling, presented above as one plausible alternative for
development of expertise, common sense would remain present in expertise one way
or the other.

In contrast [Pfeifer] argued that expertise is rather specialized. It is acquired by fully
developed cognitive individuals. Hence it is bound to be different than the normal
repertory of cognitive science methods as applied, e.g. by [Glowalla] .

Support for this position comes from the use of K A D S [Schre88]. A survey of existing
conceptual models, i.e. specifications of domain knowledge and problem solving
processes occurring in an application, reveals that the strategic layer of K A D S which
may be understood as representing flexible human management of new or unexpected
situations, is hardly ever required in K A D S conceptual models, i.e. the comprehensive
notation of a model of expertise. A n interpretation by K A D S researchers is that
"expert - i.e. highly overlearned - problem solving skills compiles out the flexibility
available as part of "'intelligence' in the psychometric sense" [Schre88].

Although it has proved successful in practical engineering domains, one should be
careful about the latter argument as being valid as a scientific statement about the
nature of expertise. For applying K A D S means to assess human capacities from the
informatics perspective, which is more or less negligent of the intellectual and exper­
imental repertoire of cognitive science. K A D S has not claimed to be able to deal with
expertise in the ways of psychological investigation - as would be required to prove
[Pfeiferjs conjecture - but to strive for usefulness for the purpose of running know­
ledge acquisition projects. Although K A D S models may well serve the purpose of
being a humanly conceivable notation of how expert problem solving can take place,
there is neither a claim nor a proof that these models describe the manner of problem
solving that actually happens in the expert.

4. Roles and Capacities of Knowledge Engineer and Expert

A s indicated we will organize this section by role and - inasmuch as they involve a
knowledge engineer - by the capacities, limitations, and possibilities that support his
activities.

Roles

Only in Puppe's and Gappa's ([Puppe]) approach do we find the position that a
knowledge engineer is not required. This is based on the claim that C L A S S I C A is a
tool that allows the expert to construct knowledge based systems on his own within
the scope of the shell underlying C L A S S I C A . This does avoid serious questions and
problems raised in the sequel of this text (e.g. concerning biases of the knowledge
engineer). But [Puppe] himself raised the question of cognitive adequateness of

C L A S S I C A as a tool for novice users of electronic data processing equipment. Fur­
thermore, the question must be raised whether an expert is able to (re-)structure his
knowledge according to the fixed requirements of C L A S S I C A , with or without being
educated in the theory underlying C L A S S I C A . This can be rephrased as to whether
the expert has to become a knowledge engineer. This is rather like the mirrorimage
of a question that we will have to discuss later, namely whether the knowledge engi­
neer has to become a domain expert. This makes evident why the usability question
of C L A S S I C A and comparable tools is not the classical one of software ergonomics:
it is not a question of whether an individual is efficiently supported in his normal job
(namely acting as an expert) but in an unusual one, namely reflecting and formalizing
his knowledge. To summarize, using tools of the type of which C L A S S I C A is an ex­
ample requires of the expert the coordination of different unfamiliar activities, namely
using the tools and reflecting his knowledge under constraints of having to formalize
it.

A l l other approaches presented involve a knowledge engineer, and obviously all in­
volve experts. The expert can be more an actor or the object of observation, his role
can be precisely specified in advance or may evolve in the process. In my opinion, the
most liberal attitude towards the expert is the one of [Fensel], who refers to the in­
terpretative paradigm of qualitative social science. For initial phases of a knowledge
engineering process communication and interaction between knowledge engineer and
expert without restriction by any modelling or other paradigm is a prerequisite for
guaranteeing (or at least for enabling) coverage of the full spectrum of expertise. A n y
early determination of having to model into some representation bears the risk of
overseeing important details next to those that can be subsumed under the model of
Strube (cf. [Strub92]).

After this interaction and communication process, the knowledge engineer applies his
data reduction and interpretation methods to discover as much as possible from the
traces he has. In other words, both expert and knowledge engineer are first involved
in the full spectrum of both their technical and communicational capacities. Then the
knowledge engineer evaluates the interactions in the light of his methods.

The next two approaches place the expert in two differently restricted roles in com­
parison to [Fensel] or [Puppe]. First, Schlenker and Wetter ([Schle92]) take a scien­
tific discovery perspective of the following form: there is a natural phenomenon
named knowledge. Knowledge engineering means to proceed towards a model of the
phenomenon through a cyclic process of experimentation, interpretation of observa­
tions, hypothesis forming, and designing of further experiments to support or refute
the present state of cognition. In [Wetter]'s exposition of this approach, the expert is
comparable to subjects in psychological experiments. He undergoes an experimental
setting, is observed, and that's it. The attempt to apply this approach and to supply
rationales for all its activities has meanwhile revealed to Schlenker and Wetter (cf.

[Schle92]) that the pure objectivist observer - observed object relation cannot or
should not be maintained between knowledge engineer and expert. Instead, the set­
ting of elicition co-determines the concretely observed (verbal) data. In analogy to the
above mentioned encoding specifity, one might think of a "recall specifity". Never­
theless, the knowledge engineer controls the process and hence is as responsible for
the result as is the natural scientist for his physical, etc. model. On the other hand,
ideally he can draw upon all the methodological and theory of science knowledge that
guards and criticizes the process of scientific progress in natural sciences.

Apar t from the possible criticism as to whether knowledge can be "delivered" in such
a sterile situation, it is obvious that such a process is extremely time consuming. Both,
[Fensel] and [Schlenker] may end up with highly detailed, well suited, and objec­
tively (in their respective theories of science traditions) justified results. Or they might
end up running out of resources. Or they might not even get started because know­
ledge engineers with the required skills are not available and no one is willing to pay
for their education except for within narrow academic environments.

[Bergmann] defines a restricted role of the expert in a more realistic, practical, down
to earth way. In his environment of specific plans being generalized by means of
formal domain theories, it is a common observation that plans are over-generalized
due to an underspecified domain theory. It is now the role of the expert to detect
over-generalizations, to mend them, and to enlarge or modify the domain theories
accordingly. In this case both the communicational role and the content related role
of the expert is very narrowly restricted, but in accordance with what practical ex­
pertise really consists of. A question may arise as to whether the outlined role can be
generalized to other areas of application.

