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Fc - any natural number n = 2 and any even natural number 4 =z 2 we
consider the convev cone P(n,d) consisting of the positive semidefinite

(= psd) forms 6ver IR in n variables x <P X of degree d, and the

EE
~onvex subcone ¥ (n,d) consisting of the finite sums of squares of forms

of degree d/2 in the variables_i see X As is well known

. 1’
Z(n,d) # P(n,d) except for very special pairs (n,d), namely the pairs
withn =2 or d=2or (n,d) = (3,4) (Hilbert, cf.” [CL] for an elemen--

tary proof).

.In this paper we ask fot relations between the sets EP(n,d) and
EX(n,d) of extremal elements of the cones P(n,d) and x(n,d). Notice
that, since our cones are closed (after adding the origin), every ele-
ment in P(n,d) resp. X(n,d) is a finite sum of elements in EP(n,d) .
resp. EX(n,d). Thus the sets EP(n,d) and EX(n,d) deserve special
attention.

Our main result, Theorem 6.1 in §6, is the determination of all
pairs (n,u) such that EZ(n,d) is contained in EP(n,d), which means
EX(n,d) = EP(n,d) N £(n,d). This answers Problem B in ‘the survey arti-

cle {CL1].

In order to obtain the result a general observation turns out to

be helpfnl:

a) Let H be an irreducille indefinite form in IR[X1,...,Xn] of degree

r. Then {or any F € P(n,d)

2

F € EP(n,d) < FH” € EP(n,d+2r),

2

F € EX(n,d) e FH® € EZ(n,d+2r),
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cf. ' Theorem 5.1. We also feel that the followinc observation sheds
light on the problem: .

b) If F € EP(n,d) then F2 € EX(n,2d),

cf. Theorem 5.2.

| Ouf 'counterexamples™" G € Ex(n,d), G £ EP(n,d) are of the form
G = HZF2 with H a product of irreducible indefinite forms and F an
irreducible psd form of some degree e which is not extremal in P(n,e).
Basic counterexamples will be explicitly constructed in §6 for

(n d) = (3 12) and (n,d) = (4,8).

The observations a) and b) rely on the presence of "transversal
zeros" for some forms coming up. in the proofs. A transversal zero of a

polynomial F(x P Xp ) over IR is a point c € R" such that F changes

Xqre--
51cn 1n every nelghbourhood of ¢c. If F has no multiple irreducible
factors then a point c of the =zero set Z(F) c ®" tﬁrns"out to be a
transversal zero if and only if Z(F) has local dimension n-1 at ¢,

cf. Theorem 3.4.

The first half of our paper is devoted to a geometric study of
transversal zeros and to the guestion how far a polynomial is deter-
mined by its transversal zeros. We try to do all this on a natural
level of generality. This leads us to study the set ]D]IR of real
points of an effective Weil divisor D on a normal algebraic variety X
over IR . But for the applications of the theory of transversal zeros
made in §5 and §6 it suffices to consider the case when X is a projec-
tive-spaceiEE{T, or - if one wahts to study also multiforms - a direct

product of projective spaces.

We suspect that many of our considerations on transversal zeros
are more or less "folklore", well known to the experts. However, to
our knowledge, no coherent account of this useful theory seems to
exist in the literature. Thus we feel that these Proceedings are a

good place to explicate the basic facts.

In the whole paper we admit any real closed field R as ground field
instead of the field IR of real numbers. Using some standard results
from semialgebraic topology, all contained in [DK] and §1 of the pre-
sent paper, this does not cause additional difficulties. Thus we never
need Tarski's principle to transfer elementary statements from IR to

other real closed fields.
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5 1 The ‘pure dimensional parts of a scmialgebraic sct

We start with a variety X over a real closed field R, i.e. a re-
duced algebraic scheme over R. The set X(R) of rational points of X is
a semialgebraic space in the sense of [DK], and we use freely the
" language of "semialgebraic topology" developed in that paper. 1In par-
ticular we make use of the dimension theory in [DK, §8]. - ‘

Let N be a semialgebraic subset of X(R). For any point x of N the

local dimension dime of N at x is defined as the infimum of the di¥
mensions of all semialgebraic neighbourhoods of x in N [DK, §13]. we

introduce the sets (k =.0,1,2,...)

I, (N) := {x € N ]dime > k}.

0Of course Xk(N)_is empty 1f k exceeds the dimension d of N. It is

’ clga; frqm_[DK, §8] that every Xk(N) is a closed §ubs¢ttof ﬁ_(ip the
strong topology, as always). We shall need some elementary facts
about the sets Zk(N) (actually only about Zd(N)), not covered by the
paper‘[DK]. :

Prqpositidn 1.1. Zk(N) is semialgebraic for every k = O.

It is trivial tb verify this lemma using the theérem that every
affine semialgebraic space can be triangulated [DKj].'A more elemen-
tary proof, which also gives additional insight, runs as follows. Let
d = dim(N). For k > d there is nothing to prove. We now deal with the
. case k = d..We may assume that X is affine. Let Y denote the Zariski

closure of N in X, and let S denote the singular locus of Y., Then
N' := (Y(R)~S(R)) N N

is an open semialgebraic subset of N and the complement in N, i.e.

N ﬁvS(R}, has dimension at .1ost d-1. Suppose we know already that

i Ed(N') is semialgebraic. Let L. bc the closurce of Xd(N') in N. This is
¢gain a semialgebraic set. N~NL is open in N and has dimension at most
d-1. Thus NN L is disjoint from zd(N). On the other hand L is con-
tained in Za(N), since Zd(N) is closed and contains Zd(N'). Thus

Xa(N) coincides with the semialgebraic set L.

Replacing N by N' and X by X~ S we assume now that ¥ is smooth.
Let Yl""'Yt denote the connected components of Y. The set zd(N) is
" the union of the sets zd(N n Yi(R))' and it suffices to prove that

these sets are semialgebraic. N n‘Yi(R) is Zariski dense in Yi' Re-

i
1
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placing N by anyone of the sets N N Yi(R) we assume that in addition

Y is connected; hence irreducible.
" We have N = Ny U ... UN_with non empty sets

N, = {x € Y(R) | gi(x) = 0, fij(x) >0, 3] =1,---:Si}r

where gi,f are functions in the affine ring RI[Y]. If g; is not zero

» ij ,
then dim‘Ni <= n-1. But'if 95 is zero then Ni is open in Y (R), hence
Ni'c Zd(N), since Y is smooth and thus Y(R) has local dimension d at

‘every point [DK, §8]. It is now clear that Zd(N) is the closure of the

union of all Ni with g, = O in the set N. Thus Z4(N) is indeed semial-

d
gebraic.
-~ Consider now the opeh semialgebraic subset N, := N‘\Zd(N) of N.
Clearly . o
Ta-1 (N = T (N) U £4_,(Ng)..
We know from the proof already given that id_1(N1) and Zd(N) are semi-

algebraic. Thus Zd_1(N) is semialgebraic. Repeating this argument we

see that all Zk(N) are semialgebraic, and our lemma is proved.

