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An invitation to real spectra 

Manfred Knebusch (Regensburg) 
Michel Coste and Marie-Francoise Coste-Roy have associated 
to every commutative ring A with unit a locally ringed space 
Sper A = (X,C>X), called the "real spectrum" of A ([CCj], 
[CC 2], [C-R^]). The real spectrum seems to reflect well the 
"semialgebraic" properties of A, in particular the phenomena 
depending on inequalities between elements of A for orderings 
of the residue class fields A(y) = Quot(A/y) of the various 
prime ideals y of A. (Remark: My notation Sper A for the 
real spectrum seems to be somewhat new. "Sper" means, read 
in French, "spectre reel". Read in English or German, i t 
means "spears". We shall see in § 3 that in fact the topolo
gical space X is a union of spears.) 

The real spectra Sper A, more precisely their constructible 
subsets (cf. § 3 below), seem to be the building blocks of 
an abstract semialgebraic geometry in much the same way as 
the usual spectra Spec A, invented by Grothendieck, are the 
building blocks of abstract algebraic geometry.I am sure 
that the Costes have found the "right" notion of real spectrum, 
and I conjecture that real spectra are the medium in which 
most interactions between quadratic form theory and semial
gebraic geometry w i l l take place in the years to come. In 
this talk I want to give some evidence for both these 
assertions. 
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My talk is much less than an introduction to real spectra. 
Although real spectra s t i l l are a rather unknown territory 
there already exist good introductions to this theory for 
non specialists. I mention the two articles [CC] and [C-R] 
of the Costes, §4 and §7 of Lam's article [L], and the 
f i r s t two sections of Bröcker's article [B], Quadratic form 
theorists who have already gathered experience with orderings 
and real algebraic geometry should ignore most parts of my 
talk and proceed directly to those articles and the papers 
cited here. 
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§ 1 - Some reminiscences 

Before entering the subject of real spectra i t might be appro
priate to give an example of how semialgebraic geometry can be 
useful for quadratic form theory. I w i l l choose an example from 
my own history and relate how I stumbled into semialgebraic 
geometry trying to solve a special problem on Witt rings of 
quadratic forms. I suspect that other Q.F. people have had 
similar experiences. 

Let W(X) denote the Wittring of symmetric bilinear forms on a 
quasiprojective scheme X (or more generally a divisorial 
scheme, cf.[K]). Around 1 9 7 5 i t was known that every prime 
ideal P of W(X) is the inverse image of a prime ideal Q of the 
Wittring W(K(X)) of the residue class f i e l d K (X) at some point 
xeX under the restriction horaomorphism W(X) ->W(K(X)). (This 
theory goes back to Dress [Dr] and Kanzaki-Kitamura [KK], cf. 
the exposition in JK]). Thus i f P is not maximal, 

P - U .€ W(X) |signa(£) = 0 } , 

where S I 9 N

A denotes the Sylvester signature of £ at some 
ordering a of K ( X ) . In other words, the non-maximal prime 
ideals P of W(X) correspond uniquely to the signatures of X, 
i.e. the ring homomorphisras a : W(X) by the relation 
P.= Ker(o); and every signature a of X factors through a signa
ture of K(X) for some x€X. Around 1 9 7 5 - 8 0 I thought about a 
proof of the following more refined theorem. 

Theorem 1 . 1 . Suppose X is algebraic over some f i e l d k and let 
o :W(X) -+Z be a signature of X. Then there exists some closed 



point x of X such that o factors through a signature of K ( X ) , 

W(X) - > Z 

W ( K ( X ) ) 

I could prove this 1976 in the case k = TR by use of Whitney's 
theorem that the set X(IR) of rational points of X has only 
f i n i t e l y many connected components [K, Chap. V], Already then i t 
was apparent that the theorem could be proved for any fie l d k by 
base extension to a suitable real closure of k, as soon as we 
had at our disposal an analogue of Whitney's theorem for an arbi
trary real closed f i e l d R instead of TR . (N.B. If k is not formally 
real the theorem is t r i v i a l since then X has no signatures). 

Now, whenever R f JR, the set X(R) of rational points of an 
algebraic scheme X over R is totally disconnected in the strong 
topology. (This is the topology coming from the ordering of R). 
So Whitney's theorem cannot hold in a naive sense. Realizing 
this, I sorely felt the need to develop a meaningful geometry 
over an arbitrary real closed f i e l d R instead just the field IR 
of real numbers. After a lot of experiments with curves over R, 
Hans Delfs and I established a theory of semialgebraic paths in 
X(R), and we could prove that X(R) has only finitely many path 
components. More generally, *fe could do this for any semialge
braic subset M of X(R) instead of X(R) i t s e l f [DK]. Then we 
could prove Theorem 1.1. in general by the same method as in 
the case R * IR CDK, I §5 ]. 



In the meantime G.Brumfiel and the Costes independently had ob
tained similar results avoiding paths, namely that every semial
gebraic set over R has only f i n i t e l y many "semialgebraic connec
ted components" ([Br, p. 260ff],[C-R 1, p. 46ff]). Their results 
also suffice to prove Theorem 1.1., but due to lack of communi
cation we became aware of their work only much later. 

These three approaches to connectedness have the same underlying 
philosophy - namely that in X(R) only semialgebraic subsets 
should be admitted as reasonable subsets. I recall that a subset 
M of X(R) is defined to be semialgebraic i f for any Zariski-open 
subset U of X we have 

r 
MOU(R) - U {x €U(R) If . n(x) » O, f,,(x) > 0, 

i=l 1 U 1 J 

f i , s ( i ) ( x ) > 0 } 

with algebraic functions €R[U]. (If X is affine, i t suffices 
to check this for U = X) . A semialgebraic subset M of X(R) has 
to be regarded as connected i f M is not the disjoint union of 
two non empty semialgebraic subsets M1, M2 which are open in M 
(in the strong topology). Every semialgebraic subset M of X(R) 
is the disjoint union of f i n i t e l y many open connected semialge
braic subsets. These connected components turn out to be the 
same as our path components. 

Delfs and I developed a general framework for these and other 
semialgebraic considerations, the theory of "semialgebraic 
spaces" over R. These are suitable locally ringed spaces (not 
quite in the classical sense, cf. [DK, II §7]). An affine semi
algebraic space i s , up to isomorphism, just a semialgebraic 



subset Mof some Rn, equipped with the sheaf O^of continuous R-valued 
functions which have semialgebraic graphs, cf. [DK, II §7]. 
Every semialgebraic subset M of X(R), for X an algebraic scheme 
over R " i s " an affine semialgebraic space [DK2, §3]. Regarding 
M as a semialgebraic space means roughly to forget the embedding 
M<^X(R). 

Our theory of path components may be considered as the f i r s t 
step in semialgebraic homotopy theory, namely as the theory of 
wQ(M). How about groups n q ( M ' x

0 ) f o r <3>1? Delfs and I later 
established a satisfactory theory of these groups (cf. [DK3], 
[DK4, Chap. I l l ] ) , and also of semialgebraic homology and co-
homology groups H (M,G), Hq(M,G), with G an arbitrary abelian 
group of coefficients ([D], [DK^J, [ ] ) . Q u i t e , recently Delfs more 
generally developed (co)homology with arbitrary support, which 
allows him to do intersection theory on semialgebraic manifolds, 
and to describe the algebraic intersection theory on an algebraic 
scheme over RfvFT) in a purely semialgebraic way (cf. [D.j]). We 
also obtained a satisfactory orthogonal K-theory of affine semi
algebraic spaces. Analogous to topological K-theory, KO(M) = KO°(M) 
is defined as the Grothendieck-ring of semialgebraic R-vector-
bundles on M. (Such a vector bundle has to be t r i v i a l on a finite 
covering of M by open semialgebraic subsets.) 

Lack of time prevents me from going into the details of any of 
these theories. I just mention that in every one of them we have 
as central result a "main theorem", which connects the theory to 
the corresponding classical topological theory. These main theo
rems a l l follow the same pattern (while the proofs" are very 



different, mostly long and intricate). I want to state the main 
theorem for KO(M) here, since KO(M) is particularly interesting 
for quadratic form theory, as we shall see later. This needs 
some preparation. 

If R is a real closed overfield of R then we have a functor 
"base extension" M»-*M(R) from the category of semialgebraic 
spaces over R to the category of semialgebraic spaces over 
In the case that M is a semialgebraic subset of Rn the space 
M(R) is the semialgebraic subset of Rn described by the same 
polynomial relations (equalities and s t r i c t inequalities) as 
M. (N.B. The polynomials have their coefficients in R and 
thus can be read as polynomials over R. By Tarski's principle 
the subset M(S) of Rn is independent of the chosen description 
of M.) 

