pUBLICATIONES mathematicae

TOMUS 24.
FASC. 1-2.

DEBRECEN 1977

FUNDAVERUNT
A. RÉNYI, T. SZELE ET O. VARGA

ADJUVANTIBUS
Z. DAROCZY, B. GYIRES, A. RAPCSAK, L. TAMASSY

REDIGIT:
B. BARNA
M. Knebusch

Remarks on the paper
"Equivalent topological properties of the space of signatures of a semilocal ring" by A. Rosenberg and R. Ware

publicationes mathematicae

24. KÖTET
FASC. 1-2.

DEBRECEN 1977

ALAPITOTTAK:
RENYI ALFRED SZELE TIBOR ÉS VARGA OTTO

DAROCZI ZOLTAN GYIRES BÉLA, RAPCSAK ANDRAS, TAMASSY LAJOS

KÖZREMÓKÖdÉSÉVEL SZERKESZTI:

BARNA BELA

A DEBRECENI TUDOMÁNYEGYETEM MATEMATIKAI INTÉZETE

Remarks on the paper "Equivalent topological properties of the space of signatures of a semilocal ring" by A. Rosenberg and R. Ware

By Manfred Knebusch (Princeton, N. J.)*
Dedicated to the memory of Andor Kertész

Rosenberg and Ware deal in their paper [8] with semilocal rings in which 2 is a unit. I observed that the assumption that 2 is a unit can be removed in their results by adding further ideas to their proofs. Theorem 2.1 in [8] can even be generalized to semilocal rings with involutions. The interested reader should understand in detail the paper [8] of Rosenberg-Ware before studying the present paper, since the main ideas are developed there.

We essentially use the same notations as in [8]. Let A be an arbitrary connected semilocal ring (without involution) and let E be a symmetric bilinear space over A . For every signature σ of A we have $|\sigma(E)| \leqq \operatorname{dim} E$ and $\sigma(E) \equiv \operatorname{dim} E \bmod 2$. As in [5] we call E positive definite at the signature σ (resp. negative definite, resp. definite), if $\sigma(E)=\operatorname{dim} E($ resp. $\quad \sigma(E)=-\operatorname{dim} E$, resp. $|\sigma(E)|=\operatorname{dim} E)$, and we call E indefinite at σ if $|\sigma(E)|<\operatorname{dim} E$. Notice that if $\alpha: A \rightarrow R$ is a homomorphism from A into a real closed field R inducing σ then E is positive definite (negative definite, ...) at σ if and only if the bilinear space $E \otimes_{A} R$ is positive definite (negative definite, ...) over R in the classical sense. Such homomorphisms α always exist [4, §4]. If E is a quadratic space over A, i.e. a projective module equipped with a quadratic form $q: E \rightarrow A$, such that the associated bilinear form is nondegenerate [cf. 7, p. 110], then we denote the associated bilinear space by \tilde{E}. For any signature σ of A we shortly write $\sigma(E)$ instead of $\sigma(\widetilde{E})$, and we call E positive definite (negative definite, ...) if \tilde{E} has this property.

Lemma 1. Let E be a quadratic space which is positive definite at σ. Then $\sigma(c)=1$ for every unit c of A represented by E.

Proof. Suppose that $\sigma(c)=-1$. Then the bilinear space $F:=\tilde{E} \perp\langle-c\rangle$ is positive definite at σ. Now F represents the element $2 c-c=c$. Thus $\sigma(c)=+1$ [6, Lemma 2.3], a contradiction.