Proposition 1.2. For every k = O the semialgebraic set

zi(N) = X (N) NI o (M)

k+1
consisting of all points x € N with dime==k, is pure of dimension k,

i.e. dimx ZE(N)==k for every x € ZO(N).

k
Proof. Let x be a point of ZE(N) and let‘Uo be an open semialgebraic
neighbourhood of x in N with dim UO = k. For any open semialgebraic
neighbourhood U < UO of x in N we then also have dim U = k. Moreover
for every such U there exists an open semialgebraic subset V of U
which is semialgebraically isomorphic to an open non empty subset of
Rk[DK, §8]. Clearly V is contained in s2(N) n U. Thus

o k
_dim(Zk(N) n u) = k. : Q.E.D.

- We cai] ZE(N) the pure k-dimensional part of N. More specifically,
W aAaim N - d we call !H(N) v} d(N) the juire part ol N

Example 2.3. If X is irreducible of dimension n, and if the set

X(R)reg of regular points of X in X(R) is not -empty, then the pure
part I (X(R)) of X(R) is the closure of X(R) oq in X(R).
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Indeed, X(R)feg is pure of dimension n, and X(R) has local dimen-

sion at . most n-1 at everv singular point which is not contained in the

closurz o X(R)reg.
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§ 2. Transversal zeros of algebraic functions

We assume in this section that.the variety X over R is irréducible,
that the set X(R) of real points is not empty, and that X is regular
at every point of X(R). Then X(R) is an n—dimensional'semialgebraic
manifold [DK, §13] with n = dim X. We also assume that X is affine,
and we denote the ring R[X] of regular functions on.X by A. On the
space X(R) every f € A takes values in R. We are interested in the zeros

and the sign behaviour of the functions £ : X(R) - R.

Definition 2.1. Let L be a subset of X(R) on which f does not vanish

everywhere. We say that f is Bgéitive semidefinite (resp. positive

definite) on L if £(x) = O (resp. f(x) > 0) fof all x € L. In the same
“way we use the words "negative semidefinite" and "negative definite".

If there exist points x € L and y € L with f(x) > O and f(y) < O, then

we call f indefinite on L.

- Definition 2.2. Let f be a non zero element of A. A transversal zero

of £ is a point x € X(R) such that f is indefinite on every semialce-

braic neighbourhood V of x in X(R). Notice that f cannot vanish every—’

where on V since dim V = n.

We deﬁd£e by Z(£f) the set of zeros of f on X(R) and by zt(f) the
set of transversal zeros of f. We finally denote-by N(f) the closed
reduced subscheme of all zeros of f on X. Thus Z(f) is the set of
real_points of N(f) and Z _(f) is a subset of Z(f). The set Z (f) is
closed and semialgebraic in X(R). The setZt(f) is the intersection of
the closure of the set of points of X(R) where f is positive with the
closure of the set where f is negative. Thus Zt(f) is also closed and

semialgebraic in X(R).

',Proposition 2.3. For every non zero regular function £ on X the set

Zt(f) of transversal zeros is either empty or pure of dimension n-1.

Proof. Let a be a given point of Zt(f). We choose an open neighbour-
hood V of a in X(R) with a semialgebraic isomorphism ¢ : V = V' onto
an open semialgebraic convex subset V' of R (Recall that X(R) is a
semialgebraic manifold.) We then choose a point x, €V with f(xo) >0
and an open semialgebraic subset U <« V such that f(y) > O for every

y € U and such that U' := ¢(U) is convex in R?. We finally choose a
hyperplane H of R® with H n u' # @ and not containing the point '
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xé := w(xc). Now consider the central projection
n '
mn : R ‘\{xo} —» H
onto H with center xé.‘We claim that
(%) ‘ o no<p(2t(f) nNnvVvV) sHNU'.

Indeed, let y' € H N U' be given and let y' : [0,1] » V' be the
straight path from'xé to y', '

Y'(t) f.(1—t)xé + ty'.

Then v := ¢ 1037' is a semialgebxaic'path in V running'from the point
*o to the'preimage y of y'. Since f(xo) > 0 and f(y) < O there exists
some point T € ]O,1[ where the semialgebraic function foy on [0,1]
changes sign. v (t) is cleafly éftransversal zero 6f f. The point
;Tt(?)‘lées in_wfzt(i)_n V)Aand maps under n to the point y'. Thus the
inclusion (%) holds true. This implies that

dim Z,(€) n V = n-1,

since dim (H N U') = n-1. But'Z(f)'n V has dimension at most n-1 since
this set is contained in N(f). Thus Zt(f) N V has dimension n-1 for
every open semialgebraic neighbourhood V of a.

' Q.E.D.

Corollary 2.4. Let f and g be non zero regular functions on X. Let

a € X(R) be a transversal zero of f and assume that Zt(f) N U is con-
tained in Z(g) for some neighbourhood U of a. Then f and g have a non.

. . . {
trivial common factor in the regular local ring 0 . SRecall that

X,a
0 is a unique factorization domain.} -

X.a

Proof. For every affire Zariski neighbourhood W of a in X the semi-
algebraic set W N U‘ﬂ Zt(f) has dimen=sion n-1 by Pfoposition'2.3 ‘
above. Our hypothesis im, lies that this set is contained in the inter-
section N(f) N N(g) N W of tne hypersurfaces £f = O and g = O on W.
Thus the (algebraic!) dimension of N(f) nvN(g) N W cannot be smaller
than n-1 for any Zariski neighbourhood W of a. This implies that

there exists some h € A which is a prime element in OX 5 and has the

’

property that

N(h) N W< N(f) N N(g) A W
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for small Zariski neighbourhoods W of a. By the local Nullstellensatz
h divides both f and g in 0, _.
; X,a

., In the same vein we obtain

Corqllafy 2.5. ©DLet again f and g be non zero functions on X. Suppose
that for some open semialgebraic subset U of X(R) the set’Zt(f) N U is
not empty and contained in Z(g). Then the complex hypersurfaces N(f)

and N(g) have a common irreducible component. In particular, if A is

factorial then f and g have a non trivial common factor in A.

