Metadata, citation and similar papers at core.ac.uk

Provided by St Andrews Research Repository

APPLICATIONS OF LIE METHODS TO COMPUTATIONS WITH
POLYCYCLIC GROUPS

Bjorn Assmann

A Thesis Submitted for the Degree of PhD
at the
University of St. Andrews

2007

Full metadata for this item is available in the St Andrews
Digital Research Repository
at:
https:/ /research-repository.st-andrews.ac.uk

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/435

This item is protected by original copyright

https://core.ac.uk/display/1154309?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/435

Applications of Lie methods
to computations with polycyclic groups

A thesis to be submitted to the
UNIVERSITY OF ST ANDREWS

for the degree of
DOCTOR OF PHILOSOPHY

by

Bjorn Assmann

School of Computer Science
University of St Andrews
September 12, 2007

I, Bjorn Assmann, hereby certify that this thesis, which is approximately
31000 words in length, has been written by me, that it is the record of
work carried out by me, and that it has not been submitted in any previous
application for a higher degree.

date signature of candidate

I was admitted as a research student in October 2004 and as a candidate
for the degree of Doctor of Philosophy in October 2004; the higher study
for which this is a record was carried out in the University of St Andrews
between 2004 and 2007.

date signature of candidate

I, Stephen Linton, hereby certify that the candidate has fulfilled the condi-
tions of the Resolution and Regulations appropriate for the degree of Doctor
of Philosophy in the University of St Andrews and that the candidate is
qualified to submit this thesis in application for that degree.

date signature of supervisor

In submitting this thesis to the University of St. Andrews I understand that
[am giving permission for it to be made available for use in accordance
with the regulations of the University Library for the time being in force,
subject to any copyright vested in the work not being affected thereby. I also
understand that the title and abstract will be published, and that a copy
of the work may be made and supplied to any bona fide library or research
worker.

date signature of candidate

Abstract

In this thesis we demonstrate the algorithmic usefulness of the so-called
Mal’cev correspondence for computations with infinite polycyclic groups.
This correspondence between Q-powered nilpotent groups and rational nilpo-
tent Lie algebras was discovered by Anatoly Mal’cev in 1951.

We show how the Mal’cev correspondence can be realized on a computer.
We explore two possibilities for this purpose and compare them: the first
one uses matrix embeddings and the second the Baker—-Campbell-Hausdorff
formula.

Then, we describe a new collection algorithm for polycyclically presented
groups, which we call Mal’cev collection. Algorithms for collection lie at the
heart of most methods dealing with polycyclically presented groups. The
current state of the art is “collection from the left” as recently studied by
Gebhardt, Leedham-Green/Soicher and Vaughan-Lee. Mal’cev collection is
in some cases dramatically faster than collection from the left, while using
less memory.

Further, we explore how the Mal’cev correspondence can be used to de-
scribe symbolically the collection process in polycyclically presented groups.
In particular, we describe an algorithm that computes the collection func-
tions for splittable polycyclic groups. This algorithm is based on work by du
Sautoy. We apply it to the computation of pro-p-completions of polycyclic
groups.

Finally we describe a practical algorithm for testing polycyclicity of finitely
generated rational matrix groups. Previously, not only did no such method
exist but it was not clear whether this question was decidable at all.

Most of the methods described in this thesis are implemented in the
computer algebra system GAP and publicly available as part of the GAP
packages Guarana and Polenta. Reports on the implementation including
runtimes for some examples are given at the appropriate places.

Acknowledgement

I would like to thank my advisor Stephen Linton for our many inspiring
discussions during my time at the University of St Andrews. In particular,
I am grateful for his open-minded approach to our mathematical meetings
where anything could be brought on the table. Although my work benefitted
tremendously from our conversations, they are most memorable because they
were genuinely enjoyable.

I would like to thank my second advisor Martyn Quick for his competent
advice on infinite group theory and for carefully reading the first draft of this
thesis.

Also, I am grateful to Bettina Eick for introducing me to the area of
computational group theory, which became a very enjoyable mathematical
playground for the years to follow.

Many thanks go to my office mate Peter Nightingale for his patient an-
swers to my questions related to the English language and for being an ex-
cellent riddle partner.

I gratefully acknowledge the financial support of the Gottlieb Daimler-
und Karl Benz-Stiftung and the UK Engineering and Physical Science Re-
search Council.

Finally T would like to thank my parents and my fiancée Moni for their
unwavering support during my work on this thesis.

Contents

1 Introduction
2 Polycyclic groups
2.1 Preliminaries
2.1.1 Poly-Pgroups
2.1.2 Soluble groups
2.1.3 Nilpotent groups

2.2 Polycyclic sequences L
2.3 Polycyclic presentations
2.4 Nilpotency, polycyclicity and solubility
2.5 Structure of infinite polycyclic groups

Mal’cev correspondence

3.1 Preliminarieso
3.2 Matrix correspondence
3.3 Abstract correspondence

Computing the correspondence

4.1 Via matrix embeddingso
4.2 Via the Baker—Campbell-Hausdorff formula
4.3 Symbolic Logand Exp oo
4.4 Runtimes and comparison

Mal’cev collection

5.1 Classical collection
5.2 Collection using the Mal’cev correspondence

5.2.1
5.2.2
5.2.3
5.2.4
5.2.5

Choosing the polycyclic sequence G
Mal’cev collectionin H =CN
Inversionin H=CN
Poweringin H=CN
Mal'cev collectionin G

11

14
14
16
16
17
18
19
21
24

25
25
27
31

36
36
38
40
41

5.3
5.4

9.5

526 Inversionin G

Computations with powers of automorphisms of 7-groups
Computations with consecutive powers

of automorphisms of 7-groups
Implementation and runtimes
5.5.1 Example groups
5.5.2 Runtimes setup
5.5.3 Mal’cev collection versus collection from the left
5.5.4 Concluding remarks

6 Symbolic collection

6.1
6.2
6.3

6.4

Jordan decompositiono L
Splittable polycyclic groups
Computing collection functions
6.3.1 The actionof Con N
6.3.2 Converting tails
6.3.3 The algorithm
Applicationso
6.4.1 Collection
6.4.2 pro-p-completions

7 Alternatives beyond the Tits alternative

7.1

7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

Deciding the Tits” alternative
7.1.1 Computing a semisimple series
7.1.2 The p-congruence subgroup
7.1.3 Testing (virtual) solvability
7.1.4 Comparing classes of groups
The Mal’cev correspondence and finite generation
Checking conjugacy into GL(d,Z)
Testing polycyclicity
Testing virtual polycyclicity
Testing nilpotency oL
Testing virtual nilpotency
SUMMAry
Implementation and examples
7.9.1 Runtimes

A Algebraic number theory

50

o1
51
51
52
53
57

58
99
99
61
61
64
65
66
67
67

70
71
71
72
73
73
73
75
7
80
81
84
85
87
87

89

Chapter 1

Introduction

A group is the algebraic concept to describe symmetry. As a consequence, the
theory of groups can be applied to various areas of science, for example ge-
ometry, number theory, crystallography, quantum mechanics and constraint
programming.

Because of its generality, the definition of a group allows very complicated
structures. Thus, it is natural to apply a well-known approach from other
sciences to the study of groups. Namely given a group G, decompose it
into smaller more understandable pieces, study those, and finally study their
interaction to reveal the structure of G.

The smallest pieces in group theory are called simple groups. One of
the biggest algebraic projects of the last century was the classification of the
finite simple groups. Its aim was the creation of a table that contains all
finite simple groups up to isomorphism.

The theory of polycyclic groups aims in the opposite direction. It does
not try to classify the atoms of group theory but asks: What can a group
look like that is made out of easy pieces namely cyclic groups? Given the re-
strictiveness of this question it is rather surprising that the class of polycyclic
groups has a rich theory with interesting links to other areas, in particular
number theory. It shows that the mechanism for building groups out of
smaller ones, essentially the interaction between factor groups and normal
subgroups, is rather complex.

Historically polycyclic groups were considered right from the start of
group theory. Evariste Galois showed in the first half of the nineteenth
century that a rational polynomial is soluble by radicals if and only if the
symmetry group of its solutions is polycyclic. The foundations of the struc-
tural explorations of polycyclic groups were laid roughly 100 year later by
Kurt Hirsch, Phillip Hall, Reinhold Baer and Anatoly Mal’cev amongst oth-
ers.

11

12 Chapter 1. Introduction

More recently the class of polycyclic groups has also been shown to be very
fruitful for computational investigations, see for example [17, 39]. Polycyclic
groups can be efficiently represented on a computer by means of a special kind
of finite presentation, which is called a polycyclic presentation. If a group
is given with respect to a polycyclic presentation, then various properties of
the group can explored algorithmically. For example it is possible to test
membership in subgroups, to compute the normal closure of subgroups and
to determine the derived series.

