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Separation, retractions and homotopy extension in semialgebraic spaces

Hans Delfs and Manfred Knebusch (Regensburg)

Let R be a real closed field. In [DK2] we developed a theory of sémi—
algebraic spaces and mappings over R, and in [D], [DK3], we showed
that for an affine semialgebraic space M over R there exist reason-
able homology and cohomology groups Hr(M,G), HY (M,G) with coefficients
in an arbitrary abelian group G which coincide with the classical
singular homology and cohomology groups in the case R = IR. There
should also exist a reasonable homotopy theory for such spaces, and
this theory - as well as homology theory - should certainly be useful

in algebraic geometry over R and over R(V=T).

The present paper serves as ground work for semialagebraic homotovpy
theory. As in topological homotopy theory, we have to make sure, for
example, that under sufficiently general assumptions a subspace A of M
has a semialgebraic neighbourhood U in M which retracts to A, and that
the pair (M,A) has the homotopy extension property for semialgebraic
maps. It turns out that in the category of affine semialgebraic spaces

these matters are even nicer than in topology.

In §1 we show that affine semialgebraic spaces have separation proper-
ties similar to paracompact spaces, a fact which is particularly use-
ful for the sheaf theory of these spaces (a topic we do not consider
here, cf. [D]). §2 is devoted to a proof of our central result,

Theorem 2.1 below, which in a slightly weaker and simpler form says

the following.



Theorem 1: Any closed semialgebraic subset A of an affine semialge-

braic space M has an open semialgebraic neighbourhood U in M such
that A is a strong deformation retract of both U and of the closure

U of U in M (in the semialgebraic sense).

We feel that this result is a remarkable instance of the goodnatured
behaviour of the affine semialgebraic category over an arbitrary real

closed field R.

We prove a rather constructive version of the theorem (Theorem 2.7).
We rely heavily on the result that every semialgebraic pair (M,A)
with M affine can be "triangu;ated" ([D], [DK3, §2]). This triangu-
lation is only of a semiclassical nature (some open simplices in the
occuring polytopes are "missing”.) Thus arguments have to be used,

- which, to some extent, seem to be new even in the case R = IR.

In §3we introduce locally complete semialgebraic spaces. We verify
that these spaces are precisely the euclidean neighbourhood retracts
in the semialgebraic sense (Theorem 3.6). We also obtain the following
improvement of Theorem 1 for locally complete spaces (again in a very

constructive version, cf. end of §3).

Theorem 2: Let M be a locally complete space (cf. Def. 3.1), and A

be a closed semialgebraic subspace of M. Then there exists an open
semialgebraic neighbourhood U of A in M and a proper semialgebraic
map f : 3U A, with dU = U\U, such that the triple (U,A,3U) is semi-
algebraically isomorphic to the triple (Z2(£f) ,A,3U) consisting of the

mapping cylinder Z(f) of f and the natural subspaces A and 3U of Z(f).



This result applies, for example, to the case where M is the set V(R)
of rational points of any algebraic variety V over R, since such

spaces V(R) are always locally complete (Example 3.2).

Returning to arbitrary affine semialgebraic spaces we obtain in §4,

among other results, the following consequence of §1 and Theorem 1.

Theorem 3: (cf. Theorem 4.5 below). If M is an affine semialgebraic

space over R, A a closed semialgebraic subset of M and N a contractible
semialgebraic space, then every semialgebraic map f : A-»N can be ex-

tended to a semialgebraic map T : M-N.

Notice that for N an interval in R this theorem is a semialgebraic ana-

logue of the well known Tietze extension theorem in topology.

We finally prove in §5

Theorem 4: (= Theorem 5.1). Let I denote the unit interval [0,1] of R.

Let M be an affine semialgebraic space and A a closed semialgebraic

subset of M. Then (AxI) U (Mx{0}) is a strong deformation retract of MxI.

Thus the pair (M,A) has the homotopy extension property for semialge-

braic maps.

The category of affine semialgebraic spaces over the field IR of real
numbers, lying "in between" the category PL of piecewise linear spaces
and the category TOP of topological spaces, is very convenient, since
it often behaves less rigidly than PL and less pathologically than TOP.
Thus we hope that our paper - and the whole program pursued here - is

also relevant to topologists and geometers only interested in the case



R = IR. For an outline of this program we refer the reader to the last

section 8.13 of Brumfiel's book [B] and to the introduction of [DK1].

Our methods are restricted to affine semialgebraic spaces. An affine
semialgebraic space M over R is just a semialgebraic set M in some Rn,
"regarded without reference to the embedding Mo R, cf. [DK,, §7].
According to a recent rather deep result of Robson [R], cited in §2

as Theorem 1.3, every semialgebraic space with mild separation proper-
ties is affine. Robson's criterion seems to be sufficient to verify
that most semialgebraic spaces which are constructed from affine spaces
in a reasonable way are affine. Also, the set V(R) of rational points
of any separated algebraic variety V over R is affine (cf. Example 3.2
and Proposition 3.5 below). Thus affine spaces seem to suffice for all

practical purposes-

We thank the referee for a substantial improvement of the first
version of this paper. He provided us with an explicit formula
for the retraction in Theorem 1, while previously we obtained the
retraction in a rather indirect way. This formula made the proof

of Theorem 1 much simpler and enabled us to prove Theorem 2.



§1 - Separation properties of affine semialgebraic spaces

Lemma 1.71: Let A be a‘closed semialgebraic subset of an affine semial-

gebraic space M over R. Then there exists a semialgebraic function

f:M->[0,1] from M to the unit interval in R such that f'1(0) = A.

Proof: We embed M into some R™. The distance function g :Rn-+R,
g(x) := min{llx-yll |y €3},

where A denbtes the closure of A in Rn, is well defined and semialge-
braic ([DKz, 7.8]1, [B, 8.13.12]). Define f as the minimum of g|M and

the constant function 1. Then f has the required properties.

Proposition 1.2: Let M be an affine semialgebraic space and let A, B

be disjoint closed semialgebraic subsets of M. Then there exist open

semialgebraic neighbourhoods U of A and V of B with UNV = @.