Proposition 2.6. Let f and g be non zero regular functions on X, and

assume that thé hypersurfaces N(f) and N(g) have no irreducible compo-

nent in common. Then
Z,(f9) =2, (£f) U I (9).

Proof. a) Let a be a pointvof X(R) which is not contained in

2, (f) U Z_(9). Then there exists a neighbourhood U of a in X(R) such
that both f and g are semidefinite on U (positive or negative). Then
also the product fg is semidefinite on U, and a is not a transversal
zero of fg. This proves that Zt(fg) is contained in Zt(f) U Zt(g).
(Our hypothesis; that N(f) and N(g) have no common component, is not
vyet needed for that.) .

b) We show that the set M := Zt(f) is contained in Zt(fg), which Wili
finish the proof. We may assume that M is not empty. By Proposition
2.3 M is pure of dimension n-1. On the other hand the set

N := Zt(f) n Zt(g) has dimension at most n-2, since’'N is con?ained in
the inte;section of the hypersurfaces N(f) and N(g) which have no
common irreducible component. Thus the set MNN is dense in M (a
trivial argument, cf. [DK, §13]). Since Zt(fg) is closed it suffices

to verify that MNN is contained in Zt(fg).

' Let x be a point of M~N, which means that x € Zt(f)' x € Zt(g).
We choose a neighbourhood Uo of x on which g is semidefinite. Now £ is
indefinite on every neighbourhood U < Uo of x. Thus also fg is indefi-
nite on every such U. This implies that x € Z (fqg).

Q.e.d.

Corollary 2.7. Assume that A is factorial. Let f be a non zero ele-
ment of A and let

e,] et

f=nu P4 -+ Py
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be the decomposition of f into powers of pairwise non associated prime
elements PqressPy s with u a unit of A Then Zt(f) is the union of
th2 sets Zt(pi) with e, odd.

. : e.
Proof. Apply Proposition 2.6 and observe that Zt(pi l) is empty if
. €i . .
e, is even and Zt(pi ) = Zt(pi) if e, is odd.

In the same vein we obtain for the semialgebraic set germ zt(f)a

of a non zero function f € A at any poin£ a € X(R):

7Corolla;y 2.8. Let

e e
_ 1 t
f = u p, -+ Py

be the decomposition of f into prime elements in the factortal ring

OX,a' Then 7, (f)_ is the union of the set germs Z,(p;), with e, odd.
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§ 3 Purely indefinite divisors

We still assume that X is an irreducible n-dimensional variety
over R and that the set X(R) is not empty and contains no singular
points of X. But we no longer assume that X is affine. Our '
terminology from §2 then takes over from functions to effective divi-

sors D =2 O on X, by which wehalways mean effective Weil divisors.

Definition 3.1. Let D be an effective divisor on X and let a be a
point of X(R). Let f be the local equation of D on some affine Zariski -

open neighbourhood V .of a. We call D indefinite at a, if f is indefi-

nite on evéry neighbourhood of a in V(R). Similarly we call D semide-
finite (resp. definite) at a, if f is positive or negative semidefi- ‘
nite (resp. definite) on some neighbourhood of a in V(R). The points

of X(R) where D is indefinite are called the transversal points of D,

and the set of these points is denoted by ]D]t. This set is a closed
semialgebraic subset of the set of real points ]D]R := |D] ﬂ‘X(R) of
the support |D| of D.

Let D = e1D1 + ... + e

tDt be the decomposition of D into irredu-

cible components.

Proposition 3.2. |D|t'is the union of all sets lDilt with e, odd.

This is clear from Proposition 2.6 in §2, or its corollary 2.8.

Definition 3.3. We call an effective divisor D indefinite, if IDIt is

not empty, i.e. if D is indefinite at some point of X(R). We call D

semidefinite, if |D|t is empty, and we call D definite if |D|R is

empty. Finally, we call D purely indefinite, if D # O and there does

not exist a semidefinite effective divisor E # O with E < D. This
means that D is non zero, has no multiple components, and that all

irreducible components of D are indefinite.

It is clear from Proposition 2.3 in §2 that for every effective
divisor D on X the set [Dlt is either empty or pure of dimension n-1.

This result can be improved.

Theorem 3.4. Assume that D has no multiple components. Then the semi-

algebraic set IDIt of transversal points of D coincides with the pure
(n-1)-dimensional part ¥ _.(|D|;) of the set |D|g of real points on
|p]. | o
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r_Proof. It remalns to verlfy that D is 1ndef1n:te at any given point

a of ]D]R with dim a |IPlg = n=1. We choose a local equation f of D on
some affinn Zarlskl open neighbourhood W of a in X. Let U be any semi-
algebraic open neighbourhood of a in W(R). The set U N ]D]R has di-
mension n-1, but the set of points in ]D|R which are singular on |D|
has dimension at most n-2. Thus U N |D] contains some regular point b
of ]D] There exists a regular system of parameters f,,f,,...,f of
the regular local ring 0x b such that f1 defines the germ of the
variety |D| at b. The functions £, and £ dlffer in 0% b
unit, hence we may assume that f = fj. By the implicit function theo-

rem the system (f1,...,f ) yields a semialgebraic isomorphism of some

only by a

open semlalgebralc nelghbourhood U' € U of b in X(R) onto some open
semlalgebralc subset of R". Since f1(b) = 0 certainly f = f1 changes
sign on U'. A fortiori f is indefinite on U.

Q.e.d.
Wa'mentiOn'that‘the'thedrem'nOW'proved imﬁlies a generalization of
the "Sign-Changing Criterion" of Dubois and Efroymson for extending an

ordering P of a field k to a given function field over k ([DE, Th.2.7),
cf. also [ELW, §4 bis]

Corbllary 3.5. (Dubois-Efroymsdn for Vv = Ai). Let k be an ordered

field and R be a real closure of k with respect to the given ordering.
Let V be an absolutely irreducible variety without singular points
over k and D a prlme divisor on V. Let V denote the variety over R
obtained from V by base extens1on and let D denote the effective divi-
sOor on VR thalned from D by base extens;on. Then the ordering of k
can be extended to the function field k(D) of D if and only if D is

indefinite.