The aim of this thesis is to show how Lie methods can be applied to
the algorithmic investigation of polycyclic groups. The connection between
groups and Lie rings, respectively Lie algebras, is a well-known and mathe-
matically very useful concept. For example, a typical way to solve a problem
in a Lie group is to transfer the problem to the Lie algebra of the group,
study it there with the help of tools from linear algebra and transfer the
result back into the Lie group.

Mechanisms of this kind have already been shown to be useful for the ex-
ploration of finite polycyclic groups. For instance, Vaughan-Lee and O’Brien
used Lie ring techniques to construct a consistent polycyclic presentation of
R(2,7), the largest 2-generator finite group of exponent 7 [34].

In this thesis we demonstrate the algorithmic usefulness of the so-called
Mal’cev correspondence for computations with infinite polycyclic groups.
This correspondence between Q-powered nilpotent groups and rational nilpo-
tent Lie algebras was discovered by Anatoly Mal’cev in 1951 [27].

After background material on polycyclic groups in Chapter 2 and on the
Mal’cev correspondence in Chapter 3, we show in Chapter 4 how the Mal'cev
correspondence can be realized on a computer. We explore two possibilities
for this purpose and compare them: the first one uses matrix embeddings
and the second the Baker—Campbell-Hausdorff formula.

Then, in Chapter 5, we describe a new collection algorithm for polycycli-
cally presented groups, which we call Mal’cev collection. Every element of a
polycyclically presented group has a unique normal form. An algorithm for
computing this normal form is called a collection algorithm. Such an algo-
rithm lies at the heart of most methods dealing with polycyclically presented
groups. The current state of the art is “collection from the left” [18, 24, 43].
Mal’cev collection is in some cases dramatically faster than collection from
the left, while using less memory.

In Chapter 6 we explore how the Mal'cev correspondence can be used
to describe symbolically the collection process in polycyclically presented
groups. In particular, we describe an algorithm that computes the collec-
tion functions for splittable polycyclic groups. This algorithm can be seen
as an extension of the algorithm “Deep Thought” by Leedham-Green and

13

Soicher, which computes collection functions for finitely generated torsion-
free nilpotent groups. We apply it to the computation of pro-p-completions
of polycyclic groups.

Finally in Chapter 7 we describe a practical algorithm for testing poly-
cyclicity of finitely generated rational matrix groups. Previously, not only
did no such method exist but it was not clear whether this question was
decidable at all. The contents of this chapter are based on a joint project
with Bettina Eick, see the remark at the beginning of Chapter 7.

Most of the methods described in this thesis are implemented in the
computer algebra system GAP [41] and publicly available as part of the
GAP packages Guarana [2] and Polenta [3]. A CD containing this software is
attached to this book. Reports on the implementation including runtimes for
some examples are give at the appropriate places. Several results presented
in this book have been published in mathematical journals, see [1, 5, 6].

Chapter 2
Polycyclic groups

In this chapter we recall some well-known results about polycyclic groups.
For more background on the theory of polycyclic groups we refer to [37, 38];
further information about computations with polycyclic groups can be found
in [17, 20, 39].

2.1 Preliminaries

This section provides some basic group theoretic facts. For proofs and further
information we refer to [37].

Let G be a group. A subset H C G is called a subgroup if H contains
the identity of G and is closed under multiplication and inversion; if H is a
subgroup of G, then we write H < G. A subgroup H < (G is said to be a
normal subgroup of G, denoted H A G, if HY = g-'Hg C H for all g in G.

We denote by G/H the set of all cosets of H in G, i.e. G/H = {gH|g €
G}. The index of H in G, denoted [G : H], is the cardinality of G/H. If
H is normal in G then we can define a group multiplication on G/H by
gHEH = gkH; note that this multiplication is well defined if and only if H
is normal in G. If H <G then we call G/H the factor group of G by H.

If X is a nonempty subset of a group G, then we denote by (X) the set
of all elements of the form 7' ---z}* where ¢, = £1, x; € X and k > 0. For
k = 0 the product is defined to be the identity. Note that (X) is a group
and furthermore the smallest subgroup of G' that contains X. We say that
a group G is finitely generated if G = (X)) for some finite subset X C G. A
group G is said to be cyclic if G = ({z}) for some x € G. In this case we
usually write G = (x). Let H be a subgroup of finite index in G. Then G is
finitely generated if and only if H is finitely generated.

Let H < G. We define the core of H in GG, denoted Hg, to be the

14

2.1. Preliminaries 15

intersection of all conjugates of H, i.e. Hg = NyeqH?. Equivalently H¢ can
be defined as the biggest normal subgroup of G which is contained in H.
Note that [G : H] < oo implies that [G : Hg] < co. By HY we denote the
smallest normal subgroup of GG that contains H.

Let G and H be two groups. A function ¢ : G — H is called a homo-
morphism if p(zy) = ¢(x)p(y) for all z,y € G. Sometimes we will write
x¥ instead of p(z). A homomorphism which is bijective is called an isomor-
phism. If an isomorphism ¢ : G — H exists, then we say that G and H
are isomorphic and write G = H. A homomorphism ¢ : G — G is said
to be an endomorphism. An endomorphism which is bijective is called an
automorphism.

The kernel of a homomorphism ¢ : G — H is Kerp = {g € G|g¥ =
1}. The image of ¢ is Imp = {g®|g € G}. The kernel Ker ¢ is a normal
subgroup of G. The factor group G/ Ker ¢ is naturally isomorphic to Im ¢
via g Ker ¢ — g¥.

We denote the set all automorphisms of a group G' by Aut(G). Note that
Aut(G) is a group where multiplication is the composition of functions. A
subgroup H < G is said to be characteristic if H¥ = H for all ¢ in Aut(G).

The order of a group G, denoted |G|, is the number of elements in G.
The order of an element g € G is the order of the cyclic group (g). If (g)
is infinite then ¢ has infinite order; otherwise g has finite order. A group is
said to be a torsion group if all its elements have finite order. On the other
hand a group is called torsion-free if all its elements apart from the identity
have infinite order.

Let P, Q@ be properties of groups. A group G is called a P-by-Q-group if
G has a normal subgroup H such that H has P and G/H has Q. We call
G an extension of a group A by a group B if there exists a normal subgroup
H <G such that H =2 A and G/H = B.

A group G is said to be abelian if gh = hg for all g, h in G; equivalently
G is abelian if and only if the commutator [g, h] = g~'h™1gh is trivial for all
g,hin G. A group G is said to be free abelian if it is isomorphic to the direct
product of a (possibly infinite) number of copies of Z. A free abelian group
G is said to be of finite rank r if the size of a minimal generating set of G is
r for some r € N; such a generating set is called a free generating set of G.
Note that in this case G = Z".

Let X = {x1,...,2,} be a set of formal letters and denote by X! the
set of its formal inverses {z7"',..., 2 '}. The free group F on X is the set
of all words w(X) in X UX ! with conjunction as multiplication, where two
words w and v are identified if w can be obtained from v via a finite number
of insertions and deletions of expressions of the form z;z; ! or ; 'x,. If F is
free on a set X of cardinality r, then F' is a free group of rank r.

16 Chapter 2. Polycyclic groups

Let F be a free group on a finite set X = {x1,...,2,} and let R be a
finite subset of F. Let K = (R)" be the smallest normal subgroup of F that
contains R. By (X|R) we denote the factor group F'/K. We say that (X|R)
is a finitely presented group with generators X and relators R. Sometimes
the relators » € R are given via defining relations of the form r = 1.

Let G be a group generated by a set S = {g1,...,9,}. The set S is
said to satisfy the relations of (X|R) if for all words w(xy,...,x,) € R we
have w(gy,...,g-) = 1 in G. If S satisfies the relations of (X |R) then there
exists an epimorphism, i.e. a surjective homomorphism, ¢ : (X|R) — G with
T — gi-

2.1.1 Poly-P groups

Usually abelian groups are considered to be nice in the sense that they are
easier to investigate then non-abelian groups. For this reason it is natural
to try to measure how close a group is to being an abelian group. For this
purpose series of subgroups are often used.

Definition 2.1.1. Let P be a property of groups. We say that a group G is
poly-P if there exists a subnormal series of G

G:GleQD"'anGn_H:l

such that every factor G;/G;11 has the property P. In particular, a group G
is polycyclic it G;/G,;11 is cyclic fori =1,... n.

The Hirsch length HI(G) of a polycyclic group G is defined to be the
number of infinite factors in a subnormal series with cyclic factors. It is
known to be an invariant of the group.

A polycyclic group is not necessarily abelian. However cyclic groups are,
and thus a polycyclic group can be considered to be close to being an abelian

group.