Proof: By the preceding lemma we have semialgebraic functions f and g

on M with values in [0,1] such that f—1(0) = A and g_1(0) = B. The sets

U := {x €eM|(f-g) (x) <0}

V := {x €M| (f-g) (x) >0}

are disjoint, open and semialgebraic, and UoA, V>OB.
R. Robson has recently proved a strong converse of this proposition.

Theorem 1.3 [R]: Let M be a semialgebraic space over R which is

"regular", i.e., if A is a closed semialgebraic subset of M and x is
a point in M~NA, then there exist open semialgebraic neighbourhoods U

of x and V of A with UNV = @. Then M is affine.



This remarkable result will be used in the present paper only in an
inessential way. But it tells us, that the restriction to affine

spaces in most of our considerations here is in fact very natural

(cf. Introduction).

Lemma 1.4: (Shrinking of open coverings). Let (Ui|i=1,2,...,n) be a
finite covering of an affine semialgebraic space M by open semialge-
braic subsets Ui' Then there exist open semialgebraic subsets Vi of

Ui’ 1 < i < n, whose closures V; in M are contained in Ui and which

still cover M, i.e. M = V1lJ...lJVn.

Proof: We define vy by induction on i. Assume the open sets vV, are

already defined for 1 <i <m (0 <m < n-1), such that V; cU; and

m n
(UV,)) U ( U U;) =M.
i=1 * i=m+1

The boundary 8Um+1 of Um+1 in M is a closed semialgebraic subset of M

as well as

n
v.) u ( v u,)I].
1t i=m+2

Am = M\[('
i

| =1

The intersection (8Um+1) NA is empty. By Proposition 1.2 there exist
open semialgebraic neighbourhoods T of Am and W of 8Um+1 with TNW=4@.

We define

Vi1 37 Tf\Um+1.
Then Vm+1<:Um+1 and obviously
m+1 n
(uv,)u ( U U;) =M. qg.e.d.
i=1 i=m+2

Proposition 1.5: (Semialgebraic partition of unity). Again let (Uiliel)

be a finite covering of an affine semialgebraic space M by open semial-

gebraic sets U;. Then there exists a family (filiGI) of semialgebraic



functions fi on M with values in [0,1] such that

a) supp(fi) := IX EMTE, (x) # 0} cU; for every i €1I.
b) z f.(x) = 1 for every x €M.

. i

i€l

Proof: We choose a "shrinking" (Viliei) of the covering (UilieI) as
described in the preceding lemma. According to Lemma 1.1 we have

semialgebraic functions 95 :M->[0,1] with 911(0) = MV, . The

functions
£, 1= gyl zg.]’1 , (1 €1)
jer J
fulfill all the requirements. g.e.d.

We now obtain the following improvement of Proposition 1.2.

Theorem 1.6: Let M be an affine semialgebraic space over R and let A,B

be disjoint closed semialgebraic subsets of M. Then there exists a

semialgebraic function f: M- [0,1] with £ 1(0) = A and £ ' (1) = B.

Proof: We choose disjoint open semialgebraic neighbourhoods U of A and
V of B (Prop. 1.2), and consider the covering of M by U,V, and

W := MN(AUB). Let (sU,sV,sW) be a semialgebraic partition of unity
subordinated to this covering, as described in the preceding proposi-
tion. Applying again Lemma 1.1 we get a semialgebraic function gy on M

with values in [O;%] and 951(0) = A, and a semialgebraic function Iy

on M with values in [%,1] and g;1(1) = B. The function

= 1
f = sU-gU+sV-gv+zsW

has the desired properties. g.e.d.



§2 - The canonical neighbourhood retraction

We have to recall some terminology from classical homotopy theory,

adapted to our semialgebraic setting.

Definition 1: a) Let M,N be semialgebréic spaces over R and f,g semi-

algebraic maps from M to N. A (semialgebraic) homotopy from f to g is

a semialgebraic map H : Mx[0,1] =N such that H, = f and Hy = g. Here

H_ denotes the map x»H(x,t) from M to N (t€[0,1]).

b) A semialgebraic subset A of M is called a retract of M if there
exists a semialgebraic map r :M-+A with r|A = idA.
A must be closed in M. Any such map r is called a retraction from M

Notice that then

to A.

c) A semialgebraic subset A of M is called a strong deformation re-

tract of M, if there exists a homotopy H : Mx[0O,1] - M such that Ho is
the identity of M, H1 is a retraction from M to A and Ht(a) = a for

every a €A and every t € [0,1]. We then call H a strong deformation

retraction from M to A.

We now start to prove the central result of this paper, namely

Theorem 2.1: Let M be an affine semialgebraic space and A a closed

semialgebraic subset of M. Then there exists an open semialgebraic

neighbourhood U of A in M and a strong deformation retraction
H:Ux[0,1] »T

from the closure U of U in M to A, such that also the restriction

HIUx[0,1] is a strong deformation retraction from U to A,



Actually we shall prove a more precise version of Theorem 2.1
(Theorem 2.7 below). We recall the fact that every pair (M,A) con-
sisting of an affine semialgebraic space M and an arbitrary semial-

gebraic subspace A can be triangulated, cf. [D, §2] or [DK3, Th. 2.1].

This means that there exists a geometric simplicial complex (X,(SiliEI»
and a semialgebraic isomorphism y : X =M such that w_1(A) is the under-
lying set Y of a subcomplex (Y,(SiIiEJ)) (J=I). Here a geometric

simplicial complex (X,(SiIiEI)) is defined as a subset X of some space

R" equipped with a finite partition (SiliEI) into (straight) open
simplices Si' such that the intersection §Ir1§; of the closures of any
two simplices Si'sj in R" is either empty or a face of both §;vand 55.
Thus the closure X of X in R™ is obtained from X by adding all open
faces of all open simplices Si’ and X is a "finite polyhedron" in the
classical sense, called here a "complete" geometric simplicial complex.
We refer the reader to [DK3, §2] for details concerning the terminology
we will use from now on in connection with triangulations and geometric
simplicial complexes. In addition to this terminology we shall use the
following notation. If eyre---s&, are independent points in some Rn,
then ]eo,...,er[ denotes the open simplex and [eo,...,er] denotes the
closed simplex with vertices €grec-s€ . If S,T are open simplices in rR"

then S <T means that S is a face of T and S <T means that S is a proper

face of T. The barycenter of an open simplex S is denoted by S.

