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o is the restriction of t to K, if 6=1°¢,. If K and L are fields, this means that ¢ is
compatible with the orderings corresponding to ¢ and . If p is a prime ideal of W (K)
lying minimally over A (¢) then there exists a (minimal) prime ideal q of W (L) with
¢%'(q)=p (cf. [5] Chap. II. §2 no 7 Prop. 16). This remark immediately implies

PROPOSITION 2.1. A4 signature o of K can be extended to a signature of L with
respect to ¢ if and only if ¢(A(¢))=0.

§3. The Transfer Map

Now assume in addition that ¢:K— L is finite and separable. In our case, this
means that in the decomposition L=L, x --- x L, of L as a K-module corresponding
to the decomposition K=K, x --- x K,, any L; is either zero or a product of finite
separable field extensions of K;. For later convenience I recall the definition of the
regular trace Tr=Tr, from L to K ([3], p. 397, [7]). We identify the ring End (L) of
K-linear endomorphisms of L with Homy (L, K)®gL. This is possible since L is a
finitely generated projective K-module. For any x in L we denote by L(x) the K-linear
endomorphism y+> xy of L. We further denote by e: Endg (L) — K the evaluation map
f®x—f(x) {fin Hom (L, K), x in L}. The regular trace is defined by

Tr(x) =e(L(x)).

As is well known (loc. cit.) the K-bilinear form 7r(xy) on L is non singular. From this
one sees immediately (cf [6]) that for any space (E, B) over L the K-module E equipped
with the bilinear form Tro B: E x E— K is a space over K. We thus get an additive map

([18])
Tr*: W (L) -» W (K).

sending {(E, B)} to {(E, Tro B)}. This “transfer-map” is related to ¢,: W(K)— W(L)
by the following *“‘Frobenius law”

PROPOSITION 3.1. ([18]).

x-Tr*(y) = Tr* (¢« (x) y) for x in W(K) and y in W(L).

In fact, for spaces (E,, B,) over K and (E,, B,) over L the canonical map from
E,®xE, to (LQgE;)®_E, is an isomorphism of spaces with respect to the forms

B,®x(TroB,) and Tr-(B;® ,B,) where B is obtained from B, by base extension.
We denote the image Tr*(W (L)) by M (¢). The Frobenius law implies
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COROLLARY 3.2. M(¢) is an ideal of W(K) and A(¢) M (¢)=0.
The transfer map is compatible with base extensions. This is the content of the
following “Mackey law”, whose importance has been revealed by Dress in [6].

PROPOSITION 3.3. Assume ¢:K— L and y: K— M are homomorphisms between
(semisimple) rings and that ¢ is finite and separable. Then the diagram

w (L)L w (M L)

Tr‘,l " lT"‘l ®yp
W (K)—— W (M)

is commutative.

Indeed, by erasing the letters ‘W’ and the asterics, one obtains a commutative
diagram, as follows easily from the description of the regular trace above. Starting
from this fact the proof of Proposition 3.3 is straightforward.

We shall often write Trpk instead of Tr,, when there is no doubt as to which
mapping ¢:K— L is being considered.

Remark. Clearly the statements of this section remain true for the Witt rings of
arbitrary commutative rings in the sense of [12], if ¢:K— L is finite étale, in other
words, if L is a finitely generated projective K-module and a projective L& g L-module
([8] Prop. 18.3.1, p. 114).

§4. Proof of the Uniqueness Theorem 1.3

Throughout this section L/K will be a finite extension of fields of characteristic
zero. Denote by Tr*(1) the value of the unit element (1) of W (L) under the transfer
map Tr*: W(L)— W(K) with respect to the inclusion i:K— L.

LEMMA 4.1. For any signature o of K we have o(Tr*(1))>0. The signature ¢ can
be extended to L if and only if ¢(Tr*(1))>0.

