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A heat flow for special metrics
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Abstract
On the space of positive 3–forms on a seven–manifold, we study the negative gradient flow
of a natural functional and prove short–time existence and uniqueness.
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1 Introduction

The group G2 is – apart from the generic SO(7) – the only possible holonomy group of
an irreducible, non–symmetric simply–connected manifold in dimension 7. Together with
Spin(7) it forms the class of exceptional holonomy groups whose associated geometries have
been widely studied in Riemannian geometry and theoretical physics. A G2–metric is in-
duced by a special 3–form Ω which is non–degenerate or positive in the sense that it gives
rise to a complementary 4–form Θ(Ω), so that volΩ = Ω ∧ Θ(Ω) is a nowhere vanishing
volume form. By a theorem of Fernández and Gray [7], the holonomy condition translates
into the equations

dΩ = 0, dΘ(Ω) = 0. (1)

ForM compact, Hitchin [9] interpreted the second equation as the Euler–Lagrange equation
for the functional on positive 3–forms

Ω 7→
∫
M
volΩ

restricted to the cohomology class of a closed positive 3–form Ω0. Nevertheless, existence of
critical points is a delicate issue. Since Joyce’s seminal work [10] we know compact holonomy
G2–manifolds to exist, but a Yau–Aubin type theorem which guarantuees a priori existence
is yet missing.

A natural idea in this context is to look for a geometric evolution equation on the space
of positive 3–forms which evolves forms towards an Ω satisfying (1). In principle, this
makes sense for any “special metric” induced by an underlying form Ω satisfying equations of
type (1), such as PSU(3)– (cf. for instance [9], [13]) or Spin(7)–metrics (cf. for instance [10]).
However, we shall focus on G2 for two reasons. The set of positive 3–forms Ω is an open
subset of Ω3(M), and G2 acts transitively on the sphere. Both these features greatly simplify
technicalities.

A first candidate for a flow equation has been proposed in [3], where one uses the Laplacian
∆Ω induced by the G2–metric gΩ, namely

∂

∂t
Ω = ∆ΩΩ.
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Restricted to closed positive 3–forms, we can think of this flow as the gradient flow of
Hitchin’s functional. However, as we are going to show, the resulting flow equation is not
even weakly parabolic so that standard techniques do not apply directly. This is reminiscent
of the Einstein–Hilbert functional whose negative gradient flow fails to work on the same
grounds, a fact which subsequently led to the definition of Ricci flow. We thus consider the
Dirichlet energy functional

D : Ω 7→ 1
2

∫
M

(
|dΩ|2Ω + |dΘ(Ω)|2Ω

)
volΩ

whose absolute minima also satisfy (1). By appealing to the standard theory of quasilinear
parabolic equations and the so–called DeTurck trick as introduced in [5], we can prove for
the associated negative gradient flow the following

Theorem 1.1 Let Q = −gradD. Given a positive 3–form Ω0, there exists ε > 0 and a
smooth family of positive 3–forms Ω(t) for t ∈ [0, ε] such that{

∂Ω
∂t = Q(Ω), t ∈ [0, ε]

Ω(0) = Ω0

.

Furthermore, if Ω(t) and Ω′(t) are solutions to (15), then Ω(t) = Ω′(t) whenever defined.

Hence we can speak of the Dirichet energy flow for some initial value Ω0 defined on a
maximal time–interval [0, T ) for 0 < T ≤ ∞. End of lifetime analysis will be dealt with in
a forthcoming paper.

2 G2–structures

We recall some basic features of G2–geometry to fix notations. Good references are [2], [3],
[10] and [11].

There are two open GL(7)–orbits in Λ3R7∗, one of which is diffeomorphic to GL(7)/G2. We
denote this orbit by Λ3

+ and refer to its elements as positive forms. Since G2 is a subgroup
of SO(7), any Ω ∈ Λ3

+ induces an orientation and a Euclidean metric gΩ.

Let Ω3
+(M) denote the open set of sections of Λ3

+M , the fibre bundle associated with the
GL(7)–representation Λ3

+. Then Ω ∈ Ω3
+(M) induces a reduction of the frame bundle to a

principal G2–bundle. We also refer to the pair (M,Ω) as a G2–structure. Such a structure
(which exists if and only if the first and second Stiefel–Whitney class of M vanish) singles
out a principal SO(7)–bundle. Hence, Ω induces a well–defined global orientation and a
metric gΩ giving rise to a Hodge star operator ?Ω. Locally, one can find an orthonormal
frame (e1, . . . , e7) of TM such that

Ω = e127 + e347 + e567 + e135 − e146 − e236 − e245.

Such a frame will be referred to as a G2–frame.

The holonomy of the G2–metric gΩ is contained in G2 if and only if the underlying G2–form
Ω is parallel with respect to the Levi–Civita connection induced by gΩ, i.e. ∇gΩΩ = 0. In
this case we shall say that the G2–structure is torsion–free while we call (M,Ω) a holonomy
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G2–manifold if the holonomy of gΩ is actually equal1 to G2. In caseM is compact, a torsion–
free G2–structure has holonomy G2 if the fundamental group π1(M) is finite. By a theorem
of Fernández and Gray [7], torsion–freeness is equivalent to dΩ = 0 and d?Ω Ω = 0. The
latter equation can be viewed as the Euler–Lagrange equation of a non–linear variational
problem set up by Hitchin [9]. Consider the smooth GL(7)–equivariant map

φ : Ω ∈ Λ3
+ 7→ volΩ

Def= Ω ∧ ?ΩΩ ∈ Λ7R7∗,

whose first derivative at Ω evaluated on Ω̇ ∈ Λ3 is

DΩφ(Ω̇) =
7
3
?Ω Ω ∧ Ω̇. (2)

If M is compact, integrating φ gives the functional

Φ : Ω ∈ Ω3
+(M) 7→

∫
M
φ(Ω) = (Ω,Ω)Ω, (3)

where (· , ·)Ω denotes the induced L2–norm. In analogy with Hodge theory, we can ask for
critical points of this functional restricted to a fixed cohomology class. From (2) it follows
that a closed Ω is a critical point in its cohomology class if and only if d?ΩΩ = 0 holds, that
is (M,Ω) defines a torsion–free G2–structure.