2.1.2 Soluble groups
Definition 2.1.2. A group G is said to be soluble if it is polyabelian.

The motivation for the term “soluble” originates from Galois theory; a
rational polynomial is soluble by radicals if and only if its Galois group is
soluble. By definition every polycyclic group is soluble.

The derived group G' of a group G is defined to be the subgroup gen-
erated by all commutators [g,h] = g 'h~'gh with g,h € G. For n > 1 we

2.1. Preliminaries 17

Gy

} cyclic
G

} cyclic
Gs ¢
G, 8

, I }cyclic

Figure 2.1: A group G is said to be polycyclic if it has subnormal series
of finite length with cyclic factors, i.e. G; < G417 and G;/G,4q cyclic for
1=1,...,n.

define G = (G"=VY where G® = G. This yields a descending series of
subgroups

G=GO>qg =6a" >a?% > .

called the derived series of G. If ¢ € Aut(G) then [g,h]¥ = [¢¥, h¥]. Thus
all subgroups of the derived series are characteristic.

By definition G/G’ is abelian. Furthermore G’ is the smallest normal
subgroup with that property, i.e. if N <G and G/N is abelian then N > G’.
It is known that a group G is soluble if and only if G™ = 1 for some n € N.
The least n for which G™ = 1 is called the derived length of G. As a
consequence G is soluble if and only if G has a series of normal subgroups of
finite length with abelian factors.

2.1.3 Nilpotent groups

The centre (;(G) of a group G is the set of elements in G which commute
with everything else, i.e. (1(G) = {g € G|[g,h] = 1 forall h € G}. An
element g € G is called central if g € (;(G). The centre of a group is an
abelian characteristic subgroup. The upper central series

1=G(G) £Q(G) <G(G) < ...

of a group G is recursively defined by (;(G)/(i-1(G) = (1(G/(i-1(G)). Tt is
an ascending chain of characteristic subgroups. By definition, z € (;(G) if
and only if [z, g] € (;_1(G) for all g in G.

Definition 2.1.3. We say that a group G is nilpotent if (.(G) = G for some

18 Chapter 2. Polycyclic groups

¢ € N. The smallest ¢ € N such that (.(G) = G is called the nilpotency class
of G.

A series of subgroups 1 = Hy < H; < --- < H, = (G is said to be a central
series of G if [H;, G] C H;_q fori =1,... k. The group G is nilpotent if and
only if it has a central series.

The lower central series of a group G is defined by 7(G) = G and
Ynt+1(G) = [1.(G),G]. The group G is nilpotent if and only if 7.4,(G) = 1
for some ¢ € N; actually the smallest such c¢ is the nilpotency class of G.

Definition 2.1.4. A group G is said to be a 7 -group if it is finitely generated
torsion-free nilpotent.

2.2 Polycyclic sequences

Definition 2.2.1. Let G be a polycyclic group with a subnormal series G =
Gi1>Go> -+ -> G, > Gy = 1 with non-trivial cyclic factors G; /Gy 1. A list
G =1(91,--.,9n) is called a polycyclic sequence for G if G;/Gi11 = (9:Gis1)-
As a consequence G; = (g;, ..., gn). We call the chain of subgroups (G;)1<i<n
the subgroup series belonging to G. For every factor G;/G;11 we denote by
r; € NU{oo} the index of G4 in G;. We call (r1,...,r,) the relative orders
of G.

Lemma 2.2.2. Let G be a polycyclic group with polycyclic sequence G =
(91,---,9n)- If g € G then we can write g uniquely as

g=gi' - 9"
where (e1,...,e,) €Z" and 0 < e; < 1; if r; < 0.

Proof. We prove the lemma via induction on the number of generators n. If
n = 1, then G is cyclic and the assertion follows. Let’s now assume that
n > 1 and let ¢ € G. Then gGy = ¢gi'Gy for a unique e; € Z where
0<e <rifr <oo. Since g; “'g € G, it follows, by induction assumption,
that g; ‘g =g5% -+~ g where (eg,...,e,) € Z" and 0 < ¢; < r; if r; < 00
for : = 2,...,n. Thus the assertion of the lemma follows. O

Definition 2.2.3. The unique expression g;'---g<* from Lemma 2.2.2 is
called the normal form of g with respect to G. We denote it by nfg(g). The
list (eq,...,e,) € Z" is called the exponent vector of g with respect to G. We
denote it by expg(g).

2.3. Polycyclic presentations 19

Example 2.2.4. Let G be the group generated by the rational matrices

(=10 (11
gl_ 0 1 92_ 0 1 .

Since ¢? = 1 and gJ' = g; ' € (go) we deduce that G1>(go) > 1 is a subnormal
series of G with cyclic factors. Thus G is polycyclic. The list G = (g1, go) is
a polycyclic sequence for G with r relative orders (2,00). Let

(-1 2
9=\o 1)
Since g = g1g, 2, g is an element of (. The exponent vector of g with respect
to G is expg(g) = (1, —-2).

Corollary 2.2.5. If a group G is polycyclic, then it is finitely generated.

Definition 2.2.6. Let G = (g1, ..., 9,) be a polycyclic sequence of a group
G with relative orders (rq,...,r,). We say that G is a basis of G if r; = 0o
for i = 1,...,n. A basis G is called a Mal’cev basis if the subnormal series
belonging to G is a central series of G.

2.3 Polycyclic presentations

Let G be a polycyclic group with a polycyclic sequence G = (g1, .. ., g,) and
relative orders (ry,...,r,). Denote by I the finite index set of G, that is
I={ill<i<n,r <o}

+1

Let G; = (¢i,---,9n). Since Gj11 < Gj, we deduce that gigj € G
for 1 < j < i < n. Further, since r; is the order of G;/G;.1, we see that
g;" € Giypq for i € I. Thus, we can write these expressions as words in the
generators g1, ..., gn respectively gii1,..., gn.

Definition 2.3.1. The equations

g = g e for 1 < G <i <,
—1 PR ..
gfj = gggf’f’ﬁl) . -gz(”J’") forl<j<i<nandj¢gl

are called the conjugate relations and

g;r = gicfiiﬂ) gl for g € 1,

are said to be the power relations of the polycyclic sequence G; the right hand
sides are the normal forms of the elements on the left hand sides.

20 Chapter 2. Polycyclic groups

The next theorem shows that the power-conjugate relations of a polycyclic
sequence give rise to a finite presentation for the group G.

Theorem 2.3.2. Let G be a polycyclic sequence of a polycyclic group G with
power-conjugate relations as in Definition 2.3.1. Let F be a free group on the

abstract generators in X = {xy,...,x,}. Define R to be the set of relations
Ty = g;ggff‘j“) g3 for 1 < j < i <,
z ! 3.7.7 i . . .
) = x?i’f’]ﬂ) x -xz(l”’”) fori<j<i<nandj &l
zl = a:fg_i’liﬂ) oozl forg e I

Then (X|R) is a finite presentation for G.

Proof. By the definition of (X|R) the generators {gi,...,g,} of G satisfy
the relations of (X|R). Thus there exists an epimorphism ¢ : (X|R) — G
which maps z; to g;. We prove via induction on n that ¢ is injective. If
n = 1 then G is a cyclic group of order r; and the claim follows. If n > 1
we can assume by induction that the restriction of ¢ to Xy = (z9,...,2,) is
injective. Let € (X|R) be such that p(z) = 1. By using the relations in R
we can rewrite x as x7'a’ where 0 < ey < ry if 11 < 0o and 2/ € X,. Thus
gt = p(xft) = p(a’™') € ¢(X3). This implies e; = 0. Since ¢ is injective
on X, and ¢(2’) = 1, we deduce that 2’ = 1. Thus = = 1 and therefore ¢ is
injective. U

Definition 2.3.3. The finite presentation (X |R) of a polycyclic group G of
Theorem 2.3.2 is called a consistent polycyclic presentation of G.

The term consistent in Definition 2.3.3 refers to the fact that every ele-
ment in the finitely presented group (X|R) from Theorem 2.3.2 has a unique
normal form z{'---2¢ with e; € Z and 0 < e; < r; for ¢ € I. Throughout
this book all polycyclic presentations are consistent. Therefore we will call

them simply polycyclic presentations.

Remark 2.3.4. Any finite presentation on abstract generators x4, ..., z, with
relations of the form
xy = x?ﬁff’jﬂ) 2B for 1 < j < i <,
:)3?1 = xl;-(f;’lj’jﬂ) . -xfl(i’j’") forl<j<i<nandj¢gl
TAES :)sfffﬂ) o) for g e 1,

where I C {1,...,n}, defines a polycyclic group H. However this presenta-
tion may not be consistent, i.e. an element h € H may have more then one
normal form z{'---z¢ with ¢; € Z and 0 < ¢; < r; for i« € I. For more
information on this see [17, 39].