For any semialgebraic vector bundle E over M we obtain by base 
extension a semialgebraic vector bundle E(R) over M(R) . This 
yields a natural ring homomorphism KO(M) -»KO (M (R)) . In the 
case R = IR we may regard a semialgebraic real vector bundle 
as a topological vector bundle on the underlying topological 
space M t Qp of M. We thus obtain a natural ring homomorphism 
KO(M) -*KO(M)t from KO(M) to the classical KO of M.t . 

Theorem 1.2. (Main theorem for KO). Let M be an affine semi
algebraic space over R. 
a) For any real closed overfield S of R the natural homomor

phism KO(M) -*KO(M(R)) is an isomorphism. 



b) In the case R = IR the natural homomorphism KO(M) "*KO(M)top 

is an isomorphism. 

Let me indicate how this theorem in principle reduces the compu
tation of KO(M) to the computation of a classical KO-ring. We 
assume for simplicity that M is also complete, i.e. isomorphic 
to a bounded closed semialgebraic subset of some Rn (cf. [DK, 
II §9]). Then M can be triangulated by a f i n i t e simplicial 
complex [DK.j, §2], This means that M is isomorphic to the reali
zation IL|_ over R of a fin i t e abstract simplicial complex 

R —————— 

(= simplicial complex in [Sp],- simplicial scheme in [Go]), 
where of course ILI R Has to be regarded äs a semialgebraic 
space. Now R and IR both contain the f i e l d RQ of real algebraic 
numbers, and IL I-,, |L|_ are obtained from |L| D by base exten-
sion to R and 3R respectively. According to the main theorem 
KO(M) * KO(|L|R) S KO(|L|R ) * KOULl^) ^ K 0 ( | L I ^ ) t Q p . 

Of course, this reduction to topological K-theory is most often 
of no practical value, since i t is usually d i f f i c u l t to write 
down an explicit isomorphism (L|R-=-*M, and anyway computing the 
topological KO of an explicitly given simplicial complex may 
be much too complicated. 

If, for example# V is an algebraic variety defined over RQ in 
the classical sense then we have, for any real closed f i e l d R, 
by the main theorem KO (V(R)) S K0(V(3R)) . (Here V(R) is the 
set of R-rational points on V regarded as a semialgebraic 
space.) So, in this case the main theorem gives a reduction 
to the classical theory which is useful in practice. 



AN INVITATION TO REAL SPECTRA 

§2 - Definition of the real spectrum 

We start with local considerations. 

Definition 1. Let A be a commutative ring (always with 1). An 
ordering P of A is a subset P cA with P+PcP, P - Pep, 
P U (-P) =A, and P f) (-P) for some prime ideal ^ of A, called 
the support supp P of P. 

Clearly, an ordering P of A with support ^ is the preimage of 
an ordering P of the residue class f i e l d A(^) = Quot(A/^), 
uniquely determined by P, under the natural homomorphism 
A -*A(y) . In this way the orderings of A correspond bijectively 
to the pairs (y#P) , where runs through the points of Spec A 
and P runs through the orderings (in the usual sense) of A(^). 
For elements f,g of A we write f >p9 (resp. f >pg) i f the 
images f,g in A(^) f u l f i l l the relation 1 >g (resp. f >g) 
with respect to P. Clearly f > p 0 i f f f €P and f > p0 i f f f C-P. 

If (p : A -+B is a ring homomorphism (always with ip(1) =1), then 
every ordering Q of B yields an ordering P := (p'^Q) of A. For 
elements f,g in A we have f > pg i f f tp(f) >gtp(g) / thus also 
f > pg i f f <p(f) >Q(p(g) . Notice that supp P = tp"1 (supp Q) . 

* ) 

Definition 2 . A local ring (B,̂ t) is called s t r i c t l y real i f 
B is henselian and B/«- is a real closed f i e l d . 

*) This and other definitions should be regarded 
as ad hoc. The subject has not yet aged enough 
for a generally accepted terminology. 



If (B,4t) is st r i c t l y real then B has a unique ordering P(B) 
with support*. Relations f >g or f >g in B without further 
specification are meant with respect to P(B). If <p(T) is any 
normed polynomial in one variable T with coefficients in B, and 
i f 

are the roots of the mod*, reduced polynomial (p(T) € (B/JV) [ T] in 
the real closed f i e l d B/AV, and i f a l l these roots are simple, 
then - by the henselian property of B - every has a unique 
l i f t i n g a. to a root of cp(T) in B, 

and these are a l l the roots of <p(T) in B. In particular 
(tp(T) * T 2-b), for any b €B we have b >0 i f f b C*, and b * c 2 

for some c £B. In this case there exists a unique c CB with 
2 

c >0 and c = b. 

Proposition 2.1. Given a ring A and an ordering P of A there 
exists a universal homomorphism tp :A-»B of A into a s t r i c t l y 
real local ring B with (p~"1(P(B)) « P. 

Here the word "universal" means, as usual, the following. Given 
any homomorphism $ :A-*C of A into a s t r i c t l y real local ring C 
with i|;""*(P{C)) = P there exists a unique local homomorphism 
X : B -*C with )(-(p = ip, 

a 1 <a 2 < ... 

Qj <a 2 < ... r' 

A B 



AN INVITATION TO REAL SPECTRA 

Of course, since x is local, we have x ^ f P t O ) = P(B). 

Proposition 2.1. is well known. Let y = supp P and let A(P) 
denote the real closure of A(^) with respect to P. One takes 
for B the s t r i c t henselization of the local ring A^ with re
spect to the extension A(P) of i t s residue class f i e l d A(y) 
(cf. [R, Chap. VIII §2], there replacing the separable closure 
of A-(y) by A(P).) We write B = A p and c a l l A p the s t r i c t real 
localization of A at the ordering P. 

We want to get something similar to Proposition 2.1. in a 
truly global setting. Our global objects .are locally ringed 
spaces, as is common in many parts of geometry. Henceforth, 
in this section, a locally ringed space X = (X,(9X) w i l l simply 
be called a "space" i f no further specification is given. We 
often write (9 instead of C>x i f no confusion can occur. 

Definition 3. A space X is called s t r i c t l y real i f a l l local 
rings C?x x are s t r i c t l y real. 

For example, any Cr-manifold (1 <r-<«) equipped with the sheaf 
of IR-valued C r-functions is a s t r i c t l y real space. Also every 
analytic space with i t s structure sheaf of real analytic func
tions is s t r i c t l y real. 

A s t r i c t l y real space X is amenable to inequality considerations 
Let me explain this by two examples. If f €C?(U) is a section of 
the structure sheaf of X over some open subset U of X, then for 
any x €U we denote by f(x) the image of f in the Residue class 



f i e l d K ( X ) - ̂ V^x o f ^x" s i n c e K ( x ) i s real closed we can ask 
whether f(x) >0, f (x) = 0, or f(x) <0. 

If f (x) *0 then f is a unit in <2>x and thus f (y) *0 for a l l y in 
some neighbourhood U' of x in U. If f (x) >0 then there exists 

2 
a unique g 6 <2>x with f = g and g(x) >0, and we conclude that we 

2 
have f = g on some open neighbourhood U" cü' of x with a unique 
g€0(U") which is everywhere positive on U". This proves 
Proposition 2.2. For a given f € G?(U) the set V := {x €U|f (x) >0} 

2 
is open in U. There exists a unique g e C?(V) with f = g and g 
positive everywhere on V. 

More generally one can extract a global result 
from the local consideration on roots of polynomials above. 
Let (p(T) be a normed polynomial in one variable with coeffi
cients in £>(U) for some open UcX. For every xCU we have a 
polynomial <p(x,T) over K (x) by inserting the point x in the 
coefficients of <j>. 

Proposition 2.3. The set V of a l l J C 6 U such that the roots of 
<p(x,T) in K ( X ) are a l l simple is open. If W is a connected 
open subset of V then, for every x €W, (p(x,T) has the same 
number r of roots in K ( X ) . In case r >0 there exist sections 
a 1,... ,a r 6 &(W) such that a 5 (x) <...< a r(x) for every x 6 W 
and tp(a^) - ... »cp(ar) - 0. The are a l l the roots of <p(T) 
in 0(W) . 



Applying this proposition to the irreducible polynomials in 
Q[T] i t is not d i f f i c u l t to prove that, for every open subset 
U of X, the f i e l d RQ of real algebraic numbers embeds in (2(U) 
in a unique way. Thus a l l rings Ö?(U) and a l l local rings O 
are R -algebras, o 

We now ask for a systematic way to associate a s t r i c t l y real 
space to a scheme S (in the sense of Grothendieck). The Costes 
have given the best possible answer to this problem. 

Theorem 2.4. For a given scheme S there exists a universal 
morphisra p g :X->S of spaces with X s t r i c t l y real. 

