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1. Investigation on the Binding Affinity of Nitrilotiracetato (NTA) 

Metal Complexes to Histidine, Imidazole and Lysozyme by Isothermal 

Titration Calorimetry
i
 

 

Reversible coordinative binding of Lewis basic donors to iminodiacetato (IDA) and 

nitrilotriacetato (NTA) metal complexes is widely used for the design of synthetic 

receptors binding to peptides, proteins or enzymes at physiological conditions. 

However, no data on the affinity of M(II)-NTA (M = Cu, Ni, Zn) to a single histidine or 

imidazole moiety are available. We herein report the investigation of the binding 

affinity and thermodynamics of copper(II), nickel(II) and zinc(II) NTA complexes to 

histidine, imidazole and hen egg white lysozyme, bearing a single surface exposed 

histidine unit, by isothermal titration calorimetry at physiological conditions. Further, 

we describe a peptide-metal complex hybrid approach to enhance the binding affinity of 

Cu(II)-NTA to lysozyme. 

 

                                                 
i S. Stadlbauer, B. König Inorg. Chim. Acta 2009, submitted. 
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1.1 Introduction 

 

Immobilized metal (ion) affinity chromatography (IMAC) reported 1975 by Porath et 

al. is a common method in protein purification.1 Typical examples for coordination 

compounds employed in this technique are iminodiacetato (IDA) and nitrilotriacetato 

(NTA) metal complexes.2 

 On the other hand, the selective and reversible binding of biomolecules to IDA 

and NTA complexes is used in the design of synthetic receptors binding to peptides, 

proteins or enzymes at physiological conditions. Several of such receptors for selective 

enzyme inhibition3 or for protein/peptide sensing4 have been reported.  

We recently investigated the interaction of M(II)-cyclen (M = Zn, Cd) and 

M(II)-IDA / M(II)-NTA (M = Cu, Ni) complexes to imidazole by potentiometric 

titration.5 Surprisingly, to the best of our knowledge, no other thermodynamic binding 

affinity data of imidazole or histidine to simple NTA metal complexes in aqueous 

solution are available in the literature.  

Thus we determined the binding affinity, stoichiometry and the thermodynamics 

of the interaction of histidine and imidazole to M(II)-NTA (M = Cu, Ni, Zn) by 

isothermal titration calorimetry (ITC). Furthermore, we were interested whether the 

interaction of imidazole and M(II)-NTA is of sufficient strength for protein binding by a 

single coordinative bond. To test this hypothesis, we chose the well-established hen egg 

white lysozyme (HEWL),6 which bears only one surface exposed histidine.7  

In a previous study we demonstrated an enhanced peptide β-sheet affinity in DMSO 

solution using a combination of peptide β-sheet binding methoxypyrrole amino acids 

(MOPAS) and Zn(II)-NTA as an anchor to the histidine containing target peptide.8 This 

inspired us after the evaluation of the affinity of M(II)-NTA metal complexes 1–3 to 

lysozyme to prepare a Cu(II)-NTA complex 4 modified by an amino acid sequence 

taken from the monoclonal HEWL antibody Hy-HEL 10 Fv. We expected that the 

tethered copied antibody sequence may enhance the Cu(II)-NTA affinity to lysozyme. 
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Figure 1. Structures of investigated NTA metal complexes in this study: Cu(II)-NTA 1, 
Ni(II)-NTA 2, Zn(II)-NTA 3 and by monoclonal antibody sequence modified Cu(II)-
NTA 4. 
 

 

1.2 Results and Discussion 

1.2.1 M(II)-NTA titration to histidine 

 

The binding affinity of M(II)-NTA 1 – 3 to histidine (H-His-OMe) was investigated. 

The ITC data reveal a 1:1 binding process between histidine and the octahedral NTA 

complex: Two metal complex coordination sites are occupied by the α-amino group and 

the imine imidazole nitrogen atom of histidine as shown in Scheme 1.2, 9 The binding 

constants of 1 – 3 to histidine exceeded the milli molar range and decreased in 

accordance to the Lewis acidity of the metal ions in the order Cu2+ (d8) > Ni2+ (d9) > 

Zn2+ (d10).10 All ITC data are summarized in Table 1. 
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Scheme 1. Reversible bidental binding of H-His-OMe to NTA-M (M = Cu2+, Ni2+, 

Zn2+). 
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Figure 2. ITC binding isotherms for the interaction of M(II)-NTA to histidine. 
a) [1] = 60 µM, [H-His-OMe] = 3.75 mM. b) [2] = 1.0 mM, [H-His-OMe] = 25 mM, 
c) [3] = 1.0 mM, [H-His-OH] = 25 mM. 
 

 

1.2.2 M(II)-NTA titration to imidazole 

 

The binding of imidazole to the metal complexes was investigated analogously. 

Although there are two available coordinations sites of the NTA metal complex2, 9 

under the conditions of our investigation 1:1 aggregates were determined, which is in 

accordance with our earlier potentiometric measurements (Scheme 2).5 Only the Cu(II)-

NTA – imidazole interaction is strong enough to give good ITC data from which a 

binding constant of lg K = 4.2 was calculated (Figure 3). The interactions of imidazole 

with Ni(II)- and Zn(II)-NTA are too weak for ITC analysis and estimated to be smaller 

than milli molar (lg K < 3). 
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Scheme 2. Reversible binding of imidazole to M(II)-NTA (M = Cu2+, Ni2+, Zn2+). 
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Figure 3. ITC binding isotherms for the interaction of Cu(II)-NTA to imidazole. 
Measurement conditions: [1] = 1 mM, [imidazole] = 17.5 mM. 
 
 

1.2.3 M(II)-NTA titration to lysozyme 

 

Having investigated the affinity of NTA complexes 1 – 3 to histidine and imidazole, the 

binding affinity to hen egg white lysozyme (HEWL) in buffered aqueous solution was 

determined (Figure 4). As expected, the affinity correlated with the Lewis acidity of the 

NTA complex and a binding to the surface exposed histidine (His15) of lysozyme was 

only observable with milli molar affinity (lgK = 3.3) for Cu(II)-NTA (Figure 4a). The 

measurements using the corresponding nickel and zinc complexes did not show a 

significant ITC signal and the affinity under the experimental conditions is certainly 

lower than milli molar (Figure 4b).11  



1. Investigation on the Binding Affinity of NTA Metal Complexes to Histidine, Imidazole and Lysozyme by ITC 

 

 6 

 

a b 

0 2 4 6 8 10

-2,0

-1,5

-1,0

-0,5

0,0

-3

-2

-1

0

0 10 20 30 40 50 60 70 80 90 100110120

Time (min)

µ
c
a

l/
s
e

c

Molar Ratio

k
c
a

l/
m

o
le

 o
f 

in
je

c
ta

n
t

  

0 2 4 6 8 10

-1,0

-0,9

-0,8

-0,7

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0,0

-1,0

-0,5

0,0

0 10 20 30 40 50 60 70 80 90 100110120

Time (min)

µ
c
a

l/
s
e

c
Molar Ratio

k
c
a

l/
m

o
le

 o
f 

in
je

c
ta

n
t

 

Figure 4. ITC binding isotherms for the interaction for M(II)-NTA to HEWL. 
Measurement conditions: a) [HEWL] = 0.25 mM, [1] = 10 mM. b) [HEWL] = 
0.25 mM, [2] = 10 mM. 
 
 
 

  Cu(II)-NTA Ni(II)-NTA Zn(II)-NTA
10 

n 1.11 ± 0.01 0.87 ± 0.07 1.44 ± 0.07  
lgK 4.59 ± 0.01 3.76 ± 0.15 3.25 ± 0.07 
∆H  – (12.23 ± 0.14) – (3.71 ± 0.42) – (0.079 ± 0.001) 

 

 

histidine 
Τ∆S  – 5.77 1.42 4.34 

 ∆G – 6.46 – 5.13 – 4.42 
     

n 1.16 ± 0.01   
lgK 4.18 ± 0.04 < 3 < 3 

∆H  – (6.68 ± 0.10)   

 

 

imidazole 
Τ∆S  – 0.89   

 ∆G – 5.79   
     

n 1   
lgK  3.27 ± 0.01 < 3 < 3 
∆H  – (5.85 ± 0.06)   

 

 

lysozyme 
Τ∆S  – 1.39   

 ∆G – 4.46   
 

Table 1. Stoichiometry (n), binding constant (lgK), enthalpy (∆H, kcal mol-1), entropy 
(T∆S, kcal mol-1) and free energy (∆G, kcal mol-1) for the interaction of 1 – 3 to 
histidine, imidazole and HEWL at physiological conditions (50 mM HEPES, pH 7.5, 
25 °C). 
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1.2.4 Modified Cu(II)-NTA (4) titration to lysozyme 

 

As the affinity of Cu(II)-NTA to lysozyme was found to be milli molar, we were 

interested in modifying 1 in order to increase its binding affinity. Figure 1 shows a 

crystal structure of antigen – antibody complex of HEWL and antibody Hy-HEL 10 

Fv.12 Utilizing Cu(II)-NTA as anchor group to the lysozymes surface, we reason that a 

tethered short amino acid sequence of the monoclonal antibody to 1 will increase the 

overall affinity (Figure 6a). The amino acids Ser91, Asn92, Ser93, Trp94, Pro95 and 

Tyr96 are located in the variable region of the monoclonal antibody with an 

approximate distance of 15 – 17 Å to His15 (Figure 6b). All amino acids beside proline 

are known to interact through hydrogen bonds, salt bridges and water mediated 

hydrogen bonds with lysozyme in solid state.13 Compound 4 was prepared by solid 

phase peptide synthesis as described in scheme 1 (For detailed synthetic procedures see 

Experimental Part). 

 

 

 
Figure 5. Schematic model of monoclonal antibody Hy-HEL 10 Fv - HEWL complex: 
Schematic protein structure of hen egg white lysozyme (white, blue, red), variable 
region of immunoglobulin heavy chain (VH) (green), variable region of 
immunoglobulin light chain (VL) (magenta), surface exposed histidine His15 
(yellow).12 
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a) b) 

  

Figure 6. a) Cu(II)-NTA (blue) acting as an anchor recognizes lysozymes surface 
exposed His15 (grey), the spacer GABA (yellow) positions the antibody sequence 
Ser91-Asn92-Ser93-Trp94-Pro95-Tyr96 (red) to the lysozyme epitope (green) allowing 
hydrogen bonding or ionic interactions. b) Detail view on the supposed binding epitope 
of lysozyme and 4. 
 
ITC investigations of the binding affinity of compound 4 to lysozyme were hampered 

by a significant background heat of solvation of the hybrid compound. Although 

background corrected titration data indicate an interaction of 4 with lysozyme, the 

peptide appendix does certainly not enhance the binding affinity significantly if 

compared to the parent Cu-NTA complex 1. 

 

 

1.3 Conclusion 

 
We have investigated the binding affinity of M(II)-NTA (M = Cu, Ni, Zn) complexes to 

histidine, imidazole and lysozyme by isothermal titration calorimetry. The strength of 

the interaction correlated to the Lewis acidity of the metal complex (Cu2+ > Ni2+ > 

Zn2+). The NTA – histidine binding just exceeds the milli molar range for the 

investigated copper, nickel and zinc complexes. Only the Cu(II)-NTA complex binds to 

imidazole and to a surface exposed histidine residue of hen egg white lysozyme with 

sufficient affinity to be determined by ITC. An attempt to enhance the binding affinity 

of the Cu(II)-NTA complex to the lysozyme surface by covalent modification with a 

short lysozyme antibody sequence was not successful.  
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1.4 Experimental Part 

1.4.1 General methods and Material  

 
Nitrilotriacetic acid (Fluka), Cu2(CO)3(OH)2 (Alfa Aesar), NiCO3 ·  2NiOH(OH)2 

·  4H2O (Alfa Aesar), Zn(NO3)2 ·  6H2O (Sigma Aldrich), imidazole (Fluka), hen egg 

white lysozyme E.C. 3.2.1.17 (Sigma Aldrich), 4-(2-Hydroxyethyl)piperazine-1-

ethanesulfonic acid (HEPES) (Fluka), N-(9-fluorenylmethoxy-carbonyloxy)-succinimid 

(Fmoc-OSu) (Sigma Aldrich), rink amide resin MBHA (novabiochem), piperidine (iris 

biotech), dimethylformamide (DMF) (iris biotech), Fmoc amino acids (novabiochem), 

trifluoroacetic acid (TFA) (Fluka), triisopropylsilane (TIS) (novabiochem), 1,3–

diisopropylcarbodiimide (DIC) (Sigama Aldrich), 1-hydroxybenzotriazole (HOBt) 

(Sigama Aldrich), 4-aminobutyric acid (GABA) (novabiochem) for preparation of 5, H-

Glu(OBzl)-OtBu · HCl (bachem) for preparation of 7 were bought and used without 

further purification. Analytical control of the synthesized compounds was done by 

common methods. Melting Points were determined on Büchi SMP or a Lambda 

Photometrics OptiMelt MPA 100. IR Spectra were recorded with a Bio-Rad FTS 2000 

MX FT-IR and Bio-Rad FT-IR FTS 155. Electro spray mass spectra were performed on 

a Finnigan MAT TSQ 7000 ESI-spectrometer. NMR spectra were recorded on Bruker 

Avance 600 (1H: 600.1 MHz, 13C: 150.1 MHz, T = 300 K), Bruker Avance 400 (1H: 

400.1 MHz, 13C: 100.6 MHz, T = 300 K) or Bruker Avance 300 (1H: 300.1 MHz, 13C: 

75.5 MHz, T = 300 K) relative to external standards. 

 

 

1.4.2 Isothermal calorimetry titration data 

 

All ITC experiments were performed in buffered aqueous solution (HEPES, 50 mM, 

pH 7.5, ionic strength [NaCl] = 0.15 mM) at 25 °C using an ultrasensitive VP-ITC 

calorimeter from MicroCal (Northampton, MA, U.S.A.). The solution of titrant in the 

300 µL syringe and the solution for the 1.436 mL calorimetric cell were prepared from 

stock buffer solution (HEPES, 50 mM, pH 7.5). Before each titration both experimental 

solutions (titrant, cell) were thoroughly degassed under vigorous stirring. During the 

ITC experiment the cell solution was stirred at 300 rpm by syringe to ensure rapid 

mixing and 60 x 5 µL of titrant were injected over 10 s with a spacing time between 

each injection of two minutes in order to allow complete equilibration. Before data 
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analysis the total observed heat of binding was corrected for the heat of dilution 

yielding the effective heat of binding. Therefore an analogue ITC experiment with the 

calorimeter cell filled with HEPES and titrant was carried out. The data were analyzed 

by non linear fitting methods using the MicroCal Origin software (Windows based). 

The values for the binding stoichiometry (n) and the thermodynamic parameters of 

interaction: enthalpy of binding (∆H) and binding constant (lgK), and, consequently, 

free energy change (∆G) and entropy change (T∆S) were obtained using a “one-set of 

site” model for the fitting routine.  

 

 

ITC - binding isotherm for the interaction of compound 4 to HEWL: 
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Figure 7. ITC - binding isotherm for the interaction of 4 to HEWL. Measurement 
conditions: [4] = 0.20 mM, [HEWL] = 4.5 mM. Obtained calculated data: n = 1, 
lgK= 3.57 ± 0.04, ∆H = – (2.34 ± 0.09) kcal mol-1, T∆S = 2.54 kcal mol-1, ∆G = – 4.88 
kcal mol-1.. 
 
 

1.4.3 Emission titration of M(II)-NTA (M = Cu, Ni, Zn) and lysozyme (HEWL) 

 
Fluorescence measurements were performed in 1 cm quartz cuvettes (Hellma) and 

recorded on a Varian ‘Cary Eclipse’ fluorescence spectrophotometer with temperature 

control. 
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Instrument Parameters 

Excitation wavelength: λex = 305 nm  

Detection wavelength: λ = 320 – 600 nm 

Temperature:   T = 298 K 

PMT voltage    600 volts     

 

Titration conditions: 

Solvent: 50 mM HEPES buffer, pH 7.5, ionic strength [NaCl] = 0.154 M  

Starting volume: 2.5 mL 

Concentration [metal complex]: 16.2 – 17.4 mM 

Concentration [lysozyme]: 0.5 mM 

 

Procedure: 

To a cuvette with 2.5 mL of lysozyme in HEPES buffer were added 20 µL (≙ 0.3 eq) 

aliquots of the M(II)-NTA (M = Cu, Ni, Zn) solution. After each addition the solution 

was allowed to equilibrate and the emission intensity was recorded. To determine the 

binding constant the obtained fluorescence intensities were volume corrected, plotted 

against the concentration of peptide and evaluated by non linear fitting methods. 
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Figure 8. Emission titration of lysozyme and Cu(II)-NTA 1: [HEWL] = 0.5 mM, 
[1] = 16.4 mM. Upon addition of 1 the emission intensity (λ = 344 nm) of lysozyme 
decreased. 
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Figure 9. Emission titration of lysozyme and M(II)-NTA (M = Cu, Ni, Zn) 
(50 mM HEPES pH 7.0, [HEWL] = 0.5 mM, [1] = 17.4 mM,  [2] = 17.7 mM, 
[3] = 17.3 mM.  
 

 

1.4.4 Synthesis 

1.4.4.1 Literature known compounds 
Nitrilotriacetato metal complexes 1

5, 2
5 and 3

14, H-His-OMe15 were synthesised 

according to literature known procedures. Fmoc-γ-amino butyric acid (Fmoc-GABA-

OH) 5
16 and 2-(bis-tert-butoxycarbonylmethyl-amino)-pentanedioic acid 1-tert-butyl 

ester (GluNTA-OH) 617
 used in the synthesis of the Cu(II)-NTA 4, which was modified 

by an amino acid sequence of the lysozyme antibody, were prepared as previously 

reported. 
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Analytical control of prepared NTA complexes 1 – 4 by mass spectroscopy (ESI) 
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Compound 3 

 

 
Compound 7 
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Compound 4 
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1.4.4.2 Solid phase synthesis protocol of compound 7 
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Scheme 3. Solid phase peptide synthesis protocol for the preparation of modified 
Cu(II)-NTA 4 to enhance its binding affinity to lysozyme. 
 

SPPS-Protocol 

Loading. 400 mg of rink amide MBHA (loading 0.70 mmol/g) resin was preswollen in 

3 ml CH2Cl2 and DMF respectively, for 1 h in a syringe, then the solution was filtered 

off.  

Fmoc-Deprotection. The preswollen Fmoc protected resin was treated with 3 mL 20 % 

piperidine in DMF and the mixture was shaken for 20 min. The deprotection step was 

repeated two times. Then the resin was washed thoroughly with DMF. The Fmoc-

deprotection of the Fmoc-protected amino acids after the coupling steps was done by 

the same procedure. 

Coupling of Fmoc AAs. The Fmoc-AA (1.4 mmol, 5 eq), DIC ( 217 µL, 1.4 mmol, 5 eq) 

and HOBt (189 mg, 1.4 mmol, 5eq) were dissolved in 3 ml DMF. Subsequently the 
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coupling mixture was added to the resin (preswollen in DMF) and the syringe was 

shaken. After coupling step was completed the solution was filtered off and the resin 

was washed four times with DMF. Then Fmoc-GABA-OH 5 and GluNTA-OH 6 were 

coupled to the peptide sequence (Ser91-Asn92-Ser93-Trp94-Pro95-Tyr96) as described 

above. Compound 6 was coupled with an excess of 2 eq only. The progress of the 

synthesis was monitored by the Kaiser test.18  

Cleavage. The resin placed in the syringe was washed several times successively with 

DMF, acetic acid and dichloromethane. In order to shrink the resin it was washed 

further with ether. The resin was filled in a flask and dried in high vacuum for 4 h. A 

mixture of 5 mL of TFA solution (95 % TFA, 2.5 % TIS, 2.5 % H2O) was given to the 

dry resin and the mixture was shaken for 24 h at rt. The resin was removed by filtration 

and washed twice with TFA. Combined filtrates were concentrated under reduced 

pressure and the crude product 7 was precipitated with ice cold ether.  

Purification. Crude compound 7 (concentration 10.2 mg/mL) was purified by 

preparative HPLC on a LabID75 Phenomenex Luna column (250 x 21.2 mm 10 um / 

Ser.Nr. 164449-1) at a flow rate of 22 mL/min, injection volume 400 µL with a H2O / 

acetonitrile (+ 0.0059 % TFA) gradient (0 min: 3 % acetonitrile, 35 min: 58 % 

acetonitrile, 40 min: 95 % acetonitrile, 50 min: 95 % acetonitrile). Retention time of 7 

was 20.5 - 21.3 min. 

 

Analytical control of GluNTA-GABA-Ser-Asn-Ser-Trp-Pro-Tyr-NH2 (7)  

MS (ESI(+), H2O/acetonitrile /TFA): m/z (%) = 560.9 (100) [MH+ + K+]2+, 572.4 (20) 

[M + K+]2+, 1082.7 (3) [MH+], 1104.9 (2) [MNa+], 1120.6 (3) [MK+]. 

MF: C48H63N11O18 – FW: 1082.10 g/mol 
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1.4.4.3 Glu-CuNTA-GABA-Ser-Asn-Ser-Trp-Pro-Tyr-NH2 (4) 

Compound 7 (13 mg, 10.9 µmol) was dissolved in water (1 mL) and a few drops MeOH 

and heated to 40 °C. Subsequently an aqueous solution of NaHCO3 (100 mM, 435 µL, 

43.5 µmol) was added and the mixture was stirred for additional 10 min. Following an 

aqueous solution of CuCl2 (100 mM, 109 µL, 10.9 µmol) was added and the reaction 

mixture was stirred at 40 °C overnight (17 h). The resulting greenish-blue solution was 

concentrated under reduced pressure and lyophilized, yielding 4 (15.5 mg, 10.5 µmol, 

96 %) as a turquoise solid.  

MS (ESI(–), H2O/MeOH + 10 mmol/L NH4Ac): m/z (%) = 570.4 (100) [M- - H+]2-, 

581.3 (25) [M- - 2 H+ + Na+]2-, 1141.5 (9) [M-], 1163.5 (6) [M- - H+ + Na+]-. 

MF: M-: C48H60N11O18Cu – FW: 1142.61 g/mol 
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2. Utilizing Reversible Copper(II) Peptide Coordination in a Sequence 

Selective Luminescent Receptor
i
 

 

Although vast information about the coordination ability of amino acids and peptides to 

metal ions is available, little use of this has been made to rationally design selective 

peptide receptors. We have combined a copper(II)nitrilotriacetato (NTA) complex with 

an ammonium-ion sensitive and luminescent benzocrown ether.
ii
 This compound 

revealed a micromolar affinity and selectivity for glycine and histidine containing 

sequences
iii

, which closely resembles that of copper(II) ion peptide binding: The two 

free coordination sites of the copper(II) NTA complex bind to imidazole and amido 

nitrogen atoms, retracing the initial coordination steps of non-complexed copper(II) 

ions. The benzocrown ether recognizes intramolecularly the N-terminal amino moiety 

and the significantly increased emission intensity signals the binding event, as only if 

prior coordination of the peptide has taken place, the intramolecular ammonium ion – 

benzocrown ether interaction is of sufficient strength in water to trigger an emission 

signal. Intermolecular ammonium ion – benzocrown ether binding is not observed. 

Isothermal titration calorimetry confirmed the binding constants derived from emission 

titrations. Thus, as deduced from peptide coordination studies, the combination of a 

truncated copper(II) coordination sphere and a luminescent benzocrown ether allows for 

the more rational design of sequence selective peptide receptor.  

 

                                                 
i
 S. Stadlbauer, A. Riechers, A. Späth, B. König Chem. Eur. J. 2008, 14, 2536 – 2541. 

ii
 Benzocrown ether 3 was synthesized by Andreas Späth. 

iii
 Parts of the peptide library were synthesized by Alexander Riechers in his Diploma thesis. 
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2.1 Introduction 

 

The development of peptide chemosensors and the sequence-specific recognition of 

peptides by synthetic receptors under physiological conditions still remains a 

challenging task. Recently reported approaches used porphyrines,
1
 helix mimics,

2
 crown 

ethers
3
 or short peptides with guanidiniocarbonyl pyrroles

4
 as binding sites to 

specifically recognize peptidic structures. Although peptide to metal ion coordination 

has been studied in detail from a physicochemical and inorganic perspective,
5
 

applications of reversible coordination in peptide recognition are rare.
6
 Recent examples 

are Anslyn´s
7
 use of cooperative metal coordination and ion-pairing for tripeptide 

recognition and zinc(II)-dipicolylamine-stilbazoles, which were applied in the specific 

detection of phosphorylated peptides.
8
  

Systematic studies on peptide metal complexes date back to the 1950s and 

potentiometric, structural
9
 and spectroscopic

10
 investigation have been reported in 

detail.
11

 Copper(II), nickel(II) and zinc(II) are by far the most studied metal ions in 

peptide complexes. The ability of a peptide to act as a ligand strongly depends on the 

amino acid sequence, with imidazole, carboxylate, deprotonated amide and amino 

groups as typical donor sites. The binding specificity to metal ions has been used in the 

development of ion selective electrodes
12

 and fluorescent metal ion chemosensors for 

zinc
13

 or copper
14

 ions. Peptide metal complexes themselves have been utilized in DNA 

and RNA recognition
15

 and cleavage.
16

  

We have now set ourselves the goal of using the well studied metal ion 

complexation by peptides for the rational design of peptide sequence specific receptors. 

To this end the metal ion is replaced by a stable metal complex with some labile 

coordination sites available for peptide binding. We reason, that such metal complexes 

should selectively bind truncated sequences of peptides that are known to form stable 

complexes with the metal ion itself. To illustrate the feasibility of this approach, we use 

one of the best studied peptide metal complexes consisting of histidine- and glycine-

containing peptides ligands and copper(II) as the metal ion.  
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2.2 Results and Discussion 

2.2.1 Receptor Design 

 

Many histidine-containing peptides form stable complexes with copper(II) ions, but the 

coordinating properties of the histidine residue depend significantly on the position of 

the residue in the peptide chain. The insertion of histidine in position two of a peptide 

allows for the participation of the N-terminal amine, the N-1 imidazole and the in-

between amide nitrogen atoms in copper(II) ion coordination (Scheme 1).
5a

 The 

presence of histidine in position three of a peptide chain leads to the cooperative 

formation of three fused chelate rings with copper (II) ions.
5a

 In simple peptides with N-

terminal histidine the chelate of the N-terminal amino group and the imidazole nitrogen 

atom can be very effective, but also complexes of higher ligand stoichiometry are 

discussed.
5a,17
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Scheme 1. Glycine-histidine copper(II) and nitrilotriacetato (NTA) copper (II) metal 

complexes. 

 

Nitrilotriacetato (NTA) copper(II) complexes are stable and widely used for protein 

purification due to their affinity to imidazole side chains. The NTA ligand of the 

complexes leaves two coordination sites available for the reversible binding of donor 

groups.
18

 The binding of a glycine-histidine peptide sequences, such as GH or GGH to a 

NTA-Cu
II 

complex will therefore only proceed for the N-imidazole and N-amide 

coordination leaving the N-terminal amino group available, if a consecutive binding 

starting with imidazole as the primary anchoring group is assumed.  

We recently introduced luminescent benzocrown ether amino acids, which are 

useful molecular indicators for ammonium ions
19

 and demonstrated their ability to 

monitor Lys side chains in coordinated peptides.
20

 A combination of such luminophors 

with a NTA-Cu
II
 complex should lead to a peptide sequence selective receptor with pre-

dictable selectivity.  
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2.2.2 Synthesis 

 

The synthesis starts from protected glutamic acid 1 that is converted into the NTA 

precursor 2.
21

 Peptide coupling using typical conditions with amino ester 3
19

 and tert-

butyl ester cleavage gave compound 4, which was converted into the NTA-Cu complex 

5 (Cu-NTA CE) by treatment with copper carbonate. Peptides for the determination of 

binding selectivity were prepared in solution and by standard solid phase methods. 
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Scheme 2. Synthesis of Cu-NTA benzo crown ether 5 (Cu-NTA CE). 

(a) 
t
Butylbromoacetate, DIPEA, DMF; (b) 10 % Pd/C MeOH; (c) DCC, HOBt, DIPEA; 

(d) TFA, quantitative; (e) NaHCO3, Cu2(OH)2CO3, H2O.  

 

2.2.3 Determination of peptide binding 

 

The luminescence of the benzocrown ether moiety is largely quenched upon 

coordination of the NTA ligand by copper(II),
22

 but partly restored if an ammonium ion 

binds to the crown ether. However, the crown ether binding affinity for ammonium ions 

in aqueous solution at physiological pH is rather weak
23

 and an interaction is therefore 
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only observed if other parts of the peptide coordinate to the NTA-Cu
II
 complex, making 

the ammonium ion binding process intramolecular. Compound 5 will signal affinity to 

peptides, which coordinate to the two accessible NTA-Cu
II
 binding sites, but leaving an 

ammonium group available for crown ether binding. 

The peptide binding selectivity of 5 was evaluated with a small rational library 

of di-, tri- and tetrapeptides, with some amino acid sequences resembling typical 

peptides for copper(II) complex formation. To quickly select the peptide sequences with 

highest affinity a screening was performed in aqueous buffered solution (HEPES, 

50 mM, pH 7.5) using a microtiter array. Five equivalents of each peptide were added to 

a 3.75 x 10
-5

 M solution of compound 5 and the fluorescence emission intensity at 

397 nm (excitation at 305 nm) was recorded. If the ratio of the observed emission 

intensity after and before peptide addition exceeds two, a significant interaction is 

expected.
24

 Table 1 summarizes the results. As expected, several His (H) and Gly (G) 

containing peptides induced a significant emission increase.
25

 However, if the distance 

of the imidazole moiety to the N-terminus becomes larger, the affinity drops. From 

peptides containing a Lys (K) residue beside His, only a di- and a tripeptide gave a 

weak response. Tetrapeptides bearing a His, two Gly and either Ala (A), Leu (L) or Glu 

(Q) as the fourth residue the common sequences XaaHGG-NH2 (Xaa = A, L, Q) showed 

a strong emission increase. The exchange of His by Ser (S), Glu (Q), Gln (E) in 

tetrapeptides with three Gly residues leads to a complete loss of affinity to 5. Cys 

containing tetrapeptides with three Gly showed a weak emission response independent 

of the Cys position, with the exception of the N-terminus.  
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Table 1. Screening of the fluorescence response of 5 to small peptides.  

[a] F/F0 is the increase in observed emission intensity after addition of five equiv. of the 

peptide to compound 5, [b] H-Xaa-OMe, [c] H-Xaa-OH, [d] H-Xaa-Xaa-Xaa-Xaa-NH2, 

[e] peptide sequences marked with ++ show a particularly strong emission increase. 

 

The peptide sequences that showed significant responses in the screening assay were 

investigated by emission titrations in HEPES (50 mM, pH 7.5) buffered aqueous 

solution. Their binding constants lg K and K0.5 values were derived from the titration 

data by non linear fitting methods; the stoichiometry of the binding events was 

determined by Job´s plot analyses (see Experimental Part). Figure 1 shows exemplarily 

the emission titration curve for H-GGH-OH and 5. Peptides GGH and GHG bind to 5 

with micromolar affinity and a stoichiometry of 1:1. The binding data were confirmed 

by independent isothermal titration calorimetry (ITC) using the same conditions (see 

Experimental Part). Dipeptide GH and tetrapeptides XaaHGG-NH2 (Xaa = A, L, Q) 

show lower binding affinities, but still in the order of lgK = 4. Job´s plot analyses of the 

binding of the cysteine-containing peptides indicated a 2:1 stoichiometry. However, the 

fit of the titration data to mathematical binding models was not conclusive. The 

remaining histidine-containing peptides sequences bind weakly to compound 5 with 

stoichiometries deviating from 1:1 and are therefore judged as non-specific binders. The 

data of the peptide sequences that bind to 5 stoichiometric with high affinity are 

summarized in Table 2. 

Peptide 

sequence 

F/F0 

> 2
[a] 

Peptide 

sequence 

F/F0 

> 2
[a]

 

Peptide 

sequence 

F/F0 

> 2
[a]

 

    H
[b]

 +     CGGG
[d]

 -    QGGG
[d]

 - 

    HGG
[c]

 +     GCGG
[d]

 +    GQGG
[d]

 - 

    HGGG
[d]

 -     GGCG
[d]

 +    GGQG
[d]

 - 

    GHG
[d]

 ++
[e] 

    GGGC
[d]

 +    GGGQ
[d]

 - 

    GHGG
[d]

 ++     SGGG
[d]

 -    AHGG
[d]

 ++ 

    GGHG
[d]

 -     GSGG
[d]

 -    AGHG
[d]

 - 

    GGGH
[d]

 -     GGSG
[d]

 -    AGGH
[d]

 - 

    GGH
[c]

 ++     GGGS
[d]

 -    LHGG
[d]

 ++ 

    GH
[c]

 ++     EGGG
[d]

 -    LGHG
[d]

 - 

    HK
[b]

 +     GEGG
[d]

 -    LGGH
[d]

 - 

    HKGG
[d]

 -     GGEG
[d]

 -    QHGG
[d]

 ++ 

    HGK
[b]

 +     GGGE
[d]

 -    QGHG
[d]

 - 

    HGKG
[d]

 -      QGGH
[d]

 - 

    HGGK
[d]

 -     
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Figure 1. Emission titration (left) and Job´s plot analysis (right) of H-Gly-Gly-His-OH 

and 5 in aqueous buffer. 

 

The binding data support the design concept of the receptor: Only peptide sequences 

that form stable copper(II) complexes, and therefore bind with part of their donor sites 

to the Cu-NTA complex of 5, and, at the same time, have an N-terminal ammonium ion 

available, show strong and specific response. GGH and GHG (Table 2, entry 1 and 2) 

show the highest affinity, as they provide an optimal geometry to form a six-membered 

chelate with the copper ion in analogy to the initial coordination in pure copper(II) 

peptide complexes. 

 

 

 

 

 

 

 

 

Table 2. Binding data of peptide sequences to 5 in aqueous buffer from emission 

titrations. [a] Concentration of peptide needed to induce 50% of the maximal emission 

increase, [b] all stoichiometries determined by Job´s plot analyses as 1:1, with the 

exception of QHGG, which shows 2:1 [c] H-(Xaa)-OH, [d] H-(Xaa)-NH2. 

 

The high stability of complex 5 with GHG allows its detection from solution by electro 

spray mass spectroscopy. Based on the structures of peptide copper(II) complexes, we 

propose for the aggregate of 5 with XaaHGG peptides the arrangement shown in 

Figure 2. The steric bulk of residues R and R´ in the tetrapeptides (entries 5-8) may 

account for their somewhat reduced affinity, if compared to the GHG or GGH 

Entry Peptide 

sequence 

K0.5
[a]

 

[µmol]
 

lg K
[b]

 

1 H  GGH
[c]

 24 5.8 

2 HH  GHG
[c]

 25 5.7 

3 HH  GHG-OMe 33 5.3 

4         GH
[c]

 36 4.7 

5 HH  GHGG
[d]

 60 4.1 

6 HH  AHGG
[d]

 70 4.2 

7 HH  LHGG
[d]
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[d]

 187 3.7 

9   Ac-GHG
[c]

 - - 
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sequences. The side chain of the N-terminal amino acid in these peptides does not 

influence the binding affinity significantly,
26

 which is in accordance with the reported 

tolerance of an amino acid other than Gly in copper(II) complexes with XaaHG 

peptides.
27

 The C-terminus of the peptides does not participate directly in the binding 

process, as the change from carboxylate anion to a methyl ester or glycylamide is 

possible. However, larger groups lead to a decrease in affinity, probably due to 

increased steric hindrance in the coordination aggregate. The N-terminal ammonium ion 

is essential to trigger an emission change of 5; N-terminal acylated peptides, such as 

Ac-GHG (entry 9) give no emission response if added to 5. ITC measurements revealed 

that Ac-GHG still shows some affinity to 5, which is, however, significantly reduced if 

compared to the non acylated peptide (GHG: lgK = 5.1; Ac-GHG: lgK = 4.0; see 

Experimental Part).
28

 Interestingly, not only the distance of the ammonium ion and the 

copper coordination sides within the peptide are of importance to trigger an emission 

output signal, but also the intervening structure. In a series of N-terminally acylated 

tetrapeptides the N-terminal amino acid was Lys with an ammonium ion in its side 

chain (Ac-KHGG-NH2, Ac-KGHG-NH2, Ac-KGGH-NH2). Although the peptides have 

a copper ion coordination site and an ammonium ion in suitable distance, the more 

flexible connection of both functionalities does not lead to a stable aggregate with 5 

with increased emission. 
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Figure 2. Proposed structure of stable peptide aggregates with compound 5 [R = CO2
-
, 

CONHCH2CO2
-
; CONHCH2CO2CH3, CONHCH2CONHCH2CONH2; R´= H, CH3, 

CH2-CH(CH3)2, CH2CH2CONH2]. 

 

While the binding of histidine containing peptides can be rationalized on the basis of 

known copper(II) peptide interactions, the sequence independent effect of the cysteine-

containing tetrapeptides on 5 was surprising. The interaction of cysteine with copper(II) 

ions has been investigated, but structural information of the interaction is very limited.
29

 

The thiol group of cysteine strongly binds to copper(II) ions, forming polymeric species 
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with bridging thiolate sulphur. This coordination process is superimposed by reduction 

of cupric ions to Cu
I
, which in aqueous systems undergo dismutation regenerating Cu

II
. 

Analogously, the interaction of compound 5 with cysteine starts with the coordination 

of two thiol groups to the vacant coordination sites,
30

 which explains the observed 2:1 

stoichiometry of aggregates. The thiol ligands may influence the oxidation state of 

copper in the NTA complex,
31

 but surely alter the electronic properties of the complex 

significantly. The UV absorption of compound 5 shows a 10 nm bathochromic shift 

upon addition of 5 eq. of mercaptoethanol in aqueous buffer. More significantly, in the 

emission spectrum a threefold increase of the emission intensity is observed (see 

Experimental Part). This indicates that the mechanism of emission increase in 5 by 

cysteine is different from the histidine peptides. While in histidine peptides the 

intramolecular ammonium ion binding to the luminescent benzocrown ether moiety 

partly restores the NTA-copper complex quenched emission of the fluorophore, cysteine 

thiol groups alter the NTA-copper complex itself and reduce its ability to quench the 

benzocrown ether emission. This explains the emission increase, which is independent 

from the position of the cysteine residue in the peptide sequence. Only peptides with 

cysteine as the N-terminal amino acid do not show any emission increase. Here, 

cysteine may form an S,N-chelate
32

 with the NTA-copper complex, which still 

quenches the emission of the benzocrown ether fluorophore. 

 

 

2.3 Conclusion 

 

The combination of a copper(II)-NTA complex with an ammonium-ion sensitive and 

luminescent benzocrown ether yields a molecular receptor, which preferably binds to 

specific histidine-glycine peptide sequences under physiological conditions. Nearly 

micromolar affinities are observed for GGH and GHG; in tetrapeptides the recognition 

motif XaaHGG was identified, whereby the N-terminal amino acid residue may vary. 

Only the N-terminal amino group triggers an emission signal, the ammonium moiety of 

a lysine side chain does not. Cysteine-containing peptides trigger an emission signal of 

5 as well, but due to altered electronic properties of the copper ion cancelling its 

quenching of the benzocrown emission. The selectivity and affinity of 5 may not be 

sufficient in its current state for direct practical use in peptide sensing, but the 

investigations clearly show that the interaction of a hybrid compound like 5 with 
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peptides can be rationalized on the basis of established coordination motifs of copper(II) 

ions to peptides. This opens the possibility for a more rational design of sequence 

selective peptide chemosensors tapping the extensively available knowledge of peptide 

to metal ion coordination reported over the last 50 years. 

 

 

2.4 Experimental Part 

2.4.1 Syntheses  

2.4.1.1 General methods and material  

 

Emission Spectroscopy. Fluorescence measurements were performed with UV-grade 

solvents (Baker or Merck) in 1 cm quartz cuvettes (Hellma) and recorded on a Varian 

‘Cary Eclipse’ fluorescence spectrophotometer or on a Perkin-Elmer LS55 fluorescence 

spectrophotometer with temperature control. 

 

Absorption Spectroscopy. Absorption were recorded on a Varian Cary BIO 50 

UV/VIS/NIR Spectrometer or on a SHIMADZU UV-2550 spectrometer with 

temperature control by use of a 1 cm quartz cuvettes (Hellma) and Uvasol solvents 

(Merck or Baker). 

 

NMR Spectra. Bruker Avance 600 (1H: 600.1 MHz, 13C: 150.1 MHz, T = 300 K), 

Bruker Avance 400 (1H: 400.1 MHz, 13C: 100.6 MHz, T = 300 K), Bruker Avance 300 

(1H: 300.1 MHz, 13C: 75.5 MHz, T = 300 K). The chemical shifts are reported in 

δ [ppm] relative to external standards (solvent residual peak). The spectra were analyzed 

by first order, the coupling constants are given in Hertz [Hz]. Characterization of the 

signals: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, bs = broad singlet, 

psq = pseudo quintet, dd = double doublet, dt = double triplet, ddd = double double 

doublet. Integration is determined as the relative number of atoms. Assignment of 

signals in 13C-spectra was determined with DEPT-technique (pulse angle: 135 °) and 

given as (+) for CH3 or CH, (–) for CH2 and (Cq) for quaternary Cq. Error of reported 

values: chemical shift: 0.01 ppm for 1H-NMR, 0.1 ppm for 13C-NMR and 0.1 Hz for 

coupling constants. The solvent used is reported for each spectrum. 
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Mass Spectra. Varian CH-5 (EI), Finnigan MAT 95 (CI; FAB and FD), Finnigan MAT 

TSQ 7000 (ESI). Xenon serves as the ionisation gas for FAB.  

 

IR Spectra. Recorded with a Bio-Rad FTS 2000 MX FT-IR and Bio-Rad FT-IR FTS 

155. 

 

Melting Point. Melting Points were determined on Büchi SMP or a Lambda 

Photometrics OptiMelt MPA 100. 

 

 

2.4.1.2 Receptor Synthesis 

 

N
OH

OO

O

O

O

O

O

 

2-(Bis-tert-butoxycarbonylmethyl-amino)-pentanedioic acid 1-tert-butyl ester (2):
21

 H-

Glu(OBzl)-O
t
Bu · HCl (312 mg, 0.95 mmol) was dissolved under nitrogen in 10 mL of 

DMF. DIPEA (0.8 mL, 4.73 mmol) and tert-butyl bromoacetate (0.6 mL, 3.78 mmol) 

were added to the stirred solution. The reaction mixture was heated to 80 °C overnight 

with continuous stirring and monitored by TLC (petrol ether/ethyl acetate 3:1). The 

solution was concentrated under reduced pressure and the residue was taken up in a 

small amount of ethyl acetate, filtered and washed several times with petrol ether/ethyl 

acetate 3:1 and ethyl acetate until the filter residue was colourless. The filtrate was 

evaporated and the crude product was purified using column chromatography on silica 

gel (petrol ether/ethyl acetate 3:1, Rf = 0.60) yielding 2-(bis-tert-butoxycarbonylmethyl-

amino)-pentanedioic acid 5-benzyl ester 1-tert-butyl ester (418 mg, 84 %) as a lightly 

yellow oil. 
1
H-NMR (300 MHz; CDCl3): δ = 1.42 (s, 18 H, N-CH2COO

t
Bu), 1.45 (s, 

9 H, C
α
HCOO

t
Bu), 1.82-2.07 (m, 2 H, Glu-CH2), 2.50-2.77 (m, 2 H, GluCH2), 3.38 (dd, 

3
J = 5.5 Hz, 9.8 Hz, 1 H, Glu-C

α
H), 3.43 (s, 4 H, N-CH2), 5.08-5.12 (s, 2 H, Ph-CH2), 

7.26-7.38 (m, 5H, Ar-H). – 
13

C-NMR (75 MHz; CDCl3): δ = 25.4 (–, 1 C, CH2), 

28.1 (+, 9 C, CH3), 30.5 (–, 1 C, CH2), 53.8 (–, 2 C, N-CH2), 64.3 (+, 1 C, CH), 66.1 (–, 
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1 C, Ph-CH2), 80.7 (Cq, 2 C, COO
t
Bu), 81.3 (Cq, 1 C, COO

t
Bu), 128.1 (+, 1 C, Ar-CH), 

128.2 (+, 2 C, Ar-CH), 128.5 (+, 2 C, Ar-CH), 136.2 (Cq, 1 C, Ar-C), 170.5 (Cq, 2 C, 

NCH2COO
t
Bu), 171.8 (Cq, 1 C, COO

t
Bu), 173.5 (Cq, 1 C, COOBn). – MS (ESI(+), 

DCM/MeOH + 10 mmol NH4Ac): m/z (%) = 522.4 (100) [MH
+
], 466.3 (3) [MH

+
 - 

C4H6]. 

The NTA bis-ester (624 mg, 1.2 mmol) was dissolved in EtOH (20 mL), to which a 

spatula tip of 10 % Pd/C were added. The reaction mixture was stirred in an autoclave 

under 20 bar H2 pressure for 18 h. The suspension was filtered twice and the filtrate was 

concentrated under reduced pressure yielding compound 2 (513 mg, 99 %) as a 

colourless oil. – 
 1

H-NMR (300 MHz; CDCl3): δ = 1.43 (s, 18 H, N-CH2COO
t
Bu), 

1.45 (s, 9 H, C
α
HCOO

t
Bu), 1.78-2.07 (m, 2 H, Glu-CH2), 2.47-2.78 (m, 2 H, Glu-CH2), 

3.36 (dd, 
3
J = 5.5 Hz, 10.1 Hz, 1 H, Glu-C

α
H), 3.44 (s, 4 H, N-CH2). – 

13
C-

NMR (75 MHz; CDCl3): δ  = 25.4 (–, 1 C, CH2), 28.1 (+, 9 C, CH3), 31.1 (–, 1 C, CH2), 

54.0 (–, 2 C, N-CH2), 64.7 (+, 1 C, α-CH), 81.3 (Cq, 2 C, COO
t
Bu), 81.7 (Cq, 1 C, 

COO
t
Bu), 170.6 (Cq, 2 C, NCH2COO

t
Bu), 171.3 (Cq, 1 C, COO

t
Bu), 176.2 (Cq, 1 C, 

COOH). – MS (ESI(+), DCM/MeOH + 10 mmol NH4Ac): m/z (%) = 432.3 (100) 

[MH
+
], 454.3 (3) [MNa

+
]. 

 

 

O

NH

O O

O

O

O
O

O

O

O

N
H

O

N

OHO

OH

O

O

OH

H

+

2 TFA-

+

 

4-[2-(2-{2-[{2-[4-(Bis-carboxymethyl-amino)-4-carboxy-butyrylamino]-ethyl}-(2-

ethoxy-ethyl)-amino]-ethoxy}-ethoxy)-ethoxy]-5-(2-methoxy-ethoxy)-phthalic acid 

dimethyl ester tritriflate (4): Under N2-atmosphere compound 2 (150 mg, 0.35 mmol) 

was dissolved in a small amount of CHCl3 and mixed under ice cooling with DIPEA 

(0.3 mL, 1.74 mmol), DCC (86 mg, 0.42 mmol), and HOBt (56 mg, 0.42 mmol). Then 

crown ether-dihydrochloride 3 (245 mg, 0.42 mmol), dissolved in a small amount 

CHCl3, was slowly added. The reaction was allowed to warm to room temp. and was 

stirred over night (20 h) at 40 °C. The reaction progress was monitored by TLC (ethyl 

acetate). After completion, the solution was diluted with ethyl acetate and the 
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precipitated dicyclohexyl urea was filtered off over celite. The solvent was removed in 

vacuo and the crude product was purified using column chromatography on silica gel 

(CHCl3/MeOH 4:1, Rf = 0.75, ethyl acetate) yielding the tris tert-butyl ester of 4 

(198 mg, 60 %) as a lightly yellow oil. 14-{2-[4-(Bis-tert-butoxycarbonylmethyl-

amino)-4-tert-butoxycarbonyl-butyryl-amino]-ethyl}-6,7,9,10,13,14,15,16,18,19,21,22-

dodecahydro-12H-5,8,11,17,20,23-hexaoxa-14-aza-benzocyclohenicosene-2,3-

dicarboxylicacid dimethylester: 
1
H-NMR (600 MHz; CDCl3): δ = 1.40 (s, 18 H, 

HSQC: C
1
H3), 1.41 (s, 9 H, HSQC: C

25
H3), 1.79-1.88 (m, 1 H, COSY: C

6
H2), 1.98-2.07 

(m, 1 H, COSY: C
6
H2), 2.33-2.45 (m, 2 H, COSY: C

7
H2), 2.63 (bs, 2 H, COSY: C

11
H2), 

2.77 (bs, 4 H, C
12

H2), 3.22-3.32 (m, 3 H, COSY: C
5
H, C

10
H2), 3.36 (d, 

2
J = 17.2 Hz, 

1 H, C
4
H2), 3.44 (d, 

2
J = 17.2 Hz, 1 H, C

4
H2), 3.57 (bs, 4 H, HMBC: C

13
H2), 3.61-

3.65 (m, 4 H, HMBC: C
14

H2), 3.72-3.76 (m, 4 H, HMBC: C
15

H2), 3.85 (s, 6 H, COSY: 

C
22

H3), 3.88- 3.91 (m, 4 H, HMBC: C
16

H2), 4.15-4.23 (m, 4 H, HMBC: C
17

H2), 

6.88 (bs, 1 H, HSQC: N
9
H), 7.18 (s, 2 H, HSQC: C

19
H). – 

13
C-NMR (150 MHz; 

CDCl3): δ = 28.1 (+, 6 C, HSQC: C
1
), 28.2 (+, 3 C, HSQC: C

25
), 26.3 (–, 1 C, HSQC: 

C
6
), 32.5 (–, 1 C, HSQC: C

7
), 37.4 (–, 1 C, HSQC: C

10
), 52.5 (+, 2 C, HSQC: C

22
), 

54.1 (–, 2 C, HMBC: C
4
), 54.2 (–, 3 C, COSY: C

11
, HSQC: C

12
), 64.8 (+, 1 C, HSQC: 

C
5
), 68.8 (–, 2 C, COSY: C

13
), 69.5 (–, 2 C, HMBC: C

16
), 69.7 (–, 2 C, HMBC: C

17
), 

70.6 (–, 2 C, HMBC: C
14

), 71.1 (–, 2 C, HMBC: C
15

), 80.7 (Cq, 2 C, HMBC: C
2
), 

81.2 (Cq, 1 C, HMBC: C
24

), 113.7 (+, 2 C, HSQC: C
19

), 125.4 (Cq, 2 C, HMBC: C
20

), 

150.5 (Cq, 2 C, HMBC: C
18

), 167.7 (Cq, 2 C, HMBC: C
21

), 170.7 (Cq, 2 C, HMBC: C
3
), 

171.8 (Cq, 1 C, HMBC: C
8
), 172.9 (Cq, 1 C, HMBC: C

23
). – IR (KBr) [cm

-1
]: ν~ = 3056, 

2976, 2931, 2823, 1724, 1658, 1600, 1520, 1363, 1138, 736. – UV (MeOH): λmax (log 

ε) = 202 nm (3.381), 224 (3.933), 267 (3.423). – MS (ESI(+), DCM/MeOH + 10 mmol 

NH4Ac): m/z (%) = 928.5 (100) [MH
+
]. – HRMS Calcd for C45H74N3O17: 928.5018; 

Found: 928.5034 ± 0.0012. – Elemental analysis calcd. (%) for C45H73N3O17: C 58.24, 

H 7.93, N 4.53; found C 58.42, H 8.16, N 4.97. 

Spectroscopic assignment for the tert-butyl ester of compound 4 
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The tris tert-butyl ester of 4 (108 mg, 0.12 mmol) was suspended in trifluoro acetic acid 

(TFA, 4 mL). The reaction mixture was stirred at room temp. for 20 h and the reaction 

progress was monitored by TLC (ethyl acetate). TFA was evaporated, the obtained 

triflate salt was redissolved in water and lyophilized yielding 4 (118 mg, 0.12 mmol, 

100 %) as a white hygroscopic solid.  

MP: 60-62
o
C. – 

1
H-NMR (300 MHz; D2O): δ = 1.66-1.84 (m, 2 H, Glu-CH2), 1.98-

2.20 (m, 2 H, Glu-CH2), 3.13-3.25 (m, 2 H, CH2), 3.27-3.45 (m, 6 H, CH2), 3.51-3.94 

(m, 28 H, CH2, OMe, N-CH2, α-CH, NH), 3.98-4.08 (m, 2 H, CH2), 4.0-4.25 (m, 2 H, 

CH2), 7.05-7.12 (s, 2 H, CH). – 
13

C-NMR (75 MHz; D2O): δ = 22.5 (–, 1 C, CH2), 

31.6 (–, 1 C, CH2), 33.9 (–, 1 C, CH2), 52.2 (–, 1 C, CH2), 53.3 (+, 2 C, CH3), 53.6 (–, 

2 C, CH2), 54.1 (–, 2 C, N-CH2), 63.6 (–, 2 C, CH2), 65.7 (+, 1 C, CH), 68.1 (–, 2 C, 

CH2), 69.1 (–, 2 C, CH2), 69.8 (–, 2 C, CH2), 69.9 (–, 2 C, CH2), 112.6 (+, 2 C, CH), 

116.3 (Cq, q, 
1
JC,F = 292.1 Hz, CF3COO

-
), 124.5 (Cq, 1 C, Ar-C), 124.7 (Cq, 1 C, Ar-C), 

149.58 (Cq, 1 C, Ar-C), 149.62 (Cq, 1 C, Ar-C), 162.7 (Cq, q, 
2
JC,F = 35.5 Hz, CF3COO

-

), 169.2 (Cq, 1 C, COOMe), 169.3 (Cq, 1 C, COOMe), 170.7 (Cq, 2 C, NCH2COOH), 

171.2 (Cq, 1 C, CONH), 174.9 (Cq, 1 C, CHCOOH). – IR (KBr) [cm
-1

]: ν~ = 2957, 2914, 

2360, 2341, 1732, 1642, 1528, 1428, 1351, 1200, 814, 719. – UV (MeOH): 

λmax (log ε) = 202 nm (3.860), 224 (4.070), 267 (3.587). – MS (ESI(+), DCM/MeOH + 

10 mmol NH4Ac): m/z (%) = 796.4 (100) [M – 2 H
+
 + K

+
]

-
, 780.5 (10) [M – 2 H

+
 + 

Na
+
]

-
, 758.5 (3) [M – H

+
]. 

 

 

H
2
O N

Cu
H

2
O O

O

O

O

O

O

N
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O

O
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O O

O

O

O
O

O

O

O

 

-

5
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+

 

Glutamic acid copper NTA crownether (Cu-NTA CE) 5: Compound 4 (164 mg, 

0.17 mmol), NaHCO3 (28 mg, 0.3 mmol) and Cu2(OH)2CO3 (18.4 mg, 0.08 mmol) were 

dissolved in water (5 mL). The mixture was stirred at room temperature over night, 

subsequently refluxed for 3 h and was filtered immediately. The resulting greenish blue 

solution was concentrated under reduced pressure and lyophilized yielding 5 (185 mg, 

98%) as turquoise solid. 
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MP: > 175
o
C (decomp.). – IR (KBr) [cm

-1
]: ν~ = 2929, 2357, 2341, 1682, 1629, 1523, 

1437, 1351, 1295, 1204, 1130, 801, 721. – MS (ESI(+), H2O/MeCN): m/z (%) = 

819.4 (100) [M
-
], 731.4 [M

-
 - 2 CO2], 775.3 [M

-
 - CO2], 901.4 [M

-
 + 2 MeCN]. The 

purity of the compound was determined by HPLC, diode array detection at 226 nm, and 

found > 97 %. 

 

 

2.4.1.3 Synthesis of small peptides in solution 

 

H-His-OMe
iv

 and H-Lys(Boc)-OMe
v
 were synthesised in solution according to 

literature known procedures. 
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Boc-His(Boc)-Lys(Boc)-OMe 

4-[(S)-2-tert-Butoxycarbonylamino-2-((S)-5-tert-butoxycarbonylamino-1-methoxy-

carbonyl-pentylcarbamoyl)-ethyl]-imidazole-1-carboxylic acid tert-butyl ester: Under 

N2-atmosphere Boc-His(Boc)-OH DCH salt (567 mg, 1.06 mmol), DIPEA (0.58 mL, 

3.36 mmol), EDC (0.20 mL, 1.16 mmol), and HOBt (157 mg, 1.16 mmol) were 

dissolved in DMF (6 mL) under ice cooling. H-Lys(Boc)-OMe (250 mg, 0.96 mmol) 

dissolved in a little DMF was added slowly. The reaction was allowed to warm to room 

temp. and was stirred over night (20 h) at 40°C. The reaction progress was monitored by 

TLC (ethyl acetate). After completion of the reaction, water (25 mL) was added and the 

mixture was extracted with ethyl acetate. The organic layer was dried over MgSO4, the 

solvent was evaporated and the crude product was purified by flash column 

chromatography on silica gel (ethyl acetate / petrol ether 3:1, Rf (ethyl acetate) = 0.75) 

yielding Boc-His(Boc)-Lys(Boc)-OMe (59 mg, 10 %) as a colourless solid. 