3 Representation theory

Next we recall some elements of G2–representation theory. The material is standard or
follows from straightforward computations (cf. for instance [2], [4], [8] and [10]).

The group G2 acts irreducibly in its vector representation Λ1 ∼= R7 (in presence of a metric,
we tacitly identify vectors with their duals). This action extends to the exterior algebra in
the standard fashion, though Λp, the representation over p–forms, is no longer irreducible
for 2 ≤ p ≤ 5. More precisely, we have orthogonal decompositions

Λ2 = Λ2
7 ⊕ Λ2

14, Λ3 = Λ3
1 ⊕ Λ3

7 ⊕ Λ3
27,

where the subscript indicates the dimension of the irreducible module. We denote the
corresponding components by [αp]q. By equivariance, ? induces isomorphisms Λpq ∼= Λn−pq

from which an analogous decomposition of Λ4 and Λ5 follows. More precisely, we have

Λ2
7 = {α ∈ Λ2 | ? (α ∧ Ω) = 2α}, Λ2

14 = {α ∈ Λ2 | ? (α ∧ Ω) = −α} ∼= g2,

Λ3
7 = {?(X ∧ Ω) |X ∈ Λ1}, Λ3

27 = {α ∈ Λ3 | ? Ω ∧ α = 0, Ω ∧ α = 0}.
(4)

Note that Λ2
14 corresponds to the Lie algebra of g2 sitting inside so(7) ∼= Λ2, while Λ3

1 simply
consists of multiples of Ω. These characterisations are obtained from a routine application
of Schur’s lemma. For illustration, we derive for η ∈ Λ2 the identity2

(ηxΩ)xΩ = [η]7. (5)

Indeed, ηxΩ is a G2–equivariant map taking values in the irreducible module Λ1 = Λ1
7 so

that Λ2
14 ⊂ ker xΩ by Schur, whence ηxΩ = [η]7xΩ. Therefore, the identity (5) needs only

to be checked for one element in Λ2
7 (again by Schur). Fixing a G2–frame as in the previous

section, we find e1xΩ = e27 +e35−e46 ∈ Λ2
7. Hence (e1xΩ)xΩ = e1 and the assertion follows.

1This convention is by no means universal in the literature.
2Here, we adopt the convention of [4] for the metric contraction x: ΛkV ∗ ⊗ ΛlV ∗ → Λl−kV ∗, e.g.

e12xe12345 = e345 etc.
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Remark: If M is endowed with a G2–structure, these decompositions acquire global mean-
ing. Hence we can speak of Ωp

q–forms, where Ωp
q(M) = C∞(ΛpqT ∗M) are the smooth sections

of the bundles with fibre Λpq .

Next we pick a unit vector ξ ∈ Λ1. Since the unit sphere S6 is diffeomorphic with G2/SU(3),
ξ gives rise to an SU(3)–representation over ξ⊥, namely the real representation underlying
the complex vector representation C3. In particular, ξ⊥ carries a complex structure. In
terms of forms, the group SU(3) can be regarded as the stabiliser of a non–degenerate 2–
form ω and a complex volume form Ψ = ψ+ + iψ− ∈ Λ3,0ξ⊥. These forms relate to Ω and
?ΩΩ via

Ω = ω ∧ ξ + ψ+

?ΩΩ = ψ− ∧ ξ +
1
2
ω2.

Moreover, the decomposition of the exterior algebra over ξ⊥ into irreducibles is given by

λ1 = ξ⊥, λ2 = λ2
1 ⊕ λ2

6 ⊕ λ2
8, λ3 = λ3

1+ ⊕ λ3
1− ⊕ λ3

6 ⊕ λ3
12, (6)

where as above the numerical subscript keeps track of the dimension. We also use these
subscripts to denote the corresponding components of a form, e.g. γ ∈ λ3 can be decomposed
into the direct sum γ = γ1+⊕γ1−⊕γ6⊕γ12. The two trivial representations λ3

1± are spanned
by ψ+ and ψ− respectively, while λ2

8 corresponds to the Lie algebra of su(3) sitting inside
so(6) ∼= λ2. More importantly for our purposes, we can consider the decomposition of
the exterior algebra over Λ1 into SU(3)–irreducibles. Here, we shall denote by (n)pq the
n–dimensional irreducible SU(3)–representation inside Λpq . Then

Λ1 ∼= (1)1
7 ⊕ (6)1

7, Λ2 ∼= (1)2
7 ⊕ (6)2

7 ⊕ (6)2
14 ⊕ (8)2

14,

Λ3 ∼= (1)3
1 ⊕ (1)3

7 ⊕ (6)3
7 ⊕ (1)3

27 ⊕ (6)3
27 ⊕ (8)3

27 ⊕ (12)3
27,

so that no confusion shall occur. The decomposition of Λ3 is of particular importance for
the sequel. The occuring modules can be characterised as follows:

(1)3
1 = {a(ω ∧ ξ + ψ+) | a ∈ R},

(1)3
7 = {bψ− | b ∈ R},

(1)3
27 = {c(−4ω ∧ ξ + 3ψ+) | c ∈ R},

(6)3
7 = {(Xxψ−) ∧ ξ − (Xxω) ∧ ω |X ∈ ξ⊥},

(6)3
27 = {(Y xψ−) ∧ ξ + (Y xω) ∧ ω |Y ∈ ξ⊥},

(8)3
27 = {β8 ∧ ξ |β8 ∈ λ2

8}.

