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Dedicated to the memory o f G u s Ef roymson 

In our paper [4] we introduced the category o f semialgebraic spaces 
over an arbitrary real closed field R. Th i s category seems to be the natural 
framework i n which to describe " t opo log i ca l " phenomena over R. Never­
theless it turns out to be too smal l for some purposes. F o r example, 
every semialgebraic covering p: M -» N o f a semialgebraic space N (de­
fined i n the obvious way) necessarily has finite degree since its fibres are 
zero-dimensional semialgebraic spaces and thus are finite sets. One also 
wants to consider "cover ing spaces o f infinite degree over N. These spaces 
should, at least loca l ly , look l ike semialgebraic spaces. 

So we are forced to enlarge the category o f semialgebraic spaces and 
to introduce loca l ly semialgebraic spaces. In the first two sections of this 
paper we give a review o f the basic definitions and properties o f local ly 
semialgebraic spaces and maps and illustrate this new concept by ex­
amples. In §3 we consider local ly finite s impl ic ia l complexes. They are 
the most important examples o f loca l ly semialgebraic spaces since a large 
class o f local ly semialgebraic spaces, namely a l l paracompact and regular 
spaces, can be triangulated. In §5 we discuss the coverings of a space. 
These coverings were the in i t i a l reason for developing the whole theory. 
A s i n topology they are classified by the subgroups o f the semialgebraic 
fundamental group defined i n §4 . 

Since this paper is meant to be a survey, we have omitted most proofs. 
We are p lanning a more detailed treatment o f the whole subject in the 
near future. Comple te proofs o f a l l statements in this paper w i l l appear at 
this t ime. 

Throughout the paper R denotes an arbitrary real closed field. 

1. Definition of locally semialgebraic spaces and examples. L o c a l l y 
semialgebraic spaces are ringed spaces wh ich local ly look l ike semialge­
braic spaces. In order to explain and interpret this in detail we start wi th 
the fo l lowing ad hoc defini t ion. 

D E F I N I T I O N 1. A generalized topological space is a set M together with a 
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set 3~(M) o f subsets o f M, cal led the "open subsets", and a set Co\M 

o f families (Ua | a G 7) in «#"(M), cal led the "admissible coverings", such 
that the fo l lowing eight properties ho ld . 

i) 0 e # - ( M ) , M e J ( M ) . 
ii) I f U± e *T(M) and *72 G , T ( M ) , then ^ fl U2 e 3~(M), Ux (J ^2 

6 i " ( M ) . 
i i i ) Every finite family ( £ / J a G / ) i n ST(M) is an element o f C o v M . 
iv) I f (Ua\ a e / ) e C o v M , then the un ion £/•= ( J ( t / a | a e 7) o f this family 

is an element o f 3~(M). 
F o r any U e ^(M) we denote the subset o f a l l (U a \ a G 7 ) e C o v ( M ) wi th 

{J(Ua\aeI) = Uby C o v M ( ( 7 ) a n d ca l l these coverings the "admissible 
coverings of U". 

v) If (Ua\ael) is an admissible covering of Ueß~(M) and if Ve 
3~{M) is a subset o f U9 then f| K | a G 7) is an admissible covering o f V. 

vi) If ( C / a I a e 7) e CovM(<7) and ( K a / 3 1 0 e / a ) 6 Co\M(Ua) for every a , 
then (Vaß\ael, ßeja)e CovM(U). 

vii) If (Vß\ßeJ)e CowM(U)and i f (<7a| ae7)is a family i n j T ( M ) w i t h 
\J(Ua I a G 7) = £/ which is refined by ( J ^ | /3 G J) {i.e., there is a map X: / 
-> 7 wi th c for every ß G / } , then (Ua | a e 7) G C O V M ( C / ) . 

v i i i ) I f £/ G j T ( M ) , ( £ / a I a € / ) € CovM(<7) and i f K is a subset o f £/ wi th 
V H 6 «#"(M) for every a e 7, then V e 2T{M). 

R E M A R K S , a) We usually write M for the triple ( M , J % M ) , C o v M ) . 
b) A generalized, topological space is a (rather special) Grothendieck 

topology. Thus we have the theory of sheaves on such spaces at our 
disposal (cf. [2,15]). Not ice that, i n contrast to the topological case, the 
sheaf condi t ion must be fulfilled only for admissible coverings. 

D E F I N I T I O N 2. A ringed space over R is a pair ( M , (9M) consisting o f a 
generalized topological space M and a sheaf (9M o f commutative 7?-
algebras on M. A morph ism (/ , 0): ( M , ®M) -> (N9 QN) between ringed 
spaces is defined as u s u a l : / i s a continuous map f rom M to N, i.e., for 
every K e the preimage V) G ^(M) and for every covering 
( F a | a e 7 ) G C O V A T the family {f'KV^a^I) is an element o f C o v M . ^ i s a 
family(Ö^Vej-(jv) o f 7?-algebra homomorphisms 0 K : -» (9M{f~l(V)) 
compatible wi th restriction. 

E X A M P L E S , i) Le t M be an affine semialgebraic space over R ([4, §7], 
[5, §1]). Choose for 3~{M) the set @ ( M ) o f a l l open semialgebraic subsets 
o f M. F o r U e <S(M) define CovM(U) as the set o f a l l families (U{ 11 e / ) 
i n @ ( M ) such that {J(U{\i G 7) = (7 and £/ is already covered by finitely 
many Ui9 i G 7. Then M is a generalized topological space. (In this way 
every restricted topological space, as defined i n [4, §7], [5, §1], may be 
regarded as a generalized topological space). Obvious ly the sheaves on this 



generalized topological space M are the same as the sheaves on M, con­
sidered as a restricted topological space. In particular, we have on M the 
sheaf &M: (9M(JJ) is the i?-algebra o f semialgebraic func t ions / : U -> R for 
any Ue = &"(M). This ringed space (M9 0M) over R is really the same 
as the semialgebraic space M and henceforth w i l l be identified wi th it . 

i i) Le t (M9 (9M) be a ringed space over and £/ e &~{M). U bears the 
" i n d u c e d " generalized topology. Restrict ing 0M to £/ we get the open 
subspace (U9 (9M \ U) o f M. I f (U9 0 M | 17) is a semialgebraic space over R9 

as defined in the preceding example, U is called an open semialgebraic 
subset o f M. 