Does the knowledge engineer have to become a domain expert?

[Woodward] takes a clear position in understanding knowledge engineering to be the
study of a complex domain and draws analogies to learning biases etc. Studying the
domain can almost be re-phrased as becoming an expert.

Although [Woodward] differs from [Schlenker] in a number of other aspects, there
is the following similarity: if we interpret the scientific discovery of [Schlenker] as a
process at the end of which the scientist is an expert in his domain, the knowledge
engineer in this framework would be an expert of the expertise that he has discovered.
In the case of [Fensel], it is not so clear w7hether the knowledge engineer must become
a domain expert. The first interaction phase seems to tend toward this direction,
whereas the second (at least potentially) operationalized interpretation phase might
have the character of mechanical labelling, ordering etc., based on linguistic markers.
It appears that the second phase of [Fensel] can be labeled as "labelling" in which the
individual labels arise from the domain under study, whereas the way in which a label

ro
l
es

ex
pe

rt

kn
ow

le
dg

e
e
n
g
i
n
e
e
r

i

co
gn

ps

y/
so

c
in

f
I Al

I
I

Pu
pp

e
Be

rg
ma

nn

Fe
ns

el

i n
te

ra
ct

,
i n

te
rp

re
t
•

Sc
hl

en
ke

r*

•p
ro

be
,

ob
se

rv
e*

pe
rs

pe
ct

iv
e

up
on

ro

le

bi
as

ps
y/

so
c

j
Ic

og
n

•F
en

se
l

ps
y/

so
c

co
gn

co

gn

be
co

mi
 n
g

ex
pe

rt

Wo
od
wa
rd

Gl

ow
al

la

•S
ch

le
nk

er

su
pp

or
t

Fi
g.

4

ro

o

F
ig

ur
e

3
.

H
um

an
 r

ol
es

 in
 k

no
w

le
dg

e
en

gi
ne

er
in

g

is attached to a recorded detail is prescribed by the method. Labelling principles
immanent to a method might reduce the need to become a domain expert, but also
the precision and security of match of the resulting model might be less in the method
of [Fensel] than in the feedback controlled one of [Schlenker].

Biases of the knowledge engineer

According to [Woodward], cognitive biases inevitably co-determine the work of the
knowledge engineer. Starting from "knowledge engineering as learning a complex
domain", we have to be aware of learning biases (e.g. an over-simplification bias),
biases of memorizing and recall (e.g. the whole environment vs. memory types of
problems) (cf. [Woodw92]). Further support for the existence of recall biases comes
from [Glowal la] , who reveals e.g. considerable omissions of presented detail in a way
which can easily be identified in a controlled psychological experiment where the in­
vestigator typically knows all the detail of material presented. This does not, how­
ever, apply to knowledge engineering where the knowledge engineer typically docs not
know the material to be elicited from the expert.

Biases can be dealt with in a number of ways:

1. trying to be aware of the mechanisms and to avoid or reduce them
([Woodward])

2. trying to be aware of the context for possible intervention or compensation
([Fensel])

3. hoping for laws of larger numbers, i.e. of a cancelling out when a large number
of knowledge engineering efforts is taken (multiple knowledge engineers,
elicitation methods, interpretation methods, experts, etc.)

4. trying to detect the biases by means of feedback ([Schlenker]).

The third of these is probably not really feasible. The first might appear most feasible,
but it bears the risk of being trapped in wrong hypotheses about where the biases
come in and by what methods they can be reduced or compensated for. The second,
taken as a goal, reflects one of the strongest present trends in knowledge acquisition
but lacks any operationalization in the approach of [Fensel], A n instance of the
fourth point is [Schle92], which may, however, not be feasible except for extremely
critical bodies of knowledge.

5. Supporting the Knowledge Engineer

After having outlined the inevitable constraints under which knowledge engineering
has to take place, we now describe cognitive and engineering aids in support of the
knowledge engineer's work. By far the longest part of this section deals with ap­
proaches dominated by their respective types of pre-existing models and the ways in

which they are used. But let us start with the few alternatives that have been ad­
dressed at the workshop.

Fully bottom up approaches

Principally, all knowledge engineering work involves some manifestation of know­
ledge and knowledgeable behavior and an executable formalization being in some re­
lation to the manifestation. Support can consist of the systematic treatment of
manifestations (bottom up) or desired target structures of formalizations (top down).
The first set of approaches wil l depend on interpretation aids, whereas the latter will
depend on formalization aids. In practice, both aids will occur in both types of ap­
proaches, with stronger emphasis on one or the other.

Obviously [Fensel] has a strong sense of how to interpret. His way of interpreting is
not determined by the form of the model to be arrived at, but aims rather at making
the best (justified) use of the detail. The same applies to [Schlenker], who takes dif­
ferent measures to make the best use of the detail (operationalized interpretation rules
in the approaches of [Fensel] and [Schlenker] plus planned feedback by further ob­
servation in [Schlenker]). So primarily both approaches are open as to which kind
of model is to be arrived at.

[Fensel] aims at arriving at K A D S conceptual models at a later stage. Although very
critical about the present stage of K A D S interpretation models, he makes the point
that his highly consuming bottom up approach can profit from some top down guid­
ance.

While [Fensel] assumes full spectrum communication as a starting point,
[Schlenker] and [Woodward] share a view of reducing the communication spectrum.
However, while this is done in the case of [Schlenker] specifically with an aim at
modelling, in the case of [Woodward] it respects more the known phenomena about
communication and its failures or biases.

Libraries of models

Models support communication and the mental capture of the details of a domain
much better than isolated "pieces of knowledge". This applies to some extent to the
previous approaches which develop new models, and probably more to the following
ones that try to make use of existing models. It has also been claimed that the
communicational value of models supports maintenance. Depending upon their
provenance some classes of models may be better suited for capture and communi­
cation of expertise than others.

Origins of models
Models and libraries of models can originate from the disciplines involved in different
ways. The usability of models for human users on one hand and as computational
formalizations or preforms of such on the other hand can be expected to be highly
correlated to the origin of the models.