From now on we will denote a geometric simplicial complex (X,(SiIiEI))

simply by the letter X and the set {SiIiEI} of open simplices of X by

z(X).

Definition 2: Let X be a geometric simplicial complex. The star StX(A)



of a semialgebraic subset A of X is the union of all open simplices
S of X such that SNA # @. This is clearly an open neighbourhood of
A in X. If A is a subcomplex of X then Stx(A) is the union of all

sets StX(T) with T running through the open simplices of A.

Proposition 2.2: Let X be a geometric simplicial complex and A be a

closed subcomplex of X. Let X' denote the first barycentric sub-
division of the complex X (cf. [DK3, §2, Def. 7]). Then there exists
a retraction r from the star V := StX,(A) of A in X' to A - to be des-
cribed explicitly below - with the following property: For every
point x in V the open line segment lx,r(x)[ is contained in the same

open simplex S <V of X' as x.

N.B. By this proposition
H(x,t) = (1-t)x+tr(x) (XEV,0 < t < 1)

is a strong deformation retraction from V to A. The image r(S) of

every open simplex ScV of X' is contained in S.

We need some preparations before we can write down the definition of
the retraction r. Let E be the set of vertices of X. Consider a point
X €X. Then x is contained in an uniquely determined open simplex

]eo,...,en[ of X,
n n
X = I e, A; ER, O <Ay < 1, A =1,
i=0 i=0
For e €E we define '

O if e G{eo,...,en}

)‘i if e = e, (O<i<n).



In this way we get the barycentric coordinate function_ke : X->[0,11].

It is semialgebraic. For every X €X

A (x) =1, X = I A (xX)e,
e€E © ecE ©

and x €X if and only if the vertices e with Ae(x) # O span a simplex

of X.

Now {Glo€xX(X)} is the set of vertices of the first barycentric sub-
division X' of X. Let Ac denote the barycentric coordinate function

of X' corresponding to the vertex 7. Thus, for every x €X,

A 0 =1, x= I _A(xo0,
OEX (X) O€EX (X)

and the vertices o with Ao(x) + O span the open simplex of X' which
contains x. Recall that £(X) is partially ordered by the face rela-
tion o < 1. By definition of the first barycentric subdivision a sub-
set {co,...,on} of Z(X) is totally ordered if and only if the vertices
80""'8n span a simplex of X'. An open simplex ]30,...,8n[,

g, <...<o, of X' is an open simplex of X' if and only if o is

contained in X.

For every o € £(X) we introduce a function W :X-[0,1] as follows:

If ocA then wo

1. If 0 cX~NA, then w, = 0. If 0 cANA then

-1
( pX ’\T(X)) |l A (x) o,
o<tcX O<TCA T

provided the denominator does not vanish, anc wo(x) = 0 otherwise.

]

wO(X)

(The summations run over all T €X(X) resp. T €X(A) with o <7t1.) In

general, the function W is not continuous. But the restriction of w
o

to any open simplex of X' is semialgebraic. Thus W has a semialgebraic

graph.



Lemma 2.3: Let ¢ be an open simplex of X with o cANA. Let S be an

open simplex of X' on which the function X A_ vanishes. Then Xo
o<tcX
also vanishes on S.

Proof: We have S = ]30,...,8n[ with open simplices Og < eee <0 of

X, and oncx since S cX. Suppose that >‘c # 0 somewhere, and hence

everywhere, on S. Then o coincides with one of the simplices

Oo""’cn—1' (In particular n>1). Thus
I A (x) 22, (x) >0
o<tcX n
for every x €8S. g.e.d.

Since O_<_wc(x) <1 for every x €X we see from Lemma 2.3 that the
function uc = wc-)\O is continuous and hence semialgebraic on X

for every o € Z(X).

Lemma 2.4: For every x €V := St., (A) there exists some o €I(X) with

pc(x) >0.

Proof: Let ScV be an open simplex of X' As above, S = ]80,...,8n[
with open simplices Og <eee <0, of X and oncx. Since some open face
of S is contained in A, we have ckcA for some k € {O,...,n}. For

0 = 0y certainly My = }\0>O on S. g.e.d.

We now introduce a semialgebraic map r : VX by the formula (x €V)

_.1 -~
(*) r(x) = (Zu_(x)) (Zp _(x)o),
(0} o o o

with o running through X (X).



Lemma 2.5: r(S) cS nA for every open simplex ScV of X', and r(x) = x

for every x €A.

Thus r(V) = A and 1x,r(x)[ cV for every x€V. The map r : V-»A is a

retraction as claimed in Proposition 2.2.

Proof of Lemma 2.5: Recall from the proof of the preceding lemma that

=A...A i 0 <...<¢0 o <X, and 0, cA for some
S ]co, ,On[ with o n' %n , and oy or s

k € {0,...,n}. Let t be the maximal index in {0,...,n} with o, CA.
Consider some o € X(X) with uylS # 0. Then X_IS # O, hence ¢ = o, for
some k € {0,...,n}. For k >t the function Uy would vanish on S. Thus

k <t, and we obtain
r(S) c]oo,...,ct[ cSNA.

If ScA then t =n and u = A  on S for every ¢ €X(X). Thus r(x) = x

for every x €A. g.e.d.

This finishes the proof of Proposition 2.2. We call the retraction

r : VA defined above the canonical neighbourhood retraction sy a of
14

A in X.

In order to prove Theorem 2.1 we need the explicit description of

StX.(A) and its closure in terms of barycentric coordinates in the

most simple case.