Therefore, any Ω̇ ∈ Λ3 can be written as

Ω̇ = [Ω̇]1 ⊕ [Ω̇]7 ⊕ [Ω̇]27

=
[
a(ω ∧ ξ + ψ+)

]
⊕
[
bψ− + (X0xψ−) ∧ ξ − (X0xω) ∧ ω

]
⊕
[
c(−4ω ∧ ξ + 3ψ+) + (Y0xψ−) ∧ ξ + (Y0xω) ∧ ω + β8 ∧ ξ + γ12

]
(7)

for constants a, b, c ∈ R, vectors X0, Y0 ∈ ξ⊥ and forms β8 ∈ λ2
8, γ12 ∈ λ3

12. In particular,
decomposing Ω̇ = β ∧ ξ + γ, where β and γ are the uniquely determined 2– and 3–forms in
Λ∗ξ⊥ such that ξxβ, γ = 0, we obtain

β = (a− 4c)ω ⊕ (X0 + Y0)xψ− ⊕ β8 (8)
γ = (a+ 3c)ψ+ ⊕ bψ− ⊕

(
(Y0 −X0)xω

)
∧ ω ⊕ γ12. (9)
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Thus β1 = (a− 4c)ω etc. For later applications, we need for X ∈ ξ⊥ the identities

?Ω

(
(Xxψ−) ∧ Ω

)
= Xxψ− + 2X ∧ ξ (10)

and
|Xxψ−|2 = 2|X|2, (11)

where we use the expressions ω = e12 + e34 + e56, ψ+ = e135 − e146 − e236 − e245 and
ψ− = e136 +e145 +e235−e246 with respect to a G2–frame (cf. [4]). Then (10) is proven along
the lines of (5), while (11) uses the transitive and isometric action of SU(3) on S5 so that
up to a rotation we may assume that X = |X|e1.

4 The Dirichlet energy functional

In the following, we shall always take the underlying manifold M to be closed.

The space Ω3
+(M) of positive 3–forms is open in Ω3(M) and we can equip the tangent space

TΩΩ3
+(M) ∼= Ω3(M) at Ω with the induced L2–metric

GΩ(Ω̇0, Ω̇1) =
∫
M
gΩ(Ω̇0, Ω̇1) volΩ =

∫
Ω̇0 ∧ ?ΩΩ̇1,

Ω̇0, Ω̇1 ∈ Ω3(M). Gradients will always be taken with respect to G. We also define a natural
non–linear differential operator of second order, namely

F : Ω ∈ Ω3
+(M) 7→ ∆ΩΩ = dδΩΩ + δΩdΩ ∈ Ω3(M). (12)

Here, δΩ is the codifferential induced by gΩ, i.e. for a form αp of degree p, we have

δΩ = (−1)p ?Ω d ?Ω α
p.

Definition 4.1 The Dirichlet energy functional D : Ω3
+(M)→ R is defined by

D(Ω) =
1
2
(
∆ΩΩ,Ω

)
Ω

=
1
2

(‖dΩ‖2Ω + ‖δΩΩ‖2Ω).

It follows that

D(Ω) =
1
2

∫
M

(
|dΩ|2Ω + |δΩΩ|2Ω

)
volΩ =

1
2

∫
M
dΩ ∧ ?ΩdΩ + δΩΩ ∧ ?ΩδΩΩ.

Remark: Since ?ϕ∗Ω = ϕ∗ ?Ω ϕ−1∗ for ϕ ∈ Diff(M), D is diffeomorphism invariant, i.e.
D(ϕ∗Ω) = D(Ω) for all ϕ ∈ Diff(M), Ω ∈ Ω3

+(M).

We compute the gradient of D next. To that end, we introduce the following piece of
notation. If A : Ω3

+(M) → E is any vector bundle valued differential operator and Ω ∈
Ω3

+(M), we write ȦΩ for the linearisation of A at Ω ∈ Ω3
+(M) evaluated on some 3–form Ω̇

tangent to Ω, i.e.
ȦΩ

Def= DΩA(Ω̇).

We illustrate this convention by two examples which will be needed later.
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Example: (i) Consider the map

Θ : Ω ∈ Ω3
+(M) 7→ ?ΩΩ ∈ Ω4(M).

By Prop. 10.3.5 in [10],

Θ̇Ω =
4
3
?Ω0 [Ω̇]1 + ?Ω[Ω̇]7 − ?Ω[Ω̇]27 = ?Ω(Ω̇ +

1
3

[Ω̇]1 − 2[Ω̇]27).

(ii) In continuation of the first example, we consider the map F : Ω3
+(M)→ Ω3(M) defined

in (12). Then

ḞΩ = ?̇Ωd ?Ω dΩ + ?Ωd?̇ΩdΩ + ?Ωd ?Ω dΩ̇− d?̇ΩdΘ(Ω)− d ?Ω dΘ̇(Ω)
(i)
= ?Ωd ?Ω dΩ̇− d ?Ω d ?Ω (Ω̇ +

1
3

[Ω̇]1 − 2[Ω̇]27) + terms of lower order in Ω̇

= ∆ΩΩ̇ + dδΩ(
1
3

[Ω̇]1 − 2[Ω̇]27) + terms of lower order in Ω̇. (13)

Lemma 4.2 We have

ḊΩ =
∫
M

Ω̇ ∧ ?Ω

(
∆ΩΩ +

1
3

[dδΩΩ]1 − 2[dδΩΩ]27 + q(dΩ)
)

for some smooth quadratic function q. In particular, the L2–gradient of D at Ω is

gradD(Ω) = ∆ΩΩ +
1
3

[dδΩΩ]1 − 2[dδΩΩ]27 + q(dΩ).