[^0]We choose a natural number $h \geqq 1$ such that both $2 h-1$ and $4 h-1$ are units in A, which is always possible [5, p. 49], and introduce the binary quadratic space G with basis u, v over A and quadratic form

$$
q(\lambda u+\mu v)=\lambda^{2}+\lambda \mu+\mu^{2} h .
$$

As in [5] this space G will play a useful role in our present paper.
Lemma 2. $\sigma(G)=2$ for every signature σ of A.
Proof. As observed in [5, p. 55f]

$$
\tilde{G} \perp\langle-1\rangle \cong\langle 1,2 h-1,(2 h-1)(1-4 h\rangle .
$$

Apply σ to this relation.
We now turn to Rosenberg-Ware's first theorem [8, Th. 2.2]. We do not need to discuss the statements (3)-(5) in this theorem, since this is already done there [7, Remark 2.3]. We stick to Rosenberg-Ware's notations. In particular we denote by X the space of signatures of A and for a a unit of A by $W(a)$ the clopen set of all σ in X with $\sigma(a)=-1$.

Theorem 1. If the sets $W(a)$ from a basis of $X(W A P)$, then every clopen set of X has the form $W(a)$ with some a in $U(A)$ (SAP).

To prove this we look at the step $(1) \Rightarrow(2)$ in Rosenberg-Ware's proof of their theorem 2.2. We arrive at the relation

$$
2^{m} E \perp 2^{m} F \sim 2^{m+n}\langle 1\rangle
$$

with the bilinear spaces E, F introduced there $\{\sim$ denotes Witt equivalence\}. From this we obtain a Witt-equivalence

$$
2^{m}(E \otimes G) \perp 2^{m}(F \otimes G) \sim 2^{m+n} G
$$

of quadratic spaces (cf. e.g. [7, p. 111] for the tensor product of a bilinear and a quadratic space). Since the cancellation law holds true for quadratic spaces over A [2], this relation implies an isometry

$$
2^{m}(E \otimes G) \perp 2^{m}(F \otimes G) \cong 2^{m+n} G \perp 2^{m+n} H
$$

with H the quadratic hyperbolic plane over A. By [1, Satz 2.7] there exists a unit c of A such that $-c$ is represented by $2^{m}(E \oplus G)$ and c is represented by $2^{m}(F \oplus G)$. Now using Lemma 1 and Lemma 2 we obtain as in Rosenberg-Ware's proof that

$$
W\left(a_{1}\right) \cap \ldots \cap W\left(a_{n}\right)=W(c) .
$$

With more effort we obtain a proof of Theorem 1 more generally for A a connected semilocal ring equipped with an involution.

Let X denote the space of signatures of (A, J), cf. [6], and let X_{0} denote the space of signatures of the fixed ring A_{0} of J. Then X is a closed subspace of X_{0}, cf. [6, p. 211]. Finally we denote for c in A the norm $c \cdot J(c)$ by $N c$.

Lemma 3. Assume that all the fields A_{0} / \mathfrak{m} with \mathfrak{m} running through the finitely many maximal ideals of A_{0} contain at least four elements. Let E be a bilinear space over A_{0} such that the hermitian space $E \otimes_{A_{0}} A$ is Witt-equivalent to zero. Then there exists units c_{1}, \ldots, c_{r} of A such that

$$
\begin{equation*}
\left\langle 1, N c_{1}\right\rangle \otimes \ldots \otimes\left\langle 1, N c_{r}\right\rangle \otimes E \sim 0 \tag{*}
\end{equation*}
$$

over A_{0}.
Proof. The kernel of the natural map from $W\left(A_{0}\right)$ onto $W(A, J)$ is the ideal generated by the classes of the spaces $\langle 1,-N c\rangle$ with c running through the units of A [6, Prop. 2.5]. Thus

$$
E \sim\left\langle a_{1}\right\rangle\left\langle 1,-N c_{1}\right\rangle \perp \ldots \perp\left\langle a_{r}\right\rangle\left\langle 1,-N c_{r}\right\rangle
$$

with units a_{i} of A_{0} and units c_{i} of A. Clearly the relation (*) above holds true with these units c_{1}, \ldots, c_{r}.

From the description of the kernel of the map from $W\left(A_{0}\right)$ onto $W(A, J)$ just given it is further clear, that under the assumptions about A_{0} in Lemma 3 a signature σ of A_{0} lies in X if and only if $\sigma(N c)=1$ for every c in $U(A)$ [6, Cor. 2.6].