                                                 
iv
 Z. Hongjun; H. Bangyou; S. Guangliang, Patent No. CN 1557834, 29 Dec 2004 

v
 C. Mandl, PhD Thesis, University of Regensburg 2004 
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1
H-NMR (600 MHz; CDCl3): δ = 1.17 (bs, 2 H, HSQC, COSY: C

6
H2), 1.42 (s, 11 H, 

HSQC: C
5
H2, Boc-CH3), 1.43 (s, 9 H, HSQC: Boc-CH3), 1.58 (s, 10 H, HSQC: Boc-

CH3, C
7
H2), 1.68-1.80 (m, 1 H, HSQC: C

7
H2), 2.94 (dd, 

3
J = 5.7 Hz, 

1
J = 14.8 Hz, 1 H, 

HSQC, COSY: C
11

H2), 3.00-3.13 (m, 3 H, HSQC, COSY: C
11

H2 diastereotope, C
4
H2), 

3.68 (s, 3 H, HSQC, COSY: C
19

H3), 4.43 (bs, 1 H, COSY: C
10

H), 4.49-4.56 (m, 1 H, 

COSY: C
8
H), 4.72 (bs, 1 H, COSY: NH

a
), 6.13 (bs, 1 H, COSY: NH

c
), 7.16 (s, 1 H, 

COSY: C
13

H), 7.23 (bs, 1 H, COSY: NH
b
), 8.01 (s, 1 H, COSY: C

14
H). – 

13
C-NMR 

(150 MHz; CDCl3): δ = 22.2 (-, 1 C, HSQC: C
6
), 27.8 (+, 3 C, HSQC: Boc-CH3), 

28.3 (+, 3 C, HSQC: Boc-CH3), 28.4 (+, 3 C, HSQC: Boc-CH3), 29.6 (–, 1 C, HSQC: 

C
5
), 30.1 (–, 1 C, COSY: C

11
), 32.1 (–, 1 C, COSY: C

7
), 40.1 (–, 1 C, HSQC: C

4
), 

51.8 (+, 1 C, COSY: C
8
),52.2 (+, 1 C, COSY: C

19
), 54.2 (+, 1 C, COSY: C

10
), 79.0 (Cq, 

1 C, COO
t
Bu), 80.0 (Cq, 1 C, COO

t
Bu), 85.7 (Cq, 1 C, COO

t
Bu), 114.8 (+, 1 C, COSY: 

C
13

), 136.8 (+, 1 C, COSY: C
14

), 139.2 (Cq, 1 C, HMBC: C
12

), 146.9 (Cq, 1 C, HMBC: 

C
9
), 155.6 (Cq, 1 C, HMBC: C

15
), 155.9 (Cq, 1 C, HMBC: C

3
), 171.3 (Cq, 1 C, HMBC: 

C
20

), 172.3 (Cq, 1 C, HMBC: C
18

). – MS (ESI(+), DCM/MeOH + 10 mmol NH4Ac): 

m/z (%) = 598.5 (100) [MH
+
], 498.5 (19) [MH

+
 - Boc].  

 

 

N
H

O

O

NH
2

NH
2

O

NHN

3 HCl

 

H-His-Lys-OMe  

(S)-6-Amino-2-[(S)-2-amino-3-(1H-imidazol-4-yl)-propionylamino]-hexanoic acid 

methyl ester: The protected dipeptide Boc-His(Boc)-Lys(Boc)-OMe (55 mg, 

0.09 mmol) was dissolved in DCM under ice cooling and mixed with HCl/ether. The 

reaction was allowed to warm to room temp. and was stirred for additional 3 hours. The 

reaction progress was monitored by TLC (ethyl acetate), and after completion the 

reaction mixture was evaporated to dryness and the residue was redissolved in water 

and lyophilised yielding H-His-OMe · 3 HCl (36 mg, quantitative), as a colourless 

hygroscopic solid. 

1
H-NMR (300 MHz; D2O): δ = 1.39-1.53 (m, 2 H, Lys-CH2), 1.61-2.05 (m, 4 H, Lys-

CH2), 2.93 (t, 
3
J = 7.7 Hz, 2 H, Lys-CH2), 3.34-3.50 (m, 2 H, His-CH2), 3.79 (s, 3 H, 

OMe), 4.30 (dd, 
3
J = 6.6 Hz, 7.7 Hz, 1 H, Lys-α-CH), 4.43 (dd, 

3
J = 5.4 Hz, 8.5 Hz,1 H, 
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His-α-CH), 7.50 (s, 1 H, imidazole-CH), 8.78 (s, 1 H, imidazole-CH). – 
13

C-NMR 

(75 MHz; D2O): δ = 22.0 (–, 1 C, CH2), 26.1 (–, 1 C, CH2), 26.3 (–, 1 C, CH2), 30.1 (–, 

1 C, CH2), 39.2 (–, 1 C, CH2), 52.1 (–, 1 C, CH2), 52.9 (+, 1 C, CH), 53.1 (+, 1 C, CH), 

118.8 (+, 1 C, CH), 125.7 (Cq, 1 C), 134.4 (+, 1 C, CH), 168.1 (Cq, 1 C, His C=O), 

173.6 (Cq, 1 C, COOMe). – MS (ESI(+), H2O/MeCN/TFA): m/z (%) = 298.2 (70) 

[MH
+
], 190.6 (59) [M + 2 H

+
 + 2 MeCN]

2+
, 170.0 (100) [M + 2 H

+
 + MeCN]

2+
, 

149.7 (13) [M + 2 H
+
]

2+
.  
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Boc-His(Boc)-Gly-Lys(Boc)-OMe 

4-((S)-2-tert-Butoxycarbonylamino-2-{[((R)-5-tert-butoxycarbonylamino-1-

methoxycarbonyl-pentylcarbamoyl)-methyl]-carbamoyl}-ethyl)-imidazole-1-

carboxylic acid tert-butyl ester: Under N2-atmosphere Boc-His(Boc)-OH DCH salt 

(276 mg, 0.51 mmol), DIPEA (0.70 mL, 4.07 mmol), HBTU (215 mg, 0.57 mmol), and 

HOBt (76 mg, 0.57 mmol) were dissolved in DCM (10 mL) under ice cooling. H-Gly-

Lys(Boc)-OMe (136 mg, 0.43 mmol) dissolved in a little DCM was added slowly. The 

reaction was allowed to warm to room temp. and was stirred for additional 20 h at room 

temperature. The reaction progress was monitored by TLC (ethyl acetate). After 

completion water (20 mL) was added, the organic layer was extracted with sat. NaHCO3 

(3x) and dried over MgSO4. The solvent was evaporated and the crude product was 

purified by flash column chromatography on silica gel (dichloromethane/MeOH 97:3, 

Rf = 0.1) yielding Boc-His(Boc)-Gly-Lys(Boc)-OMe (55 mg, 19 %) as a colourless 

solid. 

1
H-NMR (400 MHz; CDCl3): δ = 1.33 (dd, 

2
J = 7.3 Hz, 

3
J = 14.7 Hz, 2 H, HMBC: 

C
7
H2), 1.41 (s, 20 H, Lys-Boc-CH3, His-Boc-CH3, HMBC: C

5
H2), 1.59 (s, 10 H, His-

Boc-CH3, HMBC: C
6
H2), 1.76-1.86 (m, 1 H, HMBC: C

6
H2), 2.92-3.09 (m, 3 H, 

HMBC: C
4
H2, C

13
H2), 3.19 (dd, 

2
J = 4.2 Hz, 

3
J = 14.8 Hz, 1 H, HMBC: C

13
H2), 3.70 (s, 

3 H, HMBC: C
21

H3), 3.95 (bs, 2 H, COSY: C
10

H2), 4.43 (bs, 1 H, HMBC: C
12

H), 

4.60 (bs, 1 H, HMBC: C
8
H), 4.97 (bs, 1 H, COSY: NH

a
), 5.76 (bs, 1 H, COSY: NH

d
), 
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7.18 (s, 1 H, HMBC: C
15

H), 7.29 (bs, 1 H, COSY: NH
c
), 7.75 (bs, 1 H, COSY: NH

b
), 

8.04 (s, 1 H, HMBC: C
16

H). – 
13

C-NMR (100 MHz; CDCl3): δ = 22.5 (–, 1 C, HSQC: 

C
7
), 27.8 (+, 3 C, C

Boc
), 28.3 (+, 3 C, C

Boc
), 28.4 (+, 3 C, C

Boc
), 29.2 (–, 1 C, HSQC: 

C
5
), 29.8 (–, 1 C, HMBC: C

13
), 31.2 (–, 1 C, HSQC: C

6
), 39.9 (–, 1 C, HMBC: C

4
), 

43.4 (–, 1 C, HMBC: C
10

), 51.8 (+, 1 C, HMBC: C
8
), 52.2 (+, 1 C, HSQC: C

21
), 52.9 (+, 

1 C, HMBC: C
12

), 78.9 (Cq, 1 C, HMBC: C
23

), 80.3 (Cq, 1 C, HMBC: C
2
), 85.8 (Cq, 

1 C, HMBC: C
18

), 115.2 (+, 1 C, HMBC: C
15

), 137.4 (+, 1 C, HMBC: C
16

), 138.3 (Cq, 

1 C, HMBC: C
14

), 146.7 (Cq, 1 C, HMBC: C
3
), 155.5 (Cq, 1 C, HMBC: C

17
), 156.1 (Cq, 

1 C, HMBC: C
11

), 156.8 (Cq, 1 C, HMBC: C
9
), 171.9 (Cq, 1 C, HMBC: C

22
), 172.8 (Cq, 

1 C, HMBC: C
20

). – MS (ESI(+), DCM/MeOH + 10 mmol NH4Ac): m/z (%) = 

655.5 (100) [MH
+
].  
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H-His-Gly-Lys-OMe 

(S)-6-Amino-2-{2-[(S)-2-amino-3-(1H-imidazol-4-yl)-propionylamino]-acetylamino}-

hexanoic acid methyl ester hydrochloride: The protected tripeptide Boc-His(Boc)-Gly-

Lys(Boc)-OMe (55 mg, 0.08 mmol) was dissolved in DCM under ice cooling and 

mixed with HCl/ether. The reaction was allowed to warm to room temp. and was stirred 

for additional 3 hours. The reaction progress was monitored by TLC (EE). The reaction 

mixture was evaporated to dryness and the residue was redissolved in water and 

lyophilised. H-His-Gly-Lys-OMe·3 HCl (37 mg, quantitative) was obtained as a 

colourless hygroscopic solid. 

1
H-NMR (300 MHz; D2O): δ = 1.31-1.53 (m, 2 H, Lys-CH2), 1.57-2.00 (m, 4 H, Lys-

CH2), 2.95 (t, 
3
J = 7.7 Hz, 2 H, Lys-CH2), 3.40 (d, 

3
J = 6.6 Hz, 2 H, His-CH2), 3.71 (s, 

3 H, OMe), 4.00 (dd, 
2
J = 29.9 Hz, 

3
J = 17.0 Hz, 2 H, Gly-CH2), 4.35 (t, 

3
J = 6.4 Hz, 

1 H, Lys-α-CH), 4.40 (dd, 
2
J = 8.8 Hz, 

3
J = 5.2 Hz, 1 H, His-α-CH), 7.43 (s, 1 H, 

imidazole-CH), 8.67 (s, 1 H, imidazole-CH). – 
13

C-NMR (75 MHz; D2O): δ = 22.1 (–, 

1 C, CH2), 26.1 (–, 1 C, CH2), 26.3 (–, 1 C, CH2), 30.0 (–, 1 C, CH2), 39.3 (–, 1 C, 

CH2), 42.1 (–, 1 C, Gly-CH2), 52.1 (+, 1 C, CH, Gly α-CH), 52.9 (+, 1 C, CH), 53.1 (+, 
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1 C, CH), 118.8 (+, 1 C, CH), 125.6 (Cq, 1 C), 134.6 (+, 1 C), 168.7 (Cq, 1 C, Gly 

C=O), 171.0 (Cq, 1 C, His C=O), 174.2 (Cq, 1 C, Lys C=O). – MS (ESI(+), 

H2O/MeCN/TFA): m/z (%) = 177.9 (100) [M + 2 H
+
]

2+
, 198.4 (75) [M + 2 H

+
 + 

MeCN]
2+

, 355.0 (55) [MH
+
]. 

 

 

N
H

O

N
H

O

NHN

O

O

H
3
NCl-
+

 

H-Gly-His-Gly-OMe 

[(S)-2-(2-Amino-acetylamino)-3-(1H-imidazol-4-yl)-propionylamino]-acetic acid 

methyl ester hydrochloride: H-Gly-His-Gly-OH (10.2 mg, 0.06 mmol) was suspended 

in 2 mL methanol and SOCl2 (20 µL, 0.28 mmol) was added to the stirred solution. The 

reaction mixture was stirred over night, methanol was removed in vacuo and the 

reaction process was monitored by NMR. The crude product was dried in high vacuum 

obtaining H-Gly-His-Gly-OMe hydrochloride as white crystalline solid (19 mg, 

quantitative). 

1
H-NMR (300 MHz; CD3OD): δ = 3.17 (dd, 

3
J = 7.0 Hz, 

2
J =15.5 Hz, 1 H, CH), 

3.30 (dd, 
3
J = 7.0 Hz, 

2
J = 15.5 Hz, 1 H, CH and solvent peak), 3.73 (s, 3 H, OCH3), 

3.76 (s, 2 H, CH2), 3.97 (dd, 
3
J = 17.6 Hz, 2 H, CH2), 7.42 (s, 1 H, CH), 8.80 (s, 1 H, 

CH). – 
13

C-NMR (75 MHz; CD3OD): δ = 28.3 (–, 1 C, CH2), 41.7 (–, 1 C, CH2), 

41.9 (–, 1 C, CH2), 52.8 (+, 1 C, OMe), 53.6 (+, 1 C, CH), 118.9 (Cq, 1 C, CH), 

130.6 (Cq, 1 C), 135.1 (+, 1 C, CH), 167.5 (Cq, 1 C, CONH), 171.8 (Cq, 1 C, CONH), 

172.2 (Cq, 1 C, CONH). – MS (CI - MS (NH3)): m/z (%) = 284.2 [MH
+
].  

 

 

N
H

O

N
H

O

NHN

OH

O

N
H

O  

Ac-Gly-His-Gly-OH 

[(S)-2-(2-Acetylamino-acetylamino)-3-(1H-imidazol-4-yl)-propionylamino]-acetic 

acid: H-Gly-His-Gly-OH (10.8 mg, 0.04 mmol) was suspended in 2 mL water and 

Ac2O (40 µL, 0.40 mmol) was added to the stirred solution. The reaction mixture was 
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stirred for 4 h at room temp., water and excess of acetic anhydride were removed in 

vacuo and the reaction process was monitored by NMR. The crude product was dried in 

high vacuum giving Ac-Gly-His-Gly-OH as a white crystalline solid (12.5 mg, 

quantitative). 

1
H-NMR (300 MHz; CD3OD): δ = 2.00 (s, 3 H, CH3), 3.19 (dd, 

3
J = 5.3 Hz, 

2
J = 15.2 Hz, 1 H, CH2), 3.30 (dd, 

3
J = 5.3 Hz, 

2
J = 15.2 Hz, 1 H, CH2 and solvent 

peak), 3.68 (d, 
2
J = 17.3 Hz, 1 H, CH2), 3.83 (d, 2 H, 

2
J = 3.6 Hz, CH2), 3.99 (d, 

2
J = 17.1 Hz, 2 H, CH2), 4.72 (t, 

3
J = 5.3 Hz, 1 H, CH), 7.26 (s, 1 H, CH), 8.42 (s, 1 H, 

CH). – 
13

C-NMR (75 MHz; CD3OD): δ 22.4 (+, 1 C, CH3), 28.9 (–, 1 C, CH2), 43.8 (–, 

2 C, CH2), 53.3 (+, 1 C, CH), 119.6 (+, 1 C, CH), 130.5 (Cq, 1 C), 135.6 (+, 1 C, CH), 

171.5 (Cq, 1 C, CONH), 171.8 (Cq, 1 C, CONH), 174.2 (Cq, 1 C, CONH), 176.5 (Cq, 

1 C, CONH). – MS (ESI(+), H2O/MeOH + 10 mmol NH4Ac): m/z (%) = 312.0 (100) 

[MH
+
], 334.0 (21) [MNa

+
]. 

 

 

2.4.1.4 Solid phase synthesis of the peptide library for screening 

 

All peptides were synthesized on an Advanced Chemtech 496 MOS synthesizer. Rink 

Amide MBHA resin and Fmoc protecting group strategy were used for the entire 

library. Coupling was done by TBTU / HOBt / DIPEA. HOBt was used as a 0.45 M 

solution, TBTU as a 0.44 M solution and DIPEA as a 1.2 M solution, all in DMF. The 

Fmoc protected amino acids were dissolved in NMP as 0.4 M solutions. The syntheses 

were carried out in a 96 well reactor block. Every peptide was synthesized on 50 mg of 

resin. The lot of the resin used had a loading of 0.72 mmol/g (manufacturer’s claims). 

Before each synthesis the resin was allowed to preswell in DMF for 30 min. Each 

coupling was done twice using a 5 fold excess of HOBt and slightly less than 5 fold 

excess of TBTU. DIEA was used in 10 fold excess. Fmoc deprotection was done by 

shaking the resin with 40 % piperidine in DMF for 3 minutes, subsequent washing and 

addition of 20 % piperidine in DMF followed by shaking for 10 minutes. When the 

syntheses were complete, the resin was washed with MeOH and DCM (5 x 2 mL each). 

Where acylation was necessary, it was conducted using 5 eq of Ac2O, 5 eq of DIPEA in 

DMF for 30 minutes. Cleavage from the resin was afforded by shaking the resin for 3 h 

after addition of 1.5 mL of TFA / TIS / H2O (90:5:5) (v/v). Where the peptides 

contained cysteine, 2 % EDT were added to the cleavage mixture.  After filtering off the 
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resin, the TFA solution was reduced in volume to about 0.5 mL. It was then transferred 

to a Falcon tube and precipitated with cold Et2O. The precipitate was centrifuged at – 4 

°C for 10 minutes. The solution was then carefully decanted off and the precipitate 

resuspended in cold Et2O before being centrifuged again. This 

resuspending/centrifuging step was repeated five times. Finally, the Et2O was decanted 

off again and the peptide dried under vacuum. The peptides were analysed by ES-MS, 

LC-MS and analytical HPLC 

 

 

2.4.2 Fluorescence data 

 

All fluorescence experiments were performed on a Varian Cary Eclipse Fluorimeter. To 

determine the binding constants and the K0.5 values, fluorescence titration experiments 

were carried out. 

 

2.4.2.1 Screening of binding affinity using the peptide library 

 

The screening of the synthesized peptide library was conducted in a microtiter plate 

(96 wells). The fluorescence intensity was found to be constant after 15 min. 

 

Instrument Parameters 

Excitation wavelength: λex = 305 nm  

Detection wavelength: λ = 320 – 550 nm 

Temperature:   T = 298 K 

PMT voltage    800 volts     

 

Screening conditions 

Solvent: 50 mM HEPES buffer, pH 7.5 

Well volume: 400 µL 

Concentration (5): 3.75 x 10
-5

 M 

Concentration [peptide]: 1.875 x 10
-4

 M ≙ 5 eq of peptide with regard to 5 
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Procedure: 

To each column in the microtiter plate samples of 5 with 5 eq of the corresponding 

peptide and 5 without added peptide as well as 5 with 5 eq of GHG were given as 

reference. Emission spectra for all wells were recorded.  
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0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

threshold

F
/F

0

wavelength [nm]

 Compound 5 

 positive screening result

 negative screening result

 

Figure 3. For peptides inducing a significant increase in emission intensity over the 

parent compound 5 (F/F0 ≥ 2.0), the binding constant and stoichiometry of the 

respective peptide to 5 were determined by emission titration in a cuvette.  

 

 

2.4.2.2 Emission titrations  

 

Instrument Parameters 

Excitation wavelength: λex = 305 nm  

Detection wavelength: λ = 320 – 550 nm or 320 – 600 nm 

Temperature:   T = 298 K 

PMT voltage    600 volts     

 

Titration conditions: 

Solvent: 50 mM HEPES buffer, pH 7.5 

Starting volume: 1.2 mL or 2.5 mL 

Concentration (5): 5.0  10
-5

 M 

Concentration [peptide]: 7.5 ·  10
-4

 M or 4.2 – 4.3 ·  10
-3

 M 
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Procedure: 

To a cuvette with 1.2 mL of 5 in HEPES buffer were added 40 µL (≙ 0.5 eq) aliquots of 

the peptide solution, while the cuvette filled with 2.5 mL of Cu-NTA CE 5 in HEPES 

buffer was titrated stepwise with small amounts 5 – 60 µL, depending on the initial 

emission response, of the substrate solution. After each addition the solution was 

allowed to equilibrate for 15 min before the fluorescence intensity and the UV spectrum 

(see Figure 18 for a representative example) were recorded. The stoichiometry was 

determined by Job´s plot analysis extracted from titration data.
vi

 To determine the 

binding constant the obtained fluorescence intensities were volume corrected, plotted 

against the concentration of peptide and evaluated by non linear fitting methods. 
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Figure 4. Emission titration of 5 with peptide H-Gly-His-Gly-Gly-NH2. 
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Figure 5. Emission titration of 5 with peptide H-Gly-His-Gly-OH.  

                                                 
vi
 (a) P. MacCarthy Anal. Chem. 1978, 50, 2165. (b) C. Schmuck, P. Wich, P. Angew. Chem. Int. Ed. 

2006, 45, 4277-4281. 
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Figure 6. Emission titration of 5 with peptide H-Gly-His-Gly-OMe. 
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Figure 7. Comparison of emission titrations of 5 with peptides H-Gly-His-Gly-OH and 

H-Gly-His-Gly-OMe. 
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Figure 8. Emission titration of 5 with peptide Ac-Gly-His-Gly-OH. 
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Figure 9. Emission titration of 5 with peptide H-Gly-Gly-His-OH. 
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Figure 10. Emission titration of 5 with peptide H-Gly-His-OH. 
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Figure 11. Emission titration of 5 with peptide H-His-OMe. 
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Figure 12. Emission titration of 5 with peptide H-His-Lys-OMe. 
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Figure 13. Emission titration of 5 with peptide H-His-Gly-Lys-OMe. 
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Figure 14. Emission titration of 5 with peptide H-His-Gly-Gly-OH. 

0,0 0,2 0,4 0,6 0,8 1,0

0

1

2

3

4

5

6

x
 (

C
u
-N

T
A

 C
E

) 
x
 ∆

 e
m

is
s
io

n
 i
n
te

n
s
it
y
 [

a
.u

.]

x (Cu-NTA CE)

0,0 0,2 0,4 0,6 0,8 1,0

0

1

2

3

4

5

6

x
 (

C
u
-N

T
A

 C
E

) 
* 

∆
 e

m
is

s
io

n
 i
n
te

n
s
it
y

x (Cu-NTA CE)

0,0 0,2 0,4 0,6 0,8 1,0

0

10

20

30

40

50

60

70

80

x
 (

C
u
-N

T
A

 C
E

) 
x
 ∆

 e
m

is
s
io

n
 i
n
te

n
s
it
y

x (Cu-NTA CE) 



2. Utilizing Reversible Copper(II) Peptide Coordination in a Sequence Selective Luminescent Receptor 

 

 47 

H-Ala-His-Gly-Gly-NH2 

0,0 5,0x10
-5

1,0x10
-4

1,5x10
-4

2,0x10
-4

2,5x10
-4

3,0x10
-4

3,5x10
-4

0

100

200

300

400

500

600

700

∆
 e

m
is

s
io

n
 i
n
te

n
s
it
y
 [
a

.u
.]

c (H-AHGG-NH
2
) [molL

-1
]

 
Figure 15. Emission titration of 5 with peptide H-Ala-His-Gly-Gly-NH2. 
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Figure 16. Emission titration of 5 with peptide H-Leu-His-Gly-Gly-NH2. 
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Figure 17. Emission titration of 5 with peptide H-Gln-His-Gly-Gly-NH2. 
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Figure 18. UV monitoring of the titration of 5 with peptide Gly-His-Gly. 

 

 

2.4.3 Determination of NTA-Cu complex stability in compound 5 in the presence of 

peptides 

 

a) Fluorescence study 

The tripeptide GGH and the dipeptide GH themselves show affinity to copper ions as 

reported in literature.
vii

 Therefore the stability of the copper-NTA complex of 5 in the 

presence of these peptides was investigated. To a HEPES (50 mM, pH 7.5) buffered 

solution of 5 (2.5 mL, 5.0 ·  10
-5

 M) 1.2 eq of GGH were added. After addition of GGH 

the fluorescence spectrum of the mixture was recorded in certain intervals (3 min, 

12 min, 23, min, 53 min, 2 h 53 min). The fluorescence intensity increased if compared 

to the receptor due to the binding process and gave a constant output after approx. 

15 min after adding. The over time recorded spectra showed no significant difference 

from each other thus only one is shown representatively. The sample was further kept in 

the fridge for 18 days and subsequently a fluorescence spectrum was collected. The 

emission intensity of the sample after 18 days (blue) was still the same as at the 

beginning of the experiment (green). This provides evidence that the fluorescence 

intensity enhancement during binding experiments has its origin in the binding event of 

                                                 
vii

 S. J. Lau, B. Sarkar, Biochem. J. 1981, 199, 649-656. 
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the peptides to the receptor. If decomplexation would occur, the quenching of the 

benzocrown ether unit by the copper ion would disappear and the fluorescence intensity 

would be expected to reach the same level as in the ligand 4. Figure 19 summarizes the 

result. Fluorescence spectra of ligand 4 (black) and receptor 5 (red) are given for 

comparison. 
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Figure 19. Determination of complex stability of Cu-NTA CE 5 in the presence of 

GGH (1.2 eq) in buffered aqueous solution (HEPES, pH 7.5). 

 

b) UV absorption study 

To a HEPES (50 mM, pH 7.5) buffered solution of Cu-NTA CE 5 (5.0 ·  10
-5

 M) 5.0 eq 

GGH were added. Subsequently the UV absorption was measured every four minutes 

after addition and after 21 hours. Figure 20 shows the recorded spectra and the 

absorption spectra of compound 4 and 5 without peptide present for comparison. 
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Figure 20. UV absorption spectra of Cu-NTA CE 5 with GGH (5 eq) over time. The 

UV absorption of the ligand 4 (pink) and Cu-NTA CE 5 (green) are given for 

comparison.
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2.4.4 Change of UV- and emission spectra of NTA-Cu and 5 in the presence of 

mercapto ethanol 
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Figure 21. UV absorption spectra of NTA-Cu (black) and NTA-Cu + 5 equivalents of 

mercaptoethanol (red). 
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Figure 22. Fluorescence spectra of compound 5 (black) and compound 5 + 5 

equivalents of mercaptothiol (red); concentration of compound 5: c = 5.0 x 10
-5

 molL
-1

. 
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2.4.5 Binding Studies by Isothermal Titration Calorimetry (ITC) 

 

In order to verify the results of the emission titrations, the binding processes of the 

peptides GHG and Ac-GHG with compound 5 were determined by isothermal titration 

calorimetry.  

All ITC experiments were performed in buffered aqueous solution (HEPES, 50 mM, 

pH 7.5) at 25 °C using an ultrasensitive VP-ITC calorimeter from MicroCal 

(Northampton, MA, U.S.A.). The sample solutions were made from stock buffer 

solution (HEPES, 50 mM, pH 7.5). Concentration of Cu-NTA CE 5 (titrant) in the 

300 µL syringe was set to 1.2 mM, whereas the concentration of the peptide GHG or 

Ac-GHG in the 1.436 mL calorimetric cell was 0.05 mM. Before each titration both 

experimental solutions (titrant, cell) were thoroughly degassed under vigorous stirring. 

During the ITC experiment the cell solution was stirred at 300 rpm by syringe to ensure 

rapid mixing and 60 x 5 µL of titrant were injected over 10 s with a spacing time 

between each injection of two minutes in order to allow complete equilibration. Before 

data analysis the total observed heat of binding was corrected for the heat of dilution 

yielding the effective heat of binding. Therefore an analogue ITC experiment with the 

calorimeter cell filled with HEPES and Cu-NTA CE as titrant was carried out. The data 

were analyzed by non linear fitting methods using the MicroCal Origin software 

(Windows based). The values for the binding stoichiometry (n) and the thermodynamic 

parameters of interaction: enthalpy of binding (∆H) and binding constant (lg K), and, 

consequently, free energy change (∆G) and entropy change (∆S) were obtained using a 

“one-set of site” model for the fitting routine. Table 1 summarizes the results of the ITC 

experiments. Figure 23 and Figure 24 show the raw ITC titration data and the processed 

curve. 

 

 

Table 3. Results of the ITC experiments of Cu-NTA CE vs GHG and Ac-GHG, 

respectively. 

 n lg K 

[M
-1

] 
∆∆∆∆H 

[cal mol
-1

] 
∆∆∆∆S 

[cal mol
-1

 K
-1

] 
∆∆∆∆G 

[cal mol
-1

] 

      

H-GHG-OH 1.04 ± 0.01 5.10 ± 0.02 - 4168 ± 22.25 9.37 -6962 

Ac-GHG-OH 1.18 ± 0.08 3.99 ± 0.04 - 4364 ± 47.40 3.61 - 5440 
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Figure 23. ITC of GHG (0.05 mM) and Cu-NTA CE (5) (1.20 mM) in HEPES (50 mM, 

pH 7) at 25 °C; (a) raw ITC data, (b) heat of dilution corrected and fitted ∆H diagram. 
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Figure 24. ITC of Ac-GHG (0.05 mM) and Cu-NTA CE (5) (1.20 mM) in HEPES (50 

mM, pH 7.5) at 25 °C; (a) raw ITC data, (b) heat of dilution corrected and fitted 

∆H diagram. 
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2.4.6 Change of emission spectra of ligand 4 in the presence of GGH 

 

Compound 4 was titrated under the conditions described above with GGH to confirm no 

change of its emission spectrum in the presence of the target peptides. 
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3. Fluorescent 1,4,7,10-Tetraazacyclododecane Zn(II) Complexes with 

high Affinity to D4 and E4 Peptide Sequences
i
 

 

Suitable combinations of an affinity tag and an artificial probe are useful for non-

covalent protein labelling. Several of such peptide tag – probe pairs have been 

developed and reported in the literature. The most prominent example is the His-tag – 

Ni(II)-NTA (nitrilotriacetic acid) pair. Recently, the Hamachi group reported a 

genetically encodable oligo-aspartate sequence (D4-tag) and a corresponding 

oligonuclear Zn(II) dipicolylamine (Zn(II)-Dpa) complex as new peptide tag – probe 

pair, which is orthogonal to the His-tag – Ni(II)-NTA pair. We describe now the 

preparation of fluorescent 1,4,7,10-tetraazacyclododecane (cyclen) Zn(II) complexes 

and their application as an alternative artificial probe for the D4-tag system.ii The 

binding affinities of the new complexes to the affinity tags were investigated by 

emission and UV-vis titration.iii Tetranuclear Zn(II)-cyclen complexes respond to the 

presence of oligo-aspartate, oligo-glutamate and oligo-aspartate dimers in aqueous 

solution at micromolar concentrations by a strong spectroscopic change. Based on the 

high binding affinities due to strong electrostatic interactions and Job´s plot analysis, we 

propose the formation of receptor–peptide tag aggregates. The results clearly show the 

potential of Zn(II)-cyclen complexes for applications as non-covalent protein markers, 

although their optical properties require further optimization for practical use. 

 

                                                 
i S. Stadlbauer, M. Bhuyan, A. Grauer, F. Schmidt, H. Nonaka, S. Uchinomiya, A. Ojida, I. Hamachi, B. 
König Chem. Asian. J. 2009, in preparation. 
ii Compounds 4 and 7 were prepared by Florian Schmidt, compound 9 was synthesized by Andreas 
Grauer and compound 10 by Mouchumi Bhuyan. All other compounds were prepared by Stefan 
Stadlbauer 
iii Binding affinity of compounds 3 – 9 towards the peptide tags was investigated by Stefan Stadlbauer at 
the Kyoto University, Japan in the group of Prof. Dr. Itaru. All peptide tags were provided by the 
Hamachi group.The binding affinity of compound 11 was investigated at the University of Regensburg. 
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3.1 Introduction 

The selective luminescent labelling of proteins by markers is an important quest and an 

ongoing challenge in molecular biology.1 Covalent labelling uses reactive dyes or 

genetic fusion of fluorescent proteins e. g. green fluorescent proteins (GFPs).2 Non-

covalent labelling strategies employ antibodies or snap tags.3 Recently, pairs of protein 

fused peptide tags and complementary fluorescent chemical probes were reported for 

applications in protein labelling2a, 4 This combination of a peptide tag incorporated into 

a protein and a complementary chemical binding site is widely used in affinity 

chromatography for protein isolation/purification (IMAC),5but also in immobilization 

techniques and protein detection by immunoblotting.6  The peptide tag, genetically 

incorporated in the protein, is specifically recognized by a complementary synthetic 

receptor, and serves as a selective binding epitope. The most prominent example is the 

His-tag – Ni(II)-NTA (nitrilotriacetic acid) pair, which is widely used in protein 

purification, protein immobilization,5 and bio-imaging by fluorescent labelling of 

proteins.7 For the later application, a change in the emission signal of the probe induced 

by tag binding is crucial. This change, either in fluorescence intensity or emission 

wavelength, enables a precise detection or imaging of the protein at physiological 

conditions.8 

Recently the Hamachi group developed a new high affinity peptide tag – 

artificial probe pair, orthogonal to the His tag – Ni(II)-NTA pair, for protein labelling, 

employing coordination chemistry and multivalent interaction between a genetically 

encodable oligo-aspartate sequence (D4-tag) and a corresponding oligonuclear Zn(II) 

complex.9 Since artificial zinc dipicolylamine (Zn(II)-Dpa) receptors,5,10 and zinc 

1,4,7,10-tetraazacyclododecane (Zn(II)-cyclen) complex derivatives,11 are both known 

for their application as phosphate binders at physiological conditions, we considered 

Zn(II)-cyclen derivatives as alternative artificial probes for the developed D4-tag 

system. 

Herein we describe the synthesis and the investigation of new fluorescent 

multinuclear Zn(II)-cyclen complexes as artificial probes for oligo-aspartate (D4-tag) 

and oligo-glutamate (E4-tag) tag sequences. Although the coordination geometry of 

Zn(II)-Dpa and Zn(II)-cyclen is rather different, Zn(II)-cyclen derivatives show a 

comparable high binding affinity and are therefore a suitable alternative as artificial 

non-covalent protein markers in bio-labelling.  
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3.2 Results and Discussion 

3.2.1 Design of fluorescent Zn(II)-cyclen complexes 

As previously shown the selective binding of fluorescent Zn(II)-Dpa tyrosine 

derivatives with high affinity to the triply D4 motif tethered to the porcine muscarinic 1-

type acetylcholine receptor on the cell surface of mammalian cells resulted from 

multiple coordination chemistry as well as a multivalent effect.9a Although bis-Zn(II)-

cyclen 1 and Zn(II)-Dpa 2 show a different coordination geometry, both binuclear metal 

complexes are suitable for multipoint metal–ligand interactions (figure 1). Hence the 

accumulated carboxylate groups of the D4-tag are able to favourably interact with the 

cationic cyclen complex 1. Furthermore the non-quenchable character of zinc (II) (d10) 

is an advantage in the development of fluorescent probes. 
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Figure 1. General structure of bis-Zn(II)-cyclen complex 1 and tyrosine based Zn(II)-
Dpa complex 2. 
 
In this respect we designed and synthesized a set of different cyclen derivatives attached 

to various fluorescent dyes. Bis-Zn(II)-cyclen 1 is synthetically easily available and 

modified. As shown in figure 2 mono-, bi- and tetranuclear zinc (II) cyclen metal 

complexes were prepared according to the reported binuclear and tetranuclear Zn(II)-

Dpa.9 Several fluorescent dyes were attached to the cyclen derivatives: For the mono- 

and dinuclear Zn(II)-cyclen complexes coumarin and fluorescein were introduced, 

while the dansyl group and pyrene was used only with dinuclear Zn(II)-cyclen. 

Tetranuclear Zn(II)-cyclen complexes were linked by a perylene unit or a benzene 

moiety.  
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Figure 2. Dyes and linkers used in synthesis of mono-, bi- and tetranuclear Zn(II)-
cyclen derivatives.  
 

 

3.2.2 Syntheses 

The cyclen building blocks 17,12 20
11a, g and 26

11b for the synthesis of fluorescent mono-

, bi- and tetranuclear Zn(II)-cyclen derivatives were prepared as previously reported. 

Dyes and linker were commercially available; coumarin 11
13 and pyrene 12

14
 were 

prepared according to literature procedures. Detailed experimental procedures and 

analytical data of all prepared compounds shown in scheme 1 are provided in the 

Experimental Part.  
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3.2.2.1 Fluorescent mono and binuclear Zn(II) cyclen derivatives 

Starting material for all fluorescent mono and binuclear derivatives were protected 

cyclen amine building blocks 17 and 20, respectively. The key step for both synthetic 

routes was the amide formation between the cyclen amine 17 and 20, respectively, and 

the different fluorescent dyes. The amide was formed using TBTU and HOBt and the 

corresponding acid yielding the Boc-protected compounds 18, 19 and 21 – 24. To 

introduce the dansyl group, dansyl chloride was allowed to react at basic conditions 

with cyclen amine 20. Acidic cleavage of the Boc-groups and subsequent treatment of 

the generated hydrochloride salts with a basic anion exchanger resin yielded the free 

amine cyclen ligands. Finally, complex formation with 1 or 2 equivalents of Zn(ClO4)2 

gave the labelled mono- and dinuclear Zn(II)-cyclen derivatives, respectively. 

 

3.2.2.2 Fluorescent tetranuclear Zn(II) cyclen derivatives 

The amide formation of the cyclen building block 20 and the perylene fluorophore was 

achieved in an imidazole melt. Further synthetic steps to obtain the tetranuclear Zn(II) 

cyclen 9 were carried out by analogous procedures as described above. To achieve a 

more rigid structure of the tetranuclear Zn(II)-cyclen complex as in 9, we prepared the 

tetranuclear Zn(II)-cyclen 10 via palladium catalyzed Suzuki reaction. Conversion to the 

final tetranuclear zinc complex was achieved by common methods as stated above. The 

conjugation of the fluorophore alters the photophysical properties if compared to 

compound 9 (vide infra).  
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Scheme 1. (a) Appropriate acid, TBTU, HOBT, DIPEA, dry DMF, 40 °C, 2-3 h; dansyl 
chloride 14, TEA, DCM, 1.5 h; (b) HCl / ether, DCM o/n, basic ion exchanger resin; 
(c) Zn(ClO4)2, H2O, MeOH, 65 – 70°C; (d) 3,4,9,10-Perylene–tetracarboxylic 
dianhydride 15, imidazole melt; (e) Diboronic acid of compound 16, 
tetrakis(triphenylphosphine)-palladium, Na2CO3, DME, 80 °C, 48 h; (f) TFA, DCM o/n, 
basic ion exchanger resin; (g)  ZnCl2, H2O, MeOH / MeCN, reflux, o/n. Counter ions of 
the complexes to yield a neutral complex are not shown for clarity.   
 

 

3.2.3 Determination of the binding affinity 

Our previous studies for the Zn(II)-Dpa Tyr on a series of oligo-aspartate peptides (Boc-

Dn-NH2, n = 2 – 5) and oligo-glutamate peptides (Boc-En-NH2, n = 3, 4) revealed the 

D4-tag as the most efficient and optimal tag sequence. A further increase in length did 

not lead to an increase in binding affinity, while shorter tags showed lower affinity. 

Comparison of the binding data of oligo-aspartate and oligo-glutamate indicated ca. 6-

fold higher binding affinity of the D4-tag compared to the E4-tag. Thus, we initially 

focused on the investigation of an affinity screening of compounds 3 – 10 to the D4-tag 

and E4-tag, respectively.  

Emission screening experiments were performed with compounds 3 – 10 at 

physiological conditions in buffered aqueous solution (HEPES 25 mM, pH 7.4, 25 °C) 

adding in precise equivalent steps 0.5, 1.0, 5.0 and 10.0 eq. of the tag-peptide (D4, E4). 

The emission spectra at the appropriate excitation wavelength of the used dye were 
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recorded. Only the tetranuclear Zn(II)-cyclen complexes 10 and 11 responded to the 

addition of the tag proteins by a change in their emission spectra. For the mononuclear 

complexes (3, 4) and for binuclear complexes (5, 6, 7, 8) no significant change was 

observed. Although both tetranuclear compounds showed a change in emission their 

fluorescence properties responded divergent. While the emission intensity of compound 

10 increased, compound 9 revealed a decrease in its emission intensity and an excimer 

formation could be determined. We focused on the tetranuclear Zn(II)-cyclen 

complexes and investigated their affinity towards the protein tags (D4-tag, E4-tag) at 

various concentrations using emission and UV-vis absorption titration.  

Emission titration experiments of perylene complex 9 and D4-tag showed the 

emission intensity decreasing upon binding and aggregate induced receptor–peptide tag 

excimer formation at 654 nm at a 50 µM concentration of 9, which was not observable 

at a 10 µM concentration. Addition of 30 % of acetonitrile to the HEPES buffered 

solution increased the solubility of the receptor–peptide tag complex and inhibits the 

aggregate and excimer formation.  

An apparent binding constant in the micromolar range was derived by non-linear 

fitting methods from a plot of emission intensity changes against the concentration of 

added tag protein. The obtained values for 50 µM and 10 µM concentrations of 9 are 

comparable within the error limits of the experiment (table 1). Job´s plot analysis15 gave 

a stoichiometric ratio of the receptor–peptide tag aggregate of 1:1. Independent UV-vis 

investigations confirmed the results derived from emission titration experiments. Upon 

binding, the absorption of 9 at 500 nm and 540 nm decreases, respectively. From these 

absorption changes we determined the affinity towards the tag proteins and confirmed 

that 9 forms a 1:1 receptor–peptide tag aggregate with nearly micromolar apparent 

affinity. However, no selectivity between D4 and E4 could be determined (figure 3a). 

The amino acids aspartic acid and glutamic acid differ only by one methylene group in 

their side chains, which may not effect a change in the receptor–peptide aggregate 

formation. Hence, a dimer of a D4-tag (H2N-G-DDDD-G-DDDD-G-NH2) was assumed 

to change the stoichiometry of the aggregate to 2:1 due to the repeated D4 motif. In fact 

we observed the supposed change in the stoichiometric ratio and a surprisingly high 

binding affinity (lg Kapp = 14) was estimated by non-linear fitting using a 2:1 binding 

model (figure 3b). However, the lg K value must be considered with caution, as for such 

high affinities, UV-vis and emission titration experiments are not suitable to determine 

exact values, because of the concentration limitations of the methods. 16 
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Figure 3. a) Representative binding isotherms of 9 and investigated peptide tags (left) 
in aqueous solution; conditions for all measurements: [9] = 10 µM, [peptide-
tag] = 0.3 mM; representative Job´s plot analysis (right) detected by emission of 
compound 9 (10 µM) and D4-tag. b) Emission titration (left) and Job´s plot analysis 
(right) of 9 and D4-tag dimer in aqueous buffer ([9] = 5 µM, [D4-tag dimer] = 100 µM). 
 
The orthogonality of compound 9 towards His-tag protein (Boc-WAHHHHHH-NH2) 

was proven by measurements at the same physiological conditions: No comparable 

binding as seen for the D4- and E4-tag is observed between the His-tag and 9. Only a 

weak unspecific interaction (K < lg 3) is indicated by the linear increase of the emission 

intensity (figure 3a). All obtained apparent binding constants for the tetranuclear 

perylene Zn(II)-cyclen complex 9 are summarized and table 1.  

Next, we investigated the tetranuclear benzene Zn(II)-cyclen complex 10 in 

more detail. Emission titrations were performed at 50 µM and 10 µM concentrations of 

10 and the D4-tag and E4-tag, respectively. For complex 10 an increase of the emission 

intensity upon the formation of a receptor–peptide aggregate was observed (see 
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Experimental Part). However, again the response of 10 to the presence of the tags was 

concentration dependent indicating the presence of higher aggregates of the compound.  

 

 

 

 

 

 

 

Table 1. Binding constants for the receptor–peptide aggregate formation of complex 9 

and 10 and investigated peptide. [a] Binding constant derived from emission titration. 
[b] Binding constant derived from UV-vis titration. [c] All stoichiometries were 
determined by Job´s plot analyses as 1:1, with the exception for D4-tag dimer, which 
shows 2:1. [d] Binding constants were derived from emission titrations and calculated 
using equilibria of 1:1 (K11) and 1:2 (K12) receptor–peptide aggregate stoichiometry as 
indicated by the Job´s plot analyses. [e] Binding constant could not be derived from the 
experimental data. 
 
The stoichiometric ratio of the receptor–peptide tag aggregate at 50 µM concentration 

of 10 is 1:2, which indicates that one tetranuclear benzene Zn(II)-complex coordinates 

with either two D4-tag proteins or two E4-tag proteins. Assuming an equilibrium 

between a 1:1 and 1:2 aggregate during aggregate formation and a complete 1:2 

aggregate formation at the end of the titration, allowed us to calculate apparent binding 

constants K11 and K12 for these processes (table 1). The titration data obtained at 10 µM 

(see Experimental Part) cannot be described with this binding model indicating the 

presence of additional equilibria at lower concentrations. 

As the stoichiometry for the aggregate formation was found to be 1:2 

(10 : tag protein),17 the findings were verified by isothermal titration calorimetry (ITC), 

although the binding constants are outside the typical range for ITC. The ITC 

measurements confirmed the 1:2 stoichiometry (for ITC results see Experimental 

Part).18  

 

compound c 

[µM] 

D4-tag 

lg K 

E4-tag 

lg K 

D4-dimer 

lg K 

 50 4.7[a] 5.4[b] 5.3[a] 5.1[b] – 
9

[c] 10 5.3[a] 5.6[b] 5.5[a] 5.2[b] -[e] 

 5 – – – – 14.0 
  lg K11 lg K12 lg K11 lg K12  

10
[d] 50 5.8 10.6 7.3 13.3 – 
 10 -[e] -[e] 7.3 12.9 -[e] 
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Figure 4. Binding isotherms in aqueous solution obtained by emission titration (left) of 
10 and D4-tag and E4-tag, respectively, and Job´s plot analyses (right). Measurement 
conditions: (a) [10] = 50 µM, [D4] = 2 mM; (b) [10] = 50 µM, [E4] = 2 mM. 
 
Finally, the orthogonality of the tetranuclear benzene Zn(II)-cyclen complex 10 to His-

tags was studied. A decrease of the emission intensity of 10 upon addition of His-tag 

(Boc-WAHHHHHH-NH2) clearly indicates an interaction of 10 to the His-tag (see 

Experimental Part). Although a strong response in emission change was observable and 

saturation occurred after 1.0 eq of added His-tag (~ 10 µM), no apparent binding 

constant could be derived from the measurements as the His-tag protein shows emission 

upon excitation at 326 nm because of its tryptophan residue. Thus the decreasing 

emission of 10 interfered with the emission increase caused by the continuous addition 

of His-tag protein. Nevertheless, a strong interaction of His-tag and the metal complex 

is assumed as a low His-tag concentration (< 10 µM) affects a strong emission decrease 

of 10. Although the tetranuclear benzene Zn(II)-cyclen complex 10 is not exclusively 
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selective for oligo-aspartic or oligo-glutamic peptides, a distinction of His-tag peptides 

is possible by the different emission response. 

 

 

3.2.4 Cooperativity 

The cooparitivity of the supramolecular aggregate formation was investigated in more 

detail using Scatchard19 and Hill plot19 analysis (see Experimental Part). Whereas for 

perylene complex 9 and the tags D4 and E4 the Hill coefficient is nearly one, indicating 

a non-cooperative process, the Hill coefficient of the D4-tag dimer binding with a value 

of 2.77 indicates cooperative binding. The binding of 9 to the first D4-dimer tag may 

constrain the conformation of the oligo peptide facilitating the binding of another 

molecule of 9. The sigmoidal shape of the emission intensity difference plots of the 

tetranuclear benzene Zn(II)-cyclen complex 10 suggests a positive cooperation which 

was verified by the Hill coefficient n ≥ 2. The difference in the Hill coefficient of the 

binding of 10 to D4 and E4 is small. Scatchard plot analysis supports the conclusions: 

Deviation from a linear curve indicates positive cooperativity of binding. Only the 

binding data analysis of compound 9 to the D4-tag and E4-tag leads to a linear 

Scatchard plot, suggesting non-cooperative binding as already indicated by the Hill 

coefficient. 

 

 

3.2.5 Comparison and suggested binding model 

Only tetranuclear Zn(II)-cyclen complexes show a significant affinity to the oligo 

peptide tags (D4, E4, D4-tag dimer, His-tag) in aqueous solution based on electrostatic 

interactions. The different coordination geometry of Zn(II)-cyclen compared to Zn(II)-

Dpa does not affect the affinity as we expected. In fact, the tetranuclear perylene Zn(II)-

cyclen complex shows a similar affinity towards the tags (D4, E4) with a 1:1 

stoichiometry, while its affinity significantly increases in the binding of the D4-dimer 

tag and the stoichiometry changes to 2:1. This change is expected due to the repeated 

D4 motif and the results determined for the single D4-tag. The driving force for the 

aggregate formation originates from electrostatic interactions, thus we proposed a 

binding geometry as illustrated in figure 5a: Tetranuclear perylene Zn(II)-cyclen 9 acts 

as a tweezer and coordinates the oligo peptide tag at the carboxylate residues on each 
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side of the tag resulting in a stable supramolecular aggregate. As glutamic acid and 

aspartic acid differ only by one methylene group in their side chain residue, we assume 

a similar conformation for the E4-tag and therefore an analogous aggregate formation 

due to the flexible cyclen moiety in 9. Also the excimer formation at 50 µM 

concentration is supported by the suggested binding model (figure 5b). Although the 

response to peptide binding by a decreased emission of 9 is less desired for bio-imaging 

than an emission increase, the excimer formation of the aggregate (λ = 540 nm) 

possibly can be used for non-covalent protein labelling.  

 

 

Table 2. Comparison of the logarithmic binding constants of Zn(II)-Dpa to the 
investigated tetranuclear Zn(II)-cyclen complexes 9 and 10. 
[a] All stoichiometries determined as 1:1, with the exception of 10 and D4-dimer (2:1) 
and 11 and D4/E4-tag (1:2). [b] Average values for binding constant obtained by UV 
and/or emission titration. [c] Obtained by emission titration. [d] Obtained by ITC. 
[e] Obtained by ITC on a D4-tag dimer tethered to a RNase.  

 
The more ridged tetranuclear benzene Zn(II)-cyclen complex 10 shows an emission 

increase upon binding of the peptide tag and higher affinities. Electrostatic interactions 

are considered as the main driving force for aggregate formation leading to charge 

neutralization in a 1:2 aggregate. Since the three dimensional structure of 10 has a flat 

and bar-shaped character we suppose a sequential binding due to electrostatic 

interaction of the D4-tag or E4-tag, forming a stable and neutral 1:2 receptor–peptide 

tag aggregate (figure 5c). The scaffold of the two benzene linked binuclear Zn(II)-

cyclen complexes perfectly matches the oligo peptide tags (D4, E4) structure and charge 

distribution. In a sandwich-like aggregate of 10 and the tag protein strong electrostatic 

interactions are likely, resulting in the observed high apparent binding affinity. The 

absorption and emission properties of complex 10 lead to an overlap with protein 

spectra, which makes the compound unsuitable for protein labelling. However, we 

envision a related tetranuclear Zn(II)-cyclen complex with λex ≥ 380 nm to exclude the 

interference of the artificial probe and peptide tag or protein sample. 

 
 

compound D4-tag 
lg K[a] 

E4-tag 
lg K[a] 

D4-dimer 
lg K[a] 

His-tag 
affinity 

9 5.2[b] 5.3[b] 14.0[c] No 
10 5.8 / 10.6[b] 7.3 / 12.9[b] – Yes 
Zn(II)-Dpa 19a (R = boc) 5.8[d] 5.1[d] – No 
bis-Zn(II)-Dpa dimer9a – – 7.3[e] No 
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a) b) 

 

 
 
 
 
c) 
 
 

 
 
 
 
Figure 5. Proposed geometry of receptor–peptide tag aggregates of 9 or 10 and D4-tag. 
We expect a similar conformation for the E4-tag; therefore only binding models for the 
D4-tag are shown. All models were obtained by molecular modelling using the program 
package Spartan `06 (Wavefunction Inc.) by energy minimization (force field MMFF) 
of the receptor–peptide complex. Utilizing WebLabViewer Lite 4.0 an electrostatic 
potential surface displayed as wired mesh of the D4-tag was generated. The red colour 
indicates a high density of negative charges at the carboxylate residues of the tag. The 
cationic Zn(II)-cyclen favourably interacts with the anionic carboxylate residues. 
a) Compound 9 acts as a tweezer forming a stable 1:1 receptor–D4-tag peptide tag 
aggregate. b) Assumed geometry of an excimer formation of the aggregate shown in a). 
c) Sandwich-like 1:2 receptor–peptide tag aggregate formation of 10 and D4-tag.  
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3.3 Conclusion 

In conclusion, tetranuclear Zn(II)-cyclen complexes show high affinity to D4 and E4 

peptide tags in buffered aqueous solution. The perylen complex 9 binds D4 and E4 

peptide tags with micromolar affinity, a D4-dimer with nanomolar affinity and shows 

no binding to a His-tag peptide. The emission intensity of the chromophor is quenched 

in the presence of the peptides, which is less suitable for bio-labelling, but the excimer 

formation of compound 9 may be utilized for protein imaging. The more ridged 

tetranuclear Zn(II)-cyclen complex 10 shows an increase in its emission intensity upon 

binding to D4 or E4-tags, which is advantageous for imaging of proteins. The 

fluorescence response of the complexes is complementary for D4, E4-tags and for His 

tags. However, the excitation wavelength of the currently used compound interferes 

with protein absorption and the development of a tetrameric Zn(II)-cyclen complex with 

λex ≥ 380 nm is envisaged to overcome this drawback. Overall, the investigations show 

a potential of tetranuclear Zn(II)-cyclen complexes as non-covalent protein markers, but 

their optical properties require further optimization for practical use. 
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3.4 Experimental Part 

3.4.1 General methods and material  

Emission Spectroscopy. Fluorescence measurements were performed with UV-grade 

solvents (Baker or Merck) in 1 cm quartz cuvettes (Hellma) and recorded on a Varian 

‘Cary Eclipse’ fluorescence spectrophotometer or on a Perkin-Elmer LS55 fluorescence 

spectrophotometer with temperature control. 

 

Absorption Spectroscopy. Absorption were recorded on a Varian Cary BIO 50 

UV/VIS/NIR Spectrometer or on a SHIMADZU UV-2550 spectrometer with 

temperature control by use of a 1 cm quartz cuvettes (Hellma) and Uvasol solvents 

(Merck or Baker). 

 

NMR Spectra. Bruker Avance 600 (1H: 600.1 MHz, 13C: 150.1 MHz, T = 300 K), 

Bruker Avance 400 (1H: 400.1 MHz, 13C: 100.6 MHz, T = 300 K), Bruker Avance 300 

(1H: 300.1 MHz, 13C: 75.5 MHz, T = 300 K). The chemical shifts are reported in 

δ [ppm] relative to external standards (solvent residual peak). The spectra were analyzed 

by first order, the coupling constants are given in Hertz [Hz]. Characterization of the 

signals: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, bs = broad singlet, 

psq = pseudo quintet, dd = double doublet, dt = double triplet, ddd = double double 

doublet. Integration is determined as the relative number of atoms. Assignment of 

signals in 13C-spectra was determined with DEPT-technique (pulse angle: 135 °) and 

given as (+) for CH3 or CH, (–) for CH2 and (Cq) for quaternary Cq. Error of reported 

values: chemical shift: 0.01 ppm for 1H-NMR, 0.1 ppm for 13C-NMR and 0.1 Hz for 

coupling constants. The solvent used is reported for each spectrum. 

 

Mass Spectra. Varian CH-5 (EI), Finnigan MAT 95 (CI; FAB and FD), Finnigan MAT 

TSQ 7000 (ESI). Xenon serves as the ionisation gas for FAB.  

 

IR Spectra. Recorded with a Bio-Rad FTS 2000 MX FT-IR and Bio-Rad FT-IR FTS 

155. 

 

Melting Point. Melting Points were determined on Büchi SMP or a Lambda 

Photometrics OptiMelt MPA 100. 
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3.4.2 Binding Studies 

3.4.2.1 Screening of fluorescent Zn(II)-cyclen derivatives by emission change readout 

An emission read out experiment was carried out with all compounds 3 – 10 to 

determine, which of the fluorescent derivatives response to the D4-tag and E4-tag. 

Screening experiments were done at physiological conditions in buffered aqueous 

solution (HEPES 25 mM, pH 7.4, 25 °C) in a cuvette. To a 50 µM (3 mL) solution of 

the metal complex (3 – 10) 10 equivalents of the peptide tag (D4 or E4) were 

continuously added in precise equivalent steps (0, 0.5, 1, 5 and 10 eq) and an emission 

spectra at the appropriated excitation wavelength of the dye was recorded.  

 

3.4.2.2 Emission and UV-vis titrations  
Procedure: To a cuvette with 400 µL of 9 and 10, respectively, in HEPES buffer were 

added aliquots of a peptide tag solution (D4-tag, E4-tag, D4-tag dimer and His-tag). 

After each addition the solution was allowed to equilibrate before the emission intensity 

(λex (9) = 540 nm; λex (10) = 326 nm) and the UV spectrum were recorded. The 

stoichiometry was determined by Job´s plot analysis extracted from titration data.20 To 

determine the binding constant the obtained fluorescence intensities were volume 

corrected, plotted against the concentration of added peptide and evaluated by non 

linear fitting methods. 