Proof: As in the previous example,

Ḋ =
1
2

∫
M
dΩ̇ ∧ ?ΩdΩ + dΩ ∧

(
?̇ΩdΩ + ?ΩdΩ̇

)
+

1
2

∫
M
dΘ(Ω) ∧

(
?̇ΩdΘ(Ω) + ?ΩdΘ̇Ω

)
+ dΘ̇Ω ∧ ?ΩdΘ(Ω)

=
∫
M
dΩ̇ ∧ ?ΩdΩ + dΘ̇Ω ∧ ?ΩdΘ(Ω)

+
1
2

∫
M
dΩ ∧ ?̇ΩdΩ + ?̇ΩdΘ(Ω) ∧ dΘ(Ω). (14)

Now ldΩ : Ω̇ 7→ ?̇ΩdΩ is a linear map from Ω3(M)→ Ω3(M) depending (linearly) on dΩ, so
that we can consider the formal adjoint l∗dΩ. Thus∫

M
dΩ ∧ ?̇ΩdΩ = GΩ

(
ldΩ(Ω̇), ?ΩdΩ

)
= GΩ

(
Ω̇, l∗dΩ(?ΩdΩ)

)
.

The second term in (14) is dealt with in a similar fashion. The last line is therefore of the
form

∫
M Ω̇ ∧ q(dΩ) with q quadratic in the first derivatives of Ω, as asserted. On the other

hand, Stokes implies∫
M
dΩ̇ ∧ ?ΩdΩ + dΘ̇Ω ∧ ?ΩdΘ(Ω) =

∫
M

Ω̇ ∧ d ?Ω dΩ− Θ̇Ω ∧ d ?Ω dΘ(Ω)

= GΩ(Ω̇, δΩdΩ) +GΩ(?ΩΘ̇Ω, dδΩΩ)

= GΩ(Ω̇,∆ΩΩ) +
1
3
GΩ([Ω̇]1, dδΩΩ)

= −2GΩ([Ω̇]27, dδΩΩ),

whence the assertion for [·]p is self–adjoint. �
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5 Short–time existence

>From now on, let
Q(Ω) = −gradD(Ω)

denote the negative gradient of D.

Definition 5.1 The Dirichlet energy flow with initial condition Ω0 ∈ Ω3
+(M) is the negative

gradient flow of D, i.e. a smooth family of positive 3–forms Ω(t) ∈ Ω3
+(M) such that

∂

∂t
Ω = Q(Ω), Ω(0) = Ω0. (15)

The goal of this section is to prove the existence part of the following

Theorem 5.2 Given Ω0 ∈ Ω3
+(M), there exists ε > 0 and a smooth family of positive

3–forms Ω(t) for t ∈ [0, ε] such that{
∂Ω
∂t = Q(Ω), t ∈ [0, ε]

Ω(0) = Ω0

.

Furthermore, if Ω(t) and Ω′(t) are solutions to (15), then Ω(t) = Ω′(t) whenever defined.

Hence we can speak of the Dirichet energy flow for some initial value Ω0 defined on a maximal
time–interval [0, T ) with 0 < T ≤ ∞.

We will prove short–time existence and uniqueness by invoking the standard theory of quasi-
linear parabolic equations which we briefly recall (cf. for instance Chapter 4.4.2 [1] or Chapter
4 in [12]). Consider a Riemannian vector bundle

(
E, (· , ·)

)
and a nonlinear partial differential

equation of the form
∂u

∂t
= Pt(u), (16)

where Pt : U ⊂ C∞(E)→ C∞(E) is a quasilinear second order differential operator defined
on an open subset U of C∞(E), possibly depending on time. More concretely, in terms of
local coordinates {xi} with partial derivatives ∂i and a local basis {sα} of E, one has

Pt(u)(x) loc=
(
aijαβ (t, x, u,∇u)∂i∂juβ + bα(t, x, u,∇u)

)
sα

for smooth functions aijαβ and bα. Fix u0 ∈ C∞(E) and compute Du0P0 : C∞(E)→ C∞(E),
the linearisation of P0 at u0. We say that equation (16) is strongly parabolic at u0 if the
linearisation of P0 at u0 is strongly elliptic, i.e. there exists λ > 0 such that(

σ(Du0P0)(x, ξ)v, v
)
≥ λ|ξ|2|v|2

for all x ∈ M , ξ ∈ T ∗xM and v ∈ Ex. If the symbol is merely positive semi–definite, we
call (16) weakly parabolic. Then:

Theorem 5.3 If equation (16) is strongly parabolic at u0, then there exists ε > 0 and a
unique smooth family u(t) ∈ C∞(E), t ∈ [0, t] such that{

∂u
∂t = Pt(u), t ∈ [0, ε]

u(0) = u0

.
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Returning to the mainstream development, we note that Q in (15) is a second–order quasi-
linear partial differential operator, as follows from Lemma 4.2. In view of theorem 5.3, it
remains to check parabolicity.

Lemma 5.4 The principal symbol of the linearisation DΩQ of Q at Ω ∈ Ω3
+(M),

σ(DΩQ)(x, ·) : T ∗M\{0} → End(Λ3T ∗xM),

is given by

σ(DΩQ)(x, ξ)Ω̇ = |ξ|2ΩΩ̇ + ξ ∧
(
ξx(

1
3

[Ω̇]1 − 2[Ω̇]27)
)

+
1
3
[
ξ ∧

(
ξx(Ω̇ +

1
3

[Ω̇]1 − 2[Ω̇]27)
)]

1

−2
[
ξ ∧

(
ξx(Ω̇ +

1
3

[Ω̇]1 − 2[Ω̇]27)
)]

27

where projections are taken with respect to Ω. In particular, the symbol is positive semi–
definite.

Proof: As the principal symbol involves highest order terms only, we need to linearise the
expression

Q(Ω) = −∆ΩΩ− 1
3

[dδΩΩ]1 + 2[dδΩΩ]27.

In our convention, σ(d)(x, ξ)Ω̇ = ξ ∧ Ω and σ(δΩ)(x, ξ)Ω̇ = −ξxΩ, where x denotes metric
contraction with respect to gΩ. Hence, from (13) and the standard symbolic calculus we get
the asserted symbol.