This means, there exists a morphism p s :X-»S with X s t r i c t l y 
real, such that any morphisra £ : Y -*S with Y s t r i c t l y real 
factors through p g in a unique way, 

I c a l l X the s t r i c t real hull of S and write X « £ (S). 

We can guess from the universal property of p g what the points 
of the space X = JMS) are. Let x€X be given, and s := p g(x). 
The residue class f i e l d K(X) is a real closed f i e l d extension 
of K ( S ) , hence induces an ordering P of <(s). The algebraic 
closure R of K ( S ) in K (x) is a real closure of Ms) with res
pect to P. Corresponding to these f i e l d extensions we have a 



commutative diagram of morphisms between spaces (solid arrows) 

X —» S 
t v ^ S T 

Spec K ( X ) —»Spec R—»Spec K ( S ) . 

The space Spec R is s t r i c t l y real. Thus we have a unique morphism 
from Spec R to X (dotted arrow) which divides the diagram into 
two commutative subdiagrams. This is only possible i f R = K ( X ) . 

Thus K ( X ) is the real closure of K ( S ) with respect to P. 
Conversely, i f s €S and an ordering P of K ( S ) are given, let R 
be "the" real closure of K ( S ) with respect to P, and apply the 
universal property of p g to the morphism Spec R -*S corresponding 
to the f i e l d extension K ( S ) -»R. We find a unique point x €X 
with Pg(x) = s and R isomorphic to K ( X ) over K ( S ) . 

In a similar way we can guess what the local ring ^ of a 
given point x €X looks like. Let s = Pg(x) and P be again the 
ordering of K ( S ) corresponding to x. Consider the one point 
space {x} equipped with the s t r i c t real localisation (^ s) p of 
the local r i n g O g ^ g at the ordering P induced by P. This space 
admits an evident morphism into X. Applying the universal pro
perty of p g to this morphisra we see that C?x = (^ s) p- Let us 
summarise these observations. 

Corollary 2.5. The points x of X = &(S) correspond uniquely 
with the pairs (s,P) consisting of a l l s £S and a l l orderings 
P of K ( S ) as follows: s « p g(x), P := ordering of K ( S ) induced 
by the ordering of the real closed f i e l d extension K(x) of K ( S ) . 



The f i e l d K ( X ) is the real closure of K ( S ) with respect to P 

and £>x x is the s t r i c t real localization of üg g at the orde

ring P of ög s corresponding to P. 

I want to reformulate Theorem 2.4. in the case S = Spec A for 
A a commutative ring. Recall that a morphism f : Y -*Spec A is 
uniquely determined by i t s comorphism f * : A = Ö g(S) -* &Y (Y) , 
and that in this way we have a bij-ection of the set of morphisms 
from Y to Spec A to the set of ring horaomorphisms from A to 
C?y(Y) [EGA I, Cor. 1.6.4.]. Thus we can restate Theorem 2.4. 
for S affine as follows. 

Theorem 2.4.a. Let A be a commutative ring. There exists a pair 
(X,aA) consisting of a s t r i c t l y real space X and a ring homo
morphism a A j A-*C^(X) such that for any pair (Y,ß) with Y a 
s t r i c t l y real space and ß :A-»C?V(Y) a ring homomorphism there 
is a unique morphism g : Y ->X such that ß = a A ° g* / 

3 \ / g 
y(Y) 

Definition 4. This space X is called the real spectrum Sper A 
of A, i.e. Sper A » X ('Spec A)'. The universal morphism from 
Sper A to Spec A, which has a A as comorphism, w i l l be denoted 
by p A, i.e. p A = Pgpec A * > I i i e s t r u c t u r e sheaf 0^ w i l l often 
be denoted by #A and i t s ring fi?x(X) of global sections by ft(A) . 
The sections of # A on some open U cx are called the Nash 
functions on U. 



It w i l l become apparent later that the name "Nash functions" 
is appropriate here, since these "functions" generalize the 
classical Nash functions on open subsets of lR n . 

Corollary 2.5. can be reformulated as follows (cf. beginning 
of this section). 

Corollary 2.5.a. The points x of Sper A correspond uniquely 
with the orderings P of A by the relation 

P - {f €A|a A(f) (x) > 0}, 

We have PA(*) 85 supp P , K ( X ) « A(P), and (Jt A) x 

From now on we identify the points of Sper A with the orderings 
of A. The universal property of the real spectrum implies that 
for every ring homomorphism <p : A -»B there exists a unique mor
phism Sper <p: Sper B -» Sper A such that the diagram 

Sper B 

Spec B • 

Sper <p 

Spec <p 

Sper A 

PA 
Spec A 

commutes. The image of a point Q 6 Sper B under Sper <p is the 
ordering (p (Q) of A. 

Remark 2.6. By a well known result from real commutative algebra 
([L, Th. 3.9], [BDS], [K,III, Prop. 4 ] ) the space Sper A is not 
empty, i.e. A has orderings, i f and only i f - 1 is not a sum of 
squares in A. We call such a ring A here "semireal" following 
Lam [L] (instead of "formally real" in other papers). 



I did not say anything about a proof of Theorem 2.4. Of course, 
i t suffices to prove Theorem 2.4.a. Then we get the s t r i c t 
real hull of an arbitrary scheme by gluing the s t r i c t real 
hulls of i t s open affine subschemes. The papers of the Costes 
deal exclusively with the affine case. In [CR] M.F. Coste-Roy 
proves Theorem 2.4.a by explicit construction of the space 
(SperA,#A) and direct verification of the universal property. 
In this way she obtains a lot of extra information on Sper A. 
We do not repeat her very interesting arguments here, refering 
the reader to [CR], but we shall quote in the next two sections 
some of the results obtained by the Costes in this and other 
papers. 

Right now I cannot resist to mention another beautiful theorem 
of the Costes, although the relevance of this theorem for 
quadratic form theory is not clear. 

Theorem 2.7. ([CR, Th. 5.1.], the theorem there is more general.) 
For any semireal ring A the morphism Sper(a A) from Sper #(A) to 
Sper(A) is an isomorphism. Consequently the ring homomorphism 
a#(A) : "* <ft(JHA)) is an isomorphism. 



§3 - The topology of Sper A and the spears (cf. [CC], [L]) 

Let A be a semireal ring and X = Sper A. We know from §2 that 
for any element f of A the set 

{P €Xla Ä(f) (P) >0) = {P €X|f €-P) = (P CXlf >p0} 

is open in X (cf. Prop. 2.2). It turns out that these sets 
form a subbasis of the topological space X, in other words 

Theorem 3.1. The sets 

H ( f r . . . , f r ) - {P e x i f 1 > p o,..,,f r >p0}, 

with ( f 1 # . . . , f r ) running through the finite families in A, 
are a basis of X. 

This basis is called the Harrison basis of A. Indeed, in the 
case that A is a fie l d , this basis had been introduced on the 
set of orderings of A long ago by Harrison [H], so Sper A is 
then - as a topological space - identical with the space of 
orderings usually considered in quadratic form theory. 

Definition 1. A subset D of X = Sper A is called constructlble 
i f D can be obtained from f i n i t e l y many basic open sets 
H(fj,...,f ) by finitely many boolean operations.This means 
that D i s the union of fi n i t e l y many sets of the form 

{P €X|f Q 6P n (-P), f 1 > p o, . . . , f r > p0 } 

with elements f Q , f 1 #...., f"r of A. The set of a l l constructible 
subsets of X is denoted by r(X) . 



The constructible subsets of X - in particular X i t s e l f -
are compact . Indeed, even the following stronger statement 
holds. 

Proposition 3.2. If a constructible set D is covered by a 
family in t(X), then D is already covered by a finite sub
family. 

Corollary 3.3. Let U be a subset of a constructible set D, 
and assume that U is open in D. Then U is constructible i f f 
U i s compact. In this case U is the union of fi n i t e l y many 
sets-D n-H(f 1,...f ) . 

We denote the set of constructible open subsets of a construc
tible set D by f (D), and the set of a l l constructible subsets 
of D by HD) . 

We now consider the closure {P} of a one point set in Sper A. 
In general,this set is not constructible. As in the theory of 
usual spectra we c a l l the points in {P} the specializations 
of P, and we write P=-Q i f Q is a specialization of P. 

Let Ag supp P . In order to describe the specializations of 
P we need the following standard definition from real commu
tative algebra [Br-, p. 57]. 

) "Compact" here always means "quasicompact" and 
does not include "Hausdorff". 



Definition 2. An ideal «ot of A is called P-convex, i f for any 

elements x and y of P with x + y € -a we have x € ̂  and y € A. 

Clearly -<p is P-convex, and y is contained in every other P -

convex ideal. 