D E F I N I T I O N 3. a) A local ly semialgebraic space over R is a ringed space 
( M , 0M) over R (we often s imply write " M " ) w h i c h posesses an admissible 
c o v e r i n g ( M a | a : e / ) e C o v M ( M ) s u c h that a l l sets M a a r e open semialgebraic 
subsets of M. 

b) A morphism between local ly semialgebraic spaces is a morphism 
i n the category of ringed spaces. 

The category o f semialgebraic spaces is a ful l subcategory of the cate­
gory of local ly semialgebraic spaces. 

Let (Ma I a e / ) be an admissable covering of the local ly semialgebraic 
space ( M , @ M ) by open semialgebraic subsets. A n open subset U e «#"(M) 
o f M is an open semialgebraic subset o f M i f and only i f U is contained in 
finitely many sets Ma. A s in the semialgebraic case, the e lements /£& M (U)> 
where U e 3~(M)9 can and w i l l be considered as jR-valued functions on U. 
They w i l l be cal led the local ly semialgebraic functions on U. 

A morphism (/, 0): (M9 @M) -> (N9 (9N) between local ly semialgebraic 
spaces is determined by its first componen t / : F o r Ve &~(N) and h 6 (9N(V) 
0v(h) = h o f. This is easily derived from [4, T h . 7.2]. Henceforth we w i l l 
s imply denote a morphism (/, 6) by / . M o r p h i s m s are also called local ly 
semialgebraic maps. 

A local ly semialgebraic map f:M->N necessarily maps every open 
semialgebraic subset U of M into an open semialgebraic subset V o f N9 

a n d / i s a semialgebraic map from U to V. 
The local ly semialgebraic f u n c t i o n s / e (9M{M) on a local ly semialgebraic 

space M are just the loca l ly semialgebraic maps from M to the semial­
gebraic space R. 

In general we have the fo l lowing description o f local semialgebraic 
maps i n terms of semialgebraic maps. (Notice that coverings as described 
below exist for any continuous m a p / ) . 

P R O P O S I T I O N 1.1. Let f:M-*Nbea map between locally semialgebraic 
spaces. Assume (Ma\a e /)and (Nß\ß e J) are admissible coverings of M and 
N by open semialgebraic subsets and that X: I -> J is a map such that 
f(Ma) c NX{a) for every a e / . Then f is a locally semialgebraic map if and 



only if for every a t I the restriction f\Ma:Ma -» N^(a) is a semialgebraic 
map between the semialgebraic spaces Ma and N% ( a ) . 

Before giving examples o f local ly semialgebraic spaces, we w i l l show 
that suitable inductive l imits exist i n this category. 

L E M M A 1.2. Let Mbe a set and let (Ma \cc£l)be a directed system of sub­
sets of M with \J(Ma I e re / ) = M. (Ma c Mß if a ^ ß). Assume that every 
set Ma carries the structure of a locally semialgebraic space (Ma, @a) over 
R, and that for ß > a the space (Mß, &ß) is an open subspace of ( M a , d)a). 
Then M can be given (in an unique way) the structure ( M , (9M) of a 
locally semialgebraic space such that M becomes the inductive limit of the 
system ( ( M a , (Pa)\a e / ) in the category of locally semialgebraic spaces over R. 

The p roof of L e m m a 1.2 is easy. Take as open subsets U o f M those 
subsets U whose intersection U f] Ma is an element o f «#"(M a ) for every 
a e / . A family ( t / J A e / ) is an element o f C o v M i f and only i f (U^ fl 
Ma\XeJ)e C o v M a for every a. F i n a l l y an i?-valued function f:U-*R 
(U e^-(M)) is an element o f (9M(U) i f and only i f the restriction f\U f] Ma 

is an element o f (9M<fJ fl Ma) for every <x. 
Observe that Ma is an open subspace o f M and that (Ma \ a e / ) is an 

admissible covering o f M. 

E X A M P L E 1.3. Le t M b e a local ly semialgebraic space a n d ( M J a e / ) an 
admissible covering o f M by open semialgebraic subsets. Then M is the 
inductive l imi t o f the directed system of semialgebraic spaces which con­
sists o f a l l unions o f finitely many M a , considered as open subspaces of M. 

E X A M P L E 1.4. (Direct sums). L e t ( M J a e / ) be a family of local ly semi­
algebraic spaces over R and M = \_\(Ma\ae I) be the disjoint un ion o f 
the sets Ma. Then the set (Nß \ ß e / ) consisting o f a l l finite unions of sets 
Ma is a directed system o f local ly semialgebraic spaces. L e m m a 1.2 
provides M w i th the structure o f a local ly semialgebraic space such that 
M = l i m Nß. Obvious ly M is the direct sum of the spaces (Ma \ a e / ) i n 
the category o f local ly semialgebraic spaces. 

A local ly semialgebraic space M is ca l led discrete i f it is the direct sum 
of a family (Ma\cc£ I) o f one point spaces Ma. 

E X A M P L E 1.5. (Direct products). Le t ( M , (9M) and (TV, 0N) be local ly 
semialgebraic spaces. T h e n the cartesian product M x N o f the sets M, 
N becomes a local ly semialgebraic space as fo l lows: Choose admissible 
coverings (Ma\ael) and (Nß\ß ej) o f A f a n d A^by open semialgebraic 
subspaces which are directed systems o f subsets. Thus M = l i m Ma and 
N = l i m Nß. F o r every (a9 ß)el x J we introduce the direct product 
structure o f the semialgebraic spaces Ma and Nß o n the set Ma x Nß 

([4, §7]). B y L e m m a 1.2 we obtain the structure o f a loca l ly semialgebraic 



space on M x N wi th M x N = l i m Ma x Nß. M x N is the direct 
product o f M and N i n the category o f local ly semialgebraic spaces. 

E X A M P L E 1.6. Let (M, (9M) be an affine local ly complete (i.e., every point 
o f M has a complete semialgebraic neighborhood) semialgebraic space. 
Choose an embedding M c Rn w i th M bounded i n Rn. Le t d: M R 
be the function giving the distance to the "bounda ry" M — M o f M: 
d(x) = min( | |x — y\\ \yeM — M). d is a semialgebraic function on M 
and d - i ( 0 ) = M\M. Hence ( M ( e ) | e > 0 ) w i t h M f c ) := {xeM|</ ( ;c ) > e} 
is a directed system o f open semialgebraic subspaces o f M w i th \J(M(e)\ 
s > 0 ) = M. A p p l y i n g L e m m a 1.2, we get a loca l ly semialgebraic struc­
ture on M, denoted by M l o c , such that M l o c = l i m f > 0 M(e). This structure 
does not depend on the chosen embedding M a Rn, since M l o c is also 
the inductive l imi t o f the system o f a l l complete semialgebraic subspaces 
of M. MXoc is a semialgebraic space i f and only i f M is complete. In this 
case M = A / l o c . 