 

Titration conditions for 50 µM of metal complex: 

Solvent: HEPES buffer 25 mM, pH 7.4 

Starting volume: 400 µL 

Concentration (9 or 10): 50 µM 

Concentration [peptide tag]: 3 mM, 8 eq with regard to the metal complex 9 and 10 eq 

with regard to 10 

 

Titration conditions for 10 µM of metal complex: 

Solvent: HEPES buffer 25 mM, pH 7.4 

Starting volume: 400 µL 

Concentration (9 or 10): 10 µM 

Concentration [peptide tag]: 0.3 mM, 7.2 eq with regard to the metal complex 9 and 

10 eq with regard to 10 
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Results: 

 

Compound 9 

a) b) 

 

 

 

 

 

 

 

Figure 6. Emission titration of 9 and D4-tag aqueous buffered solution (λex = 540 nm). 
Measurement conditions: (a) [9] = 50 µM, [D4] =3 mM; (b) [9] = 50 µM, [D4] = 
0.3 mM. 
 

 

a)  b) 

 

 

 

 

 

 

 

Figure 7. (a) Binding isotherm derived by emission titration of 9 and D4-tag in aqueous 
buffered solution; black: [9] = 10 µM, [D4-tag] = 0.3 mM; red: [9] = 50 µM, [D4-tag] = 
3.0 mM; inserted: Job´s plot analysis detected by emission of compound 9 (10 µM). (b) 
Binding isotherm derived by UV-vis titration of 9 and D4-tag in aqueous buffered 
solution; black: [9] = 10 µM, [D4-tag] = 0.3 mM; red: [9] = 50 µM, [D4-tag] = 3.0 mM; 
inserted: Job´s plot analysis detected by UV-vis absorption of compound 9 (10 µM at 
UV maximum of 500 nm). 
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a) b) 

 

 

 

 

 

 

Figure 8. (a) Binding isotherm derived by emission titration of 9 and E4-tag in aqueous 
buffered solution; black: [9] = 10 µM, [E4-tag] = 0.3 mM; red: [9] = 50 µM, [E4-
tag] = 3.0 mM; inserted: Job´s plot analysis detected by emission of compound 9 
(10 µM). (b) Binding isotherm derived by UV-vis titration of 9 and E4-tag in aqueous 
buffered solution; black: [9] = 10 µM, [E4-tag] = 0.3 mM; red: [9] = 50 µM, [E4-
tag] = 3.0 mM; inserted: Job´s plot analysis detected by UV-vis absorption of 
compound 9 (10 µM at UV maximum of 500 nm). 
 
 

a) b) 

 

 

 

 

 

 

 

 

Figure 9. (a) Emission titration of 9 and D4-tag in aqueous buffered solution + 30 % 
MeCN  in order to increase the solubility of the formed receptor–aggregate to effect the 
excimer formation. As can be seen no excimer formation was determined under these 
conditions. (b) Binding isotherm derived by emission titration of 9 and D4-tag in 
aqueous buffered solution + 30 % MeCN (λex = 520 nm); [9] = 50 µM, [D4-
tag] = 3.0 mM; inserted: Job´s plot analysis detected by emission of compound 9 
(50 µM). 
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Compound 10 

 

a) b) 

 
 
 
 
 
 
 
 
 
 
Figure 10. (a) Emission titration of 10 and D4-tag in aqueous buffered solution; 
[10] = 50 µM, [D4] = 2 mM. (b) Emission titration of 10 and E4-tag in aqueous 
buffered solution; [10] = 50 µM, [D4] = 2 mM. 
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Figure 11. a) Emission titration of 10 and D4-tag: [10] = 10 µM, [D4] = 0.4 mM. 
b) Emission titration of 10 and His-tag in aqueous buffered solution, [10] = 10 µM, 
[His-tag] = 0.4 mM. c) Emission titration of 10 and E4-tag (left): [10] = 10 µM, 
[E4] = 0.4 mM; Job´s plot analysis (right).  
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3.4.3 Orthogonality to the His-tag 
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Figure 12. Representative binding isotherms of tetranuclear perylene Zn(II)-cyclen 9 
and investigated peptide tags in aqueous buffered solution. For all measurements: 
[9] = 10 µM, [peptide-tag] = 0.3 mM.  
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Figure 13. Comparison of a 50 µM His-tag solution (red) and emission at the end of 
titration after addition of 10 eq His-tag to 10 (10 µM) (black), which correspond to a 
41 µM His-tag solution.  
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3.4.4 Isothermal titration calorimetry (ITC) 

ITC experiments were performed in buffered aqueous solution (HEPES, 25 mM, 

pH 7.4) at 25 °C using an ultrasensitive VP-ITC calorimeter from MicroCal 

(Northampton, MA, U.S.A.). The sample solutions were made from stock buffer 

solution (HEPES, 25 mM, pH 7.4). Concentration of peptide tag (titrant) in the 300 µL 

syringe was set to 3.5 mM, whereas the concentration of metal complex 9 and 10, 

respectively, in the 1.436 mL calorimetric cell was 97 µM. Before each titration both 

experimental solutions (titrant, cell) were thoroughly degassed under vigorous stirring. 

During the ITC experiment the cell solution was stirred at 300 rpm by syringe to ensure 

rapid mixing and 60 x 5 µL of titrant were injected over 10 s with a spacing time 

between each injection of two minutes in order to allow complete equilibration. Before 

data analysis the total observed heat of binding was corrected for the heat of dilution 

yielding the effective heat of binding. Therefore an analogue ITC experiment with the 

calorimeter cell filled with HEPES and peptide tag as titrant was carried out. The data 

could not be analyzed by non linear fitting methods using the MicroCal Origin software 

but they revealed that a sequential binding process occurs due to the ITC curve shape 

which is typical for a sequential binding model for host-guest interactions.18 

  

a) b) 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 14. (a) ITC of 9 (97 µM) and D4-tag (3.5 mM) in HEPES (25 mM, pH 7.4) at 
25 °C. (b) ITC of 9 (97 µM) and D4-tag (0.9 mM) in HEPES (25 mM, pH 7.4) at 25 °C. 
top: raw ITC data, bottom: heat of dilution corrected and fitted ∆H diagram. 
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Figure 15. ITC of 9 (97 µM) and E4-tag (3.5 mM) in HEPES (25 mM, pH 7.4) at 
25 °C. top: raw ITC data, bottom: heat of dilution corrected and fitted ∆H diagram. 
 



3. Fluorescent 1,4,7,10-Tetraazacyclododecane Zn(II) Complexes with high Affinity to D4 and E4 Peptide Sequences 

 80 

3.4.5 Cooperativity 

Hill plot 

Hill Equation:  ∆E = (Emax·  x
n) / (KD

n + xn) 

 

Compound 9: 

 

a) b) 

 

 

 

 

 

 

 

 

Figure 16. Analysis of the emission binding isotherms by the Hill equation. 
(a) Compound 9 (10 µM) and D4-tag (0.3 mM). (b) Compound 9 (10 µM) and E4-tag 
(0.3 mM). 
 
 
 
 

 

 

 

 

 

 

Figure 17. Analysis of the emission binding isotherms by the Hill equation, Compound 
9 (5 µM) and D4-tag dimer (100 µM).  
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Compound 10: 

 

 

 

 

 

Figure 18. Analysis of the emission binding isotherms by the Hill equation. 
(a) Compound 10 (10 µM) and D4-tag (0.3 mM, 2 eq were added). (b) Compound 10 
(10 µM) and E4-tag (0.3 mM). 
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Figure 19. Scatchard plot analyses of the emission titration binding data for tetranuclear 
Zn(II)-cyclen complexes 9 and 10 to the investigated protein tags. 
 

 

Table 3. Indicators of cooperative effects from Scatchard and Hill plot analysis during 
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complex 9 and 10, and the peptide tags.  
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Hill coefficient 1.10 ± 0.03 1.36 ± 0.03 2.77 ± 0.18 9  10 µM 

Scatchard plot no no yes 

Hill plot 2.52 ± 0.18 1.95 ± 0.08 — 10 10 µM 

Scatchard plot yes yes — 
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3.4.6 Synthesis and characterization of new compounds  

Following compounds were synthesized by literature known procedures: 521, 721. 
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10-{2-[(6-Diethylamino-naphthalene-2-carbonyl)-amino]-ethyl}-1,4,7,10-tetraaza-

cyclododecane-1,4,7-tricarboxylic acid tri-tert-butyl ester (18): 

7-Diethylamino-2-oxo-2H-chromene-3-carboxylic acid 11 (170 mg, 0.63 mmol), 

DIPEA (437 µL, 2.54 mmol), TBTU (203 mg, 0.63 mmol), and HOBt (97 mg, 

0.63 mmol) were dissolved under nitrogen atmosphere in dry DMF (4 mL) under ice 

cooling and stirred for 1 h. Subsequently compound 17 (327 mg, 0.63 mmol) was 

added. The reaction was allowed to warm to room temperature and stirred 3 h at 40 °C. 

The reaction progress was monitored by TLC (EE). After completion of the reaction the 

solvent was removed and the crude product was purified by flash column 

chromatography on flash silica gel (EE; Rf = 0.50) yielding compound 18 (290 mg, 

0.38 mmol, 61 %) as a yellow solid. 

MP: 200–202 °C. – 1
H-NMR (400 MHz; CDCl3): δ (ppm) = 1.21 (t, 3J = 7.1 Hz, 6 H, 

HSQC, NOESY: C1H3), 1.42 (s, 18 H, HSQC, HMBC: C21H3), 1.43 (s, 9 H, HSQC, 

HMBC: C18H3), 2.65-2.91 (m, 6 H, HMBC, NOESY: C14H2; HSQC, HMBC: cyclen-

CH2), 3.29 (bs, 4 H, HSQC, HMBC: cyclen-CH2), 3.36-3.51 (m, 6 H, HSQC, HMBC: 

cyclen-CH2), 3.42 (q, 3J = 7.1 Hz, 4 H, HSQC, NOESY: C2H2), 3.51-3.62 (m, 4 H, 

HSQC, NOESY: C15H2; HSQC, HMBC: cyclen-CH2), 6.47 (d, 4J = 2.3 Hz, 1 H, HSQC, 

NOESY: C11H), 6.62 (d, 4J = 2.3 Hz, 3J = 9.0 Hz, 1 H, HSQC, NOESY: C4H), 7.39 (d, 
3J = 9.0 Hz, 1 H, HSQC, HMBC, NOESY: C5H), 8.65 (s, 1 H, HSQC, HMBC, NOESY: 

C7H), 8.81 (t, 3J = 5.2 Hz, 1 H, HSQC, NOESY: NH13). – 13
C-NMR (100 MHz; 

CDCl3): δ (ppm) = 12.4 (+, 2 C, HSQC, NOESY: C1H3), 28.5 (+, 6 C, HSQC: C21H3), 

28.6 (+, 3 C, HSQC: C18H3), 35.2 (–, 1 C, HSQC, NOESY: C15H2), 45.0 (–, 2 C, HSQC, 

HMBC: C2H2), 47.6 (–, 1 C, HSQC, HMBC: cyclen-CH2), 47.9 (–, 3 C, HSQC, HMBC: 

cyclen-CH2), 49.9 (–, 2 C, HSQC, HMBC: cyclen-CH2), 51.4 (–, 1 C, HSQC, HMBC, 
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NOESY: C14H2), 53.9 (–, 1 C, HSQC, HMBC: cyclen-CH2), 55.3 (–, 1 C, HSQC, 

HMBC: cyclen-CH2), 96.5 (+, 1 C, HSQC, NOESY: C11H), 109.9 (+, 1 C, HSQC, 

NOESY: C4H), 131.1 (+, 1 C, HSQC, HMBC, NOESY: C5H), 147.9 (+, 1 C, HSQC, 

NOESY: C7H), 79.1, 79.4 (Cq, 3 C, HSQC, HMBC: C17, C20), 108.3 (Cq, 1 C, HSQC, 

HMBC: C6), 110.1 (Cq, 1 C, HSQC, HMBC: C8), 152.6 (Cq, 1 C, HSQC, HMBC: C3), 

155.3, 155.6, 156.0 (Cq, 3 C, HSQC, HMBC: C16, C19), 157.6 (Cq, 1 C, HSQC, HMBC: 

C10), 162.7 (Cq, 1 C, HSQC, HMBC: C9), 163.4 (Cq, 1 C, HSQC, HMBC: C12). – 

IR (ATR) [cm-1]: ν~ = 2974, 2925, 1686, 1617, 1582, 1511, 1413, 1362, 1245, 1154, 

975, 824, 772. – UV (CHCl3): λmax (log ε) = 262 (4.396), 421 (4.862). – MS (ESI(+), 

DCM/MeOH + 10 mmol/L NH4Ac): m/z (%) = 759.5 (100) [MH+], 781.5 (15) [MNa+], 

797.5 (5) [MK+], 659.4 (7) [MH+ - boc]. – HRMS Calcd for C39H62N6O9 758.4578; 

Found: 758.4567. – MF: C39H62N6O9 – FW: 758.96 g/mol 
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7-Diethylamino-2-oxo-2H-chromene-3-carboxylic acid [2-(1,4,7,10-tetraaza-

cyclododec-1-yl)-ethyl]-amide (28) 

Compound 18 (100 mg, 0.13 mmol) was dissolved in dry DCM (2 mL) and cooled to 

0 °C. Subsequently 4 mL HCl saturated diethyl ether were added. The solution was 

stirred 15 min at 0 °C and additionally 20 h at room temperature. The solvent was 

removed in vacuo yielding quantitatively the protonated hydrochloride of compound 28 

as a yellow solid (78 mg, 0.13 mmol).  

MF: C24H38N6O3 x 2 HCl – FW: 531.52 g/mol  

 

X-Ray structure and crystal data of protonated 28: 

Monoclinic; Space group: C c; unit cell dimensions: a = 15.260 Å, α = 90°, 

b = 28.512 Å, β = 116.46°, c = 8.7960 Å, γ = 90 °; V = 3426.2 Å3; Z = 4, 

Dx = 1.358 Mg/m3; µ = 0.254 mm-1; F(000) = 1480. Data collection: T = 123 K; 

graphite monochromator. A thin rod yellow crystal with dimensions of 0.410 x 0.100 x 

0.050 mm was used to measure 7477 reflections (3600 unique reflections, Rint = 0.0201) 
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from 1.65° to 25.03° on a STOE-IPDS diffractometer with the rotation method. 

Structure refinement: The F2 value was refined using the full-matrix least squares 

refinement method, with a goodness-of-fit 0f 1.018 for all reflections and 434 

parameters. 

 
 
Table of atomic coordinates (x 104) and equivalent isotropic displacement parameters 

(A2 x 103) for protonated 28. U(eq) is defined as one third of the trace of the 

orthogonalized Uij tensor: 

atom x y z U(eq) 

O(1) -761(2) 1173(1) -1266(3) 35(1) 

O(2) -963(2) -269(1) -445(4) 39(1) 

O(3) 240(2) -427(1) -1077(3) 30(1) 

N(1) -1543(2) 1714(1) 2313(4) 28(1) 

N(2) -465(2) 2584(1) 3060(4) 31(1) 

N(3) -351(2) 2489(1) 6318(4) 32(1) 

N(4) -1406(2) 1628(1) 5704(4) 33(1) 

N(5) -1333(2) 645(1) -23(4) 33(1) 

N(6) 2710(2) -915(1) -2617(4) 35(1) 

C(1) -1697(3) 2062(1) 982(5) 33(1) 

C(2) -1498(3) 2552(1) 1713(5) 33(1) 

C(3) -262(3) 3002(1) 4196(5) 38(1) 

C(4) -686(3) 2937(1) 5449(5) 37(1) 

C(5) -832(3) 2346(2) 7352(5) 37(1) 

C(6) -1732(3) 2057(1) 6286(5) 35(1) 

C(7) -2190(3) 1383(1) 4207(5) 35(1) 

C(8) -2426(3) 1649(1) 2574(5) 32(1) 

C(9) -1152(3) 1269(1) 2020(5) 30(1) 

C(10) -1865(3) 999(1) 437(5) 36(1) 

C(11) -801(3) 760(1) -827(5) 30(1) 

C(12) -219(2) 386(1) -1125(5) 29(1) 

C(13) -370(3) -105(1) -861(5) 30(1) 

C(14) 943(2) -305(1) -1574(5) 29(1) 

C(15) 1073(3) 169(1) -1865(5) 29(1) 

C(16) 472(3) 506(1) -1625(5) 31(1) 
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C(17) 1471(2) -664(1) -1776(5) 28(1) 

C(18) 2189(2) -568(1) -2342(4) 31(1) 

C(19) 2350(3) -88(1) -2603(5) 33(1) 

C(20) 1807(3) 264(1) -2389(5) 32(1) 

C(21) 2571(3) -1408(1) -2278(6) 39(1) 

C(22) 1725(4) -1642(2) -3724(6) 51(2) 

C(23) 3346(4) -828(2) -3424(7) 55(2) 

C(24) 4387(4) -717(2) -2212(11) 86(3) 

N(7) 392(10) -4221(4) -73(11) 164(5) 

C(25) -802(9) -4278(4) -3278(12) 129(4) 

C(26) -119(7) -4266(3) -1466(12) 92(3) 

Cl(1) 1476(1) -1732(1) 1396(1) 29(1) 

O(4) 1182(2) -1912(1) -274(4) 48(1) 

O(5) 1718(2) -2118(1) 2596(4) 41(1) 

O(6) 2327(2) -1440(1) 1890(4) 40(1) 

O(7) 682(2) -1467(1) 1445(4) 42(1) 

Cl(2) 776(1) 3182(1) 949(1) 33(1) 

O(8) 875(2) 3084(1) -545(4) 54(1) 

O(9) -234(2) 3265(1) 531(4) 47(1) 

O(10) 1096(2) 2786(1) 2093(4) 52(1) 

O(11) 1357(3) 3580(1) 1782(5) 63(1) 

 

Table of bond lengths [Å] and angles [deg] for protonated 28: 

bond Length bond angle bond angle 

Cl(1)-O(5) 1.455(3) O(5)-Cl(1)-O(6) 108.45(19) C(3)-C(4)-H(4A) 110.00 

Cl(1)-O(6) 1.438(3) O(5)-Cl(1)-O(7) 108.63(19) C(3)-C(4)-H(4B) 110.00 

Cl(1)-O(4) 1.427(3) O(6)-Cl(1)-O(7) 110.18(18) H(4A)-C(4)-H(4B) 108.00 

Cl(1)-O(7) 1.444(3) O(4)-Cl(1)-O(7) 109.6(2) C(6)-C(5)-H(5A) 110.00 

Cl(2)-O(9) 1.436(4) O(4)-Cl(1)-O(5) 109.62(19) C(6)-C(5)-H(5B) 110.00 

Cl(2)-O(10) 1.444(3) O(4)-Cl(1)-O(6) 110.3(2) N(3)-C(5)-H(5B) 110.00 

Cl(2)-O(8) 1.416(3) O(8)-Cl(2)-O(9) 110.0(2) N(3)-C(5)-H(5A) 110.00 

Cl(2)-O(11) 1.427(4) O(10)-Cl(2)-O(11) 108.9(2) H(5A)-C(5)-H(5B) 108.00 

O(1)-C(11) 1.249(5) O(8)-Cl(2)-O(10) 110.5(2) N(4)-C(6)-H(6B) 110.00 

O(2)-C(13) 1.211(6) O(8)-Cl(2)-O(11) 109.5(2) C(5)-C(6)-H(6A) 110.00 

O(3)-C(13) 1.378(5) O(9)-Cl(2)-O(10) 107.4(2) H(6A)-C(6)-H(6B) 108.00 

O(3)-C(14) 1.371(5) O(9)-Cl(2)-O(11) 110.5(2) C(5)-C(6)-H(6B) 110.00 

N(1)-C(1) 1.471(5) C(13)-O(3)-C(14) 123.3(3) N(4)-C(6)-H(6A) 110.00 

N(1)-C(8) 1.476(6) C(1)-N(1)-C(9) 112.0(3) N(4)-C(7)-H(7A) 109.00 

N(1)-C(9) 1.473(5) C(8)-N(1)-C(9) 112.8(3) H(7A)-C(7)-H(7B) 108.00 

N(2)-C(2) 1.494(6) C(1)-N(1)-C(8) 112.1(3) C(8)-C(7)-H(7B) 109.00 

N(2)-C(3) 1.496(5) C(2)-N(2)-C(3) 114.2(3) N(4)-C(7)-H(7B) 109.00 

N(3)-C(5) 1.459(6) C(4)-N(3)-C(5) 114.5(3) C(8)-C(7)-H(7A) 109.00 

N(3)-C(4) 1.459(5) C(6)-N(4)-C(7) 115.2(3) C(7)-C(8)-H(8A) 109.00 

N(4)-C(7) 1.500(5) C(10)-N(5)-C(11) 121.3(3) C(7)-C(8)-H(8B) 109.00 

N(4)-C(6) 1.493(5) C(18)-N(6)-C(23) 122.2(3) H(8A)-C(8)-H(8B) 108.00 

N(5)-C(10) 1.463(6) C(21)-N(6)-C(23) 116.7(4) N(1)-C(8)-H(8B) 109.00 

N(5)-C(11) 1.334(6) C(18)-N(6)-C(21) 120.8(3) N(1)-C(8)-H(8A) 109.00 

N(6)-C(18) 1.357(5) C(3)-N(2)-H(2N) 105(3) N(1)-C(9)-H(9A) 109.00 

N(6)-C(21) 1.473(5) C(3)-N(2)-H(2O) 104(3) N(1)-C(9)-H(9B) 109.00 

N(6)-C(23) 1.457(7) H(2N)-N(2)-H(2O) 117(4) C(10)-C(9)-H(9A) 109.00 

N(2)-H(2N) 0.95(5) C(2)-N(2)-H(2N) 108(3) C(10)-C(9)-H(9B) 109.00 

N(2)-H(2O) 1.06(5) C(2)-N(2)-H(2O) 109(3) H(9A)-C(9)-H(9B) 108.00 

N(3)-H(3N) 0.83(6) C(4)-N(3)-H(3N) 111(3) N(5)-C(10)-H(10B) 110.00 

N(4)-H(4O) 0.81(6) C(5)-N(3)-H(3N) 105(4) C(9)-C(10)-H(10A) 110.00 
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N(4)-H(4N) 0.96(5) H(4N)-N(4)-H(4O) 117(5) N(5)-C(10)-H(10A) 110.00 

N(5)-H(5N) 0.80(5) C(6)-N(4)-H(4O) 106(3) C(9)-C(10)-H(10B) 110.00 

N(7)-C(26) 1.129(13) C(7)-N(4)-H(4N) 112(3) H(10A)-C(10)-H(10B) 108.00 

C(1)-C(2) 1.510(5) C(7)-N(4)-H(4O) 105(3) C(12)-C(16)-H(16A) 119.00 

C(3)-C(4) 1.518(6) C(6)-N(4)-H(4N) 102(3) C(15)-C(16)-H(16A) 119.00 

C(5)-C(6) 1.516(6) C(11)-N(5)-H(5N) 121(4) C(14)-C(17)-H(17) 120.00 

C(7)-C(8) 1.519(6) C(10)-N(5)-H(5N) 117(4) C(18)-C(17)-H(17) 120.00 

C(9)-C(10) 1.538(6) N(1)-C(1)-C(2) 110.7(3) C(20)-C(19)-H(19) 119.00 

C(11)-C(12) 1.484(6) N(2)-C(2)-C(1) 109.6(3) C(18)-C(19)-H(19) 119.00 

C(12)-C(16) 1.355(6) N(2)-C(3)-C(4) 111.1(3) C(15)-C(20)-H(20) 119.00 

C(12)-C(13) 1.454(5) N(3)-C(4)-C(3) 108.9(4) C(19)-C(20)-H(20) 119.00 

C(14)-C(17) 1.362(5) N(3)-C(5)-C(6) 109.6(3) N(6)-C(21)-H(21B) 109.00 

C(14)-C(15) 1.407(5) N(4)-C(6)-C(5) 108.0(4) H(21A)-C(21)-H(21B) 108.00 

C(15)-C(16) 1.408(6) N(4)-C(7)-C(8) 111.0(3) C(22)-C(21)-H(21A) 109.00 

C(15)-C(20) 1.415(7) N(1)-C(8)-C(7) 111.2(4) C(22)-C(21)-H(21B) 109.00 

C(17)-C(18) 1.418(5) N(1)-C(9)-C(10) 114.3(4) N(6)-C(21)-H(21A) 109.00 

C(18)-C(19) 1.427(5) N(5)-C(10)-C(9) 109.9(4) H(22B)-C(22)-H(22C) 110.00 

C(19)-C(20) 1.368(6) N(5)-C(11)-C(12) 118.1(3) H(22A)-C(22)-H(22C) 109.00 

C(21)-C(22) 1.504(7) O(1)-C(11)-N(5) 121.4(4) C(21)-C(22)-H(22B) 109.00 

C(23)-C(24) 1.500(10) O(1)-C(11)-C(12) 120.5(4) C(21)-C(22)-H(22C) 110.00 

C(1)-H(1B) 0.9900 C(13)-C(12)-C(16) 119.8(4) C(21)-C(22)-H(22A) 110.00 

C(1)-H(1A) 0.9900 C(11)-C(12)-C(13) 120.9(4) H(22A)-C(22)-H(22B) 109.00 

C(2)-H(2B) 0.9900 C(11)-C(12)-C(16) 119.3(3) N(6)-C(23)-H(23B) 109.00 

C(2)-H(2A) 0.9900 O(3)-C(13)-C(12) 117.0(4) C(24)-C(23)-H(23A) 109.00 

C(3)-H(3A) 0.9900 O(2)-C(13)-C(12) 127.7(4) N(6)-C(23)-H(23A) 109.00 

C(3)-H(3B) 0.9900 O(2)-C(13)-O(3) 115.3(3) C(24)-C(23)-H(23B) 109.00 

C(4)-H(4B) 0.9900 O(3)-C(14)-C(15) 119.6(3) H(23A)-C(23)-H(23B) 108.00 

C(4)-H(4A) 0.9900 O(3)-C(14)-C(17) 116.4(3) H(24A)-C(24)-H(24C) 110.00 

C(5)-H(5A) 0.9900 C(15)-C(14)-C(17) 124.0(4) C(23)-C(24)-H(24C) 109.00 

C(5)-H(5B) 0.9900 C(14)-C(15)-C(20) 116.1(4) H(24A)-C(24)-H(24B) 110.00 

C(6)-H(6B) 0.9900 C(16)-C(15)-C(20) 125.5(4) C(23)-C(24)-H(24A) 109.00 

C(6)-H(6A) 0.9900 C(14)-C(15)-C(16) 118.4(4) C(23)-C(24)-H(24B) 109.00 

C(7)-H(7B) 0.9900 C(12)-C(16)-C(15) 122.0(4) H(24B)-C(24)-H(24C) 109.00 

C(7)-H(7A) 0.9900 C(14)-C(17)-C(18) 119.7(3) N(7)-C(26)-C(25) 174.7(11) 

C(8)-H(8B) 0.9900 C(17)-C(18)-C(19) 117.3(3) H(25B)-C(25)-H(25C) 110.00 

C(8)-H(8A) 0.9900 N(6)-C(18)-C(17) 121.8(3) H(25A)-C(25)-H(25B) 109.00 

C(9)-H(9B) 0.9900 N(6)-C(18)-C(19) 120.9(3) H(25A)-C(25)-H(25C) 109.00 

C(9)-H(9A) 0.9900 C(18)-C(19)-C(20) 121.6(4) C(26)-C(25)-H(25A) 110.00 

C(10)-H(10B) 0.9900 C(15)-C(20)-C(19) 121.3(4) C(26)-C(25)-H(25B) 109.00 

C(10)-H(10A) 0.9900 N(6)-C(21)-C(22) 113.4(4) C(26)-C(25)-H(25C) 109.00 

C(16)-H(16A) 0.9500 N(6)-C(23)-C(24) 114.5(5)   

C(17)-H(17) 0.9500 H(1A)-C(1)-H(1B) 108.00   

C(19)-H(19) 0.9500 N(1)-C(1)-H(1A) 109.00   

C(20)-H(20) 0.9500 N(1)-C(1)-H(1B) 110.00   

C(21)-H(21A) 0.9900 C(2)-C(1)-H(1A) 110.00   

C(21)-H(21B) 0.9900 C(2)-C(1)-H(1B) 109.00   

C(22)-H(22B) 0.9800 C(1)-C(2)-H(2A) 110.00   

C(22)-H(22C) 0.9800 C(1)-C(2)-H(2B) 110.00   

C(22)-H(22A) 0.9800 N(2)-C(2)-H(2B) 110.00   

C(23)-H(23A) 0.9900 N(2)-C(2)-H(2A) 110.00   

C(23)-H(23B) 0.9900 H(2A)-C(2)-H(2B) 108.00   

C(24)-H(24B) 0.9800 H(3A)-C(3)-H(3B) 108.00   

C(24)-H(24C) 0.9800 N(2)-C(3)-H(3B) 109.00   

C(24)-H(24A) 0.9800 C(4)-C(3)-H(3B) 109.00   

C(25)-C(26) 1.465(14) N(2)-C(3)-H(3A) 109.00   

C(25)-H(25B) 0.9800 C(4)-C(3)-H(3A) 110.00   
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C(25)-H(25C) 0.9800 N(3)-C(4)-H(4A) 110.00   

C(25)-H(25A) 0.9800 N(3)-C(4)-H(4B) 110.00   

 

 

To obtain the free base of compound 28 a weak basic ion exchanger resin was swollen 

for 15 min in water and washed neutral with water. A column was charged with resin 

(538 mg, 40.0 mmol hydroxy equivalents at a given capacity of 5 mmol/g). The 

hydrochloride salt (65 mg, 0.11 mmol) was dissolved in water, put onto the column and 

eluated with water. The elution of the product was controlled by pH indicator paper 

(pH > 10) and was completed when pH again was neutral. The eluate was concentrated 

and lyophilised to yield 50 mg (0.11 mol, 100 %) of free base 28, as yellow solid. 

MP: 200–202 °C. – 1
H-NMR (600 MHz Kryo; D2O): δ (ppm) = 1.15 (t, 3J = 7.1 Hz, 

6 H, HMBC: C1H3), 2.86 (t, 3J = 5.8 Hz, 2 H, HMBC: C14H2), 2.93 (bs, 4 H, HMBC: 

C18H2), 2.99 (bs, 4 H, HMBC: C15H2), 3.12-3.32 (m, 8 H, HMBC: C16H2, C17H2), 

3.38 (q, 3J = 7.1 Hz, 4 H, C2H2), 3.54 (t, 3J = 5.8 Hz, 2 H, HMBC: C13H2), 6.31 (s, 1 H, 

ROESY: C11H), 6.67 (d, 3J = 8.9 Hz, 1 H, ROESY: C4H), 7.31 (d, 3J = 9.0 Hz, 1 H, 

ROESY: C5H), 8.26 (s, 1 H, HMBC: C7H). – 13
C-NMR (100 MHz; D2O): δ (ppm) = 

11.7 (+, 2 C, HSQC, HMBC: C1H3), 36.2 (–, 1 C, HSQC, HMBC: C13H2), 41.5 (–, 2 C, 

HSQC, HMBC: C18H2), 42.0 (–, 2 C, HSQC, HMBC: C17H2), 44.2 (–, 2 C, HSQC, 

HMBC: C16H2), 45.7 (–, 2 C, HSQC, HMBC: C2H2), 48.1 (–, 2 C, HSQC, HMBC: 

C15H2), 52.6 (–, 1 C, HSQC, HMBC: C14H2), 96.2 (+, 1 C, HSQC, ROESY: C11H), 

107.1 (Cq, 1 C, HSQC, HMBC: C8), 108.8 (Cq, 1 C, HSQC, HMBC: C6), 111.7 (+, 1 C, 

HSQC, ROESY: C4H), 131.7 (+, 1 C, HSQC, ROESY: C5H), 148.1 (+, 1 C, HSQC, 

HMBC: C7H), 152.5 (Cq, 1 C, HSQC, HMBC: C3), 156.8 (Cq, 1 C, HSQC, HMBC: C10), 

163.2 (Cq, 1 C, HSQC, HMBC: C9), 165.1 (Cq, 1 C, HSQC, HMBC: C12). – 

IR (ATR) [cm-1]: ν~ = 3402, 3321, 2992, 2850, 1694, 1614, 1506, 1417, 1349, 1230, 

1188, 1133, 1073, 792. – UV (CHCl3): λmax (log ε) = 262 nm (4.298), 424 (4.845). – 

MS (ESI(+), TFA/MeOH): m/z (%) = 229.9 (100) [M + 2 H+]2+, 459.1 (43) [MH+]. – 

HRMS Calcd for [MH+] C24H39N6O3 459.3084; Found: 459.3085. – MF: C24H38N6O3 – 

FW: 458.61 g/mol  
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Mono-Zn(II)-cyclen coumarin (3):  

Mono-cyclen coumarin 28 (55 mg, 0.12 mmol) was dissolved in 1 mL water and heated 

to 70 °C to get a clear yellow solution. Subsequently zinc(II)-perchlorate (44 mg, 

0.12 mmol) dissolved in 1 ml water was added slowly. The reaction mixture was stirred 

for additional 20 h at 70 °C. The solvent was removed in vacuo and the residue was 

redissolved in water and lyophilized. Mono-Zn(II) cyclen coumarin 3 (86 mg, 

0.12 mmol, 100 %) was obtained as a yellow solid.  

MP: 194 °C. – 1
H-NMR (300 MHz; CD3CN): δ (ppm) = 1.17 (t, 3J = 6.3 Hz, 6 H, 

ethyl-CH3), 2.50-3.53 (m, 24 H, ethyl-CH2, cyclen-CH2, ED-CH2), 5.39-8.27 (m, 6 H, 

cyclen-NH, coumarin-CH), 8.51-8.92 (m, 1 H, coumarin-CH), 9.17 (bs, 1 H, coumarin-

CH). – IR (ATR) [cm-1]: ν~ = 3480, 2950, 1107, 1614, 1542, 1508, 1351, 1239, 1064, 

927, 794. – UV (HEPES pH 7.4, 25 mM): λex (log ε) = 430 nm (4.015), 264 (3.465). – 

MS (ESI(+), H2O/MeOH): m/z (%) = 521.1 (100) [M2+ - H+]+, 557.2 (10) [M2+ + Cl-]+. 

– HRMS Calcd for [M2+ - H+] C24H37N6O3Zn 521.2219; Found: 521.2209. – 

MF: C24H38N6O3Zn(ClO4)2 – FW: 722.89 g/mol  
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Regioisomeric tri-tert-butyl 10-(2-(3',6'-dihydroxy-3-oxo-3H-spiro[isobenzofuran-

1,9'-xanthene]-5/6-ylcarboxamido)ethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-

tricarboxylate (19): 

A regioisomeric mixture of 5/6-carboxyfluorescein 13 (100 mg, 0.27 mmol) were filled 

in a nitrogen flushed round bottom flask and dissolved in a mixture of DCM/DMF (2:1, 

5 mL). Then, DIPEA (164 µL, 1.20 mmol) and HOBt monohydrate (50 mg, 0.32 mmol) 

were added and the mixture was cooled to 0°C. After addition of TBTU (100 mg, 
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0.32 mmol) and stirring for 30 minutes, compound 17 (210 mg, 0.40 mmol) was added 

in small portions to the reaction mixture.  

Further the mixture was stirred for 2 h at 40 °C. Subsequently the solvent was 

evaporated and the crude product was purified by column chromatography on flash-

silica-gel (CHCl3/MeOH 11:1) to obtain 19 as yellow amorphous solid (0.19 g, 

0.21 mmol, 78%). 

MP: 214°C – 1
H-NMR (400 MHz, MeOD, COSY, ROESY, HSQC, HMBC): 

δ (ppm) = 1.37-1.49 (m, 27 H, C37, C42), 2.64-2.82 (m, 4.8 H, C26b, C28), 2.91 (t, 
3J = 6.6 Hz, 1.2 H, C26a), 3.30-3.73 (m, 14 H, C25a/b, C29, C31, C32), 6.52 (dt, 3J = 8.7 Hz, 
4J = 1.7 Hz, 2 H, C3, C11), 6.59 (dd, 4J = 8.7 Hz, 5J = 4.8 Hz, 2 H, C5, C9), 6.68 (d, 
3J = 2.2 Hz, 2 H, C2, C12), 7.28 (d, 3J = 8.1 Hz, 0.6 H, C19a), 7.59 (s, 0.4 H, C19b), 

8.05 (d, 3J = 8.0 Hz, 0.4 H, C22b), 8.11 (dd, 3J = 8.0 Hz, 4J = 1.1 Hz, 0.4 H, C21b), 

8.18 (dd, 3J = 8.1 Hz, 4J = 1.5 Hz, 0.6 H, C20a), 8.41 (s, 0.6 H, C22a). – 
13

C-

NMR (100 MHz, MeOD, COSY, ROESY, HSQC, HMBC): δ (ppm) = 28.8 (+, 6 C, 

C41), 29.1 (+, 3 C, C37), 36.1 (–, 0.4 C, C25b), 36.5 (–, 0.6 C, C25a), 48.6-48.2 (–, 6 C, 

C29, C31, C32), 50.4 (–, 1 C, C26a/b), 55.5 (–, 2 C, C28), 79.4 (Cq, 1 C, C14), 81.0 (Cq, 1 C, 

C36), 81.1 (Cq, 2 C, C40), 103.6 (+, 2 C, C2, C12), 110.7 (Cq, 2 C, C1, C13), 113.8 (+, 2 C, 

C3, C11), 123.9 (+, 0.4 C, C19b), 124.8 (+, 0.6 C, C22a), 125.7 (+, 0.6 C, C19a), 126.2 (+, 

0.4 C, C22b), 128.7 (Cq, 1 C, C17a/b), 130.1 (+, 2 C, C5, C9), 130.3 (+, 0.4 C, C21b), 

135.4 (+, 0.6 C, C20a), 137.7 (Cq, 0.6 C, C21a), 142.1 (Cq, 0.4 C, C20b), 154.0 (Cq, 2 C, 

C6, C8), 154.6 (Cq, 0.4 C, C18b), 156.5 (Cq, 0.6 C, C18a), 157.2 (Cq, 1 C, C34), 157.5 (Cq, 

2 C, C38), 161.5 (Cq, 2 C, C4, C10), 168.0 (Cq, 0.4 C, C23b), 168.2 (Cq, 0.6 C, C23a), 

170.5 (Cq, 1 C, C16a/b). – IR (ATR) [cm-1]: ν = 2976, 2935, 2830, 1760, 1657, 1611, 

1456, 1417, 1365, 1246, 1155, 1109, 993, 849, 761, 664, 605 – ES-MS (H2O/MeOH + 

10 mmol/L NH4Ac): m/z (%) = 874.5 (100) [MH+], 774.4 (12) [MH+ - boc], 437.7 (32) 

[M + 2H+]2+, 287.6 (64) [M + 2H+ - 3boc]2+ – HR-MS Calcd for [MH+] C46H60N5O12 

874.4238; Found 874.4225 – UV (MeCN): λmax (log ε)  = 454 nm (2.703), 480 (2.670). 

– MF: C46H59N5O12. – MW: 874.01 g/mol. 
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Regioisomeric N-(2-(1,4,7,10-tetraazacyclododecan-1-yl)ethyl)-3',6'-dihydroxy-3-oxo-

3H-spiro[isobenzofuran-1,9'-xanthene]-5/6-carboxamide tetrahydrochloride (29): 

Compound 19 (120 mg, 0.13 mmol) was dissolved in a small amount of DCM and 

cooled to 0°C. Subsequently HCl saturated diethyl ether (2.65 mL), the mixture was 

allowed to reach rt and stirred for 16 h, while a yellowish precipitate was formed. To 

get the desired product, the solvents were removed under reduced pressure yielding 

hydrochloride 29 as an orange amorphous solid (0.10 g, 0.13 mmol, quant.). 

Characterization of 29 was done by NMR. Before proceeding the next reaction step 

quantitative deprotonation of hydrochloride 29 was achieved by a weakly basic ion 

exchanger resin.  
1
H-NMR (400 MHz, D2O): δ (ppm) = 2.75-3.73 (m, 21 H, CH2 + amide-NH), 6.80-

8.71- (m, 9 H, aryl-CH). – 13
C-NMR (100 MHz, D2O, DEPT135): δ (ppm) = 36.4 (–, 

0.4 C, C25b) 36.8 (–, 0.6 C, C25a), 41.5-44.2 (–, 6 C, C29, C31, C32), 47.9 (–, 1 C, C26b), 

48.1 (–, 1 C, C26a), 52.5 (–, 2 C, C28), 102.5 (+, 2 C, C2, C12), 118.6 (+, 2 C, C3, C11), 

132.0 (+, 2 C, C5, C9). further signals could not be detected – ES-MS (MeCN/TFA): 

m/z (%) = 287.5 (100) [M + 2 H+]2+, 574.2 (26) [MH+].– MF: C31H35N5O6. – 

MW: 573.65 g/mol. 
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Mono-Zn(II)-cyclen 5/6-carboxyfluorescein (4): 

Compound 29 (92 mg, 0.16 mmol) was dissolved in 2 mL of warm water and zinc(II)-

chloride (23 mg, 0.17 mmol) was added. The pH value was adjusted to 7-8 by addition 

of 1 M LiOH and the reaction mixture was heated up to reflux for 4 h. Lyophilization 

obtained the crude product as an orange solid,  which was purified by precipitation from 

a mixture of amixture of 2-propanol/methanol with diethyl ether. The precipitate was 
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gained by centrifugation, redissolved in water and freeze-dried again to obtain 4 

(110 mg, 0.16 mmol, 99 %) as an orange amorphous solid. 
1
H-NMR (400 MHz, D2O): δ (ppm) = 2.74-3.73 (m, 21 H, CH2 + amide-NH), 6.47-6.76 

(m, 4 H, C3, C5, C9, C11), 6.88 (dd, 4J = 8.7 Hz, 5J = 4.8 Hz, 2 H, C2, C12), 7.28 (s, 0.6 H, 

C19a), 7.59 (s, 0.4H, C19b), 7.98-8.20 (m, 1.4 H, C20a, C21b, C22b), 8.43 (s, 0.6 H, C22a). – 
13

C-NMR (100 MHz, D2O, HSQC): δ (ppm) = 36.5-36.8 (–, 0.4 C+0.6 C, C25’a/b), 41.5-

44.3 (–, 6 C, C29, C31, C32), 46.7 (–, 2 C, C28), 47.9 (–, 0.4 C, C26b), 48.1 (–, 0.6 C, C26a), 

51.9-52.5 (–, 0.4 C+0.6 C, C25a/b), 102.8 (+, 2 C, C5, C9), 112.1-112.5 (Cq, 2 C, C1, C13), 

115.8-116.5 (+, 2 C, C3, C11), 125.3 (+, 0.4 C, C19b), 126.4 (+, 0.6 C, C22a), 127.7 (+, 

0.6 C, C19a), 127.9 (+, 0.4 C, C22b), 129.0 (+, 0.4 C, C21b), 130.5-130.7 (+, 2 C, C2, C12), 

132.2 (+, 0.6 C, C20a), 135.1 (Cq, 0.6 C, C21a), 138.1 (Cq, 0.4 C, C20b), 144.2 (Cq, 0.6 C, 

C17b), 145.5 (Cq, 0.4 C, C17a), 154.7 (Cq, 2 C, C6, C8), 155.2 (Cq, 0.4 C, C18b), 163.9 (Cq, 

0.6 C, C18a), 165.0 (Cq, 2 C, C4, C10), 168.3 (Cq, 0.4 C, C23b), 168.5 (Cq, 0.6 C, C23a), 

170.6 (Cq, 1 C, C16a/b). – ES-MS (M): m/z (%) = 318.6 (100) [M2+], 636.2 (52) [M2+ - 

H+], 672.2 (35) [M2+ + Cl-]+. – MF: [C31H35N5O6Zn]Cl2. – MW: 709.93 g/mol. 
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Pyrene-1-carboxylic acid {2-[4,6-bis-(1,4,7,10tetraaza-cyclododec-1-yl)-[1,3,5]triazin-

2-yl]-ethyl}-1,4,7-tricarboxylic acid tri-tert-butyl ester (22): 

Pyrene-1-carboxylic acid 12 (148 mg, 0.60 mmol), DIPEA (622 µL, 3.61 mmol), TBTU 

(213 mg, 0.66 mmol), and HOBt (101 mg, 0.66 mmol) were dissolved under nitrogen 

atmosphere in dry DMF (4 mL) under ice cooling and stirred for 1 h. Subsequently 

amine 20 (500 mg, 0.46 mmol) was added. The reaction was allowed to warm to room 

temperature and was stirred 30 min at rt and 7 h at 40 °C. The reaction progress was 

monitored by TLC (ethyl acetate/petrol ether 4:1). After completion of the reaction the 

solvent was removed and the crude product was purified by flash column 

chromatography on flash silica gel (ethyl acetate/petrol ether 3:2; Rf = 0.30) yielding 

compound 22 (337 mg, 0.26 mmol, 57 %) as a lightly yellow solid. 
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MP: 210 °C. – 1
H-NMR (600 MHz Kryo; CDCl3): δ (ppm) = 0.65 (bs, 4 H, boc-CH3), 

1.35, 1.41 (s, 50 H, boc-CH3), 2.83-3.96 (m, 36 H, cyclen-CH2, ED-CH2), 5.14 (bs, 1H, 

NH), 7.92-7.98 (m, 2 H, pyrene-CH2), 7.98-8.06 (m, 4 H, pyrene-CH2), 8.08-8.20 (m, 

2 H, pyrene-CH2), 8.43 (m, 1 H, pyrene-CH2). – 13
C-NMR (150 MHz; CDCl3): 

δ (ppm) = 28.4 (+, 18 C, boc-CH3), 40.0 (–, 1 C, ED-CH2), 40.5 (–, 1 C, ED-CH2), 

50.1 (–, 16 C, cyclen-CH2), 79.6 (Cq, 4 C, HSQC: boc), 79.9 (Cq, 2 C, HSQC: boc), 

124.2 (+, 1 C, pyrene-CH), 124.3 (Cq, 1 C, pyrene), 124.5 (Cq, 2 C, pyrene), 124.5 (+, 

1 C, pyrene-CH), 124.7 (+, 1 C, pyrene-CH), 125.32 (+, 1 C, pyrene-CH), 125.35 (+, 

1 C, pyrene-CH), 126.0 (+, 1 C, pyrene-CH), 126.9 (+, 1 C, pyrene-CH), 128.1 (+, 2 C, 

pyrene-CH), 128.2 (Cq, 1 C, pyrene), 130.6 (Cq, 1 C, pyrene), 130.9 (Cq, 1 C, pyrene), 

132.0 (Cq, 1 C, pyrene), 155.3, 155.7 (Cq, 6 C, -NR2COOtBu), 165.1 (Cq, 1 C, triazine), 

166.1 (Cq, 2 C, triazine), 170.6 (Cq, 1 C, -NHCOR). – IR (ATR) [cm-1]: ν~ = 2976, 1686, 

1539, 1496, 1474, 1410, 1364, 1246, 1161, 1109, 973, 851, 777, 759. – 

UV (CHCl3): λmax (log ε) = 242 nm (4.890), 267 (4.368), 278 (4.572), 329 (4.349), 343 

(4.494). – MS (ESI(+), DCM / MeOH + 10 mmol/L NH4Ac): m/z (%) = 1308.9 (100) 

[MH+], 655.1 (14) [M + 2 H+]2+, 627.0 (10) [M – C4H8 + 2 H+]2+, 605.0 (15) [M – boc + 

2 H+]2+, 577.0 (30) [M – C4H8 – boc + 2 H+]2+, 548.9 [M – 2 C4H8 – boc + 2 H+]2+. – 

MF: C68H101N13O13 – FW: 1308.64 g/mol 
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Pyrene-1-carboxylic acid {2-[4,6-bis-(1,4,7,10tetraaza-cyclododec-1-yl)-[1,3,5]triazin-

2-ylamino]-ethyl}-amide (30): 

Compound 22 (150 mg, 0.12 mmol) was dissolved in DCM (4 mL) and cooled to 0 °C. 

Subsequently 4.6 mL HCl saturated diethyl ether were added. The solution was stirred 

15 min at 0 °C and additionally 18 h at room temperature. The solvent was removed in 

vacuo yielding quantitatively the protonated hydrochloride of compound 30 as a 

colourless solid.  
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1
H-NMR (400 MHz; CD3OD): δ (ppm) = 2.67-4.00 (m, 36 H, cyclen-CH2, ED-CH2, 

solvent signal), 8.03-8.09 (m, 1 H, pyrene-CH), 8.10-8.18 (m, 2 H, pyrene-CH), 8.19-

8.38 (m, 5 H, pyrene-CH), 8.56 (d, 3J = 8.7 Hz, 1 H, pyrene-CH). – 13
C-

NMR (100 MHz; CD3OD): δ (ppm) = 40.3, 41.5, 44.9, 45.6, 47.0 (–, 18 C, cyclen-CH2, 

ED-CH2), 125.4 (Cq, 1 C), 125.70 (Cq, 2 C), 125.70 (+, 1 C, pyrene-CH), 126.8 (+, 1 C, 

pyrene-CH), 127.11 (+, 1 C, pyrene-CH), 127.27 (+, 1 C, pyrene-CH), 127.84 (+, 1 C, 

pyrene-CH), 128.4 (+, 1 C, pyrene-CH), 129.79 (+, 1 C, pyrene-CH), 129.87 (+, 1 C, 

pyrene-CH), 130.0 (+, 1 C, pyrene-CH), 131.85 (Cq, 1 C), 132.0 (Cq, 1 C), 132.6 (Cq, 

1 C), 134.1 (Cq, 1 C), 156.8 (Cq, 2 C), 164.7 (Cq, 1 C), 173.0 (Cq, 1 C). – MS (ESI(+), 

H2O/MeOH + 10 mmol/L NH4Ac): m/z (%) = 354.7 (100) [M + 2 H2+]2+, 708.4 (10) 

[MH+], 822.5 (4) [MH+ + TFA]. – MF: C38H53N13O 6 x HCl – FW: 963.15 g/mol 

 

To obtain the free base of compound 30 a weak basic ion exchanger resin was swollen 

for 15 min in water and washed neutral with water. A column was charged with resin 

(805 mg, 40.0 mmol hydroxy equivalents at a given capacity of 5 mmol/g). The 

hydrochloride salt (115 mg, 0.12 mmol) was dissolved in water, put onto the column 

and eluated with water. The elution of the product was controlled by pH indicator paper 

(pH > 10) and was completed when pH again was neutral. The eluate was concentrated 

and lyophilised to yield 69 mg (0.10 mol, 83 %) of 30, as lightly yellow solid. 

MP: 192 °C. – 1
H-NMR (600 MHz; CH3CD / CDCl3 1:1): δ (ppm) = 2.93 (m, 8 H, 

cyclen-CH2), 2.97 (m, 2 H, cyclen-CH2), 3.01 (m, 6 H, cyclen-CH2), 3.16 (m, 8 H, 

cyclen-CH2), 3.49-4.20 (m, 12 H, cyclen-CH2, ED-CH2), 7.97-8.03 (m, 5 H, pyrene-

CH), 8.15 (d, 3J = 8.4 Hz, 1 H, pyrene-CH), 8.20 (d, 3J = 7.0 Hz, 2 H, pyrene-CH), 

8.39 (d, 3J = 9.3 Hz, 1 H, pyrene-CH). – 13
C-NMR (150 MHz; CH3CD / CDCl3 1:1): 

δ (ppm) = 39.1 (–, 1 C, ED-CH2), 39.7 (–, 1 C, ED-CH2), 42.2 (–, 2 C, cyclen-CH2), 

42.6 (–, 2 C, cyclen-CH2), 42.8 (–, 1 C, cyclen-CH2), 44.9 (–, 6 C, cyclen-CH2), 45.9 (–, 

2 C, cyclen-CH2), 46.3 (–, 3 C, cyclen-CH2), 123.4 (+, 1 C, pyrene-CH), 123.6 (Cq, 1 C, 

pyrene), 123.7 (+, 1 C, pyrene-CH), 123.9 (Cq, 1 C, pyrene), 124.3 (+, 1 C, pyrene-CH), 

125.1 (+, 1 C, pyrene-CH), 125.4 (+, 1 C, pyrene-CH), 125.8 (+, 1 C, pyrene-CH), 

126.4 (+, 1 C, pyrene-CH), 127.7 (Cq, 1 C, pyrene), 127.9 (+, 1 C, pyrene-CH), 

128.1 (+, 1 C, pyrene-CH), 129.92 (Cq, 1 C, pyrene), 129.94 (Cq, 1 C, pyrene), 

130.6 (Cq, 1 C, pyrene), 132.0 (Cq, 1 C, pyrene), 165.5 (Cq, 1 C, triazine-NH-ED), 

166.3 (Cq, 1 C, cyclen-triazine), 166.5 (Cq, 1 C, cyclen-triazine), 171.2 (Cq, 1 C, -

NHCO). – IR (ATR) [cm-1]: ν~ = 3372, 3266, 2935, 2764, 2697, 1623, 1536, 1480, 
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1417, 1355, 1284, 1230, 1145, 1081, 972, 852. – UV (MeOH): λmax (log ε) = 227 nm 

(4.501), 242 (4.459), 266 (4.002), 276 (4.191), 327 (3.957), 341 (4.091). – MS (ESI(+), 

EE/MeOH + 10 mmol/L NH4Ac): m/z (%) = 354.7 (100) [M + 2 H2+]2+, 708.4 (8) 

[MH+], 822.5 (4) [MH+ + TFA]. – HRMS Calcd for [MH+] C38H54N13O 708.4574; 

Found: 708.4567. – MF: C38H53N13O – FW: 707.93 g/mol 
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Bis-Zn(II)-cyclen pyrene (6): 

Bis-cyclen-pyrene 30 (58 mg, 82 µmol) were dissolved in 1 mL of MeOH and heated to 

65 °C to give a clear yellow solution. Subsequently, zinc(II)-perchlorate (64 mg, 

172 µmol) dissolved in 1 ml of MeOH was added slowly. The reaction mixture was 

stirred for additional 20 h at 65 °C. The solvent was removed in vacuo and the residue 

was redissolved in water and lyophilized. Bis-Zn(II)-cyclen pyrene 6 (101 mg, 82 µmol, 

100 %) was obtained as a colourless solid.  

MP: 193 °C. – 1
H-NMR (300 MHz; MeCN): δ (ppm) = 2.40-4.54 (m, 36 H, cyclen-

CH2, ED-CH2), 5.63-7.05 (m, 6 H, cyclen-NH2, 7.13-7.65 (bs, 1 H, NH), 7.68-7.95 (m, 

1 H, pyrene-CH), 7.99-8.33 (m, 7 H, pyrene-CH2), 8.34-8.51 (m, 1 H, pyrene-CH2). – 

IR (ATR) [cm-1]: ν~ = 3487, 3182, 1605, 1530, 1427, 1342, 1285, 1048, 975, 931,858, 

810, 775, 621. – UV (HEPES pH 7.4, 25 mM): λmax (log ε) = 344 (4.177), 330 (4.039), 

277 (4.222), 267 (4.051), 243 (4.437), 230 (4.561). – MS (ESI(+), TFA/MeCN): 

m/z (%) = 476.7 (100) [M4+ + 2 CH3COO-]2+, 447.2 (62) [M4+ + CH3COO-]2+. – 

MF: C38H53N13OZn2(ClO4)4 – FW: 1236.49 g/mol 
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5-Dimethylamino-naphthalene-1-sulfonic acid {2-[4,6-bis-(1,4,7,10-tetraaza-

cyclododec-1-yl)-[1,3,5]triazin-2-ylamino]-ethyl}-1,4,7-tricarboxylic acid tri-tert-butyl 

ester (24):  

Literature known compound, improved procedure
11e

 

To a solution of compound 20 (700 mg, 0.65 mmol) in dry DCM (15 mL) triethylamine 

(234 µL, 1.68 mmol) was added and subsequently the reaction mixture was cooled to 

0 °C. After dropwise addition of a solution of dansyl chloride 14 (227 mg, 0.84 mmol) 

in dry DCM (5 mL) to the vigorous stirred reaction mixture, the reaction was kept at 

0 °C for four additional hours under vigorous stirring. The reaction progress was 

monitored by TLC (ethyl acetate/petrol ether 1:1). After completion of the reaction, the 

reaction was quenched with water and extracted with DCM (4x). Subsequently, the 

organic layer was washed with sat NH4Cl solution (3x) and dried over MgSO4. The 

solvent was removed in vacuo and the crude product was purified by flash column 

chromatography on flash silica gel (ethyl acetate/petrol ether 1:1; Rf = 0.50) yielding 

compound 24 (667 mg, 0.51 mmol, 79 %) as a yellow solid. 
1
H-NMR (300 MHz; CDCl3): δ (ppm) = 1.40 (bs, 54 H, boc-CH3), 2.84 (s, 6 H, N-

Me2), 3.01-3.89 (m, 36 H, cyclen-CH2, ED-CH2), 4.76 (bs, 1 H, NH), 7.12 (d, 
3J = 7.4 Hz, 1 H, dansyl-CH), 7.40-7.54 (m, 2 H, dansyl-CH), 8.20 (dd, 3J = 6.7 Hz, 
3J = 6.7 Hz, 1 H, dansyl-CH), 8.35 (d, 3J = 7.7 Hz, 1 H, dansyl-CH), 8.47 (d, 
3J = 8.5 Hz, 1 H, dansyl-CH). – MF: C63H104N14O14S – FW: 1313.66 g/mol 
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5-Dimethylamino-naphthalene-1-sulfonic acid {2-[4,6-bis-(1,4,7,10-tetraaza-

cyclododec-1-yl)-[1,3,5]triazin-2-ylamino]-ethyl}-amide (31): Literature known 

compound, improved procedure.11e
 

Compound 24 (600 mg, 0.46 mmol) was dissolved in DCM (8 mL) and cooled to 0 °C. 