2.4. Nilpotency, polycyclicity and solubility 21

Example 2.3.5. Consider the group G defined in Example 2.2.4 with the
polycyclic sequence G = (g1, 92). We obtain the power-conjugate relations

g =g5"

g =9

of G. By Theorem 2.3.2, (z1, 2o|75' = 25!, 22 = 1) is a polycyclic presenta-
tion for GG. Note that G is the infinite dihedral group D.,.

2.4 Nilpotency, polycyclicity and solubility

In this section we explain the relationship between nilpotency, polycyclicity
and solubility.

Let P be a property of groups. The class of groups having P is said to
be closed with respect to forming subgroups if G has P and H < G implies
H has P. For example the class of abelian groups is closed with respect to
forming subgroups. Similarly the class of groups having P is called closed
with respect to forming factor groups if all quotients of its members have P.

Lemma 2.4.1. Let P be a property of groups. Suppose that the class of
groups having P is closed with respect to forming subgroups and factor groups.
Then the class of groups being poly-P is closed with respect to forming sub-
groups and factor groups.

Proof. Let G be a group with a subnormal series G = G > Gy > - - > G, >
Gny1 = 1 such that each factor G;/G;41 has the property P.

Let H be a subgroup of G. Then the groups (H; := H N G;)1<i<n+1 form
a subnormal series of H. Further

Hi/Hi\n =HNG;/HNGip1 =G (HNG)/Givr < GifGiga.

Thus H;/H;,, has property P and therefore H is poly-P.
Let N be a normal subgroup of G. Then the groups (G;N/N)i<i<n+1
form a subnormal series of G/N. We have

Thus (G;N/N)/(Gi+1N/N) is isomorphic to a factor group of G;/G;41; as a
consequence it has the property P. Therefore G/N is poly-P. O

We say that the class of groups having P is closed with respect to forming
extensions if a P-by-P group has P. The infinite dihedral group D, from

22 Chapter 2. Polycyclic groups

Example 2.3.3, is abelian-by-abelian. Since D, is neither abelian nor nilpo-
tent, we see that the class of abelian groups and the class of nilpotent group
are not closed with respect to forming extensions. By definition, the class of
groups being poly-P is closed with respect to forming extensions. Thus we
get the following corollary.

Corollary 2.4.2. The class of polycyclic groups, respectively soluble groups,
1s closed with respect to forming subgroups, factor groups and extensions.

Lemma 2.4.3. The class of nilpotent groups is closed with respect to forming
subgroups and factor groups.

Proof. Let G be a nilpotent group and let G = Gy > Gy, > --- > G, >
Gri+1 =1 be a central series of G.

For a subgroup H < G we define define H; = H N G;. Since G;/G;11 is
central in G/G;4q it follows that H;/H;,y is central in H/H; ;. Thus the
groups (H;)1<i<n+1 form a central series of H and so H is nilpotent.

Similarly for a factor G/N we see that the groups (G;N/N)i<i<n+1 form
a central series of G/N and so G/N is nilpotent. O

Let G be a polycyclic group. By definition G is soluble; further, by
Corollary 2.4.2, every subgroup of GG is polycyclic and thus finitely generated.
The next corollary shows that the converse of this statement is also true; for
its proof we need the following lemma.

Lemma 2.4.4. An abelian group G is polycyclic if and only if it is finitely
generated.

Proof. Assume that G is generated by a finite set {gi,...,¢;}. Then the
groups (G; := (gi, ..., q1))1<i<i+1 form a subnormal series of G with cyclic
factors. Thus G is polycyclic. The other direction of the statement is, as
mentioned before, a consequence of Corollary 2.4.2. O

Corollary 2.4.5. A group G is polycyclic if and only if it is soluble and
every subgroup of G is finitely generated.

Proof. 1t remains to show the if-part of the statement. So assume that G is a
soluble group such that all subgroups of GG are finitely generated. Then G has
a subnormal series G = G >G> -+ - > G, > G,y = 1 with abelian factors.
By assumption each G; is finitely generated and thus G;/G;yq is finitely
generated as well. Therefore, by Lemma 2.4.4, we deduce that G;/G;yq is
polycyclic. Thus, by Corollary 2.4.2, GG is polycyclic. O

2.4. Nilpotency, polycyclicity and solubility 23

From the definition of nilpotency we see that every nilpotent group is
soluble. The next corollary explains the relationship between nilpotent and
polycyclic groups. Recall that the tensor product A® B of two abelian groups
A, B is defined as follows. Let A x B be the direct product of A and B and
let M < A x B be the subgroup generated by the elements

(a1 + az,b) — (a1,b) — (az,b), (a,by + by) — (a,b1) — (a,by)
where a,a1,ay € A,b,b1,bo € B. Then A® B = (A x B)/M.

Lemma 2.4.6. Let G be a group and denote G; = v;(G). For each i > 1,
there is an epimorphism

Vi (Gio1/Gh) @ (G1/G2) = Gi/Giga,

induced by the map
(ng> h'G2) = [g, h]Gi-l—l'

Proof. See [38, Chapter 1]. O

Corollary 2.4.7. Let G be a nilpotent group. Then G is polycyclic if and
only if G is finitely generated.

Proof. We only have to show the if-part of the statement, so assume that
G is a finitely generated nilpotent group. By Lemma 2.4.6 we see that
7i(G)/7i+1(G) is finitely generated for all i and therefore polycyclic. Since
Yes1(G) = 1 for some ¢ € N this implies that G is polycyclic. O

By Corollary 2.4.7 every 7-group is polycyclic. The following lemma
shows that every 7-group has a very special polycyclic sequence.

Lemma 2.4.8. If G is a T-group then G has a Mal’cev basis.

Proof. By [38, Chapter 1] the factors of the upper central series of G are
torsion-free. Let ¢ be the nilpotency class of G' and let g1, ..., g, be a free
generating set for (;(G)/¢-1(G) for i = 1,...,c. Then the list

(gcla"'agckca'"aglla"'aglkl)

is a Mal’cev basis for G. O

24 Chapter 2. Polycyclic groups

2.5 Structure of infinite polycyclic groups

In this section we recall some well known structure theorems about infinite
polycyclic groups. For proofs and further background see [38].

Definition 2.5.1. Let G be a group. The Fitting subgroup Fitt(G) is the
subgroup which is generated by the set of all normal nilpotent subgroups of

G.

Theorem 2.5.2. Let G be a polycyclic-by-finite group. Then Fitt(G) is
nilpotent.

Theorem 2.5.3. Let G be a polycyclic group. Then G/Fitt(G) is abelian-
by-finite. In particular G is nilpotent-by-abelian-by-finite.

The next theorem tells us that every polycyclic group is made out of two
T-groups in a rather easy way.

Theorem 2.5.4. Let G be a polycyclic group. Then there exists a normal

T -subgroup N and a T -subgroup C' such that CN/N s free abelian and CN
has finite index in G.

Definition 2.5.5. The group C from Theorem 2.5.4 is said to be a nilpo-
tent almost-supplement for N in G. ‘Almost’ because C' and N generate
a subgroup of finite index, and ‘supplement’ because C' may intersect N
non-trivially.

This structure of polycyclic groups can also be explored algorithmically.
Let G be a polycyclic group given by a polycyclic presentation. In [17,
Chapter 9] Eick describes a practical algorithm to compute a nilpotent-by-
abelian-by-finite series G > K > N > 1 where K is torsion-free. The
algorithm computes generators for K and N as words in the generators of G;
it also computes polycyclic presentations for K and N on these generators.
Further, Eick describes methods to determine a nilpotent almost-supplement
C for N in G. Since [G : CN] < oo we can impose the additional condition
that C'N is normal in G by passing to the core (CN)g of CN in G. Note
that NV is contained in (C'N)g.

Chapter 3

Mal’cev correspondence

In this chapter we recall some well known facts about the connection be-
tween Q-powered nilpotent groups and rational nilpotent Lie algebras, the
Mal’cev correspondence, discovered by Anatoly Mal’cev in 1951 [27, 28]; this
correspondence plays a key role in the further chapters of this book.

In §3.1 we define Q-powered groups and give some basic facts about Lie al-
gebras. In §3.2 we study an illustrative special case of the Mal’cev correspon-
dence: the connection between upper unitriangular rational matrix groups
and nilpotent rational matrix Lie algebras. Then in §3.3 we move on to the
general case where the Mal’cev correspondence between abstract groups and
Lie algebras is realized by means of the Baker-Campbell-Hausdorff formula.