Proof. The 6rdering of k exter’3 to k(D) if and only if there exists
a field composite of k(D) and R over k, which is formally real. These
field composites are the function fields R(D,),...,R(D ) of the irre-
ducible components D1,...,Ds of the divisor D. The prime divisors Di .
all occur with multiplicity one in D. Thus D is indefinite if at least
one Dﬂ'is indefinite. By Theorem 3.4 a given D. is indefinite if and ‘
only if the set of real points Dy (R) of Dy has dlmen51on n-1 with

n := dim V = dim VR But dim D (R) = n-1 means that the variety D has
nonsingular real points, cf. §1. Now it is a well known fact, due to
Artin,; that Di has nonsingular real points if and only if the field

R(Di) is formally real ([A, §4], cf. also [E]).
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We return to our irreducible variety X over R.

Proposition 3.6. -Let D be an effective divisor # O without multiple
components. Then ID]R is zariski dense in |[D| if and only if D is

purely indefinite. In this case even |Dlt is zariski dense in |D]|.

Proof. Let D1""’Dr denote the irréducible components of-D. Clearly
ID|g = D;(R) U ... U D_(R)

is Zariski dense in D if and only if every Di(R) is Zariski dense in
D;. This means that Di(R) has the semialgebraic dimension n-1, i.e.
that.In_1(Di(R)) is not empty, and in that case of course already
Zn_1(Di(R)) is Zariski dense_in_Di. The proposition now follows from
the preceding Theorem 3.4.

This is perhaps the appropriate place to 1ndlcate a relation be-
tween our 1nvestlgatlons and the real Nullstellensatz of Dubois- Rlsler—
Stengle (s, Theorem 2]. Assume that X is an affine variety over R and
that W.is a closed subvariety of X. Let A denote the affine ring of X
and <1 the ideal of functions in A vanishing on W. Then the real Null-
stellensatz says in particular'that W(R) is Zariéki dense in W if and

only if the ideal is "real", 4i.e.

h2 + ... + h2 €L = h, €4,...,h_ €0
1 : r 1 r -

for arbitrary elements’h1,...,hr of A. (This is essentially Risler's
version of the real Nullstellensatz [Ril, [Ri]].) Thus if X is irre—
ducible and has no singular real points then the proposition we just
'proved says the following:

Corollary 3.7. Let X be affine and I(D) denote the ideal of functions
in R[X]) vanishing on |D| for D an efttectlve divisor £ O withoul multi-
ple components. Then I(D) is real if and only if D is purely indefi-

nite.

If D is a prime divisor then clearly I(D) is real if and only if
the function field R(D) is formally real, and we are back to the argu-

ments which led to the Sign-Changing Criterion above (Corollary 3.5).

Definition 3.8. We call a semialgebraic subset M of X(R) pure and
full of dimension k in X, if dim M = k (hence ‘the Zariski closure Z of
M in X has dimension k) and@ M is the pure part I, (2(R)) of Z(R).
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"In this terminblogy we can say according.to Theorem 3.4 and Propo-
sition 3.6 that for every non zero purely indefinite divisor on X the
set IDIt is pure and full of diinension n-1 in X. We now prove a con-
verse of this statement.

Theorem 3.9. Let M be a pure and full (n-1)-dimensional semialgebraic

~ subset of X(R). Then there exists a-unique purely indefinite divisor
D on X such that M coincides with the set [D|t of transversal points
of D. The variety |D| is the Zariski closure of M in X.'

Proof. Let Z denote the Zariski closure of M in X and letlz.],...,zr
~denote the irreducible components of Z. The set M is the union of the
closed semialgebraic subsets'Mi t=MN Zi(R)' i=1,...,r. Denoting by

Z; the Zariski closure of M, in X we have Z: < Z, and

' ' ' - .
Z1 u... Uu Zr Z1 u ... u Zr'

&

1,...,r. This means that every M,

and we conclude that. 2} = z, for i ,
is Zariski dense in Zi' Since Zi is- not contained in the union of the
Zj_with j #1i, also Mi is not contained in the uniop of the Mj with

j # i. Thus

Mi i = M*~;U_-M.
S | A |

is a non empty open subset of M, which is therefore pure of dimension
n-1. This implies dim M; = n-1 and dim z, = n-1 for every i=1,...,n.
- The set Zi(R) contains Mi,rhence has again dimension n-1. We now con-
clude from Theoremi3.4 that for every i=1,...,r the prime divisor Zi

is indefinite. We introduce the purely indefinite divisor

By construction [Dl'is the Zariski closure Z of M. Since M is pure and
full, M coincides with Zn_1(|DiR). By Theorem 3.4 this last set is
]DIt. It is now also clear that D is the only purely indefinite divi-
sor with ]DIt = M, since ry Proposition 3.6 for any.such divisor D'
 the variety |D'| is the Zariski closure of M in X.

| | Q.e.d.

A mild generalization of these results is possible. Assume only
that. X is an irreducible n-dimensional variety which is normal at
every real point, and that X(R) has dimension n. Let X' denote the
open subvariety of all regular points of X. Then X(R) ~X'(R) has di-
“mension at most n-2. In particular X'(R) is not empty. Let D be an
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effective divisor on X and let D' denote the restriction of D to X'.

Definition 3.10. We call D indefinite (resp. semidefinite, resp.

purely indefinite) if D' is indefinite (resp. semidefinite, resp.
purely indefinite). We denote by {D|t the closure of the semialgebraic

set. ]D'|t in X(R).

It is evident that all the theorems, propositions and corollaries
in this'section, except Corollary 3.5, remain true word by word in the

present more general situation. Corollary 3.5 remains true for a nor-

mal irreducible variety V over k instead of a regular variety.
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§ 4 A remark on semidefinite prime divisors

‘As before let X be an irfeducible n-dimensional variety over R

* such that X(R) is also n-dimensional and contains only normal points.
We regard on X(R) beside the strong topology also the coarser Zariski
‘topology. This is the topology on X(R) induced by the Zariski topology
of - X. Every Zariski closed subset.M of X(R) is a finite union of irre-
ducible‘closed subsets M1,...,M with M & MJ for i # j. We call these
subsets M, the irreducible components of M. They are unlquely deter-

" mined by. M.