For the second assertion we may assume |ξ|Ω = 1. To keep notation tight we put µ(Ω̇) =
1
3 [Ω̇]1 − 2[Ω̇]27 and η(Ω̇) = ?ΩΘ̇Ω = Ω̇ + µ(Ω̇). Then

gΩ

(
σ(DΩQ)(x, ξ)Ω̇, Ω̇

)
= gΩ

(
Ω̇ + ξ ∧ (ξxµ) +

1
3

[ξ ∧ (ξxη)]1 − 2[ξ ∧ (ξxη)]27, Ω̇
)

= |Ω̇|2Ω + gΩ(ξxµ, ξxΩ̇) +
1
3
gΩ(ξxη, ξx[Ω̇]1)− 2gΩ(ξxη, ξx[Ω̇]27)

= |Ω̇|2Ω + gΩ(ξxµ, ξxΩ̇) + gΩ(ξxη, ξxµ)
= |Ω̇|2Ω + 2gΩ(ξxµ, ξxΩ̇) + |ξxµ|2Ω
= |Ω̇|2Ω + |ξxη|2Ω − |ξxΩ̇|2Ω
= |γ|2Ω + |ξxη|2Ω
≥ 0,

where we used the decomposition Ω̇ = β ∧ ξ + γ as in Section 3. �

Remark: By diffeomorphism invariance, we cannot expect the principal symbol to be
strictly positive–definite. Indeed, gΩ

(
σ(DΩQ)(x, ξ)Ω̇, Ω̇

)
= 0 if and only if |γ|2Ω, |ξxη|2Ω = 0.

From (9) we deduce a = −3c, b = 0,X0 = Y0 and γ12 = 0. Using this, (7) gives ξxη =
(X0 − Y0)xψ− − β8, hence X0 = Y0 and β8 = 0. Finally, (8) implies

kerσ(DΩQ)(x, ξ) = {(vω + V xψ−) ∧ ξ | v ∈ R, V ∈ ξ⊥}.
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This problem is reminiscent of what happens with Ricci flow where it is circumvented by
so–called DeTurck’s trick [5]. First we remark that for ϕ ∈ Diff(M)

ϕ∗Q(Ω) = Q(ϕ∗Ω) (17)

as D ◦ ϕ∗ = D and Gϕ∗Ω(Ω̇0, Ω̇1) = GΩ(ϕ−1∗Ω̇0, ϕ
−1∗Ω̇1). Thus, given a family of diffeo-

morphisms ∂tϕt = Xt ◦ ϕt induced by a (time–dependent) vector field Xt on M , differenti-
ating (17) yields the intertwining formula

LX
(
Q(Ω)

)
= DΩQ(LXΩ), (18)

where LX denotes Lie derivative with respect to X. While the left hand side of (18) is first
order in X, the right hand side, as the composition of a second with a first order operator,
is of third order in X. Hence, passing to symbol level, we find

σ(DΩQ)(x, ξ) ◦ σ(X 7→ LXΩ)(x, ξ) = 0 (19)

so that σ(X 7→ LXΩ)(x, ξ) takes values in the kernel of σ(DΩQ)(x, ξ). Put differently, we
can think of the symbol of the map

Ω ∈ Ω3
+(M) 7→ X(Ω) ∈ C∞(TM) 7→ Λ(Ω) = LX(Ω)Ω ∈ Ω3(M) (20)

where X(Ω) is a vector field depending non–trivially on the 1–jet of Ω, as a kind of projector
to the kernel of σ(DΩQ). Summarising, one expects the symbol of the modified operator

Q̃(Ω) = Q(Ω) + Λ(Ω) (21)

to have trivial kernel for a suitably chosen vector field. Given a fixed initial condition
Ω0 ∈ Ω3

+(M) we shall employ

XΩ0 : Ω3(M)→ Ω1(M), XΩ0(Ω) =
(
(δΩ0Ω)xΩ0

)
, (22)

where we contract and dualise with respect to the metric gΩ0 . Again, any distinction between
forms and (multi–) vectors will be dropped in presence of a fixed metric. We think of XΩ0

as a first order, linear differential operator.

Lemma 5.5 The operator Q̃ in (21) is strongly elliptic at Ω0 ∈ Ω3
+(M) for XΩ0 as in (22).

Proof: We need to compute the principal symbol of the linearisation of Λ at Ω0. Again we
take |ξ|Ω = 1. Firstly, since XΩ0 is linear, we find for the linearisation in virtue of Cartan’s
formula

Λ̇Ω0 = d
(
XΩ0xΩ0) + lower order terms in Ω̇,

whence

σ(DΩ0Λ)(x, ξ)Ω̇ = ξ ∧
(
σ(XΩ0)(x, ξ)Ω̇xΩ0

)
= ξ ∧

(
(ξxΩ̇)xΩ0xΩ0

)
.

Decomposing Ω̇ = β ∧ ξ + γ as above we therefore find using (5)

ξ ∧
(
(βxΩ0)xΩ0

)
= ξ ∧

(
([β]7xΩ0)xΩ0

)
= ξ ∧ [β]7.
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The projection of β onto Λ2
7 is given by

(
bearing in mind ?([β]14 ∧ Ω) = −[β]14 by (4)

)
[β]7 =

1
3
(
β + ?Ω0(β ∧ Ω0)

)
= β1 ⊕

1
3
(
β6 + ?Ω0(β6 ∧ Ω0)

)
(8), (10)

= β1 ⊕
2
3
(
(X0 + Y0)xψ− + (X0 + Y0) ∧ ξ

)
whence

ξ ∧ [β]7 = ξ ∧
(
β1 +

2
3

(X0 + Y0)xψ−
)
.