E X A M P L E 1.7. (Base extension). Le t R be a real closed field extension 
of R. There is a canonical functor "base extension" f rom the category o f 
local ly semialgebraic spaces over R to the category o f local ly semialgebraic 
spaces over R. T o a local ly semialgebraic space M over R we associate a 
space M(R) i n the fo l lowing way : Choose an admissible covering (MJazI) 
o f M by a directed system o f open semialgebraic subspaces. Then M = 
l i m Ma(Ex. 1.3). Take as M(ffc) the inductive l imi t of the base extensions 
M*a(R) which were defined i n [3, § 9 ] , [5, § 6 ] , [6, §4]. 

U s i n g the description of loca l ly semialgebraic maps i n terms of semial­
gebraic maps (Proposi t ion 1.1) and the base extension o f semialgebraic 
maps [loc. cit.], one can i n a s imilar way associate to a local ly semialgebraic 
map f:M-+ Na local ly semialgebraic map f$: M(R) -+ N(R). 

Let M be a local ly semialgebraic space over R and let (Ma\cc£ I) be a 
fixed admissible covering o f M b y open semialgebraic subsets. W e denote 
the set o f open semialgebraic subsets of M by @ ( M ) . 

D E F I N I T I O N 4. A subset X o f M is cal led loca l ly semialgebraic i f for every 
We @ ( M ) the intersection Xf) W is a semialgebraic subset o f the semial­
gebraic space W. It is enough to check that X f| Ma is semialgebraic i n 
Ma for every a el. The set o f a l l loca l ly semialgebraic subsets of M is 
denoted by «#"(M). 

D E F I N I T I O N 5. A family (Xx\AeA) o f subsets o f M is cal led local ly finite 
i f for every We t(M) the intersection W fl Xx * s empty for a l l but finitely 
many / l e A This is the case, i f the set Ma meets only finitely many Xx for 
every a e l . 

Clear ly the un ion and intersection of any local ly finite family i n 3T(M) 



is again an dement o f 3T{M). A l s o , the preimage o f a local ly semialgebraic 
subset o f M under a local ly semialgebraic map / : M -+ W i s a local ly 
semialgebraic subset o f N. But in contrast to the semialgebraic theory, 
the image of a local ly semialgebraic set under a loca l ly semialgebraic map 
is not necessarily local ly semialgebraic. F o r example, one can define i n an 
obvious way a local ly semialgebraic "sp i ra l m a p " h f rom R L O C to R 2 

(infinite spiral wi th center 0). The " s p i r a l " Ä(RI 0 C ) is not a semialgebraic 
subset o f R 2 . 

E X A M P L E 1.8. (Subspaces). Let Xbe a local ly semialgebraic subset o f M . 
W e can provide X wi th the structure o f a loca l ly semialgebraic space 
i n a natural way. A d d i n g a l l finite unions we assume that our covering 
(Ma\a e / ) is a directed system. F o r every a e / , X f| Ma is a semialgebraic 
subset o f Ma and hence is a semialgebraic subspace of the semialgebraic 
space Ma ([4, § 7 ] , [5, §1]). A p p l y i n g L e m m a 1.2, we endow X with the 
structure (X, @x) of a local ly semialgebraic space such that X is the i n ­
ductive l imi t o f (X fl Ma\a e / ) . 

These spaces (X, 0X) are called the ( locally semialgebraic) subspaces o f 
( M , 0M). O f course the structure on X does not depend on the choice o f 
the covering (Ma | a e / ) o f M . 

E X A M P L E 1.9. (Existence o f fibre products). Let f:M-+ S, g: N -> S be 
loca l ly semialgebraic maps over R. The subset M x SN of M x N (cf. 
E x . 1.5) consisting of a l l pairs (x, y) i n M x N wi th f(x) = g(x) is a 
loca l ly semialgebraic subset o f M x N and hence a local ly semialgebraic 
space over R. M x SN is the fibred product o f M and N over S i n the cate­
gory of local ly semialgebraic spaces. 

D E F I N I T I O N 6. Le t M be a local ly semialgebraic space over R. A subset 
X of M is cal led semialgebraic, i f X is loca l ly semialgebraic and i f the 
subspace (X, Qx) o f M i s a semialgebraic space. The set o f a l l semialgebraic 
subsets of M is denoted by @ ( M ) . 

It is easily seen that a loca l ly semialgebraic subset X e ST{M) of M is 
semialgebraic i f and only i f it is contained in some set We(g(M). The 
image of a semialgebraic subset under a local ly semialgebraic map is 
again semialgebraic. 

The sets i n J " ( M ) , M a given local ly semialgebraic space, are a basis o f 
open sets for a topology i n the classical sense on M . Th is topology is cal led 
the strong topology. The open sets in the strong topology are unions o f 
arbi trary families i n £r(M) (or i n © ( M ) ) . A set X 6 ST{M) is an element 
o f 3~(M) if and only i f JHs open in the strong topology. Hence it is justified 
to use f rom now on the fo l lowing te rminology: The words open, closed, 
dense etc. refer always to the strong topology on M . The sets U e ^ ( M ) 
are now cal led "open local ly semialgebraic" subsets o f M . 



The closure X and the interior X o f a local ly semialgebraic subset X o f 
M are again loca l ly semialgebraic. A local ly semialgebraic map f\M-*N 
is continuous i n the strong topology and its graph is a local ly semial­
gebraic subset o f M x N. Bu t i n contrast to the semialgebraic theory, the 
converse is not true i n general (consider, e.g., the map R -> RXoc, x *-+ x). 

W e w i l l close this section wi th some remarks on the components and the 
dimension of a local ly semialgebraic space M . 

D E F I N I T I O N 7 . A path in M i s a local ly semialgebraic map a: [0 , 1] -> M 
f rom the semialgebraic space [0 , 1] ( = unit interval i n R) to M . (Notice 
that the image a ( [ 0 , 1]) is a semialgebraic subset o f M ) . The path compo­
nent o f a point x e M i n M is the set o f a l l points yeM such that there 
is a path a i n M wi th a ( 0 ) = x and a ( l ) = y. 