For more background we refer to [9, Chapter 4], [23, Chapter 9,10] and
[38, Chapter 6],

3.1 Preliminaries

Q-powered groups

Definition 3.1.1. A group G is said to be Q-powered if for every g € G,
q € N there exists a unique h € G such that h? = g. We denote this element

h by g% and write g« for (g%)p where p € Z,q € N.
If G is Q-powered then g? = 1 implies g = 1; thus G is torsion-free.

Definition 3.1.2. We denote by Tr;(d, Q) the group of all upper unitrian-
gular matrices of degree n over Q, i.e. matrices of the form

1 *

25

26 Chapter 3. Mal’cev correspondence

Example 3.1.3. Let g = ((1) T) € Tr1(2,Q) and n € N. Then h =
1 z/n\ . . :
o 1)® the unique element in Try(2,Q) such that A" = g. Thus

Tr1(2,Q) is a Q-powered group. We will see in §3.2 that Try(d, Q) is Q-
powered for all d € N.

Note that Try(d, Q) is a nilpotent group [38, Chapter 1]. Furthermore
every 7T-group, i.e. a finitely generated torsion-free nilpotent group, can be
embedded in some Try(d, Q) [38, Chapter 5.

Lie algebras

Definition 3.1.4. Let L be a vector space over a field K. Then L is said to be
a Lie algebra if there exists a bilinear map L x L — L, written (z,y) — [z, 9],
with the properties

(1) [Iv :L’] =0,

(2) [z,y] = —ly,],

3) [z, 9], 2] + [ly, 2], 2] + [[2, 2], 9] = 0.
The expression [z, y] is called a Lie commutator or a Lie bracket in x and y.

Equation (3) is the Jacobi identity. A vector subspace V' < L is called a Lie
subalgebra if it is closed under the Lie bracket, i.e. [V, V] < V.

For repeated Lie brackets we use the left norm convention, i.e.
[Il, Ce ,LUT] = [[1’1, e ,ZL’?«_l], ZL’T].

Example 3.1.5. Denote by M,,«,,(Q) the set of all rational matrices of degree
n. Then M,,»,(Q) is a Lie algebra with Lie bracket [z,y] = zy — yz.

Definition 3.1.6. Let L be Lie algebra. The lower central series (Ly)gen of
L is recursively defined by Ly = L and Lyi1 = [Lg, L]. The Lie algebra L is
said to be nilpotent if L. = 0 for some ¢ € N. A nilpotent Lie algebra L has
nilpotency class ¢ if L..1 =0 and L, # 0.

Definition 3.1.7. Let L be Lie algebra. The center of L is defined by
Z(L) =A{l € L|[l, L] = 0}. Note that Z(L) is a vector subspace of L. The

upper central series (L*)ren of L is recursively defined by L' = Z(L) and
LAY LE = Z(LLP).

If L is a nilpotent Lie algebra of nilpotency class ¢ then L = L.

3.2. Matrix correspondence 27

Definition 3.1.8. We denote by Tro(d, Q) < M,,«,,(Q) the vector subspace
of all upper triangular matrices with zeros on the diagonal. Since Tro(d, Q)
is closed under the Lie bracket [z, y] = xy — yx we see that Tro(d, Q) is a Lie

subalgebra of M,,«,(Q).

Tro(d, Q) is nilpotent because the kth term of the lower central series
consists of matrices of the form

0O ... 0 *
0
0 0

where the k£ — 1 subdiagonals above the diagonal are equal to 0.

Definition 3.1.9. Let L be a Lie algebra over a field K and let B =
{z1,...,2,} be a basis of the underlying vector space. For each pair z;,z; €

B we can write
n
k
[z, 2] = g CiiTh-
k=1

The n? elements cfj € K are called the structure constants of L with respect
to B. Since the Lie bracket [,] in L is bilinear, it is completely specified by
the structure constants.

Finite dimensional Lie algebras are typically represented on a computer
via matrices or via a structure constant table. In the first case the Lie algebra
is given by a basis consisting of matrices { X7, ..., X, }; in the second case the
Lie algebra is given as an abstract vector space with basis B = {z1,...,x,}
and the structures constants with respect to B. For both representations,
which can be obtained from each other, powerful algorithms for structural
investigations are available [12]. Note that every finite dimensional Lie alge-
bra has a faithful linear representation [21].

3.2 Matrix correspondence
Recall that we denote by Tr;(d, Q) the group of all upper unitriangular d x d-

matrices over Q, and by Tro(d,Q) the Lie algebra of all upper triangular
d x d-matrices over (Q having zeros on the diagonal.

28 Chapter 3. Mal’cev correspondence

Definition 3.2.1. We define the maps log and the exp as follows:

log : Tri(d,Q) — Tro(d, Q)

gH(g—l)—%(g—1)2+---+((d__l)l)

exp : Try(d,Q) — Try(d, Q)

12 1 d—1

(g— 1!

Note that this coincides with the usual definition of log and exp on the
complex numbers via power series, since (g — 1) = 2¢ = 0. The following
lemma is a consequence of well-known identities of these power series.

Lemma 3.2.2. The mappings log and exp from Definition 3.2.1 are mutu-
ally inverse bijections. For commuting matrices x,y € Tro(d,Q), we have

(expx)(expy) = exp(z + y).

Remark 3.2.3. For ¢ € N and g = exp(z) € Tri(d,Q) we have that h =
exp(%:c) is a ¢-th root of g, i.e. h? = g. Since h? = k9 implies qlog(h) =
qlog(k) and thus h = k, we deduce that h is a unique g-th root of g. Therefore
Tri(d, Q) is a Q-powered group. For r € Q we have that

log(g") = rlog(g)
exp(rz) = exp(z)".

For non-commuting matrices z,y € Tro(n,Q) it is not true in general
that exp(z + y) = exp(x)exp(y). However a similar equality holds which
contains additional error terms which depend on the extent to which x and
y fail to commute. For a vector of positive integers e = (eq, ..., e,.) we define
the repeated Lie bracket [z,y]. in Tro(d, Q) by

[T, yle =[x, y, ...y, 2, ...,y .
e N——

€1 €2

Theorem 3.2.4. There exist constants q. € Q not depending on d such that
for all z,y € Tro(d, Q) we have

exp(z) exp(y) = exp(z +y + Y _ ge[z, yle),

e

where we take the sum over all vectors e = (ey,...,e,), with positive inte-
ger entries, such that ey +---+e, < d— 1. In particular this means that
log((exp z)(expy)) is an element of the Lie subalgebra of Tro(d, Q) generated
by x and y.

3.2. Matrix correspondence 29

Proof. See [23, Section 9.2] and [38, Chapter 6]. O

Definition 3.2.5. Let the rational constants g, be defined as in the last
theorem. The formal expression H(x,y) = = +y + Y. ¢e[, y|c, where the

sum is taken over all vectors (ey,...,e,) with positive integer entries where
r € N, is called the Baker—Campbell-Hausdorff formula.

Remark 3.2.6. If L is a nilpotent Lie algebra of nilpotency class ¢ then any
Lie bracket of length ¢ + 1 in x,y € L is trivial. Thus in L the Baker—
Campbell-Hausdorff formula H(z,y) has only finitely many non-zero terms.

Example 3.2.7. The terms up to length 3 of the Baker—-Campbell-Hausdorff
formula are

1 1 1
H = — —— — o
(@.9) =2+ + 5losy] + — 5l 9.9) + Lol +
Theorem 3.2.8. We can define a group multiplication x on Tro(d, Q) given

by xxy = H(x,y). The exponential map is then an isomorphism of groups
between (Tro(d, Q), x) and Tri(d, Q).

Proof. Let © € Tro(d,Q). From the definition of * we see that 0 % z =
x*x (0 = x and that —z is an inverse of z. By Lemma 3.2.2 the function
exp : Tro(d,Q) — Tri(d,Q) is a bijection. Further, by Theorem 3.2.4, we
have that exp(z * y) = exp(x) exp(y) for x,y € Tro(d,Q), which implies the
associativity of x and that exp is an isomorphism. O

The following theorem explains the interplay of subgroups of Tr;(d, Q)
and Lie subalgebras of Tro(d, Q) via log and exp.

Theorem 3.2.9. Let G < Tri(d, Q) and let Qlog(G) be the Q-vector space
spanned by log(G) = {log(g)|g € G}. Let L be a Lie subalgebra of Tro(d, Q).
Then the following holds:

e exp(L) is a Q-powered nilpotent subgroup of Tri(d, Q).
e Qlog(G) is a Lie subalgebra of Tro(d, Q).

o G <exp(Qlog(G)) and every element of exp(Qlog(G)) has some pos-
itive power lying in G.

Proof. See [38, Chapter 6, Theorem 2]. O

Definition 3.2.10. Let H be a torsion-free nilpotent group. A Q-powered
group H, containing H, is said to be a Q-powered hull of H, if for every
element h € H there exists z € N such that h* € H.