Subsequently 14 mL HCl saturated diethyl ether were added. The solution was stirred 

15 min at 0 °C and additionally 20 h at room temperature. The solvent was removed in 

vacuo, the residue was redissolved in water and after lyophilisation the protonated 

hydrochloride of compound 31 was obtained quantitative as a lightly yellow solid. To 

obtain the free base of compound 31 a weak basic ion exchanger resin was swollen for 

15 min in water and washed neutral with water. A column was charged with resin 

(3.44 g, 40.0 mmol hydroxy equivalents at a given capacity of 5 mmol/g). The 

hydrochloride salt (440 mg, 0.46 mmol) was dissolved in water, put onto the column 

and eluated with water. The elution of the product was controlled by pH indicator paper 

(pH > 10) and was completed when pH again was neutral. The eluate was concentrated 

and lyophilised to yield 326 mg (0.46 mol, 99 %) of 31, as yellow solid. 
1
H-NMR (300 MHz; D2O): δ (ppm) = 3.08-3.30 (m, 26 H, cyclen-CH2, ED-CH2), 

3.33 (s, 6 H, N-Me2), 3.45 (t, 3J = 5.0 Hz, 2 H, ED-CH2), 3.86 (bs, 8 H, cyclen-CH2), 

7.70-7.85 (m, 2 H, dansyl-CH), 7.90 (d, 3J = 7.7 Hz, 1 H, dansyl-CH), 8.26 (d, 
3J = 7.1 Hz, 1 H, dansyl-CH), 8.38 (d, 3J = 8.8 Hz, 1 H, dansyl-CH), 8.56 (d, 
3J = 8.8 Hz, 1 H, dansyl-CH). – MF: C33H56N14O2S – FW: 712.96 g/mol  
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Bis-Zn(II)-cyclen dansyl (8): Literature known compound, improved procedure.11e
 

Compound 31 (120 mg, 0.17 mmol) was dissolved in 1 mL of water and heated to 65 °C 

to give a clear yellow solution. Subsequently zinc(II)-perchlorate (64 mg, 172 µmol) 

dissolved in 1 ml of water was added slowly. The pH was adjusted by addition of 1 M 

NaOH (approx. 2 mL) to pH 7. The reaction mixture was stirred for additional 23 h at 

70 °C. The solvent was removed in vacuo and the residue was redissolved in water and 

lyophilized. The crude product (200 mg) was recrystallized from a EtOH / H2O (4:1) 

mixture as a yellow solid (89 mg, 0.07 mmol, 41 %).  
1
H-NMR (300 MHz; CD3CN): δ (ppm) = 2.51 (t, 3J = 5.2 Hz, 2 H, CH2), 2.61-2.75 (m, 

4 H, CH2), 2.78-2.92 (m, 18 H, CH2), 2.93-3.11 (m, 10 H, CH2), 3.27-3.52 (m, 4 H, 

CH2), 3.97-4.61 (m, 4 H, CH2), 5.99 (t, 3J = 6.0 Hz, 1 H, NH), 6.13 (t, 3J = 5.8 Hz, 1 H, 

NH), 7.26 (d, 3J = 7.7 Hz, 1 H, CH), 7.57 (d, 3J = 8.5 Hz, 1 H, CH), 7.62 (d, 3J = 9.1 Hz, 

1 H, CH), 8.16 (dd, 3J = 7.3 Hz, 1.0 Hz, 1 H, CH), 8.26 (d, 3J = 8.8 Hz, 1 H, CH), 

8.54 (d, 3J = 8.5 Hz, 1 H, CH). – UV (HEPES pH 7.4, 25 mM): λex (log ε) = 330 nm 

(3.575), 227 (4.637). – MS (ESI(+), H2O/MeOH + 10 mmol/L NH4Ac): m/z (%) = 

479.1 (100) [M4+ + 2 CH3COO-]2+, 449.1 (82) [M4+ – H+ + CH3COO-]2+, 420.1 (20) 

[M4+ – 2 H+]2+. – MF: C33H56N14O2SZn2(ClO4)4 – FW: 1241.52 g/mol 
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Compound 25: 

Compounds 20 (991 mg, 0.92 mmol) and 3,4,9,10-Perylene–tetracarboxylic dianhydride 

15 (150 mg, 0.38 mmol) were mixed with 4 g of imidazole and filled into a Schlenk 

tube. Under an atmosphere of nitrogen the mixture was melted with a heat gun and then 

put into an oil bath where it was stirred at 120 °C for one day. The hot melt was poured 

into 20 mL of water and the product was extracted three times with 15 ml EtOAc. The 

combined organic layers were dried over MgSO4 and concentrated under reduced 

pressure. The crude product was purified by flash-chromatography on silica gel (DCM / 

MeOH 97:3, (Rf = 0.28) as eluent to give 25 as dark red solid (1.53 g, 0.71 mmol, 

68 %). 

MP: 175-176 °C. – 1H-NMR (300 MHz, CDCl3): δ (ppm) = 1.23-1.53 (m, 108 H, Boc-

CH3), 2.66-3.92 (m, 68 H, Cyclen-CH2 + CH2), 4.39 (bs, 4 H, CH2), 5.30 (bs, 2 H, NH), 

8.30 (d, 3J = 7.41, 4 H, 2), 8.43 (d, 3J = 7.68, 4 H, 3). – 13
C-NMR (75 MHz, CDCl3): 

δ (ppm) = 28.5 (+, 36 C, Boc-CH3), 39.5 (–, 2 C, CH2), 40.1 (–, 2 C, CH2), 49.5-51.5 (–, 

32 C, cyclen-CH2), 79.7 (Cq, 12 C, OC(CH3)3), 122.9 (Cq, 2 C, C6), 123.2 (+, 4 C, C3), 

125.9 (Cq, 2 C, C5), 129.0 (Cq, 4 C, C1), 131.2 (+, 4 C, C2), 134.2 (Cq, 4 C, C4), 155.5-

157.4 (Cq, 12 C, Boc-CO), 163.3 (Cq, 4 C, C5), 166.0 (Cq, 6 C, triazene-C). – MS (ES, 

DCM/MeOH + 10 mmol/l NH4OAc): m/z (%) = 1259.6 (100) [M + 2 H+]. – Elemental 

analysis calcd. (%) for C126H190N26O28 (2517.01) + 2 H2O: C 59.28, H 7.66, N 14.26; 

found: C 59.32, H 7.67, N 14.01. – IR (neat) [cm-1]: ν~  = 3297, 2986, 2942, 2928, 2898, 

2366, 2336, 1697, 1655, 1542, 1476, 1419, 1349, 1061, 1049, 965, 811, 738, 620. – 

UV (MeCN): λmax (log ε) = 456 nm (3.873), 484 nm (4.355), 521 nm (4.497). – 

MF: C126H190N26O28 – MW: 2517.01 g/mol 
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Tetranuclear Zn(II)-cyclen perylene complex (9):  

Compound 25 (230 mg, 0.09 mmol) was dissolved in methanol and cooled to 0 °C in an 

ice bath. To the solution HCl saturated diethyl ether (0.7 ml/mmol Boc-group) was 

added. The mixture was allowed to warm to room temperature and was stirred over 

night. The solvent was evaporated and the crude product was dissolved in water and 

purified over an ion exchanger column using a strongly basic ion exchange resin (OH--

form, loading 0.9 mmol/mL, 4 eq. per protonated nitrogen) to give a colorless solid after 

freeze drying. Two solutions one containing the obtained colorless solid from the 

column in water and a second containing Zn(ClO4)2 · 6 H2O (125 mg, 0.33 mmol, 

4.4 eq. per deprotected receptor) in absolute ethanol were prepared. These two solutions 

were simultaneously added drop wise to 80 °C hot water under vigorous stirring. The 

resulting mixture was stirred at 90 °C over night. The solution was freeze dried and the 

product was recrystallized from a water methanol mixture to give the complex 9 as 

violet red solid in 60 % yield. (118 mg, 0.05 mmol). 

MP > 180 °C. – MS (ES, H2O/MeOH + 10 mmol/l NH4OAc): m/z (%) = 436.3 (35) 

[K8+ - H+ + 3 CH3COO-], 451.8 (100) [K8+ + 4 CH3COO-], 602 (48) [K8+ - H+ + 4 

CH3COO-], 608.0 (32) [K8+ + OH- + 4 CH3COO-], 621.5 (36) [K8+ + 5 CH3COO-]. – IR 

(neat) [cm-1]: ν~  = 3276, 2926, 1692, 1654, 1558, 1438, 1361, 1347, 1089, 964, 810, 

746. – UV (HEPES pH 7.4): λmax (log ε) = 500 nm (3.733), 538 nm (3.844). – 

MF: [C66H94N26O4Zn4]
8+(ClO4)8. – MW: 2207.88 g/mol. 
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Compound 27: 

To a mixture of Boc protected bis-cyclen 26 (200 mg, 0.18 mmol), and Pd(PPh3)4 

(15 mg, 0.013 mmol) in DME, Benzene-1, 4-diboronic acid of 16 (16 mg, 0.09 mmol) 

was added which was immediately followed by aqueous Na2CO3 (2 M, 2 mL). The 

mixture was refluxed for 48 h under N2 atmosphere. After cooling the solvent was 

evaporated under reduced pressure to dryness. THF was added and the suspension was 

placed in ultra sonication bath for few minutes. The mixture was then filtered, washed 

thoroughly with THF and the filtrate was evaporated under reduced pressure. The 

residue was purified by column chromatography on silica gel (ethyl acetate / petrol 

ether 1:1, Rf = 0.68) to afford 27 as a colourless solid (128 mg, 0.06 mmol, 31 %) 
1
H NMR (300 MHz, CDCl3) δ (ppm) = 1.39 (s, 108 H, boc-CH3), 3.37-3.59 (m, 64 H, 

cyclen-CH2), 8.37 (s, 4 H, Ar-H). – 13
C NMR (300 MHz, CDCl3) δ (ppm) = 28.5 (+, 

boc-CH3), 50.24 (–, cyclen-CH2), 79.9 (Cq, Boc), 128.1 (+, Ar-CH), 156.6 (Cq, Boc), 

169.4 (Cq, triazene). – MS (ESI(+), TFA/MeCN): m/z (%) = 476.7 (100) [M4+ + 

2 CH3COO-]2+, 1060.0 (100) [M + 2 H+]2+, 1010.0 (45) [M + 2 H+ - boc]2+, 2119.2 (15) 

[MH+]. – MF: C104H176N22O24 – FW: 2118.70 g/mol 
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Tetranuclear Zn(II)-cyclen benzene (10): 

Boc-protected compound 27 (128 mg, 61 µmol) dissolved in DCM was treated with 

trifluoroacetic acid (1.5 mL, 19 mmol). Subsequently DCM was evaporated and the 

obtained TFA salt was dissolved in water and passed through a basic ion exchanger 

column resin. The elution of the product was controlled by pH indicator paper 

(pH > 10) and was completed when pH again was neutral. The eluate was concentrated 

and lyophilised to yield 53 mg (58 µmol, 96 %) of deprotected 27 as colourless solid. 

Further it was dissolved in 3 mL acetonitrile and anhydrous ZnCl2 (32 mg, 23 mmol) 

dissolved in methanol was added slowly. The reaction mixture refluxed overnight under 

vigorously stirring. The hot reaction mixture was decanted and upon cooling compound 

10 precipitated as a colourless solid. After filtration and drying in vacuo 82 mg 

(56 µmol, 92 %) tetranuclear Zn(II)-cyclen 10 were obtained. 

MP: 255-257°C. – 1
H NMR (600 MHz, DMSO) δ (ppm) = 2.8-3.4 (bs, 64 H, cyclen-

CH2), 3.9 (bs, 6 H, NH), 4.4 (m, 6 H, NH). – 13
C NMR (150 MHz, DMSO) 

δ (ppm) = 44.6, 46.4, 47.3, 50.3 (–, cyclen-CH2), 130.5 (+, Ar-CH), 140.6 (Cq, 

benzene), 163.5, 171.5 (Cq, triazene). – IR (ATR) [cm-1]: ν~ = 3398, 2933, 1680, 1524, 

1347, 1193, 1132, 1087, 971, 813, 723. – UV (HEPES pH 7.4, 25 mM): 

λmax (log ε) = 285 nm (4.530). – MS (ESI(+),H2O/MeOH +10mM NH4OAc)): 

m/z (%) = 490.7 (100) (M8+ +5 CH3COO-] 3+, 471.3 (80) (M8+ +- H+ + 4 CH3COO-] 3+, 

353.7 (50) (M8+ + 4 CH3COO-] 4+. – MF: [C44H92N22Zn4]
8+Cl8. – FW: 1474.50 g/mol 
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4. Synthesis of New Amphiphilic 1,4,7,10-Tetraazacyclododecane 

Zn(II) Complexes for a Template Guided Cooperative Self-Assembly 

of Nucleotides at Interfaces 

 

This chapter deals with the synthesis of new amphiphilic 1,4,7,10-

tetraazacyclododecane Zn(II) complexes for a template guided cooperative self-

assembly of nucleotides at interfaces fabricated by combination of self-assembly 

monolayer technique and Langmuir Blodgett technique. 

 

All compounds were prepared at the University of Regensburg by Stefan Stadlbauer. 

The investigations at interfaces are in progress at the Institute of Physical Chemistry and 

Electrochemistry of the Russian Academy of Sciences in Moscow in the group of Prof. 

M. A. Kalinina. 
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4.1 Introduction 

 

Complex biomolecules such as DNA, RNA or proteins are of enormous importance for 

our life as they carry significant biological information and regulate fundamental 

biological processes in living cells. The biosynthesis of proteins proceeds via several 

essential steps: amino acid biosynthesis, transcription, translation, post-translation 

modification and protein folding, in order to transfer the information of the structural 

design of a protein stored in DNA to RNA and then to protein structure.
1
 Since in 1966 

the standard genetic code was fully deciphered we understand how protein sequences 

consisting of the 20 amino acids along with several unnatural amino acids are 

enciphered.
1a, 2

 The protein amino acid sequence is assigned to a special nucleotide 

triplet sequence called codon (XXX, X = nucleotide base) of purine bases (adenine (A), 

guanine (G)) and pyrimidine bases (cytosine (C), thymine (T)) in the DNA and 

translated by mRNA and tRNA using the rules of codon–anticodon pairing of the 

standard genetic code.
1a, 3

 Although there is an obvious degeneracy of the genetic code 

as the known 64 nucleotide triplet codons, including three stop codons, encode only 20 

amino acids, no ambiguity in the assignment between the codons and the cognate amino 

acids is observable.
3, 4

 The driving forces for the codon–anticodon pairing is hydrogen 

bonding by means of base pairing which follows the rules of Watson-Crick base pairing 

and non-Watson-Crick base pairing like wobble base pairing.
1c, 5

 

 To date, several strategies were developed to take advance of base pairing for 

planar molecular-recognition systems in the fields of supramolecular and material 

chemistry at the interface.
6
 The modification of self-assembled monolayers (SAMs)

7
 or 

Langmuir monolayers
8
 with nucleotide bases or their synthetic derivatives was 

demonstrated. Although the self-assembled monolayers
9
 and the Langmuir–Blodgett 

(LB) films,
10

 respectively, are both well developed applications they show some 

limitations. As the LB technique provides the possibility of precise adjustment of 

structure, properties and sterical pattern of the prepared monolayers at the air / water 

interface
11

 employing various kinds of substrates and chemicals,
12

 several drawbacks 

exist: Instability of the LB films, thermodynamic restrictions due to the layer structure
9
 

and especially the preparation of so called “head-up” layers, where the polar groups are 

assembled at the air, is not possible.
10c

 Due to the fact, that most of the chemically and 

biologically significant binding processes for analytical detection and bio-like self-
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assembly proceed in polar media and interfaces,
13

 covalent to surfaces attached SAMs, 

with a “head-up” orientation of their polar functional moiety are assumed to be most 

suitable for the modification of surface properties.
6a,

 
7a

 However, the sterical hindrance
14

 

in modified SAMs caused by the head groups of neighbouring molecules may create 

problems. 

 Previously, we demonstrated a novel surface design methodology, which 

combines the advantages of SAM-based and LB monolayer approaches.
15

 The 

technique allows the fabrication of double layers modified by amphiphilic Zn(II)-cyclen 

metal complexes from self-assembled monolayers and LB films, which provides a high 

control of the in-plane steric arrangement. Embedding an amphiphilic binuclear Zn(II)-

cyclen, which binds specific and with high affinity to various biologically relevant 

phosphates,
16

 we showed the sterically induced, cooperative lateral self-assembly of two 

complementary nucleotides in a planar film. 

To extend the scope of this methodology and to expand the level of 

cooperativity, we herein report the syntheses of a set of new amphiphilic Zn(II)-cyclen 

metal complexes for use in the guided assembly of complementary nucleotides in 2D 

systems. 
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4.2 Development of new amphiphilic Zn(II)-cyclen derivatives 

 

Utilizing metal complexes as recognition unit on self-assembled layers is of interest, as 

the charged metal complexes act as a polar bulky head group of the amphiphiles. 

Further they provide a Lewis acidic binding site with high specifity and affinity for 

various kinds of Lewis basic donors, e.g. phosphor anions, biologically important 

phosphates or phosphorylated peptides and proteins.
17

 Such reversible coordination to 

Lewis acidic metal complexes typically occurs with large enthalpies compared to other 

non-covalent interactions as e. g. hydrogen bonding, allowing a binding in aqueous 

media.
18

 As previously demonstrated by surface plasmon resonance technique (SPR) 

amphiphilic Zn(II)-cyclen complex 1
15a

 and 2
15b

 (hereafter Zn(II)-BC) enable a template 

guided 2D arrangement of the complimentary nucleotides adenosine and uridine as 

shown in Figure 2.  
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Figure 1. Amphiphilic mononuclear and binuclear Zn(II)-cyclen complexes. 
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Figure 2. Proposed mechanism of template guided self-assembly of nucleotide bilayers. 

(a) Complementary nucleotide bilayer induced by complex 2. (b) Complementary 

nucleotide bilayer induced by complex 1. (c) 5`UMP binding to complex 2. 
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Based on SPR results we suggested a stepwise self-assembly mechanism of 

complementary nucleotides (5´-AXP, 5´-UXP, X = mono-, di- or triphospate) on the 

prepared SAM-Zn(II)-cyclen template (Figure 2.). Complex 1 and 2 form 

complimentary nucleotide bilayers (Figure 2a and b) except for 5´-UMP where Zn(II)-

BC binds the phosphate and the nucleobase moiety simultaneous (Figure 2c). 

 We report here the synthesis of additional amphiphilic mono- and binuclear 

Zn(II)-cyclen derivatives and an amphiphilic tris Zn(II)-cyclen complex (Figure 3) to 

expand the variation of surface binding sites. 
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Figure 3. New amphiphilic Zn(II)-cyclen derivatives synthesized in this work: 

Mononuclear Zn(II)-cyclen complex (Zn(II)-MC) 3, binuclear Zn(II)-cylen complex 

bearing two C18 alkyl chains 4 (Zn(II)-BC C182) and trinuclear Zn(II)-cyclen complex 

(Zn(II)-TC) 5. Perchlorate counter ions (ClO4
- 
) are not shown. 

 

Complex 1 offers two alkyl chains affecting a higher hydrophobicity and therefore a 

tighter anchoring to the SAMs compared to 3. The single hydrophobic chain of 3 

therefore may lead to a different behaviour towards nucleotides. Additionally, 

compound 3 embedded in the SAM may evoke a supposed arrangement as shown in 

Figure 4 whereas two Zn(II)-MC are able to act as pseudo binuclear Zn(II)-cyclen 

complex. 
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Figure 4. Assumed arrangement of Zn(II)-MC as a pseudo binuclear Zn(II)-cyclen 

complex. (a) Adenine and uracil nucleotide base pairing to the Zn(II)-MC template, if a 

pre-arrangement of Zn(II)-MC to a pseudo Zn(II)-BC proceeds. (b) Treating with 

complementary nucleotides effects a nucleotide bilayer as described in Figure 2.  

 

Introduction of an additional chain increases the hydrophobicity of derivative 4 and may 

lead to a modification of the response of the prepared layers to substrates or change 

their stability. 

 A SAM based on complex 5 may permit the formation of a complementary 

bilayer system comprising of three different nucleotides by stepwise self-assembly of 

complementary nucleotides. Mimicing of a codon on the surface and therefore a specific 

readout of biologic information may become possible. Figure 5 shows a proposed codon 

assembly and anticodon recognition on Zn(II)-cyclen derivate 5 as template. 

 

 

Figure 5. Proposed stepwise self-assembly of complementary nucleotides on a SAM-

Zn(II)-TC template. 
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4.3 Syntheses 

4.3.1 Synthesis of amphiphilic mononuclear Zn(II)-cyclen C18 

 

The protected mono-cyclen amine 9
19

 was prepared according to literature known 

procedures and allowed to form the amide with stearic acid using TBTU and HOBt as 

activation reagents in a dry DMF / THF solvent mixture. Cleavage of the Boc-groups by 

HCl saturated ether, subsequent deprotonation by basic anion exchanger resin and 

complex formation by treatment with one equivalent Zn(ClO4)2 gave the amphiphilic 

mononuclear Zn(II)-cyclen C18 3 (Zn(II)-MC).  
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Scheme 1. Synthesis of mononuclear Zn(II)-cyclen C18 (Zn(II)-MC) 3. (a) Boc2O, 

DCM, RT, 3 h; (b) bromoacetonitrile, K2CO3, MeCN, 80 °C, 20 h; (c) H2/Raney Ni, 

EtOH/NH3, RT, 20 bar, 48 h; (d) stearic acid, TBTU, HOBt, DIPEA, DMF / THF, 

40 °C, 3 h; (e) HCl / ether, DCM o/n, basic ion exchanger resin; (f) Zn(ClO4)2, MeOH, 

65 °C, 19 h. 

 

 

4.3.2 Synthesis of amphiphilic binuclear Zn(II)-cyclen bis-C18 

 

The binuclear Zn(II)-cyclen complex 4 was synthesized analogously to the reported 

procedure for complex 2. To enhance the hydrophobicity of compound 5 and therefore 

effect a higher and tighter interaction between 5 and the SAM, a secondary amine with 

two alkyl chains (C18) was tethered to the bis-cyclen moiety 12,
15

 which was available 

by a two step literature known synthesis. The remaining chloride residue of template 12 
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was allowed to react with di-octadecylamine in a nucleophilic aromatic substituion at 

similar conditions as used for the precursor of Zn(II)-BC. 
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Scheme 2. Synthesis of binuclear Zn(II)-cyclen complex 4. (a) Cyanuric chloride, 

K2CO3, acetone, reflux, 18 h; (b) di-octadecylamine, K2CO3, dioxane, 90 °C, 24 h; 

(c) trifluoroacetic acid, DCM, RT, o/n; (d) basic ion exchanger resin; (e) Zn(ClO4)2, 

MeOH, 65 °C, 16 h.  

 

The overall reaction yield of compound 13 over 3 steps was 59% and a scale up to a 

multiple gram scale preparation of compound 4 was possible. Treating 13 with TFA 

over night and subsequent passing through a basic ion exchanger resin gave the free 

amine of ligand 15. Finally, complex formation of the amine ligand with two 

equivalents of Zn(ClO4)2 gave after recrystallisation analytically pure Zn(II)-BC C182 4 

in 67 % yield.  
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4.3.3 Synthesis of amphiphilic trinuclear Zn(II)-cyclen C18 

 

The trinuclear Zn(II)-cyclen complex 5 was prepared from two building blocks: cyclen 

modified triazine 16 and 1,7-bis-boc-4,10-diaminoethyl cyclen 17 (Figure 6). 
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Figure 6. Building blocks for the synthesis of Zn(II)-TC: cyclen modified triazine 16 

and the 1,7-bis-boc-4,10-diaminoethyl cyclen 17. 

 

Compound 16 was synthesized as previously reported.
15

 The synthesis of compound 17 

is shown in Scheme 3. 
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Scheme 3. Synthesis of 11,7-bis-boc-4,10-diaminoethyl cyclen 17. (a) Cbz-Cl, dioxane, 

water, pH 2–3; (b) Boc2O, DCM, 3 h; (c) H2, Pd/C, ethanol, RT, 48 h, quantitative; 

(d) Pd/C, ethanol / cyclohexane (2:1), reflux, o/n, 86 %; (e) bromoacteonitrile, MeCN, 

50 °C, 18 h; (f) H2, Raney-Ni, NH3 saturated ethanol, 25 bar, 4 d. 

 

Starting from cyclen 6, the Cbz protection group was selectively introduced at 

controlled pH using the method of Kovacs and Sherry.
20

 Treatment with Boc2O gave the 

orthogonally trans-protected cyclen derivative 19. The Cbz groups were removed, 

depending on the reaction scale, by catalytic amounts of palladium on charcoal and 

hydrogen atmosphere of 25 bar in a autoclave (up to 500 mg scale) or transfer 
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hydrogenation with 50 % (w/w) palladium on charcoal as reported by Anantharamaiah 

et al
21

 (up to 2.5 g scale), yielding 1,7–Boc protected cyclen 20. In the next step twofold 

alkylation with bromo acetonitrile followed by reduction of the nitrile by Raney nickel 

gave 17.  

Efforts to develop a shorter synthesis by introduction of the alkyl amine linker of 

17 directly to cyclen by the method of Kovacs and Sherry or to 16 by nucleophilic 

aromatic substitution were not successful. 
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Scheme 4. Synthesis of the amphiphilic trinuclear Zn(II)-cyclen complex 5. (a) K2CO3, 

dry MeCN, RT, 3 h; (b) octadecylamine, K2CO3, dry MeCN, reflux, 24 h; (c) HCl / 

ether, DCM, RT, 21 h; basic ion exchange resin H2O / MeOH (8:2); (d) ) Zn(ClO4)2, 

MeOH, 65 °C, 22 h.  
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The combination of cyclen building block 16 and 17 at mild reaction conditions gave 

the tris cyclen 22. Hydrophobic alkyl chains were introduced by a nucleophilic aromatic 

substitution. Subsequent treatment by HCl saturated ether and basic ion exchanger resin 

gave tris cyclen 24, which upon treatment with three equivalents of Zn(ClO4)2 yielded 

the amphiphilic tris Zn(II)-cyclen complex 5 (Scheme 4). 

 

 

4.4 Conclusion and Outlook 

 

In summary, we prepared three amphiphilic Zn(II)-cyclen complexes as binding sites at 

interfaces prepared by a combination of SAM and LB film approaches. Detailed 

investigations of the binding properties of surfaces incorporating the new amphiphilic 

complexes are in progress. 
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4.5 Experimental Part 

4.5.1 General methods and material  

 

Absorption Spectroscopy. Absorption were recorded on a Varian Cary BIO 50 

UV/VIS/NIR Spectrometer with temperature control by use of a 1 cm quartz cuvettes 

(Hellma) and Uvasol solvents (Merck or Baker). 

 

NMR Spectra. Bruker Avance 600 (1H: 600.1 MHz, 13C: 150.1 MHz, T = 300 K), 

Bruker Avance 400 (1H: 400.1 MHz, 13C: 100.6 MHz, T = 300 K), Bruker Avance 300 

(1H: 300.1 MHz, 13C: 75.5 MHz, T = 300 K). The chemical shifts are reported in 

δ [ppm] relative to external standards (solvent residual peak). The spectra were analyzed 

by first order, the coupling constants are given in Hertz [Hz]. Characterization of the 

signals: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, bs = broad singlet, 

psq = pseudo quintet, dd = double doublet, dt = double triplet, ddd = double double 

doublet. Integration is determined as the relative number of atoms. Assignment of 

signals in 13C-spectra was determined with DEPT-technique (pulse angle: 135 °) and 

given as (+) for CH3 or CH, (–) for CH2 and (Cq) for quaternary Cq. Error of reported 

values: chemical shift: 0.01 ppm for 1H-NMR, 0.1 ppm for 13C-NMR and 0.1 Hz for 

coupling constants. The solvent used is reported for each spectrum. 

 

Mass Spectra. Varian CH-5 (EI), Finnigan MAT 95 (CI; FAB and FD), Finnigan MAT 

TSQ 7000 (ESI). Xenon serves as the ionisation gas for FAB.  

 

IR Spectra. Recorded with a Bio-Rad FTS 2000 MX FT-IR and Bio-Rad FT-IR FTS 

155. 

 

Melting Point. Melting Points were determined on Büchi SMP or a Lambda 

Photometrics OptiMelt MPA 100. 

 

General. Thin layer chromatography (TLC) analyses were performed on silica gel 60 F-

254 with a 0.2 mm layer thickness. Detection via UV light at 254 nm / 326 nm or 

through staining with ninhydrin in EtOH. Column chromatography was performed on 

silica gel (70–230 mesh) from Merck. Starting materials were purchased from either 

Acros or Sigma-Aldrich and used without any further purification. Commercially 
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available solvents of standard quality were used. Dry THF, which was prepared by 

distillation from potassium. If otherwise stated, purification and drying was done 

according to accepted general procedures.
22

 Elemental analyses were carried out by the 

center for Chemical Analysis of the Faculty of Natural Sciences of the University 

Regensburg. 

 

 

4.5.2 Synthesis 

 

All compounds synthesized by literature known procedures are pointed in the text and 

are referred to the citation. 

 

 

N

N

N
22

N
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20

N
H
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O
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23

O O

24

25

boc

27

28

1

142-15

 
10-(2-Octadecanoylamino-ethyl)-1,4,7,10 tetraaza-cyclododecane-1,4,7-tricarboxylic 

acid tri-tert-butyl ester (10) 

Stearic acid (170 mg, 0.60 mmol), DIPEA (412 µL, 2.39 mmol), TBTU (211 mg, 

0.66 mmol), and HOBt (101 mg, 0.66 mmol) were dissolved under nitrogen atmosphere 

in dry DMF (4 mL) under ice cooling and stirred for 1 h. Subsequently amine 9 

(308 mg, 0.60 mmol) dissolved in DMF was added. The reaction was allowed to warm 

to room temperature and was 3 h at 40 °C. The reaction progress was monitored by TLC 

(EE). After completion of the reaction the solvent was removed and the crude product 

was purified by flash column chromatography on flash silica gel (EE; Rf = 0.45) 

yielding compound 10 (320 mg, 0.41 mmol, 68 %) as a colourless oil. 

1
H-NMR (400 MHz; CDCl3): δ (ppm) = 0.86 (t, 

3
J = 7.0 Hz, 3 H, HSQC, COSY: 

C
1
H3), 1.18-1.31 (m, 28 H, HSQC, COSY: C

2
H2-C

15
H2), 1.43 (s, 9 H, HSQC: C

28
H3), 

1.45 (s, 18 H, HSQC: C
25

H3), 1.54-1.66 (m, 2 H, HSQC, COSY: C
16

H2), rotation 

isomers: 2.16
a
, 2.29

b
 (t, 

3
J

a
 = 8.0 Hz, 

3
J

b
 = 7.6 Hz, 2 H, HSQC, COSY: C

17
H2), 2.63 (bs, 

6 H, HSQC, COSY: C
22

H2; HSQC, COSY: C
21

H2), 3.24-3.59 (m, 14 H, HSQC, COSY: 

C
22

H2; HSQC, COSY: C
20

H2), 6.28 (bs, 1 H, HSQC: NH
19

). – 
13

C-NMR (100 MHz; 

CDCl3): δ (ppm) = 14.1 (+, 1 C, HSQC, COSY: C
1
H3), assignment: 22.6 (–, 1 C), 
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29.30 (–, 1 C), 29.37 (–, 1 C), 29.50 (–, 1 C), 29.60 (–, 2 C), 29.62 (–, 1 C), 29.65 (–, 

6 C), 31.9 (–, 1 C), HSQC, COSY: C
2
H2-C

15
H2), 25.7 (–, 1 C), HSQC, COSY: C

2
H2-

C
15

H2), 28.5 (+, 6 C, HSQC, COSY: C
16

H2), 28.6 (+, 3 C, HSQC: C
28

H3), rotation 

isomers: 33.9
 b

, 36.5
a
 (–, 1 C, HSQC, COSY: C

17
H2), 36.5 (–, 1 C, HSQC, COSY: 

C
21

H2), 48.1 (–, 4 C, HSQC, COSY: C
16

H2), 49.9 (–, 2 C, HSQC, COSY: C
16

H2), 

52.7 (–, 1 C, HSQC, COSY: C
20

H2), 55.0 (–, 1 C, HSQC, COSY: C
16

H2), 55.6 (–, 1 C, 

HSQC, COSY: C
16

H2), 79.6, 79.8 (Cq, 3 C, HSQC, HMBC: C
24

, C
27

), 155.4 (Cq, 1 C, 

HSQC, HMBC: C
26

), 156.2 (Cq, 2 C, HSQC, HMBC: C
23

), rotation isomers: 173.5
a
, 

175.9
b
 (Cq, 1 C, HSQC, HMBC: C

18
). – IR (ATR) [cm

-1
]: ν~ = 2922, 2850, 1689, 1460, 

1416, 1365, 1248, 1156, 1019, 772. – MS (ESI(+), EE/MeOH + 10 mmol/L NH4Ac): 

m/z (%) = 782.7 (100) [MH
+
]. – HRMS Calcd for C43H83N5O7 779.6136; Found: 

779.6123. – MF: C43H83N5O7 – FW: 782.16 g/mol 
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Octadecanoic acid [2-(1,4,7,10 tetraaza-cyclododec-1-yl)-ethyl]-amide (11) 

Compound 10 (246 mg, 0.31 mmol) was dissolved in DCM (4 mL) and cooled to 0 °C. 

Subsequently 6.3 mL HCl / ether were added and the solution was stirred for 20 h at 

room temperature. The solvent was removed in vacuo yielding the protonated 

hydrochloride of compound 10 quantitative as a colourless solid. To obtain the free base 

of compound 10 a strong basic ion exchange resin was swollen for 15 min in 

water/MeOH (8:2) and washed neutral with water. A column was charged with resin 

(3.5 ml, 40.0 mmol hydroxy equivalents at a given capacity of 0.9 mmol/mL). The 

hydrochloride salt was dissolved in a mixture of MeOH/water (8:2), put onto the 

column and eluated with the same solvent mixture. The elution of the product was 

controlled by pH indicator paper (pH > 10) and was completed when pH again was 

neutral. The eluate was concentrated and lyophilized to yield quantitatively 149 mg 

(0.31 mmol) of free base 10, as colourless hygroscopic solid. 

MP: 148 – 150 °C. – 
1
H-NMR (300 MHz; CDCl3): δ (ppm) = 0.84 (t, 

3
J = 6.7 Hz, 3 H, 

C
1
H3), 1.22 (m, 28 H, C

2
H2-C

15
H2), 1.59 (m, 2 H, C

16
H2), 2.17 (t, 

3
J = 7.4 Hz, 2 H, 

C
17

H2), 2.36-3.67 (m, 20 H, C
20

H2, C
21

H2, C
22

H2), 6.78 (bs, 1 H, NH
19

). – 
13

C-

NMR (75 MHz; CDCl3): δ (ppm) = 14.1 (+, 1 C, CH3), 22.7, 25.8, 29.35, 29.49, 29.56, 
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29.66, 29.70, 31.9 (–, 14 C, CH2), 36.7 (–, 1 C, CH2), 37.5 (–, 1 C, CH2), 45.4 (–, 2 C, 

CH2), 46.1 (–, 2 C, CH2), 47.2 (–, 2 C, CH2), 51.5 (–, 2 C, CH2), 53.8 (–, 2 C, CH2), 

173.6 (Cq, 1 C, RCONHR`). – IR (ATR) [cm
-1

]: ν~ = 2916, 2850, 1644, 1546, 1466, 

1350, 1276, 812, 718. – MS (ESI(+), EE/MeOH + 10 mmol/L NH4Ac): 

m/z (%) = 482.4 (100) [MH
+
], 262.1 (50) [M + 2 H

+
 + MeCN]

2+
, 241.1 (50) [M + 

2 H
+
]
2+

. – HRMS Calcd for C28H59N5O 482.4798; Found: 482.4785. – MF: C28H59N5O 

– FW: 481.82 g/mol 
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N

N
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H
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2+

2 ClO
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Mononuclear Zn(II)-cyclen C18 (Zn(II)-MC) (3) 

Compound 11 (50 mg, 0.10 mmol) was dissolved in 1 mL MeOH and heated to 65 °C to 

get a clear solution. Subsequently zinc(II)-perchlorate (44 mg, 117 µmol) dissolved in 

1 ml MeOH was added slowly to the stirred reaction mixture. The reaction mixture was 

stirred for additional 19 h at 65 °C. The solvent was removed in vacuo and the residue 

was redissolved in water and lyophilized to yield 77 mg (0.10 mmol, 100 %) of Zn(II)-

MC as a lightly brownish solid.  

MP: 161 °C. – 
1
H-NMR (600 MHz; CDCl3 / CD3OD 1:1): δ (ppm) = 0.58 (t, 

3
J = 7.1 Hz, 3 H, HSQC, COSY: C

1
H3), 0.93-1.06 (m, 28 H, HSQC, COSY: C

2
H2-

C
15

H2), 1.26-1.36 (m, 2 H, HSQC, COSY: C
16

H2), 2.03 (t, 
3
J = 7.8 Hz, 2 H, HSQC, 

COSY: C
17

H2), 2.45-2.58 (m, 8 H, HSQC, COSY: cyclen-CH2), 2.59-2.73 (m, 8 H, 

HSQC, COSY: cyclen-CH2), 2.75-2.87 (m, 2 H, HSQC, COSY: C
20

H2), 3.15 (t, 

3
J = 5.0 Hz, 2 H, HSQC, COSY: C

21
H2), 3.65 (bs, 1 H, HSQC: NH), 4.24 (bs, 2 H, 

HSQC: NH). – 
13

C-NMR (150 MHz; CDCl3): δ (ppm) = 13.2 (+, 1 C, HSQC, COSY: 

C
1
H3), 22.1, 28.65, 28.73, 28.94, 29.08, 31.3(–, 14 C, HSQC, COSY: C

2
H2-C

15
H2), 

25.0 (–, 1 C, HSQC, COSY: C
16

H2), 35.6 (–, 1 C, HSQC, COSY: C
17

H2), 36.4 (–, 1 C, 

HSQC, COSY: C
21

H2), 42.0 (–, 1 C, HSQC, COSY: cyclen-CH2), 43.4 (–, 2 C, HSQC, 

COSY: cyclen-CH2), 44.0 (–, 1 C, HSQC, COSY: C
20

H2), 44.1 (–, 1 C, HSQC, COSY: 

cyclen-CH2), 50.9 (–, 2 C, HSQC, COSY: cyclen-CH2), 51.0 (–, 1 C, HSQC, COSY: 

cyclen-CH2), 53.7 (–, 1 C, HSQC, COSY: cyclen-CH2), 178.2 (Cq, 1 C, C
18

). – 

IR (ATR) [cm
-1

]: ν~ = 2917, 2850, 1647, 1625, 1467, 1076, 720, 622. – 
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MS (ESI(+),MeOH + 10 mmol/L NH4Ac): m/z (%) = 544.4 (100) [M
2+

 – H
+
]
+
. – 

HRMS Calcd for C28H58N5O [M
2+

 - H
+
]
+
 544.3933; Found: 544.3921. – 

MF: [C28H59N5OZn] (ClO4)2  – FW: 746.09 g/mol 
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10-[4-(4-tert-Butoxycarbonyl-7-tert-butoxycarbonylmethyl-10-ethoxycarbonyl-

1,4,7,10-tetraaza-cyclododec-1-yl)-6-dioctadecylamino-[1,3,5]triazin-2-yl]-1,4,7,10-

tetraaza-cyclododecane-1,4,7-tricarboxylic acid tri-tert-butyl ester (12) 

Protected bis-cyclen 12 (400 mg, 0.38 mmol), di-octadecylamine (494 mg, 0.95 mmol) 

and K2CO3 (157 mg, 1.14 mmol) were dissolved in dioxane (10 mL). The reaction 

mixture was heated to 90 °C for 24 h. After cooling to rt the solution solidified which 

further was dissolved in PE and K2CO3 was filtered off. The organic layer was washed 

twice with H2O and dried over MgSO4. After removing the solvent the crude mixture 

was chromatographed on flash silica gel (LM: PE/EE 2:1, Rf = 0.4) obtaining compound 

13 (468 mg, 0.30 mmol) in 79 % yield as a colourless hygroscopic solid. 

1
H-NMR (600 MHz; CDCl3): δ (ppm) = 0.85 (t, 

3
J = 7.0 Hz, 6 H, HSQC: alkyl-CH3), 

1.23 (s, 60 H, HSQC: alkyl-CH2), 1.41, 1,43 (s, 54 H, HSQC: boc-CH3), 1.49 (m, 4 H, 

β-CH2), 3.02-3.91 (m, 36 H, cyclen-CH2, α-CH2). – 
13

C-NMR (150 MHz; CDCl3): 

δ (ppm) = 14.1 (+, 2 C, alkyl-CH3), 22.7 (–, 2 C, alkyl-CH2), 27.1 (–, 2 alkyl-C, CH2), 

28.5 (+, 18 C, boc-CH3), 28.8 (–, 2 alkyl-CH2), 29.3 (–, 2 C, alkyl-CH2), 29.7 (–, 22 C, 

alkyl-CH2), 31.9 (–, 2 C, alkyl-CH2), 46.8 (–, 2 C, α-CH2), 50.3 (–, 16 C, cyclen-CH2), 

79.6 (Cq, 6 C, boc), 155.9 (Cq, 6 C, NHCOO
t
Bu), 164.5 (Cq, 3 C, triazine). – IR (KBr) 

[cm
-1

]: ν~ = 2974, 2923, 2853, 1690, 1533, 1494, 1466, 1407, 1364,1247, 1160, 1103, 

1026, 971, 859, 812 , 776. – MS (ESI(+),MeOH/DCM + 10 mmol NH4Ac): m/z (%) = 

1542.6 (100) [MH
+
], 721.8 (9) [M + 2 H

+
 - boc]

2+
, 693.7 (10) [M + 2 H

+
 - boc - 

C4H8]
2+

, 665.7 (7) [M + 2 H
+
 - boc - 2 C4H8]

2+
, 637.7 (4) [M + 2 H

+
 - boc - 3 C4H8]

2+
. – 

MF: C85H160N12O12 – FW: 1542.28 g/mol 
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+

NN

N
+

N

N
+

N N

N

N
+

8

H
H

H
H H

H

H
H

H 2

HH

5 CF
3
COO-

α

β

 

[4,6-Bis-(1-aza-4,7,10-azonia-cyclododec-1-yl)-[1,3,5]-triazin-2-yl]-dioctadecyl-

amine-heptakis-trifluoroacetate (14) 

Compound 13 (318 mg, 0.21 mmol) was dissolved in DCM (10 ml) and cooled to 0 °C. 

To this solution 1.3 mL (1.97 g, 17.3 mmol) TFA was added. The reaction mixture was 

allowed to warm to rt and stirred for 21.5 h. The solvent was removed in vacuo yielding 

deprotected product 14 (318 mg, 0.18 mmol, 86 %) as pale yellow oil. 

1
H-NMR (400 MHz; CDCl3): δ (ppm) = 0.85 (t, 

3
J = 6.8 Hz, 6 H, HSQC: CH3), 1.23 (s, 

60 H, HSQC: alkyl-CH2 chain), 1.47-1.53 (m, 4 H, β-CH2), 2.75-2.98 (m, 4 H, cyclen-

CH2), 3.00-3.29 (m, 20 H, cyclen-CH2), 3.38 (t, 
3
J = 7.2 Hz, 4 H α-CH2), 3.59-3.99 (m, 

20 H, cyclen-CH2), 6.66-7.66 (bs, 6 H, NH). – 
13

C-NMR (100 MHz; CDCl3): 

δ (ppm) = 14.0 (+, 2 C, HSQC: CH3), 22.6 (–, 2 C, alkyl-CH2), 27.2 (–, 2 C, alkyl-CH2), 

28.1 (–, 2 C, HMBC, COSY: β-CH2), 29.3 (–, 2 C, alkyl-CH2), 29.7 (–, 22 C, alkyl-

CH2), 31.9 (–, 2 C, alkyl-CH2), 45.7, 47.3, 47.7, 48.2, 48.5, 48.8 (–, 16 C, cyclen-CH2), 

47.4 (–, 2 C, HMBC, COSY: α-CH2), 164.1 (Cq, 1 C, HMBC: C-triazine alkyl chain), 

165.5 (Cq, 2 C, HMBC: C-triazine cyclen). – MS (ESI(+), MeCN/TFA): 

m/z (%) = 471.6 (100) [M + 2 H
+
]
2+

, 1056.0 (12) [MH
+
 TFA]

+
, 521.7 (12) [M + boc + 

2 H
+
]
2+

, 1042.1 (6.5) [MH
+
 + boc]

+
, 942 (4) [MH

+
]. – MF: C55H112N12 5 ·  CF3COOH – 

FW: 1511.69 g/mol (without TFA: 941.57 g/mol) 

 

 

N

N
N

NN

N
N

N

N N

N

N
8

H

2

H

H
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H

α

β

 

[4,6-Bis-(1,4,7,10tetraaza-cyclododec-1-yl)-[1,3,5]triazin-2-yl]-dioctadecyl-amine (15) 

To obtain the free base of compound 14 (245 mg, 0.14 mmol) a strong basic ion 

exchange resin was swollen for 15 min in water/MeOH (8:2) and washed with water 

until a neutral pH was reached. A column was charged with resin (4.7 ml, 4.22 mmol 
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hydroxy equivalents at a given capacity of 0.9 mmol/mL). The TFA salt 14 was 

dissolved in water/MeOH (8:2), and passed through column with same solvent mixture. 

The elution of the product was controlled by pH indicator paper (pH > 10) and was 

completed when pH again was neutral. The eluate was concentrated and lyophilized to 

yield 132 mg (0.14 mmol, 100 %) of free base 15, as colourless semi-solid. 

1
H-NMR (400 MHz; CDCl3): δ (ppm) = 0.85 (t, 

3
J = 6.8 Hz, 6 H, HSQC: CH3), 1.23 (s, 

60 H, HSQC: alkyl-CH2 chain), 1.47-1.53 (m, 4 H, β-CH2), 2.75-2.98 (m, 4 H, cyclen-

CH2), 3.00-3.29 (m, 20 H, cyclen-CH2), 3.38 (t, 
3
J = 7.2 Hz, 4 H α-CH2), 3.59-3.99 (m, 

8 H, cyclen-CH2), 6.66-7.66 (bs, 6 H, NH). – 
13

C-NMR (100 MHz; CDCl3): δ(ppm) = 

14.0 (+, 2 C, HSQC: CH3), 22.6 (–, 2 C, alkyl-CH2), 27.2 (–, 2 C, alkyl-CH2), 28.1 (–, 

2 C, HMBC, COSY: β-CH2), 29.3 (–, 2 C, alkyl-CH2), 29.7 (–, 22 C, alkyl-CH2), 

31.9 (–, 2 C, alkyl-CH2), 45.7, 47.3, 47.7, 48.2, 48.5, 48.8 (–, 16 C, cyclen-CH2), 

47.4 (–, 2 C, HMBC, COSY: α-CH2), 164.1 (Cq, 1 C, HMBC: C-triazine alkyl chain), 

165.5 (Cq, 2 C, HMBC: C-triazine cyclen). – IR (ATR) [cm
-1

]: ν~ = 2919, 2850, 1672, 

1536, 1490, 1419, 1359, 1174, 1125, 832, 798, 720. – MS (ESI(+), MeCN/TFA): m/z 

(%) = 471.6 (100) [M + 2 H
+
]

2+
, 1056.0 (12) [MH

+
 TFA]

+
, 521.7 (12) [M + boc + 

2 H
+
]
2+

, 1042.1 (6.5) [MH
+
 + boc]

+
, 942 (4) [MH

+
]. – HRMS Calcd for C55H113N12: 

941.9211; Found: 941.9192. – MF: C55H112N12 – FW: 941.57 g/mol 

 

 

N
8 2

N

N
N

NN

N
N

N

H

H

H N N

N

H

H

H

Zn Zn

4+

4 ClO
4
-

α

β

 

 

bis-Zn-cyclen bis-octadecylamine (Zn
2+

-BC bis-C18) (3) 

Compound 15 (160 mg, 017 mmol) was dissolved in 12 mL MeOH. To this solution 

zinc(II)-perchlorate (139 mg, 0.37 mmol) in 3 ml MeOH was slowly added. The 

reaction mixture was stirred for 7 h at room temperature and then heated to reflux for a 

further 16 h period. Subsequently the solvent was removed in vacuo, the residue was 

redissolved by heating in MeOH (1.1 mL) and chloroform was added dropwise till there 

was a clear solution. The solution was first cooled slowly to room temperature and 

further put to the fridge. The overlaying methanol solution was removed by decantation 
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and the colourless gelatine like product was washed with cold MeOH. After drying in 

vacuo compound 3 (162 mg, 0.11 mmol, 67 %) was obtained as a colourless solid.  

MP: 153 °C. – 
1
H-NMR (400 MHz; CDCl3): δ (ppm) = 0.87 (t, 

3
J = 7.0 Hz, 6 H, 

HSQC: alkyl-CH3), 1.26 (s, 50 H, HSQC: alkyl-CH2 chain), 1.30 (bs, 10 H, HSQC: 

alkyl-CH2 chain), 1.57 (bs, 4 H, HMBC, COSY: β-CH2), 2.63-4.43 (m, 42 H, HSQC: 

cyclen-CH2, HMBC, COSY: α-CH2, NH). – 
13

C-NMR (100 MHz; CDCl3): 

δ (ppm) = 14.4 (+, 2 C, HSQC: alkyl-CH3), 23.4 (–, 2 C, alkyl-CH2), 27.66 (–, 1 C, 

alkyl-CH2), 27.73 (–, 1 C, alkyl-CH2), 28.7 (–, 2 C, alkyl-CH2), 30.08, 30.15,30.28, 

30.32, 30.36, 30.40 (–, 24 C, alkyl-CH2), 32.65 (–, 2 C, alkyl-CH2), 44.2, 44.3, 44.6, 

44.7, 45.7, 45.9, 46.2, 46.3, 46.6, 47.1, 47.3, 47.5, 47.6, 48.1, 48.4, 48.6, 49.6 (–, 18 C, 

HSQC, COSY: cyclen-CH2, HMBC, COSY: α-CH2), 165.3 (Cq, 1 C, HMBC: C-triazine 

alkyl chain), 168.1 (Cq, 1 C, HMBC: C-triazine cyclen), 168.3 (Cq, 1 C, HMBC: C-

triazine cyclen). – IR (ATR) [cm
-1

]: ν~ = 2921, 2852, 1693, 1561, 1525, 1465, 1420, 

1346, 1282, 1085, 812, 622. – MS (ESI(+), H2O/MeOH + 10 mM NH4Ac): m/z (%) = 

595.5 [M
4+

 + 2 CH3COO
-
]

2+
, 1189.9 (5) [M

4+
 − H

+
 + 2 CH3COO

-
]

3+
, 1065.9 (4) [MH

+
]. 

– MF: [C55H112N12Zn2] (ClO4)4 – FW: 1470.14 g/mol 

 

 

N

N

N

N
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cbz

bocboc

 

1,7-Cbz-4,10-Boc-cyclen 

10-Phenylacetyl-1,4,7,10-tetraaza-cyclododecane-1,4,7-tricarboxylic acid 4-benzyl 

ester 1,7-di-tert-butyl ester (19) 

Compound 18 (2.24 g, 5.1 mmol) was dissolved in 300 mL of DCM and a solution of 

Boc2O (3.1 g, 14.2 mmol) in DCM (40 mL) was added dropwise in a time period of 15 

min. The reaction mixture was stirred for additional 20 h over night at room 

temperature. Solvent was removed under reduced pressure and the residue was taken up 

in sat. aq. NaHCO3 and then extracted with DCM (3x). The organic layer was again 

washed with sat. aq. NaHCO3 (3x), dried over MgSO4 and the solvent was removed. 

The crude product was purified using flash chromatography (PE/EE 2:1, Rf = 0.2) 

yielding 1,7-z-4,10-boc-cyclen 19 (2.66 g, 4.2 mmol, 83 %) as a colourless semi-solid.  
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1
H-NMR (300 MHz; CDCl3): δ (ppm) = 1.38 (s, 18 H, boc-CH3), 3.36 (bs, 16 H, 

cyclen-CH2), 5.11 (s, 4 H, Ph-CH2), 7.17-7.42 (m, 10 H, Ar-H). – 
13

C-NMR (75 MHz; 

CDCl3): δ (ppm) = 28.3 (+, 6 C, boc-CH3), 50.1 (–, 4 C, cyclen-CH2), 50.4 (–, 4 C, 

cyclen-CH2), 67.2 (–, 2 C, Ph-CH2), 80.0 (Cq, 2 C, boc), 128.2 (+, 2 C, Ar-CH), 

128.4 (+, 4 C, Ar-CH), 128.5 (+, 4 C, Ar-CH), 136.4 (Cq, 2 C, Ar), 156.3 (Cq, 2 C, 

NHCOO), 156.8 (Cq, 2 C, NHCOO). – IR (KBr): ν~  [cm
-1

] = 2974, 2933, 1693, 1470, 

1415, 1366, 1246, 1164, 1099, 992, 774, 698. – MS (ESI(+), DCM/MeOH + 10 mmol 

NH4Ac): m/z (%) = 641.3 (36) [MH
+
], 658.3 [M + NH4

+
], 1299.0 [2 M + NH4

+
]. – 

Elemental analysis calcd. (%) for C34H48N4O8: C 63.73, H 7.55, N 8.74; found 

C 63.55, H 7.59, N 8.59. – MF: C34H48N4O8 – FW: 640.89 g/mol  

 

 

N

N

N

N

H

H

bocboc

 

1,7-bis-Boc-cyclen 

1,4,7,10-Tetraaza-cyclododecane-1,7-dicarboxylic acid di-tert-butyl ester (20) 

Literature known compound, but different experimental procedure.
 23

 

Method A: 50 % (w/w) Pd / C 

1,7-Cbz-4,10-Boc-cyclene 19 (2.56 g, 4.0 mmol) was dissolved in a mixture of 

ethanol/cyclohexene (114 mL / 57 mL), palladium on activated charcoal [10 %, 50 % 

(w/w)] was added to the solution and reaction mixture was refluxed for 17 h. The 

reaction progress was monitored by TLC (EE/PE 1:1). Palladium on charcoal was 

filtered of through a pad of basic celite. The solvent was removed under reduced 

pressure giving 1,7-Boc-cyclene 20 (1.49 g, 4.0 mmol, 100 %) as a white solid.  

 

Method B: catalytic Pd / C 

1,7-Cbz-4,10-Boc-Cyclene 19 (1.19 g, 1.9 mmol) was dissolved in EtOH (20 mL), to 

which a spatula tip 10 % Pd/C were added. The reaction mixture was stirred 7 days in 

an autoclave under 20 bar H2 pressure. The suspension was filtered through a pad of 

celite and the filtrate was concentrated under reduced pressure. 20 (595 mg, 86 %) was 

isolated as colourless oil without further purification. 

MP: 187 °C. – 
1
H-NMR (300 MHz; CDCl3): δ (ppm) = 1.40 (s, 18 H, boc-CH3), 2.64-

3.18 (m, 8 H, cyclen-CH2), 3.22-3.91 (m, 8 H, cyclen-CH2). – 
13

C-NMR (75 MHz; 
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CDCl3): δ (ppm) 28.4 (+, 6 C, boc-CH3), 48.8, 49.2, 49.6, 49.7, 49.8, 50.5. 50.6 (–, 8 C, 

cyclen-CH2), 80.8, 81.0 (Cq, 2 C, boc), 155.4 (Cq, 2 C, NHCOO
t
Bu). – IR (KBr) [cm

-1
]: 

ν~  [cm] = 3189, 2976, 2936, 2773, 1693, 1473, 1414, 1366, 1276, 1251, 1164, 775. – 

MS (ESI(+), DCM/MeCN/TFA): m/z (%) = 373.2 (100) [MH
+
]. – HRMS Calcd for 

C18H36N4O4 373.2815; Found: 373.2813. – MF: C18H36N4O4 – FW: 372.51 g/mol 

 

 

N

N

N

N

N

N

bocboc

 

4,10-Bis-cyanomethyl-1,4,7,10tetraaza-cyclododecane-1,7-dicarboxylic acid di-tert-

butyl ester (21) 

Compound 20 (1.98 g, 5.3 mmol) was dissolved in MeCN (40 mL), K2CO3 (1.76 g, 

12,8 mmol) and bromoacetonitrile (812 µL, 11.7 mmol) were added. The reaction 

mixture was stirred at 50 °C for 18 h and the reaction progress was monitored by TLC. 

K2CO3 was filtered off and the filtrate was concentrated. The crude product was 

purified using flash chromatography (EE/PE 2:1, Rf = 0.48) obtaining 21 (1.58 g, 3.5 

mmol, 66 %) as a white solid. 

MP: 106 °C. – 
1
H-NMR (600 MHz; CDCl3): δ (ppm) = 1.38 (s, 18 H, boc-CH3), 

2.69 (bs, 8 H, cyclen-CH2), 3.10-3.44 (m, 8 H, cyclen-CH2), 3.69 (bs, 4 H, spacer-CH2). 