Eyery irreducible Zariski closed subset M of X(R) which has dimen-
sion n-1 is cléarly the set of real:points of an indefinite prime di-
visor D on X uniqueiy determined by M (cf. Theorem 3.9, which says
much more than this.) We now p:éye a weak analogue of this statement
for lower dimensional ifréducible zariski closed subsets of X(R).
Uniqueness of the p;ime divisor D ‘can no longer be expected; Thus the

following theorem is less valuable than Theorem 3.9.

Theorem 4.1. Suppose that X is also qhasiprojective, i.e. a locally

closed subscheme of some projective space ng. Let ‘M be an irreducible
Zariski closed subset of X(R) of dimension at most n-2. Then there

exists some semidefinite prime divisor D on X such that M = D(R).

For the proof we replace X by its normalization, whish does not
éhange anything for the space X(R). Now the zero divisor div(f)+ and
the pole divisor div(f)_ of any non zero rational function f on X are
1honestly defined as Weil'divisors.

i

The set X(R) is contalned in the affine open subscheme V ofiPR
whlch is the complement of the hypersurface x2 + ... x§ = 0. We

1 of X NV in V. Then X(R) = X1(R) and
;X1 is an affine variety. Let W denote the Zariski closure of M in X,-

' introduce the Zariski closure X

We choose regular functions Fqre--19, on X, such that W is the reduced

subscheme Ny (g4) N ... n Ny (g,) of all common zeros of g,,...,g, on
x1. For the }egular function1
. 2 : 2
g =gy * ... + g

on x1 we have

M = {x € X,(R) | g(x) =0}.

We now extend the regular funcfion g|X NV toa rational function £
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on X in the unique possible way. The domain of definition of f contains
X N V, hence X(R). Thus the pole divisor E := div(f)_ has in its sup-

. .port no7real points, i.e. E is definite. On the other hand we have fdr

-

the zero divisor D := div(f)+

ID]R= {XEX(R) If(x) = 0} = {X€X1(R)1g(x).=o} = M.

Let D = e,D, + ... + e_D_ be the decomposition of D into prime divi-

sors. M is the union of the Zariski closed subsets D1(R),..;,DS(R).
Since M is‘irreducible, M coincides with one of these sets, say

M = D,(R). The prime divisor D, is semidefinite according to Theorem

1
3.4, or already Proposition 2.3, and our theorem is proved.
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§ 5 Extremal positive semidefinite forms and extremal squares

n-1
R
effective divisor D on X is the divisor div(F) of a form F(x1,...,xn)

with coefficients in R uniquely determined by D up to a multiplicative

constant. In this way the prime divisors correspond with the irreduci-

Let X ke the (n-1)-dimensional projective space 1P (n = 2). Every

ble forms,. the indefinite divisors correspond with the indefinite forms
in the usual sense - notice that X(R) is connected -, and the semidefi-
" nite (resp. definite) divisors correspond with the positive semidefi- -
nite (resp. definite) forms, of course also with the negative semidefi-

nite (resp. definite) forms.

We call a form F € R[x1,...,xn] purely indefinite, if the divisor
div(F) is purely indefinite. This means that F is not constant, all
irreducible factors of F are indefinite, and no irreducible factors

occur with multiplicity > 1.

For any integral number r = O'wé denote by F(r) the set of all non

zero forms of degree r in R[x ,xn] and by F the union of all F(r).

roes
‘'For any even number 4 = O we ;enote by P(d) the convex cone in F(d)
-consisting of all psd (= postive semidefinite). forms of dégree d in

R{x1,...,xn], and by P the union of all P(d). Similarly we denote by
(d) the convex subcone of P(d) consisting of all finite.sums of

and by ¥ the.

squares of non zero forms in R[x1,...,xn] of degree %,

union of the sets ¥ (4).

The cones P(d) U {0} and £(d) U {0} are well knoWn to be closed
semialgebraic subsets of the vector space F(d) U {O0}. Our theory in §2
has some applications to the theory of the sets E(P(d)) and E(Z(d)) of
extremal points of the cones P(d) and X(d). We refer the reader to the
paper [CL] for the background, some results, and concrete examples in
this theory. Let again E(P) denote the union of sets E(P(d)) and E(X)
the union of the sets E(x(d)).

-~ If nothing else is said all forms in the sequel are understood to
be forms in Xqr---sX oOver R. For any two such forms we mean by
~"F 2z G" that F-G lies in P U {0}. In particular then F and G must have.
the same degree. Similarly we mean by "F>>G" that F- G lies in

‘Z U {0}. Clearly an element F of P lies in E(P) if and only if ’

F > G = O implies G = AF with some constant A. Similarly an element F
.of ¥ lies in E(X) if and only if F>>G>>0 ihplies G = AF with some
constant A. Of course in both cases the constant A lies in the inter-
val [0,1].
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Theorem 5.1. i) Let F and G be psd forms. Assume that F € E(P) and G o
divides F. Then G € E(P). ]

ii) Assume that F € E(X) and F = G-szwith some forms G and H. Then
G €'E(X).

iii) Let' G be a psd form and H a purely indefinite form. Then G lies
in E(P) if and only if GH2 lies in E«(P).

iv) Let again G be a psd form and H a purely indefinite form. Then G-
lies in E(X) if and only if GH® lies in E(Z).

Proof. i)v We have F = G H with some psd form H. Suppose that

G = G' = 0. We have to verify that G' = AG with some constant A. Since
H = O 'we have Gfi > G'H = 0. Since F is extremal this implies

G'H = AGH with some constant X and then G' =2\G.

ii) We may inauct on the numberfbf irreducible factors of H and thus
asgume»that H is irreducible. Since F is an extremal suw thsquares F

Ais actually a square L2. Now H divides L. We have L = HS with some

form S and then F = HZSZ. From this we obtain G = Sz. In particular

G € X. We see now by the same argument as in i) that G is extremal in

z.

iii) If GH? is extremal then also G is extremal as has been proved
above. Assume now that G is extremal. It suffices to‘consider the case
that H is indefinite and irreducible, since we then obtain the full re-
sult by iteration. Let L be a non zero form with GH;2 > L = 0. The set
of real zeros Z(H) is contained in Z(L). By a mild application of

