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a is the restriction o f r to K, i f a = xocp^. I f K and L are fields, this means that cp is 
compat ible w i th the orderings corresponding to a and T. I f p is a pr ime ideal o f ^ ( A T ) 
ly ing min ima l ly over A{cp) then there exists a (minimal) prime ideal q o f W(L) wi th 
^>^ 1(q) = p (cf. [5] C h a p . II . § 2 no 7 P rop . 16). Th i s remark immediately implies 

P R O P O S I T I O N 2A. A signature a of K can be extended to a signature of L with 
respect to cp if and only if <j(A((p)) = 0. 

§3. The Transfer Map 

N o w assume i n addi t ion that cp:K-+L is finite and separable. In our case, this 
means that i n the decomposi t ion L = Ll x ••• x Lr o f L as a A^-module corresponding 
to the decomposi t ion K=Kl x ••• x K„ any Lt is either zero or a product o f finite 
separable field extensions o f Kt. F o r later convenience I recall the definition o f the 
regular trace Tr = Tr(p f rom L to K ([3], p. 397, [7]). W e identify the r ing E n d x ( L ) o f 
AT-linear endomorphisms o f L w i th UomK(L, K)®KL. Th is is possible since L is a 
finitely generated projective AT-module. F o r any x i n L we denote by L(x) the ^ - l inea r 
endomorphism j>h->jty o f L. W e further denote by e: E n d * ( L ) -> K the evaluation map 

f®x\->f(x) {fin H o m ( L , K), x i n L } . The regular trace is defined by 

Tr(x) = e(L(x)). 

A s is wel l k n o w n (loc. cit.) the A^-bilinear f o r m Tr{xy) on L is non singular. F r o m this 
one sees immediately (cf [6]) that for any space (E9 B) over L the Af-module E equipped 
wi th the bi l inear fo rm TroB: Ex E-> AT is a space over K. W e thus get an additive map 
([18]) 

Tr*:W(L)-+W(K). 

sending { ( £ , B)} to { ( £ , TroB)}. Th i s " transfer-map" is related to (p+\W(K)^> W(L) 
by the fo l lowing "F roben ius l a w " 

P R O P O S I T I O N 3.1. ([18]). 

x-Tr* (y) = Tr*((p* (x) y)for x in W(K) and y in W{L). 

In fact, for spaces (Eu Bx) over K and (E2, B2) over L the canonical map f rom 
El®KE1 to (L®KEi)®LE2 is an i somorphism o f spaces w i th respect to the forms 
Bl®K{TroB1) and Tro(B[®LB2) where B[ is obtained f rom Bt by base extension. 

W e denote the image Tr*(W(L)) by M{cp). The Frobenius law implies 



C O R O L L A R Y 3.2. M(q>) is an ideal of W{K) and A {cp) M((p) = 0. 
The transfer map is compatible wi th base extensions. Th is is the content o f the 

fo l lowing " M a c k e y l aw" , whose importance has been revealed by Dress i n [6]. 

P R O P O S I T I O N 3.3. Assume cp\K-*L and ^:K-+ M are homomorphisms between 
(semisimple) rings and that cp is finite and separable. Then the diagram 

is commutative. 
Indeed, by erasing the letters " W" and the asterics, one obtains a commutat ive 

diagram, as fol lows easily f rom the description o f the regular trace above. Start ing 

f rom this fact the p r o o f o f Propos i t ion 3.3 is straightforward. 

W e shall often write TrL/K instead o f Tr99 when there is no doubt as to wh ich 

mapping cp-.K-*L is being considered. 

Remark. C lear ly the statements o f this section remain true for the W i t t rings o f 

arbitrary commutat ive rings in the sense o f [12], i f cp\K-+L is finite etale, i n other 

words, i f L is a finitely generated projective ^ - m o d u l e and a projective L ® K L - m o d u l e 

([8] P rop . 18.3.1, p. 114). 

§4. Proof of the Uniqueness Theorem 1.3 

Throughout this section L/K w i l l be a finite extension o f fields o f characteristic 
zero. Denote by 7>*(1) the value o f the unit element (1) o f W(L) under the transfer 
map Tr*: W{L)-+ W(K) wi th respect to the inclus ion i:K-*L. 

L E M M A 4.1. For any signature a of K we have a(Tr* ( 1 ) ) ^ 0 . The signature a can 
be extended to L if and only if o(Tr*(\))>0. 

Proof W e proceed by induc t ion on n = \_L:K']. F o r n=l the assertion is t r iv ia l . 