We now assume that the space X of signatures of (A, J) has the property $W A P$, saying that the clopen sets

$$
W(a):=\{\sigma \in X \mid \sigma(a)=-1\}
$$

with a in $U\left(A_{0}\right)$ form a basis of X. We want to prove that these sets $W(a)$ are already all clopen sets of $X(S A P)$.

It suffices to find for given units a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n} of A_{0} with

$$
W\left(a_{1}\right) \cap \ldots \cap W\left(a_{n}\right)=W\left(b_{1}\right) \cup \ldots \cup W\left(b_{n}\right)
$$

a unit c of A_{0} such that this set coincides with $W(c)$ [8]. As in [8] we introduce the bilinear spaces

$$
E:=\bigotimes_{i=1}^{n}\left\langle 1,-a_{i}\right\rangle, \quad F:=\bigotimes_{i=1}^{n}\left\langle 1,-b_{i}\right\rangle
$$

over A_{0}, and as in [8] we see that

$$
\left(2^{m} E \perp 2^{m} F\right) \otimes_{\Lambda_{0}} A \sim 2^{m+m}\langle 1\rangle
$$

over (A, J) with m some natural number.
Assume now that all fields A_{0} / m contain at least 4 elements. By Lemma 3 there exists a bilinear space

$$
L:=\left\langle 1, N c_{1}\right\rangle \otimes \ldots \otimes\left\langle 1, N c_{r}\right\rangle
$$

with units c_{1}, \ldots, c_{r} of A such that

$$
2^{m} E \otimes L \perp 2^{m} F \otimes L \sim 2^{m+n} L
$$

over A_{0}. We multiply this relation with the binary quadratic space G from above and learn that the quadratic space
is isotropic. Thus there exists a unit c of A_{0} such that $2^{m} E \otimes L \otimes G$ represents $-c$ and $2^{m} F \otimes L \otimes G$ represents c. Now observing that $\sigma(L)=2^{r}$ and $\sigma(G)=2$ for any σ in X we see as in [8] that $W\left(a_{1}\right) \cap \ldots \cap W\left(a_{n}\right)$ coincides with $W(c)$. This finishes our proof that WAP implies $S A P$ in the case that all fields A_{0} / \mathfrak{m} contain at least 4 elements.

We shall obtain the proof in general immediately from this and the following lemma.

Lemma 4. Let (A, J) be an arbitrary semilocal ${ }^{1}$) ring with involution. Let C denote the extension $A[T] /(f(T))$ with $\left.{ }^{2}\right) f(T)=T^{3}+6 T^{2}+29 T+1$, and let t denote the image of T in C. Let J^{\prime} denote the involution of C which extends J and maps t onto itself. Then every residue class field of the fixed ring

$$
C_{0}=A_{0}[t]=A_{0}[T] /(f(T))
$$

of J^{\prime} contains at least 7 elements. Every signature σ of A_{0} extends to a unique signature of C_{0}, denoted by σ^{\prime}, and σ is a signature of (A, J) if and only if σ^{\prime} is a signature of $\left(C, J^{\prime}\right)$. For the regular norm $N_{C_{0} / A_{0}}(c)$ of a unit $\left.{ }^{3}\right) c$ of C_{0} we have

$$
\sigma^{\prime}(c)=\sigma\left(N_{c_{0} / \Lambda_{0}}(c)\right) .
$$

The proof of this lemma will be given below. Let X^{\prime} denote the space of signatures of $\left(C, J^{\prime}\right)$ and for b a unit of C_{0} let $W^{\prime}(b)$ denote the set of all τ in X^{\prime} with $\tau(b)=-1$. By our lemma we have a canonical homeomorphism $\sigma^{\prime} \rightarrow \sigma$ from X^{\prime} onto X and this homeomorphism maps $W^{\prime}(b)$ to $W\left(N_{C_{0} / A_{0}}(b)\right)$. Furthermore the inverse image of a subset $W(a)$ of X, a in $U\left(A_{0}\right)$, is the set $W^{\prime}(a)$.

