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1. Introduction. In 1937 W i t t [9] defined a commutative ring 
W(F) whose elements are equivalence classes of anisotropic quadratic 
forms over a field F of characteristic not 2. There is also the W i t t -
Grothendieck ring WG(F) which is generated by equivalence classes 
of quadratic forms and which maps surjectively onto W(F). These 
constructions were extended to an arbitrary pro-finite group, ®, in 
[l] and [6] yielding commutative rings W(&) and WG(&). In case © 
is the galois group of a separable algebraic closure of F we have 
W(®) = W(F) and WG(®) = WG(F). A l l these rings have the form 
Z[G]/K where G is an abelian group of exponent two and K is an 
ideal which under any homomorphism of Z[G] to Z is mapped to 0 
or Z 2 n . If C is a connected semilocal commutative ring, the same is 
true for the W i t t ring W(C) and the Witt-Grothendieck ring WG(C) 
of symmetric bilinear forms over C as defined in [2], and also for the 
similarly defined rings W(C, J) and WG(Ct J) of hermitian forms 
over C with respect to some involution J. 

In [5], Pfister proved certain structure theorems for W(F) using 
his theory of multiplicative forms. Simpler proofs have been given in 
[3]> [?]> [8]. We show that these results depend only on the fact that 
W(F)=:Z[G]/Kf with K as above. Thus we obtain unified proofs for 
al l the W i t t and Witt-Grothendieck rings mentioned. 

Detailed proofs wi l l appear elsewhere. 

2. Homomorphic images of group rings. Let G be an abelian torsion 
group. The characters x of G correspond bijectively with the homo-
morphisms ypx of Z[G] into some ring A of algebraic integers generated 
by roots of unity . (If G has exponent 2, then A =Z.) The minimal 
prime ideals of Z[G] are the kernels of the homomorphisms \f/x:Z[G] 
—*A. The other prime ideals are the inverse images under the \j/x of the 
maximal ideals of A and are maximal. 
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T H E O R E M 1. If M is a maximal ideal of Z[G] the following are 
equivalent: 

(1) M contains a unique minimal prime ideal. 
(2) The rational prime p such that MC\Z=Zp does not occur as the 

order of any element of G. 

In the sequel K is a proper ideal of Z[G] and R denotes Z[G]/K. 

PROPOSITION 2. The nil radical, N i l R, is contained in the torsion 
subgroup, Rl. We have Rl = N i l R if and only if no maximal ideal of R 
is a minimal prime ideal and R* = R if and only if all maximal ideals 
of R are minimal prime ideals. 

T H E O R E M 3. If p is a rational prime which does not occur as the 
order of any element ofG, the following are equivalent: 

(1) R has nonzero p-torsion. 
(2) R has nonnilpotent p-torsion. 
(3) R contains a minimal prime ideal M such that R/M is afield of 

characteristic p. 
(4) There exists a character x of G with 0 ? ^ ^ x ( X ) n Z C ^ . 

In addition, suppose now that G is an abelian g-group for some 
rational prime q. Then Z[G] contains a unique prime ideal Mo which 
contains q. 

C O R O L L A R Y 4. The following are equivalent: 
(1) RHsq-primary. 
(2) Let M be a maximal ideal of R which does not contain q, then M 

is not a minimal prime ideal. 
(3) For all characters X of G, ^ ( X ) n z = 0 or Zq^\ 
(4) KC.Mo and all the zero divisors of R lie in M0 = M0/K. 

T H E O R E M 5. R'C N i l R if and only if KC\Z=0 and one (hence all) of 
(1), (2), (3), (4) of Corollary 4 hold. 

T H E O R E M 6. //K satisfies the conditions of Theorem 5, 
(1) R^NilR, _ 
(2) R'j^O if and only if M0 consists entirely of zero divisors, 
(3) R is connected. 