Assume n > 1. I f a can not be extended to L then by P r o p . 2.1 we have a (A (i)) # 0 and 

hence by C o r . 3.2 a (A/ ( / ) ) = 0, i n part icular <j(Tr* (1)) = 0. N o w we assume that c has 

at least one extension T i n Sign L. Then 

W(L) 
T>*4 

W(M®KL) 

W(M) W(K) 

°(Tr*(l)) = r(UTr*(l)). 

B y the M a c k e y law 3.3 the diagram 

W(L) 

W(K) 

W(L(g)KL) 
J T I - ' L ® ! . / ! . 

W{L) 
I* 



is commutat ive. Here L®KL is considered as an extension o f L by \®i\L = L®KK-+ 
-+L®KL. Th i s extension is L - i somorph ic wi th a product £ L x E2 x ••• x Et where Et =L 
and E 2 , E t are algebraic field extensions o f L wi th degrees smaller than n. 

Thus 

* ( 7 > 2 / x ( l ) ) = I t ( T r * / L ( l ) ) . 
i = 1 

The first summand equals 1 and the others are ^ 0 by the induct ion hypothesis, which 
shows 0"(7>* / K ( l))>O. q.e.d. 

F o r later convenience we recall the fo l lowing 
E X A M P L E 4.2. Assume L = K(yja) wi th some a #0 in K. Then a signature <x o f AT 

is extendable to L i f and only i f a(a)=\. Indeed, without loss o f generality assume 
L^K. 7>*(1) is represented by the space L over K wi th bi l inear form Tr(xy). Th is 
space is i somorphic to (2)1 (2a) (Consider the basis 1, yja). 

F o r the remainder o f this section R denotes a real closed field and g denotes the 
signature o f R. 

L E M M A 4.3 Assume cp is a homomorphism from K into R such that 

e ( < P * 7 > * ( l ) ) > 0 . 

Then cp can be extended to homomorphism from L into R. 
Proof Let a denote the signature g°cp* o f K. The tensor product R®KL construc­

ted f rom cp\K-+R and the inclus ion i:K-*L has a decomposi t ion 

R ®KL = Ei x ••• x Et 

into fields. W e regard R®KL as an extension o f R by the map l ® / f r o m R = R®KKto 
R®KL. F r o m the M a c k e y law 3.3 we obta in as in the p r oo f o f l emma 4 .1 : 

°(TrlK(l)) = QoTr*9L/R(l)= £ QoTrtj/R(l). 

i = i 
N o w according to (1.1) any E} is /^-isomorphic either to R or to the algebraic closure 
R o f R. Since W(R)^Z/2Z is a torsion group, Tr*m(\) = 0. Thus we see that 
cr(Tr*/K(\)) equals the number o f components Ei wh ich are isomorphic to R. Reca l l 
that Ex,..., Et fo rm a full system o f inequivalent field composites o f L and R over K 
([11] C h a p . I, §16) . Thus it fol lows that a (7 r* / J C ( l ) ) is the number o f different homo-
morphisms f rom L to R wh ich extend cp. Since by assumption cr(Tr*/K(\))>0, the 
p r o o f is complete. 



P R O P O S I T I O N 4.4. Assume L is ordered and cp:K->R is an order preserving 
homomorphism. Then there exists an order preserving homomorphism i/r. L - » R which 
extends cp. 

Proof, i) Let a denote the signature o f K corresponding to the restriction o f the 
ordering o f L to K. The assumption that cp is order preserving means (J = Q°(p^. Since 
o can be extended to L we know from L e m m a 4.1 that cr(7>*(l))>o and thus by L e m ­
ma 3.4 that there exists at least one homomorph i sm f rom L to R which extends cp. 

i i) Let \jjr denote the different homomorphisms from L to R which extend 
cp. W e must show that at least one o f the ^ is order preserving. Assume the contrary 
is true. Then for any 1 ^ / ^ r , we have an element at>0 in L such that i /^(a t )<0. 
B y example 4.2 the ordering o f L can be extended to the field M—L{Jax,yjar). 
B y part i) o f our p roo f there exists a homomorph i sm / : M - » 7 ? which extends cp. 
Certa in ly x(a) = x(\/ai)2 > 0 f ° r Thus x | L can not coincide wi th any o f the 
ij/i9 wh ich yields the desired contradict ion. q.d.e. 