Thus it clearly suffices to prove $W A P \Rightarrow S A P$ for (C, J^{\prime}) instead for (A, J). This had been done above since all residue class fields of C_{0} contain at least 4 , in fact 7, elements.

It remains to prove Lemma 4. Our polynomial $f(T)=T^{3}+6 T^{2}+29 T+1$ is irreducible over the prime fields $\mathbf{F}_{2}, \mathbf{F}_{3}, \mathbf{F}_{5}$. Thus indeed all residue class fields of A_{0} contain at least seven elements. The other statements of Lemma 4 will now be proved by a transfer method similar to [4, §3]. We introduce the A-linear form $s: C \rightarrow A$ with $s(1)=1, s(t)=s\left(t^{2}\right)=0$ and the restriction $s_{0}: C_{0} \rightarrow A_{0}$ of s to an A_{0}-linear form on C_{0}. The hermitian form $s\left(x J^{\prime}(y)\right)$ on the A-module C is non degenerate and thus s induces a transfer map

$$
s^{*}: W\left(C, J^{\prime}\right) \rightarrow W(A, J)
$$

sending the class of an hermitian space (E, Φ) over $\left(C, J^{\prime}\right)$ to the class of the hermitian space $(E, s \circ \Phi)$ over (A, J). In the same way we obtain a transfer map

$$
s_{0}^{*}: W\left(C_{0}\right) \rightarrow W\left(A_{0}\right)
$$

Since $\left[C_{0}: A_{0}\right.$] is odd every signature of A_{0} extends to at least one signature of C_{0} [6, p. 236]. The argument in [6] also shows, that every signature of A extends to at least one signature of C.

[^1]We now consider a fixed signature σ of A_{0} and a fixed extension τ of σ to C_{0}. We choose a homomorphism β from C_{0} into a real closed field R inducing τ, i.e. such that the diagram

commutes, with ϱ the unique signature of R, (cf. [4, §4] for the existence of β). Let $\alpha: A \rightarrow R$ denote the restriction of β to A_{0}. Our polynomial $f(T)$ has precisely one root in the field \mathbf{R} of real numbers \{Observe that $f^{\prime}(T)$ has no root in \mathbf{R} \}. Thus $f(T)$ has also a unique root in R, and we learn that β is the only homomorphism from C_{0} to R extending α.

There exist two more homomorphisms from C_{0} to $R(\sqrt{-1})$ over α. Let γ be one of them. The commutative diagram

with φ the inclusion map and φ^{\prime} the diagonal embedding is a tensor product diagram for C_{0} and R over A_{0}, and we identify $R \times R(\sqrt{-1})$ with $C_{0} \otimes_{A_{0}} R$ in this way. The R-linear map $s_{0} \otimes$ id from this tensor product to R decomposes intoa pair of R-linear forms

$$
s_{1}: R \rightarrow R, \quad s_{2}: R(\sqrt{-1}) \rightarrow R,
$$

and we have $s_{1}(x)=b x$ with some $b \neq 0$ in R. Since the diagram

commutes we obtain for z in $W\left(C_{0}\right)$

$$
\alpha_{*} s_{0}^{*}(z)=\langle b\rangle \beta_{*}(z)+s_{2}^{*} \gamma_{*}(z)
$$

But the additive map s_{2}^{*} from $W(R(\sqrt{-1}))=\mathbf{Z} / 2 \mathbf{Z}$ to $W(R)=\mathbf{Z}$ must vanish, and we have

$$
\alpha_{*} s_{0}^{*}(z)=\langle b\rangle \beta_{*}(z) .
$$

Applying ϱ we obtain, since $\varrho \circ \beta_{*}=\tau, \varrho \circ \alpha_{*}=\sigma$:

$$
\sigma s_{0}^{*}(z)=\varrho(b) \tau(z)
$$

Now the A_{0}-bilinear form $s_{0}(x y)$ on C_{0} has with respect to the basis $1,-t, t^{2}$ the matrix