30 Chapter 3. Mal’cev correspondence

Theorem 3.2.9 shows that exp(Qlog(G)) is a Q-powered hull of a sub-
group G < Try(d, Q); further if G is Q-powered then G = exp(Qlog(G)).

We saw that the Baker—Campbell-Hausdorff formula allows us to define
a group multiplication on Try(d, Q) in terms of Lie algebra operations. Vice
versa, it is possible to define operations of a Lie algebra on Try(d, Q) in terms
of the operations of a Q-powered group.

For a vector of positive integers e = (eq,...,e,) we define the repeated
group commutator [g, h]. in Tri(d, Q) by [g,hle = [9,h,...,h,g,...,q,...].
—_—— —
el €2

The weight w(e) of e is defined to be >_;_, e;. Let < be an order on a set of
vectors with positive integer entries. We say that < agrees with the increase
of the weight of the vectors if e < ¢’ implies w(e) < w(e').

Theorem 3.2.11. There exist constants r., s, € Q not depending on d such
that for all g, h € Try(d, Q)

log(g) +log(h) = log(gh] lg. ")

[log(g),log(h)] = log([g. k] [] lg.hl")

e

where the product is taken over all vectors e = (eq,...,e,), with positive
integer entries, such that ey +---+ e, < d —1 in some fixed order agreeing
with the increase of the weight of the vectors e.

Proof. See [23, Section 10.1]. O

Definition 3.2.12. Let the rational constants r. and s. be defined as in the
last theorem. The formal expressions

h(g,h) = gh]]lg.nl."

h'2(g?h) = [gv h’] H [gvh]esev

e

where the product is taken over all vectors e = (eq,...,e,) with positive
integer entries where » € N in some fixed order agreeing with the increase of
the weight of the vectors e, are called the inverse Baker—Campbell-Hausdorff
formulae.

Remark 3.2.13. If G is a Q-powered nilpotent group of nilpotency class ¢
then any group commutator of length ¢+ 1 in g, h € G is trivial. Thus in G
the inverse Baker-Campbell-Hausdorff formulae h(g,h) and hs(g,h) have
only finitely many non-zero terms.

3.3. Abstract correspondence 31

3.3 Abstract correspondence

We now describe the Mal’cev correspondence between abstract Q-powered
nilpotent groups and abstract rational nilpotent Lie algebras.

Let L be a nilpotent Lie algebra over Q and let x,y € L. Using the Baker—
Campbell-Hausdorff formula H (z,y) from Definition 3.2.5 we can define the
operations of a Q-powered group on L by

xxy = H(z,y) (3.1)
! = qx for g € Q. (3.2)

Conversely, let G be a Q-powered nilpotent group and let g,h € G. Then
using the inverse Baker—-Campbell-Hausdorff formulae hi(g, h), h2(g, k) from
Definition 3.2.12 we can define the operations of a rational Lie algebra on GG
by

g+h = hg,h)
[gv h’] = h’2(gu h)
qg = ¢ for g € Q. (3.5)

Theorem 3.3.1 (Mal’cev correspondence). For every Q-powered nilpotent
group G, the corresponding rational nilpotent Lie algebra Lg is defined on
the same underlying set Lg = G, with Lie Q-algebra operations (3.3), (3.4),
(8.5). Conversely, for every rational nilpotent Lie algebra L, the correspond-
ing Q-powered nilpotent group Gp is defined on the same underlying set
G = L, with group operations (3.1), (3.2) of a Q-powered group. These
transformations are inverses of one another: Lg, = L as rational Lie al-
gebras (that is, not only sets, but all operations coincide), and, similarly,
Gr, = G as (Q-powered) groups.

Proof. See [23, Theorem 10.11.]. O

Let G be a Q-powered nilpotent group. To avoid confusion between G
and L¢ in the following, we will denote by Log(g) the element of L which
corresponds to g € G;

G>g < Log(g) € Lg = Log(G) = {Log(g)|g € G}.

For a rational nilpotent Lie algebra L we will denote by Exp(z) the element
of G which corresponds to x € L. Distinguishing G and L¢ in this way,
in the following it will be clear from the context if we mean by [,]| the Lie

32 Chapter 3. Mal’cev correspondence

commutator or the group commutator. Log can be regarded as a mapping
between G and Log(G). For ¢g,h € G and ¢ € Q we have

Log(gh) = Log(g) * Log(h)
Log(hi(g,h)) = Log(g)+ Log(h)
Log(ha(g,h)) = [Log(g),Log(h)]

Log(g9’) = qLog(g).

Similarly Exp can be regarded as a mapping between L and Exp(L).

Remark 3.3.2. Note that in the context of the matrix Mal’cev correspondence
as discussed in §3.2 we use log to denote the function

log . Trl (da Q) - Tl"o(d, @)

which links the Q-powered nilpotent matrix group Try (d, Q) and the nilpotent
Lie algebra Try(d,@Q). In opposition to this we use in the context of the
abstract Mal’cev correspondence the function name Log to link an abstract
nilpotent Q-powered group G and the corresponding Lie Algebra L.

~ Let H be a torsion-free nilpotent group. Recall that a Q-powered group
H, containing H, is said to be a Q-powered hull of H, if for every element
h € H there exists z € N such that h* € H.

Theorem 3.3.3. Let H be a torsion-free nilpotent group. Then H has a Q-
powered hull H of the same nilpotency class. If Hl, H, are Q -powered hulls
of H then the identity map in H extends to a unique isomorphism of H, onto
H,. Every automorphism of H extends to an automorphism of H. If H < G
and G is Q-powered, then G contains a Q-powered hull of H.

Proof. See [23, Corollary 9.19. and Theorem 9.20.] O

Given the fact that all Q-powered hulls of a torsion-free nilpotent group
H are isomorphic, we will identify them in the following and speak of the
Q-powered hull H of H. The Lie algebra L corresponding to H will be
denoted by L(H). Note that £(H) is spanned by Log(H) C L(H) over the
rationals, because every element h € H has some power h? lying in H; thus
Log(h) = % Log(h*) € Q Log(H). Further we have that H and (L(H), *) are
naturally isomorphic as groups.

3.3. Abstract correspondence 33

Remark 3.3.4. Let N be a T-group and 3 : N — Try(d, Q) a faithful matrix
representation. By §3.2, L = Qlog(Np) is a Lie algebra and exp(L) = (L, *)
is a Q-powered hull of N. By Theorem 3.3.3, (L, %) and (L(NV), %) are isomor-
phic as Q-powered nilpotent groups and thus, by the Mal’cev correspondence,
L and L(N) are isomorphic as rational Lie algebras.

In Chapters 5, 6 and 7 we will use the Mal’cev correspondence for com-
putations with automorphisms of a 7-group H. The next theorem shows
that the automorphisms of H and L(H) are in one-one correspondence; it is
a direct consequence of the fact that the Lie algebra operations in £(H) can
be defined in terms of the group operations of H and vice versa.

Theorem 3.3.5. Let G be a Q-powered nilpotent group and L its corre-
sponding Lie algebra. Then the map ~ : Aut(G) — Aut(L), defined by
p — Exp oy o Log is an isomorphism.

Proof. Let ¢ € Aut(G) and g,h € G. Then
(Log(g) + Log(h))? = Log(hy

With a similar argument we see that [Log(g), Log(h)]? = [Log(g)?, Log(h)?]
and that for ¢ € Q we have (qLog(g))? = ¢(Log(g)?. Thus ¢ € Aut(L)
because by the properties of the Mal’cev correspondence for every z,y € L
there exist g, h € G such that Log(g) = x and Log(h) = v.

Similarly we see that for 7 € Aut(L), the mapping Logor o Exp is in
Aut(G). Therefore, since ¢ — Expop o Log and 7 — Logor o Exp are
inverses of each other, ~ is a bijection between Aut(G) and Aut(L). Further

for ¢, € Aut(G) we have that @ — ¢ and thus ~ is an isomorphism. [J

The next theorem explains how Aut(H) fits into the relationship between
the automorphism group of H and L(H).

Theorem 3.3.6. Let H be a torsion-free nilpotent group and H its Q-powered
hull. Let I be the setwise stabilizer in Aut(L(H)) of the set Log(H). Then
v € Aut(H) induces an automorphism of H, i.e. H? = H, if and only if
pel.