It is an immediate consequence of the corresponding results for semial­
gebraic spaces that every path component o f M is a closed and open 
loca l ly semialgebraic subset o f M . The family (Mx\XeA) o f a l l path 
components is loca l ly finite, i n part icular it is an admissible covering of M . 
Thus M i s the direct sum of the spaces Mx. 

Every path component M' is connected, i.e., there does not exist a part i ­
t ion o f M' into two non-empty open local ly semialgebraic subsets. Thus 
the path components o f M are also the "connected components". They 
are often simply called components. 

The dimension d i m M of a local ly semialgebraic space M is defined as 
the supremum of the dimensions o f a l l semialgebraic subsets o f M. 
d i m M = 0 i f and only i f M is a discrete space (Ex. 1.4). 

2. More basic definitions and results. F r o m now on we w i l l tacitly assume 
that a l l local ly semialgebraic spaces are "separated", i.e., HausdorfT in 
the strong topology, and we w i l l often call them simply "spaces". 

D E F I N I T I O N 1. A space M is called regular i f for every closed local ly 
semialgebraic subset A o f M and every point x e M\A there exist sets 
U, Ve £r(M) wi th xeU,A a F a n d U f l V = 0 . 

A semialgebraic space X is regular i f and only i f X is affine ([14]). Hence 
i n a regular space every semialgebraic subspace is affine. Since most 
results i n semialgebraic geometry are k n o w n for affine spaces, it seems to 
be reasonable to restrict to regular locally semialgebraic spaces. But to 
obta in deeper results on the topology of local ly semialgebraic spaces f rom 
the semialgebraic theory we are forced, at least at the moment, to consider 
only spaces which are in addi t ion paracompact. Fortunately this suffices 
for many applications. 

D E F I N I T I O N 2 . A local ly semialgebraic space M is called paracompact, 



i f there exists a locally finite (cf. § 1 , Def. 5) covering (Ma\a e / ) o f M 
by open semialgebraic subsets. (Not ice : Such a covering is admissible). 

E X A M P L E 2.1. Assume that our real closed base field R contains a se­
quence £ 0 > ei > e2 > - • • wi th l i m ^ o o en = 0 . In practice, this is nearly 
always the case. F o r example, every real closure o f a finitely generated field 
is even " m i c r o b i a l " , i.e., R contains an element d # 0 wi th l i m ^ o o ö * = 0 
([9]) . A l s o every real closed field is the inductive l imi t o f its microb ia l real 
closed subfields. Then for every local ly complete semialgebraic space M 
over R the space M l o c introduced i n Example 1.6 is paracompact. Indeed, 
the sets 

M0 {xeM\d(x) > ei}9 

Mn := {x e M\en-i > d(x) > en+l} (n ^ 1) 

fo rm a local ly finite covering o f M by open semialgebraic subsets. C o n ­
versely it can be shown that R contains a nontr iv ia l zero sequence i f Mloc 

is paracompact. 

E X A M P L E S 2.2. Every local ly finite s impl ic ia l complex (see §3) is para-
compact as is every covering space o f a semialgebraic space (§5). Every 
subspace o f a paracompact space is again paracompact. (Notice the dif­
ference f rom the topological theory.) 

Paracompact spaces inherit many of the nice properties o f semialgebraic 
spaces. A l l the fo l lowing statements can be proved using a local ly finite 
covering and the semialgebraic theory. 

R E M A R K S 2.3. Let M be a paracompact local ly semialgebraic space. 
i) M is regular i f and only i f every semialgebraic subspace is affine. 

ii) The closure X o f any semialgebraic subset X o f M is semialgebraic. 
N o w assume addi t ional ly that M is regular. 

i i i ) (Shr inking Lemma) . F o r every local ly finite covering (Ux\XeA) 
o f M by open semialgebraic subsets, there is a covering (Vx\XeA) o f M 
by open semialgebraic subsets wi th Vx <= Ux for every X e A. 

iv) F o r every local ly finite covering (Ux\\eA) o f M by open semial­
gebraic subsets, there is a subordinate par t i t ion o f unity — i.e., there 
exists a family (<px\XeA) o f local ly semialgebraic functions cpx: M -> [0 , 1] 
such that <px\M\Ux = 0 for every X e A and E a e ^ C * ) = 1 for every xe M. 

v) ("Tietze's extension theorem"). Le t A be a closed subspace o f M and 
/: A -> K be a local ly semialgebraic function on A wi th values i n a convex 
semialgebraic subset K o f R. Then there is a local ly semialgebraic function 
g: M -+ K with g\A =/. 

vi) I f A9 B are disjoint closed local ly semialgebraic subsets o f M9 then 
there is a local ly semialgebraic function f:M-+ [0 , 1] wi th / _ 1 ( 0 ) = A 
a n d / - i ( l ) = B. 



D E F I N I T I O N 3. A map f:M-+ N between local ly semialgebraic spaces is 
called semialgebraic i f / i s local ly semialgebraic and i f f~\Y) is a semial­
gebraic subset o f M for every semialgebraic subset Y o f N. 

Every local ly semialgebraic map wi th doma in a semialgebraic space M 
is semialgebraic. The image f(X) o f every locally semialgebraic subset X 
o f M under a semialgebraic map / : M -> N is a local ly semialgebraic sub­
set o f N. 

N O T A T I O N . W e denote by ^ ( M ) ( r e s p . ® ( M ) ) the set o f a l l closed local ly 
semialgebraic (resp. closed semialgebraic) subsets o f a local ly semial­
gebraic space M. 

D E F I N I T I O N 4. a) A local ly semialgebraic map / : M -> i V i s called proper 
if, given any local ly semialgebraic map g: N' ->N,f: M x NN' N' maps 
every XE^(M X NN') onto a set / ' ( I ) e ^{N'). Here / ' is the map 
obtained f r o m / b y base extension wi th g. 

b) A local ly semialgebraic space M is called complete i f the map f rom M 
to the one point space is proper. 

F o r a semialgebraic map / : M -+.N between semialgebraic spaces the 
not ion "p roper" as defined here coincides wi th the previous one (intro­
duced i n [4, §9], [5 §2]). 

P R O P O S I T I O N 2.4. Let f: M -» N be a locally semialgebraic map and 
(Nß\ß e J) be an admissible covering of N. Then f is proper if and only if the 
restriction f\f~l{Nß): f~l(Nß) Nß is proper for every ßej. 

This is easy to prove. M o r e difficult is the next theorem. 