Puppe's and Gappa's ([Puppe92]) models e.g. of cover and differentiate (in diagnosis),
etc. originate from artificial intelligence, more concretely from the discussion of mod­
els of problem solving and partly from naive physics or studies about the relation
between structure and behavior. These models draw on first principles of reasoning
and their respective knowledge structures. They are fully computationally imple­
mented templates, including a user interface or modelling workplace to be used by the
domain expert for form filling. Aside from this, they exist without any further guid­
ance, instruction, etc.

K A D S also draws upon research about humanly comprehensible generic elements of
representing knowledge and inference such as the K L - O N E research and Clancey's
work. These latter roots rather emphasize characteristics of representation and infer­
ence whereas the ancestors of the models of [Puppe] are rather those of the charac­
teristics of the domains themselves. But this difference in origin is probably much less
pronounced than the difference in what the two approaches did with the models:
Puppe implemented them, whereas the K A D S group elaborated on how to apply
them.

Coming back now to more detail on ancestry, the following is true for the spirit of the
conceptual ("knowledge level") modelling: empirical evidence in a number of diverse
fields of early K A D S applications was reflected and cast into semiformal descriptions
of the inference processes that had been encountered. This is not too far from the
manner in which early expert system shells evolved; having modelled an application,
its knowledge representation and inference technology were isolated and sold as a
software product. The difference with K A D S is that a software product is not sold
but rather a methodology, which includes experiences that have been reflected and
cast into some humanly conceivable notation of the abstracted models.

The next prominent modelling approach represented at the workshop is McDermott ' s
and coworkers' Spark-Burn-Firefighter (SBF) of Dallemagne et al. ([Dalle92],
[Klinker]) . A t the beginning (see paragraph Are libraries and tools feasible and usa­
ble? below), the attempt was made to provide a meta-tool making available the tech­
nologies of approved knowledge acquisition tools, supporting the process of selecting
among them in order to allow the non-programmer to write knowledge based systems.
The starting point was empirical in the sense of collecting what had proved useful in
practice and not theoretical in the sense of supplying the formal detail of theories of
reasoning, etc.

When models arise from cognitive psychology ([Schlenker], Janetzko and Strube
([Janet92])), their intention is to best capture the processes in humans when solving
a problem. They would, hence, not model domains as such but human conceptuali­
zations of domains. By this token they would have the best chances of being humanly
conceivable (see Strube's discussion on cognitive adequacy in this book) but would
offer the least chance of detecting and getting rid of individual misconceptions (bi­
ases) of the expert from whose conceptualization the model is derived.

Nature of the models
Axes of distinctions between the different approaches are

• whether models are intended as mental tools or code fragments
• which grain size they and their elements have
• to what extent and detail they pre-exist, or rather how much refining and

instantiating is required in the individual knowledge engineering process
• which stages a model goes through.

To start with the most obvious approach, Puppe's and Gappa's ([Puppe]) D3 offers
executable versions of the artificial intelligence models of diagnostic problem solving.
The individual engineering activities consist of selecting the most appropriate diag­
nostic model and supplying domain knowledge in the respective format. There is no
operationalized process of supporting the selection, but once it has been arrived at,
the rest is more or less routine form filling. The models are specified on all levels of
grain size. Every model is a complete monolithic building block, which precisely
complements a domain theory to be added by the expert.

[Kl inker] distinguishes two grain sizes of constituents. The smaller ones — mech­
anisms — serve as both mental and technical building blocks and are designed for
re-use. The process of selecting and configuring the appropriate mechanisms is widely
supported by analytic and attribution aids in the tool Spark. The tool Burn generates
acquisition tools to elicit the required detail for customizing the configuration of
mechanisms. The fully configured combinations — the methods or workflows — being
the larger constituents in S B F are understood to be specific for the application and
not intended for re-use. In other words, we find here no match for what will be in­
troduced as the interpretation model in K A D S .

The model structure and building block perspective of K A D S plays different roles in
the approaches of [Fensel], Pfeifer et al. ([Rothenfluh]), [Shadbolt], and

4 For an introduction to the K A D S terminology, cf. Janetzko and Strube ([Janet92]). The
K A D S expression "domain layer" should not be confused with the standard use of "do­
main" in contexts such as domain expert, complex domain, etc. where static and infer­
encing aspects are normally included. In some cases where confusion might easily occur,

[Linster] 4 . In K A D S , re-occurring patterns of inferencing (the larger units) have
been abstracted from the domains they operate upon. They have been named inter­
pretation models and have been collected in a library. Typical elements of the library
are methods of problem solving such as heuristic classification. Interpretation models
have been provided in verbal and pseudocode notation including individual know­
ledge sources as smaller building blocks. In pure K A D S , interpretation models are
primarily meant — as the name already suggests — as mental help in interpreting data
from knowledge elicitation activities. They help in constructing conceptual models,
but they do not become parts of them.

Activities using models and the required skills
Having introduced the K A D S modelling elements, we now begin the section on using
models with K A D S and wil l come back to the other types of models later, i.e. we wil l
proceed in the reverse order now.

[Fensel] takes K A D S as such (at least in the oral presentation; in the text, the refer­
ence to K A D S is only marginal and the modelling terminology is more like that of
[Musen89]). After the initial steps of arriving at a common understanding between
knowledge engineer and expert, he tries to come up with a principled formulation of
the process model 5 . Further processes use elicited data to add the domain informa­
tion to the selected process model. Models do not control the process but filter re­
corded interpretations in the end. The required skills for this final filtering are in
understanding the model constituents as mental tools, in understanding results of in­
terpretation by means of methods from qualitative sociology, and relating them to
each other. While the latter draws upon skills that are part of an education in the
humanities, the former presently seems to be based on intuition.

While [Fensel] is not fully determined about modelling in K A D S but arrives at
structures in a way which seems related to K A D S , [Rothenfluh] explicitly refers to
K A D S but comes up with a different method of arriving at K A D S conceptual mod­
els. Based on protocol analysis data, the method uses the degree of variation among
knowledge engineers in phrasing their interpretations in terms of the K A D S inter­
pretation models as a measure for the adequatencss of the individual interpretation
model. Basically [Rothenfluh] understands the K A D S conceptual models as compu­
tational, and his question is whether they are also mental tools. To answer this, he
draws upon intuition just as [Fensel] did (besides the skill of experimental psychology
of conducting think-aloud experiments), but at least he assesses the result by the un-

I use the expression "application" instead of "domain" to denote that all static and infer­
encing aspects are to be subsumed.