– 
13

C-NMR (150 MHz; CDCl3): δ (ppm) 28.5 (+, 6 C, HSQC: boc-CH3), 42.3 (–, 2 C, 

HSQC, COSY: CH2CN), 45.9 (–, 2 C, HSQC: cyclen-CH2), 46.3 (–, 2 C, HSQC: 

cyclen-CH2), 54.2 (–, 2 C, HSQC: cyclen-CH2), 55.2 (–, 2 C, HSQC: cyclen-CH2), 

80.2 (Cq, 2 C, HSQC: boc), 115.0 (Cq, 2 C, HSQC: CN), 155.7 (Cq, 2 C, HSQC: 

NHCOO
t
Bu). – IR (KBr) [cm

-1
]: ν~ = 2974, 2826, 2229, 1690, 1454, 1413, 1365, 1275, 

1244, 1157, 1014, 858, 769. – MS (ESI(+), MeOH/DCM + 10 mmol NH4Ac): m/z (%) 

= 451.3 (100) [MH
+
], 395.2 (30) [MH

+ 
- C4H8], 351.2 (18) [MH

+ 
- boc], 473.3 (17) 

[MNa
+
], 251.1 (9) [MH

+ 
- 2 boc], 489.3 (8) [MK

+
]. – Elemental analysis calcd. (%) for 

C22H38N6O4: C 58.64, H 8.50, N 18.65; found C 58.13, H 8.79, N 17.96. – 

HRMS Calcd for C22H38N6O4 450.2954; Found: 450.2950. – MF: C22H38N6O4 – 

FW: 450.59 g/mol 

 



4. Amphiphilic Zn(II)-Cyclen Complexes for a Template Guided Cooperative Self-Assembly of Nucleotides at Interfaces 

 126 

 

N

N

N

N

NH
21

2

NH
2

boc

boc  
4,10-Bis-(2-amino-ethyl)-1,4,7,10 tetraaza-cyclododecane-1,7-dicarboxylic acid di-

tert-butyl ester (17) 

Nitrile 21 (400 mg, 0.89 mmol) was dissolved in NH3 saturated ethanol and catalytic 

amounts of Raney Ni was added to the solution. The reaction mixture was stirred in 

autoclave at rt at 25 bar H2 pressure for 4 days. The catalyst was filtered off through a 

pad of basic celite. Reaction control was done by TLC (EE/PE 2:1) and NMR. After 

removal of the solvent under reduced pressure the amine 17 (358 mg, 0.78 mmol, 88 %) 

was obtained as a colourless oil. 

1
H-NMR (400 MHz; CDCl3): δ (ppm) = 1.41 (s, 18 H, boc-CH3), 2.46 (t, 

3
J = 6.2 Hz, 

4 H, HMBC: C
1
H2), 2.65 (m, 8 H, cyclen-CH2), 2.72 (t, 

3
J = 6.2 Hz, 4 H, HMBC: 

C
2
H2), 3.33 (bs, 8 H, cyclen-CH2). – 

13
C-NMR (100 MHz; CDCl3): δ (ppm) 28.4 (+, 

6 C, HSQC: boc-CH3), 39.5 (–, 2 C, HMBC: C
2
H2), 47.3 (–, 4 C, HSQC: cyclen-CH2), 

54.7 (–, 4 C, HSQC: cyclen-CH2), 58.1 (–, 2 C, HMBC: C
2
H2), 79.4 (Cq, 2 C, HMBC, 

HSQC: boc), 155.9 (Cq, 2 C, HMBC, HSQC: NHCOO
t
Bu). – IR (KBr) [cm

-1
]: 

ν~  = 3349, 2972, 2925, 2816, 1680, 1570, 1460, 1411, 1364, 1300, 1281, 1250, 1155, 

965, 860, 819, 753. – MS (ESI(+), DCM/MeCN/TFA): m/z (%) = 459.4 (100) [MH
+
], 

230.1 (46) [M + 2 H
+
]

2+
, 250.6 (40) [M + 2 H

+
 MeCN]

 2+
. – HRMS Calcd for 

C22H47N6O4: 459.3659; Found: 459.3648. – MF: C22H46N6O4 – FW: 458.65 g/mol 
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Cl Cl  

6-[2-(7-{2-[4-Chloro-6-(1,4,7,10-tetraaza-cyclododec-1-yl)-1,6-tricarboxyl acid tri-

tert-butyl-[1,3,5]triazin-2-ylamino]-ethyl}-1,4,7,10-tetraaza-cyclododec-1-yl-

1,6tricarboxyl acid tri-tert-butyl-)-ethylamino]-[1,3,5]triazin-2-yl}-1,3,6,9-tetraaza-

cycloundecane-1,1´,6,6´,9,9´-tricarboxylic acid tri-tert-butyl ester (22) 

Compound 16 (298 mg, 0.48 mmol) and K2CO3 (151 mg, 1.09 mmol) were suspended 

in MeCN (2 mL) and vigorously stirred. A solution of free amine 17 (100 mg, 
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0.22 mmol) in MeCN (4 mL) was added to the stirred mixture. Reaction progress was 

monitored by TLC. The reaction solution was stirred 3 days at rt. K2CO3 was filtered off 

and the filtrate was concentrated. The crude product was purified by flash column 

chromatography using flash silica gel (EE/PE 8:2 → EE/MeOH 9:1; Rf = 0.12) yielding 

the skeletal structure 22 (157 mg, 0.10 mmol, 45 %) as colorless solid. 

MP: 153 °C. – 
1
H-NMR (400 MHz; CDCl3): δ (ppm) = 1.39 (s, 54 H, boc-CH3), 

1.42 (s, 18 H, boc-CH3), 2.47-2.90 (m, 12 H, cyclen-CH2, spacer-CH2), 3.11-3.83 (m, 

44 H, CH2, cyclen-CH2, spacer-CH2). – 
13

C-NMR (100 MHz; CDCl3): δ(ppm) = 28.34, 

28.39 (+, 24 C, boc-CH3), 38.1 (–, 2 C, spacer-CH2), 47.8, 49.8, 50.4, 51.0 (–, 20 C, 

cyclen-CH2), 53.4 (–, 2 C, spacer-CH2), 54.5 (–, 4 C, cyclen-CH2), 79.9, 80.2 (Cq, 8 C, 

boc), 156.0, 156.2, 157.1 (Cq, 8 C, boc), 165.2, 165.7, 168.5, 169.3 (Cq, 6 C, triazine). – 

IR (KBr) [cm
-1

]: ν~ = 2975, 2931, 2818, 2361, 1693, 1571, 1529, 1466, 1366, 1249, 

1163, 1029, 972, 859, 775. – MS (ESI(+),MeOH/DCM + 10 mmol NH4Ac): m/z (%) = 

1626.4 (100) [MH
+
], 813.7 (61) [M + 2 H

+
]

2+
, 764.6 (39) [M + 2 H

+
 - boc]

2+
. – 

MF: C74H130N20O16 – FW: 1626,89 g/mol 
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N-Octadecyl-6-[2-(7-{2-[4-chloro-6-(1,4,7,10-tetraaza-cyclododec-1-yl)-1,6-

tricarboxyl acid tri-tert-butyl-[1,3,5]triazin-2-ylamino]-ethyl}-1,4,7,10-tetraaza-

cyclododec-1-yl-1,6tricarboxyl acid tri-tert-butyl-)-ethylamino]-n-octadecyl-6-

[1,3,5]triazin-2-yl}-1,3,6,9tetraaza-cycloundecane-1,1´, 6,6´, 9,9´-tricarboxylic acid 

tri-tert-butyl ester (23) 

Compound 22 (273 mg, 0.17 mmol), K2CO3 (70 mg, 0.50 mmol) and octadecylamine 

(117 mg, 0.44 mmol) were suspended in dry MeCN (8 mL) and vigorously stirred. The 

solution was heated to reflux for 24 h and reaction progress was monitored by TLC. 

Subsequently K2CO3 was filtered off and the filtrate was concentrated. The crude 

product was purified by flash column chromatography using flash silica gel 

(CHCl3/MeOH 97.5 : 2.5; Rf = 0.3) yielding compound 23 (244 mg, 0.12 mmol, 69 %) 

as colourless oil. 
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1
H-NMR (400 MHz; CDCl3): δ (ppm) = 0.86 (t, 

3
J = 7.0 Hz, 6 H, alkyl-CH3), 1.23 (s, 

60 H, alkyl-CH2), 1.41 (s, 76 H, boc-CH3, β-CH2), 2.20-2.92 (m, 12 H, cyclen-CH2, 

spacer-CH2), 3.13-3.87 (m, 48 H, cyclen-CH2, spacer-CH2, α-CH2). – 
13

C-NMR 

(100 MHz; CDCl3): δ (ppm) = 14.1 (+, 2 C, alkyl-CH3), 22.6 (–, 2 C, CH2), 27.0 (–, 

2 C, CH2), 28.47, 28.50 (–, 24 C, boc-CH3), 29.32 (–, 2 C, CH2), 29.53, 29.61, 29.66 (–, 

22 C, alkyl-CH2), 30.1 (–, 2 C, CH2), 31.8 (–, 2 C, CH2), 40.6 (–, 2 C, alkyl-CH2), 

47.7 (–, 4 C, CH2), 50.1, 50.4 (–, 18 C, CH2), 54.2, 54.6, 55.1 (–, 6 C, CH2,), 79.51, 

79.59, 79.8 (Cq, 8 C, boc), 156.0, 156.3 (Cq, 8 C, boc), 165.7 (Cq, 6 C, triazine). –  

IR (KBr) [cm
-1

]: ν~ = 2973, 2925, 2853, 1688, 1549, 1465, 1408, 1363, 1247, 1157, 

1104, 972, 860, 812, 775. – MS (ESI(+),MeOH/DCM + 10 mmol NH4Ac): m/z (%) = 

1047.2 (100) [M + 2 H
+
]

2+
, 2093.3 (45) [MH

+
]. – MF: C110H206N22O16 – 

FW: 2093.01 g/mol 
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2N-Octadecyl-6-(1,4,7,10-tetraaza-cyclododec-1-yl)-N'-octadecyl-[2-(7-{2-[4-

(1,4,7,10-tetraaza-cyclododec-1-yl)-[1,3,5]triazin-2-ylamino]-ethyl}-1,4,7,10tetr 

aaza-cyclododec-1-yl)-ethyl]-[1,3,5]triazine-2,4-diamine (24) 

Compound 23 (236 mg, 0.113 mmol) was dissolved in DCM (4 mL) and cooled to 0 °C. 

Subsequently 10 mL HCl saturated ether were added and the solution was stirred for 

21 h at room temperature. The solvent was removed in vacuo yielding the protonated 

hydrochloride of compound 24 as a colourless solid (179 mg, 0.113 mmol). To obtain 

the free base of compound 24 a strong basic ion exchange resin was swollen for 15 min 

in water/MeOH (8:2) and washed neutral with water. A column was charged with resin 

(5.4 ml, 40.0 mmol hydroxy equivalents at a given capacity of 0.9 mmol/mL). The 

hydrochloride salt was dissolved in water/MeOH (8:2), loaded onto the column and 

eluated with the same solvent mixture. The elution of the product was controlled by pH 

indicator paper (pH > 10) and was completed when pH again was neutral. The eluate 

was concentrated and lyophilized to yield 136 mg (0.105 mmol, 92 %) of free base 24 

as colourless solid. 



4. Amphiphilic Zn(II)-Cyclen Complexes for a Template Guided Cooperative Self-Assembly of Nucleotides at Interfaces 

 129 

MP: 62 °C. – 
1
H-NMR (400 MHz; CDCl3): δ (ppm) = 0.80 (t, 

3
J = 6.9 Hz, 6 H, alkyl-

CH3), 1.18 (s, 60 H, alkyl-CH2), 1.42 (m, 4 H, β-CH2), 2.52-3.75 (m, 60 H, α-CH2, 

spacer-CH2, cyclen-CH2). – 
13

C-NMR (100 MHz; CDCl3): δ (ppm) = 14.1 (+, 2 C, 

alkyl-CH3), 22.7 (–, 2 C, alkyl-CH2), 27.1 (–, 2 C, alkyl-CH2), 29.3 (–, 2 C, alkyl-CH2), 

29.5 (–, 2 C, alkyl-CH2), 29.63, 29.69 (–, 20 C, alkyl-CH2), 30.0 (–, 2 C, alkyl-CH2), 

31.9 (–, 2 C, alkyl-CH2), 39.6, 40.7, 40.8, 45.3, 46.6, 48.2, 50.8, 52.0, 54.0 (–, 30 C, α-

CH2, spacer-CH2, cyclen-CH2), 165.7 (Cq, 6 C, triazine). – IR (ATR) [cm
-1

]: ν~  = 3274, 

2921, 2851, 1547, 1497, 1463, 1419, 1352, 1308, 1119, 1062, 916, 810, 719, 648. – 

MS (ESI(+), H2O/MeOH + 10 mmol/L NH4Ac): m/z (%) = 431.6 (100) [M + 3 H
+
]

3+
, 

664.8 (19) [M + 2 H
+
 + HCl]

2+
, 647.3 (4) [M + 2 H

+
]

2+
, 1328.5 (1.4) [MH

+
 + HCl]

+
, 

1364.5 [MH
+
 + 2 HCl]

+
, 1292.3 (0.7) [MH

+
]
+
. – HRMS Calcd for C70H143N22: 

1292.1866; Found: 1292.1818. – MF: C70H142N22 – FW: 1292.06 g/mol 
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Tris-Zn(II)-cyclen C18 (Zn
2+

-TC) (5) 

Compound 24 (142 mg, 0.11 mmol) was dissolved in 10 ml MeOH and 

Zn(ClO4)2 ·6 H2O (123 mg, 0.33 mmol) in 3 mL MeOH were added slowly under 

vigorous stirring. The reaction mixture was heated to reflux for 22 h at room. The 

solvent is removed in vacuo. The residue was redissolved in water and lyophilized 

obtaining the tris-Zn-cyclen-bis-octadecylamine complex as a pale ochre solid (227 mg, 

0.11 mmol, 99 %). 

MP: >200 °C. – 
1
H-NMR (400 MHz; CD2Cl2 / CD3OD 1:1): δ (ppm) = 0.86 (t, 

3
J = 7.0 Hz, 6 H, alkyl-CH3), 1.25 (s, 60 H, alkyl-CH2), 1.49-1.65 (m, 4 H, β-CH2), 

2.53-4.49 (m, 60 H, α-CH2, spacer-CH2, cyclen-CH2). – 
13

C-NMR (100 MHz; CD2Cl2 / 

CD3OD 1:1): δ (ppm) = 14.3 (+, 2 C, alkyl-CH3), 23.3 (–, 2 C, alkyl-CH2), 27.7 (–, 2 C, 

alkyl-CH2), 30.18, 30.34, 30.39 (–, 26 C, alkyl-CH2), 32.6 (–, 2 C, alkyl-CH2), 40.2, 

41.6, 41.8, 44.3, 44.8, 46.2, 46.3, 47.0, 47.3, 49.0, 50.6, 53.1 (–, 30 C, α-CH2, spacer-

CH2, cyclen-CH2, solvent peak: CD3OD), 166.6, 171.0 (Cq, 6 C, triazine). – 
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IR (ATR) [cm
-1

]: ν~  [cm] = 3532, 3288, 2924, 2852, 1638, 1561, 1458, 1431, 1351, 

1288, 1064, 969, 813, 784. – MS (ESI(+), H2O/MeOH + 10 mmol/L NH4Ac): 

m/z (%) = 534.9 (100) [M
6+

- H
+
 + 2 CH3COO

-
]
3+

, 555.0 (49) [M
6+

 + 3 CH3COO
-
]
3+

, 

801.8 (36) [M
6+

- 2 H
+
 + 2 CH3COO

-
]

2+
, 851.8 (45) [M

6+
- H

+
 + 2 CH3COO

-
 + ClO4]

2+
. – 

MF: [C70H142N22Zn3] (ClO4)6 – FW: 2084.89 g/mol 
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4.5.3 
1
H and 

13
C spectra of prepared compounds 
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5. Polydiacetylene Based Colorimetric Self Assembled Vesicular 

Receptors for Biological Phosphate Ion Recognition
i
 

 

This chapter deals with the preparation of self assembled vesicular polydiacetylene 

(PDA) particles with embedded metal complex receptor sites. The particles respond to 

the presence of ATP and PPi (pyrophosphate) in buffered aqueous solution by visible 

changes of their colour and emission properties. Blue PDA vesicles of uniform size of 

about 200 nm were obtained upon UV irradiation from mono- and dinuclear zinc(II)-

cyclen and iminodiacetato copper [Cu(II)-IDA] modified diacetylenes, embedded in 

amphiphilic diacetylene monomers.
ii
 Addition of ATP and PPi to the PDA vesicle 

solution induces a colour change from blue to red observable by the naked eye. The 

binding of ATP and PPi changes the emission intensity. Other anions like ADP, AMP, 

H2PO4¯ , CH3COO¯ , F¯ , Cl¯ , Br¯  and I¯  failed to induce any spectral changes.
iii

 The 

zinc(II)-cyclen  nanoparticles are useful for the facile detection of PPi and ATP in 

millimolar concentrations in neutral aqueous solutions, while Cu(II)-IDA modified 

vesicular PDA receptors are able to selectively discriminate between ATP and PPi. 

 

                                                 
i
  D. A. Jose, S. Stadlbauer, B. König Chem. Eur. J. 2009, in print. 

ii
  Compound 8-Zn was prepared by S. Stadlbauer, all other compounds including vesicles were prepared 

by Dr. D. A. Jose. 
iii

  All analytical measurements were performed by Dr. D. A. Jose. 
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5.1 Introduction  

 

The development of chemical sensors continues to be of great interest in modern 

analytical chemistry.
1
 Demands arise from clinical diagnostics, environmental and food 

analysis or in the detection of illicit drugs, explosives and chemical warfare agents. A 

molecular chemical sensor typically consists of the analyte binding site and a signaling 

unit, which transduces the binding event into a macroscopically observable output, e.g. 

a colour change or a light emission. For the development of devices it is often useful to 

immobilize the sensor molecule on surfaces, in membranes, gels or on nanoparticles. 

Immobilization can be achieved, among other methods,
2
 by the incorporation of 

receptors into self-assembled monolayers or bilayer membranes.
3
 Polydiacetylene 

(PDA) is a particular interesting material in this respect, as diacetylene surfactants will 

self-assemble in water to form vesicles that can be photopolymerized to generate PDA 

in situ.
4,5,6

 The polymers conjugated backbone provides absorbance and fluorescence 

properties which are useful for the transduction of the analytical signal.
7
 Functionalized 

polydiacetylene films and vesicles have been used as chemosensors to monitor metal 

ions,
7a

 glucose,
8
 proteins

9
 and for the colorimetric detection of the influenza virus.

10
 

We have recently reported the use of amphiphilic metal complex binding sites 

for molecular recognition on ordered surface bilayers.
11

 Lewis-acidic metal complexes, 

such as zinc(II) cyclen (cyclen = 1,4,7,10-tetraazacyclododecane) complexes, can 

reversibly coordinate oxoanions and other Lewis basic guest molecules with high 

affinity and selectivity.
12,

 
13

 The binding is even possible in the presence of competing 

solvent molecules, such as water. This renders these metal complexes particular suitable 

as binding sites for anionic analytes
14

 of biological origin under physiological 

conditions.  

We herein describe the preparation of self-assembled PDA vesicles with 

embedded amphiphilic metal zinc(II) cyclen and Cu(II)-IDA complexes. The PDA 

polymer nanoparticles act as solid support for the receptor sites and as the chromophore 

of the signaling unit. 
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5.2 Result and discussion  

5.2.1 Synthesis of amphiphilic diacetylene zinc(II) cyclen and copper(II)-IDA 

complexes 

 

The cyclen, bis-cyclen and iminodiacetato (IDA) modified diacetylene monomers 4, 8 

and 11 were prepared by amide formation as shown in scheme 1 – 3. A methanolic 

solution of 4 and 8 was reacted with an aqueous solution of Zn(ClO4)2 to yield the 

amphiphilic receptor molecule 4-Zn (scheme 1) and 8-Zn (scheme 2), respectively, in 

good yields. Receptor molecule 11-Cu (scheme 3) was prepared by treating a 

methanolic solution of 11 with an aqueous solution of CuCl2 at room temperature and 

subsequently refluxed at 70 °C. All newly prepared monomeric diacetylene complexes 

4-Zn, 8-Zn and 11-Cu were characterized by standard analytical and spectroscopic 

techniques and are very stable when stored under nitrogen in the dark. Detailed 

experimental procedures and analytical data of the compounds are provided in the 

Experimental Part. 
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Scheme 1. Synthesis of Zn(II)-cyclen complex modified 10, 12-tricosodiyonic acid 

(TCDA, 6) 4-Zn. (a) NEt3, CH2Cl2, RT, 10 h; (b) TFA, CH2Cl2, RT, o/n; (c) Zn(ClO4)2, 

MeOH, RT, 12 h → reflux, 5 h. 
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Scheme 2. Synthesis of bis-Zn(II)-cyclen complex modified 10, 12-tricosodiyonic acid 

(TCDA, 6) 8-Zn. (a) DIPEA, TBTU, HOBt, DMF, RT, 2 h; (b) 1.) HCl/ether, CH2Cl2, 

RT, 20 h, 2.) basic ion exchanger resin; (c) Zn(ClO4)2, MeOH, reflux, 20 h.  
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Scheme 3. Synthesis of copper(II)-IDA modified 10, 12-pentacosadiynoic acid (PCDA) 

11-Cu. (a) NEt3, THF, RT, 12 h; (b) TFA, CH2Cl2, RT, 2 h; (c) CuCl2, H2O, MeOH, 

RT, 10 h.  

 

 

5.2.2 Synthesis of vesicular PDA receptors 

 

The liposomes were prepared according to known literature methods.
15

 A mixture 

containing the modified diacetylene monomer 4-Zn, 8-Zn or 11-Cu and the unmodified 

diacetylene monomer 10, 12-tricosayonic acid (TCDA) or 10, 12-pentacosadiynoic acid 

(PCDA) in a molar ratio of 10 : 90, respectively, was dissolved in dichloromethane in a 

25 mL round bottom flask. The solvent was evaporated by a stream of N2 gas and an 

appropriate amount of buffered aqueous solution (HEPES 10 mmol, pH = 7.2) was 

added to the round bottom flask to give the desired concentration of the lipid (1 x 10
-3

 

M).  
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Scheme 4. Representative mixed diacetylene liposome system of TCDA and 4-Zn after 

mixing and upon polymerization induced by irradiation with light of 254 nm 

wavelength; counter ions are not shown.  

 

This solution was sonicated at 80 °C for 40 min. The resulting milky solution was 

filtered through a syringe filter while hot and the filtrate was cooled and stored at 0 °C 

overnight. The self assembled bilayer vesicles were polymerized at room temperature 

by irradiating the solutions with light of 254 nm wavelength for 5 to 10 min, whereby 

the colourless vesicle solution turned blue (scheme 4). The average size of the 

liposomes was 160 – 180 nm as determined by dynamic light scattering (DLS). 

Liposomes containing 4-Zn are named LP-4-Zn; liposomes containing 8-Zn are named 

LP-8-Zn; and liposomes containing 11-Cu are named LP-11-Cu, respectively. 
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5.2.3 Particle Size measurement 

 

Dynamic light scattering (DLS) particle sizing measurements were preformed by a 

Zetasizer 3000 from Malvern instruments Ltd. Malvern, UK.  

Figure 1. Particle size distribution curves of (a) LP-4-Zn and (b) LP-8-Zn.  

 

The vesicle solutions were diluted 5 to 6-fold and measured at room temperature by 

keeping the typical count rate at 30-50 kcps. Each diameter value was an average result 

of continuous measurements in 5 min. At least three measurements were preformed for 

each solution. Table 1 summarizes the results. The obtained values are in good 

agreement with comparable liposomes that have been reported earlier in literature.
16

 

The two-component vesicles have an average size of 230 nm. Upon UV irradiation, the 

vesicle contract to 160-180 nm, likely due to the covalent cross linking that reduces the 

distance between the lipid molecules (Figure 1 and scheme 4).  

 

 

 

 

 

Table 1. Results of DLS particle size measurement for LP-4-Zn, LP-8-Zn and LP-11-

Cu vesicles.  

 

 before irradiation after irradiation 

LP-4-Zn 230 ± 20 nm 180 ± 15 nm 

LP-8-Zn 220 ± 25 nm 160 ± 10 nm 

LP-11-Cu 205 ± 25 nm 145 ± 10 nm 
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5.2.4 Binding studies of LP-4-Zn, LP-8-Zn and LP-11-Cu with different anions 

 

Zinc (II) complexes of macrocyclic polyamines, such as Zn(II)-cyclen show affinity to 

phosphate anions and nucleotides.
17,18

 We therefore expected a response of the Zn(II)-

cyclen modified PDA vesicles to phosphorylated anions. Figure 2 depicts schematically 

the assembly and analyte response of the vesicular metal complex sensor system.  

Although there is still no clear evidence for the molecular origin of the colour change of 

PDAs upon analyte binding, it has widely been accepted that the colour change is 

associated with a conformational change of the polydiacetylene backbone.
19

 

Accordingly, in the blue coloured polymerized vesicular receptor an extended con-

jugation of the p-orbitals in the main chain of the polydiacetylene polymers is present. 

Upon analyte binding to the embedded receptor sites the conjugated p-orbitals undergo 

distortion, leading to a partial twist of the p-orbitals. Thus, the dark blue colour of the 

polymers gradually shifts to a red colour depending on the amount of the stress induced. 

Receptor

Analytes

 

Figure 2. Schematic representation of the preparation and the analyte response of self 

assembled polydiacetylene vesicles with embedded metal complex binding sites for 

anions.  

 

Initially, electronic absorption spectra for a 5 x 10
-5

 M solution of the blue coloured LP-

4-Zn vesicles were recorded in the absence and presence of various anions (Figure 3). 

The absorption spectra of LP-4-Zn in buffered aqueous solution (HEPES 10 mmol, 

pH 7.2) at room temperature shows before the addition of analytes distinct absorption 

bands at λmax = 640, 589 and 543 nm. Upon addition of an excess amount of ATP, PPi 

or CN¯  ions the absorption band at 640 nm disappeared completely and an intense 

absorption band at 489 and 543 nm is observed. The colour of the solution turns red. No 

changes in the absorption spectra or colour is observed upon addition of other anions 
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like F¯ , Cl¯ , Br¯ , I¯ , H2PO4¯ , CH3COO¯ , AMP or ADP under similar conditions 

(Figure 3b).  

 

Figure 3. (a) UV-visible spectra of LP-4-Zn (5 x 10
-5

 M) in the presence of different 

anions (aqueous solution, HEPES 10 mmol, pH 7.2, 100 equiv. of the anion salt added). 

(b) Colour change of the blank LP-4-Zn with different anions. 

 

The colour change of the liposomes from blue to red was quantified by calculating the 

colorimetric response (CR) using equation 1. The CR value is derived from the change 

in the ratio of absorbance at 640 nm and 550 nm in the absence (A0) and presence (AX) 

of different analytes. The absorption ratio before analyte addition is calculated as 

A0 = I620 / (I620 + I490) and the absorption ratio after analyte addition follows from 

Ax = I620 /( I620 + I490), respectively. 

 % CR = [(A0-Ax)/A0] ·100. (Equation 1) 

Figure 4a and b show the induced changes in the LP-4-Zn absorption spectrum upon 

addition of ATP and PPi.  

Figure 4. UV-visible absorption titration of LP-4-Zn (5 x 10
-5

 M) (a) Upon addition of 

ATP (5 x 10
-6

 – 3.5 x 10
-3

 M) (b) Upon addition of PPi (5 x 10
-6

 – 3.5 x 10
-3

 M).  
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Recent studies
20

 from our group demonstrate that dinuclear Zn(II)-cyclen complexes 

show an even higher affinity to ATP and PPi ions than mononuclear Zn(II)-cyclen 

complexes. The vesicular receptors containing 8-Zn were therefore expected to have an 

increased affinity to ATP and PPi ions. Titration experiments revealed that 

approximately 20 equivalents of ATP or PPi were sufficient to achieve complete 

saturation. This is considerably less as compared to LP-4-Zn. Other anions like F¯ , Cl¯ , 

Br¯ , I¯ , H2PO4¯ , CH3COO¯ , AMP and ADP did not induce any spectral changes of the 

liposome solution. Table 2 and figure 5 summarize the results. 

 

Table 2. Calculated colorimetric response (% CR) values of LP-4-Zn, LP-8-Zn and 

LP-11-Cu upon addition of various anions.  

 

Liposome containing a mixture of both metal complexes 4-Zn and 8-Zn behave in their 

response towards anions like the liposomes containing only 8-Zn. This shows that only 

the presence of the dinuclear Zn(II)-cyclen metal complex binding sites evokes an 

increased affinity of the vesicular receptors to the anion.  
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Figure 5. Colorimetric response (% CR) to different anions with liposomes LP-4-Zn, 

LP-8-Zn and LP-11-Cu. 

 

While the binding of ATP and PPi as highly charged oxoanions to the bis-Zn(II)-cyclen 

binding sites was expected from previous studies, the response to the presence of 

 none ATP PPi ADP AMP H2PO4¯  F¯  CN¯  

LP-4-Zn - 54.0 67.2 21.7 - 0.9 12.6 46.1 

LP-8-Zn - 73.7 81.8 20.8 - 2.4 2.5 79.8 

LP-11-Cu - 9.7 86.4 6.5 - - - 51.6 
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cyanide ions is surprising. We suspected a pH effect or a dissociation of the zinc ion 

from the metal complex. To investigate if the colorimetric response towards cyanide 

ions is induced by decomplexation of the cyclen complexes, the liposome solution was 

treated with the strong complexing agent EDTA. The addition of EDTA did not lead to 

a colour change on the solution. Displacement of zinc ions from the vesicular receptor 

can therefore not be attributed as the origin of the colorimetric change. Carboxy-

terminated polydiacetylene vesicles are known to undergo a blue to red chromic 

transition in the pH range 9.0 - 10.1.
21 

The pH of the aqueous buffered vesicles solution 

(HEPES 10 mM, pH 7.2) was determined at the end of each titration. In the case of 

added basic cyanide ions the pH of the solution considerably increased to 10.0 - 10.5, in 

all other cases the pH value remained between 7.2 - 8.0. This confirms that the pH 

change of the solution causes the colour change upon addition of a large excess of 

cyanide ions.  

Apparent binding constants of the liposome–anion complex were derived from 

the change in UV-visible absorbance at 490 nm with respect to the concentration of 

specific anions using non-linear regression analysis (Figure 7). The calculated binding 

constant (lg Kapp) values are given in Table 3. CR values and lg Kapp values reveal that 

ATP and PPi ions strongly interact with the interface of the vesicle receptor, while other 

phosphates and halide ions do not induce a significant colour and spectral change.  
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Figure 6. UV-visible absorption titration of LP-8-Zn (8.2 x 10
-5 

M) (a) Upon addition 

of ATP (5 x 10
-6

 – 3.5 x 10
-3

 M) (b) Upon addition of PPi (5 x 10
-6

 – 3.5 x 10
-3

 M) 

(c) Colour change of LP-8-Zn with 100 equivalents of different anions.    

 

 

 

 

Figure 7. UV-visible titration profile of (a) LP-4-Zn (5 x 10
-5

 M) and (b) LP-8-Zn 

(8.2 x 10
-5

 M) with different anion in aqueous buffered solution (HEPES 10 mmol, pH 

7.2,) at RT. 
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Anion affinity [lg Kapp] Receptor 

liposomes ATP PPi ADP AMP H2PO4¯  F¯  CH3COO¯  

LP-4-Zn 2.2 2.5 < 1.0 – – < 1.0 – 

LP-8-Zn 2.7 3.2 < 1.0 – – – – 

LP-11-Cu – 2.6 – – – – –  

 

Table 3. Calculated apparent binding constant (lg Kapp) of LP-4-Zn, LP-8-Zn and LP-

11-Cu with different analytes. 

 

 

 

Figure 8. UV-visible absorption titration of LP-11-Cu (6.0 x 10
-5 

M) (a) Upon addition 

of different anions (6.0 x 10
-3 

M) (b) UV-visible titration profile with different anion in 

aqueous buffered solution (HEPES 10 mmol, pH 7.2,) at RT. 

 

After knowing the binding properties of Zn(II)-cyclen based receptor LP-4-Zn and LP-

8-Zn, we investigated the binding of Cu(II)-IDA based receptor LP-11-Cu to different 

anions in more detail. Upon addition of an excess amount of PPi (100 equivalent) the 

absorption band at 640 nm disappeared completely and an intense absorption band at 

489 and 543 nm is observed (Figure 8). The colour of the solution turned red. However, 

no changes in the absorption spectra or colour could be observed with other anions like 

F¯ , Cl¯ , Br¯ , I¯ , H2PO4¯ , CH3COO¯ , AMP, ADP and ATP under similar conditions. It 

is interesting to note that Cu(II)-IDA complex modified vesicles behave differently as 

compared to Zn(II)-cyclen modified vesicles with phosphates. Among different 

phosphates LP-11-Cu responded only to PPi with an apparent binding constant 

lg Kapp = 2.7 and did not show any spectral and colour changes with ATP as LP-4-Zn 

and LP-8-Zn do (Figure 8). Thus LP-11-Cu is suitable for the selective detection of PPi 
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over ATP in aqueous media. Coordinatively unsaturated Cu(II) complexes exhibit 

strong binding tendencies towards anionic substrates due to the d
9
 electronic 

configuration of the metal center, which ensures high ligand field stabilization effects. 

As a result, the anionic substrate PPi is effectively bound even in the strongly solvating 

aqueous conditions. Very few synthetic receptors have been reported so far that allow a 

discrimination of PPi and ATP in aqueous media.
22

 

 

 

5.2.5 Emission studies with different anions 

 

The room temperature emission spectra (Figure 9) of LP-4-Zn (5 x 10
-5 

M), LP-8-Zn 

(8.2 x 10
-4 

M) and LP-11-Cu (6 x 10
-5

 M) recorded in aqueous buffered solution 

(HEPES 10 mmol, pH 7.2) show a very weak emission band centered at 625 nm upon 

excitation at 510 nm. The intensity of LP-4-Zn and LP-8-Zn emission at 570 nm and 

640 nm increases significantly upon addition of an excess of ATP and PPi (Figure 9b 

and 10a).  
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Figure 9. Emission titration of LP-4-Zn (5 x 10
-5

 M) (a) with different anions 

(100 equivalents) (b) titration with increasing amounts of PPi (5x10
-6

 M – 3.5 x10
-3

 M).  

 

Other anions like ADP, AMP, CN¯ , Br¯ , H2PO4¯  or F¯  induce only very little or no 

change in the emission intensity (Figure 9a). Although CN¯  ions induce changes in the 

absorption spectrum of the liposomes due to pH increase, the effect on the emission 

spectrum is small (Figure 10b). In the case of LP-11-Cu among different 

phosphorylated ions only PPi induced an emission enhancement. Other phosphates like 

ATP, ADP, AMP and H2PO4 did not show any significant change in the emission 

spectra (Figure 11).  
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Figure 10. Emission titration spectra of LP-8-Zn (8.2 x 10
-5

 M) (a) titration with 

varying concentrations of ATP (1 x 10
-5

 - 3.2 x 10
-3 

M) (b) titration with varying 

concentrations of CN¯  (1 x 10
-5

 - 3.2 x 10
-3

 M). 
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Figure 11. Relative changes in emission intensity (λex = 510 nm) upon treatment with 

different anions in aqueous buffered solution (HEPES 10 mmol, pH 7.2) of LP-4-Zn, 

LP-8-Zn and LP-11-Cu, respectively.  
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5.2.6 Test paper analysis 

 

The response in a colour change of LP-4-Zn, LP-8-Zn and LP-11-Cu in the presence 

of ATP and PPi was used to prepare a test paper stripe, which allows the simple 

detection of ATP and PPi at millimolar concentrations in water.  

Arrays of unpolymerized LP-4-Zn, LP-8-Zn and LP-11-Cu vesicles containing test 

papers were prepared by soaking filter papers in HEPES buffered aqueous solution of 

the vesicles (pH 7.2) and drying them in air. These colourless test papers were stored in 

the dark and irradiated with light of 254 nm before further experiments. For detecting 

the analyte, the blue coloured test paper was immersed in the aqueous analyte solution 

for several seconds and then air-dried. As shown in Figure 12, in the case of LP-4-Zn 

and LP-8-Zn a colour change of the test papers is observed for aqueous solutions 

containing ATP and PPi ions. However, in the case of LP-11-Cu only with PPi a colour 

change was obtained. Other anions did not induce any colour change at equal 

concentrations. Based on this colour change of the test paper ATP or PPi concentration 

levels in aqueous media may be estimated (Figure 13).   

 

 

Figure 12. Colour changes of LP-4-Zn, LP-8-Zn and LP-11-Cu (0.35 mmol) test 

papers treated with different anions (15 mmol) at room temp. 

 

 

 

Figure 13. LP-4-Zn test paper dipped with two different concentration of aqueous PPi 

solution.  
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5.2.7 Light microscopy images of the vesicles  

 

To monitor the changes of the morphology of the vesicles upon analyte binding they 

were investigated under a light microscope (Leica, Wetzlar, Germany). Freshly 

prepared vesicles solutions LP-4-Zn, LP-8-Zn and LP-11-Cu were dropped on the 

glass slide and viewed using normal light microscopy. Figure 14 shows the appearance 

of the PDA vesicles LP-4-Zn, LP-8-Zn and LP-11-Cu without any anionic analyte. 

The images reveal that they were well separated and spherical in shape.  

a b c

 

Figure 14. Light microscopy images (20 X objective lens) of (a) LP-4-Zn (b) LP-8-Zn 

and (c) LP-11-Cu. 

 

a b

 

Figure 15. Light microscopy images (20 X, objective lens) of (a) LP-8-Zn with PPi (b) 

LP-8-Zn with H2PO4
¯
.   

 

Next, the liposomes particles morphology of LP-8-Zn was investigated in the presence 

of PPi, ATP or H2PO4
¯
. Blank blue colour LP-8-Zn vesicles were exposed to the PPi, 

ATP or H2PO4
¯
 for a few minutes and then viewed under the light microscope with 

identical magnification. The images of the PPi and ATP exposed liposomes show that 

the binding of these anions induces aggregation of the liposomes
23

 (Figure 15a). 

However, in the case of H2PO4¯  this was not observed due to the weaker binding of this 
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ion (Figure 15b). In ongoing more detailed investigations of the morphology changes 

using high resolution electron microcopy we will try to understand the mechanism of 

the surface anion binding induced rapid liposome aggregation.  

 

5.3 Conclusion 
 

In conclusion, we have shown that nanometer sized polymerized vesicular receptors 

LP-4-Zn, LP-8-Zn and LP-11-Cu can be prepared from amphiphilic diacetylene metal 

complexes. The vesicular receptors obtained from Zn(II)-cyclen functionalized 

polydiacetylene monomers respond to the presence of ATP and PPi at neutral pH at 

millimolar concentrations with visible changes of their colour and emission. Other 

anions, such as halides, do not induce an analytic response. The Cu(II)-IDA modified 

vesicular PDA receptors show a selective response to PPi, which allows a simple 

colorimetric and visible discrimination between ATP and PPi. The induced aggregation 

of the liposomes by the specific binding of ATP or PPi analytes to the surface receptors 

is the likely origin of the intensive changes in their optical properties. Polymerized 

vesicular receptors with metal complex binding sites may find applications for simple 

analytic tasks, as shown with anion test papers. However, the development of more 

complex vesicular receptors with increased affinity and specificity may be envisaged.  
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5.4 Experimental Part 

5.4.1 General methods and material  

 

Emission Spectroscopy. Fluorescence measurements were performed with aqueous 

buffered solution (HEPES 10 mmol, pH = 7.2,) in 1 cm quartz cuvettes (Hellma) and 

recorded on a Varian ‘Cary Eclipse’ fluorescence spectrophotometer with temperature 

control. 

 

Absorption Spectroscopy. Absorption were recorded on a Varian Cary BIO 50 

UV/VIS/NIR Spectrometer with temperature control by use of a 1 cm quartz cuvettes 

(Hellma) and aqueous buffered solution (HEPES 10 mmol, pH = 7.2,).  

 

NMR Spectra. Bruker Avance 600 (1H: 600.1 MHz, 13C: 150.1 MHz, T = 300 K), 

Bruker Avance 400 (1H: 400.1 MHz, 13C: 100.6 MHz, T = 300 K), Bruker Avance 300 

(1H: 300.1 MHz, 13C: 75.5 MHz, T = 300 K). The chemical shifts are reported in 

δ [ppm] relative to external standards (solvent residual peak). The spectra were analysed 

by first order, the coupling constants are given in Hertz [Hz]. Characterisation of the 

signals: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, bs = broad singlet, 

psq = pseudo quintet, dd = double doublet, dt = double triplet, ddd = double double 

doublet. Integration is determined as the relative number of atoms. Assignment of 

signals in 13C-spectra was determined with DEPT-technique (pulse angle: 135 °) and 

given as (+) for CH3 or CH, (-) for CH2 and (Cq) for quaternary Cq. Error of reported 

values: chemical shift: 0.01 ppm for 1H-NMR, 0.1 ppm for 13C-NMR and 0.1 Hz for 

coupling constants. The solvent used is reported for each spectrum. 

 

Mass Spectra. Varian CH-5 (EI), Finnigan MAT 95 (CI; FAB and FD), Finnigan MAT 

TSQ 7000 (ESI). Xenon serves as the ionisation gas for FAB.  

 

IR Spectra. Recorded with a Bio-Rad FTS 2000 MX FT-IR and Bio-Rad FT-IR FTS 

155. 

 

Melting Point. Melting Points were determined on Büchi SMP or a Lambda 

Photometrics OptiMelt MPA 100. 
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Light microscopy. Light microscopy was done with a simple light microscope (Leica, 

Wetzlar, Germany). 

 

Dynamic light scattering (DLS). Dynamic light scattering (DLS) for particle size 

measurements were preformed by using Zetasizer 3000 from Malvern instruments Ltd. 

Malvern, UK using 1 cm UV-visible cuvettes. Vesicle solutions were diluted 5 to 6-fold 

and measured at RT by keeping the count rate at 80-100 kcps. Each diameter value was 

an average result of continuous measurements over 5 min. At least three measurements 

were preformed for each solution. 

 

 

5.4.2 Binding studies  

 

General. All binding studies were conducted in buffered aqueous solution (HEPES 

10 mmol, pH 7.2). The cuvette with 3000 µL of liposomes in HEPES buffered solution 

was titrated stepwise with small amounts (beginning with 0.2 equiv) of the anionic 

analyte solution. After each addition the solution was allowed to equilibrate for 3 –

 5 min before the fluorescence and the UV spectrum (where permitted by the 

concentration range) were recorded. The total amount of anion required for complete 

binding was determined by plotting the graph between the changes in absorbance at 

540 nm against the concentration of added anions. To determine the binding constants, 

the obtained absorbance at 540 nm was volume corrected, plotted against the anion 

concentration and evaluated by nonlinear curve fitting.  

 

UV-absorption titration. Stock solutions (20 mL) of the liposomes LP-4-Zn (1.0 x 10
-

3 
M), LP-8-Zn (8.2 x 10

-4 
M) and LP-11-Cu (1.0 x 10

-3 
M) were prepared in buffered 

aqueous solution (HEPES 10 mmol, pH 7.2), respectively, and stored in dark. These 

solutions were appropriately diluted and irradiated by UV light before the spectroscopic 

studies. Solutions of the sodium salt (200 mmol) of the respective anions were prepared 

analogue and were stored in the dark. All titration experiments were performed using 

5.0 x 10
-5 

M solutions of LP-4-Zn, 8.2 x 10
-5 

M solutions of LP-8-Zn and 6.0 x 10
-5 

M 

solution of LP-11-Cu in water (HEPES 10 mmol, pH 7.2) and various concentrations of 

the anions (2 x 10
-5 

- 3.2 x 10
-3 

M) in the same solvent. Based on the absorption spectral 



5. Polydiacetylene Based Colorimetric Self Assembled Vesicular Receptors for Biological Phosphate Ion Recognition 

 163 

changes the colorimetric response (CR) was derived by using equation 1 as stated in the 

article.  

 

Emission titration. The standard solutions mentioned above were used for emission 

titration studies. For all measurements the liposome solutions were excited at 510 nm, 

with an excitation and emission slit width of 10 nm. All titration experiments were 

performed using 1 x 10
-4 

M solutions of LP-4-Zn, 8.2 x 10
-5 

M solution of LP-8-Zn and 

6.0 x 10
-5 

M solution of LP-11-Cu in water (HEPES 10 mmol, pH 7.2), with various 

anions like ATP, ADP, AMP, PPi, H2PO4¯ , F¯ , CN¯ , Br¯ , Cl¯ and I¯ .     

 

 

5.4.3 Synthesis and Characterization of compounds  

 

General. Thin layer chromatography (TLC) analyses were performed on silica gel 60 F-

254 with a 0.2 mm layer thickness. Detection via UV light at 254 nm / 366 nm or 

through discolouration with ninhydrin in EtOH. Column chromatography was 

performed on silica gel (70–230 mesh) from Merck. Starting materials were purchased 

from either Acros or Sigma-Aldrich and used without any further purification. 

Commercially available solvents of standard quality were used. Dry THF, which was 

prepared by distillation from potassium. If otherwise stated, purification and drying was 

done according to accepted general procedures.
24

 Elemental analyses were carried out 

by the Center for Chemical Analysis of the Faculty of Natural Sciences of the 

University Regensburg. 

 

Synthesis. Compounds 1, 5 and 9 were synthesised according to literature known 

procedures.
25
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N

N

N

N

boc

boc boc

CH
2

O

CH
2(     )9

8(     )

 

Synthesis of compound 3 

Compound 2 (100 mg, 0.22 mmol) was dissolved in dry dichloromethane under N2 

atmosphere and compound 1 (118 mg, 0.22 mmol) and 0.25 mL of Et3N were added. 

The reaction mixture was stirred at room temperature for 10 h then the reaction mixture 

was evaporated to dryness. The crude product was purified by silica column 

chromatography using ethyl acetate and petroleum ether as the eluent. The desired 

product was collected as the first fraction in the form of colourless sticky solid (ethyl 

acetate / petrol ether 7:3; Rf = 0.28). Yield: 170 mg (83 %).  

IR (ATR) [cm
-1

]: ν
~ = 2940, 2928, 2857, 1687, 1537, 1465, 1408, 1364, 1246, 1158, 

1158, 1105, 776. – 
1
H-NMR (300 MHz, CDCl3): δ (ppm) = 0.81 (t, 

3
J = 7.1 Hz, 3 H, 

CH3), 1.21 (m, 27 H, CH3), 1.40 (s, 26 H, CH2), 1.51 (t, 
3
J = 7.5 Hz, 4 H, CH2), 2.21 (t,

 

3
J = 7.1 Hz,  H), 2.58 (bs, 4 H, CH2), 3.27-3.47 (m, 16 H, CH2 cyclen). – 

13
C-NMR 

(75 MHz, CDCl3): δ (ppm) = 173.4 (Cq, amide), 156.4 (Cq, amide), 79.5 (Cq, boc), 

79.7 (Cq, boc), 77.5 (Cq), 77.0 (Cq), 76.6 (Cq), 65.3 (Cq), 65.2 (Cq), 52.6 (–, CH2), 

50.0 (–, CH2), 48.1 (–, CH2), 36.5 (–, CH2), 36.4 (–, CH2), 31.9 (–, CH2), 29.5 (–, CH2), 

29.4 (–, CH2), 29.3 (–, CH2), 29.2 (–, CH2), 29.2 (–, CH2), 29.0 (–, CH2), 28.9 (–, CH2), 

28.8 (–, CH2), 28.76 (+, CH3), 28.6 (–, CH2), 28.5 (–, CH2), 28.3 (–, CH2), 28.28 (–, 

CH2), 25.7 (–, CH2), 22.7 (–, CH2), 21.0 (–, CH2), 19.1 (–, CH2), 19.09 (–, CH2), 

14.1 (+, CH3). – MS (ES-MS, DCM/MeOH + 10 mM NH4OAc): m/z(%) = 844.6 (100) 

[MH
+
]. 
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N

N

N

N

H

H H

CH
2

O

CH
2(     )9

8(     )

 

Synthesis of compound 4  

Compound 3 (100 mg, 0.12 mmol) was dissolved in 25 mL of dichloromethane. To this 

solution 1 mL of trifluoroacetic acid was added under ice cooling. The reaction mixture 

was stirred at room temperature for 24 h and was evaporated. A colourless solid was 

obtained. The TFA-salt was redissolved in a water/methanol mixture (40/60 v/v) and 

passed over a strongly basic ion-exchanger column. The obtained solution was 

lyophilized to afford compound 4 as a wax, Yield: 78 mg (90 %).  

IR (ATR) [cm
-1

]: ν
~ = 3290, 2970, 2928, 2857, 1687, 1537, 1501, 1465, 1408, 1364, 

1246, 1158, 1246, 1158, 1105, 776. – 
1
H-NMR (300 MHz, CDCl3): δ (ppm) = 0.83 (t, 

3
J = 7.1 Hz, 3H, CH3), 1.18 (bs, 24 H, CH2), 1.45 (m, 4 H, CH2), 1.54 (t, 

3
J = 7.8 Hz, 

2 H, CH2), 2.08-2.19 (m, 6 H, CH2), 2.51-2.76 (m, 16 H, CH2 cyclen), 3.30 (t, 

3
J = 7.8 Hz, 2 H, CH2). – 

13
C-NMR (75 MHz, CDCl3): δ (ppm) = 173.2 (Cq, amide), 

65.2 (Cq), 53.6 (Cq), 51.5 (Cq), 47.1 (Cq), 46.4 (–, CH2), 45.3 (–, CH2), 37.4 (–, CH2), 

36.7 (–, CH2), 31.9 (–, CH2), 29.5 (–, CH2), 29.4 (–, CH2), 29.38 (–, CH2), 29.2 (–, 

CH2), 29.1 (–, CH2), 28.9 (–, CH2), 28.8 (–, CH2), 28.78 (–, CH2), 28.34 (–, CH2), 

28.30 (–, CH2), 25.7 (–, CH2), 22.7 (–, CH2), 19.20 (–, CH2), 19.17 (–, CH2), 14.1 (+, 

CH3). – MS (ESI, MeOH): m/z (%) = 544.4 (50) [MH
+
], 583.4 (50) [K + MH

+
], 

622.4 (100) [2 K + MH
+
].  
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N

N

N

H

H H

CH
2

O

CH
2

Zn

N

(     )9

8(     )

2+

2 ClO4
-

 

Synthesis of compound 4-Zn  

Compound 4 (50 mg, 0.09 mmol) was dissolved in 20 mL of methanol. To this mixture 

45 mg (0.12 mmol) of Zn(ClO4)2 dissolved in 5 mL of methanol was added. The 

reaction mixture was stirred at room temperature for 12 h and refluxed for another 5 h. 

The solvent was removed in vacuum, the crude product was dissolved in THF and 

precipitated using petroleum ether yielding 4-Zn (55 mg, 67%). as a highly hygroscopic 

colourless solid. 

MP: 137-140 °C. – IR (ATR) [cm
-1

]: ν~  = 3293, 2925, 2854, 1660, 1646, 1461, 1371, 

1264, 1086, 974, 857, 730. – 
1
H-NMR (300 MHz, CDCl3): δ (ppm) = 0.83 (t, 

3
J = 7.2 Hz , 3 H, CH3), 1.24 (bs, 24 H, CH2), 1.51 (m, 4 H, CH2), 2.22 (t, 

3
J = 7.6 Hz, 4 

H, CH2), 2.40 (t, 
3
J = 7.5 Hz , 2 H, CH2), 2.65-3.16 (m, 16 H, CH2 cyclen), 3.44 (m, 

2 H, CH2), 4.25 (m, 2 H, CH2). – 
13

C-NMR (75 MHz, CDCl3): δ (ppm) = 173.2 (Cq, 

amide), 78.1 (Cq, acetylene), 78.05 (Cq, acetylene), 66.4 (Cq, acetylene), 65.0 (Cq, 

acetylene), 55.5 (–, CH2), 52.8 (–, CH2), 45.8 (–, CH2), 45.2 (–, CH2), 43.7 (–, CH2), 

37.1 (–, CH2), 30.7 (–, CH2), 30.6 (–, CH2), 30.4 (–, CH2), 30.24 (–, CH2), 30.22 (–, 

CH2), 30.20 (–, CH2), 30.0 (–, CH2), 28.9 (–, CH2), 29.9 (–, CH2), 29.6 (–, CH2), 26.6 (–

, CH2), 23.8 (–, CH2), 19.7 (–, CH2), 14.1 (+, CH3). – MS (ES-MS, H2O/MeOH + 

10 mM NH4OAc): m/z (%) = 606.3 (100) [M
2+ 

- H
+
]

 +
, 666.3 (10) [M

2+ 
+ CH3COO

-
]

+
.  
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N

N
N

NN

N
N

N

boc
boc

boc N N

N

NH

boc

boc

boc

CH
2

NH

O

CH
2(     )9

8(     )

 

Synthesis of compound 7  

10, 12-Tricosadiynoic acid 6 (71 mg, 0.20 mmol), DIPEA (128 µL, 0.74 mmol), TBTU 

(71 mg, 0.22 mmol), and HOBt (34 mg, 0.22 mmol) were dissolved under nitrogen 

atmosphere in dry DMF (4 mL) under ice cooling and stirred for 1 h. Compound 5 

(200 mg, 0.19 mmol) was added. The reaction mixture was allowed to warm to room 

temperature and was stirred for 2 h at RT. The reaction progress was monitored by TLC 

(ethyl acetate). After completion of the reaction the solvent was removed and the crude 

product was purified by flash column chromatography on flash silica gel (ethyl 

acetate/petrol ether 8:2; Rf = 0.34) yielding compound 7 (148 mg, 58 %) as colourless 

oil.  

IR (ATR) [cm
-1

]: ν
~ = 2970, 2928, 2857, 1687, 1537, 1501, 1465, 1408, 1364, 1246, 

1158, 1246, 1158, 1105, 776. – 
1
H-NMR (400 MHz, CDCl3): δ (ppm) = 0.82 (t, 

3
J = 7.1 Hz, 3 H, COSY: CH3), 1.17-1.28 (m, 14 H, COSY: CH2, HSQC: alkyl-CH2), 

1.28-1.35 (m, 8 H, COSY: CH2, HSQC: alkyl-CH2), 1.36-1.52 (m, 58 H, COSY: CH2, 

HSQC: alkyl-CH2, HSQC: CH3), 1.53-1.63 (m, 2 H, COSY, HMBC: CH2), 2.13 (t, 

3
J = 7.6 Hz, 2 H, COSY, HMBC: CH2), 2.16-2.23 (m, 4 H, HMBC: CH2), 2.83-4.07 (m, 

36 H, COSY, HSQC: CH2 cyclen, COSY, HSQC: CH2), 5.06 (bs, 1 H, HMBC, HSQC: 

NH), 7.24 (bs, 1 H, HMBC, HSQC: NH). – 
13

C-NMR (100 MHz; CDCl3): 

δ (ppm) = 14.0 (+, 1 C, HSQC, COSY: CH3), 19.07, 19.09 (–, 2 C, HMBC, HSQC: 

CH2), 22.6, 29.13, 29.18, 29.21, 29.35, 29.44, 31.8 (–, 7 C, HSQC, COSY: CH2, alkyl-

CH2), 25.7 (–, 1 C, HMBC, COSY: CH2), 28.22, 28.24 (–, 2 C, HSQC, COSY: CH2, 

alkyl-CH2), 28.4 (+, 18 C, HSQC: CH3), 28.69, 28.73, 28.85, 28.97 (–, 4 C, HSQC, 

COSY: CH2, alkyl-CH2), 36.5 (–, 1 C, HMBC, COSY: CH2), 38.7 (–, 1 C, HMBC, 

COSY: CH2), 40.6 (–, 1 C, HMBC, COSY: CH2), 50.1 (–, 16 C, HMBC, HSQC: CH2), 

65.17, 65.22, 77.3, 77.4 (Cq, 4 C, HMBC) 79.6, 80.1 (Cq, 6 C, HMBC), 
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156.3, 156.9 (Cq, 6 C, HMBC), 165.9 (Cq, 3 C, HMBC)
 
, 173.6 (Cq, 1 C, HMBC). – 

MS (ESI(+), DCM/MeOH + 10 mmol/L NH4Ac): m/z (%) = 1409.3 (100) [MH
+
]. 

 

 

N

N
N

NN

N
N

N

H
H

H N N

N

NH

H

H

H

CH
2

NH

O

CH
2(     )9

8(     )

 

Synthesis of compound 8 

Compound 7 (108 mg, 77 µmol) was dissolved in DCM (4 mL) and cooled to 0 °C. 

Subsequently 4.5 mL sat. HCl / ether were added, the solution was stirred 20 min at 

0 °C and additional 20 h at room temperature. The solvent was removed in vaccuo 

yielding the protonated hydrochloride of compound 8 as a colourless solid (79 mg, 

93 %). To obtain the free base of compound 8 a strong basic ion exchange resin was 

swollen for 15 min in water/MeOH (8:2) and washed neutral with water. A column was 

charged with resin (3.5 ml, 40.0 mmol hydroxy equivalents at a given capacity of 

0.9 mmol/mL). The hydrochloride salt was dissolved in a mixture of 

CHCl3/MeOH/water, put onto the column and eluated with the same solvent mixture. 

The elution of the product was controlled by pH indicator paper (pH > 10) and was 

completed when pH again was neutral. The eluate was concentrated and lyophilized to 

yield 57 mg (quant.) of free base 8, as a colourless solid.  