Proof. Let ¢ € Aut(H) and assume that H¥ = H. Then we have Log(H)? =
Log(H?¥) = Log(H). Thus ¢ € I'. Conversely assume that ¢ € I'. Then
H? = Exp(Log(H)?) = Exp(Log(H)) and thus H? = H. O

34 Chapter 3. Mal’cev correspondence

Lemma 3.3.7. Denote by x1,...,xs abstract Lie elements. Let K be the
set of all repeated Lie brackets k(x1,...,xs) of length at least s + 1 in the
arguments x1,...,xs each of which appears at least once. Then there exist
rational constants (t.)xex such that for any Q-powered nilpotent group G and
J1,---,9s € G it holds that

[L0g<gl>7 t LOg(Qs)] =
Log([gb cee ags]) + Z tn"{(LOg(gl% H) Log(gs)) (36)

KEK

Proof. See [38, Chapter 6, Corollary 2]. O

Remark 3.3.8. The sum in equation (3.6) is by definition infinite. However
for a given Q-powered nilpotent group G only a finite number of the Lie
brackets x are nonzero.

Lemma 3.3.9. Denote by x1,...,xs abstract group elements. Let L be the
set of all repeated group commutators A(z1,...,xs) of length at least s + 1
in the arguments 1, ...,xs each of which appears at least once. Then there
exist rational constants (uy)rer such that for any Q-powered nilpotent group
G and gy, ...,9s € G it holds that

[Log(gl)> R Log(gs)]

= Log([gr, -, g:]) + Y usLog(A(g1, .-, 95)). (3.7)
eL

Proof. By Lemma 3.3.7 we have

[L0g<gl>7 T LOg(Qs)] =
LOg([gl, cee 793]) + Z tﬁH(LOg(gl>7 ey LOg(Qs)) (38>

KEKX

Now we replace all occurrences of Lie brackets of length > s+ 1 in (3.8)
with the corresponding right hand side of (3.6) and continue until no Lie
bracket of length > s 4 1 appears in the equation.

This process must stop, because G and £(G) have finite nilpotency class
¢ and thus group commutators and Lie brackets of lengths greater then c are
trivial, and because a replacement of a Lie bracket of length £ only introduces
Lie brackets of length > k + 1.

The only influence of the group G on this process is its nilpotency class c,
which tells us that group commutators and Lie brackets of length ¢+ 1 can
be disregarded. However this does not affect the values of those u, whose
corresponding A is of length < ¢. Thus the constants u, are not depending
on GG, and in particular not on c. O

3.3. Abstract correspondence 35

Remark 3.3.10. The sum in equation (3.7) is by definition infinite. However
for a given Q-powered nilpotent group G only a finite number of the group
commutators A are nontrivial.

Remark 3.3.11. [38, Chapter 6, Corollary 3] claims that the constants wuy in
the last lemma depend on c.

Lemma 3.3.12. Let (g1,...,q) be a Mal’cev basis for a T-group H. Then
B = {Log(¢g1),-..,Log(g)} is a basis for the Lie algebra L(H). In particular,
the dimension of L(H) is equal to the Hirsch length of H.

Proof. Let g = gi*---g/" € H. Then Log(g) = ai;Log(g1) * - - - * a;Log(g;).
Thus L(H) is generated by B as a Lie algebra, i.e. the smallest Q-vector
space that contains B and is closed under taking Lie brackets is equal to
L(H).

We show via induction over [, the Hirsch length of H, that B is a basis
of L(H).

If H = (g1) then {Log(g1)} is a basis for £L(H). Assume that the
lemma is true for all 7-groups of Hirsch length [— 1. First we show that
the Q-span (B)g of B is equal to £(H). By assumption the vector spaces
(Log(ga), - - -, Log(g:))o and (Log(g1), Log(gs), - - ., Log(gi))q are closed under
taking Lie brackets. Thus we have to show that [Log(g1), Log(g2)] € (B)g. By
Lemma 3.3.9 [Log(¢1), Log(g2)] = Log([g1, 92]) + >_ uaLog(A(g1, g2)), where
uy € Q and A is a repeated group theoretic commutator in ¢, go of length
> 3. Since [g1, 92, AM(91, g2) € (g3, - - ., gi) the right hand side of the last equa-
tion is contained in the Lie algebra £((gs,...,¢;)) and thus in the Q-vector
space spanned by B.

It remains to show that the elements of B are linearly independent. By the
induction hypothesis Log(gs), ..., Log(g;) are linearly independent. So as-
sume that Log(g1) € (Log(gz),...,Log(g;))qg = La. Therefore g; € Exp(Ls)
which is equal to the Q-powered hull of (gs, ..., ¢). Thus there must be an
m € N such that ¢7" € (g2,...,9). Since (g1,...,¢) is a Mal’cev basis this
is a contradiction. O

Chapter 4

Computing the correspondence

In this chapter we show how the Mal’cev correspondence between the radi-
cable hull of a 7-group G and the Lie algebra £(G) can be set up on a com-
puter. We assume that G is given by a polycyclic presentation with respect
to a Mal’cev basis G = (¢g1,...,q). Note that B = {Log(g1),...,Log(g)} is
a basis of L(G). We show how to solve the following three tasks:

e Lie algebra presentation: Determine a computer presentation of

L(G).

e Logarithm: Given an element g = ¢7' ---¢;" € G, compute the coeffi-
cient vector (as, ..., q;) such that Log(g) = 22:1 a; Log(g;).

e Exponential: Civen an element z = .\, a; Log(g;) € £(G), com-
pute the exponent vector (ey, ..., ¢;) such that Exp(z) = g7 - - - g;".

We present two approaches for solving these tasks. The first uses the fact that
every 7T-group can be embedded in an upper unitriangular matrix group and
is discussed in §4.1. The second makes use of the Baker—Campbell-Hausdorff
formula and related identities, see §4.2. Further we present in §4.3 a symbolic
approach for computing logarithms and exponentials. Finally, we compare
these methods and report on their implementations in §4.4.

4.1 Via matrix embeddings

This method uses a vector subspace of Try(d,Q) to represent £(G) on a
computer.

Every 7-group G has a faithful matrix representation 5 : G — Tri(d, Q)
for some d € N [38, Chapter 3]. Recall that by Remark 3.3.4 the Lie al-
gebra Qlog(Gf3), i.e. the Q-vector space spanned by log(G/3), is isomorphic

36

4.1. Via matrix embeddings 37

to L(GB) and thus to L(G). For a 7-group G, given by a polycyclic pre-
sentation, it is possible to compute 3 : G — Tri(n,Q) [13, 26, 33]. An
implementation of [13] is publicly available as part of GAP [41].

In order to be able to go back and forth between G and G/3, it is necessary
to compute a special kind of polycyclic sequence for GS.

Definition 4.1.1. A polycyclic sequence M = (M, ..., M;) for a finitely
generated group H < Try(n, Q) is called constructive if there exists a practical
algorithm which, given any h € H, determines the normal form nf(h) with
respect to M.

It is well-known how to compute a constructive polycyclic sequence for a
given finitely generated group H < Tri(n, Q) which is also a Mal’cev basis of
H, see for example [39, Chapter 9]. By changing the underlying generating
set of the polycyclic presentation of (G, we can assume in the following that
G = (g1,---,q) is a polycyclic sequence of G such that (¢18,...,90) is
constructive polycyclic sequence and Mal’cev basis for G3. As a basis for
L(G) = Qlog(GB) we use the set of matrices (log(g10), .. .,log(g.5)).

The task Logarithm can be solved as follows. Given g = ¢{*---g;" € G, we
compute M = (¢15) -+ (¢;3)% and then log(M). Finally, by solving linear
equations, we determine (s, ...,qq) such that > «;log(g;3) = log(M).

For the task Exponential we do the following. Given x = 22:1 a; log(g:),
we compute exp(z). Then we can use the constructive polycyclic sequence
(18, ..., q0) of GB to compute the exponent vector (eq, ..., ¢e;) of exp(x) as
described in [39, Chapter 9.

Example 4.1.2. Let G = F,5 be the free nilpotent of class two group on
two generators ¢q,g>. Then the derived group is cyclic and generated by
93 = |92, 1] It follows that

+1
G= <91,92,93|9§g1 = 9293ﬂ>

is a polycyclic presentation for G and G = (g1, g2, g3) is a Mal’cev basis. The
embedding f — Try(3,Q), as computed by the algorithm in [13], is given by

1 00 1 -1 0 1 0 —1
=101 1],8=(0 1 0],938=1(0 1 0
00 1 0 0 1 00 1

In this example (g1, g2, g3(3) is a constructive polycyclic sequence for G5
and therefore we do not have to change the underlying generating set of GG

38 Chapter 4. Computing the correspondence

and set M = (g1, g3, g3/3). The corresponding basis of Qlog(Gf3) = L(G)
consists of

-1 0

0] ,log(M3s)={0 0 0
0

)

Let = log(M;) + log(Ms) + log(Ms) € L(G) and assume that we want to
compute the exponent vector of Exp(x), i.e. the vector (eq, es, e3) such that

0
0
0 0O 0
)
x
(91'95°95°) B = exp(x).
First we compute

0 1 9 1 -1 -3/2

exp(z) = —=+—+==10 1 1

' ' 0 O 1

Now we can read off from the first subdiagonal that e; = 1 and e; = 1. Next
we divide off and compute

1 0
(938)% = (1) (928)) Pexp(x) = [0 1 0
0 0

This implies e3 = 3/2.

