Volume 187, number 6

CHEMICAL PHYSICS LETTERS

27 December 1991

Photoluminescence of $[Sn_6O_4(OCH_3)_4]$

H. Kunkely and A. Vogler

Institut für Anorganische Chemie, Universität Regensburg, Universitätsstrasse 31, W-8400 Regensburg, Germany

Received 2 September 1991

The hexameric complex $[Sn_6O_4(OCH_3)_4]$ shows a low-temperature (77 K) photoluminescence of moderate intensity at $\lambda_{max} = 565$ nm. This emission is assumed to originate from a metal-centered sp excited state which is modified by metal-metal interaction in the octahedral Sn(II)₆ cluster.

1. Introduction

Hexameric metal compounds which contain an octahedral M₆ cluster and eight triply bridging ligands at the faces of the octahedron constitute an important class of polynuclear complexes [1,2]. The absorption and luminescence spectra of transition metal complexes of this type such as $M_6 X_8^{4+}$ with M = Mo, W and X⁻ = halide have been investigated extensively [3]. On the contrary, the optical properties of the isostructural main-group metal compounds $[Bi_6O_4(OH)_4]^{6+\#1}$ [4,5], $[Sn_6O_4(OH)_4]$ [6], and $[Sn_6O_4(OCH_3)_4]$ [7] have not yet been studied although their electronic spectra should be of considerable interest as Jørgensen pointed out already 20 years ago [8]. These clusters are anticipated to be luminescent since compounds which contain s² ions such as Tl⁺, Sn²⁺, Pb²⁺, Sb³⁺, and Bi^{3+} are generally photoemissive [9–11].

Electronic spectroscopy may help to elucidate the nature of the metal-metal interaction in these s² clusters. Although the filled s subshell favors a nonbonding interaction weak metal-metal bonds may result from sp hybridization [12]. In distinction to the ground state the metal-metal bonds may become quite strong in the lowest excited state. The electronic spectra of the tetrameric cluster $[Tl_4(OCH_3)_4]$ have been recently interpreted on the basis of this assumption [13]. If this conception is correct it should also apply to other s² clusters. We explored

0009-2614/91/\$ 03.50 © 1991 Elsevier Science Publishers B.V. All rights reserved.

this possibility and selected the octahedral cluster $[Sn_6O_4(OCH_3)_4]$ for the present study.

2. Experimental

The compounds $[Sn_6O_4(OCH_3)_4]$ [7] and $[Sn(benzoylacetonate)_2]$ [14] were prepared according to published procedures. Since the compounds were air sensitive all solvents were deaerated by argon. Absorption spectra were measured in solution at room temperature on a Shimadzu UV-2100 absorption spectrometer. Emission and excitation spectra of the compounds in the solid state or in toluene glasses (77 K) were obtained on a Hitachi 850 spectrofluorimeter equipped with a Hamamatsu R 928 photomultiplier. The luminescence spectra were corrected for monochromator and photomultiplier efficiency.

3. Results

The absorption spectrum of $[Sn_6O_4(OCH_3)_4]$ in *n*-hexane (fig. 1) displays band maxima at $\lambda = 325$ nm (shoulder, 298 nm (sh), 264 nm, 225 nm (sh) and 208 nm. Owing to the low solubility of the compound a precise determination of the molar extinction coefficients was not possible but ϵ was estimated to be approximately 20000 at 208 nm. The compound was photoluminescent only at low temperatures (77 K). While the emission was rather weak in

^{*1} This ion [5] was originally assumed to be $[Bi_6(OH)_{12}]^{6+}$ [4].

Fig. 1. Electronic absorption (----) and emission (···) spectra of $[Sn_6O_4(OCH_3)_4]$. Absorption: $\approx 10^{-4}$ M in *n*-hexane at room temperature, 1 cm cell. Emission: in the solid state at 77 K; $\lambda_{exc} = 300$ nm, intensity in arbitrary units.

toluene glasses the solid material showed a yellow luminescence of intermediate intensity at $\lambda_{max} = 565$ nm (fig. 1). The excitation spectrum agreed quite well with the absorption spectrum.