Lemma 2.6: Let A==[eo,...,en] be a closed n-simplex in some space RN,

regarded as a geometric simplicial complex with its standard triangu-

-

lation. Let o denote the open face ]eo,...,er[ for some r <n. Then a

point x = XA e  + ... + Ae of A (all A, >O0,A_ + ... + A = 1) lies



in the star StA,(o) of 0 with respect to the first barycentric sub-
division A' if and only if

(A) Ap <min(Aj,e.erA) for r<m<n,

and x lies in the closure §EA.(0) of this star if and only if

(B) ' Am§MAUb“.”A) for r<m<n.

r

Proof: We choose an element m in the symmetric group S(O,...,n) such

that

)\“(O) 3}\““) 3..._>_>\“(n).

and use the notations

£, = Cr(i)’ My T )‘n(i) for 0<i<n,
and o 5 O. Then
n n :
X = E wfs o= E [u, (£ + ... +£;) '“i+1(fo+‘“+fi)]'
i=0 i=0
Introducing the simplices of A
T, 3= ]fo,...,fi[, O0<ic<n,
and their barycenters
A s -1
Ty = (i+1) (fo-+...-+fi)
we have
n . :
X = ioniTi, with Y; = (1+1)(ui—ui+1).

Since Y; 20, Yot eeetY, = 1, we see that XZG[TO,...,Tn] and that
Yy is the barycentric coordinate of x corresponding to the vertex %i of

A'. Let

Jo <3q <eee <ig

denote those indices i in {0,1,...,n} such that vy >ui+]. Then



]%j ""’?j [ is the open simplex T of A' which contains x. Now
o S

TNo # ¢ if and only if 0 is one of the vertices of T, and this means,

since dim ¢ = r, that o = and ur>~u Thus we see that X1lies in

Ty r+1°

StA.(T) if and only if w permutes the indices O,...,r, i.e.

n€S(0,...,r) xS(r+1,...,n), and M > W This is precisely condi-

r+1°
tion (A) in the lemma. By an easy continuity argument one now verifies
that x lies in §EA,(0) if and only if condition (B) holds,

g.e.d.

Theorem 2.7: Again, let X be a geometric simplicial complex over R

and A be a closed subcomplex of X. Let r : V-A denote the canonical
neighbourhood retraction of A in X, V := Stx.(A), and let U denote the
star StX"(A) of A in the second barycentric subdivision X" of X. The
closure UNX of U in X is contained in V. For every x €UN X the open

line segment lx,r(x)[ is contained in U.

N.B. By this theorem
H(x,t) = (1-t)x+tr(x)

is a strong deformation retraction from UnX to A and also from U to

A. Thus Theorem 2.7 is a constructive version of Theorem 2.1 above.

Proof: Let x €EUNX be given. We choose an open simplex a =
]So,...,ék[ of X", which is contained in U and which contains x in
its closure. Here So~<... <S, are simplices of X', and x is contained

in an open face ]Sio,...,sir[ (1o~<... <ir) of a. Thus x €S; for some

1e€{0,...,k}, namely 1 = i.. Since x €X, we have S; ©X. On the other

hand, SdczA for some d € {0,...,k}, since a NA + @. Suppose that d >1.

Then S, <S4r so S, cANX = A. Thus we find an index d<1 with S, cA.

d



We see that sllcvy and in particular x €V.

We want to prove that lx,r(x)[ cU. We consider the closure of Sl’

-~

A = Sl = [Gol---lcn] )

with opensimplices Og <+« <0, of X. We regard A as a subcomplex of X'

and hence the first barycentric subdivision A' as a subcomplex of X".
°

Our point x lies in the interior A = Sl of A. We have seen above that

X is contained in a face of ]§O,...,§1[. But the face Jgo,...,éd[ of

rS

]SO,...,él[ is contained in A. Thus x €§EA.(AIWA). We know from Propo-

sition 2.2 that lx,r(x)[ =X. Since

Sty (ANR) NX Sty (A)
the proof of the theorem will be finished as soon as we have verified
(?) ]x,r(x)[CStA, (ANA).

This can be done by a lengthy but rather straightforward computation
using Lemma 2.6. Let Ao""’kn denote the barycentric coordinates of A
corresponding to the vertices 30,...,3n. Let t denote the maximal
index in {0,...,n} with o, ©A. If t = n, then x €0, <A and x = r(x).
Since nothing has to be proved in this case, we assume from now on

t <n. The star StA,(AriA) is the union of the stars StA.(T) with T
running thrcocuch those faces of ]80, e ,at[ which lie in A. Thus X € EA' (T)
for one such face T. Let {GjIjEJ} denote the set of vertices of T. We

have J<{0,...,t} and, denoting the maximal index in J by m, we have

o, SA. By Lemma 2.6 we have for every k €{0,...,n}\J,
(*) )\k(x)_{min(lj(x)leJ).
Now consider a point

y = (1-s)x+s r(x), 0 <s <1,



in ]x,r(x)[. The point r(x) has the barycentric coordinates

{o if t < i <n,
A (r(x)) = _ .
i w WA (x) if0 <d <t

with w, = 1 if 0, <A and w; €]0,1[ if o, #A (0 < i < t), and some

u >0. Thus

(1-s) 2, (%), t<i<n
(**) Ai(y) = -1
(1-s+wiu S)Ai(x), 0 <ic<t.

Let J, denote the set of all k€ {0,...,n} with

1

A (y) > min(Aj(y)leJ).

Of course, J1:3J. It is clear from (*) that J} c{0,...,t}. We will
verify that the open simplex T1 spanned by the vertices aj,j€J1, is

contained in A. Then by Lemma 2.6
y €St,, (T}) =St,, (ANA)

and our claim (?) is proved.

Let 1 denote the maximal index in J1. We have to show that clczA. This
certainly is true if 1 = m (= max J). Assume now that 1>m, so 1¢J.
We shall use the following simple observation, which is clear from
the definition of the factors w, = wci(x). (Notice that a simplex o4
with O < i < t is contained in X if and only if it is contained in A.)
(***) If0<i<j<k<tand 0;s0p are not contained in A,

but Gj cA, then Wy >wW, .

k

We obtain from (**) and (*)

(1) A () = L0ms) + T lwysTag ()

< [(1-s)-+u"’wls]min(xj(x)|j€J),



the inequality holding since l £J. Again by (**),

(2) min((y) 13€3) > [(1-s) +u las].