Theorem 3 . 4 . Let P and Q be orderings of A with supports y 

and <Oj. 

i) P =~Q i f f P cQ. in this case Q = P ü ^ = P + and the 

prime ideal ^OJ is P-convex. 
i i ) The specializations Q of P correspond bijectively with 

the P-convex prime-ideals -<y under the relation - supp Q . 

i i i ) For any two specializations and Q2 of P either Q^C^ 
or (^»Q-j. Thus the set T I T is totally ordered. It con
tains a maximal element, i.e. a closed point, P * . 

iv) If P=HQ and Q=*-P then there exists some f €A with P €H(f) 

and. Q.€H(-f) . 
v) The sets T P T are precisely a l l closed irreducible subsets 

of Sper A. (Recall that a topological space is called 
irreducible i f i t is not the union of two proper closed 
subsets.) 

The third part of this theorem reveals a fundamental difference 
between the real spectrum Sper A and the usual spectrum Spec A . 
In Spec A a set T^T is only in rare cases totally ordered under 
specialization. 

If A has finite Krull dimension n the^ by parts i) - i i i ) of 
the theorem;every set T P T is a finite chain 



P « P 0 ^ P 1 * . . . - P T 

with t < n. We shall see in the next section that in important 
cases there exist many sets { P } with t = n. Let me c a l l , for 
any A, a set { P } a spear of Sper A and i t s closed point P* the 
tip of the spear. 

We denote the set of closed points (= "maximal" points) of 
Sper A by (Sper A) m a x . The topological subspace ( S p e r A ) m a x of 
Sper A is compact and Hausdorff. {Compactness follows from the 
compactness of Sper A; Hausdorff is clear from Th. 3.4.iv}. The 
specialization map A : P H P * from Sper A to (Sper A) m a X is 
continuous and, moreover, identifying, i.e. (Sper A) m a x - as a 
subspace of Sper A - carries the quotient topology of Sper A 
with respect toX([S], cf. [L] §4). From this i t is evident 
that X yields a bijection between the connected components of 
Sper A and ( S p e r A ) m a x . 

Although (Sper A ) m a x is such an honest space, I have the im
pression that this space only plays a minor role in semialge
braic geometry (but see §4 for the case that A is a fin i t e l y 
generated algebra over 3R, and §5 for the case that A is semi-
local) . Usually the f u l l real spectrum is more useful. 

Our considerations about spears and their tips generalize to 
a constructible subset D of Sper A instead of Sper A i t s e l f . 
A spear in D, is the closure T P T nD of some point P €D in D. 
It again is totally ordered under specialization (clear!) and 
has a maximal element P» . But notice that the point P*, while 



closed in D, is perhaps not closed in Sper A. Again the subspace 
D m a x of closed points of D is compact and Hausdorff and is a 
retract and quotient of D under the specialization map P^P'. 

Proposition 3.5. A constructible subset D of Sper A is closed 
i f f , for every P €D , the f u l l set of specializations T P T is 
contained in D, 

For any pointy of Spec A the fibre p~1 iy) of the canonical map 
P = P A from SperA to Spec A i s the set of orderings of the f i e l d 
A(^), hence can be identified with the underlying set of SperACy) 
One can check directly that, under this identification, the 
Harrison topology of SperAty) coincides with the subspace topo
logy in Sper A. A more conceptual proof of this fact runs as 
follows. Let Y be the topological subspace p"1 (if) of Sper A and 
i : Y«-> Sper A the inclusion map. We equip Y with the sheaf of 
rings (i**^) ® Aty) . (N.B. There is a natural map from A into 
#(A), hence into every stalk of i*#A.) The ringed space Y, with 
this structure sheaf, is s t r i c t l y real. We have a commutative 
diagram of ringed spaces 

Y « * Sper A 

P' P 

Spec A(^)« • Spec A 

Starting from this diagram i t is easily verified that p' is a 
universal morphism from a s t r i c t l y real space to Spec A (y) . Thus 
Y = Sper A(y) . 



Clearly p (y) is not empty i f f the prime ideal y is real, 
2 2 

i.e., for any x ̂, . . ., x n € A, x 1 + ... + x n e q —x^, . . . ,xn € 4f. 

The topological space Sper A is the disjoint union of the 
sets p~1 (y) with Af running through the real prime ideals of 
A. The subspaces p"1 (y) = SperA(y) of Sper A are totally 
disconnected, compact, and Hausdorff. (They should be regarded 
as "transverse" to the spears of Sper A, which causes their 
disconnectedness.) 

Here a major advantage of working with real specta may be 
seen: Quadratic form theorists have long been interested 
in the geometry of the space of orderings Sper F of a field F 
(cf. e.g. [ELW]). It turned out to be d i f f i c u l t to observe 
geometric phenomena in these spaces since they are totally 
disconnected. Now,if you embed Sper F into the real spectrum 
Sper A of a sufficiently global ring A by an isomorphism of 
F with a suitable residue class f i e l d A(y), then you have a 
better chance to do geometry, since in important cases Sper A 
has only finitely many connected components (cf. next section). 

§4 - The geometric case 

We look at the real spectrum Sper A of a fi n i t e l y generated 
commutative algebra A over some real closed f i e l d R. Without 
serious loss of generality we assume that A has no nilpotent 



elements. Now A is the ring R[v] of algebraic functions on 
some affine algebraic variety defined over R. We c a l l this 
situation "the geometric case". (More generally we could 
look at the s t r i c t real hull of the scheme associated with 
a quasiprojective variety over R without much extra effort.) 
Every rational point x €V(R) corresponds to a maximal ideal -
of A with residue class f i e l d A(^) = A/y = R. Thus A(y) has 
a unique ordering, and we have a unique point P in Sper A 
with P A(P) = ' We identify x with this point P and regard 
V(R) as a subset of Sper A . Clearly V(R) c (Sper A ) m a x . 

For any set H(f 1 #...,f ) of the Harrison basis of Sper A we 
have 

H ( f r . . . , f r ) nV(R) - {x €V(R) | f 1 (x) >0,...,fr(x) > 

and we see that the subspace topology of V(R) in Sper A is 
the usual strong topology on V(R). More generally, the inter 
section of a constructible set D of Sper A with V(R) is a 
semialgebraic subset of V(R), determined by the same poly
nomial relations as D. {N.B. To be in harmony with the termi 
nology in §1, observe that V(R) » X(R) with X * Spec A.} 

The following remarkable fact can be proved by use of Tarski 
principle ([CC, §3], in fact some version of the Positivstel 
lensatz ([L, §7], [C-T]) suffices.) 

Theorem 4 .1 . The correspondance D^D nV(R) is a bijection 
from the set f(Sper A) of constructible subsets of Sper A 
to the set JT(V(R)) of semialgebraic subsets of V(R). 



This theorem implies that, for any constructible subset D of 
Sper A , the set D flV(R) is dense in D. A f o r t i o r i , DflV(R) is 
dense in D m a x. One might look for cases in which Dnv(R) =D m a x 

Now o m a x is always a compact Hausdorff space. Thus equality 
holds i f and only i f the semialgebraic set D nv(R) is compact 
If R £ IR then, as is well known, every compact semialgebraic 
set must be f i n i t e . But in the case R = IR we have many non 
t r i v i a l compact semialgebraic sets. For example, i f V is the 
affine standard variety (E n, then a semialgebraic set N in 
V(3R) = IRn is compact i f and only i f N is bounded and closed 
in 3Rn . 

For any semialgebraic subset S of V(R) we denote by S the 
unique constructible subset D of Sper A with DHv(R) = S. 
If T is a second semialgebraic subset of V(R), then clearly 

(s n T ) ~ = s n T , (s U T ) ~ = ? u ¥ , 

(V(R) ^ S)~ = Sper A ^ S. 

Theorem 4.2. Let M be a semialgebraic subset of V(R) and S 
a semialgebraic subset of M. Then S is open in M i f and only 
i f S is open in M. 

This theorem is a l i t t l e deeper than Theorem 4.1. To get a 
grasp at i t s content, we state a purely semialgebraic con
sequence of Theorem 4.2. 

Theorem 4.2a. Again, let S CM be semialgebraic subsets of 

V(R) and assume that S is open in M. Then there exist 



f i n i t e l y many algebraic functions f ^ €A (1 <i <r, 1 <j <s(i)) 
such that 

r 
S = U {x €M|f . - (x) >0, . . .,f 

i=1 1 1 i,s(i) (x) >0}. 

Indeed, since £ is compact and open in M, we have 

r S = U M ft H (f 
i=1 i , s ( i ) 

for suitable f ^ €A. Intersecting with V(R) we obtain the 
desired conclusion. 

Conversely, Theorem 4.2 follows easily from Theorem 4.2a. Now 
Theorem 4.2a is a well known fact in semialgebraic geometry 
(Brumfiel's "unproved proposition 8.1.2" in [Br]), but a l l 
existing proofs need refined methods from semialgebraic 
geometry. Proofs can be found in [CC, §3], [De, §1], [D,§3], 
and, in the case R = IR , already in [BE, §5]. 