Proof. We proceed by induction on n=[L:K]. For n=1 the assertion is trivial.
Assume n> 1. If 6 can not be extended to L then by Prop. 2.1 we have ¢ (A4 (i)) #0 and
hence by Cor. 3.2 ¢(M (i))=0, in particular o(7r* (1))=0. Now we assume that ¢ has
at least one extension 7 in Sign L. Then

o(Tr* (1)) = t(i, Tr*(1)).
By the Mackey law 3.3 the diagram

W (L)225 w (L ®4 L)

T"L/Kl i lT"LQL/L
W (K)—— W (L)
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is commutative. Here L® L is considered as an extension of L by 1®i:L=L®yK —
— L®g L. This extension is L-isomorphic witha product E; x E, x --- x E, where E; =L
and E,, ..., E, are algebraic field extensions of L with degrees smaller than n.

Thus

t

o(Trix(1)) = _Zl ©(Trg(1)).
The first summand equals 1 and the others are >0 by the induction hypothesis, which
shows a(Tr}x(1))>0. q.e.d.

For later convenience we recall the following

EXAMPLE 4.2. Assume L=K(\/a) with some a#0 in K. Then a signature o of K
is extendable to L if and only if ¢ (a)=1. Indeed, without loss of generality assume
L+#K. Tr*(1) is represented by the space L over K with bilinear form Tr(xy). This
space is isomorphic to (2)L(2a) (Consider the basis 1, \/a).

For the remainder of this section R denotes a real closed field and ¢ denotes the
signature of R.

LEMMA 4.3 Assume ¢ is a homomorphism from K into R such that

o(@Tr*(1))> 0.

Then ¢ can be extended to homomorphism from L into R.
Proof. Let o denote the signature go ¢, of K. The tensor product R®y L construc-
ted from ¢:K— R and the inclusion i: K— L has a decomposition

R®L=E, x-xE,

into fields. We regard R® L as an extension of R by the map 1®i from R=R®yK to
R® kL. From the Mackey law 3.3 we obtain as in the proof of lemma 4.1:

t
o(Trix (1)) = e Trreur (1) = 21 e°Tri,r(1).
i<

Now according to (1.1) any E; is R-isomorphic either to R or to the algebraic closure
R of R. Since W(R)=Z/2Z is a torsion group, Tr*gg(1)=0. Thus we see that
o(Tri,k(1)) equals the number of components E; which are isomorphic to R. Recall
that E,,..., E, form a full system of inequivalent field composites of L and R over K
([11] Chap. I, §16). Thus it follows that o(7r/x(1)) is the number of different homo-
morphisms from L to R which extend ¢. Since by assumption o(Tr/x(1))>0, the
proof is complete.
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PROPOSITION 4.4. Assume L is ordered and ¢:K— R is an order preserving
homomorphism. Then there exists an order preserving homomorphism y: L — R which
extends @.

Proof. 1) Let ¢ denote the signature of K corresponding to the restriction of the
ordering of L to K. The assumption that ¢ is order preserving means ¢ =90 @,. Since
o can be extended to L we know from Lemma 4.1 that o(7r*(1))> o0 and thus by Lem-
ma 3.4 that there exists at least one homomorphism from L to R which extends ¢.

1) Let ¥y, ..., ¥, denote the different homomorphisms from L to R which extend
¢@. We must show that at least one of the ¥, is order preserving. Assume the contrary
is true. Then for any y;, I <i<r, we have an element ;>0 in L such that y,(a;) <O0.
By example 4.2 the ordering of L can be extended to the field M=L(\/a1, ey \/a,).
By part i) of our proof there exists a homomorphism y:M — R which extends ¢.
Certainly x(a)=x(\/a,.)2>0 for 1<i<r. Thus y | L can not coincide with any of the
¥;, which yields the desired contradiction. q.d.e.