For comparison the electronic spectra of [Sn(benzoylacetonate)₂] were also measured. The longest wavelength absorption of this compound in benzene appeared at $\lambda_{max} = 310$ nm. An emission was also observed only at low temperatures (77 K). In toluene glasses the luminescence occurred at $\lambda_{max} = 480$ nm ($\lambda_{exc} = 300$ nm).

4. Discussion

The compound $[Sn_6O_4(OCH_3)_4]$ consists of a slightly distorted $Sn(II)_6$ octahedron [7]. The faces of this octahedron are triply bridged by four oxide and four methoxide ligands. The hexameric cluster is thus composed of six mononuclear ML₄ components which have a distorted seesaw structure similar to that of $[Sn(benzoylacetonate)_2]$ [7,15]. The metal-metal interaction in the Sn₆ moiety can be ex-

plained by a qualitative MO scheme [16,17] (fig. 2) which includes the 5s and 5p valence orbitals of tin.

Fig. 2. Qualitative MO scheme of the octahedral Sn(II)₆ moiety.

In O_h symmetry the s orbitals generate one a_{1g} bonding, three t_{1u} non-bonding and two e_g antibonding orbitals. The overlap of the p orbitals gives 18 bonding, non-bonding, and anti-bonding MOs. Since Sn^{2+} has a closed s^2 subshell all molecular orbitals which originate from s orbitals are occupied. The compensating effect of the filled bonding and anti-bonding MOs should not yield any metal-metal bonding. However, weak metal-metal bonding may result from a stabilization of these s orbitals by sp mixing with p orbitals of the same symmetry (fig. 2). In addition, the a_{1g} , t_{1u} , and t_{2g} orbitals are destabilized by the triply bridging ligands which have orbitals of the same symmetry [16].

It is assumed that in the ground state of $[Sn_6O_4(OCH_3)_4]$ the metal-metal interaction is quite weak and hence the splitting of the s and p orbitals according to fig. 2 rather small. The absorption spectrum should then display low-energy sp bands in analogy to other mononuclear Sn²⁺ compounds. We longest-wavelength assign the band of $[Sn_6O_4(OCH_3)_4]$ at $\lambda_{max}=325$ nm (fig. 1) to the ${}^{1}S_{0} \rightarrow {}^{3}P_{1}$ sp transition of the free Sn^{2+} ion. Blasse and his group identified this sp transition (A band) of Sn²⁺ in a variety of oxide environments at comparable energies [18]. The less intense absorptions of $[Sn_6O_4(OCH_3)_4]$ at shorter wavelength should be also of the sp type while the higher-intensity bands near 200 nm may belong to ligand to metal charge transfer transitions terminating at the empty p orbitals of Sn²⁺.

ln the low-energy sp excited states of $[Sn_6O_4(OCH_3)_4]$ the metal-metal interaction and thus the splitting of the s and p orbitals (fig. 2) may become quite large since an anti-bonding s electron is promoted to bonding p orbitals. As a consequence of this increased metal-metal bonding the Sn₆ cluster is expected to undergo a contraction in the excited state. This structural change should be reflected by a large Stokes shift of the emission. The luminescence at $\lambda_{max} = 565$ nm is assigned to the ${}^{3}P_{1} \rightarrow {}^{1}S_{0}$ transition of the Sn²⁺ ion. The Stokes shift of $\Delta \bar{v} = 13074$ cm⁻¹ occurs in an energy range which has been also observed for Sn²⁺ in some oxidic matrices [18]. However, this shift of $[Sn_6O_4(OCH_3)_4]$ seems indeed to be rather large when it is compared with that of its mononuclear components. Unfortunately, $[Sn^{II}O_2(OCH_3)_2]^{4-}$ does not exist as a

separate complex, but $[Sn^{II}(benzoylacetonate)_2]$ is characterized by the same structural features including the coordination of Sn^{2+} by four oxygen atoms in a seesaw geometry [7,15]. This compound emits at $\lambda_{max} = 480$ nm from the intraligand (IL) excited state of the coordinated benzoylacetonate [19]. The sp excited state must then lie above the emitting IL state. The much lower energy of the sp excited state of $[Sn_6O_4(OCH_3)_4]$ is now assumed to be caused by the strong metal-metal interaction in the excited cluster.