T H E O R E M 2.5. Let f:M-+Nbea proper map between locally semialge­
braic spaces. Assume that M is paracompact. Then f is semialgebraic. In 
particular, every paracompact complete locally semialgebraic space is semi­
algebraic. 

W e see that considering proper local ly semialgebraic maps essentially 
means considering proper maps between semialgebraic spaces. So this is 
nothing really new. Bu t there is a more general class o f morphisms be­
having nearly as well as proper maps. 

D E F I N I T I O N 5. a) A local ly semialgebraic m a p / : M - > TV is cal led part ia l ly 
proper, i f the restriction f\A: A -> N is proper for every A e © ( M ) . 

b) A local ly semialgebraic space M is called part ial ly complete i f the 
map f rom M to the one point space is part ial ly proper. Th i s means that 
every closed semialgebraic subset o f M is a complete semialgebraic space. 

O f course a proper map is part ial ly proper. 

E X A M P L E 2.5. F o r every local ly complete semialgebraic space M the 
space A f l o c (Example 1.6) is part ial ly complete. 



The importance o f part ial ly complete spaces is stressed by the fo l lowing. 

T H E O R E M 2 . 6 . Every regular paracompact locally semialgebraic space M 
is isomorphic to a locally semialgebraic subspace of a partially complete 
regular space M. 

In [4, 1 2 . 5 ] and [8, 2 . 3 ] we gave two useful characterizations o f proper 
maps between semialgebraic spaces. These characterizations generalize 
to partial ly proper maps i n the category o f locally semialgebraic spaces. 

P R O P O S I T I O N 2 . 7 . A locally semialgebraic map f: M -+ N is partially 
proper if and only if the following two conditions are fulfilled: 

i) f(A) e ®(N)for every A e @ ( M ) . 
ii) All fibres f~l(y\ y^N, are partially complete spaces. 

T H E O R E M 2 . 8 . A locally semialgebraic map f:M-*N is partially proper 
if and only if for any path a: [0 , 1] -* N, and any semialgebraic map ß: 
[0 , 1 [ M with f o ß = a \ [0 , 1[ , there exists a {unique) path ß: [ 0 , 1 ] -* M 
such that fo ß = a and ß\[0, 1 [ = ß. 

C O R O L L A R Y 2 . 9 . A locally semialgebraic space M is partially complete if 
and only if every semialgebraic map a : [ 0 , 1 [ - » M can be completed to a 
path ä: [0 , 1] -> M. 

One can derive f rom Theorem 2 . 8 that any pull-back o f a part ial ly 
proper map is again part ial ly proper. 

Important examples o f part ial ly proper maps are given by Propos i t ion 
2 . 1 0 below. 

D E F I N I T I O N 6 . a) A local ly semialgebraic map f:M->N is called t r iv ia l 
i f for one point y e N (and thus for every yeN) there is a local ly semi­
algebraic i somorphism <p: M -> N x f~l{y) such that the diagram 

commutes, where prx denotes the natural projection. 
b) / is called weakly local ly t r iv ia l i f every y e N has an open local ly 

semialgebraic neighborhood L e ß'(N)such that the restriction f\f-\L): 
f~\L) -* L is t r iv ia l . 

c) / is called local ly t r iv ia l i f N has an admissible covering (Nß\ß e / ) 
such that for every ß e / the restriction f\f~1(^ß)'f~l(^ß) -* Nß i s t r iv ia l . 

P R O P O S I T I O N 2 . 1 0 . Every weakly locally trivial map f:M-*N with par­
tially complete fibres is partially proper. 

This can be easily seen using Proposi t ion 2 . 7 . 

M Nxf~\y) 

N 



3. Simplicial complexes and triangulations. W e need some definitions o f a 
combinator ia l nature, cf. [6, § 2 ] . Reca l l that an open n-simplex in some 
vector space V over R is a set 

w i t h affinely independent points e0, . . . , en o f V which are called the 
vertices o f a. The closure a o f a is defined to be the convex hu l l o f e 0, . . . , 
e„ i n V. 

D E F I N I T I O N 1. a) A (geometric) s impl ic ia l complex over R is a pair 
(X, 2 (X) ) consisting o f a subset X o f some vector space V over R and a 
family o f pairwise disjoint open simplices G in V such that the fo l lowing 
two properties h o l d : 

i) Xis the un ion o f the family 2 (1 ) , 
i i) the intersection a fl ? o f the closure o f any two simplices G, Z e H(X) 

is either empty or a face (defined as usual) o f both a and z. 
b) The closure o f the complex (X, £ ( X ) ) is the pair (X, 2 (X)) , where 

2 ( X ) is the set o f a l l open faces o f a l l a e %(X) and X i s the un ion o f a l l 
z e Ti(X). This is again a s impl ic ia l complex. 

c) The complex (X, £ ( ! ) ) is called closed i f X = X, or, equivalently, i f 
L(X) = 2 (1 ) . 

R E M A R K . O u r no t ion o f s impl ic ia l complex differs slightly f rom the 
classical one (Classical s impl ic ia l complexes are the closed complexes i n 
our terminology). The reason is that the combinator ia l semialgebraic 
topology used by us is based at least as much upon open simplices as upon 
closed simplices. Classical ly, an open simplex a is usually regarded as a 
s impl ic ia l complex consisting o f infinitely many closed simplices. In our 
theory, this w o u l d erringly replace the semialgebraic space a by the 
local ly semialgebraic space a[oc introduced i n Example 1.6. 

W e often denote a s impl ic ia l complex (X, J^(X)) s imply by X. Le t X 
be a s impl ic ia l complex i n a vector space V over R. A subcomplex Y o f X 
is cal led closed i n X i f Y i f the intersection o f the subcomplexes X and Y 
o f X. It is called open i n X i f the complex X\Y is closed i n X. 

D E F I N I T I O N 2 . a) X i s called finite i f 2 W is finite. 
b) X is called local ly finite i f every ae 2 ( 1 ) is contained in a finite 

open subcomplex o f X. 
c) X is called strictly local ly finite i f X is local ly finite. Th i s means that 

every vertex o f X is a vertex o f only finitely many a e 2 ( X ) . 
There are many examples o f local ly finite complexes which are not strict­

ly local ly finite (e.g., infinitely many open 1-simplices wi th one c o m m o n 
vertex). 

n n 



L o c a l l y finite s impl ic ia l complexes may be equipped wi th the structure 
o f a local ly semialgebraic space i n a natural way. Fi rs t observe that a 
finite s impl ic ia l complex X is an affine semialgebraic space because it is a 
semialgebraic subset o f the finite dimensional vector space spanned by the 
vertices o f X. 