After these preparations the proof of Theorem 1.3 is easy. From Proposition 4.4
and an application of Zorn’s lemma it follows that the given order preserving homo-
morphism ¢: K— R can be extended to a homomorphism ¢ from the real closure F to
R. We still must show that y is the only extension of ¢ from Fto R. For any y:F— R
extending ¢ the images x(F) and y(F) both coincide with the algebraic closure of K in
R. Thus there exists an automorphism 4 of F/K with y =1 o 1. Of course 4 is order pre-
serving. Assume 4 is not the identity. Then we can find some x in F with x <A(x).
Applying 4 repeatedly to this inequality we obtain

x <A(x) < i*(x) << A" (x)

for all n, which is impossible since ™(x)=x for some m (depending on x). This com-
pletes the proof of Theorem 1.3,

§5. A Trace Formula for Signatures

[ want to throw some more light on Lemma 4.1. We first return to Proposition 4.4.
We denote by F a fixed real closure of L with respect to the given ordering. By Theo-
rem 1.3 any order preserving extension y: L — R of ¢ can be further extended to F.
Thus the uniqueness statement in Theorem 1.3, applied to F/K, shows that there is a
unique order preserving Y : L — R which extends ¢. We obtain the well known

COROLLARY 5.1. Let L/K be a finite algebraic field extension and ¢:K—> R a
homomorphism from K into a real closed field R. Denote by g the signature of R and
by o the induced signature g0 ¢, of K. Then the signatures t of L extending o corres-
pond bijectively with the homomorphisms : L — R extending ¢ via t=go .



266 MANFRED KNEBUSCH

We stay in the situation of this corollary. Denote by S the set of all Y: L — R ex-
tending ¢. Repeating the proof of Lemma 4.3 with an arbitrary element ¢ of W(L)
instead of the unit element we obtain

G(T"t/x (f)) =ee T";®L/R((¢’ ® 1)« 5) = wgs 0°¥4 (&),

with the convention that if S is empty this sum is zero. Corollary 5.1 now implies

PROPOSITION 5.2 Let L/K be a finite algebraic field extension and o a signature
of K. Forany & in W(L)

o(Trix(8) = r%‘f(f)s

where T runs through all signatures of L extending o.
This proposition generalizes Lemma 4.1.

§6. Existence of Real Places on Function Fields

In this section R denotes a real closed field, K a real finitely generated field exten-
sion of R of transcendency degree r>1, and S a fixed real closed field extension of R
(e. 8. S=R). We are interested in places ¢: K— Suoo over R, i. e. with ¢ the identity
on R. The aim of this section is to prove the following theorem by the methods of §4.

THEOREM 6.1. Assume that (t,, ..., t,) is a transcendency basis of K over R. Then
there exist elements a,...a,, b,,..., b, in R with a;<b;, such that for every r-tuple
(¢ys..., ¢,) of elements in S with a;<c;<b; there exists a place ¢: K—Suc over R
with o(t;))=c; for 1 <i<r.

Remark 6.2. Assume that S has transcendency degree >r over R. Then for given
elements a,, ..., a,, by,...,b, in R with a;<b, there exists an r-tuple (¢, ..., ¢,) of ele-
ments in S which are algebraically independent over R and such that a;<c;<b; for
1<i<r. Indeed, take any system (u,, ..., u,) of algebraically independent elements in
S. Replacing u; by +u; or +u; ' we may assume that all u; are positive and not in-
finitely large over R, i.e. that there exist elements d; in R such that 0<u;<d;. Then
the elements

¢;=a;+d; 'u(b;— a;)

have the required property. Any place ¢ : K — SUoo over R with ¢(#;)=c; must be an in-
jection of K into S. Thus Theorem 6.1 contains Lang’s theorem about embeddings of
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real function fields ([15], Th. 10). Our proof will be very close to the proof in [15], the
main difference being that we replace the use of Sturm’s theorem by results of section 4.

Remark 6.3. It is evident from the arguments in [1] that one may use theorem 6.1
to obtain generalizations of Artin’s results on definite functions in [1] §2 and §4, see
e.g. Lang’s theorem 8 in [15].