MP: 62 - 65 °C. – IR (ATR) [cm
-1

]: ν~ = 3285, 2923, 2852, 1645, 1532, 1486, 1415, 

1352, 1284, 1119, 1050, 810, 721. – 
1
H-NMR (400 MHz, CDCl3): δ (ppm) = 0.82 (bs, 

3 H, COSY: CH3), 1.21 (bs, 16 H, HSQC, COSY: CH2, alkyl-CH2), 1.31 (bs, 6 H, 

HSQC: alkyl-CH2), 1.29-1.37 (m, 4 H, HMBC, HSQC: CH2), 1.39-1.49 (m, 2 H, 

COSY, CH2 ), 1.51-1.62 (m, 2 H, COSY: CH2), 1.94-2.13 (m, 4 H, HMBC: CH2), 

2.63 (bs, 8 H, HMBC, HSQC, COSY: CH2 cyclen), 2.74 (bs, 8 H, HMBC, HSQC, 

COSY: CH2 cyclen), 2.88 (bs, 8 H, HMBC, HSQC, COSY: CH2 cyclen), 3.33 (bs, 2 H, 

HMBC: CH2), 3.39 (bs, 2 H, HMBC: CH2), 3.72 (bs, 8 H, HMBC, HSQC, COSY: CH2 
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cyclen), 5.21 (bs, 1 H, HMBC, HSQC, COSY: NH), 6.92 (bs, 1 H, HMBC, HSQC, 

COSY: NH). – 
13

C-NMR (100 MHz; CDCl3): δ (ppm) = 14.0 (+, 1 C, HSQC, COSY: 

CH3), 19.1 (–, 2 C, HMBC, HSQC: CH2), 22.6, 29.0, 29.13, 29.18, 29.21, 29.35, 29.45, 

31.8 (–, 8 C, HSQC, COSY: CH2, alkyl-CH2), 25.7 (–, 1 C, HSQC, COSY: CH2), 36.5 

(–, 1 C, HSQC, COSY: CH2), 28.22, 28.26 (–, 2 C, HMBC, HSQC, COSY: CH2), 

28.69, 28.76, 28.83 (–, 3 C, HSQC, COSY: alkyl-CH2), 39.9 (–, 1 C, HMBC, HSQC: 

CH2), 40.4 (–, 1 C, HMBC, HSQC: CH2), 46.3 (–, 4 C, HMBC, HSQC, COSY: CH2 

cyclen), 48.0 (–, 4 C, HMBC, HSQC, COSY: CH2 cyclen), 48.7 (–, 4 C, HMBC, 

HSQC, COSY: CH2 cyclen), 49.0 (–, 4 C, HMBC, HSQC, COSY: CH2 cyclen), 65.17, 

65.22 (Cq, 2 C, HMBC, HSQC), 77.3, 77.4 (Cq, 2 C, HMBC, HSQC: solvent peak), 

165.9 (Cq, 1 C, HMBC, HSQC), 166.5 (Cq, 2 C, HMBC, HSQC), 173.4 (Cq, 1 C, 

HMBC, HSQC). – MS (ESI(+), DCM/MeCN/TFA): m/z (%) = 404.8 (100) [M + 2 

H
+
]
2+

, 270.1 (18) [M + 3 H
+
]
3+

, 808.8 (10) [MH
+
]. HRMS: m/z: calcd for C44H81N13O: 

808.6765; found: 808.6750. 

 

 

N

N
N
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N
N

N
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H
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N
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8(     )
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4 ClO4
-

 

Synthesis of compound 8-Zn  

Compound 8 (43 mg, 53 µmol) was dissolved in 1 mL of MeOH and heated to 65 °C to 

give a clear solution. Zn(ClO4)2 (44 mg, 117 µmol) dissolved in 1 ml of MeOH was 

added slowly to the stirred reaction mixture. The reaction mixture was stirred for 

additional 18 h at 65 °C. The solvent was removed in vacuo and the residue was 

redissolved in water and lyophilized to yield 70 mg (quant.) of 8-Zn as a lightly 

brownish hygroscopic solid.  

MP: 150 - 152 °C. – IR (ATR) [cm
-1

]: ν~ = 2930, 2856, 1683, 1549, 1456, 1346, 1287, 

1075, 974, 815. – 
1
H-NMR (600 MHz; CDCl3 / CD3OD 1:1): δ (ppm) = 0.84 (t, 
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3
J = 7.0 Hz, 3 H, HSQC, COSY: CH3), 1.17-1.27 (m, 18 H, HSQC, COSY: alkyl-CH2), 

1.32-1.40 (m, 4 H, HSQC, COSY: alkyl-CH2), 1.42-1.51 (m, 4 H, HSQC, COSY: alkyl-

CH2), 1.52-1.62 (m, 2 H, HSQC, COSY: alkyl-CH2), 2.12-2.25 (m, 6 H, HSQC, 

HMBC: alkyl-CH2), 2.70-3.56 (m, 36 H, HSQC: CH2 cyclen, ED-CH2), 4.12-4.42 (m, 

2 H, HSQC, NH). – 
13

C-NMR (150 MHz; CDCl3/CD3OD 1:1): δ (ppm) = 14.3 (+, 1 C, 

HSQC, COSY: CH3), 19.5 (–, 2 C, HSQC: alkyl-CH2), 23.1, 29.45, 29.56, 29.70, 29.72, 

29.98, 30.04, 30.14, 32.41 (–, 9 C, HMBC, HSQC, COSY: alkyl-CH2), 26.3 (–, 1 C, 

HSQC: alkyl-CH2), 28.90 (–, 2 C, HSQC: alkyl-CH2), 29.28 (–, 1 C, HSQC: alkyl-CH2), 

29.32 (–, 1 C, HSQC: alkyl-CH2), 36.8 (–, 1 C, HSQC: alkyl-CH2), 39.3, 40.9, 42.5, 

44.2, 45.5, 45.69, 45.72, 45.8 , 46.8 (–, 18 C, HSQC: CH2 cyclen, CH2), 65.84 (Cq, 1 C, 

acetylene), 65.87 (Cq, 1 C, acetylene), 77.7 (Cq, 1 C, acetylene), 78.4 (Cq, 1 C, 

acetylene), 166.6 (Cq, 1 C, triazine), 171.2 (Cq, 2 C, triazine), 176.2 (Cq, 1 C, amide). – 

MS (ESI(+), H2O/MeOH + 10 mmol/L NH4Ac): m/z (%) = 526.8 (100) [M
4+

 + 

2 CH3COO
-
]
2+

, 496.8 (50) [M
4+

–H
+
+ CH3COO

-
]
2+

.   

 

 

CH
2

O

CH
2

NH

N
O

O

O O

(     )11

8(     )

 

Synthesis of compound 10  

In a dry 100 mL flask 224 mg (0.64 mmol) of compound 9 was dissolved in 50 mL of 

dry THF in ice cooled condition, to this 250 mg (0.64 mmol) of 10, 12-

pentacosadiyonic acid chloride and few drops of Et3N was added. This light yellow 

colour solution was stirred at RT for 12 h and heated to reflux for 2 h. A colourless 

precipitate was obtained, it was filtered off and the clear solution was evaporated in 

vacuum. The crude product was purified by silica column using dichloromethane and 

methanol as eluent. (Rf = 0.45 (DCM/MeOH, 90/10). 
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IR (ATR) [cm
-1

]: ν
~ = 3310, 2921, 2849, 1743, 1664, 1601, 1531, 1465, 1410, 1367, 

1307, 1250, 1216, 1144, 994, 844, 721. – 
1
H-NMR (300 MHz, CDCl3): δ (ppm) = 0.84 

(t, 3 H, CH3), 1.19-1.28 (bs, 26 H, CH2), 1.42 (s, 18 H, CH3), 1.67 (t, 2 H, CH2), 2.17-

2.13 (m, 8 H, CH2), 2.46 (t, 2 H, CH2), 3.35 (s, 4 H, CH2), 3.79 (s, 2 H, CH2), 7.26 (d, 

2 H, J = 8.7 Hz, Ar-H), 7.44 (d, 2 H, J = 8.7 Hz, Ar-H). – 
13

C-NMR (75 MHz, CDCl3): 

171.7 (Cq, amide), 162.6 (Cq, ester), 137.4 (Cq, aromatic), 134.1 (Cq, aromatic), 

129.7 (+, CH), 119.7 (+, CH), 81.0 (Cq, acetylene), 68.6 (Cq, acetylene), 68.2 (Cq, 

acetylene), 65.3 (–, CH2), 65.2 (–, CH2), 57.0 (Cq), 55.0 (Cq), 37.9 (–, CH2), 37.6 (–, 

CH2), 36.5 (–, CH2), 33.8 (–, CH2), 31.9 (–, CH2), 31.5 (–, CH2), 29.62 (–, CH2), 

29.60 (+, CH3), 29.58 (–, CH2), 29.45 (–, CH2), 29.32 (–, CH2), 29.18 (–,CH2), 29.07 (–, 

CH2), 28.88 (–,CH2), 28.83 (–,CH2), 28.74 (–, CH2), 28.33 (– CH2), 28.74 (–, CH2), 

28.33 (–, CH2), 28.26 (–, CH2), 28.15 (–, CH2), 28.04 (–, CH2), 28.01 (–, CH2), 27.80 (–

, CH2), 25.6 (–, CH2), 23.41 (–, CH2), 22.70 (–, CH2), 22.16 (–, CH2), 19.17 (–, CH2), 

19.14 (–, CH2), 14.16 (+, CH3). – MS (ES-MS, DCM/MeOH + 10 mM NH4OAc): 

m/z (%): 707.6 (100) [M
+
], 708.6 (50) [MH

+
].   

 

 

CH
2

O

CH
2

NH

N
OH

OH

O O

H

(     )11

8(     )

+

 

Synthesis of compound 11 

200 mg (0.28 mmol) of Compound 10 was dissolved in TFA (5 ml) and stirred at RT 

for 2 h. After evaporating the TFA, the slurry was suspended in diethylether and 

decanted. Compound 11 (120 mg, 65%) obtained as a pale yellow hygroscopic 

substance. 

IR (ATR) [cm
-1

]: ν
~ = 2924, 2854, 1737, 1668, 1600, 1531, 1465, 1413, 1311, 1255, 

1188, 1131, 903, 835, 722, 648. – 
1
H-NMR (300 MHz, CDCl3): δ (ppm) = 0.82 (t, 3 H, 

CH3), 1.42 (bs, 26 H, CH2), 1.53-1.61(m, 4 H, CH2), 2.17-2.13 (m, 6 H, CH2), 2.46 (t, 

2 H, CH2), 3.31 (s, 4 H, CH2,), 3.79 (s, 2 H, CH2,), 7.26 (d, J = 8.7 Hz, 2 H, Ar-H), 



5. Polydiacetylene Based Colorimetric Self Assembled Vesicular Receptors for Biological Phosphate Ion Recognition 

 172 

7.44 (d, J = 8.7 Hz, 2 H, Ar-H). – 
13

C-NMR (75 MHz, CDCl3): δ (ppm) = 173.3 (Cq, 

amide), 168.7 (Cq, ester), 140.2 (Cq, aromatic), 131.7 (Cq, aromatic), 124.1 (+, CH), 

120.36 (+, CH), 68.6 (Cq, acetylene), 68.2 (Cq, acetylene), 65.30 (–, CH2), 65.24 (–, 

CH2), 57.1 (Cq, acetylene), 55.0 (Cq, acetylene), 31.9 (–, CH2), 29.57 (–, CH2), 29.43 (–, 

CH2), 29.29 (–, CH2), 29.04 (–, CH2), 28.98 (–, CH2), 28.90 (–, CH2), 28.82 (–, CH2), 

28.32 (–, CH2), 22.63 (–, CH2), 19.16 (–, CH2), 14.16 (+, CH3). – MS (ESI, 

DCM/MeOH): m/z (%) = 609.3 (100) [MH
+
], 1218.1 (20) [2 MH

+
].    

 

 

OH
2

N
Cu

OH
2

O
OH

2

O

O

O

CH
2

O

CH
2

NH

(     )11

8(     )

 

Synthesis of compound 11-Cu  

To a solution of 11 (100 mg, 0.12 mmol) in 10 ml of water CuCl2 (23 mg, 0.12 mmol) 

dissolved in MeOH (10 ml) was added. Stirring was continued at room temperature for 

10 h. The solvent was evaporated and the residue dissolved in a small amount of water. 

Methanol was added until a precipitate was formed and the solid was removed by 

filtration. Methanol was evaporated and the crude product was recrystallised from 

methanol yielding compound 11-Cu (103 mg, 86 %) as a greenish blue solid. NMR 

spectrum of this complex was not recorded due to paramagnetic nature of this complex. 

MP: 217-221 °C. – IR (ATR) [cm
-1

]: ν~ = 3308, 2920, 2851, 1662, 1612, 1557, 1466, 

1406, 1363, 1302, 1250, 1184, 1079, 1008, 956, 924, 897, 831, 741. – MS (ES-MS, 

DCM/MeOH + 10 mM NH4Ac): m/z (%) = 714.4 (100) [M
+
 + CH3COO

-
- 3 H2O].  
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5.4.4 
1
H NMR and 

13
C spectra of synthesized compounds 
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CD3OD

DMF solvent 
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6. Vesicular Receptors with co-embedded Amphiphilic Zinc Cyclen 

Complexes and Fluorophors for Phosphate Anion Sensing in Water
i
 

 

Phosphate anion probes typically consist of a binding site and a luminescent reporter 

group. The luminescent moiety is either part of the chemosensor in close proximity of 

the analyte binding site or in indicator displacement assays non-covalently bound to the 

binding site and displaced by the analyte. We report here the preparation and binding 

properties of 80 nm vesicular synthetic receptors, which contain amphiphilic 1,4,7,10-

tetraazacyclododecane (cyclen) Zn(II) complexes as phosphate anion binding sites and 

amphiphilic coumarin derivatives as fluorescent reporter groups.
ii
 By colocalization of 

binding sites and reporter groups in the vesicle they respond to the presence of 

phosphate anions in aqueous solution at micromolar concentrations by a strong emission 

decrease.
iii

 The technique avoids the covalent synthesis of labelled analyte binding sites 

and allows the rapid and versatile preparation of luminescent nanometer size synthetic 

receptors. 

 

 

                                                 
i
  S. Stadlbauer, B. Gruber. K. Woinaroschy, B. König Inorg. Chem. 2009, in preparation. 

ii
  All compounds shown in this chapter were synthesized by S. Stadlbauer, except compound 3 was 

prepared by K. Woinaroschy. 
iii

 All vesicular receptors and the analytical measurements on their binding properties were done by B. 

Gruber. IDA assay for 1 was done by K. Woinaroschy. 
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6.1 Introduction 

 

Molecular recognition of phosphate esters under physiological conditions is of current 

interest as they are ubiquitously present in nature
1
 in RNA and DNA, in phosphorylated 

saccharides and phosphorylated proteins.
2
 The nucleotide adenosine triphosphate (ATP) 

is the molecular currency for intracellular energy transfer,
3
 and pyrophosphate (P2O7

4-
, 

PPi), the product of ATP hydrolysis, plays an important role in intracellular signalling.
4
 

Therefore the development of artificial phosphate anion receptors for use under 

physiological conditions is of continious interest. Such sensors are useful tools for the 

detection of biologically important phosphates,
5
 with applications in molecular biology, 

life and environmental sciences. 

There are two different ways to signal the binding of an analyte to a synthetic 

receptor: A luminescent group is located closely to the binding site and responds to the 

binding event by a change in its emission properties.
6
 Alternatively, an indicator-

displacement assay (IDA) based on the competitive binding of a pH indicator and the 

analyte to the non-labelled binding site is used to signal the interaction of the analyte 

and the receptor.
7
  

Recent reports reveal that transition metal complexes with vacant coordination 

sites are well suited to serve as phosphate ion binding sites.
8
 A widely used binding unit 

in phosphate chemosensors is the zinc(II)-dipicolylamine (Dpa) complex as 

demonstrated by Hamachi
9
, Hong

10
 and Smith

11
. Macrocyclic 1,4,7,10-tetraazacyclo-

dodecane (cyclen) transition metal complexes were reported as phosphate binding sites 

by Kikuchi
12

 and Kimura.
13

 We have recently reported the use of zinc(II)-cyclen as 

promoters in ester hydrolysis,
14

 detection of phosphorylated peptides
15

 and proteins
16

 

and for a sterically guided molecular recognition of nucleotides, nucleobases and 

phosphates in supramolecular self-assembled systems (SAM,
17

 unilamellar vesicles
18

). 

However, phosphate detection principles using luminescent labels or indicator 

displacement have drawbacks: The synthesis of chemosensors can be laboursome and 

their analyte response is hard to predict, while IDA is an indirect method.  

We have therefore combined parts of both techniques into a new approach using 

surface modified vesicles, which contain amphiphilic Zn(II)-cyclen complexes for 

phosphate anion binding and co-embedded amphiphilic fluorophors to signal the 

interaction. Such self-assembled supramolecular vesicular receptors signal the presence 
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of biological relevant phosphates in micro molar concentrations by an increased 

emission.  

 

6.2 Results and Discussion 

6.2.1 Syntheses of amphiphilic Zn(II)-cyclen complexes 

 

 

O O O

O

H
25

C
12

N
H

N
H

N

N
N

NN

N
N

N

N N

N

H
H H

H

HH

Zn Zn

R

N O O

O

N
H

N
H

S

O

O

N

N
H

N
H

N
H

O O O

O

H
37

C
18

N
H

4 ClO4
-

2 R = 3 R = 1 R = -OMe

5 R = 6 R = 4 R = -NH-C18H37

4+

 

Figure 1. Fluorescent/non-fluorescent and amphiphilic/non-amphiphilic binuclear 

Zn(II)-cyclen complexes for phosphate binding in aqueous media. 

 

The previously reported triazen-bis-zinc cyclen complex 1 was modified with 

fluorescent groups (2, 3), alkyl chain (4) or both (5, 6). Figure 1 summarizes all 

structures. Complexes 1
14b

, 2
16

 and 4
17

 were synthesized as previously reported. The 

synthesis of compound 3 is given in the Experimental Part. The synthesis of 

amphiphilic coumarin derivatives is shown in Scheme 1. Coumarin was selected as it is 

known for its high quantum yields and ease of preparation.
19

 Williamson ether synthesis 

with alkyl bromide on coumarin 7
19

 and saponification gave the amphiphilic fluorescent 

labels 10 and 11, respectively. 
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OH O O
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R

8 R = C12H25; 67%

9 R = C18H37; 54 %

10 R = C12H25; 100 %

11 R = C18H37; 100 %7

a b

 

Scheme 1. Synthesis of an amphiphilic coumarin derivative with various hydrophobic 

chains. (a) Br-(CH2)n-CH3 (n = 11 or 17), K2CO3, DMF, 80 °C, 20 h; (b) NaOH, THF, 

reflux, 5 h. 

 

Binuclear Zn(II)-cyclen complexes 5 and 6 were prepared by amide formation using 

standard peptide coupling conditions in solution as shown in Scheme 2. Removing of 

the Boc protecting groups and subsequent basic ion exchanger resin gave the free amine 

ligands which finally were treated with two equivalents of a methanolic solution of 

Zn(ClO)4. Detailed experimental procedures and analytical data of the prepared 

compounds are provided in the Experimental Part. 



6. Vesicular Receptors with co-embedded Zn(II)-Cyclen Complexes and Fluorophors for Phosphate Anion Sensing in Water 

 189 

N
N

N
N

N
N

N
N

boc

boc

boc

N

N

NN
H

boc

boc

boc

N
H

O O O

O

R

N
N

N
N

N
N

N
N

H

H
H

N

N
NN

H

H

H

H

Zn

Zn

N
H

O O O

O

R

N
N

N
N

N
N

N
N

boc

boc

boc

N

N

NN
H

boc

boc

boc

NH
2

N
N

N
N

N
N

N
N

H

H

H

N

N

NN
H

H

H

H

N
H

O O O

O

R

a
+

10

or
11

4+

4 ClO4
-

13 R = C12H25; 79 %

14 R = C18H37; 71 % 

12

15 R = C12H25; 93 %

16 R = C18H37; 85 % 

b, c
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Scheme 2. Synthesis of fluorescent amphiphilic binuclear Zn(II)-cyclen complexes. 

(a) TBTU, HOBt, DIPEA, DMF, 40 °C, 2.5 h; (b) HCl/ether, RT, o/n; (c) basic ion 

exchanger resin H2O, MeOH; (d) Zn(ClO4)2, MeOH, 65 °C, 20 – 24 h.  

 

 

6.2.2 Preparation of Zn(II)-cyclen modified vesicles (vesicular receptors) 

 

Surface modified vesicles (vesicular receptors) were prepared from a mixture of 

commercially available synthetic phospholipid 1,2-distearoyl-sn-glycero-3-phospho-
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choline (DSPC) and amphiphilic Zn(II)-cyclen complexes 5, 6 (10 mol% in respect to 

used DSPC) by the well-established film-hydration-method.
20

 For the non-fluorescent 

complex 4 amphiphilic dyes 10 or 11 were additionally incorporated into the liposomal 

membrane to equip the vesicular receptors with signalling units. The resulting 

multilamellar vesicles (MLVs) were homogenized by extrusion to yield small 

unilamellar vesicles (SUVs) of a defined size of 80 nm.  

 

 
 

Figure 2. Schematic of functionalized vesicles with surface exposed receptors.  

 

The individual receptor units of the obtained vesicles are assumed to be equally 

distributed in both layers of the liposomal membrane. Thus, we established a correction 

factor f describing the outer surface exposed receptors as a fraction of its entire quantity 

of matter. This factor enables the determination of the effective concentration of 

available binding sites on the outer layer of the vesicle (for details see Experimental 

Part). 

 

6.2.3 Characterization, purification and stability of vesicle dispersion  

 

The particle size, particle number and sample dispersity of the prepared vesicle 

dispersions were determined by dynamic light scattering (DLS).
21

 The average 

hydrodynamic diameter of SUV dispersions of simple DSPC vesicles was found to be 

110 (± 5) nm, while the average hydrodynamic particle diameter of dispersions of 

vesicular receptors was determined to be slightly smaller with 80 (± 5) nm. The 

obtained results are in good agreement with comparable liposome preparations that have 

been reported in literature.
22

 

Generally, homogenized SUV dispersions are assumed to be free of impurities 

and thus no further purification is required. Nevertheless vesicles can be passed through 
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size exclusion chromatography (SEC) columns to ensure complete exclusion of 

unimolecular amphiphiles or lower molecular aggregates
23

. 

All prepared vesicular receptor dispersions and vesicle dispersions were stored 

as buffered aqueous solutions at 6 °C in the refrigerator and used within 2 weeks.  

 

6.2.4 Phosphate anion binding studies  

 

Initially, the binding properties of Zn(II)-cyclen 1 to various phosphate species were 

investigated by an indicator displacement assay utilizing pyrocatechol violet (PV) in 

HEPES buffered solution (10 mM, pH 7.4) by UV-VIS spectroscopy. Upon 

coordination to zinc ions PV shows a colour change resulting from a decreasing 

absorption at λmax = 443 nm and an increasing absorption at λmax = 636 nm (Figure 

3a).
24

 By addition of aliquots of aqueous solutions (HEPES buffer 10 mM, pH 7.4) of 

the sodium and/or potassium salts of ATP, ADP, cAMP, GTP, PPi, hydrogen phosphate 

and phenyl phosphate to a 1:1 mixture of 1 and PV (35 µM each) the indicator is 

partially or fully displaced (Figure 3b). The binding constants (lg K) of 1 to the different 

phosphate anions (Table 1) were derived from the concentrations of PV and the 

respective phosphate anion at 50% release of the indicator. The addition of other anions, 

such as SO4
2-

, NO3
2-

, N3
-
, CO3

2-
, Br

-
, Cl

-
, ClO4

-
, tatrate, ascorbate or acetate, did not 

displace the PV indicator from the metal complex: The absorption at λmax = 443 nm 

remains unchanged and only a slight decrease at λmax = 636 nm is observed.
25

 

(a) (b) 

 

 

 

 

 

 

 

 

Figure 3. (a) Addition of 1 (0-105 µM) to a constant concentration of PV (35 µM). 

Titrations were performed at 25 °C in 10 mM HEPES buffer, pH 7.4. (b) UV/Vis 

spectra of a 1:1 mixture 1 and PV (50 µM, λmax = 636 nm) in the presence of various 

anions (250 µM). Only phosphate anions are able to displace the indicator with 

λmax = 443 nm. The displacement, and therefore the binding ability of 1, is proportional 

to the number of negative charges on the phosphate. 
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The binding affinity is clearly influenced by the number of negative charges on the 

phosphate, as was previously reported for other phosphate anion receptors.
12a, 26

 ATP, 

GTP and PPi have the highest negative charge and thus show the highest binding 

constants (lg K ~ 6), whereas for cAMP (lg K = 3.8) with one negative charge partial 

displacement of the indicator was observed only upon addition of an excess of analyte 

(> 6 eq). As the IDA method represents an indirect method for the determination of the 

binding event, we used the Zn(II)-cyclen complexes 2 and 3 functionalized with a 

fluorescence label and investigated their response to phosphate anions (e.g. PPi, ATP, 

GTP, ADP, Na2HPO4, GDP and other nucleotides). However, none of the added anions 

induced a significant change in the absorption or emission properties of 2 or 3 (data not 

shown). The coordination of a phosphate anion obviously does not influence the 

photophysical properties of the attached fluorophores.  

 Having acquired these informations on phosphate anion solution binding of 

complexes 1, 2 and 3 we turned our attention to self-assembled surface modified 

vesicles for anion sensing
18b

 and molecular recognition.
27

 Thus a set of vesicular 

receptors modified by phosphate binding moieties 4 – 6 were prepared.  

A vesicular receptor (VR-4) with the hydrophobic binuclear Zn(II)-cyclen 

complex 4 was synthesized and its binding affinity to various phosphate anions was 

investigated by IDA methods employing coumarin methyl sulfonate (CMS) as an 

indicator dye (Figure 4a). Pyrophosphate, due to its small size and high charge density, 

exhibited one of the highest affinities of the tested compounds with a binding constant 

lg K of 7.1. The highest binding constant was found for UTP (7.2), which exceeded the 

affinities of the other tested nucleotides ATP and GTP (both 6.5) by five times. This 

may be explained by binding of both phosphate and imide moieties of UTP to the 

Zn(II)-macrocycles.
17

 However, no difference in binding affinities of the nucleoside 

diphosphates UDP and GDP was observed. GDP and UDP, both with a binding constant 

of 5.2, exhibited an affinity that is one to two orders of magnitude lower compared to 

their respective triphosphates. This is reasonable because of the weaker coordination 

capabilities of the diphosphates. However, the stronger decrease of lg K from UTP (7.2) 

to UDP (5.2) compared to GTP/GDP (6.5/5.2) cannot be explained on the basis of the 

present data. Fructose-1,6-bisphosphate also exhibited a rather high affinity (lg K = 6.4), 

which might be explained by the favourable interaction with two bis-Zn(II)-cyclen 

moieties revealing additive or cooperative action: Following the binding of the first 

phosphate group, the binding of the second phosphate group is facilitated by the 



6. Vesicular Receptors with co-embedded Zn(II)-Cyclen Complexes and Fluorophors for Phosphate Anion Sensing in Water 

 193 

preformed substrate-receptor complex. Inorganic phosphate showed the same binding 

constant as the diphosphates GDP and UDP. At the given pH value inorganic phosphate 

exists predominantly as a dianion, having one negative charge less than GDP and UDP. 

The similar binding affinities might be explained by the lack of steric hindrance of 

inorganic phosphate as well as by an increase of its acidity upon complexation by the 

bis-Zn(II)-cyclen moieties resulting in an additional negative charge. The phosphate 

monoesters phenylphosphate and phosphoserine in contrast exhibited an affinity that is 

one order of magnitude lower than inorganic phosphate, obviously due to their larger 

steric demands and only two acidic protons present at the phosphate moiety. For all 

tested and compared compounds the respective binding constants to the vesicular 

receptor were found to be higher than those to complex 1. Only a minor increase was 

found for the monophosphates phenylphosphate and inorganic phosphate, whereas the 

difference in the binding constants for pyrophosphate amounted to an entire order of 

magnitude. The ion selectivity of vesicular receptor VR-4 was investigated by the 

addition of other anionic compounds like sulfate, azide and acetate (Figure 4b). 

Furthermore imidazole was tested as a potential ligand as the bis-Zn(II)-cyclen moieties 

are known to exhibit a weak affinity for histidine residues (Figure 4b).
28

 None of these 

compounds exhibited a considerable affinity towards vesicular receptor VR-4. Thus, 

binding constants for these compounds could not be determined but were estimated to 

be smaller than lg K = 2.  

(a) (b) 

  

Figure 4. (a) Binding isotherms obtained by indicator displacement assay (IDA) for 

vesicular receptor VR-4 and various phosphate species. (b) Phosphate ion selectivity of 

vesicular receptor VR-4. 

 



6. Vesicular Receptors with co-embedded Zn(II)-Cyclen Complexes and Fluorophors for Phosphate Anion Sensing in Water 

 194 

 

Table 1. Summary of binding constants to various phosphate species obtained by 

indicator displacement assays in solution for the binuclear Zn(II)-cyclen motif. 

Apparent error limits for detected binding constants are ± 0.2. 
[a]

 Binding affinities were obtained by IDA methods (indicator dye: PV) with UV-VIS 

absorption titration.
 [b]

 Binding experiments were not done. 
[c]

 Binding affinities were 

obtained by IDA methods (indicator dye: CMS) by emission titration (λex = 396 nm, 

λem
 
= 480 nm).  

 

Using the amphiphilic fluorescent binuclear Zn(II)-cyclen 5 and its corresponding 

vesicular receptor VR-5 a direct signalling of the phosphate binding event was possible 

(Figure 6): Upon addition of phosphate anions, such as PPi, ATP, fructose-1,6-

bisphosphate and inorganic phosphate, the emission intensity at 405 nm of the coumarin 

label decreased. The determined binding affinities exceed the micro molar range and are 

consistent with the corresponding values obtained by indicator displacement assay for 

the vesicular receptor VR-4 and compound 1. Modifying the tethered hydrophobic alkyl 

chain of the binuclear Zn(II)-cyclen complex from C18 to C12 (compound 6) did not 

affect the binding affinity of the vesicular receptor to PPi (data not shown).  

 

  lg K 

Entry Phosphate species 1 VR-4 VR-5 VR-4/11 

1 Pyrophosphate  5.9
[a]

 7.1
[c]

 6.6 5.6 

2 UTP – 
[b]

 7.2
[c]

 – – 

3 ATP 5.9
[a]

 6.5
[c]

 6.6 5.3 

4 GTP 5.8
[a]

 6.5
[c]

 – – 

5 GDP – 
[b]

 5.2
[c]

 – – 

6 UDP – 
[b]

  5.2
[c]

 – – 

7 Fructose-1,6-bisphosphate – 
[b]

 6.4
[c]

 6.1 – 

8 Inorganic phosphate 4.9
[a]

 5.2
[c]

 5.5 – 

9 p-Ser – 
[b]

 4.3
[c]

 – – 

10 Ph-O-PO3 4.0
[a]

 4.2
[c]

 – – 



6. Vesicular Receptors with co-embedded Zn(II)-Cyclen Complexes and Fluorophors for Phosphate Anion Sensing in Water 

 195 

 

Figure 5. Supposed structural arrangement of embedded 5 and 11 in the vesicle bilayer 

formed by DSPC lipid. The coumarin fluorophore (yellow) is located at different depth 

in the membrane.  

 

Monitoring of phosphate binding to compounds 2 and 3 by changes of their 

luminescence was not possible in aqueous solution, most likely due to an insufficient 

crosstalk of their binding and signalling sites. Compounds 5 and 6 are expected to be 

embedded with their alkyl chain and the coumarin dye into the vesicle bilayer, as 

reported for similar coumarin derivatives (Figure 5).
29

 This should significantly restrict 

their movement in the highly ordered vesicle bilayer, which might be beneficial for the 

sensing properties.
30

 In addition, the local polarity change at the fluorophore, which is a 

crucial factor for the response to phosphate binding, is expected to be larger at the 

vesicle membrane – water interface compared to bulk water.
29

 Coumarin dye 

derivatives are known for their solvatochromism in various solvents of different 

polarity.
31

 

Noteworthy, a vesicular receptor (VR-4/11) containing the amphiphilic non-

fluorescent metal complex 4 and the amphiphilic coumarin dye 11 showed a 

fluorescence response upon addition of PPi to the liposomal dispersion. Clearly a 

change in the emission at 405 nm was observable and allowed the calculation of the 

binding constant by non linear fitting methods (Figure 6b). The derived lg K values are 

within the error limits of the method in good agreement with the values given in 

table 1.
32
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Figure 6. Binding isotherm obtained by direct emission signalling of PPi binding to 

vesicular receptors VR-5 and VR-4/11. 

 

 

6.3 Conclusion 

 

The modification of a vesicle surface with an amphiphilic binuclear Zn(II)-cyclen 

complex yields a molecular vesicle receptor with sensitivity and selectivity to phosphate 

anions under physiological conditions exceeding micro molar affinities. While 

phosphate sensing in solution utilizing the binuclear Zn(II)-cyclen complex 1 requires 

IDA methods, an embedding in a vesicle enables the resulting vesicular receptor for a 

direct signalling of the phosphate binding event. Even more, a statistical mixture of the 

phosphate binding moiety and an amphiphilic dye leads to vesicles showing emission 

changes in the presence of phosphate anions. The results clearly demonstrate the use of 

modified vesicles with embedded metal complexes in the field of molecular recognition. 

Especially, the ease of preparation of more complex vesicular receptors by simple 

addition of binding and signalling sites may allow the practical design of selective 

chemosensors using the existing knowledge on artificial binding sites from the field of 

supramolecular chemistry. 

 



6. Vesicular Receptors with co-embedded Zn(II)-Cyclen Complexes and Fluorophors for Phosphate Anion Sensing in Water 

 197 

6.4 Experimental Part 

6.4.1 General methods and material  

 

Emission Spectroscopy. Fluorescence measurements were performed with UV-grade 

solvents (Baker or Merck) in 1 cm quartz cuvettes (Hellma) and recorded on a Varian 

‘Cary Eclipse’ fluorescence spectrophotometer with temperature control. 

 

Absorption Spectroscopy. Absorption were recorded on a Varian Cary BIO 50 

UV/VIS/NIR Spectrometer with temperature control by use of a 1 cm quartz cuvettes 

(Hellma) and Uvasol solvents (Merck or Baker). 

 

Dynamic light scattering. PCS measurements were performed on a Malvern Zetasizer 

3000 at 25 °C using 1 cm disposable polystyrene fluorescence cuvettes (VWR). Three 

subsequent measurements of 60 seconds each were performed for each sample. Data 

analysis was performed using the Malvern PCS software. 

 

NMR Spectra. Bruker Avance 600 (1H: 600.1 MHz, 13C: 150.1 MHz, T = 300 K), 

Bruker Avance 400 (1H: 400.1 MHz, 13C: 100.6 MHz, T = 300 K), Bruker Avance 300 

(1H: 300.1 MHz, 13C: 75.5 MHz, T = 300 K). The chemical shifts are reported in 

δ [ppm] relative to external standards (solvent residual peak). The spectra were analyzed 

by first order, the coupling constants are given in Hertz [Hz]. Characterization of the 

signals: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, bs = broad singlet, 

psq = pseudo quintet, dd = double doublet, dt = double triplet, ddd = double double 

doublet. Integration is determined as the relative number of atoms. Assignment of 

signals in 13C-spectra was determined with DEPT-technique (pulse angle: 135 °) and 

given as (+) for CH3 or CH, (–) for CH2 and (Cq) for quaternary Cq. Error of reported 

values: chemical shift: 0.01 ppm for 1H-NMR, 0.1 ppm for 13C-NMR and 0.1 Hz for 

coupling constants. The solvent used is reported for each spectrum. 

 

Mass Spectra. Varian CH-5 (EI), Finnigan MAT 95 (CI; FAB and FD), Finnigan MAT 

TSQ 7000 (ESI). Xenon serves as the ionisation gas for FAB.  

 

IR Spectra. Recorded with a Bio-Rad FTS 2000 MX FT-IR and Bio-Rad FT-IR FTS 

155. 
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Melting Point. Melting Points were determined on Büchi SMP or a Lambda 

Photometrics OptiMelt MPA 100. 

 

General. Thin layer chromatography (TLC) analyses were performed on silica gel 60 F-

254 with a 0.2 mm layer thickness. Detection via UV light at 254 nm / 366 nm or 

through staining with ninhydrin in EtOH. Column chromatography was performed on 

silica gel (70–230 mesh) from Merck. Starting materials were purchased from either 

Acros or Sigma-Aldrich and used without any further purification. Commercially 

available solvents of standard quality were used. Dry THF, which was prepared by 

distillation from potassium. If otherwise stated, purification and drying was done 

according to accepted general procedures.
33

 Elemental analyses were carried out by the 

Center for Chemical Analysis of the Faculty of Natural Sciences of the University 

Regensburg. 
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6.4.2 Synthesis 
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Scheme 3. Syntheses of fluorescent binuclear Zn(II) cyclen derivative 3. (a) 5-

Dimethylamino-naphthalene-1-sulfonic acid (2-amino-ethyl)-amide 17, K2CO3, 

dioxane, reflux, 72 h; (b) TFA, DCM RT 12 h, basic ion exchanger resin; (c) Zn(ClO4)2, 

H2O, 65 °C. 
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5-Dimethylamino-naphthalene-1-sulfonic acid {2-[4,6-bis-(1,4,7,10-tetraaza-

cyclododec-1-yl)-[1,3,5]triazin-2-ylamino]-ethyl}-1,4,7-tricarboxylic acid tri-tert-butyl 

ester (19) 

A solution of 18
14b

 (0.886 g, 0.84 mmol) in 25 mL of dioxane was stirred under nitrogen 

for 5 minutes, then a solution of 5-dimethylamino-naphthalene-1-sulfonic acid (2-

amino-ethyl)-amide 17
34

 (0.615 g, 2.10 mmol) in dioxane (75 mL) was added dropwise. 

Then K2CO3 (0.580 g, 4.19 mmol, 5 eq.) was added. The mixture was refluxed for 72 h 

at 140 ºC under inert atmosphere. After completion, the reaction mixture was filtered in 

order to remove all inorganic salts and the solvent was removed under reduced pressure. 

The crude product was purified by column chromatography on neutral alumina (EE/PE 

3:7 to 2:3). The product was obtained as a yellow solid (0.820 g, 0.62 mmol, 75 %). 

MP: 113 °C (sublimation). – 
1
H-NMR (400 MHz; CDCl3): δ (ppm) = 1.41 (bs, 54 H, 

CH3-Boc), 2.86 (s, 6 H, CH3N), 3.10-3.68 (m, 36 H, CH2 chain and CH2 cyclen), 

4.77 (bs, 1 H, NHSO2), 6.95 (bs, 1 H, NH-triazine), 7.13 (d, 1 H, 
3
J = 7.6 Hz, CH), 

7.47 (dd, 1 H, 
3
J = 7.6, 8.7 Hz, CH), 7.48 (dd, 1 H, 

3
J = 7.3, 8.5 Hz, CH), 8.21 (d, 1 H, 

3
J = 7.3 Hz, CH), 8.36 (d, 1 H, 

2
J = 8.7 Hz, CH), 8.5 (d, 1 H, 

2
J = 8.5 Hz, CH). – 

13
C-

NMR (400 MHz; CDCl3): δ (ppm) = 28.5 (+, CH3-Boc), 41.8 (–, CH2NHSO2), 43.6 (–, 

CH2NH-triazine), 45.4 (+, (CH3)2N), 50.09, 50.16, 50.25, 50.29 (–, CH2 cyclen), 79.78, 

80.1, 80.3 (Cq, Boc), 115.0, 123.1, 127.78, 127.82, 129.8, 129.8, 129.9, 129.9 (+, CH); 

135.08 (Cq, Cq-SO2), 151.7 (Cq, Cq-N-(CH3)2), 156.2 (Cq, Boc), 165.8 (Cq, triazine). – 

IR (KBr) [cm
-1

]: ν
~ = 3267, 2975, 2933, 2361, 2200, 1686, 1541, 1499, 1474, 1410, 

1366, 1321, 1249, 1163, 1106, 1050, 970, 946, 858, 777. – UV (CH2Cl3): λmax (lg ε) = 

340 nm (3.655). – MS (ESI, DCM/MeOH + 10 mmol/l NH4Ac): m/z (%) = 1313.9 

(100) [MH]
 +

. – Elemental analysis calcd (%) for C63H104N14O14S: C 57.59, H 7.98, 

N 14.93; found: C 57.22, H 8.11, N 14.66. – MF: C63H104N14O14S – FW: 1313.66 g/mol 
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5-Dimethylamino-naphthalene-1-sulfonic acid {2-[4,6-bis-(1,4,7,10-tetraaza-

cyclododec-1-yl)-[1,3,5]triazin-2-ylamino]-ethyl}-amide (20) 

A solution of 19 (0.770 g, 0.59 mmol) in CH2Cl2 was treated with TFA (3.6 mL, 

47 mmol) and the reaction mixture was stirred for 24 h. After completion of reaction the 

solvent was removed under reduced pressure. The obtained pale yellow solid 

(quantitative yield) was solved in water and passed through a column of pre-swelled 

(pH = 7) basic ion exchanger resin. The fractions having a basic pH were collected and 

the resulting aqueous solution was lyophilised. The product was obtained as a yellow 

solid (0.258 g, 0.36 mmol, 62 %). 

MP: 92 °C. – 
1
H NMR (300 MHz; MeOD): δ (ppm) = 2.62 (bs, 8 H, CH2 cyclen), 

2.70 (bs, 8 H, CH2 cyclen), 2.87 (s, 14 H, (CH3)2N and CH2 cyclen), 3.00 (t, 2 H, 

3
J = 6.0 Hz, CH2NH-triazine), 3.32 (t, 2 H, 

3
J = 6.0 Hz, CH2NHSO2), 3.7 (bs, 8 H, CH2 

cyclen), 7.23 (d, 1 H, 
3
J = 7.6 Hz, CH), 7.50 (dd, 1 H, 

3
J = 7.6, 8.6 Hz, CH), 7.55 (dd, 

1 H, 
3
J= 7.3, 8.5 Hz, CH), 8.17 (d, 1 H, 

3
J = 7.3 Hz, CH), 8.26 (d, 1 H, 

3
J = 8.6 Hz, CH), 

8.53 (d, 1 H, 
3
J = 8.5 Hz, CH). – 

13
C NMR (300 MHz; MeOD): δ (ppm) = 41.2 (–, 

CH2NHSO2), 44.5 (–, CH2NH-triazine), 45.8 (–, (CH3)2N), 46.9, 48.6, 48.7, 48.9 (–, 

CH2 cyclen), 116.28 (+, CH), 120.4 (+, CH), 124.2 (+, CH), 129.0 (+, CH), 130.1 (+, 

CH), 131.0 (Cq), 131.1 (+, CH), 131.2 (Cq), 136.9 (Cq, Cq-SO2), 153.2 (Cq, Cq-N-

(CH3)2), 167.2 (Cq, Cq-triazine cyclen), 168.0 (Cq, Cq-triazine NH). – IR (KBr) [cm
-1

]: 

ν
~ = 3397, 2938, 2840, 2361, 2200, 1542, 1497, 1416, 1362, 1294, 1142, 1063, 940, 

792, 625, 572. – UV (CH2Cl3): λmax (lg ε) = 336 nm (3.766). – MS (ESI, 

TFA/AcN/H2O): m/z (%): 357.4 (100) [M + 2 H
+
]

2+
, 713.6 (20) [MH]

+
. – HRMS Calcd 

for C33H56N14O2S: 712.4331; found: 712.4421. – MF: C33H56N14O2S – 

FW: 712.96 g/mol 
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Bis-Zn(II)-cyclen dansyl (3)  

Compound 20 (120 mg, 0.17 mmol) was dissolved in 1 mL of water and heated to 65 °C 

to give a clear yellow solution. Subsequently zinc(II)-perchlorate (64 mg, 172 µmol) 

dissolved in 1 ml of water was added slowly. The pH was adjusted by addition of 1 M 

NaOH (approx. 2 mL) to pH 7. The reaction mixture was stirred for additional 23 h at 

70 °C. The solvent was removed in vacuo and the residue was redissolved in water and 

lyophilized. The crude product (200 mg) was recrystallized from an EtOH / H2O (4:1) 

mixture as a yellow solid (89 mg, 0.07 mmol, 41 %).  

MP: 180-182°C. – 
1
H NMR (300 MHz; CD3CN): δ (ppm)  = 2.65-2.90 (m, 18 H, CH2 

cyclen,(CH3)2N), 2.94-3.15 (m, 14 H, CH2 cyclen, CH2NHSO2), 3.23-3.46 (m, 6 H, CH2 

cyclen, CH2NH-triazine), 4.24-4.44 (m, 4 H, CH2 cyclen), 6.11 (m, 1 H, NH-triazine), 

7.23 (d, 1 H, 
3
J = 7.4 Hz, CH), 7.53 (dd, 1 H, 

3
J = 7.4, 8.8 Hz, CH), 7.57 (dd, 1 H, 

3
J = 7.4, 8.2 Hz, CH), 8.15 (d, 1 H, 

3
J = 7.4 Hz, CH),  8.18 (d, 1 H, 

3
J = 8.8 Hz, CH), 

8.51 (d, 1 H, 
3
J = 8.2 Hz, CH). – 

13
C NMR (300 MHz; CD3CN): δ (ppm)  = 41.9 (–, 

CH2NH-triazine), 43.0 (–, CH2NHSO2), 44.4 (+, (CH3)2N), 45.3, 45.8, 46.1, 46.4 (–, 

CH2 cyclen), 114.8, 118.3, 123.1, 127.9, 128.6, 128.9, 129.3, 129.9 (+, CH), 135.0 (Cq, 

Cq-SO2), 151.7 (Cq, Cq-N-(CH3)2), 165.5 (Cq, Cq-triazine). – IR (KBr) [cm
-1

]: 

ν
~ = 3427, 3283, 2931, 2361, 2200, 1636, 1560, 1419, 1346, 1312, 1143, 1110, 1090, 

979, 795, 627, 575. – UV (HEPES pH 7.4, 25 mM): λex (lg ε) = 330 nm (3.575), 

227 (4.637). – MS (ESI(+), H2O/MeOH + 10 mmol/L NH4Ac): m/z (%) = 479.1 (100) 

[M
4+

 + 2 CH3COO
-
]
2+

, 449.1 (82) [M
4+

 – H
+ 

+ CH3COO
-
]

2+
, 420.1 (20) [M

4+
 – 2 H

+
]

2+
. 

– Elemental analysis Calcd (%) for C33H56N14O18SCl4Zn2 ·  EtOH: C 32.65, H 4.85, 

N 15.23; found: C 32.52, H 4.87, N 15.04. – MF: C33H56N14O2SZn2(ClO4)4 – 

FW: 1241.52 g/mol 
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7-Dodecyloxy-2-oxo-2H-chromene-3-carboxylic acid ethyl ester (8) 

Under nitrogen atmosphere hydroxy-coumarin ethylester 7 (779 mg, 3.3 mmol) was 

dissolved in dry DMF (12 mL) and K2CO3 (2.68 g, 11.6 mmol) was added. 

Subsequently 1-bromododecane (1.2 mL, 5.0 mmol) was given dropwise to the stirred 

to suspension. The reaction mixture was stirred over night (20 h) at 80 °C. The reaction 

progress was monitored by TLC (chloroform). K2CO3 was filtered off and the filtrate 

was concentrated. The crude product was purified by flash column chromatography on 

flash silica gel (chloroform; Rf = 0.48) yielding compound 8 (537 mg, 1.33 mmol, 

40 %) as yellow solid. 

MP: 71 °C. – 
1
H-NMR (400 MHz; CDCl3): δ (ppm) = 0.87 (t, 

3
J = 7.1 Hz, 3 H, COSY: 

C
24

H3), 1.17-1.36 (m, 16 H, COSY: C
16

H2 – C
23

H2), 1.38 (t, 
3
J = 7.1 Hz, 3 H, COSY: 

C
1
H3), 1.43-1.51 (m, 2 H, COSY: C

15
H2), 1.81 (quin, 2 H, COSY: C

14
H2), 4.03 (t, 

3
J = 6.1 Hz, 2 H, COSY: C

13
H2), 4.39 (q, 

3
J = 7.1 Hz, 2 H, COSY: C

2
H2), 6.78 (d, 

3
J = 1.9 Hz, 1 H, HMBC: C

7
H), 6.87 (dd, 

3
J = 1.9 Hz, 8.5 Hz, 1 H, COSY: C

10
H), 

7.48 (d, 
3
J = 8.5 Hz, 1 H, COSY: C

9
H), 8.49 (s, 1 H, HMBC: C

12
H). – 

13
C-NMR 

(100 MHz; CDCl3): δ (ppm) = 14.1 (+, 1 C, HSQC, COSY: C
24

H3), 14.3 (+, 1 C, 

HSQC, COSY: C
1
H3), 22.6, 29.26, 29.29, 29.47, 29.52, 29.59, 31.9 (–, 8 C, HSQC, 

COSY: C
16

H2 – C
23

H2), 25.9 (–, 1 C, HSQC, COSY: C
15

H2), 28.8 (–, 1 C, HSQC, 

COSY: C
14

H2), 61.3 (–, 1 C, HSQC, COSY: C
2
H2), 70.0 (–, 1 C, HSQC, COSY: 

C
13

H2), 100.8 (+, 1 C, HSQC, HMBC: C
7
H), 114.0 (+, 1 C, HSQC, COSY: C

10
H), 

130.6 (+, 1 C, HSQC, COSY: C
9
H), 149.0 (+, 1 C, HSQC, HMBC: C

10
H), 111.4 (Cq, 

1 C, HMBC: C
11

), 113.9 (Cq, 1 C, HMBC: C
6
), 157.2 (Cq, 1 C, HMBC: C

5
), 157.6 (Cq, 

1 C, HMBC: C
4
), 163.5 (Cq, 1 C, HMBC: C

3
), 164.7 (Cq, 1 C, HMBC: C

8
). – IR (KBr) 

[cm
-1

]: ν~ = 2918, 2847, 1748, 1693, 1598, 1553, 1469, 1434, 1378, 1301, 1213, 1110, 

1027, 793, 722. – UV (CHCl3): λmax (lg ε) = 352 nm (4.423). – MS (CI (NH3): m/z (%) 

= 403.2 (100) [MH
+
], 420.2 (38) [M + NH4

+
]. – HRMS Calcd for C24H34O5: 402.2406; 

Found: 402.2398. – MF: C24H34O5 – FW: 402.54 g/mol 
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7-Dodecyloxy-2-oxo-2H-chromene-3-carboxylic acid (9) 

Under nitrogen atmosphere hydroxy-coumarin ethylester 7 (1.3 g, 5.6 mmol) were 

dissolved in dry DMF and K2CO3 (2.7 g, 19.5 mmol) was added. Subsequently 1-

ocatedecylamine (2.8 g, 8.4 mmol) was given dropwise to the stirred to suspension. The 

reaction mixture was stirred over night (20 h) at 60 °C. The reaction progress was 

monitored by TLC (chloroform). K2CO3 was filtered off and the filtrate was 

concentrated. The crude product was purified by flash column chromatography on flash 

silica gel (chloroform; Rf = 0.34) yielding compound 9 (1.4 g, 2.8 mmol, 50 %) as 

yellow solid. 

MP: 84 °C. –
1
H-NMR (300 MHz; CDCl3): δ (ppm) = 0.87 (t, 

3
J = 6.7 Hz, 3 H, CH3), 

1.12-1.35 (m, 28 H, CH2), 1.39 (t, 
3
J = 7.1 Hz, 3 H, CH3), 1.43-1.54 (m, 2 H, CH2), 

1.81 (quin, 2 H, CH2), 3.63 (t, 
3
J = 6.6 Hz, 1.7 H, CH2), 4.02 (t, 

3
J = 6.6 Hz, 0.3 H, 

CH2), 4.39 (t, 
3
J

 
= 7.1 Hz, 2 H, CH2), 6.79 (d, 

3
J = 2.2 Hz, 1 H, CH), 6.87 (dd, 

3
J = 2.3 Hz, 8.6 Hz, 1 H, CH), 7.48 (d, 

3
J = 8.8 Hz, 1 H, CH), 8.49 (s, 1 H, CH). – 

13
C-

NMR (75 MHz; CDCl3): δ (ppm) = 14.1 (+, 1 C, CH3), 14.3 (+, 1 C, CH3), 22.7 (–, 1 C, 

CH2), 25.8 (–, 0.2 C, CH2), 25.9 (–, 0.8 C, CH2), 28.9 (–, 1 C, CH2), 29.32 (–, 1 C, 

CH2), 29.38 (–, 1 C, CH2), 29.46 (–, 0.2 C, CH2), 29.54 (–, 0.8 C, CH2), 29.59 (–, 1 C, 

CH2), 29.67, 29.71 (–, 8 C, CH2), 31.9 (–, 0.9 C, CH2), 32.8 (–, 0.1 C, CH2), 61.7 (–, 

0.8 C, CH2), 63.1 (–, 0.2 C, CH2), 69.0 (–, 1 C, CH2), 100.8 (+, 1 C, CH), 111.5 (Cq, 

1 C), 113.8 (Cq, 1 C), 114.0 (+, 1 C, CH), 130.7 (+, 1 C, CH), 149.1 (+, 1 C, CH), 

157.3 (Cq, 1 C), 157.7 (Cq, 1 C), 163.5 (Cq, 1 C), 164.8 (Cq, 1 C). – IR (ATR) [cm
-1

]: 

ν
~ = 2916, 2849, 1746, 1702, 1624, 1510, 1472, 1376, 1228, 1180,1040, 847, 793, 718. 

– UV (CHCl3): λmax (lg ε) = 352 nm (4.246). – MS (EI): m/z (%) = 486.3 (20) [M
+·

], 

440.4 (12) [M
+·

 - EtOH], 247.0 (50) [M
+·

 - C17H35
·
], 234.0 (100) [M

+·
 - C18H36], 189.0 

(90) [M
+·

 - C18H36 - EtO
·
]. – HRMS Calcd for C30H46O5 486.3345; Found: 486.3347. – 

MF: C30H46O5 – FW: 486,70 g/mol 
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7-Dodecyloxy-2-oxo-2H-chromene-3-carboxylic acid (10) 

Ethyl ester of compound 8 (386 mg, 0.96 mmol) was dissolved in THF (6.0 mL) and 

heated to reflux. Subsequently 2 M NaOH (15.4 mL) were added and the solution was 

refluxed for 5 h. Reaction control was performed by TLC (chloroform). The reaction 

mixture was cooled to room temperature and further to 0 °C by an ice bath. The yellow 

solution was acidified with 1 M HCl until a white precipitate was formed which was 

isolated by filtration and washed with cold water. Compound 10 was obtained as a 

white solid (360 mg, 0.96 mmol, 100 %). 

MP: 126 °C. – 
1
H-NMR (600 MHz; CDCl3): δ (ppm) = 0.87 (t, 

3
J = 7.0 Hz, 3 H, 

HSQC, COSY: C
1
H3), 1.16-1.33 (m, 14 H, HSQC, COSY: C

2
H2 – C

8
H2), 1.33-1.42 (m, 

2 H, HSQC, COSY: C
9
H2), 1.47 (quin, 

3
J = 7.4 Hz, 2 H, HSQC, COSY: C

10
H2), 

1.84 (quin, 
3
J = 7.6 Hz, 2 H, HSQC, COSY: C

11
H2), 4.08 (t, 

3
J = 6.5 Hz, 2 H, HSQC, 

COSY: C
12

H2), 6.89 (d, 
4
J = 2.0 Hz, 1 H, HSQC, COSY: C

14
H2), 6.99 (dd, 

3
J = 8.8 Hz,

 

4
J = 2.2 Hz, 1 H, HSQC, COSY: C

15
H2), 7.62 (d, 

3
J = 8.7 Hz, 1 H, HMBC, HSQC: 

C
21

H2), 8.84 (s, 1 H, HMBC, HSQC: C
17

H2), 12.16 (bs, 1 H, HSQC: COOH
23

). – 
13

C-

NMR (150 MHz; CDCl3): δ (ppm) = 14.1 (+, 1 C, HSQC, COSY: C
1
H3), 22.6, 29.29, 

29.46, 29.51, 29.58, 29.59, 31.9 (–, 7 C, HMBC, HSQC: C
2
H2 – C

8
H2), 25.8 (–, 1 C, 

HSQC, COSY: C
10

H2), 28.8 (–, 1 C, HSQC, COSY: C
11

H2), 29.23 (–, 1 C, HSQC, 

COSY: C
9
H2), 69.4 (–, 1 C, HSQC, COSY: C

12
H2), 101.2 (+, 1 C, HSQC, COSY: 

C
14

H), 110.6 (Cq, 1 C, HMBC, HSQC: C
18

), 112.1 (Cq, 1 C, HMBC, HSQC: C
16

), 

115.4 (+, 1 C, HSQC, COSY: C
15

H), 131.6 (+, 1 C, HMBC, HSQC: C
21

H), 151.2 (+, 

1 C, HMBC, HSQC: C
17

H), 157.1 (Cq, 1 C, HMBC, HSQC: C
20

), 163.1 (Cq, 1 C, 

HMBC, HSQC: C
19

), 164.6 (Cq, 1 C, HMBC, HSQC: C
22

), 165.9 (Cq, 1 C, HMBC, 

HSQC: C
13

). – IR (ATR) [cm
-1

]: ν~ = 2914, 2846, 1734, 1686, 1619, 1560, 1504, 1466, 

1429, 1384, 1258, 1217, 1121, 922, 807, 720. – UV (CHCl3): λmax (lg ε) = 277 (4.305), 

358 nm (4.418). – MS (ESI(–), EE/MeOH + 10 mmol/L NH4Ac): m/z (%) = 

373.1 (100) [M – H
+
]

-
, 329.1 (13) [M – CO2]

-
, 747.4 (8) [2 M – H

+
]

-
. – HRMS Calcd 

for C22H30O5: 374.2093; Found: 374.2088. – MF: C22H30O5 – FW: 374.48 g/mol 
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7-Octadecyloxy-2-oxo-2H-chromene-3-carboxylic acid (11) 

Ethyl ester of compound 9 (297 mg, 0.61 mmol) was dissolved in THF (5.0 mL) and 

heated to reflux. Subsequently 2 M NaOH (10.3 mL) were added and the solution was 

refluxed for 4 h. Reaction control was performed by TLC (chloroform). The reaction 

mixture was cooled to room temperature and further to 0 °C by an ice bath. The yellow 

solution was acidified with 1 M HCl until a white precipitate was formed which was 

isolated by filtration and washed with cold water. After drying in vaccuo compound 11 

was obtained as a white solid (278 mg, 0.61 mmol, 100 %).  