. min(kj(x)ljeJ)

with a = 1 or a = wj €]0,1[ for some j€J with cj #¢A. Now suppose
that oy “A. If o = 1 then certainly oa>w, . If a = wj for some j€J
such that oj #¢A, then j <m < 1, and o, CA. Thus, by observation

(*¥***) again, o > Wy . In both cases we obtain from the inequalities

(1) and (2) that
A ly) < min(kj(y)leJ)

in contradiction to the fact that 1 €J,. Thus indeed 0 <A. The proof

of Theorem 2.7, as well as the proof of Theorem 2.1, is finished.

We mention two other nice properties of the canonical neighbourhood

retraction Iy A" Both these properties can be verified by calculations
’

with barycentric coordinates in a straightforward manner.

Remarks 2.8: Let X be a geometric simplicial complex over R, let A

be a closed subcomplex of X, and let r :Stx.(A)-aA denote the canonical

neighbourhood retraction Iy A" Further, let S =
14

simplex of X' contained in Stx.(A) with 0y <04 <...<0p.

~
]60,...,on[ be an open

i) For every x €S and s €R with (1-s)x + sr(x) €§W18tx.(A) (e.qg.

3 €[0,1]) we have

r{(l-s)x+sr(x)) = r(x).

ii) r(s) = ]80,...,8t[, where t is the maximal index in {0,...,n}
with Ot cA.
N.B: Above we only verified that r mans S into ]80,...,8t[.



iii) Let'Lx“(A) denqte the link.of A in X", iie» the closed sﬁﬁéomplex
(§Ex"kg)(1x)\St*"(A) of X". The deformation retraction H(x,s) =
(1-s)x-€§ r(x) fr§p above yields by‘reStriction a semialgebfaic
isom9f§hi§m from”i}‘"(A)XIo,1[ onto (§EX§4A)I1XT\A. K?hié result

. ﬁ¥§3 for,ifa “}hpally”complete? spaée.)
<,POﬁpcvWJ/ Jvhﬁ.ﬁ}

/ e
will be im};;ﬁled in

§3 - Locally complete spaces

All semialgebraic spaces are tacitly assumed to be separated.

Definition 1: A semialgebraic space M over R is called locally
complete if every point x of M has an affine semialgebraic neighbour-
hood K_ which is a complete (cf. [DK,, §9]) semialgebraic space.

Notice that then x has a fundamental system of complete affine neigh-
bourhoods. Indeed, for any semialgebraic embedding of Kx into some R"
the set K is closed in R™. Thus the intersection of K, with any
closed euclidean ball in R® having x as its center is a complete

neighbourhood of x in M.

Example 3.1: If M is a semialgebraic subset of R® which is locally

closed in Rn, i.e. M is open in its closure M, then M is locally

complete.

Example 3.2: For every algebraic variety X over R (separated and of

finite type, as always) the space X(R) of real points is locally com-

plete. Indeed, choose for a given point x of X(R) a Zariski open
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affine neighbourhood X1 of x in X. Then X1(R) embeds into some R" as
a closed semialgebraic subspace. Thus x has a complete semialgebraic
neighbourhood L in X1(R). But L is also a neighbourhood of x in X(R),

and L is affine.

We gather some elementary facts about locally complete spaces.

Proposition 3.3: Let M be a locally complete semialgebraic subspace of

R" for some n > O. Then M is locally closed in R™.

Proof: Let a point x of M be given. We have to show that for some
¢ > 0 in R the open euclidean ball Be(X) of radius ¢ with center x

does not meet the set M\M.

There exists some complete neighbourhood L of x in M. We choose
€ > O in such a way that Es(x)fchzL, where Bs(x) denotes the closed

euclidean ball of radius ¢ with center x. The semialgebraic set
K := B'a(x) nM = B'e(x) nL

is closed in L, hence complete. Thus K is closed in RD, Clearly
B, (x) nﬁcﬁ';—(i)_nﬁcﬁ = K cM.

Thus B_(x) does not meet M~M. g.e.d.

Proposition 3.4: Every affine locally complete space M can be embedded

. n . .
into R for some n as a closed semialgebraic subspace.

Proof: (cf. [Do, Chap. IV, 8.2]). We choose an embedding of M into
some space R™. The set MM is semialgebraic and, by the preceding

proposition, closed in R™. Thus the function
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f:M->R, f(x) = d(x,MWM),

the distance from x to M~M, is well defined and semialgebraic

(according to Tarski) and takes only positive values on M. We embed

m+1

M into R as the graph of 1/f,

1 1

a:M-R™ a(x) 1= (x,£(x)7").

Clearly o is a semialgebraic isomorphism from M to o«(M) and
a(M) = {(x,t) EMxRIf(x)t = 1}

is closed in Rm+1. g.e.d.

Proposition 3.5: Every locally complete semialgebraic space M is

affine.

This can be deduced from the preceding Proposition 3.4 by a well
known classical argument, cf. the proof of Proposition 8.8 in Chap-
ter IV of Dold's book [Dol. It is evident that a locally complete
semialgebraic space M is regular. (Every open neighbourhood U of a
given point x contains a closed neighbourhood.) Thus Proposition 3.5

is also a consequence of Robson's theorem 1.3.

Definition 2: In analogy to classical terminology ([Do, p. 81]), we

call a semialgebraic space M an euclidean neighbourhood retract, if

M can be embedded into some Rn, i.e. M is affine, and if for any such

embedding M is the retract of some semialgebraic neighbourhood U in rR".

As a consequence of the theory developed up to now we obtain

Theorem 3.6: For an affine semialgebraic space M the following state-

ments are equivalent:



a) M is an euclidean neighbourhood retract.

b) There exists an embedding of M into some R" such that M is retract
of a semialgebraic neighbourhood U in rR™.

c) M is locally complete.

d) For every embedding of M into some affine semialgebraic space N
there exists a semialgebraic neighbourhood U of M in N, such that

M is a retract of U.

Proof: The implications d) = a) and a) = b) are trivial. b) = c):

If M is a semialgebraic subspace of Rn, and if there exists a neigh-
bourhood U of M in R™ such that M is a retract of U, then M is also

a retract of the interior U of U. Thus M is closed in U, which implies
that M is locally complete. c) = d): By Proposition 3.3 there exists,
for every embedding MuoRn, an open semialgebraic subset UoM of rR™
such that M is closed in U. By Theorem 2.1 there exists an open semi-

algebraic subset V of U containing M such that M is a retract of V.