Af ter these preparations the p roo f o f Theorem 1.3 is easy. F r o m Propos i t ion 4.4 
and an appl icat ion o f Zorn ' s l emma it fol lows that the given order preserving homo­
morph ism cp\K-> R can be extended to a homomorph i sm \j/ f rom the real closure Fto 
R. W e still must show that \j/ is the only extension o f cp f rom F to R. F o r any x' F-* R 
extending cp the images / ( F ) and ij/(F) both coincide wi th the algebraic closure o f A^in 
R. Thus there exists an au tomorphism X o f FjKW\\hx = ^°^- O f course A is order pre­
serving. Assume k is not the identity. Then we can find some x in F wi th x<X(x). 
A p p l y i n g X repeatedly to this inequali ty we obtain 

x < X(x) < X2(x) <••• < Xn(x) 

for a l l n, wh ich is impossible since Xm(x) = x for some m (depending on x). Th is com­
pletes the p r oo f o f Theorem 1.3. 

§ 5. A Trace Formula for Signatures 

I want to throw some more light on L e m m a 4.1. W e first return to Propos i t ion 4.4. 
W e denote by F a fixed real closure o f L wi th respect to the given ordering. B y Theo­
rem 1.3 any order preserving extension ij/:L->R o f cp can be further extended to F. 
Thus the uniqueness statement in Theorem 1.3, applied to F/K, shows that there is a 
unique order preserving \jj\L-+ R which extends cp. W e obtain the well k n o w n 

C O R O L L A R Y 5.1. Let L/K be a finite algebraic field extension and cp:K-* R a 
homomorph i sm f rom K into a real closed field R. Denote by Q the signature of R and 
by a the induced signature Q^cp^ o f K. Then the signatures T o f L extending a corres­
pond bijectively wi th the homomorphisms if/.L^R extending cp v ia T = QO[j/^. 



W e stay in the si tuation o f this corol lary . Denote by S the set o f al l ij/.L^R ex­
tending cp. Repeat ing the p roo f o f L e m m a 4.3 wi th an arbitrary element £ o f W(L) 
instead o f the unit element we obtain 

wi th the convent ion that i f S is empty this sum is zero. C o r o l l a r y 5.1 now implies 

P R O P O S I T I O N 5.2 Let L/K be a finite algebraic field extension and a a signature 
ofK. For any c in W{L) 

^ ( T r L V ( 0 ) = Z r ( 0 , 

where x runs through all signatures of L extending a. 
This proposi t ion generalizes L e m m a 4.1. 

§6. Existence of Real Places on Function Fields 

In this section R denotes a real closed field, K a real finitely generated field exten­
sion o f R o f transcendency degree 1, and S a fixed real closed field extension o f R 
(e. g. S=R). W e are interested in places cp:K-+ Suco over R, i . e. w i th cp the identity 
on R. The a im o f this section is to prove the fo l lowing theorem by the methods o f §4 . 

T H E O R E M 6.1. Assume that tr) is a transcendency basis of K over R. Then 
there exist elements a u . . . an b x , b r in R with at<bh such that for every r-tuple 
( q , . . . , cr) of elements in S with a^c^bi there exists a place cp: K-+Svco over R 
with (p(ti) = Cifor 1 ^ / ^ r . 

Remark 6.2. Assume that S has transcendency degree over R. Then for given 
elements a u a r , b u ...,br i n R wi th ai<bi there exists an r-tuple ( q , . . . , cr) o f ele­
ments in S wh ich are algebraically independent over R and such that ^ for 
l . < / < r . Indeed, take any system (w^ . . . , ur) o f algebraically independent elements i n 
S. Rep lac ing ut by ± ut or ± uf1 we may assume that a l l ut are positive and not i n ­
finitely large over R, i.e. that there exist elements dt in R such that O^u^d^ Then 
the elements 

c . = at + d - 1 n i ( 6 £ - f l . ) 

have the required property. A n y place cp:K-+ Su oo over R w i th cp{tt) = c( must be an i n ­
jec t ion o f AT into S. Thus Theorem 6.1 contains Lang 's theorem about embeddings o f 



real function fields ([15], T h . 10). O u r p r o o f w i l l be very close to the p r o o f in [15], the 
main difference being that we replace the use o f Sturm's theorem by results o f section 4. 

Remark 6.3. It is evident f rom the arguments i n [1] that one may use theorem 6.1 
to obtain generalizations o f A r t i n ' s results on definite functions in [1] §2 and §4 , see 
e.g. Lang ' s theorem 8 in [15]. 