Consequently

gΩ0(Ω̇, ξ ∧ [β]7) = |β1|2 +
2
3
|(X0 + Y0)xψ−|2

so that the computation from Lemma 5.4 implies

gΩ

(
σ(DΩQ)(x, ξ)Ω̇, Ω̇

)
= |γ|2 + |ξxη|2 + |β1|2 +

2
3
|(X0 + Y0)xψ−|2. (23)

Now ξxη = σ⊕β8 with gΩ(σ, β8) = 0, while |β|2 = |β1|2 + |β6|2 + |β8|2 by (6). But (8) gives
|β6|2 = |(X0 + Y0)xψ−|2, whence

gΩ

(
σ(DΩQ)(x, ξ)Ω̇, Ω̇

)
≥ 2

3
(|β|2 + |γ|2) =

2
3
|Ω̇|2

by (23). �

Now by Theorem 5.3 we obtain uniqueness and short–time existence of the modified flow

∂

∂t
Ω̃ = Q̃(Ω̃), Ω̃(0) = Ω0. (24)

Finally:

Lemma 5.6 Let Ω̃(t) be a solution to the modified flow equation (24) with initial condition
Ω0. Let ϕt be the family of diffeomorphisms determined by ∂tϕt = −XΩ0

(
Ω̃(t)

)
◦ ϕt and

ϕ0 = IdM . Then Ω(t) = ϕ∗t Ω̃(t) is a solution to the Dirichlet energy flow (15) with same
initial condition Ω0.

Proof: By definition,

∂

∂t
Ω = ϕ∗t

( ∂
∂t

Ω̃ + L−XΩ0
(eΩ)

Ω̃
)

(21)
= ϕ∗tQ(Ω̃)

(17)
= Q(Ω).

Moreover, the initial condition is satisfied, for Ω(0) = Id∗MΩ0 = Ω0. �

Remark: A further natural flow to consider is the gradient flow attached to the Hitchin
functional Φ from Section 2. First, (2) and (3) show the L2–gradient of Φ to be

grad Φ(Ω) =
3
7

Ω.
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For closed Ω0 ∈ Ω3
+(M) we study the restriction of Φ to the cohomology class of Ω0 and

write Ω = Ω0 + dα for Ω ∈ [Ω0]. Let Φ0(α) = Φ(Ω). Its L2–gradient is grad Φ0(α) =
7
3δΩ0+dα(Ω0 + dα), which gives rise to the gradient flow equation

∂

∂t
α = δΩ0+dα(Ω0 + dα) (25)

subject to the initial condition α(0) = 0. On the other hand, we can study the non–linear
heat equation

∂

∂t
Ω = F (Ω) = ∆ΩΩ (26)

subject to Ω(0) = Ω0. Note that this flow preserves closedness of the initial condition,
i.e. if dΩ0 = 0, then dΩ(t) = 0 if defined. Furthermore, a closed initial condition induces
a 1–1 correspondence between solutions of (25) and (26): If α is a solution to (25), then
Ω = Ω0 + dα solves (26). Conversely, if Ω solves (26), then α( · , t) := −

∫ t
0 (δΩΩ)( · , τ)dτ is

a solution to (25) with Ω = Ω0 + dα.

Now by the example in Section 4 we have

σ(DΩF )(x, ξ)Ω̇ = |ξ|2ΩΩ̇ + ξ ∧
(
ξx(

1
3

[Ω̇]1 − 2[Ω̇]27)
)
. (27)

As before, the kernel is given by

kerσ(DΩF )(x, ξ) = {(vω + V xψ−) ∧ ξ | v ∈ R, V ∈ ξ⊥}.

However, Ω̇ = β8 ∧ ξ implies (taking |ξ|Ω = 1 for simplicity)

gΩ

(
Ω̇, Ω̇ + ξ ∧

(
ξx(

1
3

[Ω̇]1 − 2[Ω̇]27)
)

= −|β8|2Ω < 0

while for instance Ω̇ = 7cψ+ gives

gΩ

(
Ω̇, Ω̇ + ξ ∧

(
ξx(

1
3

[Ω̇]1 − 2[Ω̇]27)
)

= 49c2|ψ+|2Ω > 0.

Since by (19), the symbol of X 7→ LXΩ takes values in the kernel K = kerσ(DΩF ),
DeTurck’s trick cannot modify the component A = prK⊥ ◦ σ(DΩF )|K⊥ : K⊥ → K⊥ of
σ(DΩF ) : K ⊕K⊥ → K ⊕K⊥. Hence, the linearisation of Q̃ = Q+ Λ will be indefinite no
matter how the vector field X in (20) is chosen (though Q̃ might have trivial kernel). We
therefore deal with a heat equation of mixed forwards/backwards type for which short–time
existence is in general not expected.

6 Uniqueness

In the final section we settle the uniqueness part of Theorem 5.2.

We pursue a strategy along the lines of the uniqueness proof for Ricci flow. As shown by
Lemma 5.6, a solution of the modified flow Ω̃(t) with initial condition Ω̃(t) = Ω0 yields
a solution Ω(t) = ϕ∗t Ω̃(t) to the unmodified flow (15) by integrating the time–dependent
vector field

−XΩ0

(
Ω̃(t)

)
◦ ϕt =

∂

∂t
ϕt, ϕ0 = IdM . (28)
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Conversely, how can we build a solution of the modified flow (necessarily unique in virtue
of strong parabolicity)?

In the situation above we substitute Ω̃ by ϕ−1∗Ω and turn the ordinary differential equa-
tion (28) into the partial differential equation

∂

∂t
ϕt = −XΩ0

(
ϕ−1∗
t Ω(t)

)
◦ ϕt, ϕ0 = IdM . (29)

Remark: Equation (29) should be considered as an analogue of the harmonic map heat
flow

∂

∂t
ϕt = τg(t),g0

(ϕt)

introduced by Eells and Sampson [6], albeit with a time–dependent tension field τg(t),g0
(ϕt).

We can think of τg(t),g0
(ϕt) as a differential operator defined by Riemannian metrics g(t)

and g0 on M and taking a smooth map ϕ :
(
M, g(t)

)
→ (M, g0) to a section τg(t),g0

(ϕ) ∈
C∞(ϕ∗TM).

