View metadata, citation and similar papers at core.ac.uk

brought to you by 🦉 CORE

Volume 150, number 1,2

CHEMICAL PHYSICS LETTERS

9 September 1988

ABSORPTION AND EMISSION SPECTRA OF TETRAMERIC GOLD(I) COMPLEXES

A. VOGLER and H. KUNKELY

Institut für Anorganische Chemie, Universität Regensburg, Universitätsstrasse 31, D-8400 Regensburg, Federal Republic of Germany

Received 18 May 1988

The lowest-energy absorption and emisson bands of the complexes $[Au(dithioacetate)]_4$ and $[Au(piperidine)Cl]_4$ are assigned to a metal-centered 5d-6s ($A_{2s} \leftrightarrow A_{1s}$) transition which is modified by the metal-metal interaction in the square-planar $Au(1)_4$ moiety.

1. Introduction

Coordination compounds with a d¹⁰-electron configuration at the metal, such as Cu(I), Ag(I), and Au(I), have a remarkable tendency to form clusters [1]. At first sight this seems rather surprising since with a filled d shell, d-orbital interaction should not yield any metal-metal bonding. However, some bonding can result from the stabilization of d-orbital-based MOs by configuration interaction (CI) with appropriate empty MOs derived from the higher-energy s and p metal orbitals [1]. This type of CI is also important for the metal-metal interaction of certain square-planar d⁸ complexes as indicated by absorption and emission spectroscopy [2,3]. Recently, we applied this general idea of d/s CI to the interpretation of the electronic spectra of the tetrameric clusters $[Cu(I)LI]_4$ with L=pyridine and morpholine [4]. Copper and iodide atoms together form a cubane core. The present work deals with tetrameric Au(I) complexes. In this case the metal atoms occupy the corners of a square.

2. Experimental

The complexes $[Au(dta)]_4$ [5] (dta=dithioacetate) and $[Au(pip)Cl]_4$ [6] (pip=piperidine) were prepared according to published procedures. Absorption spectra were measured in solution at room temperature on a Uvikon 860 absorption spec-

0 009-2614/88/\$ 03.50 © Elsevier Science Publishers B.V. (North-Holland Physics Publishing Division)

trometer. Emission spectra of the complexes in ethanol glasses at 77 K were obtained on a Hitachi 850 spectrofluorimeter equipped with a Hamamatsu 928 photomultiplier. The luminescence spectra were corrected for monochromator and photomultiplier efficiency.

3. Results

The absorption spectrum of $[Au(dta)]_4$ in CS₂ (fig. 1) displays a band at $\lambda_{max} = 407$ nm ($\epsilon = 1650$)

Fig. 1. Electronic absorption (a) and emission (e) spectra of $[Au(dta)]_4$. Absorption: 7.29×10^{-5} M in CS₂ at room temperature, 1 cm cell. Emission: in C₂H₅OH at 77 K; λ_{exc} =430 nm, intensity in arbitrary units.

which contains a long-wavelength shoulder at 430 nm (ϵ =1400). These values are close to those reported by Piovesana et al. [5]. The emission of [Au(dta)]₄ in ethanol glasses at 77 K was of medium intensity and appears at λ_{max} =743 nm (fig. 1). This luminescence was independent of the exciting wavelength (λ_{exe} >350 nm) but occurred only at low temperatures. The complex [Au(pip)Cl]₄ in ethanol shows its longest-wavelength absorption at λ_{max} =305 nm (ϵ =770). The emission of [Au(pip)Cl]₄ in ethanol glasses at 77 K was somewhat weaker than that of the dta complex and appeared at λ_{max} =700 nm (λ_{exe} =250 nm). Again, there was no luminescence in solutions at room temperature.

4. Discussion

The long-wavelength absorptions of $[Au(dta)]_4$ were tentatively assigned to metal-to-ligand charge transfer (MLCT) transitions [5]. However, based on the similarity of the absorption and emission spectra of $[Au(dta)]_4$ and $[Au(pip)Cl]_4$ we suggest a different assignment since in the latter complex long-wavelength MLCT transitions cannot occur. Neither piperidine nor the chloride ligand provide empty low-energy orbitals.

Both complexes have the same basic structure (I). An important difference is the Au-Au distance, which is smaller in the dta complex (3.013 Å) [5] compared to $[Au(pip)Cl]_4$ (3.301 Å) [6].