We return to the study of the canonical neighbourhood retractions,
introduced in §2, in the case of locally complete spaces. We need the
following criterion for a semialgebraic map to be proper (cf. [DKZ' §91]
for the definition of proper maps). Notice the analogy of the criterion
to a well known criterion for properness in topology [Bo, Chap. I,

§10,No. 3].

Proposition 3.7: Let f£f : M->N be a semialgebraic map into a locally

complete semialgebraic space N. The following are equivalent:
a) f is proper.

b) For every complete semialgebraic subset B of N the preimage f—1(B)

is again complete.
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Proof: a) = b): This is the trivial implication. The restriction

£V (B) »B of f is proper, and B is complete. Thus £ (B) is complete.
b) = a): All the fibres of f are complete. Thus, by [DK, Theorem 12.5],
we may show that f is proper by verifying that the image f(A) of any
closed semialgebraic subset A of M is clbsed in N. Let y be a point

in the closure f(A) of }(A). Choose a complete neighbourhood B of y

in N. The restriction f—1(B)-*B of £ is proper, since f—j(B) is com-

plete by assumption. Thus £(an£ ' (B)) = £(A) NB is closed in N. In

particular y € £(A) NB, hence y € £(a). g.e.d.

We continue with the combinatorial situation and notations from §2.
Let X be a geometric simplicial complex over R and A a closed sub-
complex. V denotes the star StX.(A) of A in the first barycentric sub-
division X' of X, and Udenotes the star StX“(A) in the second bary-
centric subdivision. Recall from Theorem 2.7 that UnXcV. Let r : VA

denote the canonical neighbourhood retraction r and let H : VxI »V

X,A
be the corresponding linear deformation retraction, H(x,t) =
(1-t)x+ tr(x). Let r, :UNX->A and Hy (UNX)xI -0 NnX denote the

restrictions of r and H to UNX and (U NX)xI respectively.

Theorem 3.8: Assume that X, regarded as a semialgebraic space, is

locally complete. Then the maps ry and Hi are proper.

Proof: We first prove the properness of r,. It then will be an easy
matter to see, that also H1 is proper. By the preceding proposition,
it suaffices to verify that, for any given complete semialgebraic sub-
set B of A, the preimage r1—1(B) = r_1(B)(ﬁﬁ is again complete. Note

that r-1(B)fWﬁ is the union of the sets r '(B) NGNS with S running
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through the open simplices of X' in V. It suffices to verify the set

-1 - = . . - = =
r (B)NUNS is complete for a given simplex S. Now r (UNS) <SS, thus

r B nTns =r'®nS) NTnE.

Replacing B by BNS, we may assume that BcANS.

We have to prove that r 1(B) nTNS is closed in §. Let y be a point in
the closure of r ' (B) NGNS. If y €X then y €XnUcV. Since r is conti-
nuous, r | (B) is closed in V. Consequently we have y €r 1 (B), hence

y Er_1(B)f1ﬁl1§. Thus our job is to prove that the closure of

r (B) NUNS is disjoint from the subcomplex Y := X~X of X. By

Proposition 3.3 this subcomplex is closed in X, since X is locally

complete. We will prove the following stronger claim:

-1 -
(*) r (B) NS has no adherence points in Y.

We have S = ]80,...,8n[ with open simplices 0 <0, <... <0, of X,
and onczx. Some of the o, are contained in A. Let t denote the
maximal index i with oi<:A. Then OtCiY- Since the complex Y is closed,
we conclude that cic:x for t <i<n. If oiczx for every i € {O,...,n},
then SNY = @, and our claim (*) is trivially true. From now on we
assume that cic:Y for some i €{0,...,n}, and we denote by m the
maximal index i such that oiczY. Since Y is closed we have oi<:Y

for 0 <i<m. Since we know that 0, cAcX, certainly m<t. For m<ic<t

t

e have Oic:A, since A is closed in X.

Let xo,...,xn denote the barycentric coordinates on S corresponding to

the vertices 30,...;8n. The functions Wi oi= Wg oy introduced in §2, take
i
the following values on X N S: w,(x) =0 if i>¢, wi(x) =1if m<i<t,
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n )_1 ( t )
w, (x) = T AL (x) . oL (x)
* (j=m+1 J o \J=m+1

if 0<i<m. In particular, w, = w_ for O<i<m. For any X EVNS the

point r(x) has, by definition of r, the barycentric coordinates

o t<i<n
A (r(x)) = w0 T (%) m<i<t

oy .

u(x) wo(x)A (x), 0<i<m

with some nowhere vanishing function p on VNnS. Clearly YNS is the

closed simplex [80,...,3m]. Thus YNS is the set of zeros of the
n
function z Aj on S. Our given set BcANS is disjoint from Y. Since
j=m+1

B is complete, there exists some ¢ >0 in R such that for every gq €B

m t -1
[ z k.(q)] * [ X A.(q)] < c.
j=0 J j=m+1 J

Applying this estimate to g = r(x) for some x.Er_1(B)11§, we obtain
m t 1
[wo(x) - X A.(x)] -[ pX x.(x)} < c.
j=0 J j=m+1 J

Inserting the formula for wo(x) from above, we get

m n
T AL (x) <cr- T AL (%)
j=0 I j=m+1

for every x:€r—1(B)11§. Of course, this estimate remains true for x in

the closure of r_1(B) NS: If such a point X were to lie in Y NS then

n m
Z A.(x) = O and, by the estimate, we would also have I A.(x) = O.
j=m+1 j=0

But this is impossible since the sum of all barycentric coordinates

of x is 1. Thus our claim (*) is proved, and r, is proper.

If C is a complete semialgebraic subset of UnX, then H1—1(C) is a

closed subset of r1—1(r(c))x[0,1], since r maps every line interval

[x,r(x)] to one point r(x) (Remark 2.,8.i). Thus H1_1(C) is complete,

and we see that also H1 is proper. This completes the proof of

Theorem 3.8.
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For any semialgebraic map f : M-N the mapping cylinder Z(f) is defined

to be the quotient of the disjoint union (MxI)LI N in the category of
separated semialgebraic spaces with respect to the equivalence rela-
tion (x,1) ~f(x) for all x €M, provided this quotient exists. In our
situation, let f denote the restriction jU-+A of r, with 3U = (U n X)~U.