Again, let M be a semialgebraic subset of V(R). Since M is 
compact, every covering of M by open subsets can be refined 
to a covering by finit e l y many constructible open subsets. 
These coverings correspond, according to Theorem 4.2, uniquely 
to the coverings of M by f i n i t e l y many open semialgebraic 
subsets. Thus the sheaves on the topological space M (with 
values, say, in abelian groups) correspond uniquely to the 
sheaves on M, as soon .as we agree that in M only open semi
algebraic subsets and fi n i t e coverings of such sets by open 
semialgebraic subsets are admitted. This i s precisely what 
is done in the theory of semialgebraic spaces, cf. [DK, §7]. 



In other words, the "semialgebraic site" on M is equivalent to 
the usual topological site on M. 

Taking M = V(R) we may ask: What is the semialgebraic sheaf 
^V(R) o n v ^ corresponding to the sheaf ft^ on M = Sper A? 
Assume for simplicity that V is regular at a l l rational points. 
Then i t turns out that the sections of tty^) c a n be regarded 
as R-valued functions. In the case R = IR these are the classi
cal Nash functions, i.e. real analytic functions satisfying 
algebraic equations, as considered by John Nash [N] and Artin-
Mazur [AM, §2]. Thus let us c a l l ft

V(R) the sheaf of Nash 
functions on V(R)., by abuse of language even i f the regularity 
condition is not satisfied. I do not have space here to go 
into the details of the theory of Nash functions (cf. [BE^, 
[C-R], [Cj], [D, §12] for that.) Just let me say that, i f 
again V is regular on V(R) and i f R contains an element f>0 

with lim = 0, such that convergence of power series makes 
n - K » 

sense in R, then a function f : U -*R on some open semialgebraic 
U cV(R) is Nash i f and only i f i t s graph is semialgebraic and 
f can be developed in a power series in a neighbourhood of 
any point p€U, with respect to some regular system of para
meters. It is a marvellous fact that the power series of a 
Nash function, which is of course the Taylor series of f, 
converges to f in a small neighbourhood, although usually R 
is not complete in any reasonable sense. {The fields R consi
dered here are the "Cantor fields" of Dubois-Bukowski [DB]. 
For example, every real closure of a f i n i t e l y generated 
f i e l d extension of <J or IR is Cantor.} 



We state another remarkable consequence of Theorem 4.2. 

Corollary 4.3. Let M be a semialgebraic subset of V(R) and 
let ,...Mr be the f i n i t e l y many semialgebraic connected 
components of M (cf. §1). Then the sets M̂ ,...,Mr are the 
connected components - in the topological sense - of R. In 
particular (M = V(R)), Sper A has only f i n i t e l y many connec
ted components. 

More generally, one expects that the whole geometry of Sper A 
can be mirrored by the semialgebraic geometry of V(R). We 
now explain how the points of Sper A can be "seen" in the 
semialgebraic space M := V(R). 

We consider the set Y(M) of ul t r a f i l t e r s of the Boolean 
lattice JT(M) of semialgebraic subsets of M. For any S € T(M) 
we introduce the set Y(S) consisting of a l l F €Y(M) with 
S €F. If T is a second semialgebraic subset of M then clearly 

Y(S OT) « Y(S) fl Y(T) , Y(S UT) « Y(S) UY(T) , 
Y(M vS) « Y(M) vY ( S ) . 

We provide Y(M) with the topology which has as a basis of 
open sets the sets Y(U) with U running through a l l open 
semialgebraic subsets of M. 

In view of Theorem 4.1, every point P of Sper A yields an 
ul t r a f i l t e r a(P) €Y(M) in a natural way, namely 

a(P) - {S €HM) IP e£} . 



We thus have a map a from Sper A to Y (M) which obviously is 
continuous (N.B. M = V(R)). 

Theorem 4.4. a is a homeomorphism from Sper A onto Y(M). 

A good way to prove this theorem is to exhibit an inverse 
map ß :Y(M) -»Sper A explicitly. This can be done as follows 
(cf. [B, p. 260]). 

Let an u l t r a f i l t e r F €Y(M) be given. We want to construct 
an ordering P of A with a(P) = F. Let d denote the minimum 
of the dimensions dim S of a l l S €F. {The dimension dim S 
of a semialgebraic subset S of V(R) is defined as the (alge 
braic) dimension of the Zariski closure Z of S in V, cf. 
[DK, §8].} We choose some T € F with dim T = d. Let Z 1 #...,Z r 

denote the irreducible components of the Zariski closure of 
T in V. Then T is the union of the sets T^ := TPIZ^R), 
1 <i <r. Since F i s an u l t r a f i l t e r , some say T-j, is an 

element of F. Thus we have found an irreducible subvariety 
Z of V, namely Z = Z^, with dim Z = d and Z(R) €F. {"sub-
variety" means here Zariski closed subset.} 

Let be the prime ideal of A corresponding to Z. The ultra 
f i l t e r F is generated by F Q := F H H Z(R)), and F Q is an 
u l t r a f i l t e r of T(Z(R)). Every S.€F is Zariski dense in Z, 
since dim S = d. Conversely, every S ey(Z(R)), whose comple 
ment Z (R) v.s is not Zariski dense in Z, is an element of F Q 

Indeed, otherwise Z(R) ̂ S would be an element of F , but 



dim(Z(R) ̂ S) <d. We now define an ordering P on the function 
f i e l d R(Z) = A(^) as follows. Let a rational function f *0 
on Z be given. The intersection G of the domain of definition 
of f with Z(R) i s an element of F Q, since Z(R) ^G is not 
Zariski dense in Z. Now G is the disjoint union of the three 
sets {x€G|f(x) >0}, {x€G|f(x) <0}, {x€G|f(x) =0}. The last 
set has smaller dimensions than d, hence i s not an element of 
F Q. Thus precisely one of the f i r s t two sets is an element of 
F Q. We decree that f €P i f f {x €G|f (x) >0} €F Q. It is easily 
verified that we obtain in this way an ordering P of ACy) . 
We denote the ordering P of A with support *f, which corres
ponds to P, by 3(F). 

It is easily verified that the map ß :Y(M) -*Sper A obtained 
in this way is continuous and inverse to a. 

Our description of the ordering a""1 (F) reveals some geometric 
facts about the orderings of functions fields over R which 
are worth to be mentioned. We say that the u l t r a f i l t e r F 
"lives" on the irreducible subvariety Z of V occuring above. 

Remark 4.5. Let Z be the irreducible subvariety of V corres
ponding to a given prime ideal ̂  of A. Then y is real, i.e. 
the function f i e l d R(Z) = A(̂ .) i s formally real, i f and only 
i f Z(R) is Zariski dense in Z. 

Indeed, precisely in this case there exist u l t r a f l i t e r s 
F €Y(V(R)) which live on Z. Remark 4.5 is a well known fact 



from the early times of real algebraic geometry, due to 
E. Artin [A, §4]. Moreover, i t is known that Z(R) is Zariski 
dense in Z i f f Z(R) contains regular points of Z (cf. e.g. 
[C-T, p. 103f]). 

Remark 4.6. Assume that A is an integral domain, i.e. that 
V is irreducible. Assume further that V(R) is Zariski dense 
in V. Then the orderings of the quotient f i e l d R(V) of A can 
be identified with the u l t r a f i l t e r s F£Y(V(R)) which do not 
contain semialgebraic sets of smaller dimension than dimV=d. 

Indeed, precisely these u l t r a f i l t e r s live on V. Remark 4.6 
had already been observed by Brumfiel [Br, p. 232ff], pre
sumably quite a while before the invention of real spectra 
(cf. also [B, p. 260]). The ul t r a f i l t e r s of V(V(R)) living 
on V can be regarded as the ul t r a f i l t e r s of the Boolean lattice 
¥(V(R)) obtained from f(V(R)) by factoring out the equivalence 
relation 

S 1 ~S 2 *-» dim(S1 ^S 2) <d and d i n U S^ s ^ <d 

i.e. the Boolean lattice obtained from JT(V(R)) by neglecting 
lower dimensional sets. Every element of 7-(V (R)) can be re
presented by an open semialgebraic set. This gives a geome
tr i c explanation "why" the space of orderings of Quot(A) is 
totally disconnected. 