Corol. 2.5 we see that H divides L. (Restrict H and L to the n-stand-

ard open affine subvarieties of'mg'1‘98ince H is indefinite then also
H2 divides L, cf. Proposition 3.2. We have L = H2L' with some psd form
L' and obtain fronx(SHz = L'H2 = 0 that G = L' = O. Since G is extremal

this implies L'=XAG with some constant A and then L = AGHZ.

iv) We again retreat to the case that H is irreducible and indefinite.
If G}ﬁz‘lies in E(X). then by ii) also G lies in E(X). Assume now that
G € E(X). Suppose that GH® » L » O. We have

2 2
1

L=M"+ ... + M
r

with some forms M1""’Mr of same degree. The set Z(H) is contained in
every zero set Z(Mi). Thus by Corollary 2.5 we have M, = HN; with some
forms Ni and L==H2L1, where

L, = N2 + ... + N € .
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We can apply the same argument to the sum of squares GI&Z— L and have
2 .
GH - L = HZS1 with some S, € X. We obtain G = L, + 81. Since G is ex-

1 o1
" tremal in I this implies L., = AG with some constant ) € [0,1] and then

. 1
. 2
L = AXGH” . Thus GH2 is indeed extremal in ¥. Theorem 5.1 is now com-

pletely proved.

We may ask for which forms F the square F2 is extremal in ¥ or
even in P. By part iii) of Theorem 5.1 the latter is true for any pro-
duct F of irreducible indefinite forms. We also know from parts i) and

ii) of the theorem that

2 2
(F1F2) € E(X) = F1

€ E(x), Fg € E(X);

2

(F,F,)° € E(P) = F> € E(P), F2 € E(P).

1 2

" To pursue this question further we may omit in a given form F all irre-
ducible indefinite factors, according to Theorem 5.1, and assume that

F is psd. We have the following partial result.

Theorem 5.2. Let F Be a form in E(P). Then F2 has the following

property: If F2 = G2 + H with some psd form H and some form G then

G = er with some constant €. (Of course € lies in the interval

[0,1].) In particular F2 € E(T).

Proof. We may assume that F # *G. We distinguish two cases.

Case 1: F-G is semidefinite. If F- G would be negative semidefinite
then also F + G would be negative semidefinite, since Fz--G2 > 0. Thus
the sum 2F of F-G and F + G would be negative Semidefinite, which is

not true. Thus F-G = 0. Since Fz--G2 = (F-G)(F+G) is psd, also

F+G =z 0. From the relation
F=(F+G)/2+ (F~-G)/2
we obtain, since F is exﬁremal,
(F - G)/2 = AF, (F + G)/2 =AuF

wiﬁh constants A > O, u > O such that A + p = 1. This implies

..G<='(U"X)F and then G'2 v(p-X)ZFZ, as desired.

It
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Case 2. F-G is indefinite. According to Proposition 3.2 there exis*s

an irreducible indefinite form P which divides F- G with an odd multi-

plicity. Since F2-G2£3 O the form P occurs in F2-G2 with even multi-

plicity, again by Propostion 3.2. Thus P divides also F +G, hence P

divides both F and G. Since F is psd even p? divides F. We have
F = P2F1 with a form F, € E(P) by Theorem 5.1.i. We also have G = PG’

with some form G' and the equation

P4F$ = P2G'2 + H.
Thus H = PZH'.with a form H' € P, and
p’r? = 62 + u'.

1

The zero set Z(P) is contained in Z(G') and also in Z(H'). Thus by §2

the irreducible indefinite fromvb divides both G' and H', the latter

one with an even multiplicity. We obtain G' = PG, , H' = PZH1 with

1
'Hi € P, and

2 2
F1 —G1 +H1.

The proof can now be completed by induction on_the degree of F, since
F, has smaller degree than F.
v Q.e.d.

Remark. In all these considerations we could have replaced our pro-
— n

- n
g ! by a product ]PR‘j X ... ]PRr , i.e. work with

multiforms instead of forms. Thus Theorems 5.1 and 5.2 remain true for

jective space TP

multiforms instead of forms.



21

§ 6 Comparison of the sets EP(n,d) and EZ(n,d).

Looking again for forms F such that F2 is extremal in I or even in
P’it is natural to ask whether every F2 € E(X) actually lies in E(P).
In case of a positive answer we would know from Theorems 5.1 and 5.2
for any psd form F that F2 lies in E(X) if and only if F lies in E(P),
and the relation between the sets. E(X) and E(P) would be well under-
stood.

Unfortunately things turn out to be not that éimple. Let us write
more precisely P(n,d) instead of P(d) and Z(n,d) inétead of £(d) to
indicate the number n of variables of the forms under consideration.
We ask for which pairs (n,d) with n = 2, & = 2 and even, the set
EX(n;d) of extremal pointé of the cone ¥ (n,d) is contained in the set
EP(n,d) of extremal points of the cone P(n,d). The following theorem
gives a complete answer to this question.

‘Theorem 6.1. Let n = 2 be a naturai number and d be an even natural

number. Then EX(n,d) < EP(n,d) precisely in the following cases.

i) n = 2; ii) d = 6; iii) (n,d) = (3,8); iv) (n,d) = (3,10).

Thus the question, whether EX(n,d) is contained in EP(n,d) is

answered by the following chart:

d 2 4 6 8 10 12 14

2l v vV v Y Y

~
I

Legend: positive answer

»
Il

negative answer

The rest of the section is devoted to a proof of this theorem. If

n=2o0rd=2 then ¥(n,d) = P(n,d) and there is nothing to be proved.

vV

Thus we assume henceforth that n = 3 and 4 = 4.

4 or d = 6. Let F be a form with

I

Consider'now the case that d

|
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F2 € EZ(n,d).‘Suppose'that F2 does not lie in EP(n,d). Canceiling out

in F all indefinite irreducible factors we obtain a form with the same
properties, as follows from Theorem 5.1. Thus we may assume that F has
only psd factors. Then F cannot have degree 3. Thus F is a psd qua-

dratic form. After a linear change of coordinates we have

F =xx, + ... + x2
r

with 1 < r = n. Now

F? = x!

2,2
1 .

2 2 2
(x5 + ... + xr) + (x5 + ... + xr)

% 2 x2 2 2

1
We see that F2 is not extremal in ¥ (n,4). This contradiction proves

that EX(n,d) is contained in EP(n,d) for d = 6.