MP: 125 °C. – 
1
H-NMR (300 MHz; CDCl3): δ (ppm) = 0.86 (t, 

3
J = 6.7 Hz, 3 H, CH3), 

1.03-1.38 (m, 28 H, CH2), 1.41-1.58 (m, 2 H, CH2), 1.68-1.97 (m, 2 H, CH2), 3.64
 
(t, 

3
J = 6.7 Hz, 0.2 H, CH2), 4.08 (t, 

3
J = 6.4 Hz, 1.8 H, CH2), 6.89 (d, 

4
J = 2.5 Hz, 1 H, 

CH), 6.99 (dd, 
3
J = 8.8 Hz,

 4
J = 2.5 Hz, 1H, CH), 7.62 (d, 

3
J = 8.8 Hz, 1 H CH), 8.84 (s, 

1 H, CH). – 
13

C-NMR (75 MHz; CDCl3): δ (ppm) = 14.1 (+, 1 C, CH3), 22.7 (–, 1 C, 

CH2), 25.9 (–, 1 C, CH2), 28.8 (–, 1 C, CH2), 29.3 (–, 1 C, CH2), 29.4, (–, 1 C, CH2), 

29.53 (–, 1 C, CH2), 29.58 (–, 1 C, CH2), 29.67 (–, 2 C, CH2), 29.71 (–, 6 C, CH2), 

31.9 (–, 1 C, CH2), 69.4 (–, 1 C, CH2), 101.2 (+, 1 C, CH), 110.6 (Cq, 1 C), 112.2 (Cq, 

1 C), 115.5 (+, 1 C, CH), 131.7 (+, 1 C, CH), 151.3 (+, 1 C, CH), 157.1 (Cq, 1 C), 

163.2 (Cq, 1 C), 164.6 (Cq, 1 C), 166.0 (Cq, 1 C). – IR (ATR) [cm
-1

]: ν~ = 2915, 2850, 

1733, 1686, 1622, 1560, 1505, 1471, 1383, 1256, 1221, 1122, 1005, 820, 798. – 

UV (CHCl3): λmax (lg ε) = 358 nm (4.009). – MS (ESI(+), DCM/MeOH + 10 mmol/L 

NH4Ac): m/z (%) = 459.3 (100) [MH
+
], 476.3 (25) [M + NH4

+
]. – HRMS Calcd for 

C28H42O5 458.3032; Found: 458.3026. –MF: C28H42O5 – FW: 458.64 g/mol 
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7-Dodecyloxy-2-oxo-2H-chromene-3-carboxylic acid {2-[4,6-bis-(1,4,7,10tetraaza-

cyclododec-1-yl)-[1,3,5]triazin-2-yl]-ethyl}-1,4,7-tricarboxylic acid tri-tert-butyl ester 

(13): 

7-Dodecyloxy-2-oxo-2H-chromene-3-carboxylic acid 10 (200 mg, 0.53 mmol), DIPEA 

(368 µL, 2.14 mmol), TBTU (189 mg, 0.59 mmol), and HOBt (90 mg, 0.59 mmol) were 

dissolved under nitrogen atmosphere in dry DMF/THF (2 mL/4 mL) under ice cooling 

and stirred for 1 h. Subsequently 12 (635 mg, 0.59 mmol) dissolved in DMF (2 mL) was 

added dropwise. The reaction was allowed to warm to room temperature and was stirred 

30 min at rt and 2.5 h at 40 °C. The reaction progress was monitored by TLC (ethyl 

acetate/petrol ether). After completion of the reaction the solvent was removed and the 

crude product was purified by flash column chromatography on flash silica gel (ethyl 

acetate/petrol ether 1:1; Rf = 0.25) yielding compound 13 (608 mg, 0.42 mmol, 79 %) as 

a lightly yellow solid. 

MP: 113 °C. – 
1
H-NMR (400 MHz; CDCl3): δ (ppm) = 0.85 (t, 

3
J = 6.9 Hz, 3 H, 

HSQC, COSY: C
1
H3), 1.20-1.33 (m, 18 H, HSQC, COSY: C

2
H2 – C

10
H2), 1.41 (s, 

18 H, HSQC, COSY: C
33

H3), 1.42 (s, 36 H, HSQC, COSY: C
33

H3), 1.80 (quin, 

3
J = 7.3 Hz, 2 H, HSQC, COSY: C

11
H2), 3.02-3.89 (m, 36 H, HSQC, COSY: C

24
H2, 

C
25

H2, C
30

H2), 4.02 (t, 
3
J = 6.5 Hz, 2 H, HSQC, COSY: C

12
H2), 4.99 (bs, 1 H, HMBC, 

HSQC: NH
23

), 6.81 (d, 
4
J = 2.2 Hz, 1 H, HMBC, HSQC, COSY: C

21
H2), 6.90 (dd, 

4
J = 2.3 Hz, 

3
J = 8.8 Hz, 1 H, HMBC, HSQC, COSY: C

14
H), 7.54 (d, 

3
J = 8.8 Hz, 1 H, 

HMBC, HSQC, COSY: C
15

H), 8.79 (s, 1 H, HMBC, HSQC: C
17

H), 8.87 (m, 1 H, 

HMBC, HSQC: NH
26

). – 
13

C-NMR (100 MHz; CDCl3): δ (ppm) = 14.0 (+, 1 C, HSQC, 

COSY: C
1
H3), 22.6, 25.9, 29.23, 29.26, 29.46, 29.49, 29.55, 29.57, 31.8 (–, 9 C, HSQC, 

COSY: C
2
H2 – C

10
H2), 28.43, 28.47 (+, 18 C, HSQC, COSY: C

33
H3), 28.8 (–, 1 C, 

HSQC, COSY: C
11

H2), 39.8, 40.6 (–, 2 C, HSQC, COSY: C
24

H2, C
25

H2), 50.2 (–, 16 C, 

HSQC, COSY: C
30

H2), 69.0 (–, 1 C, HMBC, HSQC: C
12

H2), 79.7 (Cq, 6 C, HMBC, 

HSQC: C
32

), 100.7 (+, 1 C, HMBC, HSQC, COSY: C
21

H), 112.1 (Cq, 1 C, HMBC, 
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HSQC: C
16

), 114.35 (+, 1 C, HMBC, HSQC, COSY: C
14

H), 114.41 (Cq, 1 C, HMBC, 

HSQC: C
19

), 130.8 (+, 1 C, HMBC, HSQC, COSY: C
15

H), 148.3 (+, 1 C, HMBC, 

HSQC, COSY: C
17

H), 156.3 (Cq, 6 C, HMBC, HSQC: C
31

), 156.7 (Cq, 1 C, HMBC, 

HSQC: C
20

), 161.7 (Cq, 1 C, HMBC, HSQC: C
18

), 162.7 (Cq, 1 C, HMBC, HSQC: C
22

), 

164.5 (Cq, 1 C, HMBC, HSQC: C
13

), 165.9 (Cq, 3 C, HMBC, HSQC: C
27

, C
28

, C
29

). – 

IR (KBr) [cm
-1

]: ν
~ = 2973, 2929, 2878, 1686, 1603, 1535, 1501, 1466, 1408, 1247, 

1160, 1026, 971, 858, 776. – UV (CHCl3): λmax (lg ε) = 351 nm (4.336). – MS (ESI(+), 

EE/MeOH + 10 mmol/L NH4Ac): m/z (%) = 1437.3 (100) [MH
+
], 569.0 (12) [M + 2 H

+
 

– 3 Boc]
2+

, 518.9 (20) [M + 2 H
+
 – 4 Boc]

2+
, 468.8 (17) [M + 2 H

+
 – 5 Boc]

2+
, 

418.8 (13) [M + 2 H
+
 – 6 Boc]

2+
. – MF: C73H121N13O16 – FW: 1436.84 g/mol 
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7-Octadecyloxy-2-oxo-2H-chromene-3-carboxylic acid {2-[4,6-bis-(1,4,7,10tetraaza-

cyclododec-1-yl)-[1,3,5]triazin-2-ylamino]-ethyl}-1,4,7-tricarboxylic acid tri-tert-butyl 

ester (14) 

7-Octadecyloxy-2-oxo-2H-chromene-3-carboxylic acid 11(160 mg, 0.35 mmol), DIPEA 

(360 µL, 2.09 mmol), TBTU (123 mg, 0.38 mmol), and HOBt (59 mg, 0.38 mmol) were 

dissolved under nitrogen atmosphere in dry DMF/THF (2 mL / 4 mL) under ice cooling 

and stirred for 1 h. Subsequently 12 (415 mg, 0.38 mmol) dissolved in DMF (2 mL) was 

added dropwise. The reaction was allowed to warm to room temperature and was stirred 

30 min at rt and 4.5 h at 40 °C. The reaction progress was monitored by TLC (ethyl 

acetate/petrol ether). After completion of the reaction the solvent was removed and the 

crude product was purified by flash column chromatography on flash silica gel (ethyl 

acetate/petrol ether 1:1; Rf = 0.25) yielding compound 14 (375 mg, 0.25 mmol, 71 %) as 

a colourless solid. 

1
H-NMR (600 MHz; CDCl3): δ (ppm) = 0.86 (t, 

3
J = 7.2 Hz, 3 H, HSQC, HMBC: 

C
1
H3), 1.24 (m, 28 H, HSQC, HMBC: C

2
H2 – C

15
H2), 1.31-1.64 (m, 56 H, HSQC, 

HMBC: boc-CH3, C
16

H2), 1.78-1.83 (m, 2 H, HSQC, HMBC: C
17

H2), 3.00-3.92 (m, 
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36 H, HSQC, HMBC: cyclen-C
36

H2, C
30

H2, C
31

H2), 4.02 (t, 
3
J = 6.5 Hz, 2 H, HSQC, 

HMBC: C
18

H2), 5.04 (bs, 1 H, HSQC, HMBC: N
32

H), 6.82 (d, 
4
J = 2.3 Hz, 1 H, HSQC, 

HMBC: C
27

H), 6.90 (dd, 
3
J = 8,7 Hz, 

4
J = 2.3 Hz, 1 H, HSQC, HMBC: C

20
H), 7.55 (d, 

3
J = 8,7 Hz, 1 H, HSQC, HMBC: C

21
H), 8.79 (s, 1 H, HSQC, HMBC: C

23
), 8.88 (m, 

1 H, HSQC, HMBC: N
29

H). – 
13

C-NMR (150 MHz; CDCl3): δ (ppm) = 14.1 (+, 1 C, 

HSQC, HMBC: C
1
H3), 22.6 (–, 1 C), 25.9 (–, 1 C), 29.26 (–, 1 C), 29.30 (–, 1 C), 

29.52 (–, 1 C), 29.59 (–, 2 C), 29.61 (–, 1 C), 29.63 (–, 5 C), 31.9 (–, 1 C) HSQC, 

HMBC: C
2
H2 – C

16
H2), 28.4, 28.5 (+, 18 C, HSQC, HMBC: C

39
H3), 28.8 (–, 1 C, 

HSQC, HMBC: C
17

H2), 39.7 (–, 1 C, HSQC, HMBC: C
30

H2), 40.6 (–, 1 C, HSQC, 

HMBC: C
31

H2), 50.3 (–, 16 C, HSQC, HMBC: C
36

H2), 69.0 (–, 1 C, HSQC, HMBC: 

C
18

H2), 79.7 (Cq, 6 C, HSQC: C
37

), 100.7 (+, 1 C, HSQC, HMBC: C
27

H), 112.4 (Cq, 

1 C, HSQC, HMBC: C
22

), 114.37 (+, 1 C, HSQC, HMBC: C
20

H), 114.39 (Cq, 1 C, 

HSQC, HMBC: C
24

), 130.9 (+, 1 C, HSQC, HMBC: C
21

H), 148.3 (+, 1 C, HSQC, 

HMBC: C
23

H), 156.7 (Cq, 7 C, HSQC, HMBC: C
26

, C
38

), 161.7 (Cq, 1 C, HSQC, 

HMBC: C
25

), 162.7 (Cq, 1 C, HSQC, HMBC: C
28

), 164.5 (Cq, 1 C, HSQC, HMBC: 

C
19

), 165.9 (Cq, 3 C, HSQC, HMBC: C
33

, C
34

, C
35

). – UV (CHCl3): λmax (lg ε) = 350 nm 

(4.333). – MS (ESI(+), DCM/MeOH + 10 mmol/L NH4Ac): m/z (%) = 1521.4 (100) 

[MH
+
], 769.7 (46) [MH

+
 + NH4

+
]

2+
, 761.2 [M + 2 H

+
]
2+

. – MF: C79H133N13O16 – 

FW: 1521.09 g/mol 

 

 

N
N

N
N

N
N

N
N

N

N

N

H

H

H

H

H

H

N
H

O O O

O

N
H

 

7-Dodecyloxy-2-oxo-2H-chromene-3-carboxylic acid {2-[4,6-bis-(1,4,7,10tetraaza-

cyclododec-1-yl)-[1,3,5]triazin-2-ylamino]-ethyl}-amide (15) 

Compound 13 (200 mg, 0.14 mmol) was dissolved in DCM (4 mL) and cooled to 0 °C. 

Subsequently TFA (901 µL, 11.7 mmol) was added. The solution was stirred 15 min at 

0 °C and additionally 20 h at room temperature. The solvent was removed in vacuo, 

yielding quantitatively the protonated TFA salt of compound 15 as a pale yellow solid. 
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To obtain the free base of compound 15 a weak basic ion exchanger resin was swollen 

for 15 min in water and washed neutral with water. A column was charged with resin 

(1114 mg, 40.0 mmol hydroxy equivalents at a given capacity of 5 mmol/g). The 

hydrochloride salt was dissolved in water / MeOH (8:2), put onto the column and 

eluated with water / MeOH (8:2). The elution of the product was controlled by pH 

indicator paper (pH > 10) and was completed when pH again was neutral. The eluate 

was concentrated and lyophilised to yield 110 mg (0.13 mmol, 93 %) of free base 15, as 

pale yellow solid. 

MP: 174°C. – 
1
H-NMR (400 MHz; CDCl3): δ (ppm) = 0.85 (t, 

3
J = 6.9 Hz, 3 H, CH3), 

1.19-1.37 (m, 16 H, CH2), 1.39-1.49 (m, 2 H, CH2), 1.80 (quin, 
3
J = 7.2 Hz, 2 H, CH2), 

2.82-3.84 (m, 36 H, CH2), 4.02 (t, 
3
J = 6.2 Hz, 2 H, CH2), 6.80 (d, 

4
J = 1.8 Hz, 1 H, 

CH), 6.93 (dd, 
3
J = 8.7 Hz, 

4
J = 1.7 Hz, 1 H, CH), 7.02 (bs, 1H, NH), 7.66 (d, 

3
J = 8.8 Hz, 1 H, CH), 8.73 (s, 1 H, CH), 9.18 (bs, 1 H, NH). – 

13
C-NMR (100 MHz; 

CDCl3): δ (ppm) = 14.0 (+, 1 C, CH3), 22.6 (–, 1 C, CH2), 25.9 (–, 1 C, CH2), 28.8 (–, 

1 C, CH2), 29.27 (–, 2 C, CH2), 29.46 (–, 1 C, CH2), 29.51 (–, 1 C, CH2), 29.56 (–, 2 C, 

CH2), 31.8 (–, 1 C, CH2), 39.2 (–, 1 C, CH2), 39.3 (–, 1 C, CH2), 42.5 (–, 1 C, CH2), 

43.3 (–, 2 C, CH2), 43.7 (–, 1 C, CH2), 44.8 (–, 4 C, CH2), 45.8 (–, 4 C, CH2), 46.9 (–, 

4 C, CH2), 69.1 (–, 1 C, CH2), 100.8 (+, 1 C, CH), 111.9 (Cq, 1 C), 113.4 (Cq, 1 C), 

114.5 (+, 1 C, CH), 131.3 (+, 1 C, CH), 148.5 (+, 1 C, CH), 156.8 (Cq, 1 C), 161.6 (Cq, 

1 C), 163.7 (Cq, 1 C), 164.9 (Cq, 1 C), 165.9 (Cq, 1 C), 167.2 (Cq, 1 C), 168.0 (Cq, 1 C). 

– IR (ATR) [cm
-1

]: ν~ = 2926, 2855, 1676, 1597, 1536, 1496, 1418, 1366, 1297, 1198, 

1174, 1120, 1017, 795, 719. – UV (CHCl3): λmax (lg ε) = 352 nm (4.197). – LC-MS (+ 

c ESI Q1MS): m/z (%) = 418.7.0 (100) [M + 2 H
+
]

2+
, 836.6 (10) [MH

+
]. – 

HRMS Calcd for C43H74N13O4 836.5987; Found: 836.5960. – MF: C43H73N13O4 – 

FW: 836.14 g/mol 
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N
N

N
N

N
N

N
N

N

N

N

H

H

H

H

H

H

N
H

O O O

O

N
H

 

7-Octadecyloxy-2-oxo-2H-chromene-3-carboxylic acid {2-[4,6-bis-(1,4,7,10tetraaza-

cyclododec-1-yl)-[1,3,5]triazin-2-ylamino]-ethyl}-amide (16) 

Compound 14 (375 mg, 0.26 mmol) was dissolved in DCM (4 mL) and cooled to 0 °C. 

Subsequently HCl/ether (14 mL) was added. The solution was stirred 15 min at 0 °C 

and additionally 24 h at room temperature. The solvent was removed in vacuo, yielding 

quantitatively the protonated HCl salt of compound 16 as a pale yellow solid. To obtain 

the free base of compound 16 a weak basic ion exchanger resin was swollen for 15 min 

in water and washed neutral with water. A column was charged with resin (1920 mg, 

40.0 mmol hydroxy equivalents at a given capacity of 5 mmol/g). The hydrochloride 

salt was dissolved in water / MeCN (5:1), put onto the column and eluated with water / 

MeCN (5:1). The elution of the product was controlled by pH indicator paper (pH > 10) 

and was completed when pH again was neutral. The eluate was concentrated and 

lyophilised to yield 200 mg (0.22 mmol, 85 %) of free base 16, as colourless solid. 

Note: NMR investigations on compound 16 were not feasible as the resolution on the 

NMR was not sufficient.  

MP: 179 °C. – IR (ATR) [cm
-1

]: ν~ = 3347, 2921, 2850, 1708, 1594, 1538, 1496, 1418, 

1362, 1274, 1222, 1142, 1017, 809, 739. – UV (CHCl3): λmax (lg ε) = 354 nm (4.360). – 

LC-MS (+ c ESI Q1MS): m/z (%) = 460.8 (100) [M + 2 H
+
]
2+

, 920.7 (5) [MH
+
]. – 

HRMS Calcd for C49H86N13O4 920.6926; Found: 920.6901. – MF: C49H85N13O4  –

 FW: 920.30 g/mol 
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N
N

N
N

N
N

N
N

H

H
H

N

N
NN

H

H

H

H

Zn

Zn
O

N
H

O

O O
H

25
C

12

4 ClO4
-

4+

 

Binuclear Zn(II)-cyclen-coumarin C12 (6) 

A solution of compound 15 (50.0 mg, 60 µmol) in MeOH (1 mL) was heated to 65 °C 

and subsequently a methanolic solution of Zn(ClO4)2 (100 mM, 1196 µL, 120 µmol) 

was added dropwise. After stirring the reaction mixture for 20 h at 65 °C, the methanol 

was removed in vacuo. The residue was dissolved in water and was lyophilized yielding 

complex 5 as a colourless solid in quantitative yield (82 mg, 60 µmol). 

MP: 232 °C. – IR (ATR) [cm
-1

]: ν~ = 3537, 3303, 2929, 2854, 1702, 1599, 1546, 1424, 

1347, 1283, 1224, 1058, 964, 848. – UV (CHCl3): λmax (lg ε) = 353 nm (3.740). – 

MS (ESI(+), DCM/MeOH + 10 mmol/L NH4Ac): m/z (%) = 540.9 (100) [M
4+

 + 

2 CH3COO
-
]
2+

, 561.9 (26) [M
4+

 + ClO4
-
+ CH3COO

-
]

2+
, 510.9 (20) [M

4+
 – H

+ 
+ 

CH3COO
-
]
2+

. – MF: C43H73N13O4Zn2(ClO4)2 – FW: 1364.70g/mol 
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Binuclear Zn(II)-cyclen-coumarin C18 (5) 

Compound 16 (100 mg, 0.11 mmol) was dissolved in 5 mL water and heated to 65 °C to 

get a clear yellow solution. Subsequently zinc(II)-perchlorate (81 mg, 0.22 mmol) 

dissolved in 5 ml water was added slowly to the stirred reaction mixture. The reaction 

mixture was stirred for additional 24 h at 65 °C. The solvent was removed in vacuo and 

the residue was redissolved in water and lyophilized to yield 158 mg (0.11 mmol, 

100 %) of 6 as a lightly yellow solid.  
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MP: 209 °C. – 
1
H-NMR (600 MHz; CDCl3 / CD3CN 1:1): δ (ppm) = 0.86 (t, 

3
J = 7.1 Hz, 3 H, HSQC, HMBC: C

1
H3), 1.20-1.31 (m, 26 H, HSQC, HMBC: C

2
H2 – 

C
14

H2), 1.31-1.37 (m, 2 H, HSQC, HMBC, ROESY: C
15

H2), 1.41-1.46 (2 H, HSQC, 

HMBC, ROESY: C
16

H2), 1.73-1.80 (m, 2 H, HSQC, HMBC, ROESY: C
17

H2), 2.51-

3.57 (m, 36 H, HSQC, HMBC: cyclen-CH2, C
30

H2, C
31

H2), 4.06 (t, 
3
J = 6.5 Hz, 2 H, 

HSQC, HMBC: C
18

H2), 6.11 (s, 1 H, HSQC, ROESY: cyclen-NH), 6.20 (s, 1 H, HSQC, 

ROESY: cyclen-NH), 6.29 (s, 1 H, HSQC, ROESY: cyclen-NH), 6.44 (s, 1 H, HSQC, 

ROESY: cyclen-NH), 6.87 (d, 
4
J = 2.2 Hz, 1 H, HSQC, HMBC, ROESY: C

27
H), 

6.95 (dd, 
3
J = 8.7 Hz, 

4
J = 2.3 Hz, 1 H, HSQC, HMBC, ROESY: C

20
H), 7.74 (d, 

3
J = 8.7 Hz, 1 H, HSQC, HMBC, ROESY: C

21
H), 8.85 (s, 1 H, HSQC, HMBC, 

ROESY: C
23

H), 9.22 (m, 1 H, HSQC, ROESY: NH
29

). – 
13

C-NMR (150 MHz; CDCl3 / 

CD3CN 1:1): δ (ppm) = 14.3 (+, 1 C, HSQC, HMBC: C
1
H3), 26.3 (–, 1 C, HSQC, 

HMBC, ROESY: C
16

H2), 23.1, 29.7, 29.94, 29.97, 30.1, 32.3 (–, 13 C, HSQC, HMBC: 

C
2
H2 – C

14
H2), 29.3 (–, 1 C, HSQC, HMBC, ROESY: C

17
H2), 29.75 (–, 1 C, HSQC, 

HMBC: C
15

H2), 39.9, 42.6, 44.3, 45.8, 45.9, 46.3, 46.9 3 (–, 18 C, HSQC, HMBC, 

ROESY: cyclen-CH2, C
30

H2, C
31

H2), 69.8 (–, 1 C, HSQC, HMBC, ROESY: C
18

H2), 

101.4 (+, 1 C, HSQC, HMBC, ROESY: C
27

H), 112.8 (Cq, 1 C, HSQC, HMBC: C
22

), 

113.8 (Cq, 1 C, HSQC, HMBC: C
24

), 115.1 (+, 1 C, HSQC, HMBC, ROESY: C
20

H), 

132.3 (+, 1 C, HSQC, HMBC, ROESY: C
21

H), 149.8 (+, 1 C, HSQC, HMBC, ROESY: 

C
23

H), 157.5 (Cq, 1 C, HSQC, HMBC: C
26

), 162.1 (Cq, 1 C, HSQC, HMBC: C
25

), 

164.8 (Cq, 1 C, HSQC, HMBC: C
28

), 165.6 (Cq, 1 C, HSQC, HMBC: C
19

). – 

IR (ATR) [cm
-1

]: ν
~ = 3355, 2919, 2851, 1705, 1655, 1612, 1534, 1426, 1276, 1225, 

1051, 926. – UV (CHCl3): λmax (lg ε) = 355 nm (3.523). –MS (ESI(+), EE/MeOH + 

10 mmol/L NH4Ac): m/z (%) = 583.0 (100) [M
4+

 + 2 CH3COO
-
]
2+

. – 

MF: C49H85N13O4Zn2(ClO4)4 – FW: 1448.86 g/mol 
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6.4.3 Preparation of vesicles and vesicular receptors 

 

6.4.3.1 Vesicle preparation  

In a small round-bottom flask 2 - 12 mg of DSPC were dissolved in 5 - 10 mL of 

chloroform and optionally 10 mol% of amphiphilic receptors and/or dyes were added. 

After warming to 75 °C under vigorous shaking, the solvent was slowly removed under 

reduced pressure to yield a thin lipid film. Traces of solvent were removed by high 

vacuum. Treatment with an appropriate amount of buffer (HEPES 25 mM, pH 7.4) to 

obtain lipid concentrations of 1.5 – 2.5 mM and heating to 75 °C for 15 – 30 min 

yielded a turbid MLV-suspension. SUV-dispersions were obtained by extrusion through 

100 nm-pore size polycarbonate membranes with a LiposoFast liposome extruder from 

Avestin.
20, 35 

 

6.4.3.2 Size exclusion chromatography 

Vesicle dispersions were separated from low molecular weight solutes on minicolumns 

of Sephadex LH-20 gel filtration media as described in literature.
23

  

 

6.4.3.3 Dynamic Light Scattering 

PCS measurements were performed on a Malvern Zetasizer 3000 at 25 °C using 1 cm 

disposable polystyrene fluorescence cuvettes (VWR). Three subsequent measurements 

of 60 seconds each were performed for each sample. Data analysis was performed using 

the Malvern PCS software. 

 

 

6.4.3.4 Preparation of vesicular receptors VR-4, VR-5 and VR-4/11 

 

VR-4, VR-5: 

Compounds 4 and compound 5 were incorporated into DSPC–SUVs by following the 

general preparation procedure described above. The mixed lipid films were hydrated 

with 25 mM HEPES buffer (pH 7.4) to obtain final concentrations of 2.4 mM DSPC 

and 0.24 mM of compound 4 or 5.  
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VR-4/11: 

Compound 4 and compound 11 were incorporated into DSPC–SUVs by following the 

general preparation procedure described above. The mixed lipid films were hydrated 

with 25 mM HEPES buffer (pH 7.4) to obtain final concentrations of 2.4 mM DSPC 

and 0.24 mM of compound 4 and 11. 

 

6.4.3.5 Characterization of vesicular receptors VR-4, VR-5 and VR-4/11 

 

 particle size λex λem 

VR-4 80 ± 5 nm – – 

VR-5 95 ± 5 nm 349 nm 406 nm 

VR-4/11 85 ± 5 nm 349 nm 406 nm 

 

 

6.4.4 Binding studies 

All titrations were carried out at 25 °C in HEPES buffer (25 mM, pH 7.4) and corrected 

for dilution. Data analysis was performed with Origin 8 software. 

 

6.4.4.1 Vesicular receptor concentration 

For all binding studies the concentration of vesicular receptors refers to the outer 

surface exposed binding units. The following equation describes the correction factor f 

for surface exposed receptor molecules as a fraction its entire quantity of matter: 

o

o i

f
σ

σ σ
=

+
 

The ratio of outer surface (σo) and inner (σi) surface of the respective vesicles was 

calculated using the hydrodynamic diameters obtained from dynamic light scattering 

(see 6.4.3.5) and the assumption that the bilayer thickness for the prepared vesicles 

generally amounts to 5 nm.
36

  

 

6.4.4.2. Direct emission signalling of vesicular receptor binding  

Evaluation of phosphate binding towards vesicular receptors VR-5 and VR-4/11 was 

performed by plotting ∆ emission values against analyte concentration and employing 

non-linear curve fitting using the Hill equation. The initial concentration of vesicular 
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receptors for all titrations was 5.0 x 10
‐7

 M, after each analyte addition, the cuvette was 

shaken for 1 minute before the fluorescence spectrum (λex = 348 nm, λem = 406 nm) was 

recorded. 

 

6.4.4.3 Indicator displacement assays (IDA) 

Evaluation of the indicator binding towards receptors 1 and VR-4 was performed by 

utilizing Hill plots, whereas for the subsequent displacement titrations a competitive 

binding model was used.
37

 For all titrations the initial indicator concentration was 

3.5 x 10
‐5

 M for PV and 5.0 x 10
‐7

 M for CMS. After each addition, the cuvette was 

shaken for 1 minute before the absorption (PV: λmax = 636 nm) or fluorescence 

spectrum (CMS: λex = 396 nm, λem = 480 nm) was recorded. 
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Figure 7. Comparison of binding isotherms obtained by indirect IDA methods of 1 and 

VR-4 to PPi.  
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6.4.5 
1
H and 

13
C spectra of synthesized compounds 

 

Compound 10 

( p p m )

0 .01 .02 .03 .04 .05 .06 .07 .08 .09 .01 0 .01 1 .01 2 .0

 

 

Compound 11 

( p p m )
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OH
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Compound 13 
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Compound 14 
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Compound 5 

 

( p p m )
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7. Synthesis of Non-Fluorescent and Fluorescent Amphiphilic Metal 

Chelating Artificial Lipids for Surface Modification of Biomembrane 

Mimics 

 

This chapter reports the synthesis of new non-fluorescent and fluorescent amphiphilic 

Lewis acidic metal complexes (metal chelating artificial lipids) based on 1,4,7,10-

tetraazacyclododecane Zn(II) complexes, dipicolylamine (Dpa) complexes and a 

nitrilotriacetato acid (NTA) complex. The prepared metal chelating artificial lipids will 

be used for fabrication of complex self-assembled supramolecular surfaces by one or 

more different chemosensors for molecular recognition at interfaces. 

 

All compounds were prepared at the University of Regensburg by Stefan Stadlbauer. 
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7.1 Introduction 

 

Liposomes, also called vesicles, assembled from phospholipids, surfactants or block 

copolymers are considered as most related to biological cells as they consist of a single 

lipid bilayer.
1
 Attracting the interest of chemists, biologist and physicists they are 

employed in a broad field of applications in various areas of technology and industry.
2
 

Utilized as targeting drug delivery systems due to their properties, liposomes are able to 

encapsulate a variety of small molecules
3
 and they are considered as biomembrane 

mimics.
2, 4

 

 The process of molecular recognition and interaction between liposomes is 

regarded as a model system for the recognition between cells, as the process itself 

shows similarities.
 1, 5

 Several metal chelating lipids
6
 based on iminodiacetic acid (IDA) 

or nitrilotriacetic acid (NTA) have been developed by Arnold
7
, Tampe

8
 and Mallik,

9
 

and were applied in modification of mono- and bilayer assemblies or liposomes for 

protein targeting, 2D protein crystallisation and biological sensing. Furthermore Mallik 

et al impressively demonstrated the use of liposomes for the design of a “multi-prong” 

enzyme inhibitor for human carbonic anhydrase II (hCA II) incorporating a mixture of 

two weak inhibitors in a liposomal surface.
10

 Recently, we used metal chelating 

1,4,7,10-tetraazacyclododecane (cyclen) lipids as synthetic surface receptors 

incorporated in a self assembled monolayer (SAM)
11

 or unilamellar vesicles
12

 for 

sterically guided molecular recognition of nucleotides, nucleobases and phosphates. 

Further we employed Zn(II)-cyclen complexes,
13a

 a zinc(II)- and manganese(II)-Dpa 

complex
13b

 for staining of phosphoproteins on SDS-page. 

 Herein, we report the synthesis of new fluorescent/non-fluorescent metal 

chelating artificial lipids based on known Lewis acidic metal complexes:
6b

 1,4,7,10-

tetraazacyclododecane (cyclen) complexes
14

, dipicolylamine (Dpa) complexes
15

 and 

nitrilotriacetato acid (NTA) complexes
6b, 16

.  
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7.2 Results and Discussion 

Synthesis – an Overview 

Cyclen metal complexes, Dpa metal complexes and NTA metal complexes are widely 

used in molecular recognition and were therefore selected as polar head groups in the 

synthesis metal chelating lipids. The prepared compounds enable a rapid preparation of 

complex self-assembled supramolecular surfaces by embedding one or more different 

metal chelating lipids into the interfaces (SAM or vesicle). 

 Recently we demonstrated the use of surface modified vesicles (vesicular 

receptors) by amphiphilic fluorescent Zn(II)-cyclen compounds 6 and 7 for direct 

sensing and of compound 4 utilizing the indirect indicator displacement assay (IDA) of 

various phosphorous species in aqueous media, respectively.
12a

 An alternative 

phosphate binding site based on Dpa-tyrosine was employed for the preparation of non-

fluorescent (10 – 13) and fluorescent (14, 15) vesicular receptors. Additionally, 

mononuclear amphiphilic cyclen (1 – 3) and dpa (9) metal complexes were prepared for 

the investigations of compound mobility in the vesicle bilayer at different temperatures. 

A NTA based amphiphilic copper complex was synthesized, allowing the preparation of 

mixed vesicular receptors, which may show specificity to analytes containing phosphate 

and histidine. As changes in the length of the hydrophobic alkyl chain did not affect the 

binding affinity of 6 and 7 to ATP,
12a

 C10 was introduced to mononuclear Dpa and NTA 

complex for an easier practical synthesis procedure. 

 All synthesized metal chelating lipids are sumerized in Figure 1 and 2: Figure 1 

shows fluorescent/non-fluorescent mono-, bi- and trinuclear zinc(II)–1,4,7,10-

tetraazacyclododecane (cyclen) lipids, Figure 2 shows fluorescent/non-fluorescent 

mono- and binuclear Dpa based metal chelating lipids and Figure 1 shows a NTA based 

chelating lipid.  
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Figure 1. Synthesized metal chelating artificial lipids based on Lewis acidic zinc(II)–

1,4,7,10-tetraazacyclododecane (cyclen). 
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Figure 2. Synthesized metal chelating artificial lipids based on Lewis acidic zinc(II)–

dipicolylamine (Dpa). 
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Figure 3. Synthesized metal chelating artificial lipid based on Lewis acidic copper(II)–

nitrilotriacetoato acid (NTA). 
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7.2.1 Synthesis of cyclen based metal chelating artificial lipids 

 

Metal chelating cyclen based lipids 1
17

 and 4 – 8
18

 were synthesized as previously 

reported. Mononuclear chelating cyclen lipids with different hydrophobic chain length 

(C12 or C18) were prepared by amide formation of literature known compounds 17
12a

 and 

18,
12a

 respectively, and 19.
19

 Removal of the Boc groups, passing through a basic ion 

exchanger resin and subsequent zinc complex formation by treating the free amine 

ligand 22 and 23, with one equivalent of ZnCl2 each yielded the fluorescent amphiphilic 

Zn(II)-cyclen metal complexes 2 and 3.  
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Scheme 1. Synthesis of fluorescent amphiphilic mononuclear Zn(II)-cyclen complexes. 

(a) TBTU, HOBt, DIPEA, DMF, 40 °C, 2-3 h; (b) HCl/ether, DCM, RT, o/n; (c) basic 

ion exchanger resin H2O, MeOH; (d) Zn(ClO4)2, MeOH, 65 °C, 22 - 23 h. 

 

 

7.2.2 Synthesis of Dpa based metal chelating artificial lipids 

 

We focused on the preparation of a non-fluorescent (Scheme 2) and a fluorescent 

labelled (Scheme 3) tyrosine based bis-Dpa metal chelating lipids. The metal chelating 

binuclear Dpa lipid was synthesized by a modified procedure for the binuclear tyrosine 
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based bis-Dpa (Boc-dpa-Tyr-OMe) reported by Hamachi et al.
15c

 Derivatization of the 

tyrosine scaffold on large scale was possible by standard peptide solution chemistry.  
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Scheme 2. Synthesis of amphiphilic tyrosine based bis-dpa zinc / manganese complex. 

(a) Boc2O, DCM, RT, 20 h; (b) EDC, HOBt, DIPEA, DMF, Toluol, 60 °C, 22h; 

(c) 2,2`-dipicoloylamine, paraformaldehyde, H2O, 
i
PrOH, 80 °C, 30 min, reflux, 17 h; 

(d) HCl / ether, DCM, RT, 16 h; (e) ZnCl2, MeOH, RT, 2 - 3 h; (f) MnCl2, MeOH, RT, 

2 - 3 h.  

 

Amide formation of 25
20

 with octadecylamine gave amphiphilic tyrosine derivative 26 

in good yields. Mannich type reaction using 2,2`-dipycolylamine and paraformaldehyde 
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and according to literature known procedure gave the protected metal chelating lipid 

27.
15c

 Removal of the Boc group in acidic conditions (HCl/ether) yielded compound 28. 

Finally metal chelating lipids 27 and 28 were treated with two equivalents of a ZnCl2 

and MnCl2, respectively.  
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Scheme 3. Synthesis of fluorescent amphiphilic tyrosine based bis-Dpa 

zinc / manganese complex. (a) 5/6-carboxy fluorescein, DIPEA, TBTU, HOBt, DMF, 

40 °C, 22 h; (b) ZnCl2, MeOH, RT, 2 - 3 h; (c) MnCl2, MeOH, RT, 2 - 3 h.  

 

As a fluorescence signalling unit we introduced a fluorescein dye. Therefore the amide 

of 28 and an isomeric mixture of 5/6-carboxy fluorescein was prepared and subsequent 

treatment with ZnCl2 or MnCl2 gave the fluorescent amphiphilic binuclear tyrosine 

based metal complexes 14 and 15.  

 Further, an amphiphilic mononuclear zinc(II)-Dpa was prepared: 

2,2`Dipycolylamine 30
21

 was allowed to react with 1-bromododecane 31 giving Dpa-

dodecane 32, which was converted to the Zn(II)-Dpa-dodecane 9 by ZnCl2 (Scheme 4).  
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Scheme 4. Synthesis of amphiphilic zinc dpa complex. (a) NEt3, toluol, 90 °C, 3d; 

(b) ZnCl2, MeOH, RT, 16 h. 

 

 

7.2.3 Synthesis of NTA based metal chelating artificial lipids 

 

Glutamic acid based NTA moiety 33
22

 was reacted with decylamine 34 and 

subsequently treated with trifluoroacetic acid giving the NTA compound 36. Finally, 

copper (II) complex formation was done with Cu2(OH)2CO3 (Scheme 5).  
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Scheme 5. Synthesis of amphiphilic copper NTA complex. (a) EDC, HOBt, DIPEA, 

DMF, 40 °C; (b) TFA, RT; (c) Cu2(OH)2CO3, MeOH. 
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7.3 Conclusion and Outlook 

 

In summary, we prepared amphiphilic metal chelating artificial lipids based on cyclen, 

Dpa and NTA metal complexes as binding sites at interfaces of SAMs, LB films or 

vesicles. Detailed investigations of the binding properties of modified surfaces 

incorporating the new amphiphilic complexes are in progress. 
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7.4 Experimental Part 

7.4.1 General methods and material  

 

Emission Spectroscopy. Fluorescence measurements were performed with UV-grade 

solvents (Baker or Merck) in 1 cm quartz cuvettes (Hellma) and recorded on a Varian 

‘Cary Eclipse’ fluorescence spectrophotometer with temperature control. 

 

Absorption Spectroscopy. Absorption were recorded on a Varian Cary BIO 50 

UV/VIS/NIR Spectrometer with temperature control by use of a 1 cm quartz cuvettes 

(Hellma) and Uvasol solvents (Merck or Baker). 

 

NMR Spectra. Bruker Avance 600 (1H: 600.1 MHz, 13C: 150.1 MHz, T = 300 K), 

Bruker Avance 400 (1H: 400.1 MHz, 13C: 100.6 MHz, T = 300 K), Bruker Avance 300 

(1H: 300.1 MHz, 13C: 75.5 MHz, T = 300 K). The chemical shifts are reported in 

δ [ppm] relative to external standards (solvent residual peak). The spectra were analyzed 

by first order, the coupling constants are given in Hertz [Hz]. Characterization of the 

signals: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, bs = broad singlet, 

psq = pseudo quintet, dd = double doublet, dt = double triplet, ddd = double double 

doublet. Integration is determined as the relative number of atoms. Assignment of 

signals in 13C-spectra was determined with DEPT-technique (pulse angle: 135 °) and 

given as (+) for CH3 or CH, (–) for CH2 and (Cq) for quaternary Cq. Error of reported 

values: chemical shift: 0.01 ppm for 1H-NMR, 0.1 ppm for 13C-NMR and 0.1 Hz for 

coupling constants. The solvent used is reported for each spectrum. 

 

Mass Spectra. Varian CH-5 (EI), Finnigan MAT 95 (CI; FAB and FD), Finnigan MAT 

TSQ 7000 (ESI). Xenon serves as the ionisation gas for FAB.  

 

IR Spectra. Recorded with a Bio-Rad FTS 2000 MX FT-IR and Bio-Rad FT-IR FTS 

155. 

 

Melting Point. Melting Points were determined on Büchi SMP or a Lambda 

Photometrics OptiMelt MPA 100. 

 



7. Synthesis of Non-Fluorescent and Fluorescent Metal Chelating Artificial Lipids to Modify Biomembrane Mimics 

 236 

General. Thin layer chromatography (TLC) analyses were performed on silica gel 60 F-

254 with a 0.2 mm layer thickness. Detection via UV light at 254 nm / 366 nm or 

through staining with ninhydrin in EtOH. Column chromatography was performed on 

silica gel (70–230 mesh) from Merck. Starting materials were purchased from either 

Acros or Sigma-Aldrich and used without any further purification. Commercially 

available solvents of standard quality were used. Dry THF, which was prepared by 

distillation from potassium. If otherwise stated, purification and drying was done 

according to accepted general procedures.
23

 Elemental analyses were carried out by the 

center for Chemical Analysis of the Faculty of Natural Sciences of the University 

Regensburg. 

 

 

7.4.2 Synthesis 

 

N

N

N

N

O OO

N
H

O

O O

O

O

OO

 

10-{2-[(7-Octadecyloxy-2-oxo-2H-chromene-3-carbonyl)-amino]-ethyl}-1,4,7,10-

tetraaza-cyclododecane-1,4,7-tricarboxylic acid tri-tert-butyl ester (20) 

7-Octadecyloxy-2-oxo-2H-chromene-3-carboxylic acid 17 (250 mg, 0.55 mmol), 

DIPEA (376 µL, 2.18 mmol), TBTU (203 mg, 0.60 mmol), and HOBt (97 mg, 

0.60 mmol) were dissolved under nitrogen atmosphere in 9 mL of a mixture of dry 

DMF / THF (1:2) under ice cooling and stirred for 1 h at rt. Subsequently amine 19 

(281 mg, 0.55 mmol) dissolved in dry DMF (2 mL) was added dropwise. The reaction 

was allowed to warm to room temperature and was stirred 3.5 h at 40 °C. The reaction 

progress was monitored by TLC (ethyl acetate / petrol ether 1:1). After completion of 

the reaction the solvent was removed and the crude product was purified by flash 

column chromatography on flash silica gel (ethyl acetate / petrol ether 1:1, Rf = 0.30) 

yielding compound 20 (104 mg, 0.11 mmol, 20 %) as a colourless oil. 

1
H-NMR (400 MHz; CDCl3): δ (ppm) = 0.83 (t, 

3
J = 6.8 Hz, 3 H, CH3), 1.05-1.35 (m, 

28 H, CH2), 1.41 (s, 29 H, boc-CH3, CH2), 1.79 (quin, 
3
J = 7.0 Hz, 2 H, CH2), 2.61-2.89 
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(m, 6 H, CH2), 3.15-3.65 (m, 14 H, CH2), 4.01 (t, 
3
J = 6.2 Hz, 2 H, CH2), 6.80 (s, 1 H, 

CH), 6.88 (dd, 
3
J = 8.7 Hz, 

4
J = 1.8 Hz, 1 H, CH), 7.52 (d, 

3
J = 8.5 Hz, 1 H, CH), 8.74-

8.81 (m, 2 H, CH, NH). – 
13

C-NMR (150 MHz; CDCl3): δ (ppm) = 14.0 (+, 1 C, CH3), 

22.6 (–, 1 C, CH2), 25.8 (–, 1 C, CH2), 28.4 (+, 9 C, CH3), 28.6 (–, 2 C, CH2), 28.8 (–, 

1 C, CH2), 29.20 (–, 1 C, CH2), 29.24 (–, 1 C, CH2), 29.42 (–, 1 C, CH2), 29.46 (–, 1 C, 

CH2), 29.57 (–, 6 C, CH2), 31.8 (–, 1 C, CH2), 35.4 (–, 1 C, CH2), 47.6, 47.9 (–, 4 C, 

CH2), 49.9 (–, 2 C, CH2), 51.3 (–, 1 C, CH2), 53.8 (–, 1 C, CH2), 55.2 (–, 1 C, CH2), 

69.0 (–, 1 C, CH2), 79.2 (Cq, 1 C), 79.47 (Cq, 1 C), 79.52 (Cq, 1 C), 100.7 (+, 1 C, CH), 

112.1 (Cq, 1 C), 114.2 (Cq, 1 C), 114.4 (+, 1 C, CH), 130.8 (+, 1 C, CH), 148.2 (+, 1 C, 

CH), 155.3 (Cq, 1 C), 155.6 (Cq, 1 C), 156.1 (Cq, 1 C), 156.6 (Cq, 1 C), 161.8 (Cq, 1 C), 

162.3 (Cq, 1 C), 164.5 (Cq, 1 C). – IR (ATR) [cm
-1

]: ν~ = 2926, 2852, 1685, 1604, 1531, 

1461, 1414, 1365, 1247, 1220, 1153, 963, 857, 753. – UV (CHCl3): λmax (log ε) = 

352 nm (4.439). – MS (ESI(+), DCM/MeOH + 0.1 % TFA): m/z (%) = 956.8 (100) 

[MH
+
]. – HRMS Calcd for C53H89N5O10 956.6688; Found: 956.6697. – 

MF: C53H89N5O10 – FW: 956.32 g/mol 

 

 

N

N

N

26

N
19

18

17

O
20

16

15

14

13

21

22
N
H

23
24

25

O

O bocO

12

11

10

8

1

27

O O

28

29

30

O

O 31

32

2-9  
7-tert-Butoxycarbonylmethyl-10-{2-[(6-dodecyloxy-naphthalene-2-carbonyl)-amino]-

ethyl}-1,4,7,10-tetraaza-cyclododecane-1,4-dicarboxylic acid 4-tert-butyl ester 1-

isopropyl ester (21) 

7-Dodecyloxy-2-oxo-2H-chromene-3-carboxylic acid 18 (100 mg, 0.27 mmol), DIPEA 

(184 µL, 1.07 mmol), TBTU (94 mg, 0.29 mmol), and HOBt (45 mg, 0.29 mmol) were 

dissolved under nitrogen atmosphere in dry DMF / THF (2:1, 6 mL) under ice cooling 

and stirred for 1 h. Subsequently amine 19 (138 mg, 0.27 mmol) dissolved in DMF 

(2 mL) was added dropwise. The reaction was allowed to warm to room temperature 

and was stirred 30 min at rt and 4 h at 40 °C. The reaction progress was monitored by 

TLC (ethyl acetate/petroleum ether 1:1). After completion of the reaction the solvent 

was removed and the crude product was purified by flash column chromatography on 
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flash silica gel (ethyl acetate/petroleum ether 1:1; Rf = 0.4) yielding compound 21 

(120 mg, 0.14 mmol, 52 %) as a white solid. 

1
H-NMR (400 MHz; CDCl3): δ (ppm) = 0.87 (t, 

3
J = 6.8 Hz, 3 H, HSQC, COSY: 

C
1
H3), 1.14-1.38 (m, 16 H, HSQC, COSY: C

2
H2 – C

9
H2), 1.44 (s, 18 H, HSQC: C

29
H3), 

1.45 (s, 11 H, HSQC: C
32

H3, HSQC, HMBC: C
10

H2), 1.82 (quin, 2 H, HSQC, ROESY: 

C
11

H2), 2.51-2.95 (m, 6 H, HSQC, HMBC, ROESY: C
25

H2, HSQC, HMBC: C
26

H2), 

3.10-3.72 (m, 14 H, HSQC, HMBC, ROESY: C
24

H2, HSQC, HMBC: C
26

H2), 4.04 (t, 

3
J = 6.5 Hz, 2 H, HMBC, ROESY: C

12
H2), 6.83 (d, 

4
J = 2.3 Hz, 1 H, HSQC, ROESY: 

C
21

H), 6.91 (dd, 
4
J = 2.3 Hz, 

3
J = 8.7 Hz, 1 H, HSQC, ROESY: C

14
H), 7.55 (d, 

3
J = 8.7 Hz, 1 H, HSQC, ROESY: C

15
H), 8.80 (m, 2 H, HSQC, ROESY: C

17
H, NH). – 

13
C-NMR (100 MHz; CDCl3): δ (ppm) = 14.1 (+, 1 C, HSQC: C

1
H3), 22.6, 29.27, 

29.30, 29.48, 29.53, 29.59, 29.60, 31.9 (–, 8 C, HSQC: C
2
H2- C

9
H2), 25.9 (–, 1 C, 

HSQC, HMBC: C
10

H2), 28.5 (+, 6 C, HSQC, HMBC: C
29

H3), 28.7 (+, 3 C, HSQC, 

HMBC: C
32

H3), 28.9 (–, 1 C, HSQC, ROESY: C
11

H2), 35.5 (–, 1 C, HSQC, HMBC, 

ROESY: C
24

H2), 47.6 (–, 1 C, HSQC, HMBC: C
26

H2), 48.0 (–, 3 C, HSQC, HMBC: 

C
26

H2), 49.9 (–, 2 C, HSQC, HMBC: C
26

H2), 51.4 (–, 1 C, HSQC, ROESY: C
25

H2), 

53.9 (–, 1 C, HSQC, HMBC: C
26

H2), 55.3 (–, 1 C, HSQC, HMBC: C
26

H2), 69.0 (–, 1 C, 

HSQC, HMBC, ROESY: C
12

H2), 100.8 (+, 1 C, HSQC, ROESY: C
21

H), 114.4 (+, 1 C, 

HSQC, ROESY: C
14

H), 130.9 (+, 1 C, HSQC, ROESY: C
15

H), 148.3 (+, 1 C, HSQC, 

ROESY: C
17

H), 79.2 (Cq, 1 C, HSQC: C
31

), 79.5 (Cq, 2 C, HSQC: C
28

), 112.2 (Cq, 1 C, 

HSQC, HMBC: C
16

), 114.4 (Cq, 1 C, HSQC, HMBC: C
18

), 155.4, 155.7, 156.1 (Cq, 3 C, 

HSQC, HMBC: C
27

, C
30

), 156.7 (Cq, 1 C, HSQC, HMBC: C
20

), 161.9 (Cq, 1 C, HSQC, 

HMBC: C
19

), 162.4 (Cq, 1 C, HSQC, HMBC: C
22

), 164.6 (Cq, 1 C, HSQC, HMBC: C
13

). 

– IR (ATR) [cm
-1

]: ν~ = 2925, 2856, 1684, 1599, 1531, 1458, 1413, 1364, 1247, 1154, 

969, 854, 773. – MS (ESI(+), DCM/MeOH + 10 mmol/L NH4Ac): m/z (%) = 

872.7 (100) [MH
+
]. – HRMS Calcd for C47H77N5O10 871.5670; Found: 871.5648. – 

MF: C47H77N5O10 – FW: 872.17 
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N

N

N

N

O

N
H

O

O O

H

H

H  

7-Octadecyloxy-2-oxo-2H-chromene-3-carboxylic acid [2-(1,4,7,10-tetraaza-

cyclododec-1-yl)-ethyl]-amide (22) 

Compound 20 (104 mg, 0.11 mmol) was dissolved in DCM (4 mL) and cooled to 0 °C. 

Subsequently 6 mL HCl saturated ether were added. The solution was stirred 15 min at 

0 °C and additionally 20 h at room temperature. The solvent was removed in vacuo, 

yielding quantitatively the protonated hydrochloride of compound 22 as a pale yellow 

solid. To obtain the free base of compound 22 a weakly basic ion exchanger resin was 

swollen for 15 min in water and washed neutral with water. A column was charged with 

resin (435 mg, 40.0 mmol hydroxy equivalents at a given capacity of 5 mmol/g). The 

hydrochloride salt was dissolved in water / MeOH (9:1), put onto the column and 

eluated with water / MeOH (9:1). The elution of the product was controlled by pH 

indicator paper (pH > 10) and was completed when pH again was neutral. The eluate 

was concentrated and lyophilised to yield 72 mg (0.11 mmol, 100 %) of free base 22, as 

colourless semi-solid. 

Note: NMR investigations on compound 22 were not feasible as the resolution on the 

NMR was not sufficient. 

MP: 159 °C. – IR (ATR) [cm
-1

]: ν~ =3349, 2918, 2851, 1706, 1616, 1537, 1468, 1374, 

1259, 1224, 1144, 1022, 973, 795, 719. – UV (CHCl3): λmax (log ε) = 353 nm (4.116). – 

LC-MS (+ c ESI Q1MS): m/z (%) = 328.6 (100) [M + 2 H
+
]

2+
, 349.1 (85) [M + 2 H

+
 + 

MeCN]
2+

, 656.4 (55) [MH
+
]. – HRMS Calcd for C38H66N5O4 656.5115; Found: 

656.5104. – MF: C38H65N5O4 –FW: 655.97 

 

 

N

N

N

N

O

N
H

O

O O

H

H

H  

7-Dodecyloxy-2-oxo-2H-chromene-3-carboxylic acid [2-(1,4,7,10-tetraaza-

cyclododec-1-yl)-ethyl]-amide (23) 

Compound 21 (108 mg, 0.12 mmol) was dissolved in DCM (4 mL) and cooled to 0 °C. 

Subsequently TFA (801 µL, 10.4 mmol) was added. The solution was stirred 15 min at 
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0 °C and additionally 20 h at room temperature. The solvent was removed in vacuo, 

yielding quantitatively the protonated TFA salt of compound 23 as a pale yellow solid. 

To obtain the free base of compound 23 a weak basic ion exchanger resin was swollen 

for 15 min in water and washed neutral with water. A column was charged with resin 

(495 mg, 40.0 mmol hydroxy equivalents at a given capacity of 5 mmol/g). The TFA 

salt was dissolved in water / MeOH (8:2), put onto the column and eluated with water / 

MeOH (8:2). The elution of the product was controlled by pH indicator paper (pH > 10) 

and was completed when pH again was neutral. The eluate was concentrated and 

lyophilised to yield 64 mg (0.11 mmol, 92 %) of free base 23, as pale yellow solid. 

Note: NMR investigations on compound 23 were not feasible as the resolution on the 

NMR was not sufficient. 

IR (ATR) [cm
-1

]: ν~ = 2924, 2851, 1673, 1617, 1540, 1456, 1374, 1273, 1199, 1175, 

1121, 1026, 832, 797, 720. – UV (CHCl3): λmax (log ε) = 352 nm (4.108). – LC-MS (+ 

c ESI Q1MS): m/z (%) = 572.3 (100) [MH
+
], 307.0 (95) [M + 2 H

+
 + MeCN]

2+
, 

286.5 (40) [M + 2 H
+
]

2+
. – MF: C32H53N5O4 – FW: 571.81  

 

 

N

N

N

N

H

H

HZn

O

O

O O

N
H

18

2 ClO4-

2+

 

Mononuclear Zn(II)-cyclen coumarin C18 (2)  

A solution of compound 22 (30.1 mg, 46 µmol) in MeOH (2 mL) was heated to 65 °C 

and subsequently a methanolic solution of Zn(ClO4)2 (20 mM, 2086 µL, 46 µmol) was 

added dropwise. After stirring the reaction mixture for 22 h at 65 °C, the methanol was 

removed in vacuo. The residue was dissolved in water and was lyophilized yielding 

complex 2 as a colourless solid in quantitative yield (42 mg, 46 µmol). 

MP: 206 °C. – IR (ATR) [cm
-1

]: ν~ = 3357, 2916, 2849, 1707, 1616, 1536, 1467, 1445, 

1374, 1260, 1233, 1144, 1020, 795, 719. – UV (CHCl3): λmax (log ε)= 351 nm (3.785). – 

MS (ESI(+), MeOH + 10 mmol/L NH4Ac): m/z (%) = 718.5 (100) [M
2+

 - H
+
]
+
. – 

MF: C38H65N5O4Zn(ClO4)2 – FW: 920.25 g/mol 
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N

N

N

N

H

H

HZn

O

O

O O

N
H

11

2 ClO4-

2+

 

Mononuclear Zn(II)-cyclen coumarin C12 (3)  

To a solution of compound 23 (13.2 mg, 23 µmol) in MeOH (1 mL) was added 

dropwise a methanolic solution of Zn(ClO4)2 (22 mM, 1049 µL, 23 µmol). After stirring 

the reaction mixture for 23 h at 65 °C, the methanol was removed in vacuo. The residue 

was dissolved in water and was lyophilized yielding complex 3 as a colourless 

hygroscopic semi-solid in quantitative yield. 