Remark 4.7. Assume again that A = R[V] is integral. Let P be 
an ordering of the quotient f i e l d K = R(V) of A, and let F 



be the corresponding u l t r a f i l t e r of f(V(R)). Further, let G 
denote the set of a l l open connected semialgebraic sets U €F 
which are contained in the regular part V(R) of V. Since 

reg 
the singular part of V(R) has dimension less than d, the set 
V ( R ) r e g is an element of F. Thus $ generates the u l t r a f i l t e r 
F. We look at the stalk A p of the sheaf at the point 
P CSper A . The open constructible sets Cf with U 6® are a fun
damental system of neighbourhoods of P in Sper A. Thus 

p ue<r A u e T V ( R ' 

If f : U -*R is a Nash function on some U £ <X>, and f is not 
identically zero, then the set of zeros of f on U has dimen
sion less than d, since Nash functions obey an identity 
principle, similar to real analytic functions. Thus f is 
invertible in the inductive limit A p. We see that the stalk 
A p coincides with i t s residue class f i e l d A(P), which is 
the real closure K(P) of K with respect to P. (By abuse of 
language we regarded the ordering P of K also as an ordering 
of A.) 

In this way the elements of any real closure of a function 
f i e l d K over R can be interpreted as the Nash functions living 
on the regular open sets of some u l t r a f i l t e r in a given model of K. 

We return to an arbitrary algebraic variety V over R and it s 
affine ring A « R[V]. We now describe the specializations of 
a given point P CSper A in terms of u l t r a f i l t e r s , omitting 
proofs. Let F =a(P) and let Z denote the irreducible subvariety 



of V on which F lives, i.e. the subvariety corresponding to 
= supp P. 

Definition. Let W be an irreducible subvariety of V. We say 
that the u l t r a f i l t e r F touches W i f the closure S of every 
S €F meets W in a set S flW(R) which is Zariski dense in W. 
Clearly then WcZ. 

Theorem 4.8 [B, p. 262]. If F touches W then there exists a 
unique u l t r a f i l t e r F w £Y(V(R)) which lives on W and contains 
the sets S flW(R) with S £F. The orderings oT1 (Fw) corres
ponding to these u l t r a f i l t e r s are precisely a l l specializa
tions of a" 1(F) = P. 

We f i n a l l y give four examples of spears in Sper A for 
A = IR[x,y], the ring of polynomials in two variables over 
3R . We have V = (J 2, V(IR) = IR2. 

Example 1 Example 2 

The geometric ingredients of the f i r s t example are a point 
2 

p € IR , a half branch y of a. real algebraic curve W emanating 
at p, and one of the two "banks " of The corresponding 
spear consists of three ordetings p

0 » ? 1
 : = > p

2* H e r e Po c o n s i s t s 



of a l l f €A which are non negative near p at the chosen bank 
of Y • P-j consists of a l l f 6A which are non negative on Y 

near p, and P 2 consists of a l l f €A with f(p) >0. P Q lives 
2 

on the whole variety (C , while P1 lives on W and P 2 lives on 
{P}. 

The geometric ingredients of the second example are a point 
p € IR and a transcendental curve 6 starting at p, say p = (0,1) 
and 6 = { (t,e**) 11 >0} . The corresponding spear consists of 
two orderings PQ *• P1 . Here PQ consists of a l l f €A which are 
non negative on 6 near p, hence non negative in a neighbour
hood of 6Mp} near p (N.B. No polynomial'changes sign at 61), 

2 
and P1 consists of a l l f 6 A with f (p) >0. PQ lives on <C , 
while P-j lives on {p} . 

2 2 Example 3. Embedding 3R in the projective plane IP (B), as 
usual, we modify Example 1 as follows. We choosep as a real 
point of the infinite hyperplane and again choose a half-
branch Y of a real algebraic curve W emanating at p. Then 

2 

we obtain a spear P0 *• P-j with PQ l i v i n g on (T and P-j living 
on W. The point Pj is closed in Sper A since the point p 
is "missing" on Sper A. 

Example 4. Similarly we modify Example 2 by choosing p at 
the infini t e hyperplane. We obtain a spear consisting of 

2 
a single ordering P living on € . 

The last two examples show that the Hausdorff space (SperA) m a 

2 
is a very large compactification of the topological space TR . 



§5 - Signatures 

In this and the next section I fin a l l y come to those aspects 
of real spectra which, according to our present knowledge, 
are particularly relevant for quadratic form theory. 

A signature of a commutative ring A is a ring homomorphism o 
from the Witt ring W(A) to the ring of integers 2. As already 
mentioned in §1, the kernels of the signatures are the non 
maximal prime ideals of W(A), and different signatures yield 
different prime ideals of W(A). 

We equip the set Sign A of signatures of A with the coarsest 
topology such that for every ip€W(A) the 2-valued function 
Q> : o»-»o(ip) on Sign A is continuous (2 has the discrete topo
logy) . As is well known, this topology is the same as the 
subspace topology of Sign A in Spec W (A) under the natural 
injection Sign A *-»Spec W(A) (cf. [K^, §1]). The space Sign A 
is compact, Hausdorff, and totally disconnected. 

We have a natural map y : Sper A -* Sign A from the real spectrum 
of A, more precisely i t s underlying topological space, to the 
space Sign A, which sends every ordering P of A to the signa
ture 

Y(P) : W(A) >W(AU)) > 1 
* sign p 

Here the f i r s t arrow is the natural map from W(A) to the 
Witt ring of the residue class f i e l d A(^) at y := supp P, 



and signp is the Sylvester signature at the ordering P of A(y) 
corresponding to P . More explicitly the signature T(P) can be 
described as follows. Given a non singular symmetric bilinear 
form B over A (living on a f i n i t e l y generated projective 
A-module) , we choose an open neighbourhood U of y in X :=SpecA 
such that B can be diagonalized over U, 

B|U = < f r . . . , f r > 

with elements f i €A which are units inC?x(U) . The Witt class 
cp of B has under y<P) the value 

T (P ) (<P> = e 1 + . . . + c r , 

with e ± « +1 i f f I € P , e t = -1 i f f J L € - P . (N.B. f ± C f» since 
is a unit on U.) From this description of y(P) it' i s clear 

that the map y is continuous. Indeed, the function xp»y is 
constant on the open neighbourhood PA~^(ü) nH(e^f^,...,e rf r) 
of P in Sper A. 

As already said in §1, every signature a of A factors through 
a signature of some residue class f i e l d A(-̂ ) of A. This means 
that the map y : Sper A -»Sign A is surjective (Recall that the 
signatures of A(y) correspond uniquely to the orderings of 
A (*>••.) 

Since Sign A is totally disconnected, every connected compo
nent of Sper A maps under y to a single point. A f o r t i o r i , 
every spear { P } maps to a single point (This is also 
evident from the explicit description of Y(P) above.) Thus we 
obtain from y by restriction a continuous map 
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ynax ; s p e r ( A ) n l a x -» S i g n A 

between compact Hausdorff spaces which is s t i l l surjective and 
hence identifying. We also have a commutative triangle of iden
tifying maps 

Sper A — - ~ ( S p e r A ) m a x 

Y \ / (*) 

Sign A 

with X the specialization map considered in § 3 . 

We now focus attention on the case where A is semilocal, i.e. 
has only fini t e l y many maximal ideals. Then the connection 
between the spaces Sper A and Sign A is particularly narrow. 

Theorem 5.1 [S, §1]. If A is semilocal then Y m a x is a homeo-
morphism from (Sper A ) m a x onto Sign A . 

To prove this theorem i t suffices to show that Y m a x is bijective. 
We do this by explicit description of an inverse map. For this 
purpose we recall some well known facts about signatures of 
semilocal rings. 

We assume without loss of generality that Spec A is connected. 
Then W(A) is generated by the free bilinear spaces <f> of 
rank 1 with f running through the group of units A* of A. 
Denoting the value of a signature a on <f> simply by a(f) we 
regard a as a character on A* with values +1. A character 



o : A* + turns out to be a signature precisely i f o(-1) =-1 
2 2 

and ö(a 1 f 1 + ... + a r f r ) = +1 whenever f f r are units of 

A with o ( f ^ ) = ... = ö(fr) = +1 and a 1 #...,a r are elements of 

A with a 1
2f 1-+... + a r

2 f r again a unit [KRW, §2]. 

For any signature a of A we introduce the set Q(o) consisting 
2 2 

of a l l elements a 1 f^ +... +a r fr# for f i n i t e l y many units f i 

of A such that o(f^) = ... = o(f r) = +1 and elements a 1,...,a r 

of A such that Aa.j + — +Aar = A. Then A is the disjoint union 
of the sets Q(a) , (-1)Q(o) , and a nrime ideal 4f(o). More
over Q(a) +j(o) = Q(a) . ([KK], [K3, p. 86ff]). It is now evi
dent that P(o) : = Q(o) U^(o) i s an ordering of A with support 
y(o). 

We c a l l P(a) the ordering of A associated with the signature o. 
From the definition of Q(o) and Theorem 3.4.i above i t is 
clear, that P(o) has no proper specializations in Sper A, i.e. 
P(o) € (Sper A ) m a x . Clearly Y(P(o)) = a. On the other hand, i f 
we start with an ordering P of A, i t is easily verified that 
the ordering associated with yCP) is a specialization of P. 
If P € (Sper A ) r a a x , this ordering i s again P. Thus we have 
found an inverse map o»-*P(a) to Y M A X » and Theorem 5.1 is proved. 