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 6
\end{array}\right)
$$

and thus s_{0}^{*} maps the unit element of $W\left(C_{0}\right)$ to the unit element of $W\left(A_{0}\right)$. Inserting $z=1$ in the formula above we see that $\varrho(b)=1$, hence
(*)

$$
\sigma s_{0}^{*}(z)=\tau(z)
$$

for every z in $W\left(C_{0}\right)$. In particular τ must be the only signature of C_{0} extending σ, since any other extension of σ has to fulfill the same equation (${ }^{*}$). Now Lemma 4 is proved up to the last statement. For c a unit of C_{0} we have

$$
\alpha N_{C_{0} / A_{0}}(c)=\beta(c) N_{R}(\sqrt{-1}) / R(\gamma(c)) .
$$

Applying ϱ we obtain indeed

$$
\sigma N_{c_{0} / \Lambda_{0}}(c)=\tau(c) .
$$

Remark. It is now easy to deduce from (${ }^{*}$) the analogous formula

$$
\sigma s^{*}(w)=\tau(w)
$$

for w in $W\left(C, J^{\prime}\right)$ and σ a signature of (C, J).
Apparently Lemma 4 is just a special case of a theory of signatures of "Frobenius extensions" which I hope to make explicit in the near future.

We now turn to Rosenberg-Ware's Theorem 3.1. The involution of A is assumed to be trivial, since we want to avoid the complications of "quadratic forms over a ring with involution".

Theorem 2. The following statements are equivalent for A an arbitrary semilocal ring.
SAP: Every clopen set of X has the form $W(a)$.
HMP: If a quadratic space E over A is indefinite at all signatures of A then $m E$ is isotropic for some natural number m.
We first prove $S A P \Rightarrow H M P$. We need the following lemma which will be proved below.

Lemma 5. If A is an arbitrary commutative ring and z is an element of the quadratic Witt group $W Q(A)[7, \mathrm{p} .112]$ which has image zero in $W(A)$, then $8 z=0$.

Let E be a quadratic space of rank n over our semilocal ring A and assume $|\sigma(E)| \leqq n-2$ for every σ in X. Using SAP we produce as in [8, § 3] a bilinear space $F=\left\langle b_{1}, \ldots, b_{n-2}\right\rangle$ over A such that $\sigma(F)=\sigma(E)$ for all σ in X. By Lemma 2 the quadratic spaces $2 E$ and $F \otimes G$, with G as above, have again the same value for all σ in X. Thus for some $m \geqq 0$ the bilinear spaces $2^{m+1} \tilde{E}$ and $2^{m} F \otimes \tilde{G}$ are Witt-equivalent. By Lemma 5 the quadratic spaces $2^{m+4} E$ and $2^{m+3} F \otimes G$ are Witt-equivalent. Since $2^{m+3} F \otimes G$ has smaller rank than $2^{m+4} E$ and cancellation holds true for quadratic spaces we see that $2^{m+4} E$ is isotropic.

The proof of Lemma 5 is easy. Let L denote the unique positive definite quadratic space of rank 8 over Z. As is well known $\mathcal{L} \sim 8\langle 1\rangle$. Indeed, the natural map from $W(\mathbf{Z})$ to $W(\mathbf{R})$ is an isomorphism [7, p. 90]. If now E is a quadratic space over A with $\mathcal{L} \sim 0$, then ${ }^{4}$)

$$
0 \sim \tilde{E} \otimes L \cong \tilde{L} \otimes E \sim 8 E
$$

Remark. The cokernel of the canonical map from $W Q(A)$ to $W(A)$ is also killed by 8 . Indeed for every bilinear space F over A we have

$$
8 F \sim(F \otimes L)^{\sim}
$$

We finally prove $H M P \Rightarrow S A P$ along the lines of [8]. For arbitrary units a, b of A we have to find a unit c of A with $W(a) \cap W(b)=W(c)$. We introduce the quadratic space

$$
E:=\langle-1, a, b, a b\rangle \otimes G
$$

and observe that $\sigma(E)= \pm 4$ for every σ in X. By (HMP) $2^{m} E$ is isotropic for some natural number m.