5 It can be assumed that it roughly resembles the task and inference layer of a K A D S con­
ceptual model. But to preserve authenticity, Fcnscl's [Fensc92] terminology is used.

specific feedback of similarity or dissimilarity of the conceptual models produced by
different knowledge engineers. He tests for inter-individual reliability among know­
ledge engineers, not for the validity of models. This is in good accordance with the
communication role of models.

[Shadbolt] works on a method of precisely determining the selection of an interpre­
tation model. Based on an informal task analysis, he offers elicitation tools whose use
results in a suggested interpretation model. For this purpose he has complemented the
set of interpretation models (for the selection of which in K A D S there is only an in­
tuitively defined decision tree) by a set of formal criteria, whose evaluation is sup­
ported by the tools.

[Linster] keeps the static knowledge / inference knowledge distinction, but starts from
individually tailored models rather than from surrogates derived from pre-formed
patterns. Essentially, the model serves as a medium of communication between hu­
mans. [Linster] has meanwhile extended his approach that starts with a thorough
investigation of the structure of a new domain by meta-tools to generate tailor suited
tools which enable the experts to enter the details of the model themselves. In the
latter sense, the approaches of [Linster] and [Puppe] resemble each other. However,
in Linster's case, a knowledge engineer is heavily involved in forming the model which
then determines the functionality of the customized tool. N o mental support other
than the K A D S recommendation of layers is given. In other words, skill in computer
science and intuition or modelling skill form the intellectual bases of knowledge engi­
neering.

Coming back now to the n o n - K A D S building block approaches, the approach of
[Kl inker] may seem to be perfect: his process is widely operationalized, his smaller
building blocks (mechanisms) are both mentally embedded and technically available
as building blocks (code fragments) whose instantiation supplies operational code.
However, obviously and admittantly the building blocks of Klinker 's approach arc
considerably simpler than those of K A D S or in Puppc's case. Assuming that a well
educated facilitator (= knowledge engineer?) is involved, more or less standard pro­
cedures (or their abstractions in forms of the mechanisms) can be identified and
instantiated, the result being a software module which has properties that enable easy
integration in an environment of similarly produced modules. In summary, the ap­
proach has been discussed more as K A S E (knowledge aided software engineering)
than as knowledge engineering. The key role is that of the facilitator, who has to
match abstract descriptions of mechanism functionality (provided by programmers)
with the information processing needs of (non-programmer) users. If this succeeds,
the users can influence their own application programs to a considerable extent
without requiring essentially different skills than they need for their normal profes­
sion.

su
pp

or
t

i I

bo
tt

om
 u
p

re
st

ri
ct

ed

co

mm
un

ic
at

io
n

|p
sy

/s
ec

 j

co
gn

ps

y/
se

c
j

Fe
ns

el

Sc
hl

en
ke

r
Wo
od
wa
rd

I !
or

ia
in

o
f
 m
od

el
s

to
p
do
wn

pu
rp

os
e
o
f
 m
od

el
s

Al

co
gn

do
ma

in

pr
in

ci
pa

ls

ch
ar

ac
-

o
f
 r
ep

re
s.

te

ri
st

ie
s

a
n
d
 i
n
f
e
r
e
n
c
e

Ja
ne

tz
ko

Sc

hl
en

ke
r

so
ft

wa
re

en

gi
 n
ee

ri
 n
g

ca
pt

ur
in

g
e
x
p
e
r
t
i
s
e

Co
de
 g
e
­

ne
ra

ti
on

Fe

ns
el

Ro

th
en

fl
uh

Sh

ad
tb

ol
t

Kl
in

ke
r

Pu
pp

e
Li

ns
te

r
Pu

pp
e

Kl
in

ke
r

KA
DS

KA
DS

Fi
gu

re
 4

.
W

ay
s

of
 su

pp
or

tin
g

th
e

kn
ow

le
dg

e
en

gi
ne

er

To finish this reverse list of skills required to apply the models, we find the trivial fact
that in the case of [Puppe], the knowledge engineer has finished his work when he
has implemented the computational form of the model. In particular, he is not in­
volved in any interpretation activity and his biases (cf. [Woodward]) are not an issue.
(However, what about expert biases?) The requirements on the domain expert have
already been discussed above. Given the origin of the models from artificial intelli­
gence research, Puppe's observation is probably correct that it would be too time
consuming for the domain expert to create them himself.

Fig . 4 illustrates the diverse aids that are being supplied for knowledge engineering.
For the top down part, K A D S plays a distinguished role indicated by the connection
of the four "tear nodes of authors Linster, Fensel, Rothenfluh, Shadbolt. That part
of the figure is the only one where an attribution to one of the four disciplines does
not seem appropriate. This may be an indication that we are operating in the genuine
territory where knowledge engineering and cognition widely overlap.

Discussion

Since this text as a whole has the character of a discussion, this section will only be
used as a reminder of the aspects of highest contrast encountered and to speculate
about origins and the reasons for the divergences.

Which criteria are met by the systems produced by our methods?

M a n y of the contributions cannot undergo this comparison yet because they either
do not cover the whole process up to running systems or are in a preliminary status.
For the purpose of demonstrating extreme positions, we concentrate on Manago and
Conruyt ([Manag92]) and Schlenker ([Schlc92]).

[Manag92] clearly claim practical applicability of knowledge bases induced by K A T E
but equally clearly admit that induction algorithms supply sets of rules, some of
which are hardly conceivable for the human user. Although this violates Strubc's
([Strub92]) criterion of cognitive adequacy, it is not sufficient to fully disqualify
K A T E . Despite the inconceivability of some rules, the systems can be successfully
used, which may mean that fields where K A T E has been applied are factually char­
acterized by such rules that can by no means be expressed in a form that is more
appealing. Then human expertise cannot really cover such fields. Another interpre­
tation is that inappropriate descriptions have been used as a starting point for K A T E
and that starting from different formalizations of the cases themselves or more ap­
propriate use of common sense prior to induction may lead to better conceivable
knowledge bases. A t the present state of cognition, a certain scepticism remains as
to whether a system can be valid if it cannot be understood by a human.