In the commutative triangle (*) above the fibres of the specia
lization map A are obviously connected. On the other hand, we 
know that the fibres of y are unions of connected components 
of Sper A. Thus Theorem 5.1 has the following consequence. 



Corollary 5.2. If A is semilocal, then the fibres of 
Y : Sper A Sign A are the connected components of Sper A . 
Every connected component C of Sper A contains a unique 
closed point P, and C is the set of generalisations of P 
in Sper A . 

Henceforth we identify (Sper A ) m a x with Sign A via Y m a X. 
Thus Sign A cSper A. But there i s a subtle point to be 
kept in mind. On Sper A we have a distinguished basis of 
open sets, the Harrison basis. Intersecting these sets with 
Sign A we obtain a distinguished basis on Sign A. On the 
other hand, in quadratic form theory Sign A is regarded as 
an abstract "space of orderings" in the sense of M. Marshall 
(cf. [KR, §6], [K2, §2], [Ms, Chap. 10], and Marshall's 
papers cited there). As an abstract space of orderings Sign A 
carries also a distinguished basis (called again "Harrison 
basis"). This second basis consists of the sets 
H(f 1,...,f r) QSper ( A ) m a x with ( f ^ . . . , ^ ) running through 
the f i n i t e systems of units of A. Thus the second basis is 
usually smaller than the f i r s t one, although both bases gene
rate the same topology on (Sper A ) m a x . 

Returning to an arbitrary commutative ring A we consider the 
semilocalization A g of A at a given finite set S c Spec A, 
S = C^,...,^,}. This is the semilocal ring obtained by loca
l i z i n g A with respect to the multiplicative set A ̂  (^U. ..Vf r) 

As usual, we regard the topological space Spec A g as a sub-
space of the topological space Spec A . Let j : Spec A g -*Spec A 



be the inclusion map. The structure sheaf of Spec A g is the 
inverse image of the structure sheaf of Spec A under j . In 
this strong sense, Spec A g is a "ringed subspace" of Spec A. 

I claim that analogously Sper A g is a ringed subspace of Sper A. 
Indeed, let Y denote the inverse image p A (Spec Ag) of Spec A g 

in Sper A , considered as a topological subspace, and let 
i : Y -*Sper A be the inclusion map. We equip Y with the struc
ture sheaf i * * A - Then Y is a s t r i c t l y real ringed space. We 
have an obvious commutative diagram of ringed spaces 

Y « > Sper A 

pA 
Spec A g

 4—j—> Spec A 

Using this diagram i t is easily checked that p* is a universal 
morphism from a s t r i c t l y real ringed space to Spec A g . Thus 
Y » Sper A g . 

We may omit fron the sets every prime ideal which is contained 
in some Jfy j * i , without affecting A g. We have - say as 
subsets of Spec A -

r 
Spec A« = U Spec A Ä . 

0 i=1 M. 
Taking inverse images with respect to p A we obtain 

r 
Sper A c m u Sper A A . 

b i=1 T i 



Thus the real spectra of the semilocalizations of A a l l s i t 
in Sper A, and fin i t e l y many of them glue together nicely. 
As a set, every real spectrum Sper A ^ is the disjoint union 
of the real spectra Sper A (̂ ) withy running through the 
prime ideals contained in y^. 

Notice that the spaces (Sper A s ) m a x = Sign (Ag) do not f i t 
together so nicely, since a point P €Sper A g n Sper Â , may be 
closed in Sper A g but not closed in Sper A T . 

Having reached this point one may try to exploit the powerful 
theory of reduced quadratic forms on the subspaces Sign A g = 
= ( S p e r A g ) m a x of Sper A , to obtain information on the geometry 
of Sper A. This has been done recently by Bröcker in the geo
metric case with great success. Given an open semialgebraic 
subset S of V(R), with V an arbitrary affine variety over a 
real closed f i e l d R, he obtains a criterion whether S is 
principal, i.e. 

S « (x €V(R) If 1 (x) >0,...,fr(x) >0} 

with functions f i e R [ V ] . In case that S is principal, he 
further obtains a bound on the number r of inequalities needed 
to describe S, which depends only on dim V, cf. [B^]. Finally 
- and most surprising - he gives a bound on the number of 
principal sets needed to write anv open semialgebraic S cV(R) 
as a union of principal sets, i.e. a bound on the number r 



in Theorem 4.2a, which again depends only on dim V, cf. his 

talk at this conference. 

Bröcker's proofs provide striking examples how abstract qua
dratic form theory can be used to obtain purely geometric 
results. It is important that one considers the spaces of 
signatures of suitable semilocalizations of R[V]. Just loca
lizations do not suffice. 

We now look again at the map y : Sper A Sign A for A an 
arbitrary commutative ring. Louis Mahe has proved the fo l l o 
wing deep theorem. 

Theorem 5.3. [M, Prop. 3.1]. Let F 1 and F 2 be two disjoint 
clos^dTconstructible subsets of Sper A. Then there exists 
some integer n>0 and some element <p €W(A) such that 
Y(P) (<P) = 2 n for every P €F 1 and y(P) (<P) — -2 n for every 
P €F 2. In other words, the function : Sper A -*2 has con
stant values 2 n on F 1 and -2 n on F 2. 

I cannot indicate even the idea of Mahe*s ingenious proof of 
the theorem. The reason i s , that Mahe makes essential use of 
the theory of abstract Nash functions on Sper A, whereas we 
have discussed Nash functions only casually. (Mahe also uses 
very interesting methods from global quadratic form theory.) 

Corollary 5.4. The fibres of y : Sper A Sign A are the con
nected components of Sper A. 



Mahe draws this consequence of his theorem only in the geo
metric case [M, Gor. 3.4]. Thus I indicate how the corollary 
follows from the theorem in general. (One has to be a l i t t l e 
careful, since i t is doubtful whether the closure D of a con-
structible subset D of Sper A is again constructible. We 
know this only in the geometric case.) I need the following j 

Shrinking Lemma (cf. f R r 2 ' P r oP- 2.4] and, for a f u l l proof, 
[D2, §1]). Let (t^H^i^r) be a fi n i t e covering of Sper A by 
open constructible sets. Then there exists a covering 
(F^I1<i<r) of Sper A by closed constructible sets with 

F i c ^ i f o r 1 - i ~ r ' 

Let and C 2 be two different connected components of Sper A, 
and let YtC^ = (o^K We have to prove that *o2' s i n c e t n e 

sets and C 2 are (quasi)compact we obtain, by topological 
standard arguments, open constructible sets and U 2 with 
Ü. =C 1 and U1 ftU2 « 0. (Start with Theorem 3.4.iv.)Since 
Sper A is compact and Cj UC 2 is closed we can find open con
structible sets U3,...,Ur such that Sper A = U1 U... UUr and 
U3,...,Ur are disjoint from C 1 UC 2. Replacing the system 
ü 3 ' — , u r b y t h e o n e s e t u3 U — u u

r * w e assume that r = 3. 
Applying the shrinking lemma we obtain closed constructible 
sets F 1,F 2,F 3 such that Sper A « F 1 UF 2 UF 3 and F A cü.. We 
have Fj ^C^, F2 = > C2' a n d F1 0 F 2 ~ A P P l v i n 9 Mane's theorem 
to F 1 and F 2 we obtain some <p €W(A) with (ip) = 2 n and 
o2(tp) = -2 n. Thus indeed a. *o7, and the corollary is proved. 



From now on we denote, for any P €Sper A and q> £W(A) , the 
value of the signature Y(P) on <p simply by signp(cp). (It 
really is the "Sylvester signature of ip at the ordering P".) 
The total signature sign(cp) of <p is the continuous (= locally 
constant) function P*sign p(ip) of Sper A , i.e. in previous 
notation, sign(<p) = <p » Y - We then have a ring homomorphism 

sign:W(A) -• C (Sper A ,2) 

from W(A) to the ring of continuous 2-valued functions on 
Sper A which we ca l l the total signature map. Notice that, 
according to Corollary 5.4, the rings C(Sper A,2) and 
C(Sign A,2) really are the same object, so sign is the total 
signature map considered usually in quadratic form theory. 

As is well known, the kernel of the total signature map is 
the n i l radical of W(A) (cf. [Dr], [K, Chap, III]). As a 
second consequence of Theorem 5.3 we have 

Corollary 5.5. |M, Th. 3.2], The cokernel of the total 
signature map is a 2-primary torsion group. 

In order to deduce this corollary from the theorem, just 
observe that, as an abelian group, C(Sper A,2) is generated 
by the characteristic functions of the constructible sub
sets of Sper A which are closed and open in Sper A. 