Assume now that all residue class fields of A have at least 3 elements. Then we obtain as in [8] by use of [1, Satz 2.7] an equation

$$
t=s+b c
$$

with units t, s, c of A such that $-t$ is represented by $2^{m} G, s$ is represented by $2^{m}\langle a\rangle G$ and c is represented by $\langle 1, a\rangle G$. Using Lemma 1 we deduce from this equation as in [8] that $W(a) \cap W(b)=W(c)$.

If A has residue class fields with 2 elements, then we switch over to the cubic extension C of Lemma 4, the involution J there now being trivial. We have units t, s, c of C with $t=s+b c$ and $-t, s, c$ represented by the spaces listed above over C. Thus we have in the space X^{\prime} of signatures of C

$$
W^{\prime}(a) \cap W^{\prime}(b)=W^{\prime}(c)
$$

Applying the canonical homeomorphism from X^{\prime} to X we obtain by Lemma 4

$$
W(a) \cap W(b)=W\left(N_{c / A}(c)\right) .
$$

This finishes the proof of Theorem 2.
In Theorem 2 we considered a Hasse-Minkowski principle for quadratic spaces. Actually this Hasse-Minkowski principle is equivalent to the analogous principle for bilinear spaces. This follows immediately from Lemma 2 above and the following two observations:

Lemma 6. Let E be a bilinear space over A such that the quadratic space $E \otimes G$ is isotropic. Then $6 E$ is isotropic.

This had been proved in [5, § 5].

[^2]Lemma 7. Let E be a quadratic space over A such that the associated bilinear space \tilde{E} is isotropic. Then $2 E$ is isotropic.

Indeed, E contains a primitive vector x with $2 q(x)=0$. Thus the primitive vector $x \oplus x$ of the quadratic space $E \perp E$ is isotropic.

References

[1] R. Baeza, M. Knebusch, Annullatoren von Pfisterformen über semilokalen Ringen, Math. Z. 140 (1974), 41-62.
[2] M. Knebusch, Isometrien über semilokalen Ringen, Math. Z. 108 (1969), 255-268.
[3] M. Knebusch, Runde Formen über semilokalen Ringen, Math. Ann. 193 (1971), 21-34.
[4] M. Knebusch, Real closures of commutative rings I, J. reine angew. Math. 274/275 (1975), 61-89.
[5] M. Knebusch, Generalization of a theorem of Artin-Pfister to arbitrary semilocal rings, and related topics, J. of Algebra 36 (1975), 46-67.
[6] M. Knebusch, A. Rosenberg, R. Ware, Signatures on semilocal rings, J. of Algebra 26 (1973), 208-250.
[7] J. Milnor, D. Husemoller, Symmetric bilinear forms, Ergebnisse Math. u. Grenzgeb. Bd 73, Springer, New York-Heidelberg-Berlin 1973.
[8] A. Rosenserg, R. Ware, Equivalent topological properties of the space of signatures of a semilocal ring, Publ. Math. (Debrecen) 23 (1976), 283-289.

INSTITUTE FOR ADVANCED STUDY, PRINCETON N. J., USA
AND
FACHBEREICH MATHEMATIK DER UNIVERSITÄT REGENSBURG, GERMANY.

[^0]: *) Supported in part by an NSF grant and by a Fulbright travel grant.

[^1]: ${ }^{1}$) The proof below shows that Lemma 4 remains true for A an arbitrary commutative ring with 1 , if we use the more general concept of signatures developed in [4].
 ${ }^{2}$) cf. the cubic polynomial in [3, p. 26].
 $\left.{ }^{3}\right) N C_{0} / A_{0}(c)=$ determinant of the A_{0}-linear map $x \rightarrow c x$ on C_{0}.

[^2]: ${ }^{4}$) We write $\tilde{E} \otimes L$ instead of $\tilde{E} \otimes\left(L \otimes_{\mathbf{Z}} A\right)$, etc.