In the other extreme, Schlenker [Schle92] supplies some of the detail required to arrive
at absolutely cognitive adequate systems in Strube's sense (cf. [Strub92]). We have
argued above and also find support in [Strub92] that this is a cumbersome way to
proceed, and indeed, in contrast to K A T E there are no real size applications of
Schlenker's method available yet. A t present it is fair to say that large scale applica­
tion and strong cognitive adequacy are mutually exclusive.

Are KADS conceptual models computational?

From the perspective of the originators of K A D S , K A D S models are non-formal and
non-computational models for making sense, whereas [Fensel] and [Rothenfluh]
understand them to be computational models. This may be due to the different
socializations of the groups. The original K A D S formulation can be characterized as
pseudocode which has a certain formal and computational flavor for researchers with
a background in the humanities, whereas — for researchers in formal sciences — it
does not satisfy the required standards of precision, rigorosity, and formal founda­
tion.

Are libraries of tools feasible and usable?

The Spark-Burn-Firefighter of [McDermot t] has started as an attempt to collect
knowledge acquisition tools in a library, to supply a meta-tool that guides the se­
lection of the best suited individual tool(s) from the libraries, and to generate know­
ledge based systems by means of these tools. This has failed in a certain sense: the
meta-tool would have had to ask too many questions of a far too complex nature to
allow efficient use. The scope and focus of Spark-Burn-Firefighter was consequently
changed towards simpler building blocks (mechanisms instead of artificial intelligence
inference methods), towards homogeneous foundations in the sense of standardized
description of components ("process", "resources", "outcomes"), and towards far
ranging tool support for early parts of the conceptualization process (dictionary, etc.).
The present claim, supported by first experimental evidence, is that the effort in
producing tailored application systems is considerably reduced for the users of
Spark-Burn-Firefighter.

Another claim is that the typical users of Spark-Burn-Firefighter would not be capa­
ble of applying K A D S ; e.g. they would not be able to make appropriate use of K A D S
interpretation models, while there is evidence that they make appropriate use of S B F
mechanisms.

On the other hand there is a considerable number of K A D S success stories and the
attempt of [Shadbolt] to provide a meta-tool (P ro toKEW) to systematically select an
interpretation model and tools to syternatically fill a selected one.

A t least two considerations may help to resolve these apparent contradictions. The
first draws upon the different foundations of early Spark-Burn-Firefighter and
P r o t o K E W . While [McDermot t] attempted the technical integration of conceptually
unrelated tools, [Shadbolt] aims at a workbench which supports one methodology of
knowledge engineering (K A D S) . It has been a matter of intensive debate in recent
workshops on knowledge acquisition whether a combination of inhomogenous tools
is worth the effort, or whether a common theory as a basis of integration should
precede the technicalities of software compatibility issues. The present trend seems to
favor a precedence of theoretical foundation (cf. Wetter and Woodward, [Wette90]),
for which [Shadbolt] is a representative.

The second consideration takes the education and skills of users into account. The
typical Spark-Burn-Firefighter user (not the facilitator) is a non-programmer em­
ployee in a non-EDP department (such as sales or accounting), who needs software
support for some of his work. His skills arc those required in his department. The
typical K A D S "worker" has specific skills ranging from system analyst to Ph .D. in
computer science with a K A D S education. Needless to say, the latter may have wider
ranging capacities in handling complex modelling approaches.

Must the knowledge engineer become an expert?

The bottom up approaches and [Woodward] agree upon "yes" while the modelling
approaches do not make explicit claims but implicitly mean "no". This divergence has
a shallow and a deep explanation. The superficial one is that the skill in applying
modelling aids and model structures provides a means of penetrating a domain for the
purpose of formalizing it without really understanding it: modelling skill as a shortcut
towards learning complex subject si

Though this may factually be true in the sense that knowledge based systems are
generated in such a way, it may conceal a deeper aspect. Modelling within a modelling
paradigm means capturing what is within the scope of the paradigm but deforming,
deliberately omitting, or just overseeing what is outside. Taking up the above question,
modelling skill does not enable the individual to really learn a complex subject but to
get hold of those aspects of the subject that can be subsumed under some facet of the
model structures or languages he handles. A n d these arc narrower and less flexible the
higher the demands on precision and formality arc. This is one of the reasons why
informality of conceptual models is defended by a number of K A D S researchers who
primarily see K A D S as a research environment.

And how about the personality of the knowledge engineer?

Might it be true, as [Bartsch-Sporl] claimed, that, given all the intricacies revealed
during the workshop and partly reported here, the ultimate determining success fac-

tor is the intuition or other personal traits of the individual knowledge engineer? A n d
if so, would this mean that projects beyond a certain size or complexity are not fea­
sible because there are not enough such geniuses available? Maybe it is permissible
to finish this speculative outlook by paraphrasing M . M . Richter, head of the research
group who hosted the workshop: W c don't require methods for those who already
know, but as a basis to teach those who also need to know.

Acknowledgements

Comments from Klaus-Dieter Al thoff on earlier versions have helped me to see se­
veral details clearer. Ang i Voss has very carefully studied the material. Her sug­
gestions have supported and motivated me very much to extend the scope of the text
to its present size and to provide, although technically simple, graphic overviews of
the approaches which may serve as an additional form of guidance into the highly
diverse subject matter of the book. Last but not least, M a r k Beers has supported
me in writing it in English.

References

IAltho92] Althoff, K . D . and WeB, S. Case-Based Reasoning and Expert System De­
velopment in this volume

|Becke90] Becker, B . and Bartsch-Sporl, B . Die Verdnderung von Expertenwissen
durch den Prozefi der Wissensakquisition (Modification of expertise during
the process of knowledge acquisition) K l 2 (2) 31-36 (1990)

[Bergm92] Bergmann, R. Knowledge Acquisition by Generating Skeletal Plans from
Real World Cases in this volume

[Brans92J Branskat, S. Knowledge Acquisition from Cases in this volume
[Dalle92] Dallemagne, G . , Klinker, G . , Marques, D . , McDermott , J . , Tung, D .