§6 - Brumfiel's big theorem 

We have seen in the geometric case A = R[V] (cf. §4) that the 
category of sheaves on the semialgebraic space V(R) is equi
valent to the category of sheaves on the topological space 
Sper A. The sheaf of Nash functions # V( R) o n V(R) corresponds 
to the structure sheaf &A of Sper A. Now, the sheaf ^ v ^ R j o r 

semialgebraic functions (= continuous R-valued functions 
with semialgebraic graph) also lives on V(R), and we have a 
natural sheaf homomorphism *y( R) "* ^ ( R ) which, in good cases 
(say, V is regular everywhere on V(R)), is an injection. 
Thus we have a sheaf of rings on Sper A corresponding to 
^V(R) w i t t l a homomorphism &A -* €^t and, in good cases, #A is 
even a subsheaf of ^ A. It turns out that the stalks of ^ A are 
local rings and that, at every point P of Sper A, the sheaves 
*?A and #A have the same residue class f i e l d , namely A(P) . 

In his recent paper l B r 2 ) , G.W. Brumfiel has constructed a 
sheaf £ A of "abstract semialgebraic functions" on the real 
spectrum of any commutative ring A, with analogous properties. 
He obtains €^ as the sheaf of "constructible continuous 
sections" of the natural morphism Sper A [T] -*Sper A , T being 
an indeterminate. Of course, in the geometric case his 
sheaf is identical with the sheaf 1?A above. N. Schwartz gives 
another construction of in [S^], which perhaps allows an 
easier deduction of the basic properties of t?A, in particular 
that J?A is a sheaf of rings. (It is not so easy to work with 
continuous constructible sections.Actually Brumfiel's notion 



of "continuity" has to be slightly modified.) More generally, 
both authors construct a sheaf €^ of abstract semialgebraic 
functions on every constructible subset D of Sper A. 

Denoting the ring of global sections of €^ by £(A), we have 
a natural ring homomorphism Ä(A).-»£(A), which in good cases 
is an injection. Brumfiel states in [Br 2] the following 

Theorem 6.1. The homomorphism of Witt rings W(A) -> W(€(A)) 
induced by the natural map A -»A(A) -+ £(A) is an isomorphism 
up to 2-torsion, i.e. i t s kernel and cokernel are 2-primary 
torsion groups. 

The question arises whether W(€(A)) can be interpreted in 
some more geometric way. Let us consider a somewhat analo
gous but easier case, namely the Witt ring of the ring £(X) 
of continuous 3R-valued functions on a compact Hausdorff 
space X. By a well known result, due to Serre and Swan [Sw], 
the Grothendieck ring K(£(X)) of fi n i t e l y generated projec
tive modules over t(X) can be identified with the Grothen
dieck ring KO(X) of real (continuous) vectorbundles on X. 
Similarly, the arguments in [Sw] yield that W(C(X)) can be 
identified with Witt ring W(X) of bilinear spaces (E,B) on X, 
i.e. real vector bundles E on X equipped with a non-degene
rated 3R-valued bilinear form B. Now every bilinear space 
(E,B) admits an orthogonal decomposition E = E + 1E_, with B 
positive definite on E + and negative definite on E_(cf. e.g. 



[MH, p. 106]). Sending the Witt class [E,B] to the element 
[E +] - [E_] of KO(X) we obtain an isomorphism of rings 
W(X)-^KO(X) (loc.cit., Milnor and Husemoller attribute 
this result to G. Lusztig.) 

In the geometric case one can prove in a similar way that 
for any semialgebraic subset M of V(R) 

W(C(M)) = KO(M) = K(tf(M)) . 

Here €(M) is the ring of semialgebraic functions on M, and 
KO(M) is the orthogonal K-ring of M considered in §1. 

We return to an arbitrary commutative ring A. Brumfiel de
fines in [Br 2] the Grothendieck ring K0(D) of "constructible 
vector bundles" on every constructible subset D of Sper A, 
and proves (or, at least, makes plausible) that K0(D) = K(£(D)), 
with C(D) the ring of abstract semialgebraic functions on D 
(= global sections of €^). Of course, in the geometric case 
K0(D) = K0(M) and e(D) = C(M), with M the semialgebrais set 
D fiV(R) corresponding to D. Brumfiel then states 

Theorem 6.2. W(?(D)) = K0(D) for any constructible subset D 
of Sper A. 

According to Theorems 6.1 and 6.2 we have a natural ring homo
morphism 

T : W(A) ->K0(Sper A) 



which is an isomorphism up to 2-torsion. This is what I call 
"Brumfiel's big theorem". It is a vast improvement of Mane's 
result, Corollary 5.5 above. Indeed, there is the rank map 

KO(Sper A) C(Sper A, 2) 

which sends every virtual vector bundle to i t s rank, a locally 
constant Jl-valued function on Sper A . The rank map is a sur-
jective ring homomorphism. Composing i t with T we obtain the 
total signature map sign described in §5. Mane's theorem 
follows from Brumfiel's big theorem. 

To be f a i r , i t must be said that the proofs of Theorem 6.1 
and 6.2 are merely sketched in Brumfiel's paper [Br 2]. 
Brumfiel uses an extension of Mahe's method together with 
a vast amount of new foundational techniques in abstract 
semialgebraic geometry (for example abstract semialgebraic 
homotopy). Once these foundations are firmly established, 
Brumfiel*s ingenious sketch should be a rigorous proof. 

Brumfiel's big theorem is an eye-opening message to quadratic 
form theorists: Up to 2-torsion, the Witt ring W(A) is a 
"topological" object, where the word "topological" has to 
be interpreted within the theory of real spectra. You are 
invited to become friends with real spectra and to study 
Mahe's and Brumfiel's proofs. They contain very fine examples 
how semialgebraic geometry can be useful for quadratic form 
theory. 



Addendum (June 1984) . Lou van den Dries has kindly 
pointed out to me that Theorem 4.2a is proved in his 
paper "Some applications of a model theoretic fact 
to (semi-)algebraic geometry" (Indag. math. 44 (1982), 
397-401) using an elementary model theoretic principle 
and valuation theory. In fact, in this special case 
model theory is not really necessary. 

A Corrigendum to this article appears at the end of 
the book. 
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C O R R I G E N D U M TO 
"An invitation to real spectra" 
by Manfred Knebusch 

In §5 of that article the hypothesis of Theorem 5.3 should read: 
"Let F 1 and F 2 be two disjoint clopen (= closed and open) construc
tible subsets of Sper A" . 

In order to deduce Corollary 5.4 from Theorem 5.3, in its corrected 
form, we do not need the shrinking lemma but the following general 
fact. 

Lemma. Let A be a commutative ring and x a point of Sper A. The con
nected component of x in Sper A is the intersection of a l l clopen 
subsets of Sper A which contain x. 

If Ĉ  and C 2 are different connected components of Sper A then, by 
this lemma, there exists a clopen subset F of Sper A with Ĉ  cF 
and C 2 cSper A ^F. Theorem 5.3 provides us with an element <p €W(A) 
such that (p«Y'IC,j = 2 n and 5)«YIC 2 = -2 n. This means that the signa
tures :« Y ( C J ) and a 2 : = Y ( C 2 ) have the values 2 n and -2 n on q>. 
Thus a 1 *a 2, and Corollary 5.4 is proved. 

Proof of the lemma. Let (F ala€I) be the family of a l l clopen subsets 
of Sper A which contain x, indexed in some way, and let Y denote the 
intersection of a l l F Q. Let Z be the connected component of x in 
Sper A. Then,for every a € 1 , we have Z CF Q# hence Z cY. We verify 
that Y is connected, which w i l l imply that Y = Z, as desired. 

Suppose on the contrary, that Y is the disjoint union of two non 



empty closed sets M and N and, without loss of generality, that x £M 
Since M and N are closed and (quasi)compact there exist, as a con
sequence of Theorem 3.4.iv, two disjoint open constructible subsets 
Ü and V of Sper A with M cü and N cV. The intersection Y of the F Q i 
contained in U UV. The family (FQ|a€I) is closed under finite inter
sections, and Sper A ̂ (U UV) is. compact. Thus there exists some ß 61 
with Fp cu UV. The clopen set F^ is the disjoint union of the open, 
hence clopen, subsets F Q nu and F 0 nv. Moreover, x €F„ nu since x €M 

P P P 

Thus Ffl nu • F_ for some y € 1 . We have 
P T 

N cY cF cü, Y 
which contradicts the disjointness of U and V. Thus Y is indeed con
nected, q.e.d. 

Remark. As the proof shows the statement of the lemma holds more 
generally for any topological space which is (quasi)compact and 
normal. 

I thank Roland Huber for detecting the mistake in Theorem 5 . 3 and 
for providing me with the lemma above. 