We claim that a curve ϕt ⊂ Diff(M) which solves (29) for some solution Ω(t) to (15) yields
a solution Ω̃(t) = ϕ−1∗Ω(t) to the modified flow (24). Indeed, let Yt ◦ ϕt = ∂tϕt be the
induced time–dependent vector field. Then differentiating the identity ϕ−1

t ◦ϕt = IdM with
respect to t gives

Yt(x) = −dϕt(x)ϕ
−1
t

(
−XΩ0

(
ϕ−1∗
t Ω(t)

)
◦ ϕt(x)

)
= ϕ−1

t∗ XΩ0

(
ϕ−1∗
t Ω(t)

)
(x), (30)

where for ϕ ∈ Diff(M) and X ∈ C∞(TM),

(ϕ∗X)(x) Def= dϕ−1(x)ϕ
(
X(ϕ−1(x)

)
.

As a consequence, we get

∂

∂t
ϕ−1∗Ω(t) = ϕ−1∗( ∂

∂t
Ω(t) + LYtΩ(t)

)
= Q

(
ϕ−1∗Ω(t)

)
+ Lϕt∗Ytϕ−1∗Ω(t)

= Q
(
ϕ−1∗Ω(t)

)
+ LXΩ0

(ϕ−1∗
t Ω(t))ϕ

−1∗Ω(t)

by (30).

We establish the existence of a solution to (29) next. Let

Pt = PΩ(t),Ω0
: ϕ ∈ Diff(M) ⊂ C∞(M,M) 7→ −dϕ

(
Xϕ∗Ω0

(
Ω(t)

))
∈ C∞(ϕ∗TM). (31)

In view of the functoriality of the definition of XΩ0

ϕ∗XΩ0

(
Ω(t)

)
= Xϕ−1∗Ω0

(
ϕ−1∗Ω(t)

)
,

whence
Pt(ϕ) = −ϕ∗Xϕ∗Ω0

(
Ω(t)

)
◦ ϕ = −XΩ0

(
ϕ−1∗Ω(t)

)
◦ ϕ,

or alternatively,

Pt(ϕ)(x) = PΩ(t),Ω0
(ϕ)(x) = Pϕ−1∗Ω(t),Ω0

(IdM )
(
ϕ(x)

)
. (32)
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Since Diff(M) is open in C∞(M,M), a solution to the flow equation

∂tϕt = Pt(ϕt), ϕ0 = IdM

gives us the desired solution to (29).

To get formally in a situation to apply Theorem 5.3, we choose an embedding f0 : M → Rn.
We keep on denoting by the same letter all tensors on M pushed forward to f0(M), i.e. we
write g for f0∗g etc. Let N be a tubular neighbourhood of f0(M) in Rn which we think of
as an open neighbourhood inside the normal bundle

π : νf0(M)→ f0(M).

By choosing a Riemannian metric h on the fibres, we obtain first the induced metric π∗g+h
on N and thus, by using a partition of unity, a metric on Rn which restricts to g on f0(M)
so that f0 is an isometry. Similarly, we extend Ω0 by π∗Ω0 to N and subsequently to Rn.
Then f∗Ω0 is still a positive 3–form on M for any f in a suitably small open neighbourhood
U of f0 ∈ C∞(M,Rn), and we can consider Pt as an operator

Pt : f ∈ U ⊂ C∞(M,Rn) 7→ −df
(
Xf∗Ω0

(
Ω(t)

))
∈ C∞(M,Rn).

We start by showing that Pt is a quasilinear, second order differential operator. Let y1, . . . , yn

be the standard coordinates on Rn. Further, we fix a chart U ⊂ M with coordinates
x1, . . . , x7 and partial derivatives ∂1, . . . , ∂7. Denote by ?ijkopqr the components of ?f∗Ω0 :
Ω3(U) 7→ Ω4(U) with respect to these coordinates. These depend on the components of
f∗Ω0 given by Ω0,αβγ∂lf

α∂mf
β∂nf

γ . Schematically,

?f∗Ω0Ω(t) loc= ?ijkopqr
(
Ω0,αβγ∂lf

α∂mf
β∂nf

γ
)
Ω(t)ijkdxopqr

so that by the chain rule

d ?f∗Ω0 Ω(t) loc=
(
aijopqrs,α(t, x,∇f)∂i∂jfα + bopqrs(t, x,∇f)

)
dxopqrs

for smooth coefficients a...... and b.... Finally, computing xf∗Ω0 after applying once more ?f∗Ω0

leads to(
?f∗Ω0 d ?f∗Ω0 Ω(t)

)
xf∗Ω0

loc= (Ω0)klm
(
ãijkl,α(t, x,∇f)∂i∂jfα + b̃kl(t, x,∇f)

)
dxm

which after dualising and contracting with df = ∂if
γdxi⊗∂yγ shows that Pt is a quasilinear,

second order differential operator.

Lemma 6.1 There exists ε > 0 and a smooth family of embeddings f(t) ∈ C∞(M,Rn),
t ∈ [0, ε] such that

∂

∂t
f(t) = Pt

(
f(t)

)
, f(0) = f0. (33)

Furthermore, f(t)(M) ⊂ f0(M) for all t.

Proof: First we identify M with its image f0(M) in Rn in order to keep notation tight.
Shrinking U if necessary we may assume that for f ∈ U , f(x) lies in a unique fibre νMy of
the normal bundle. To turn f into a section of νM we fix a connection ∇h compatible with
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the fibre metric h on νM whose induced parallel transport along the path γ we denote by
P∇hγ . Then

σ(f)(x) Def= P∇hγπ(f(x))→x
f(x),

where γπ(f(x))→x is the unique geodesic joining π
(
f(x)

)
and x (shrink U possibly further to

guarantuee existence and uniqueness of such a geodesic). In particular, σ(f0) identifies f0

with the zero section of νM .