Suppose now that F is a form;of degree 4 in n variables such that
F2 lies in EX but not in EP. If F would contain an indefinite irreduc-
ible factor then taking out this factor we would obtain a form G w.th
G2 € ExXx(n,d) but G2 ¢ EP(n,d) for some d < 6 (Theorem 5.1). This has
been proved to be impossible. Thus F does not contain an indefinite
faétor and we may assume in partiéular that F is psd. If F would be
reducible then F = Q1Q2 wéth psg guadratic forms Q1 and Q2. But then
2 of'Q1Q2 would lie in EX (Theore@ 5.1), which
means that Q1 and Q2 would be squares of linear forms. This contradicts

also the factors Q? and Q

the fact that F has no indefinite factors. Thus F must be an irreduc-

ible positive semidefinite quartic.

It is known since Hilbert that P(3,4) = =(3,4), cf. [CL, §6] for
an elementary proof in the case R = H{*). Thus in the case n = 3 our
férm F has to be a sum of équares, but not a square, and we obtain as
above a contradiction to the assumption that F2 ié extremal in X(3,8).

We have proved that EX(3,8) is contained in EP(3,8).

Assume.nqw that F is a fogm in 3 variables of degree 5 such that
F2 is extremal in X(3,10). F contains an irreducible factor H of odd
degree, F = HG. By Theorem 5.1 the form G2 is extremal in ZI. Since
deg G25 8 we know that G2 is extremal in P. Thus, again by Theorem 5.1,
the form F2 is extremal in P. We have proved that EZ(3,10) is éontained
in EP(3,10).

* .
) This proof works egqually well over all real closed fields R, taking
into account the rudiments of [DK, §9]. No appeal to Tarski's

principle is necessary.
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We now have verified all the affirmative answers in the chart
above. To get all negative answers it suffices to check that EI(3,12)
‘is not contained in EP(3,12) andvEZ(4,8) is not contained in EP(4,8).
Indeed, regarding a form F in the variables Xqreeor Xy also as a iorm
in the variables Xqreer X gy it is an easy exercise to prove that

F2 € EX(n,d) = F2 € EX(n+1, d),

and it is trivial that
2 2 L
F* ¢ EP(n,d) = F~ € EP(n+1,4d).

X, it

Furthermore choosing some linear form L in the variables Xqre- n

is evident from Theorem S.ﬁbthat

2

F € EX(n,d) = F°L?

L € EX (n, d+2)
and . .
F2 ¢ EP(n,d) - F°L% ¢ EP(n, d+2) .

We shall now exhibit a form in EX(3,12) which is not extremal in
P(3,12). Fortunately a counterexample for-(n,d) = (4,8) can be con-
structed by similar principles. Thus it will be sufficient to devote

our main efforts to the case (n,d) = (3,12).

We start with the ternary sextic

2
S(x,y,z) = X4y2.+ y4z2 + z4x2 - 3x2y 22

in [CL]. This form has seven zeros: (1,0,0), (0,1,0), (0,0,1), (1,1,1),
(=1,1,1, (1,-1,1) and (1,1,-1). We shall look at an auxiliary form

2
T(x,y,2). = (Xzy + yzz - 22x - Xyz)

which is chosen in such a way that it vanishes on all zeros of S,
except (-1,1,1).

2 .. .
Theorem 6.2. Let f(x,y,z) = S(x,y,2z) + T(x,y,2). Then p := £~ lies in
EX(3,12) but not in EP(3,12).

The fact that p is not extremal in P(3,12) will be deduced from an
easy lemma (Lemma 1), and follows by the way also from Theorem 5.1. i,
while the fact that p is extremal in Z(3,12) will be deduced from a

difficult lemma (Lemma 2).
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Lemmgml; The forms 52, ST, T2 are linearly independent over R.

Proof. Suppose a82 + BST + YT2 = 0, where o,B,Y € R. Evaluating at
(-1,1,1) € Z(8)~1Z(T), we get Y = O. Dividing by S, we get aS +BT = O,

so clearly a = B = 0.

Q.e.d.
: 2 2 2 : . .
Since p = £ = 8" + 2ST + T", this lemma clearly implies that p

cannot be extremal in P(3,12). It remains to be shown that p is

extremal in ¥ (3,12).

Lemma 2. Let f be as in the theorem. If f2 = h? + ... + hi in R[x,y,z]

then each hi is an R-linear combination of S and T.

Using this lemma we can show_that p = fzbis extremal ih ¥(3,12) as
follows. If f2 = h2 + ... + h2,IWe write h, = a.5 + b.T with a,,b. € R.
1 r i i i i"7i

Then e

_ r r v r
£2 = 8% + 257 + T2 = (fa’)s® + 2(Fa.b.) ST + (rb.) T,
7 1 ] 11 7 1
so by Lemma 1, v
' r r r
Zai ==21b? = X a. = 1
1 1 1 1 1l 1
. . . : . 2 2 2
This implies that a; = bi for 1 =1 =< r, so hi = a; (S+T)" = a, p, as

desiréd.

Our job‘is now to prove Lemma 2. For this we need a third lemma

which is true for arbitrary polynomials instead of just ternary forms.

Lemma 3. Suppose f € R[x1,...,xn] is positive semidefinite and
f2 = hf + ... + hi with polynomials hi € R[x1,...,xn]. Let a €.R” be a
zero of f. Then a is also a zero of h, and of every partial derivative

ahi/axj (1 =i=1r, 1 =3 =<n).

Proof. Since f is psd clearly a is a zero of every Bf/axj, 1 <3 = n.

Computing the partial derivatives of f2, we have

0 2 of
X . £ =2t ox. '
J J
2 2
3" 2 a° f oaf of
f" = 2f ——— 4+ 2— '
axjaxk ox oxk ax] axk
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N so these paftial derivatives all vanish at a. (In fact even the third

order partial derivatives of f2 vanish at a. We do not need this in tho
S fcllowing.) From O = h1(a)2 + ... + hr(a)2 we have of course

h1(a) = ... = hr(a) = 0. Computing (32/ax§)(f2) from the expression

f2 = h% + ... + hz, we get

r .
5
r .9 hi Bhi > r ahi 2
0o = "-_- [Zhi(a) % (a) +‘2(§§—" (a))”) = 2 .Z W(a) '
i=1 J 3 . - i=1 j
Bhi
sO 3§j-(a) = 0 for all i,j. ,
] ‘ « ' : Q.e.d.