T H E O R E M 7. The following are equivalent: 
(1) For all characters x we have \l/x(K)r\Z=Zqn™. 
(2) R = R* is a q-torsion group. 
(3) KC\Z=Zq\_ 
(4) MoDK and M0 is the unique prime ideal of R. 
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These results apply to the rings mentioned in §1 with q = 2. In 
particular, Theorems 5 and 6 yield the results of [5, §3] for W i t t rings 
of formally real fields and Theorem 7 those of [5, §5] for W i t t rings of 
nonreal fields. 

B y studying subrings of the rings described in Theorems 5-7 and 
using the results of [2] for symmetric bilinear forms over a Dedekind 
ring C and similar results for hermitian forms over C with respect to 
some involution J of C, we obtain analogous structure theorems for 
the rings W(C), WG(C), W(C, J) and WG(C, J). In particular, al l 
these rings have only two-torsion, Rl = N i l R in which case no maximal 
ideal is a minimal prime ideal or Rl = R in which case R contains a 
unique prime ideal. The forms of even dimension are the unique prime 
ideal containing two which contains all zero divisors of R. F inal ly , 
any maximal ideal of R which contains an odd rational prime con
tains a unique minimal prime ideal of R. 

3. Topological considerations and orderings on fields. Throughout 
this section G wi l l be a group of exponent 2 and R = Z[G]/K with K 
satisfying the equivalent conditions of Theorem 5. The images in R of 
elements g in G wi l l be written g. For a field F let F = F— {0}. Then 
W(F)=Z[F/F2]/K with K satisfying the conditions of Corollary 4. 
In this case K satisfies the conditions of Theorem 5 if and only if F is a 
formally real field. 

T H E O R E M 8. Let X be the set of minimal prime ideals of R. Then 
(a) in the Zariski topology X is compact, Hausdorff, totally dis

connected. 
(b) X is homeomorphic to Spec(Q®zR) and Q®zR=C(X, Q) the 

ring of Q-valued continuous functions on X where Q has the discrete 
topology. 

(c) For each P in X we have R/P^Z and Rred = R/Nil(R) C C(X, Z) 
(ZC(X, 0) with C(X, Z)/Rred being a 2-primary torsion group and 
C(X, Z) being the integral closure of Rred in Q®zR. 

(d) By a theorem of Nöbeling [4], Rred is a free abelian group and 
hence we have a split exact sequence 

0 -*Nil (2?) -+R->Rred-+0 

of abelian groups. 

Harrison (unpublished) and Lorenz-Leicht [3 ] have shown that the 
set of orderings on a field F is in bijective correspondence with X 



when R = W(F). Thus the set of orderings on a field can be topologized 
to yield a compact totally disconnected Hausdorff space. 

Le t F be an ordered field with ordering < , F< a real closure of F 
with regard to < , and c< the natural map W(F) —*W(F<). Since 
W(F<)=Z (Sylvester's law of inertia), K e r <r< = P< is a prime ideal of 
W(F). Let the character x < G H o m ( F / F 2 , ± 1) be denned by 

X<(aF>) = 1 if a > 0, 

= - 1 if a < 0. 

PROPOSITION 9. For u in R the following statements are equivalent: 
(a) u is a unit in R. 
(b) u = ± 1 mod Pfor all P in X. 
(c) u = ± g+s with g in G and s nilpotent. 

C O R O L L A R Y 10 (PFISTER [5]). Let F be a formally real field and 
R=W(F). Then u is a unit in R if and only if <J<(U) = ± 1 for all 
orderings < on F. 

Let E denote the family of al l open-and-closed subsets of X. 
DEFINITION . Harrison's subbasis H of E is the system of sets 

W(a) = {PEX\a = - 1 (mod P)\ 

where a runs over the elements ±g of R. 
If F is a formally real field and R = W(F) then identifying X with 

the set of orderings on F one sees that the elements of H are exactly 
the sets 

W(a) = {<oiiF\ a < 0}, a E F. 

PROPOSITION 11. Regarding Rred as a subring of C(X, Z) we have 

Rred = Z'\ + £ Z'lfu 
UGH 

where fu is the characteristic function of UCX. 

Following Bel 'ski l [l ] we call R = Z[G]/K a small Witt ring if there 
exists g in G with 1+g in K. Note that for F a field, W(F) is of this 
type. 