We have a natural semialgebraic map
p: (3UXxI)UA-TUNKX,

defined by p(a) = a for a €A and p(x,t) = (1-t)x+t £(x) =H(x,t) for

(x,t) €03UxI.

Lemma 3.9: p is surjective.

This will be proved below. Notice that the fibres of p are the equi-
valence classes of the equivalence relation above (M = 3U, N = U).

We now assume again that X is locally complete. Then, by Theorem 3.8,
the map p is proper. Now every proper surjection is "identifying" in
the category of separated semialgebraic spaces. Thus p identifies
UNX with the mapping cylinder of f, and we arrive at Theorem 2 in

the introduction.

It can be shown that for every proper map f : M +N between locally
complete semialgebraic spaces the mapping cylinder Z(f) exists and

is again locally complete. The proof is not difficult but would take

us too far afield.

We still have to prove Lemma 3.9. Consider an open simplex

S = ]oo,...,on[, Oy <ees <0, in V. Let x be a point in S NU. Then

r(x) is contained in an open face S1 of S (Remark 2.8.ii). We want
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to show that x lies in the image of p. If x €A this is obvious. Assume
now that x ¢ A. Let L be the line spanned by x and r(x). The intersec-
tion L NS is a closed line segment [r(x),z] on L which contains x.

Let T be the open face of S with z€T. Since z is a boundary point

of S the face T is different from S. Suppose that z € V. Then r(z) is

defined, and the line segment [z,r(z)] is contained in T. But

r(z) r(x) by Remark 2.8.i, hence x € [z,r(z)] cT, a contradiction.
Thus z ¢V and LNSNV = [r(x),z[. We have z = (1-s) * x+s - r(x) with
some s €R, s# 1. The barycentric coordinate An(z) = (1-s8) An(x) of

z with respect to 8n is not zero. Thus z is contained in o, <X. Using
again Remark 2.8.i we conclude that LNSNXNU = [r(x),z]1 nT is a
closed line segment [f(x),y], contained in [r(x),z[, and r(y) = r(x).
Now U is open in V, hence UN [r(x),z[ is open in [r(x),z[, and we see
that y £U. Thus y €3U. Clearly x €p({y}x[0,1]). This completes the

proof of Lemma 3.9.

Remark 3.10: In this proof we did not use that X is locally complete.

Therefore, if X is an arbitrary geometric simplicial complex and A is
a closed subcomplex of X, then using Remark 2.8.i, we can still state
the following: The deformation retraction H(x,t) = (1-t)x+ t r(x)

yields by restriction a semialgebraic isomorphism

3Ux[0,1] = (T NX)NA.

§4 - Extension of semialgebraic maps

We first state a rather obvious consequence of Theorem 2.1. Let A bea
closed semialgebraic subset of an affine space M, and let Ube a neigh-
bourhood of A in M as described in Theorem 2.1. Let I denote theunit

interval [0,1] of R.



Proposition 4.1: (Extension of semialgebraic maps to a neighbourhood).

Any semialgebraic map f : A2 extends to a semialgebraic map T : U -2Z.

If E1 and %2 are two extensions of f to U, then there exists a homo-

~

topy F : UxI »Z with F o=f,, F; = %2 and F IA = f for every t in I.

(The same is true with U replaced by U.)

Indeed, let H :UxI »U be a strong deformation retraction from U to A.

Define f := foH1, and define F :ﬁxI-ez as follows:

1cH(x,Zt), <t

IA
- N|-
-

£
F(x,t) = ~
£ < tx<

Nl= O

2°H(X,2(1-t)),

We give two examples using the second statement in this proposition.

Example 4.2: Let A,M,U be as before, and let p :U-A be any retraction

from U to A. Applying the proposition with 2 = U, f = idﬁ, g = iep, 1i
the inclusion map from A to U, we see that there exists a strong defor-
mation retraction ® : UxI »U with ®, = p.

Example 4.3: (Uniform local contractibility, cf. [Do, p. 81]). Let M

be any affine semialgebraic space. Applying the proposition to MxM,
the diagonal A of MxM, and the canonical projections < and P, from
MxM to M,restricted to a suitable neighbourhood L of A in MxM, we see:
There exists a semialgebraic closed neighbourhood L of A in MxM and a

semialgebraic map H : LxI »M with the following properties:

1) H(x,x,t) = x for x €M, t€[0,1]

2) H(x,y,0) = x and H(x,y,1) =y for (x,y) €L.

We now ask for extension of a semialgebraic map f : A-»Z to the whole

of M.



Definition 1: (cf. [S, p. 54]). We call a semialgebraic space N solid,

if for every pair (M,A) consisting of an affine semialgebraic space M
and a semialgebraic closed subset A of M every semialgebraic map

f : A->N extends to a semialgebraic map % t: M->N.
It would be bad to delete the word "affine" in this definition, since
then not even the unit interval [0,1] would be solid. (It is solid by

our definition, cf. Theorem 4.5 below).

Remark 4.4: Every affine solid space N is strongly contractible into

ever oint of N, i.e. {y_} is a strong deformation retract of N.
Yy p Yo o

For the proof, apply the definition to the pair
(M,a) := (NxI, (Nx{O0}) U (Nx{1})u({yo}x1)
and the map F : A-»N defined by
F(y,0) =y, Fly,1) =y, Flyg,t) =y

(y EN, t€I).

Definition 2: A semialgebraic space N is called contractible if there

exists a point yb>€N and a semialgebraic map ® : NxI »N with ®(y,0) =y,

o(y,1) = Yo for every y €EN. We call ¢ a contraction of N to Yor

Theorem 4.5: Every contractible semialgebraic space N is solid. Thus

an affine space is solid if and only if it is contractible.

Proof: Let M be an affine semialgebraic space, A a closed semialgebraic

subset of M and f: A-N a semialgebraic map. We have to extend f to a



semialgebraic map % :M->N. We choose an open semialgebraic neighbour-
hood U of A in M with a retraction r : U-A. We further choose a semi-
algebraic function A :M->[0,1] with x'1(0) = A and A-1(1) = M-U. This

is possible by Theorem 1.6. Then we define the extension f :M-N of £

as follows:

~ @ (for(x), A(x)) X €T
f(x) =
yo X EMNU
with ® a contraction from N to Yor g.e.d.