Next consider minus the rough Laplacian −∆h = −∇h∗∇h : C∞(νM) → C∞(νM). This
is a strongly elliptic, linear second differential operator. Thus −∆h ◦ σ : C∞(M,Rn) →
C∞(νM) ⊂ C∞(M,Rn) is a quasilinear, second order differential operator, and so is

P̃t : f ∈ U ⊂ C∞(M,Rn) 7→ Pt(f)−∆hσ(f) ∈ C∞(M,Rn).

We wish to establish short–time existence and uniqueness of the associated flow equation

∂

∂t
f(t) = P̃t

(
f(t)

)
, f(0) = f0. (34)

To compute the linearisation Df0P̃0(Y ) we consider a curve fs ⊂ U through f0 with

Y (x) =
d

ds
fs|s=0(x) ∈ TxRn ∼= Rn.

We write Y ‖(x) and Y ⊥(x) for the projections of Y (x) to TxM and νMx. By design of the
extension of Ω0 over Rn (cf. our convention above),

ϕs
Def= π ◦ fs ∈ Diff(M)

satisfies f∗sΩ0 = ϕ∗sΩ0. Further,

d

ds
ϕs(x)|s=0 = dxπ

(
Y (x)

)
= Y ‖(x),

so that

d

ds
P0(fs)|s=0 = − d

ds
dfs
(
Xϕ∗sΩ0(Ω0)

)
|s=0

= − d

ds
dfs
(
ϕ−1
s∗ XΩ0(ϕ−1

s∗ Ω0)
)
|s=0

= X
(
LY ‖Ω0

)
+ terms of lower order in Y

= δΩ0(dY ‖xΩ0)xΩ0 + terms of lower order in Y.

For the linearisation of −∆h ◦ σ, we first assume Y to be tangent to M , i.e. Y (x) ∈ TxM ⊂
TxRn. Integrating Y yields a family fs such that σ(fs) is the zero section. On the other
hand, for Y normal to M , we take fs such that the curves fs(x) are contained in the fibres
νMx. Thus π

(
fs(x)

)
= x, whence σ(fs) = fs and ∆hσ(fs) = ∆hfs. Consequently, for

general Y = Y ‖ + Y ⊥ we find

Df0∆h ◦ σ(Y ) = ∆hY ⊥,

for ∆h is linear. Finally, it follows that the symbol of the linearised operator Df0P̃0 is

σ(Df0P̃0)(x, ξ)Y = −
(
ξx
(
ξ ∧

(
Y ‖(x)xΩ0(x)

)))
xΩ0(x) + |ξ|2Ω0

Y ⊥(x).
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To check strong ellipticity we assume |ξ|Ω0 = 1 and write Y ‖(x) = aξ+Y0 for a ∈ R, Y0 ∈ ξ⊥
and Ω0(x) = ω ∧ ξ + ψ+. Then Y ‖xΩ0(x) = aω + Y0xψ+ + (Y0xω) ∧ ξ. To keep notation
tight we omit x, so that

gΩ0

(
σ(Df0P̃0)(x, ξ)Y, Y

)
= −gΩ0

((
ξx
(
ξ ∧

(
Y ‖xΩ0

)))
xΩ0, Y

‖)+ |Y ⊥|2Ω0

= gΩ0

(
Ω0,

(
ξx
(
ξ ∧ (Y ‖xΩ0)

))
∧ Y ‖

)
+ |Y ⊥|2Ω0

= gΩ0

(
Y ‖xΩ0, ξx

(
ξ ∧ (Y ‖xΩ0)

))
+ |Y ⊥|2Ω0

= gΩ0

(
aω + Y0xψ+ + (Y0xω) ∧ ξ, aω + Y0xψ+

)
+ |Y ⊥|2Ω0

= 3|a|2 + |Y0xψ+|2 + |Y ⊥|2Ω0

(11)
= 3|a|2 + 2|Y0|2 + |Y ⊥|2Ω0

≥ |Y |2Ω0
.

Theorem 5.3 applies once again to yield short–time existence and uniqueness of (34).

Last we show that a solution f(t) to (34) satisfies f(t)(M) ⊂M . Since in this case, σ
(
f(t)

)
is just the zero section of νM so that ∆hσ

(
f(t)

)
= 0, we also obtain the desired solution

to (33). First we remark that r ∈ End νM which is multiplication by −1 along the fibres
commutes with P̃t in the sense that P̃t ◦r = dr◦ P̃t. This is clear for Pt as (r◦f)∗Ω0 = f∗Ω0.
Furthermore, r commutes with ∆h ◦ σ by definition of σ and the linearity of ∆h. Since the
action of r and dr coincide on the fibres of νM , we can replace r by dr. Now if f(t)(M)
were not contained in M , r ◦ f would yield a second solution, contradicting uniqueness. �

In particular, for a given Dirichlet energy flow Ω(t), a solution f(t) ∈ U to (31) yields a
solution ϕ(t) = f−1

0 ◦ f(t) ∈ Diff(M) to (29). From there, uniqueness easily follows:

Corollary 6.2 Suppose that Ω(t) and Ω′(t) are two solutions to (15) for t ∈ [0, ε], ε > 0. If
Ω(0) = Ω0 = Ω′(0), then Ω(t) = Ω′(t) for all t ∈ [0, ε].

Proof: Solving for (29) with PΩ(t),Ω0
, PΩ′(t),Ω0

gives two flows ϕt and ϕ′t so that Ω̃(t) =
ϕ∗tΩ(t) and Ω̃′(t) = ϕ′∗t Ω′(t) define a solution to (24) with initial value Ω0. By uniqueness of
the modified flow we find Ω̃(t) = Ω̃′(t). But then (32) implies both ϕt and ϕ′t to be solutions
of the ordinary differential equation

∂

∂t
ψt = PeΩ(t),Ω0

(IdM ) ◦ ψt. (35)

By uniqueness of the solution to (35), we conclude ϕt = ϕ′t, whence Ω(t) = Ω′(t). �
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