T H E O R E M 12. For a small Witt ring R the following statements are 
equivalent: 

(a) E = H. 
(b) (Approximation.) Given any two disjoint closed subsets Fi, Y2 of 

X there exists g in G such that g = — 1 (mod P) for all P in Yx and g = 
1 (mod P) for all P in Y2. 



i97i] WITT RINGS, GROUP RINGS, ORDERINGS OF FIELDS 209 

(c) Rred = Z-\ + C(X,2Z). 

COROLLARY 13. For a formally real field F the following statements 
are equivalent: 

(a) // U is an open-and-closed subset of orderings on F then there 
exists a in F such that < is in U if and only ifa<0. 

(b) Given two disjoint closed subsets Fi, F 2 of orderings on F there 
exists a in F such that a<0for < in F x and a>0for < in F 2. 

(c) W(F)red=Z-l + C(X,2Z). 

PROPOSITION 14. Suppose F is a field with F/F2 finite of order 2n. 
Then there are at most 2 N _ 1 orderings of F. 

If F is a field having orderings <i , • • • , < » we denote by o the 
natural map W(F)-J>W(F<1)X • • • XW(F<n)=ZX • • • XZ v i a 
r - K ö < i W > * * * ><r<»W). 

T H E O R E M 15. Let <i, • • • , < n be orderings on a field F. Then the 
following statements are equivalent: 

(a) For each i there exists a in F such that a < » 0 and 0<jaforJ5*i. 
(b) X<i» * ' * i X<n

 a r e linearly independent elements of 
Wom{F/F\ ± 1 ) . 

(c) Im<r={(&i, • • • ,bn)\bi = bj(mod2)forallij}. 

If F is the field R((x))((y)) of iterated formal power series in 2 
variables over the real field, F has four orderings, W(F) = W(F)red is 
the group algebra of the K l e i n four group, and the conditions of 
Theorem 15 fai l . 

C O R O L L A R Y 16. Suppose F is a field with F/F2 finite of order 2N. If 
condition (a) of Theorem 15 holds for the orderings on F then there are at 
most n orderings on F. 

R E F E R E N C E S 

1. A . A . Bel'skir, Cohomological Witt rings, Izv. Akad. Nauk SSSR Ser. Mat. 32 
(1968), 1147-1161 « M a t h . USSR Izv. 2 (1968), 1101-1115. M R 39 #5666. 

2. M . Knebusch, Grothendieck-und Wittringe von nichtausgearteten symmetrischen 
Bilinearformen, S.-B. Heidelberger Akad. Wiss. Math.-Natur. K l . 1969, 93-157. 

3. F. Lorenz und J . Leicht, Die Primideale des Wittschen Ringes, Invent. Math. 
10 (1970), 82-88. 

4. G . Nöbeling, Verallgemeinerung eines Satzes von Herrn E. Specker, Invent. 
Math. 6 (1968), 41-55. M R 38 #233. 

5. A . Pfister, Quadratische Formen in beliebigen Körpern, Invent. Math. 1 (1966), 
116-132. M R 34 #169. 

6. W . Scharlau, Quadratische Formen und Galois-Cohomologie, Invent. Math. 4 
(1967), 238-264. M R 37 #1442. 



7. , Zur Pfisterschen Theorie der quadratischen Formen, Invent. Math. 6 
(1969), 327-328. M R 39 #2793. 

8. , Induction theorems and the Witt group, Invent. Math. 11 (1970), 37 -44 . 
9. E . Witt, Theorie der quadratischen Formen in beliebigen Körpern, J . Reine 

Angew. Math. 176 (1937), 31-44 . 

M A T H E M A T I S C H E S INSTITUT, U N I V E R S I T Ä T DES S A A R L A N D E S , S A A R B R Ü C K E N , 

G E R M A N Y 

C O R N E L L U N I V E R S I T Y , I T H A C A , N E W Y O R K 14850 

N O R T H W E S T E R N U N I V E R S I T Y , E V A N S T O N , ILLINOIS 60202 