Let now Xbe a local ly finite s impl ic ia l complex over R. The stt(Xx\XeA) 
o f a l l open and finite subcomplexes o f A" is a directed system (A ^ /u iff 
Xx

 c XM) wi th u n i o n X. I f Xx c X^ the semialgebraic space Xx is an 
open subspace o f the semialgebraic space X^. A c c o r d i n g to L e m m a 1.2 
X has the structure o f a local ly semialgebraic space over R such that 
X = linj Xx. In this way we consider every local ly finite s impl ic ia l complex 
to be a local ly semialgebraic space. 

The closure o f a local ly finite complex X is a local ly semialgebraic space 
on ly i f X is strictly local ly finite. 

The fo l lowing statements are easily checked. 

P R O P O S I T I O N 3 . 1 . Let X be a locally finite simplicial complex and Y be 
a subcomplex of X. 

i) X is a regular and paracompact locally semialgebraic space. 
i i) X is partially complete if and only if X is closed. 

i i i ) Y is a locally semialgebraic subspace of X. 
iv) Y is an open (resp. closed) locally semialgebraic subset of X if and 

only if Y is an open (resp. closed) subcomplex of X. 

Conversely, we can prove that every paracompact regular local ly 
semialgebraic space M is i somorphic to a strictly local ly finite s impl ic ia l 
complex X. 

T H E O R E M 3 . 2 . Let M be a regular paracompact locally semialgebraic 
space over R and let (AX\X eA) be a locally finite family of locally semialge­
braic subsets of M. Then there exist a strictly locally finite simplicial complex 
X over R, a family (Yx\XeA) of subcomplexes of X, and a locally semial­
gebraic isomorphism <p: X M which maps Yx onto Ax for every XeA. 

F o r affine semialgebraic spaces this fact is well k n o w n ([7, § 2 ] , [13], 
[11] for R = R). Hence, i f (Ma\a e / ) is a local ly finite covering o f M by 
open semialgebraic subsets, we can find, for every a e / , a simultaneous 
tr iangulat ion <pa o f Ma and the finitely many subsets Ma f| Ax wh ich are 
not empty. The ma in problem i n the p roo f o f Theorem 3 . 2 is glueing a l l 
these " l o c a l " triangulations <pa together into a global t r iangulat ion (p. 

It first appears that Theorem 2 . 6 is a t r iv ia l consequence o f Theorem 3 . 5 
(simply take the closure X o f X for M). Bu t our glueing procedure only 
works for part ial ly complete spaces. Theorem 2 . 6 guarantees that it 
suffices to consider this case. 

4. The fundamental group. Be low we wi l l define the (semialgebraic) 



fundamental group o f a local ly semialgebraic space. This wi l l enable us 
to discuss local ly semialgebraic coverings in the next section. 

N O T A T I O N . Le t M and N be local ly semialgebraic spaces and A and B 
be local ly semialgebraic subsets o f M and N. Then , as usual, a local ly 
semialgebraic map / : ( M , A) -> (JV, B) is a local ly semialgebraic map 
f:M-+N wi th f(A) a B. The letter I w i l l always denote the unit interval 
[0, 1] i n our real closed base field R. 

D E F I N I T I O N 1. T w o local ly semialgebraic maps / , g: ( M , A) z$ (N, B) 
are called nomotopic i f there is a local ly semialgebraic map F: (M x / , 
A x / ) -+ (N, B) (called a homotopy from / to g) wi th F ( x , 0) = f(x) and 
F(x, 1) = g(x) for every x e M. 

D E F I N I T I O N 2. Le t M be a local ly semialgebraic space and x0 e M. Then 
Xi(M, x0) is the set o f homotopy classes o f semialgebraic maps a: 
(I, {0, 1}) ( M , {x0}). %\{M, X0) wi th the composi t ion defined as usual 
is a group called the (semialgebraic) fundamental group o f M wi th base 
po in t x0. 

A s i n classical homotopy theory, every path ß: [0, 1] -> M wi th /3(0) = 
x0 and /3(1) = xx induces an i somorphism f rom 7Ui(M, x0) onto %\{M, x{). 
Thus, up to i somorphism, the fundamental group does not depend on the 
choice o f the base point, provided the space is connected. O f course, 
every local ly semialgebraic map / : ( M , xQ) -+ (N, y0) induces a group 
homomorph i sm/^ . f rom TUI(M, XQ) to KI(N9 >>o) which only depends on the 
homotopy class o f / . 

Connected spaces wi th tr ivial fundamental group are called s imply 
connected. Since a semialgebraic space can be covered by finitely many 
contractible open semialgebraic subsets (recall that it can be triangulated), 
every local ly semialgebraic space has an admissible covering by open 
s imply connected semialgebraic subsets. 

I f M is a connected locally semialgebraic space over R, then for any 
real closed field R => R the space M(R) over R obtained f rom M by base 
extension (cf. Example 1.7) is again connected. Indeed, for any space 
M over R and any point x o f M(R), there exists a path over R which con­
nects x wi th a point o f the subset M o f M(R). 

W e now state a theorem which enables us to compute the fundamental 
group i n many cases by transfer f rom k n o w n topological fundamental 
groups. The analogue o f this theorem for the higher homotopy groups, 
to be defined in the obvious way, is also true. 

T H E O R E M 4.1. Let M be a regular space over R. 
i) For any real closed field R •=> R the natural homomorphism 

7Ui(M, x0) Ki(M(R), x0) which maps the class [a] of a loop a : [0, 1] -» 



M with a(0) = a(\) = x0 to the class [aj?], is an isomorphism. Here CCR 

denotes the loop obtained from a by base extension (cf. E x . 1.7). 
i i) If R = R then the obvious homomorphism from 7Z\(M, x0) to the topo­

logical fundamental group %\(MXov. x0) of the associated topological space 
Miop (strong topology) is an isomorphism. 

W e illustrate the possibil i ty o f transferring results on topological 
fundamental groups to semialgebraic fundamental groups by an example 
(See [6, §5] where a s imilar transfer method was used i n homology) . 