We mention a partial result on a refined version of our extension

problem.

Corollary 4.6: Assume that N is a semialgebraic space, B is a semial-

gebraic subset of N, and that there exists a contraction @ : NxI »N
of N into some point Yo € NNB such that ®(Nx]O,1]) «N~B. Let M be an
affine semialgebraic space, A a closed semialgebraic subset of M and

f:A->B a semialgebraic map. Then there exists a semialgebraic map

f:M-N with £ 1(B) = A and fIA = f.

Indeed, we obtain such a map £f : M>N by the same formula as in the

proof of Theorem 4.5.

In the special case N = [0,1], B = {0,1} this corollary gives back

our previous Theorem 1.6, which is thus put into a more general context.



§5 - Extension of homotopies

As before I denotes the unit interval [0,1] in R.

Definition: Let M be a semialgebraic space and A a semialgebraic sub-

space of M. We say that the pair (M,A) has the homotopy extension

property if the following holds: Given a semialgebraic map g :M-2
and a (semialgebraic) homotopy F : AxI »Z into some semialgebraic
space Z with FO = glA, there exists a homotopy G : MxI -2 such that

G, = g and GIAxI = F.

MxI ~

=
(AxI) U (Mx{O}) > 2
FUg

As in topology, it is evident that (M,A) has the homotopy extension
property if and only if (AxI) U (Mx{O}) is a retract of MxI. In this

case (AxI) U (Mx{O}) is closed in MxI, and so A is closed in M.

Theorem 5.1: (Homotopy extension theorem). If M is an affine semial-

gebraic space and A is a closed semialgebraic subset of M then
(AxI) U (Mx{0}) is a strong deformation retract of MxI. In particular

(M,A) has the homotopy extension property.

Proof: We may assume that M is a geometric simplicial complex in some
R" and A is a closed subcomplex of M. By Theorem 2.7 we have an open

semialgebraic neighbourhood U of A in M with a retraction r : UnM-a,
such that for every X €EUNM the line segment [X,r(x)] is contained in

UNM and for x €U this line segment is contained in U. We choose a
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semialgebraic function f :M-[0,1] with f_](O) = MNU and f_1(1) = A.
We introduce the following semialgebraic subsets B,C,D,E of MxIc:Rn+1.

B := {(x,t) € (TAMIIS<£(x) <1, 2(1-£(x)) <t <1}

—

:= {(x,t) €E(UNM)xIl5<f(x) <1, O<t<2(1-f(x))}

¢ 2
D := {(x,t) € (TNMII0<E(x) <7}
E

We have
MxI = (AxI) UBUCUDUE.
The sets D and E are closed in MxI, while

BN (MxI) = BU (AxI), Cn (MxI) = Cc U (ax{0}).

AxI B D E

Ve

T(2(1-£) ¥

Picture of MxI.

We shall use the following auxiliary maps:

L
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g: (UNM)xI-> (UNM) g(x,t) = (1-t)x+tr (x)
p:C-1[0,1] e(x,t) = t/2(1-£f(x)).
We now define a map
p : MxI -» (AxI) U (Mx{O})
as follows, hoping that it is a retraction.
p(x,t) := (x%,0) for (x,t) €E
p(x,t) == (1-t)-(x,0) +t-(g(x,2£(x)),0) for (x,t) €D

p(x,t) := (1-0(x,t)) - (x,0) +0(x,t) (r(x),0) for (x,t) €C
o(x,t) := (r(x),t-2(1-f(x))) for (x,t) € (AxI) UB.

Notice that this map is well-defined, and takes values in (AxI) U (Mx{0}),
and is the identity on (AxI) U (Mx{0}). Clearly p has a semialgebraic
graph. It remains to verify that p is continuous. This is a problem
only at the points of Ax{0}. Moreover, since p is continuous on the
closed subset (AxI) UB of MxI, it suffices to check that for a given
point a of A the values p(x,t) converge to (a,0) if (x,t) €C and (x,t)

tends to (a,0). But this is clear, since
p(x,t)-(a,0) = (r(x)-a,0) + (1-o(x,t)) (x-r(x),0).

Thus p is indeed a retraction. Now observe that for every (x,t) €MxI
the closed line segment [(xX,t),p(x,t)] is contained in MxI, since, for
x €U NM, the line segment [x,r(x)] is contained in M. (It is even con-
tained in UNM.) The linear homotopy from ideI to p is the desired

strong deformation retraction from MxI onto (AxI) U (Mx{0}). g.e.d.

Using Theorem 5.1, we can supplement Proposition 4.1 as follows.



Proposition 5.2: (Extension of homotopies into a neighbourhood). Let A

be a closed semialgebraic subset of an affine semialgebraic space M,
and let U be a neighbourhood of A in M as described in Theorem 2.1.
Let f and g be semialgebraic maps from‘ﬁ to a semialgebraic space Z,
and let F be a homotopy from f|A to g|A. Then there exists a homotopy

F from f to g which extends F. (The same is true with U replaced by U).

Proof: By Theorem 5.1 there exists a homotopy G : UxI +2 with G|AxI = F
and G, = £f. Put G, = h. Then hlA = glA. By Proposition 4.1 there exists
a homotopy H from h to g with Ht|A = g|A for all t €I. Composing G and
H we obtain a homotopy F:UxI»2 from f to g. Let B denote the closed
subspace (AxI) U (Gx{0}) U (Ux{1}) of UxI. We have an obvious homotopy

® from the map FIB to the mao FUf Ug on B. Using Theorem 5.1 again we
extend ® to a homotopy & on UxI with 30 = f. Then F := 51 is a map from
UxI to Z which extends FUf Ug, and hence is a homotopy from f to g

extending F. g.e.d.

The reader, who has followed us so far will have little doubts that it
is possible to develop a full-fledged homotopy theory for affine semi-
algebraic spaces over an arbitrary real closed field. We hope to take

up this subject in the near future.
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