IR (ATR) [cm
-1

]: ν~ = 3478, 2921, 2852, 1691, 1617, 1546, 1465, 1379, 1281, 1229, 

1203, 1073, 795, 621. – UV (CHCl3): λmax (log ε) = 353 nm (3.803). MS (ESI(+), 

MeOH + 10 mmol/L NH4Ac): m/z (%) = 634.4 (95) [M
2+

 - H
+
]
+
, 391.3 (100) 

[softener]
+
. – MF: C32H53N5O4Zn(ClO4)2 – FW: 836.09 g/mol 

 

 

1
2

O
3

N
H

4 10 N
H

11

12
28

O 5

6

9

8

7 OH

O
1513-27

 

 [2-(4-Hydroxy-phenyl)-1-octadecylcarbamoyl-ethyl]-carbamic acid tert-butyl ester 

(26) 

Boc-Tyr-OH 25 (2.50 g, 8.9 mmol), DIPEA (5.0 mL, 29.3 mmol), EDC (1.73 mL, 

9.8 mmol), and HOBt (1.32 g, 9.8 mmol) were dissolved in DMF (4 mL) under ice 

cooling and stirred for 45 min. Subsequently a solution of octadecylamine (2.89 g, 

9.8 mmol) in 25 mL DMF was added slowly. The reaction was allowed to warm to 

room temp. and was stirred over night (22 h) at 60 °C. The reaction progress was 

monitored by TLC (CHCl3 / MeOH 9:1). After completion of the reaction the solvent 

was removed and the crude product was loaded on flash silica gel and purified by flash 

column chromatography (CHCl3 / MeOH 95:5, Rf  = 0.40) yielding 26 (3.82 g, 

7.2 mmol, 81 %) as a colourless solid. 

MP: 115 °C. – 
1
H-NMR (600 MHz; CDCl3): δ (ppm) = 0.87 (t, 

3
J = 7.0 Hz, 3 H, 

C
28

H3), 1.25 (s, 30 H, C
13

H2 – C
27

H2), 1.36 (bs, 2 H, COSY: C
12

H2), 1.42 (s, 9 H, 

COSY: C
1
H3), 2.83-3.02 (m, 2 H, COSY: C

5
H2), 3.07-3.24 (m, 2 H, COSY: C

11
H2), 

4.21 (m, 1 H, HMBC, COSY: C
4
H), 5.17 (bs, 1 H, COSY: NH

a
), 5.91 (bs, 1 H, COSY: 
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NH
b
), 6.74 (d, 

2
J = 8.5 Hz, 2 H, HMBC: C

8
H), 7.02 (d, 

2
J = 7.7 Hz, 2 H, HMBC: C

7
H). 

– 
13

C-NMR (150 MHz; CDCl3): δ (ppm) = 14.1 (+, 1 C, C
28

H3), 22.7 (–, 1 C, alkyl-

CH2), 26.8 (–, 1 C, alkyl-CH2), 28.3 (+, 3 C, C
1
H3), 29.2 (–, 1 C, alkyl-CH2), 29.3 (–, 

1 C, alkyl-CH2), 29.5 (–, 1 C, C
12

H2), 29.60, 29.65, 29.69 (–, 10 C, alkyl-CH2), 31.9 (–, 

1 C, alkyl-CH2), 37.9 (–, 1 C, C
5
H2), 39.6 (–, 1 C, C

11
H2), 56.2 (+, 1 C, HMBC: C

4
H3), 

80.3 (Cq, 1 C, C
2
), 115.6 (+, 2 C, HMBC: C

7
H), 130.4 (+, 2 C, HMBC: C

8
H), 128.1 (Cq, 

1 C, HMBC: C
6
), 155.2 (Cq, 1 C, HMBC: C

9
), 155.6 (Cq, 1 C, HMBC: C

3
), 171.3 (Cq, 

1 C, HMBC: C
10

). – IR (ATR) [cm
-1

]: ν~  [cm] = 3335, 3306, 2959, 2917, 1682, 1655, 

1523, 1468, 1367, 1295, 1236, 1168, 1046, 896, 799. – MS (ESI(+), DCM/MeOH + 

10 mmol/L NH4Ac): m/z (%) = 533.6 (100) [MH
+
], 477.4 (19) [MH

+
 - C4H8]

+
, 

555.5 (36) [MNa
+
]. – Elemental analysis calcd. (%) for C32H56N2O4: C 72.14, H 10.59, 

N 5.26; found C 72.13, H 10.63, N 5.00. – MF: C32H56N2O4 – FW: 532.81 g/mol 

 

 

5

18

N
H

19
20

21
37

15

O

NH 4

3

O
2

O

1

9

8

7

1110

N

N

12

13

N

N

17

16

15

14

N

N

OH

6
22-36

 

(2-{3,5-Bis-[(bis-pyridin-2-ylmethyl-amino)-methyl]-4-hydroxy-phenyl}-1-octadecyl 

carbamoyl-ethyl)- carbamic acid tert-butyl ester (27) 

2,2’-Dipicolylamine (2.35 g, 11.8 mmol) and paraformaldehyde (0.56 g, 18.9 mmol) 

were dissolved in 30 mL water / isopropanol (5:3) and the pH was adjusted to 8 by 

adding 1 M NaOH. After stirring at 80 °C for 35 min, compound 26 (2.51 g, 4.7 mmol) 

was added, and the reaction mixture was refluxed for 17 h. After cooling to room 

temperature the solvent was evaporated and the residue was dissolved in ethyl acetate. 

The solution subsequently was washed with saturated NaHCO3 (3x) and brine (3x) 

followed by drying over MgSO4. After removal of the solvent in vacuo the crude 

product was purified by flash column chromatography on flash silica gel (ethyl acetate / 

MeOH 2:1, Rf = 0.1) obtaining 27 (1.1 g, 1.15 mmol, 24 %) as a colourless oil. 
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1
H-NMR (400 MHz; acetone-d6): δ (ppm) = 0.86 (t, 

3
J = 6.9 Hz, 3 H, C

37
H3), 1.14-

1.28 (m, 30 H, C
22

H2 – C
36

H2), 1.29 (s, 11 H, HSQC: C
1
H3, C

21
H2), 2.87 (dd, 

3
J = 13.5 Hz, 

2
J = 6.5 Hz, 1 H, HSQC, COSY: C

6
H2), 2.94 (dd, 

3
J = 13.5 Hz, 

2
J = 7.4 Hz, 1 H, HSQC, COSY: C

6
H2), 3.02 (dd, 

3
J = 12.9 Hz, 

2
J = 6.6 Hz, 2 H, HSQC: 

C
20

H2), 3.74 (d, 
2
J = 13.7 Hz, 2 H, HMBC, COSY: C

10
H2), 3.80 (d, 

2
J = 13.7 Hz, 2 H, 

HMBC, COSY: C
10

H2), 3.85 (s, 8 H, COSY: C
12

H2), 3.34 (dd, 
3
J = 14.4 Hz, 

2
J = 7.1Hz, 

1 H, COSY: C
20

H2), 5.98 (d, 
3
J = 8.2 Hz, 1 H, HSQC, COSY: N

4
H), 7.10 (s, 2 H, 

HMBC, COSY: C
8
H), 7.20 (ddd, 

3
J = 7.4 Hz, 4.9 Hz, 1.1 Hz, 4 H, HMBC: C

16
H), 

7.29 (bs, 1 H, HSQC, COSY: N
19

H), 7.55 (d, 
3
J = 7.8 Hz, 4 H, HMBC: C

14
H), 7.69 (dt, 

3
J = 7.7 Hz, 

2
J = 1.9 Hz, 4 H, HMBC: C

15
H), 8.52 (m, 4 H, HMBC: C

17
H), 10.96 (bs, 

1 H, HSQC: OH). – 
13

C-NMR (100 MHz; acetone-d6): δ (ppm) = 14.3 (+, 1 C, C
37

H3), 

23.3 (–, 1 C, alkyl-CH2), 27.5 (–, 1 C, alkyl-CH2), 28.5 (+, 3 C, C
1
H3), 29.9 (–, 1 C, 

alkyl-CH2), 30.22 (–, 1 C, alkyl-CH2), 30.27 (–, 1 C, alkyl-CH2), 30.4 (–, 9 C, alkyl-

CH2, solvent peak), 32.6 (–, 1 C, alkyl-CH2), 38.8 (–, 1 C, COSY: C
6
H2), 39.7 (–, 1 C, 

HSQC: C
20

H2), 55.3 (–, 2 C, HMBC, COSY: C
10

H2), 60.1 (–, 4 C, HMBC, COSY: 

C
12

H2), 56.9 (+, 1 C, HMBC: C
5
H3), 79.0 (Cq, 1 C, HMBC, HSQC, C

2
), 122.8 (+, 4 C, 

HMBC: C
16

H), 123.8 (+, 4 C, HMBC: C
14

H), 124.6 (Cq, 2 C, HMBC: C
9
), 127.7 (Cq, 

1 C, HMBC: C
7
), 131.3 (+, 2 C, HMBC, COSY: C

8
H), 137.3 (+, 4 C, HMBC, COSY: 

C
15

H), 149.7 (+, 4 C, HMBC, COSY: C
17

H), 155.8 (Cq, 1 C, HMBC: C
11

), 155.8 (Cq, 

1 C, HMBC: C
11

), 159.9 (Cq, 1 C, HMBC: C
3
), 160.2 (Cq, 4 C, HMBC: C

13
), 171.9 (Cq, 

1 C, HMBC: C
18

). – IR (ATR) [cm
-1

]: ν~  [cm] = 3383, 2922, 2852, 1706, 1656, 1590, 

1569, 1433, 1364, 1288, 1245, 1167, 1048, 995, 791. – MS (ESI(+), DCM/MeOH + 

10 mmol/L NH4Ac): m/z (%) = 478.5 (100) [M + 2 H
+
]

2+
, 955.8 (85) [MH

+
]. – 

Elemental analysis calcd. (%) for C58H82N8O4: C 72.92, H 8.65, N 11.73; found 

C 72.38, H 8.34, N 11.63 – MF: C58H82N8O4 – FW: 955.35 g/mol 
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N
H

C
18

H
37

O

NH
2

N

N

N

N

N

N

OH

 

2-Amino-3-{3,5-bis-[(bis-pyridin-2-ylmethyl-amino)-methyl]-4-hydroxy-phenyl}-N-

octadecyl-propionamide (28) 

Boc protected 27 (700 mg, 0.73 mmol) was dissolved in DCM under ice cooling and 

mixed with HCl/ether (3.7 mL; 1 mL / 0.2 mmol Boc group). The reaction was allowed 

to warm to room temp. and was stirred for additional 16 hours. After completion the 

reaction mixture was evaporated to dryness, the residue was suspended in saturated 

NaHCO3 and extracted with ethyl acetate (4x). Subsequently the organic phase was 

dried over MgSO4 and the solvent was removed in vacuo yielding 28·(497 mg, 

0.58 mmol, 79 %) as a pale yellow oil. 

1
H-NMR (300 MHz; DMSO-d6): δ (ppm) = 0.82 (t, 

3
J = 6.9 Hz, 3 H, CH3), 1.04 (bs, 

4 H, alkyl-CH2), 1.19 (s, 28 H, alkyl-CH2), 2.57 (dd, 
3
J = 13.5 Hz, 

2
J = 7.1 Hz, 1 H, 

Tyr-CH2), 2.73 (dd, 
3
J = 13.5 Hz, 

2
J = 7.1 Hz, 1 H, Tyr-CH2), 2.91 (m, 2 H, CH2), 

3.29 (t, 
3
J = 6.4 Hz, 1 H, C

α
H), 3.65 (s, 4 H, Ar-CH2-pyr), 3.74 (s, 8 H, N-CH2-pyr), 

6.98 (s, 2 H, Ar-CH), 7.21 (m, 4 H, Pyr-CH), 7.46 (d, 
3
J = 8.0 Hz, 4 H, Pyr-CH), 

7.70 (dt, 
3
J = 7.6 Hz, 1.7 Hz, 4 H, pyr-CH), 8.47 (dd, 

3
J = 4.4 Hz, 0.3 Hz, 4 H, pyr-CH). 

– 
13

C-NMR (75 MHz; DMSO-d6): δ (ppm) = 13.8 (+, 1 C, CH3), 22.0 (–, 1 C, alkyl-

CH2), 26.1 (–, 1 C, alkyl-CH2), 28.52 (–, 1 C, alkyl-CH2), 28.57 (–, 1 C, alkyl-CH2), 

28.78, 28.81, 28.89 (–, 11 C, alkyl-CH2), 31.4 (–, 1 C, alkyl-CH2), 38.0 (–, 1 C, CH2), 

40.2 (–, 1 C, CH2), 53.9 (–, 2 C, CH2), 55.9 (+, 1 C, CH), 58.8 (–, 4 C, CH2), 122.1 (+, 

4 C, CH), 122.5 (+, 4 C, CH), 123.1 (Cq, 1 C), 127.4 (Cq, 1 C), 129.8 (+, 2 C, CH), 

136.5 (+, 4 C, CH), 148.5 (+, 4 C, CH), 153.7 (Cq, 1 C), 158.5 (Cq, 4 C), 173.5 (Cq, 

1 C). – IR (ATR) [cm
-1

]: ν~  [cm] = 2921, 2852, 1658, 1590, 1522, 1474, 1433, 1372, 

1233, 1149, 1048, 996, 754. – MS (ESI(+), DCM/MeCN/TFA): m/z (%) = 428.4 (100) 

[M + 2 H
+
]

2+
, 299.6 (16) [M + 3 H

+
 + MeCN]

3+
, 855.8 (14) [MH

+
], 286 (12) [M + 

3 H
+
]. – HRMS Calcd for C53H75N8O2 855.6013; Found: 855.6000. – MF: C53H74N8O2 

– FW: 855.23 g/mol 
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N
H

C
18

H
37

O

NH
boc

N

N

N

N O N

Zn
2+

Zn
2+

N

3+

3 Cl-

 

Binuclear Zn(II)-Dpa Boc-tyrosine C18 complex (10) 

To a solution of compound 27 (50 mg, 52 µmol) in MeOH (4 mL) was added dropwise 

a methanolic solution of ZnCl2 (100 mM, 1052 µL, 104 µmol). After stirring the 

reaction mixture for 2.5 h at room temperature, the methanol was removed in vacuo. 

The residue was dissolved in water and was lyophilized yielding complex 10 as a 

colourless solid in quantitative yield. 

MP: 192 °C. – IR (ATR) [cm
-1

]: ν~ = 2923, 2856, 2357, 1695, 1608, 1365, 1257, 1157, 

1052, 1023, 761. – UV (MeOH): λmax (log ε) = 262 nm (4.108), 296 (3.451). – 

MS (ESI(+), H2O/MeOH + 10 mmol/L NH4Ac): m/z (%) = 1199.7 (100) [M
3+

 + 

2 CH3COO
-
]

+
, 571.0 (15) [M

3+
 + CH3COO

-
]

2+
. – MF: C58H82N8O4Zn2Cl4 – 

FW: 1227.91 g/mol 

 

 

N
H

C
18

H
37

O

NH
boc

N

N

N

N O N

Mn
2+

Mn
2+

N

3+

3 Cl-

 

Binuclear Mn(II)-Dpa Boc-tyrosine C18 complex (11) 

To a solution of compound 27 (50 mg, 52 µmol) in MeOH (4 mL) was added dropwise 

a methanolic solution of MnCl2 (100 mM, 1047 µL, 104 µmol). After stirring the 

reaction mixture for 3 h at room temperature, the methanol was removed in vacuo. The 

residue was dissolved in water and was lyophilized yielding complex 11 as a colourless 

solid in quantitative yield. 
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MP: 152 °C. – IR (ATR) [cm
-1

]: ν~ = 2926, 2854, 2192, 1700, 1655, 1603, 1472, 1439, 

1356, 1257, 1164, 1013, 759. – UV (MeOH): λmax (log ε) = 255 nm (4.122), 305 

(3.491). – MS (ESI(+), H2O/MeOH + 10 mmol/L NH4Ac): m/z (%) = 1181.8 (100) 

[M
3+

 + 2 CH3COO
-
]

+
, 1081.7 (8) [M

3+
 + 2 CH3COO

-
 – boc]

+
, 561.4 (7) [M

3+
 + 

CH3COO
-
]
2+

, 511.4 (6) [M
3+

 + CH3COO
-
 – boc]

2+
. – MF: C58H82N8O4Mn2Cl4 – 

FW: 1207.03 g/mol 

 

 

N
H

C
18

H
37

O

NH
2

N

N

N

N O N

Zn
2+

Zn
2+

N

3+

3 Cl-

 

Binuclear Zn(II)-Dpa tyrosine C18 complex (12) 

To a solution of compound 28 (36.5 mg, 43 µmol) in MeOH (2 mL) was added 

dropwise a methanolic solution of ZnCl2 (100 mM, 858 µL, 86 µmol). After stirring the 

reaction mixture for 2 h at room temperature, the methanol was removed in vacuo. The 

residue was dissolved in water and was lyophilized yielding complex 12 as a colourless 

solid in quantitative yield. 

MP: 147 °C. – IR (ATR) [cm
-1

]: ν~ = 2924, 2852, 1676, 1608,1573, 1477, 1440,1303, 

1270, 1156, 1100, 1053, 1023, 763. – UV (MeOH): λmax (log ε) = 261 nm (4.076), 296 

(3.436). – MS (ESI(+), H2O/MeOH + 10 mmol/L NH4Ac): m/z (%) = 1099.7 (100) 

[M
3+

 + 2 CH3COO
-
]

+
, 520.4 (69) [M

3+
 + CH3COO

-
]

2+
. – MF: C53H74N8O2Zn2Cl4 – 

FW: 1127.79 g/mol 
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3 Cl-

 

Binuclear Mn(II)-Dpa tyrosine C18 complex (13) 

To a solution of compound 28 (32.9 mg, 38 µmol) in MeOH (2 mL) was added 

dropwise a methanolic solution of MnCl2 (100 mM, 769 µL, 77 µmol). After stirring the 

reaction mixture for 2.5 h at room temperature, the methanol was removed in vacuo. 

The residue was dissolved in water and was lyophilized yielding complex 13 as a 

colourless solid in quantitative yield (42 mg, 38 µmol). 

MP: 180 °C. – IR (ATR) [cm
-1

]: ν~ = 2921, 2849, 1675, 1603, 1468, 1439, 1294, 1266, 

1153, 1097, 1052, 1014, 762. – UV (MeOH): λmax (log ε) = 255 nm (4.016), 306 

(3.420). – MS (ESI(+), H2O/MeOH + 10 mmol/L NH4Ac): m/z (%) = 1081.7 (100) 

[M
3+

 + 2 CH3COO
-
]
+
, 511.4 (56) [M

3+
 + CH3COO

-
]

2+
. – MF: C53H74N8O2Mn2Cl4 – 

FW: 1106.91 g/mol 
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C
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Isomeric mixture of fluorescein labelled binuclear Dpa tyrosine C18 (29) 

A isomeric mixture of 5/6-carboxyfluorescein (246 mg, 0.65 mmol), DIPEA (323 µL, 

1.87 mmol), TBTU (315 mg, 0.98 mmol), and HOBt (133 mg, 0.98 mmol) were 

dissolved under nitrogen atmosphere in dry DMF (4 mL) under ice cooling and stirred 

for 1 h. Subsequently 28 (400 mg, 0.47 mmol) in 4 mL DMF was added slowly. The 

reaction was allowed to warm to room temperature and was stirred 22 h at 40 °C. The 

reaction progress was monitored by TLC (CHCl3 / MeOH 9:1). After completion of the 

reaction the solvent was removed and the crude product was purified by preparative 

HPLC yielding the isomers 29 as an orange-yellow solid. 

Purification by preparative HPLC: 

Column: LabID75 Phenomenex Luna 250 x 21.2 mm 10 um / Ser.Nr. 453159-3 

Flow:     21 mL / min 

Concentration   10 mg / mL 

Injection volume:   500 µL 

Detection wavelength:  220 nm 

Gradient:   0 min –  5 % MeCN / H2O (+ 0.0059 % TFA) 

 43 min – 72 % MeCN / H2O (+ 0.0059 % TFA) 

 45 min – 98 % MeCN / H2O (+ 0.0059 % TFA) 

 55 min – 98 % MeCN / H2O (+ 0.0059 % TFA) 

Retention time: ca. 42 min 

MP: 97 – 99 °C. – UV (MeOH): λmax (log ε) = 224 (4.629), 260 (4.158), 454 (3.500), 

481 (3.481). – IR (ATR) [cm
-1

]: ν~  [cm] = 2924, 2853, 1757, 1670, 1609, 1438, 1377, 

1246, 1178, 1126, 955, 837, 798, 755, 719. – MS (ESI(+), DCM/MeCN/TFA): 



7. Synthesis of Non-Fluorescent and Fluorescent Metal Chelating Artificial Lipids to Modify Biomembrane Mimics 

 249 

m/z (%) = 607.6 (100) [M + 2 H
+
]

2+
, 405.3 (65) [M + 3 H

+
]

2+
, 1213.9 (11) [MH

+
]. – 

LC-MS (+ p ESI Q1MS ; RT 40 min): m/z (%) = 607.6 (100) [M + 2 H
+
]
2+

, 1213.9 (65) 

[MH
+
]

+
, 405.3 (38) [M + 3 H

+
]
2+

. – MF: C74H84N8O8 – FW: 1213.53 g/mol 

 

 

O

O

O

OH

OH

N
H

C
18

H
37

O

N

N

N

N O N

Zn
2+

Zn
2+

N

NHO

3+

3 Cl-

 

Fluorescein binuclear Zn(II)-Dpa tyrosine C18 complex (14) 

To a solution of compound 29 (10.5 mg, 8.7 µmol) in MeOH (2 mL) was added 

dropwise a methanolic solution of MnCl2 (100 mM, 174 µL, 17.4 µmol). After stirring 

the reaction mixture for 2.5 h at room temperature, the methanol was removed in vacuo. 

The residue was dissolved in water and was lyophilized yielding complex 14 as an 

orange solid in quantitative yield (13 mg, 8.7 µmol). 

MS (ESI(+), H2O/MeOH + 10 mmol/L NH4Ac): m/z (%) = 701.7 (100) [M
3+

 + 

CH3COO
-
]

+
, 1398.0 (8) [M

3+
 - H

+
 + CH3COO

-
]

+
, 1458.0 (7) [M

3+
 + 2 CH3COO

-
]

+
. – 

MF: C74H84N8O8Zn2Cl4 – FW: 1486.10g/mol 
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O

OH
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C
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N

NHO

3+

3 Cl-

 

Fluorescein binuclear Mn(II)-Dpa tyrosine C18 complex (15) 

To a solution of compound 29 (8.6 mg, 7.1 µmol) in MeOH (2 mL) was added dropwise 

a methanolic solution of MnCl2 (100 mM, 142 µL, 14.2 µmol). After stirring the 

reaction mixture for 3 h at room temperature, the methanol was removed in vacuo. The 

residue was dissolved in water and was lyophilized yielding complex 15 as an orange 

solid in quantitative yield (10 mg, 7.1 µmol). 

MS (ESI(+), MeOH + 10 mmol/L NH4Ac): m/z (%) = 690.5 (100) [M
3+

 + CH3COO
-
]

+
, 

1380.0 (5) [M
3+

 - H
+
 + CH3COO

-
]

+
, 1440.0 (10) [M

3+
 + 2 CH3COO

-
]

+
. – 

MF: C74H83N8O8Mn2Cl4 – FW: 1465.22 g/mol 

 

 

N
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N

N
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4

3
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Dodecyl-bis-pyridin-2-ylmethyl-amine (32) 

To a solution of 1-bromdodecane 31 (1.0 g, 5.02 mmol) and triethylamine (769 µL, 

5.52 mmol) in 6 mL of toluene, 2,2`-dipicolylamine 30 (1.38 g, 5.52 mmol) dissolved in 

toluene (6 mL) were added. The reaction mixture was heated to 90 °C for 3 d under 

vigorous stirring, concentrated and taken up in chloroform. The organic phase was 

washed with brine (3x) and dried over MgSO4. The crude product was purified by flash 
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column chromatography on flash silica gel (CHCl3 / MeOH 95:5, Rf = 0.25) yielding 32 

(0.86 g, 2.34 mmol, 46 %) as a dark brown oil. 

1
H-NMR (600 MHz; CDCl3): δ (ppm) = 0.84 (t, 

3
J = 7.1 Hz, 3 H, C

1
H3), 1.13-1.30 (m, 

18 H, C
2-10

H2), 1.52 (quin, 
3
J = 7.3 Hz, 2 H, HMBC: C

11
H2), 2.53 (t, 

3
J = 7.4 Hz, 2 H, 

HMBC: C
12

H2), 3.81 (s, 4 H, HSQC: C
13

H2), 7.10 (ddd, 2 H, 
3
J = 7.4 Hz, 

3
J = 4.9 Hz, 

4
J = 1.3 Hz, HMBC: C

17
H), 7.53 (ddd, 2 H, 

3
J = 7.8 Hz, 

4
J = 1.3 Hz, 

5
J = 0.9 Hz, 

HMBC: C
15

H), 7.61 (ddd, 2 H, 
3
J = 7.8 Hz, 

3
J = 7.4 Hz, 

4
J = 1.8 Hz, HMBC: C

16
H), 

8.48 (ddd, 2 H, 
3
J = 4.8 Hz, 

4
J = 1.8 Hz, 

5
J = 0.9 Hz, HMBC: C

18
H). – 

13
C-NMR 

(150 MHz; CDCl3): δ (ppm) = 14.0 (+, 1 C, C
1
H3), 22.6 (–, 1 C, HMBC: C

2
H2), 26.9 (–, 

1 C, HMBC: C
11

H2), 27.2 (–, 1 C, HMBC: C
10

H2), 29.3 (–, 1 C, alkyl-CH2), 29.4 (–, 

1 C, alkyl-CH2), 29.5 (–, 1 C, alkyl-CH2), 29.52 (–, 1 C, alkyl-CH2), 29.55 (–, 1 C, 

alkyl-CH2), 29.57 (–, 1 C, alkyl-CH2), 31.83 (–, 1 C, alkyl-CH2), 54.4 (–, 1 C, HMBC: 

C
12

H2), 60.3 (–, 2 C, HMBC: C
13

H2), 122.8 (+, 2 C, C
17

H), 122.9 (+, 2 C, C
15

H), 

136.3 (+, 2 C, C
16

), 148.9 (Cq, 2 C, C
18

), 159.7 (Cq, 2 C, C
14

). – IR (ATR) [cm
-1

]: 

ν~  = 396, 3059, 3008, 2925, 2853, 1661, 1589, 1467, 1433, 1362, 1305, 1246, 1146, 

1046, 892, 758. – MS (ESI(+), DCM/MeCN/TFA): m/z (%) = 368.4 [MH
+
]. – 

HRMS Calcd for C24H37N3: 367.2987; Found: 367.2988. – Elemental analysis calcd. 

(%) for C24H37N3: C 78.42, H 10.15, N 11.43; found C 77.70, H 10.00, N 10.82 – 

MF: C24H37N3 – FW: 367.58 g/mol 

 

 

N

N

N

Zn
2+

 

Zn-dpa-dodecane (9): 

dpa-Dodecane 32 (762 mg, 2.07 mmol) was dissolved in 10 mL of MeOH and a 

solution of ZnCl2 in MeOH (18 mL) was added. The reaction mixture was vigorously 

stirred at room temperature for 16 h. Subsequently MeOH was evaporated obtaining Zn-

dpa-dodecane 9 (1035 mg, 2.05 mmol, 99.0 %) as a light brownish solid. 

MP: 118 °C. – 
1
H-NMR (300 MHz; CDCl3): δ (ppm) = 0.82 (t, 

3
J = 7.0 Hz, 3 H, alkyl-

CH3), 0.92-1.44 (m, 20 H, alkyl-CH2), 2.38-2.72 (m, 2 H, alkyl CH2), 4.18 (s, 4 H, N-

CH2-Pyr), 7.34 (d, 
3
J = 7.7 Hz, 2 H, pyr-CH), 7.39-7.52 (m, 2 H, pyr-CH), 7.86 (dt, 

3
J = 1.6 Hz, 7.7 Hz, 2 H, pyr-CH), 9.14 (d, 2 H, 

3
J = 4.8 Hz, pyr-CH). – 

13
C-
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NMR (75 MHz; CDCl3): δ (ppm) = 14.1 (+, 1 C, alkyl-CH3), 22.7 (–, 1 C, alkyl-CH2), 

23.4 (–, 1 C, alkyl-CH2), 27.2 (–, 1 C, alkyl-CH2), 29.2 (–, 1 C, alkyl-CH2), 29.3 (–, 1 C, 

alkyl-CH2), 29.36 (–, 1 C, alkyl-CH2), 29.4 (–, 1 C, alkyl-CH2), 29.5 (–, 2 C, alkyl-

CH2), 31.9 (–, 1 C, alkyl-CH2), 53.2 (–, 1 C, alkyl-CH2), 57.1 (–, 2 C, N-CH2-pyr), 

123.3 (+, 2 C, pyr-CH), 124.5 (+, 2 C, pyr-CH), 139.9 (+, 2 C, pyr-CH), 149.5 (+, 2 C, 

pyr-CH), 153.9 (Cq, 2 C, pyr). –IR (ATR) [cm
-1

]: ν~  [cm] = 2919, 2851, 1605, 1573, 

1480, 1467, 1443, 1376, 1290, 1155, 1084, 1050, 962, 773, 759, 730. – 

MS (ESI(+),DCM/MeOH + 10 mmol/L NH4Ac): m/z (%) = 490.2 (100) [M
2+

 + 

CH3COO
-
]
2+

, 466.2 (12) [M
2+

 + Cl
-
]
2+

. – HRMS Calcd for C24H37N3ZnCl [M
2+

 + Cl
-
]

+
: 

466.1967; Found: 466.1960. – MF: C24H37N3ZnCl2 – FW: 503.86 g/mol 

 

 

N
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N
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2-(Bis-tert-butoxycarbonylmethyl-amino)-4-decylcarbamoyl-butyric acid tert-butyl 

ester (35) 

Under N2-atmosphere compound 33 (472 mg, 1.09 mmol), DIPEA (0.94 mL, 

5.47 mmol), EDC (0.23 mL, 1.31 mmol), and HOBt (177 mg, 1.31 mmol) were 

dissolved in DMF (10 mL) under ice cooling. Decylamine 34 (0.26 mL, 1.31 mmol) 

dissolved in DMF was added slowly. The reaction was allowed to warm to r.t. and was 

stirred over night (20 h) at 40 °C. The reaction progress was monitored by TLC (EE). 

After completion the solution was mixed with water (25 mL) and extracted with citric 

acid (3x) and sat. NaCl (3x). The organic layer was dried over MgSO4. The solvent was 

evaporated and the crude was purified using column chromatography on silica gel 

(EE/PE 1:1, Rf = 0.65) yielding 35 (365 mg, 0.64 mmol, 59 %) as a colourless solid 

after drying in vacuum. 

1
H-NMR (600 MHz; CDCl3): δ (ppm) = 0.80-0.90 (t, 

3
J = 7.1 Hz, 3 H, HSQC: C

1
H3), 

1.19-1.32 (m, 14 H, C
2
H2 – C

8
H2), 1.41-1.42 (s, 9 H, C

22
H3), 1.43-1.44 (s, 18 H, C

19
H3), 

1.45-1.51 (m, 2 H, HMBC: C
9
H3), 1.73-1.83 (m, 1 H, HMBC: C

14
H2 diastereotop), 

2.01-2.13 (m, 1 H, HMBC: C
14

H2 diastereotop), 2.32-2.40 (m, 1 H, HMBC: C
13

H2 

diastereotop), 2.47-2.54 (m, 1 H, HMBC: C
13

H2 diastereotop), 3.09-3.17 (m, 1 H, 
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HMBC: C
10

H2 diastereotop), 3.18-3.26 (m, 2 H, HMBC: C
10

H2 diastereotop, C
15

H), 

3.32-3.47 (dd, 
4
J = 17.1 Hz, 

4
J = 41.9 Hz, 4 H, HMBC: C

16
H2), 6.75-6.83 (t, 1 H, 

3
J = 5.3 Hz, HSQC: N

11
H). – 

13
C-NMR (150 MHz; CDCl3): δ (ppm) = 14.1 (+, 1 C, 

HSQC: C
1
), 22.6 (–, 1 C, HSQC: C

1
), 26.6 (–, 1 C, HSQC: C

14
), 27.0 (–, 1 C, HSQC: 

C
1
), 28.07 (+, 6 C, HSQC: C

19
), 28.15 (+, 3 C, HSQC: C

22
), 29.2 (–, 1 C, HSQC: C

1
), 

29.3 (–, 1 C, HSQC: C
1
), 29.52 (–, 1 C, HSQC: C

1
), 29.55 (–, 1 C, HSQC: C

1
), 29.6 (–, 

1 C, HSQC: C
1
), 31.8 (–, 1 C, HSQC: C

9
), 32.7 (–, 1 C, HSQC: C

13
), 39.5 (–, 1 C, 

HMBC: C
10

), 54.5 (–, 2 C, HMBC: C
16

), 64.8 (+, 1 C, HSQC: C
15

), 80.9 (Cq, 2 C, 

HMBC: C
18

), 81.4 (Cq, 1 C, HMBC: C
21

), 170.8 (Cq, 2 C, HMBC: C
17

), 171.8 (Cq, 1 C, 

HMBC: C
20

), 173.0 (Cq, 2 C, HMBC: C
17

). – IR (KBr) [cm
-1

]: ν~ = 3000, 2927, 2854, 

1730, 1649, 1541, 1456, 1368, 1149. – MS (ESI(+), DCM/MeOH + 10 mmol NH4Ac): 

m/z (%) = 571.6 (100) [MH
+
], 515.5 (8) [MH

+
 - C4H8], 593.6 (5) [MNa

+
]. – Elemental 

analysis calcd. (%) for C31H58N2O7: C 65.23, H 10.24, N 4.91; found C 64.84, H 10.20, 

N 4.66. – MF: C31H58N2O7 –FW: 570.82 g/mol 

 

 

NH
N
H

OHO

O

OH

O

OH

O
+

TFA-  

2-(Bis-carboxymethyl-amino)-4-decylcarbamoyl-butyric acid triflate (36) 

Compound 35 (107 mg, 0.19 mmol) was suspended in TFA (4 mL). The reaction 

mixture was stirred at room temperature for 20 h. Reaction progress was monitored by 

TLC (EE). TFA was evaporated in vacuo and the triflate salt of compound 36 was 

redissolved in water and was lyophilized giving product 36 (98 mg, 0.19 mmol, 100 %) 

as a white hygroscopic solid.  

1
H-NMR (300 MHz; CD3OD): δ (ppm) = 0.81-0.96 (t, 

3
J = 6.7 Hz, 3 H, CH3), 1.18-

1.40 (m, 14 H, CH2, 1.41-1.60 (m, 2 H, CH2), 1.78-2.17 (m, 2 H, Glu-CH2), 2.29-2.49 

(t, 
3
J = 7.0 Hz, 2 H, Glu-CH2), 3.05-3.22 (t, 

3
J = 7.0 Hz, 2 H, CH2), 3.42-3.52 (m, 1 H, 

CH), 3.53-3.73 (m, 4 H, N-CH2). – 
13

C-NMR (75 MHz; CD3OD): δ (ppm) = 14.5 (+, 

1 C, CH3), 23.8 (–, 1 C, CH2), 27.2 (–, 1 C, CH2), 28.1 (–, 1 C, CH2), 30.4 (–, 1 C, 

CH2), 30.5 (–, 2 C, CH2), 30.8 (–, 2 C, CH2), 33.1 (–, 1 C, CH2), 33.7 (–, 1 C, CH2), 

40.5 (–, 1 C, CH2), 54.9 (–, 2 C, N–CH2), 66.0 (+, 1 C, CH), 175.3 (Cq, 1 C, CONH), 

175.5 (Cq, 1 C, CHCOOH), 175.8 (Cq, 2 C, NCH2COOH). – IR (KBr) [cm
-1

]: ν~ = 3340, 
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3028, 2921, 2852, 2547, 1725, 1643, 1538, 1427, 788, 715. – MS (ESI(+), 

H2O/MeCN): m/z (%) = 401.2 (100) [M - H
+
]

-
, 457.2 (15) [starting material – 2 C4H8 + 

H
+
]

-
, 803 (6) [2M-H

+
]

-
. – MF: C19H34N2O7 ·  TFA – FW: 516.51 g/mol; without TFA: 

402,49 g/mol 

 

 

H
2
O N

Cu
H

2
O O

O

O

O

O

O

N
H

O

Na
+

-

 

Glu-NTA-2-(Bis-carboxymethyl-amino)-4-decylcarbamoyl-butyric acid (6): 

Compound 36 (40 mg, 0.08 mmol) and Cu2(OH)2CO3 (8.6 mg, 0.04 mmol) were 

dissolved in methanol (6 mL). The mixture was stirred at room temperature over night, 

subsequently for 3 h at 60 h and was filtered immediately. The resulting blue solution 

was concentrated under reduced pressure, redissolved in water and lyophilized yielding 

43 (35 g, 0.06 mmol, 71 %) without further purification as a blue solid. 

MP: 173-175 °C. – IR (KBr) [cm
-1

]: ν~ = 2925, 2854, 2362, 1724, 1448, 1378, 1240, 

1112, 906. – MS (ESI(+), H2O/MeCN): m/z (%) = 462.3 (100) [A
-
], 415.3 (35) [A

-
 - 

H2O - CH3], 374.2 (15) [A
-
 - CO2]. – MF: C19H31N2O7CuH(H2O)2 ·  TFA – FW: 614.07 

g/mol; A
-
 (without TFA, H2O, H): 463.01 g/mol 
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7.4.3 
1
H and 

13
C spectra of synthesized compounds 
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8. Summary 

Reversible coordinative binding of Lewis basic donors to iminodiacetato (IDA) and 

nitrilotriacetato (NTA) metal complexes is widely used for the design of synthetic 

receptors binding to peptides, proteins or enzymes at physiological conditions. 

However, no data on the affinity of M(II)-NTA (M = Cu, Ni, Zn) to a single histidine or 

imidazole moiety are available. We herein report (chapter 1) the investigation of the 

binding affinity and thermodynamics of copper(II), nickel(II) and zinc(II) NTA 

complexes to histidine, imidazole and hen egg white lysozyme, bearing a single surface 

exposed histidine unit, by isothermal titration calorimetry at physiological conditions. 

Further, we describe a peptide-metal complex hybrid approach to enhance the binding 

affinity of Cu(II)-NTA to lysozyme. 

 

In the second part of this work (chapter 2) the rationally design of a selective peptide 

receptor is described. The combination of copper(II)nitrilotriacetato (NTA) complex 

with an ammonium-ion sensitive and luminescent benzocrown ether revealed a peptide 

receptor with a micromolar affinity and selectivity for glycine and histidine containing 

peptide sequences. This affinity closely resembles that of copper(II) ion peptide 

binding: The two free coordination sites of the copper(II) NTA complex bind to 

imidazole and amido nitrogen atoms, retracing the initial coordination steps of non-

complexed copper(II) ions. The benzocrown ether recognizes intramolecularly the N-

terminal amino moiety and the significantly increased emission intensity signals the 

binding event, as only if prior coordination of the peptide has taken place, the 

intramolecular ammonium ion – benzocrown ether interaction is of sufficient strength in 

water to trigger an emission signal. Intermolecular ammonium ion – benzocrown ether 

binding is not observed. Isothermal titration calorimetry confirmed the binding 

constants derived from emission titrations. Thus, as deduced from peptide coordination 

studies, the combination of a truncated copper(II) coordination sphere and a 

luminescent benzocrown ether allows for the more rational design of sequence selective 

peptide receptor.  
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Suitable combinations of an affinity tag and an artificial probe are useful for non-

covalent protein labelling. Several of such peptide tag – probe pairs have been 

developed and reported in the literature. The most prominent example is the His-tag – 

Ni(II)-NTA (nitrilotriacetic acid) pair. Recently, the Hamachi group reported a 

genetically encodable oligo-aspartate sequence (D4-tag) and a corresponding 

oligonuclear Zn(II) dipicolylamine (Zn(II)-Dpa) complex as new peptide tag – probe 

pair, which is orthogonal to the His-tag – Ni(II)-NTA pair.
 
We describe in the third part 

of this work (chapter 3) the preparation of fluorescent 1,4,7,10-tetraazacyclododecane 

(cyclen) Zn(II) complexes and their application as an alternative artificial probe for the 

D4-tag system. The binding affinities of the new complexes to the affinity tags were 

investigated by emission and UV-vis titration. Tetranuclear Zn(II)-cyclen complexes 

respond to the presence of oligo-aspartate, oligo-glutamate and oligo-aspartate dimers in 

aqueous solution at micromolar concentrations by a strong spectroscopic change. Based 

on the high binding affinities due to strong electrostatic interactions and Job´s plot 

analysis, we propose the formation of receptor–peptide tag aggregates. The results 

clearly show the potential of Zn(II)-cyclen complexes for applications as non-covalent 

protein markers, although their optical properties require further optimization for 

practical use. 

 

The fourth part of this work (chapter 4) deals with the syntheses of new amphiphilic 

1,4,7,10-tetraazacyclododecane Zn(II) complexes for a template guided cooperative 

self-assembly of nucleotides at interfaces fabricated by combination of self-assembly 

monolayer technique (SAM) and Langmuir Blodgett technique (LB). Three amphiphilic 

Zn(II)-cyclen complexes were synthesized as binding sites at interfaces prepared by a 

combination of SAM and LB film approaches or in vesicles. Detailed investigations of 

the binding properties of surfaces incorporating the new amphiphilic complexes are in 

progress. 

 

The fifth part of this work (chapter 5) deals with the preparation of self assembled 

vesicular polydiacetylene (PDA) particles with embedded metal complex receptor sites. 

The particles respond to the presence of ATP and PPi (pyrophosphate) in buffered 

aqueous solution by visible changes of their color and emission properties. Blue PDA 

vesicles of uniform size were obtained upon UV irradiation from mono- and dinuclear 

zinc(II)-cyclen and iminodiacetato copper [Cu(II)-IDA] modified diacetylenes, 
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embedded in amphiphilic diacetylene monomers. Addition of ATP and PPi to the PDA 

vesicle solution induces a color change from blue to red observable by the naked eye. 

The binding of ATP and PPi changes the emission intensity. Other anions like ADP, 

AMP, H2PO4¯ , CH3COO¯ , F¯ , Cl¯ , Br¯  and I¯  failed to induce any spectral changes. 

The zinc(II)-cyclen nanoparticles are useful for the facile detection of PPi and ATP in 

millimolar concentrations in neutral aqueous solutions, while Cu(II)-IDA modified 

vesicular PDA receptors are able to selectively discriminate between ATP and PPi. 

 

In the sixth chapter (chapter 6) we report a new methodology for the preparation of a 

artificial phosphate receptors. Phosphate anion probes typically consist of a binding site 

and a luminescent reporter group. The luminescent moiety is either part of the 

chemosensor in close proximity of the analyte binding site or in indicator displacement 

assays non-covalently bound to the binding site and displaced by the analyte. We report 

here the preparation and binding properties of 80 nm vesicular synthetic receptors, 

which contain amphiphilic 1,4,7,10-tetraazacyclododecane (cyclen) Zn(II) complexes as 

phosphate anion binding sites and amphiphilic coumarin derivatives as fluorescent 

reporter groups. By colocalization of binding sites and reporter groups in the vesicle 

they respond to the presence of phosphate anions in aqueous solution at micromolar 

concentrations by a strong emission decrease. The technique avoids the covalent 

synthesis of labelled analyte binding sites and allows the rapid and versatile preparation 

of luminescent nanometer size synthetic receptors. 

 

In the last part of this work (chapter 7) the syntheses of new non-fluorescent and 

fluorescent amphiphilic Lewis acidic metal complexes (metal chelating artificial lipids) 

based on 1,4,7,10-tetraazacyclododecane Zn(II) complexes, dipicolylamine (Dpa) 

complexes and a nitrilotriacetato acid (NTA) complex are described. The prepared 

metal chelating artificial lipids will be used for fabrication of complex self-assembled 

supramolecular surfaces by one or more different chemosensors for molecular 

recognition at interfaces. 
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9. Zusammenfassung 
 

Die reversible koordinative Bindung von Lewis basischen Donoren an Iminodiacetato 

(IDA) und Nitrilotriacetato (NTA) Metallkomplexe findet eine breite Anwendung für 

die Entwicklung von synthetischen Rezeptoren für die Bindung von Peptiden, Proteinen 

oder Enzymen unter physiologischen Bedingungen. Dennoch sind Daten für den 

Bindungsprozess von M(II)-NTA (M = Cu, Ni, Zn) an einfaches Histidin und Imidazol 

in der Literatur nicht verfügbar. Deshalb konzentriert sich das erste Kapitel auf die 

Untersuchung der Bindungsaffinität und der Thermodynamik von Kupfer(II), Nickel(II) 

und Zink(II) NTA Komplexen an Histidin, Imidazol und Hühnereiweiß Lysozym, das 

ein oberflächenexponiertes Histidin trägt, mittels Isothermischer Titrationskalorimetrie 

(ITC) unter physologischen Bedingungen. In einem weiteren Ansatz wurde versucht, 

die Bindungsaffinität von Cu(II)-NTA an Lysozym durch einen Peptid – Metall 

Komplex Hybridrezeptor zu steigern. 

 

Im zweiten Kapitel dieser Arbeit wird die rationale Entwicklung eines selektiven 

Peptidrezeptors beschrieben. Die Kombination aus einem Kupfer(II) nitrilotriacetato 

(NTA) Komplex und einem Ammoniumionen sensitiven und lumineszenten 

Benzokronenether, zeigte einen Peptidrezeptor mit mikromolarer Affinität und 

Selektivität für Peptidsequenzen, die Glycin und Histidin enthalten. Der 

Bindungsprozess verläuft ähnlich dem bekannter Kupfer(II) Ionen bindender 

Peptidsequenzen: Zwei der verbleibenden freien Koordinationsplätze am Kupfer(II) 

NTA Komplex werden durch Imidazol und den Amid Stickstoff besetzt. Dies entspricht 

in analoger Weise der schrittweisen Koordination freier Kupfer(II) Ionen durch die 

Peptidesequenz. Der Benzokronenether ist nun in der Lage intramolekular die 

verbleibende N-terminale Amingruppe des Peptides zu erkennen und der 

Bindungsvorgang wird durch einen signifikanten Anstieg der Fluoreszenzemission 

angezeigt. Dies ist jedoch nur möglich, wenn eine Vorkoordination des Peptides an den 

Metall Komplex erfolgt. Nur unter diesen Bedingungen ist die intramolekulare 

Ammoniumion – Benzokronenether Wechselwirkung von ausreichender Stärke um 

unter physiologischen Bedingungen eine Emissionsänderung hervorzurufen. Eine 

intermolekulare Ammonium Ion – Benzokronenether Wechselwirkung wurde nicht 

beobachtet. Mittels isothermischer Titrationskalorimetrie (ITC) konnten die 

Bindungskonstanten, die durch Emissionstitrationen erhalten wurden bestätigt werden. 

Abgeleitet von Peptid Koordinationsstudien an den Peptidrezeptor, kann gefolgert 
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werden, dass die Kombination aus einer eingeschränkten Koordinationssphäre am 

Kupfer(II) Ion und einem lumineszenten Benzokronenether eine weitaus rationelleren 

Entwicklungsansatz von sequenzselektiven Peptidrezeptoren ermöglicht.  

 

Nichtkovalente Proteinmarkierung durch die Wahl einer geeigneten Kombination aus 

einem Affinitäts-Tag und einem kleinen artifiziellen Molekül ist äußerst nützlich. 

Verschiedene derartiger Kombination wurden entwickelt und sind literaturbekannt. Das 

bekannteste Beispiel hierfür ist die Kombination aus einem His-Tag und einem Ni(II)-

NTA Komplex. Hamachi et al entwickelten kürzlich eine neue Kombination bestehend 

aus einer genetisch kodierbaren oligo-Aspartat Sequenz (D4-tag) und einem 

zweikernigen Zn(II) Dipycolylamin (Zn(II)-Dpa) Komplex, der orthogonal zu oben 

genanntem System ist. Im dritten Kapitel dieser Arbeit berichten wir die Synthesen von 

fluoreszenten 1,4,7,10-tetraazacyclododecane (Cyclen) Zn(II) Komplexen und deren 

Anwendung als alternative artifizielle Moleküle für das D4-System. Die 

Bindungsaffinitäten an die Affintäts-Tags wurde mittels UV-vis – und Emissions – 

Titration bestimmt. Nur die vierkernigen Zn(II)-Cyclen Komplexe zeigten eine starke 

spektroskopische Veränderung ihrer Banden in Anwesenheit von oligo-Aspartat, oligo-

Glutamat und einem oligo-Aspartat Dimer bei mikromolarer Konzentration in wässriger 

Lösung. Basierend auf der hohen Bindungsaffinität, hervorgerufen durch starke 

elektrostatische Wechselwirkungen, und der Stöchiometrie des Bindungsprozesses 

ermittelt durch Job´s plot, wird eine Bildung von Peptid-Tag – Rezeptor Aggregaten 

angenommen. Die Ergebnisse zeigen deutlich das Potential der untersuchten Zn(II)-

Cyclen Komplexe für Anwendungen im Bereich zur nichtkovalenten 

Proteinmarkierung, wenngleich deren optische Eigenschaften für praktische 

Anwendungen noch Verbesserungsbedarf benötigen.  

 

Das vierte Kapitel dieser Dissertation bezieht sich auf die Synthese neuer amphiphiler 

1,4,7,10-tetraazacyclododecan Zn(II) Komplexe zur Templat gesteuerten kooperativen 

Selbstorganisation von Nucleotiden an Grenzflächen, die mittels einer Kombination aus 

selbstorganisierten Monoschichten (SAM) und der Langmuir Blodgett Technik (LB) 

erzeugt werden. Drei amphiphile Zn(II)-Cyclen Komplexe wurden für die Verwendung 

als Bindungsstellen in Grenzflächen synthetisiert. Genauere Untersuchungen der 

Bindungseigenschaften von Oberflächen modifiziert mit den hier dargestellten neuen 

amphiphilen Metall Komplexen sind aktuell noch in Bearbeitung.  
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Der fünfte Teil dieser Arbeit (Kapitel 5) beschäftigt sich mit der Herstellung von 

selbstorganisierten vesikulären Polydiacetylen (PDA) Vesikel, in die Lewis saure 

Metall Komplex Einheiten mit eingebaut wurden. In gepufferter wässriger Lösung 

zeigen diese Vesikel in Anwesenheit von ATP oder PPi eine erkennbare 

Farbveränderung und eine Veränderung ihrer Emissionseigenschaften. Die Herstellung 

von einheitlich großen, blauen PDA Vesikeln erfolgte durch UV Bestrahlung von 

mono- und dinuklearen Zn(II)-Cyclen und Cu(II)-IDA (iminodiacetato) modifizierten 

Diacetylenen, welche mit amphiphilen Diacetylen Monomeren gemischt wurden. Die 

Zugabe von ATP und PPi zu einer solch polymerisierten PDA Vesikel Lösung rief 

einen Farbwechsel von blau nach rot hervor, der selbst mit bloßem Auge erkennbar war. 

Nur ATP und PPi erzeugten eine Veränderung der Emissionsintensität. Weitere 

Anionen wie ADP, AMP, H2PO4¯ , CH3COO¯ , F¯ , Cl¯ , Br¯  and I¯  hatten keinen 

Einfluss auf die Emissionseigenschaften der Partikel. Die Nützlichkeit der dargestellten 

Zn(II)-Cylen Nanopartikel kann durch eine einfachen Nachweis von PPi und ATP in 

millimolarer Konzentration in neutraler wässriger Lösung gezeigt werden. Cu(II)-IDA 

modifizierte vesikuläre PDA Rezeptoren hingegen ermöglichen eine selektive 

Unterscheidung zwischen ATP und PPi.  

 

Im sechsten Kapitel wird eine neue Methodik zur Herstellung artifizieller 

Phosphatanionen Rezeptoren vorgestellt. Solche Rezeptoren bestehen üblicherweise aus 

einer Bindungsstelle und einem lumineszenten Marker. Die lumineszente Einheit kann 

entweder Bestandteil des Chemosensor sein und befindet sich in kurzer Distanz zur 

Analyt Bindungsstelle oder wird in einem Indikator Verdrängungs-Assay (IDA) an die 

Bindungsstelle gebunden und durch den Analyt verdrängt. In diesem Abschnitt 

berichten wir die Herstellung und die Bindungseigenschaften von 80 nm großen 

vesikulären synthetischen Rezeptoren, die amphiphilie 1,4,7,10-tetraazacyclododecane 

(Cyclen) Zn(II) Komplexe als Phosphate Bindungsstellen und amphiphile Coumarin 

Derivate als fluoreszente Marker beinhalten. Eine Kolokalisierung der Bindungsstellen 

und der fluoreszenten Marker im Vesikel erlaubt eine Phosphatanionenerkennung in 

wässriger Lösung im Bereich mikromolarer Konzentrationen durch eine starke 

Emissionsabnahme. Diese Technik vermeidet die aufwendige Synthese von 

Bindungsstellen, die kovalent mit fluoreszenten Chromophoren markiert werden und 

ermöglicht eine schnelle und vielseitig Herstellung von lumineszenten synthetischen 

Rezeptoren im Nanometerbereich. 



9. Zusammenfassung 

 273 

Im letzten Kapitel dieser Arbeit wird die Synthese neuer nicht-fluoreszenter und 

fluoreszenter amphiphiler Lewis azider Metall Komplexe (Metall chelatisierende 

artifizielle Lipide) basierend auf 1,4,7,10-tetraazacyclododecane (Cyclen) Zn(II) 

Komplexen, dipicolylamine (Dpa) Metall Komplexen und Nitrilotriacetato (NTA) 

Metall Komplex vorgestellt. Die dargestellten artifiziellen Metall chelatisierenden 

Lipide werden für die Herstellung von komplexen selbstorganisierten supramolekularen 

Oberflächen bestehend aus einheitlichen oder mehreren verschiedenartigen 

Chemosensoren zur molekularen Erkennung an Grenzflächen verwendet. 
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10. Abbreviations 
 

 

Asp (D) Aspartic acid 

 

Ar  Aryl    

 

Aq   aqueous 

 

ATP  Adenosine triphosphate 

 

Boc   tert-Butyloxycarbonyl  

 

c  Concentration 

 

Calcd  Calculated 

 

Cbz  Benzyloxycarbonyl 

 

CI  Chemical Ionisation 

 

cAMP   Cyclic adenosine 

monophosphate 

 

COSY  Correlated spectroscopy 

 

d  Day(s) 

 

DAD   Diode array detector 

 

DCC  Dicyclohexyl- 

carbodiimide 

 

DCM  Dichloromethane  

 

DIPEA  Diisopropylethylamine  

 

DMF   Dimethylformamide  

 

DMSO  Dimethylsulfoxide  

 

EDC   N-(3-Dimethylamino-

propyl)-N’-ethylcarbo-

diimide 

 

EI-MS  Electron-impact 

ionization  

mass spectrometry  

 

ES-MS  Electrospray ionization 

mass spectrometry  

EE/EtOAc Ethylacetate 

 

eq Equivalents 

 

Et Ethyl 

 

EtOH Ethanol 

 

FAB   Fast-Atom-Bombardment 

 

h  hours 

 

Glu (E) Glutamic acid 

 

GTP Guanosine-5'-

triphosphate 

 

HATU   

 

HBTU  2-(1H-Benzotriazole-1-

yl)-1,1,3,3-tetramethyl-

uronium 

hexafluorophosphate  

 

HEPES N-2-Hydroxy-

ethylpiperazine-N’-2-

ethansulfonic acid 

 

His  Histidine 

 

HOBt   Hydroxybenzotriazole  

 

HPLC  High pressure liquid  

chromatography 

 

HRMS  High resolution mass  

spectrometry  

 

HSQC  Heteronuclear single 

quantum coherence 

 

ITC isothermal titration 

calorimetry  

 

IDA  Iminodiacetic acid 

 

IR  Infrared 
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J  Coupling Constant 

 

LB  Langmuir Blodgett 

 

Me  Methyl 

 

MF  Molecular formula 

 

MeCN  Acetonitrile 

 

MeOH  Methanol 

 

min  minutes 

 

MP  Melting point 

 

MW  Molecular weight 

 

NMR Nuclear magnetic 

resonance 

 

NOESY  Nuclear overhauser 

enhancement 

spectroscopy  

 

NTA  Nitrilotriacetic acid 

 

o/n  over night 

 

PE  Petrol Ether (Hexanes) 

Ph  Phenyl 

 

PPi  Pyrophosphate 

 

Rf  Retention factor 

 

ROESY Rotating frame NOE 

spectroscopy 

 

RT  Room temperature 

 

SAM  self assembled 

monolayer 

 

TFA   Trifluoroacetic acid  

 

THF   Tetrahydrofuran  

 

TLC  Thin layer 

chromatography  

 

TRIS  Tris(hydroxymethyl)-

aminomethane 

 

UV  Ultraviolett 

 

Vis  Visible 

 

x  Mole Fraction 
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