Making Application Programming More Worthwhile in this volume
[Fense921 Fensel, D . Knowledge Acquisition and the Interpretative Paradigm in this

volume
(Janet92] Janetzko, D . and Strube, G . Case-based Reasoning and Model-based

Knowledge Acquisition in this volume
[Hobbs851 Hobbs, J .R . and Moore , R . C . Formal Theories of the Commonsense

World Norwood, N J 1985 (Ablex)
[Linst92] Linster, M . Shifting Positions : Moving from a Cognitive Science Point

of View to a Knowledge Engineering Stance in this volume
|Manag921 Manago, M . , Conruyt, N . Using Information Technology to Solve Real

World Problems in this volume
(Musen89] Musen, M . Conceptual Models of Interactive Knowledge Acquisition Tools

Knowledge Acquisition 1, 73-98 (1989).

[Pfeif92j Pfeifer, R., Rothenfluh, T., Stolze, M . , Steiner, F. Mapping Expert
Behaviour onto Task-Level Frameworks: The need for " Eco-Pragmatic"
Approaches to Knowledge Engineering in this volume

[Puppe92J Puppe, F. and Gappa, U. Two Questions from Expert System Developers
to Cognitive Scientists in this volume

[Reima92| Reimann, P. and Schult, T .J . Learning from Problem Solving Traces in
this volume

[SchIe92J Schlenker, B. and Wetter, Th. Knowledge Acquisition as an Empirically
Based Modelling Activity in this volume

[Schma92j Schmalhofer, F., Globig, C , and Thoben, J . Refitting of Plans by a Hu­
man Expert in this volume

(Schre88) Schreiber, G. , Breuker, J . , Bredeweg, B., and Wielinga, B. Modelling in
knowledge based system Development Boose, J . , Gaines, B. , and Linster,
M . (eds.); Proc. European Knowledge Acquisi t ion Workshop E K A W 8 8 ,
Bonn, July 88, G M D - S t u d i e n 143, St. Augustin 1988

|Shadb92| Shadbolt, N. Facts, Fantasies, and Frameworks: The Design of a Know­
ledge Acquisition Workbench in this volume

[Strub92] Strube, G. Different Types of Cognitve Adequacy, in this volume
ITuIvi73| Tulving, E. and Thompson, D .M. Encoding Specifity and Retrieval Proc­

esses in Episodic Memory Psychological Reviews 80, 352-373 (1973)
|Wette90| Wetter, Th. and Woodward, B. Towards a Theoretical Framework for

Knowledge Acquisition in: Boose, J. and Gaines, B. (eds.) Proc. 5th A A A I
Knowledge Acquisit ion for Knowledge Based-Systems Workshop, Banff
(Canada) Nov. 1990

[Woodw92J Woodward, J.B., Shaw, M . L . G . , Gaines, B.R. The Cognitive Basis of
Knowledge Engineering in this volume

[Glowall| Dr. U. Glowalla Justus-Liebig-Universitdt Giefien, Fachbereich 06 Psycho­
logic, 6300 Giefien, Federal Republic of Germany

About the Authors

Klaus-Dieter Al thoff studied mathematics and operations research at the Technical
University of Aachen/Germany. From 1986 to 1990 he worked as a researcher in the German
Sonderforschungsbereich 314 "Artificial Intelligence - Knowledge-Based Systems" in the
projects X 6 (knowledge acquisition workbench for the fault diagnosis of engineering systems)
and X 9 (learning and analogy for engineering expert systems). Since the beginning of 1991 he
worked as a research assistant at Kaiserslautern University/Germany within the research group
of Prof. Richter and is about to finish his doctoral dissertation on " A case-based learning
component as an integrated part of the M O L T K E workbench for the diagnosis of engineering
systems".

Ra lph Bergmann is research assistant at the German Research Center for Artificial
Intelligence and is currently pursuing his dissertation (PhD). He received his diploma in
computer science from the University of Kaiserslautern in 1990. His primary research interests
are machine learning, especially explanation-based methods, knowledge acquisition and
cognitive modelling. His current address is: German Research Center for Artificial Intelligence,
University Bldg. 57, Erwin-Schrodinger-Str., D- 6750 Kaiserslautern, Germany.

Sonja Branskat is currently pursuing her PhD at the Knowledge Science Institute of the
University of Calgary. She received her B.Sc. in mathematics from the University of Freiburg,
Germany in 1986 and her M.Sc. in computer science from the University Hagen, Germany in
1991. Her research interests are in knowledge acquisition and computer supported cooperative
work. Her current address is: Department of Computer Science, University of Calgary, 2500
University Drive N.W., Calgary, Alberta, Canada, T2N 1N4.

Noel Conruyt is a research engineer at Acknowledge corporation. He received his Master's
in computer science at University of Paris VI (Jussieu) in 1988 and he is currently doing his
PhD at the Institut National de Recherche en Informatique et Automatique (INRIA) in
collaboration with the Museum of Natural History in Paris. His research interests are in using
induction and case-based reasoning to solve problems in biology (identification of marine
sponges), building interactive tools to collect case libraries, designing knowledge acquisition
tools which assist the user in building domain theories for machine learning and case-based
reasoning tools. His current address is: Acknowledge, 16 Passage Foubert, 75013 Paris,
France.

Geoffroy Dallemagne is a researcher at Digital Equipment Corporation's A l research
group. He is currently pursuing a PhD at Ecole Centrale de Paris's Laboratory for Computer
Science. He received his M.Sc. in applied mathematics from Ecole Centrale de Paris in 1988.
His research interests are workplace analysis and computer supported cooperative work. His
current address is: Paris Research Lab. Digital, 85 avenue Victor-Hugo, 92563 Rueil-
Malmaison Cedex, France.

Dieter Fensel is research assistant at the University of Karlsruhe. He received a diploma
degree in sociology from Freie Universitat Berlin and a diploma degree in computer science
from Technische Universitat Berlin in 1989. His research interests are in shifting knowledge
acquisition from an art to an engineering discipline and in developing and applying machine
learning algorithms. His current address is: Institutfur Angewandte Informatik und Formale
Beschreibungsverfahren, Universitat Karlsruhe, P.O.Box 6980, 7500 Karlsruhe, Germany, e-
mail: fensel@aifb.uni-karlsruhe.de.

Dr . Br ian R . Gaines is Ki l l am Memorial Research Professor and Director of the
Knowledge Science Institute at the University of Calgary. He received his B . A . , M . A . and
PhD from Trinity College, Cambridge, and is a Chartered Engineer, Chartered Psychologist,
and a Fellow of the Institution of Electrical Engineers, the British Computer Society and the
British Psychological Society. His research interests include: the socio-economic dynamics of
science and technology; the nature, acquisition and transfer of knowledge; software engineering
for heterogeneous systems; and expert system applications in manufacturing, the professions,
sciences and humanities. His current address is: Knowledge Science Institute, University of
Calgary, Calgary, Alberta, Canada T2N1N4.