E X A M P L E 4.2. Let X be a smooth and irreducible algebraic curve o f 
genus g over an algebraically closed field C o f characteristic zero. Denote 
by X(C) the set o f C- ra t iona l points. W e choose a base point x0 e X(C) 
and a real closed subfield R o f C such that C = R( v ^ T ) - Identifying C 
wi th R2

9 the set X(C) becomes an affine semialgebraic space over R. 
Let X be the smooth comple t ion o f X, i.e., the smooth complete algebraic 
curve o f genus g over C containing J a s a Z a r i s k i open subset. W e have 
X(C) = X(C)\{pl9 . . . , pr) wi th points p l 9 . . . 9 p r e X(C) (r ^ 0). Then , 
as in the case C = C (cf. [1, chap. I]), m(X(C)9 x0) is the free group w i t h 
2g + r — I generators, provided r ^ l . I f X is complete, i.e., r = 0, 
%X(X(C)9 x0) is generated by 2g elements al9 bi9 . . . , ag9 bg wi th the single 
relat ion a^a^bl1 • • • agbga~lb~l = 1. 

It is a remarkable feature of Example 4.2 that the group iz\(X(C)9 x0) 
does not depend on the choice of the real closed subfield R o f C . F o r X a 
smooth algebraic variety over C of dimension ^ 2 this is no longer true 
i n general, cf. [12, end o f §1]. 

A n important tool for the study o f loca l ly semialgebraic coverings is 
the fo l lowing homotopy lif t ing property for local ly t r iv ia l maps (recall 
Def in i t ion 6 i n §2). 

T H E O R E M 4.3. Let p: M -> Nbea locally trivial locally semialgebraic map 
between locally semialgebraic spaces M and N. Let L be a regular para-
compact locally semialgebraic space and H: L x [0, 1] -> N be a locally 
semialgebraic homotopy. Assume that a locally semialgebraic map f:L-*M 
is given with p(f(x)) = H(x9 0) for every x e L. Then there exists a locally 
semialgebraic homotopy G: L x [0, 1] -> M such that G(x9 0) = f(x) for 
every x e L and p o G = H. 

Since no compactness arguments are available, the p roof is rather 
different f rom the topological one. After choosing a suitable t r iangulat ion 
o f L , the lifted homotopy G is constructed successively on the fc-skeleta 
o f L. We strongly use the fact that an arbitrary pair (M9 A) o f affine 
semialgebraic spaces wi th A closed in M has the homotopy extension 
property ([7, §4, §5]). 



5. Coverings. Coverings are important examples o f the fo l lowing class 
o f loca l ly semialgebraic morphisms. 

D E F I N I T I O N 1. A loca l ly semialgebraic map f:M-+N over R is called a 
loca l i somorphism i f every point x e M has an open loca l ly semialgebraic 
neighborhood U such that the restriction f\U: U ->f(U) is a local ly 
semialgebraic i somorphism from U onto an open local ly semialgebraic 
subset o f N. 

E X A M P L E 5.1. Denote by C the algebraic closure R(^/~Z^\) o f R. Le t 
/: V -» Wbt an etale algebraic morph ism between algebraic varieties over 
R (resp. over C ) . Then the induced semialgebraic map fR: V(R) -* W(R) 
( resp . / : V(C) -> W(C)) is a local i somorphism. Th i s is an easy conclusion 
f rom the impl ic i t function theorem ([4, 6.9]). 

The fo l lowing important result says that every local i somorphism is 
even a local i somorphism " i n the strong sense". 

T H E O R E M 5.2. Let f: M -> N be a local isomorphism between locally 
semialgebraic spaces M9 N over R. Then M has an admissible covering 
(Ma\ael) such that Ma is mapped isomorphically onto an open locally 
semialgebraic subset of N by f for every a: e / . 

D E F I N I T I O N 2. A local ly semialgebraic map/? : M -> Nis cal led a local ly 
semialgebraic covering of N (or " cove r ing" in short), i f p is surjective, 
local ly t r iv ia l (cf. §2 , Def in i t ion 6), and has discrete fibres (cf. Example 
1.4). p is called connected i f Af, and hence also N, is connected. 

D E F I N I T I O N 3. Le t / : M -• N be a local ly semialgebraic map. 
a) / i s called finite i f / i s proper and a l l fibres f~l(y\y£ N, are finite sets. 
b) / i s called part ial ly finite i f f \ A : A -* N is finite for every closed semi­

algebraic subset A o f M (or, equivalently, i f / is part ial ly proper and has 
discrete fibres). 

P R O P O S I T I O N 5.3. Every covering p: M -> N is a partially finite map and 
a local isomorphism. 

The first statement fol lows from Propos i t ion 2.10. The second is fairly 
obvious since p is local ly t r iv ia l . F o r finite maps we have a converse to 
proposi t ion 5.3. 

P R O P O S I T I O N 5.4. Let p: M -+ N be a finite locally semialgebraic map 
which is a local isomorphism. Assume that M is paracompact and N is 
connected. Then p is a covering. 

E X A M P L E 5.5. Le t / : K - + W be a finite algebraic morphism between 
varieties over R (resp. over C = R( V^DX a n d l e t be a semialgebraic 
subset o f W(R) (resp. W(C)). Assume that / is etale at a l l points o f M ••= 



V{R) f l f-KN) ( r esp. M *=* f~l(N)). Then the map p: M -* # obtained 
f rom / b y restrict ion is finite. W e conclude f rom E x . 5.1 and P rop . 5.4 
that p is a covering. 

P R O P O S I T I O N 5 . 6 . Let p: M -> N be a covering of a paracompact locally 
semialgebraic space N. Then M is paracompact. 

P R O O F . W e choose a loca l ly finite covering {Nß\ße J) o f Nby open semi­
algebraic subsets such that p is t r iv ia l over Nß for every ß e J. T h e n 
P~KNß) = U (Mßa I a e I(ß)) is the disjoint un ion o f open semialgebraic 
subsets Mßa o f M. {Mßoc\ß eJ,ae I(ß)) is a loca l ly finite covering o f M. 

A s i n classical topology coverings have the "unique path l if t ing prop­
erty". 

P R O P O S I T I O N 5 .7 . Let p: M -» N be a locally semialgebraic covering and 
a: [0 , 1] N be a path. Then for every x0 e M with p{x0) = a{0) there is 
a unique path ß: [0 , 1] - » M with ß(0) = x0 andp o ß = a . 

The p roo f is very easy. 

C O R O L L A R Y 5 . 8 . Letp: M -> Nbea covering. Assume that N is connected. 
Then all fibres of p have the same cardinality {if this cardinality is finite, 
we call it the degree of p). 