Finally, a certain analogy between s^2 and d^{10} clusters should be pointed out. In both cases a filled s^2 or d^{10} subshell prevents strong metal-metal bonding in the ground state but favors it in the excited state. The emission spectra of d^{10} clusters of transition metals such as Cu(I) [20,21], Ag(I) [22] and Au [23,24] can be explained by the same type of excited state distortion which we considered here for s^2 clusters.

Acknowledgement

Support of this research by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged.

References

- [1] N.N. Greenwood and A. Earnshaw, Chemistry of the elements (Pergamon Press, Oxford, 1984).
- [2] F.A. Cotton and G. Wilkinson, Advanced inorganic chemistry, 5th Ed. (Wiley, New York, 1988).
- [3] A.W. Maverick and H.B. Gray, J. Am. Chem. Soc. 103 (1981) 1298;
 A.W. Maverick, J.S. Najdzionek, D. MacKenzie, D.G. Nocera and H.B. Gray, J. Am. Chem. Soc. 105 (1983) 1878;
 T.C. Zietlow, D.G. Nocera and H.B. Gray, Inorg. Chem. 25 (1986) 1351;

T.C. Zietlow, W.P. Schaefer, B. Sadeghi, N. Hua and H.B. Gray, Inorg. Chem. 25 (1986) 2195.

- [4] V.A. Maroni and T.G. Spiro, Inorg. Chem. 7 (1968) 183, and references therein.
- [5] B. Sundvall, Acta Chem. Scand. A 34 (1980) 93; Inorg. Chem. 22 (1983) 1906.
- [6] R.A. Howie and W. Moser, Nature 219 (1968) 372.
- [7] P.G. Harrison, B.J. Haylett and T.J. King, J. Chem. Soc. Chem. Commun. (1978) 112.

- [8] C.K. Jørgensen, Modern aspects of ligand field theory (North-Holland, Amsterdam, 1971) p. 400.
- [9] A. Ranfangi, D. Mugnai, M. Bacci, G. Viliani and M.P. Fontana, Advan. Phys. 32 (1983) 823.
- [10] G. Blasse, Progr. Solid State Chem. 18 (1988) 79; Rev. Inorg. Chem. 5 (1983) 319.
- [11] A. Vogler, A. Paukner and H. Kunkely, Coord. Chem. Rev. 97 (1990) 285.
- [12] C. Janiek and R. Hoffmann, Angew. Chem. Intern. Ed. Engl. 28 (1989) 1688; J. Am. Chem. Soc. 112 (1990) 5924.
- [13] H. Kunkely and A. Vogler, Inorg. Chim. Acta, in press.
- [14] P.F.R. Ewings, P.G. Harrison and D.E. Fenton, J. Chem. Soc. Dalton Trans. (1975) 821.
- [15] P.F.R. Ewings, P.G. Harrison and T.J. King, J. Chem. Soc. Dalton Trans. (1975) 1455.
- [16] D.M.P. Mingos, J. Chem. Soc. Dalton Trans. (1974) 133; (1976) 1163.
- [17] A.J. Stone, Inorg. Chem. 20 (1981) 563.

- [18] H. Donker, W.M.A. Smit and G. Blasse, Phys. Stat. Sol. (b) 145 (1988) 333; (b) 148 (1988) 413; J. Electrochem. Soc. 136 (1989) 3120.
- [19] R.E. Whan and G.A. Crosby, J. Mol. Spectry. 8 (1962) 315.
- [20] A. Vogler and H. Kunkely, J. Am. Chem. Soc. 108 (1986) 7211.
- [21] K.R. Kyle, C.K. Ryu, J.A. DiBenedetto and P.C. Ford, J. Am. Chem. Soc. 113 (1991) 2954, and references therein.
- [22] A. Vogler and H. Kunkely, Chem. Phys. Letters 158 (1989) 74.
- [23] A. Vogler and H. Kunkely, Chem. Phys. Letters 150 (1988) 135.
- [24] V.W.-W. Yam, T.-F. Lai and C.-M. Che, J. Chem. Soc. Dalton Trans. (1990) 3734, and references therein.