In the proof of Theorem 6.1 we may always assume in addition that the r-tuple
(1, ---» ¢,) is algebraically free over R. In fact, for a given S one easily constructs a real
closed field extension T of S such that S is maximally archimedian in 7 and T contains
a system u,,..., u, of elements which are algebraically independent and infinitely
small over S (e. g. [15], p. 389). If (¢y, ..., ¢,) is an r-tuple in S such that there exists a
homomorphism y: K— T over R with y(#;)=c;+u;, then the composition ¢ =240y
with the canonical place 2:T— Suoo of T/S ([15], p. 380) has the values ¢(z)=c,.

We make the following arrangements for the proof of Theorem 6.1: Tr*(1) denotes
the image of the unit element of W(K) under the transfer map 7r* from W(K) to
W(R(t, ..., t,)). We chose elements g, (y,..., 1,), .-, &(t1,--» &) in R[#,..., 1,] such
that 7r*(1) is represented by the space

(gl (tla teey tr))i' J‘(gn(tl, ERE) tr))

over R(ty,..., t,). We further chose a fixed ordering of K and denote by o the signature
of R(t,...,t,) corresponding with the restriction of this ordering to R(ty,..., t,).
Finally we denote by g the signature of S.

We first prove Theorem 6.1 in the case r=1. Write ¢ instead of ¢,. Let

dy<d,<---<dy

be the elements of R which occur as roots of (at least one of) the polynomials g()
if these have any roots in R. We chose a<b in R in the following way: If there are no
roots let @ and b be arbitrary with a<b. If t<d, let b=d, and a arbitrary <d,. If
d<t<d,,, leta=d, b=d,,,. If dy<tlet a=dy and b be arbitrary >a. Assume c is
an element of S with a<c<b and ¢ not in R. By (1.1) every g,(t) decomposes in
R[t]in a product of a constant, some factors ¢ —d; and some factors of type (t—e)* +12
with f#0. Therefore clearly g;(c) #0 and ¢(g;(c)) = o(g;(?)) for 1<i<n(cf[15] p. 386.)
We denote by y the homomorphism from R(¢) to S over R with x(¢)=c. Then

n

e (Tr* (D) = 3 0(ai(©) = ¥ oa(0)=a(Tr* (1),

i=1

Now ¢ can be extended to K. Thus by Lemma 4.1 we have go x4(7r*(1))>0. By Lem-
ma 4.3 x can be extended to a homomorphism ¢ from K'to S.

From the thus proved special case r=1 of Theorem 6.1 one easily obtains (see [15],
p. 387) a proof for all r > 1 of the following
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PROPOSITION 6.4. ([15], Th. 8.). Assume K is ordered and M is a finite set of
non zero elements in K. Then there exists a place ¢: K — Ruoo over R such that for all x
in M the value ¢(x) is # o0, #0and of the same sign as x.

We now prove Theorem 6.1 for arbitrary r>1. By Proposition 6.4 there exists a
place ¢:K— Ruoo over R such that the values ¢(t;)=#h; are finite and such that the
values ¢(g;(t;,..., ,))=g,(hy,..., h,) are non zero and have the same signs as the cor-
responding g;(t,, ..., t,). {Recall that we have fixed an ordering on K.} Then there ex-
ists an element ¢ >0 in R such that for all ~-tuples (cy, ..., ¢,) in S with h;— ¢ <c;<h+
+¢ the values g;(c, ..., ¢,) are non zero and of the same signs as the corresponding
g;(cy,..., ¢,) are non zero and of the same signs as the corresponding g;(1,, ..., t,).
Assume that (¢, ..., ¢,) is such an r-tuple which is in addition algebraically free over R.
Denote by y the homomorphism from R(z,, ..., 1,) to S over R which maps ¢; to ¢; for
1 <i<r. Asinthe case r=1 we obtain

o(Tr*(1)) = eox«(Tr* (1))

and we see again by Lemma 4.1 and 4.3 that y can be extended to a homomorphism ¢
from Kto S. Theorem 6.1 is proved.

Certainly there are other relevant questions about real places on function fields
which can be treated by the methods used here. I hope to come back to this subject
in the near future.
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