Homotop ies can be lifted to a covering space (Theorem 4.3). Th i s i m ­
plies the fo l lowing theorem. 

T H E O R E M 5 . 9 . Letp: M -> Nbe a locally semialgebraic covering, XQ 6 M, 
P(xo) = Jo- Let a 0 , cc\: [ 0 , 1] =3 N be paths with a0{0) = a i ( 0 ) = y0 and 
ao(l) = ai ( l ) which are homotopic with fixed endpoints. Then the uniquely 
determined liftings ß0, ßx: [ 0 , 1] z£ M of a0, cc\ with ß0{0) = ßx{0) = x0 

have the common endpoint ß0{\) = ßi{\) and are homotopic with fixed 
endpoints. 

Start ing wi th this theorem, we are able to classify the coverings, essen­
t ia l ly using the same arguments as i n classical topology. 

T H E O R E M 5 . 1 0 . Let p: M -> N be a connected locally semialgebraic 
covering, x0 e M, y0 = p{x0). 

i) The induced homomorphism p*: %i{M, x0) -> 1U\{N, y$) is injective. 
If p is finite, the index of %\{M, x0) in %i{N, y^) is equal to the degree of p. 

ii) Iff: {L, z 0 ) -> {N, y^) is a locally semialgebraic map with L connected 
then f can be lifted to a locally semialgebraic map g: {L, z 0 ) -> {M, xQ) 
with pog =fif and only if f*{%x{L, z0)) a p^{%i{M, x0)). g is uniquely^ 
determined provided it exists. If f is a covering, then g is also a covering. 

In particular, Theorem 5 . 1 0 says that every connected coveringp: M -> 



N o f N is determined up to i somorphy by the subgroup pJjz\(M9 x0)) o f 
fti(N, y0). Conversely we can prove the next theorem. 

T H E O R E M 5.11. Let N be a connected locally semialgebraic space, y^eN 
and H be a subgroup of %i(N9 y0). Then there exists a connected locally 
semialgebraic covering p: M -> N with p*(izi(M9 x0)) = H for some x0 e M 
with p(x0) = y0. 

A g a i n the p roo f essentially runs a long the same lines as the correspond­
ing p roo f i n topology. The set M is defined as fo l lows : 

M := {a: [0, 1] -> N\a a semialgebraic path, a(0) = y0}l ~. 

Here two paths a, ße M are defined to be equivalent i f and only i f a ( l ) = 
/3(1) and the homotopy class o f a* /3 _ 1 (where * denotes the composi t ion 
o f paths) is an element o f H. M a p p i n g an equivalence class [a] e M to 
a(l) we get a mapp: M -+ N. F o r U e &~(N) and a path a: [0, 1] -+ N w i th 

a(0) = y0 and a ( l ) e U we define 

M(a, U) := {[a*f]eM\ r : [0, 1] - U9 r(0) = a ( l )} . 

T h e n we choose an admissible covering (Af,-|/ e / ) o f N by open s imply 
connected loca l ly semialgebraic subsets. The preimage p~l(Nt) o f Nt- is the 
disjoint un ion [J (M(ar y, |y e /( /)) o f sets M(aj, N{)9 aj running through 
a suitably chosen system o f representants. I f U is s imply connected, then 
M(a9 U) is mapped bijectively to U by p. Thus p a l lows us to transfer the 
loca l ly semialgebraic structure o f N{ to M(aj9 N{) for every je J(i). But 
then p~l(Nt) also becomes a local ly semialgebraic space in a canonical 
way (Ex . 1.4). One may now check that the structures on p~l(Nt) and 
p~l(Nj) fit together for Nt f) Nj ^ 0. W e equip M wi th the " induct ive 
l imi t structure" (cf. L e m m a 1.2) and i n this way obtain the desired local ly 
semialgebraic covering p: M -> N wi th pJjc\(M, x0)) = H. Here xQ is 
the point given by the constant path [0, 1] -> {y0}. 

A p p l y i n g Theorem 5.11 to the t r iv ia l subgroup of %i(N9 yQ) we derive 
the fo l lowing corol lary . 

C O R O L L A R Y 5.12. Let N be a connected locally semialgebraic space and 
y0eN. 

i) Up to isomorphy there exists a uniquely determined connected locally 
semialgebraic covering p: M -> N, called the universal covering of N9 with 
the following universal property. For every x0 e M with p(x0) = yQ and 
every connected covering f: (M'9 z 0 ) -> (N9 y0) there exists a uniquely 
determined locally semialgebraic map g: ( M , x 0 ) -> (M'9 zQ) such that the 
diagram 



communes. The map g is again a covering. 
ii) A connected covering p': M' -> N is universal and hence isomorphic 

to p: M -> N, if and only if M' is simply connected. 

E X A M P L E 5 . 1 3 . Let F b e an algebraic variety over the algebraic closure 
C = R(i/~Z\) o f R. ( N . B . Every algebraically closed field o f characteristic 
zero is o f this type). Then F i n general has no algebraic universal covering. 
But the universal covering exists in the category o f local ly semialgebraic 
spaces over R. 

E X A M P L E 5 . 1 4 . Le t A be the un ion o f a l l intervals ] — n, n[ i n JR wi th 
n G N . A is the smallest valuat ion r ing of R compatible wi th the ordering. 
W e equip A w i th the " induct ive l imi t structure" o f the open subspaces 
]—n,n[ o f R. T h e n we choose a surjective semialgebraic map e f rom [0, 1] 
to the unit circle S1 c: R2 wh ich maps 0 and 1 to the end point (0, 1 ) and 
is injective on ]0, 1 [ (cf. [8, § 6 ] ) . e extends to a local ly semialgebraic map 
p: A -> Sl by p(m + x) = e(x) (meZ, xe[0, 1[). p is the universal 
covering o f S1. 

Let N be a loca l ly semialgebraic space over R. In both theories, the 
topologica l and the semialgebraic, the coverings are classified by the 
subgroups o f the fundamental group. Hence we obtain f rom Theorem 4 . 1 . 

C O R O L L A R Y 5 . 1 5 . Every topological covering of N is topologically iso­
morphic to a locally semialgebraic covering. Two locally semialgebraic 
coverings of N are topologically isomorphic if and only if they are locally 
semialgebraically isomorphic. 

W e thank R o l a n d Hube r at Regensburg who first proved Theorem 5 .2 
i n fu l l generality. 
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