Since for Au(I) the 5d-6s energy separation is rather small and the 5d-6p energy difference very large [7] only appropriate 5d and the 6s orbitals are considered for bonding interactions in the Au₄ cluster. In the Au₄ moiety (D_{4h} symmetry) each Au atom participates with one d and one s orbital in σ interaction with its closest neighbours. The bonding within and the optical lowest-energy transition of the cluster can be explained on the basis of a qualitative MO diagram which is derived from group theoretical

Fig. 2. Qualitative MO diagram of the $Au(I)_4$ moiety including configuration interaction (CI).

considerations (fig. 2) [8]. The metal-metal bonding results only from CI. The d/s mixing leads to stabilization of the occupied degenerate E_u orbitals, which are derived from the 5d atomic orbitals.

For simple mononuclear Au(I) complexes of the type $[AuX_2]^-$ (X⁻=halide) the longest-wavelength ds absorptions appear around 40000 cm^{-1} [9]. In the Au₄ cluster the lowest-energy $5d \rightarrow 6s$ transition $A_{2g} \rightarrow A_{1g}$ (fig. 2) is shifted to lower energies. Consequently, the longest-wavelength bands of $[Au(dta)]_4$ at $\bar{\nu}_{max} = 23255$ cm⁻¹ and of $[Au(pip)Cl]_4$ at $\bar{\nu}_{max} = 32786$ cm⁻¹ are assigned to the spin-allowed ${}^{i}A_{2e} \rightarrow {}^{i}A_{1e}$ transition. Since it is parity forbidden, these absorptions are only of moderate intensity. Compared to [Au(pip)Cl]₄ the Au-Au distance in $[Au(dta)]_4$ is considerably smaller. This may be imposed by the bridging dta ligands [5]. The shorter distance increases the orbital overlap, which decreases the energy gap between HOMO and LUMO. Consequently, the ${}^{1}A_{2g} \rightarrow {}^{1}A_{1g}$ absorption undergoes a red-shift from [Au(pip)Cl]₄ to $[Au(dta)]_4$.

The emission of both complexes is assigned to the spin-forbidden ${}^{3}A_{1g} \rightarrow {}^{1}A_{2g}$ transition. While the formal bond order within the Au₄ clusters is zero in the ground state, it is one in the lowest excited state, since an electron is promoted from an antibonding (A_{2g}) to a bonding (A_{1g}) orbital. The large shift from absorption to emission is then at least partially due to the contraction of the Au₄ square which should take

place in the excited state. Compared to $[Au(pip)Cl]_4$ $(\Delta \bar{\nu} = 18500 \text{ cm}^{-1})$ this shift is much smaller for $[Au(dta)]_4$ $(\Delta \bar{\nu} = 9800 \text{ cm}^{-1})$. This observation may be explained by the fact that the Au-Au distance in the dta complex is already rather short in the ground state. The excited-state contraction is now expected to be much smaller.

Acknowledgement

Support of this research by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged. We thank Professor G. Gliemann for his help in the group-theoretical analysis.

References

- P.K. Mehrotra and R. Hoffmann, Inorg. Chem. 17 (1978) 2187, and references therein;
 - Y. Jiang, S. Alvarez and R. Hoffmann, Inorg. Chem. 24 (1985) 749, and references therein.
- [2] G. Gliemann and H. Yersin, Struct. Bonding 62 91985) 87.
- [3] A.P. Zipp, Coord. Chem. Rev. 84 (1988) 47.
- [4] A. Vogler and H. Kunkely, J. Am. Chem. Soc. 108 (1986) 7211.
- [5] O. Piovesana and P.F. Zanazzi, Angew. Chem. 92 (1980) 579 [Angew. Chem. Intern. Ed. Engl. 19 (1980) 561];
 B.C. Chiari, O. Piovesana, T. Tarantelli and P.F. Zanazzi, Inorg. Chem. 24 (1985) 366.
- [6] J.J. Guy, P.G. Jones, M.J. Mays and G.M. Sheldrick, J. Chem. Soc. Dalton (1977) 8.
- [7] L.E. Orgel, J. Chem. Soc. (1985) 4186.
- [8] H.L. Schläfer and G. Gliemann, Basic principles of ligand field theory (Wiley, New York, 1969).
- [9] M.E. Koutek and W.R. Mason, Inorg. Chem. 19 (1980) 648;
 M.M. Savas and W.R. Mason, Inorg. Chem. 26 (1987) 301.