In the p r o o f o f Theorem 6.1 we may always assume in addi t ion that the r-tuple 
( c u c r ) is algebraically free over R. In fact, for a given S one easily constructs a real 
closed field extension T o f S such that S is maximal ly archimedian in T and T contains 
a system ul9...9ur o f elements which are algebraically independent and infinitely 
small over S (e. g. [15], p. 389). If ( c l 9 c r ) is an r-tuple in S such that there exists a 
homomorph i sm \p:K^>T over R w i th i/^(/i) = c f + ui9 then the compos i t ion cp = Xoijj 
with the canonical place l\T^>Suco o f T/S ([15], p. 380) has the values <p(r.) = c r 

W e make the fo l lowing arrangements for the p roo f o f Theorem 6.1: 7>*(1) denotes 
the image o f the unit element o f W(K) under the transfer map Tr* f rom W(K) to 
W(R(tl9...9 tr)). W e chose elements gi(tl9...9 tr)9...9 gn(tl9...9 tr) in R\tl9...9 tr~\ such 
that 7>*(1) is represented by the space 

(gi(tl9...9tr))±.»±(gH(tl9...9tr)) 

over R(tl9...9 tr). W e further chose a fixed ordering o f A^and denote by o the signature 
o f R(tl9...,tr) corresponding wi th the restriction o f this ordering to R ( t l 9 t r ) . 
F i n a l l y we denote by Q the signature o f S. 

W e first prove Theorem 6.1 in the case r = 1. Wr i t e / instead o f tv Let 

d1<d2< "< dN 

be the elements o f R wh ich occur as roots o f (at least one of) the polynomials gt(t) 
i f these have any roots i n R. W e chose a <b i n R i n the fo l lowing way : I f there are no 
roots let a and b be arbitrary wi th a<b. I f t<dt let b = dl and a arbitrary <dv I f 
dt<t<di + l let a = di9 b = di + 1 . I f dN<t let a = dN and b be arbitrary >a. Assume c is 
an element o f S wi th a<c<b and c not i n R. B y (1.1) every gt(t) decomposes i n 
Ä [ r ] i n a product o f a constant, some factors t - dt and some factors o f type (t - ef + f2 

w i t h / # 0 . Therefore c l ea r lyg t ( c ) ^0and Q (g i ( c ) ) = a(gi(t))for 1 ^ / < / i ( c f [15] p. 386.) 
W e denote by / the homomorph i sm from R(t) to S over R w i th / ( / ) = c. Then 

e°X*(Tr*(l))= t Q(gi(c))= t e(gt(t)) = a(Tr*(l)), 
i = l i = l 

N o w o can be extended to K. Thus by L e m m a 4.1 we have ^o^(rr*(l))>0. B y L e m ­
ma 4.3 x c a n be extended to a homomorph i sm cp f rom AT to S. 

F r o m the thus proved special case r= 1 o f Theorem 6.1 one easily obtains (see [15], 
p. 387) a p roo f for al l r ̂  1 o f the fo l lowing 



P R O P O S I T I O N 6.4. ([15], T h . 8.). Assume K is ordered and M is a finite set of 
non zero elements in K. Then there exists a place cp:K^> Ru oo over R such that for all x 
in M the value cp(x) is ^ oo, ^ 0 and of the same sign as x. 

W e now prove Theorem 6.1 for arbitrary r ^ 1. B y Propos i t ion 6.4 there exists a 
place cp:K^> Rucc over R such that the values cp(ti) = hi are finite and such that the 
values cp(gj(ti,..., tr))=gj(hl,..., hr) are non zero and have the same signs as the cor­
responding g j ( t l 9 t r ) . {Recal l that we have fixed an ordering on K.} Then there ex­
ists an element e > 0 i n R such that for a l l r-tuples ( q , c r ) in S wi th h{ — 6 < c i < A | . + 
+ e the values gj(cl,..., cr) are non zero and o f the same signs as the corresponding 
gj(cl9...9 cr) are non zero and o f the same signs as the corresponding gJ(tl,..., tr). 
Assume that ( q , c r ) is such an r-tuple which is in addi t ion algebraically free over R. 
Denote by x the homomorph i sm from R(tl9..., tr) to S over R wh ich maps tt to ci for 
1 ̂ / ^ r . A s in the case r = 1 we obta in 

o{Tr*(\)) = QoU(Tr*{l)) 

and we see again by L e m m a 4.1 and 4.3 that / can be extended to a homomorph i sm cp 
from Kio S. Theorem 6.1 is proved. 

Cer ta in ly there are other relevant questions about real places on function fields 
which can be treated by the methods used here. I hope to come back to this subject 
in the near future. 
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