We now enter the proof of Lemma 2. Thus £ = S + T, and a decompo-
. sition f? = h% + ... + hi with forms hi € R[x,y,z] of degree 6 is
given. Let h be any of the forms hi. The first step in the nroof is to
.determine which are the sextic monomials which may occur in h. This
can be done by inspection - but it is easier to invoke the general
method of "cages", cf. [R]T)Denoting the cage of a form g by C(g) we

have by the latter method
To(e2y - |
C(h) C-EC(f ) = C(f),

and C(f) contains the lattice poinﬁs (4,2,0), (0,4,2), (2,0,4),
(2,2,2), (3,2;1), (3,1,2), (2,3,1), (2,1,3), (1,2,3), (1,3,2). If we
represent the points of C(f) by their first two coordinates, we have

the following picture of a "projection" of C(f).

(4,2)

=V

(2,0) "y

(Actually all lattice points of C(f) occur as monomials in f.) Thus we

may express the sextic form h in the following way:

*
'a more detailed account of this method will be given in [CLR].
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h(x,y,z) = ax4y2 + by4z2 v oexlz? 4 dxzyzz2 + ex3y22 + gx3y22 +

+ ix2y3z + jx2yz3 + kxy3z2 + lxy223.

‘By Lemma 3 the partial derivatives 3h/%x, 5h/dy, dh/dz must vanish at
the points (1,1,1), (1,1,-1) and (1,-1,1) of Z(f). This leads to the
-following system of nine linear homogeneous eguations in the ten

"unknowns" a,b,...,k,1.

[(1) 4a +2c+2d+3e+3ag+2i+2j+ k+ 1=0 (%% at (1,1,1))
(2) sa +2c+2d—3e+3g—2i—2j+ k- 1=0 (..... (1,1,-1))
| (3)  4a  +2c+2da+3e-3g-2i-2§- k+ 1=0 (..... (1,-1,1))
(4) 2a+4b +2d+2e+ g+3i+ jf3k+21=o (g% at (1,1,1))
i{ (5) 2a+4b  +2d-2e+ g-3i- j¥3k—21=o (enunn (1,1,41))
(6) 2a+db  +2d+2e- g-3i- j—3k+21;o,(J.,.;f1,r1,1))
(7) 2b+4c+2d+ e+2g+ i+3j+2k+31=0 (g% at (1,1,1))
(8) 2b+4c+2d- e+2g- i-3j+2k-31=0 (..... (1,1,-1))
v(9) 2b+4c+2d+ e-2g- i-3j-2k+31=0 (..... (1,-1,1))

By explicit compﬁtation we shall show that this linear system of
equations has a solution space of dimension 2 (with a basis correspond-

ing, of course, to S and T). We proceed as follows:

~

(1)-(2)

(") = — 3e +2i + 23+ 1 =0
(2'5'= ill%iél: 3g +2i + 23+ k=0
(31) = 2L 4a 4 2c 4 2a+ 30 + k =0
(4') = iﬁl%iél: 2¢e + 31+ j + 21 =0 .
< (5') = iél%iél: g+ 3i+ j+3k=0
(6') = LA2B) 93 4 4p v 20+ g+ 3k =0
(7') = lZL%iﬁl: e+ i+ 3j+31=0
8') = D2 294 14334 2k = 0
(91) = LX) op 4 4 + 20 + 29 + 2k = O
Note that XU giies (1) e+ i+ 3+ 1=0
(2')+(5')+(8') -0

3 gives (2") g+ i + j + Kk
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From (1"), (4') and (7'), we get i
From (2"), (5') and (8'), we get i

j = -e =-1.

j =-9=-k.

Eliminating g from (3'), (6') and (9') and dividing by 2, we get

(3") 2a + c+d+ 2 =0,
(6") a + 2b +d + 2k =0,
(9") - b + 2c +d + 2k =0,
which leads easily to a = b = c and 4d = -3a - 2k. Thus, a and k are

the free parameters,and the solution spacé to our linear system of -
equations has dimension 2. Since S and T do'give rise to independent
solutions in the solution space, we can conclude that h = oS + BT

(a,B € R). More'explicitely, the geheral solution to the linear'system
. is given by A

(a’b'cldlelgliljlkll) =. (va,a,a,—3a—2k,'k'k,—k,_k,k’k)
3(1-11111'3101- . 'IO) + .k(zor.orol'zr]11.:'.'11'11‘]/1)

]

(a +§)(1r1r1r‘3,0,. ..,O) "'}25(11111111—21-212121—21_2)

So we are finishéd by noting that (1,1,1,—3,0,;..,0) corresponds to S
‘and (1,1,1,1,-2,-2,2,2,-2,-2) corresponds to T. We now have .proved
Lemma 2 and Theorem 6.2.

The counterexample needed to show that EX(4,8) is not contained in
EP(4,8) is entirely'ahalogous. We use p := (Q+U)2 where

Q(w,x,y,2) = w4 + x2y2 + y222 + 22x2 - 4dxyzw,

U(w,x,y,z)~=(w2 + xy‘— yz - zx)2.

The form Q has seven zeros: (0,1,0,0), (0,0,1,0), (0,0,0,1), (1,1,1,1),
(1,1,-1,-1), (1,f1,1,-1), (1,-1,-1,1), all of which are zeros of U
except the last one. By a cage consideration similar to the one used

2 2

before we can see that, if p = h1 + ...+ hr' then any of the hi's has

the form

h(w,x,y,2) = aw4 + bx2y2 + cyzz2 + dzzx2 + exyzw

+ ngxy + iwzyz + jwzzx
+ kzzxy + lxzyz + myzzx,
with eleven possible terms. By Lemma 3 the four first partial deriva-

tives of h must vanish on (1,1,1,1) , (1,1,-1,-1) and (1,-1,1,-1).

This gives us 12 linear homogeneous equations in the 11 unknowns
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a,b,...,1,m. A calculation similar to the one we did shows that the
solution space has ‘dimension 2, hence is spanned by the 11-tuples

.cérresponding to Q and U.

There remains one problem open which fits naturally into the circle

of ideas of this paper:

Question.  For which (n,d) does there exist a form F € EP(n,d) such
that F2 ¢ EP(n,2d)? |

Notice that by Theorem 5.2 the form F2 lies in Ei(n,Zd). Thus the

question is for a "stronger" counterexample to the inclusion EXI < EP.
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