Christoph Globig is a student in computer science at the University of Kaiserslautern and a
student researcher at the German Research Center for Artificial Intelligence.

Ute Gappa is research assistent at the University of Karlsruhe and is pursuing her dissertation
(PhD). She received her Diplom in Informatik (Masters in computer science) from the
University of Kaiserslautern in 1988. Her primary research interests are automated knowledge
acquisition from experts, graphical user-interfaces and tools for the generation of knowledge
acquisition systems. Her current adress is: University of Karlsruhe, Institute of Logic, PO Box
6980, D-7500 Karlsruhe, Germany.

Dietmar Janetzko is a doctoral candidate at Bochum University and a research assistant in
the department of cognitive science at the Institute for Computer & Social Sciences at Freiburg
University. He obtained his diploma in psychology in 1987 from Bochum University. His
research interests include case-based reasoning, analogy, metaphor and knowledge acquisition.
His current address is: Department of Cognitive Science, Institute for Computer & Social
Sciences, Friedrichstr. 50, D-7800 Freiburg, Germany.

Georg Kl inker joined Digital Equipment Corporation in 1988 as a member of the A l research
group. His research interests focus on making it easier to create application programs through
reuse of software artifacts. From 1984 to 1988 he was a research scientist at the Carnegie
Mellon Computer Science Department. Georg Klinker received his M . B . A . from the University
of Hamburg, Germany in 1983. While in Hamburg he worked for the software company IfaD.

mailto:fensel@aifb.uni-karlsruhe.de

Dr. M a r c Linster is a member of the A l Research Division of G M D (German National
Research Center for Mathematics and Dataprocessing). His work is focussing on problem-
solving methods and their influence on (automated) knowledge acquisition. He obtained a
doctorate —concerned with the above-mentioned problems— from the University of
Kaiserslautern, where he had also received his diploma in computer science in 1987. His
current address is: Al Research Division, GMD, PO Box 1240, 5205 St. Augustin, FRG.

Dr. Miche l Manago is the chief scientist at Acknowledge corporation. He received his B.Sc.
in computer science from the University of Illinois in Urbana Champaign in 1983 and his PhD
at University of Orsay (France) in 1988. His research interests include inductive learning and
case-based reasoning technologies, integration of symbolic and numeric methods, theoretical
foundations of machine learning and building computer tools for the analysis of the human
genome (genetics). He is involved in using machine learning and case-based reasoning for
applications which deal with finance (credit assessment), identification (photo-interpretation),
analysis in clinical databases, telecommunications and technical maintenance (fault diagnosis,
preventive maintenance). His current address is: Acknowledge, 16 Passage Foubert, 75013
Paris, France.

David Marques has been a research scientist in Digital Equipment Corporation's Artificial
Intelligence Research Group for the past 5 years. His research interests are in enabling end-
users to do their own programming (through software reuse), and in understanding (through
modeling) the context of end-user activities. He received his A . B . in psychology from Cornell
in 1972, PhD in psychobiology from the University of Michigan in 1976, and did research in
neuroscience before joining Digital Equipment Corporation in 1982 in the Software Services
organization.

Dr . John McDermott is a member of the technical staff at Digital Equipment Corporation.
He has been a member of the faculty of the Computer Science Department at Carnegie-Mellon
University since 1974. In 1983 he confounded the Carnegie Group, Inc. He received a PhD in
philosophy from the University of Notre Dame in 1969. His research interests are the
application of A l techniques to industrial problems and artificial intelligence in general.

Dr . Rolf Pfeifer is a full professor of computer science and heads the A l Lab at the Institute
for Informatics at the University of Zurich in Switzerland. After receiving his M.Sc. in physics
and mathematics and his PhD (with a thesis on A l and psychological modeling) at the Swiss
Federal Institute of Technology (ETH), he spent three years in the U S A at Carnegy Mellon
University in Herb Simon's group and at Yale in Bob Abelson and Roger Schank's cognitive
science lab. His main research interests are foundations of A l and cognitive science,
autonomous agents, and "situated design". His current address is: Al Lab, Institute for
Informatics, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich. E-mail:
pfeifer@ifi.unizh.ch.

mailto:pfeifer@ifi.unizh.ch

Dr. Frank Puppe is professor for informatics at Wurzburg University. He received his PhD
1986 from Kaiserslautern University and his habilitation about "Problem Solving Methods in
Expert Systems" 1991 from Karlsruhe University. His research interests include strong
problem solving methods in expert systems, graphical knowledge acqusition, intelligent
tutoring systems and machine learning as well as their evaluations in technical and medical
applications. His current address is: Universitdt Wurzburg, Institut fur Informatik, Am
Hubland, D-8700 Wurzburg.

Dr. Peter Reimann is lecturer at the Department of Psychology, University of Freiburg,
F R G . He received his M.Sc. in psychology in 1984 and his PhD in 1989 from the University
of Freiburg. His research interests are the computational psychology of learning, memory and
problem solving as well as applications in intelligent tutoring and testing systems and man-
machine interaction. His current address is: Dept. of Psychology, Univ. of Freiburg,
Niemensstr. 10, D-7800 Freiburg, FRG.

Dr . Thomas Rothenfluh is currently a Visiting Scholar at The Ohio State University in
Columbus, Ohio. He received his PhD in psychology from the University of Zurich in 1988
and is now supported with a 3-year scholarship from the Swiss National Science Foundation.
His main research interests are in cognitive science, knowledge systems and psychological
modelling. His current address is: Laboratory for Artificial Intelligence Research, Dept. of
Computer and Information Science, The Ohio State University, 2036 Neil Ave. Mall,
Columbus, OH 43210-1277.

Beate Schlenker is currently pursuing her Diplom-Degree in psychology at the University of
Freiburg. Her primary research interest is knowledge acquisition. Her current address is: Am
langen Graben 41,5300 Bonn 3.

Dr . Franz Schmalhofer is a senior scientist and leader of the knowledge acquisition group
at the German Research Center for Artificial Intelligence (DFKI) in Kaiserslautern. He has
studied mathematics, psychology and computer science at the University of
Regensburg/Germany and the University of Colorado at Boulder, where he earned his PhD in
1982. He has held academic positions at the Universities of Heidelberg/Germany,
Freiburg/Germany and the M c G i l l University of Montreal/Canada. His research lies mostly in
the areas of cognitive modelling, knowledge acquisition, machine learning, expert systems,
planning, human-computer interaction, text comprehension and decision research, email:
schmalho@informatik.uni-kl.de.

Thomas J . Schult is research scientist at the Department of Psychology, University of
Freiburg, Germany. He received his B.Sc. in mathematics from the University of Freiburg in
1988, and his diploma in computer science from the University of Hagen in 1990. His research
interests are in case-based reasoning and in intelligent tutoring systems. His current address is:
Dept. of Psychology, Univ. of Freiburg, Niemensstr. 10, D-7800 Freiburg, Germany.

mailto:schmalho@informatik.uni-kl.de

Dr . Nigel Shadbolt is professor of Intelligent Systems at the University of Nottingham,
England. He received his B . A . in philosophy and psychology from Newcastle upon Tyne
University in 1978 and his PhD from the Department of Artificial Intelligence at the University
of Edinburgh in 1984. His research interests are in the areas of knowledge acquisition, and the
foundations of agent design. His current address is: The Artificial Intelligence Group,
Department of Psychology, University of Nottingham, University Park, Nottingham NG7
2RD, England.

Dr. M i l d r e d L . G . Shaw is Professor of Computer Science at the University of Calgary.
She received her B.Sc. and M.Sc. from the University of London, and her PhD from Brunei
University and is a Chartered Mathematician and Chartered Psychologist. She is a Fellow of the
Institute of Mathematics and its Applications and the British Computer Society and an Associate
Fellow of the British Psychological Society. Her research interests include: human-computer
interaction; the acquisition and transfer of knowledge; software engineering; and expert system
applications. Her current address is: Knowledge Science Institute, University of Calgary,
Calgary, Alberta, Canada T2N1N4.

Fel ix Steiner is currently working on knowledge based systems for customer credit
assessment at Credit Suisse, Zurich. He received his degree in clinical psychology from the
University of Zurich, Switzerland in 1981. His interests are in knowledge engineering,
knowledge acquisition, and connectionism. His current address is: Credit Suisse, P.O. Box
590 I Okb39, CH-8021 Zurich.

Markus Stolze is currently persuing his PhD at the A l Lab, University Zurich. He received
his M.Sc. in computer science from the University of Bern, Switzerland in 1988. His primary
research interests focus on the design of interactive knowledge based systems. His current
address is: Institute for Informatics, Winterthurerstrasse 190, CH-8057 Zurich. E-mail:
stolze@ifi.unizh.ch.

D r . Gerhard Strube is professor of cognitive science at the University of Freiburg,
Germany. He received Mag.theol. and Dipl.-Psych, degrees in 1973 and 1974, Dr. phil. in
cognitive psychology 1977, Dr. phil. habil. 1983 (University of Munich). 1982-1987 senior
scientist at the Max Planck Institute for Psychological Research, Munich, 1987-1991 full
professor of cognition and human information processing at the Ruhr University, Bochum. His
research interests focus on computer models of language processes, acquisition and
representation of knowledge, and reasoning. His current position is director of the department
of cognitive science, Institut fur Informatik und Gesellschaft, Universitat Freiburg,
Friedrichstr. 50, D-7800 Freiburg i. Br., Germany.

Jorg Thoben is research assistant at the German Research Center for Artificial Intelligence
and is currently pursuing his dissertation (PhD). He received his diploma in psychology from
the University of Miinster in 1992. His primary research interests are mental models, cognitive
modelling and knowledge acquisition. His current address is: German Research Center for
Artificial Intelligence, University Bldg. 57, Erwin-Schrodinger-Str., D- 6750 Kaiserslautern,
Germany.

mailto:stolze@ifi.unizh.ch

David Tung is a researcher/principal software engineer at Digital Equipment Corporation, A l
Research Group. His research interests include knowledge acquisition, software reuse, and
workplace analysis. He received his B.Sc. in electronic engineering from University of
London, and M.Sc. in artificial intelligence from University of Edinburgh. He is a member of
IEEE, A A A I , A C M , and E E . His current address is: DEC, 111 Locke Drive, LM02-1IK11,
Marlboro MA 01752.

D r . Angi Voss is working at the A l Research Division of the German National Research
Center for Computer Science (GMD), where she is responsible for a subdivision on knowledge
modelling. She received her diploma in informatics at the University of Bonn, and her doctoral
degree at the University of Kaiserslautern. Her current address is: GMD, Al Research Division,
Schloss Birlinghoven, D-5305 St. Augustin 1, e-mail: avoss@gmdii.gmd.de.

Stefan Wess studied computer science and operations research at the University of
Kaiserslautern. From 1987 to 1990 he worked as a student researcher in the German
Sonderforschungsbereich 314 "Artificial Intelligence - Knowledge-Based Systems" in the
projects X 6 (knowledge acquisition workbench for the fault diagnosis of engineering systems)
and X 9 (learning and analogy for engineering expert systems). He received his diploma in
computer science in 1990. Since 1991 he is working as a researcher in a Case-Based Reasoning
Project at the University of Kaiserslautern.

Dr . Thomas Wetter studied mathematics and computer science at the Technical University
of Aachen. He investigated several topics in mathematical modelling of physiological and
medical phenomena and received his PhD in mathematics about logic based medical diagnosis
in 1984. His affiliation now is the I B M Germany Scientific Center, Heidelberg. There he has
been working in software ergonomics, expert systems, and knowledge acquisition. He teaches
graduate courses in A l at the universities of Heidelberg and Kaiserslautern.

Dr . Br i an Woodward is a research associate with the Knowledge Science Institute in the
Department of Computer Science at the University of Calgary. His research interests include the
design and development of cognition support software, training and educational simulations,
and management decision-making. He obtained his PhD in educational psychology from the
University of Calgary in 1978 and works as an industrial/organizational psychologist
specializing in management selection and development.

mailto:avoss@gmdii.gmd.de