4.2 Via the Baker—Campbell-Hausdorft
formula

This method uses an abstract vector space and a structure constant table
with respect to the basis B to present £(G) on a computer.

For the computation of the structure constants, we use equation (3.7)
from Lemma 3.3.9; it expresses [Log(g), Log(h)], where g, h € G, in terms of
a linear combination of logarithms of group commutators.

The proof of Lemma 3.3.9 is constructive and therefore can be used to
compute the terms of (3.7); it makes use of the equation (3.6) from Lemma
3.3.7, whose terms can be determined using the method in [36, §8] and the
Dynkin bracket operator defined in [44, Chapter 2].

Example 4.2.1. With [Log(g), Log(h)] as left hand side, equation (3.6) is
1
[Log(g), Log(h)] = Log(lg, h]) + 5[Log(h), Log(g), Log(h)]

+%[Log(h)7 Log(g), Log(g)] + - - (4.1)

4.2. Via the Baker-Campbell-Hausdorff formula 39

where only terms up to length 3 are displayed. Now we replace all Lie
brackets of length > 3 by the according right hand side of (3.6) and get

[Log(9). Log(h)] = Log([g,h]) + 5 Log((h, 9. A]) + 5 Loa([h 9.4]) + .-

This is equation (3.7) with [Log(g),Log(h)| as left hand side, where only
terms up to length 3 are displayed.

Note that the terms of equation (3.6) and equation (3.7) do not depend
on GG. Therefore they can be precomputed up to a given length. The number
of terms grows exponentially in the length.

Let G = (g1,...,9) be a Mal’cev basis of G and denote by B the corre-
sponding basis {Log(g1), ..., Log(g;)} of L(G). We show by induction on [
that it is possible to compute the structure constant table of the Lie algebra
L(G) with respect to B.

If I =1, then £(G) is abelian and so the structure constant table of B
is known. If [> 1, then we can assume by induction that the structure
constant table of {Log(gs),...,Log(g;)} is already known and that we can
compute Log(g) for g in the Q-powered hull of (gs, ..., g;). Then using (3.7),
we can express [Log(g1),Log(g;)] as a linear combination of logarithms of
repeated group commutators (g1, ¢;). Since k(gi,g;) is in {(ga,...,) for
any commutator k, we can compute Log(x(g1,¢;)) and therefore determine
the coefficients of [Log(g1), Log(g;)] with respect to B. Thus we can compute
the structure constant table of B.

For the computation of Logarithms we use the fact that Log(gh) =
Log(g) * Log(h). Thus for given g = ¢7'---g;" € G we have that Log(g) =
(e1 Log(g1)) * -+ x (e;Log(g;)), and therefore the coefficients of Log(g) =
> a; Log(g;) can be be computed by using the Baker-Campbell-Hausdorff
formula and the structure constant table of B.

It remains to solve the task Exponential. For a given element xz =
S a;Log(g;) € L(G) we have that o = (o Log(g1)) * (—ay Log(g1)) * @
and y = (—aq Log(g1)) * = € (Log(g2),...,Log(g1))g- Thus e; = ay. Us-
ing the structure constant table of B and the BCH-formula we can compute
y := (—aj Log(g1)) * . By induction on [, we can assume that we can de-
termine fo, ..., f; such that g3*-- -glfl = Exp(y). Since Exp(x) = g{"* Exp(y)
we deduce that (e1,...,e) = (a1, fo, .-, f1).

Example 4.2.2. Let G = F, be given as in Example 4.1.2. We have that
[Log(e), Log(f)] = Log(le, f]) for e, f € G. Therefore [Log(g2), Log(g1)] =

Log(gs) and [Log(gs), Log(g1)] = [Log(gs), Log(g2)] = 0.
Let g = g1g5 and suppose that we want to compute the coefficients of

Log(g). We have that Log(g) = Log(g:) * Log(g5) = Log(g1) + 5 Log(gs) +
%[Log(gl), 5 Log(g2)]. Thus Log(g) = Log(g1) + 5 Log(g2) — gLog(gg).

40 Chapter 4. Computing the correspondence

4.3 Symbolic Log and Exp

It is well-known that, in the context of 7-groups, Log and Exp can be de-
scribed by polynomial functions [22, Chapter 6]. In this section we show
how to compute these functions and apply them for the computations of
logarithms and exponentials.

Lemma 4.3.1. Let G be a T -group with Mal’cev basis G = (g1, ..., q1).

(i) Define | functions @y, ...,a; in | rational variables ey, ..., e, such that

l
@ Log(g:) = Log(gi* -+ gf").
=1

Then @; is a polynomial in ey,...,e; fori=1,...,1.
(i1) Define | functions €, ...,¢ in | rational variables aq, . .., a; such that

l
gfl .. .glel = Exp (Z oy LOg(gz’)) .

i=1
Then €; is a polynomial in oy, ...,qp fori=1,... 1.

Proof. (i): Let # = >\ rLog(g), vy = Yo, siLog(g) € L(G). By
the properties of the Baker—-Campbell-Hausdorff formula the coefficients of
x % y with respect to the basis {Log(gi),...,Log(g;)} are polynomials in
r1,...571,81,...,95].

For g = g7" -+~ g;' we have that Log(g) = (e1 Log(g1)) * - - - * (e; Log(q1))-
By the repeated application of the argument from above we see that @; is a
polynomial in ey, ...,e; fori=1,...,L.

(ii): Let x = >\ a; Log(g:) € L(G). If I =1, then & (o) = oy and thus &
is a polynomial. Now assume that [> 1. In §4.2 we saw that (e,...¢,) =
(o1, fo, .-, f1) where gl*---gf' = Exp(y) with y = (—a1 Log(g1)) * . Let
Yy = 2222 B; Log(g;). By the properties of the Baker-Campbell-Hausdorff

formula (; is a polynomial in a, . .., ;. Further by induction we can assume
that fs,..., f; are polynomials in f,,..., 5. Thus € is a polynomial in
ai,...,opfori=1,...,L O

Example 4.3.2. Let G = F,, be the group already studied in Example
4.1.2 and 4.2.2. We have that

Log(g7'95°95) = (e1 Log(g1)) * (ea Log(gz2)) * (e3 Log(gs))

which is equal to e; Log(g1)+e2 Log(ge)+es Log(g3)+% [e1 Log(g1), e2 Log(g2)]-
Therefore we have a; = ey, ap = €9 and ag = —%6162 + es.

4.4. Runtimes and comparison 41

The proof of the Lemma 4.3.1 is constructive and can be used to compute
the polynomials @; and €; if the structure constant table of the Lie algebra
L(G) is known. See §4.4 for comments on the implementation and runtimes.

The functions @;, €; can be applied for the computation of logarithms
and exponentials. In §4.4 we will see that this is yields a considerable speed
up in comparison with the methods described in §4.1 and 4.2.

4.4 Runtimes and comparison

The approaches described in §4.1, §4.2 and §4.3 to realizing the Mal’cev
correspondence have been implemented in GAP [41] as a part of the package
Guarana [2]. In this section we make comments on their implementation,
indicate runtimes and compare them.

Implementation

For the method of §4.1, we used the algorithm and implementation of Nickel
[33] to compute the faithful matrix representations of the given 7-group G.
It is much more efficient than previous methods [13, 26].

For the method of §4.2, we use a weight function that can be associated
to every Mal'cev basis G = (g1,...,q); this is a function w : G — N\{0}
such that for all g, showing up in the normal form of [g;, g;] we have that
w(gn) > wlg)+w(g). 1w = maxw() then [gi,g,] = 1if w(g)+w(g,) >
more generally a group commutator in g; and g; with o occurrences of g; and
B occurrences of g; is equal to 1 if aw(g;) + fw(g;) > w. The equivalent
fact holds in the corresponding Lie algebra. A Lie commutator in Log(g;)
and Log(g;) with o occurrences of Log(g;) and # occurrences of Log(g;)
is equal to zero if aw(g;) + fw(g;) > w. This can be used to reduce the
number of commutators which have to be evaluated during the computation
of Log(g:) * Log(g;).

For the method of §4.3 for computing Log and Exp, we use the structure
constant table of the Lie algebra £(G) as computed by the method of §4.2.
Further the terms of the BCH-formula are determined using [36, §8] and the
Dynkin bracket operator defined in [44, Chapter 2].

Example groups

We use the following two classes of examples of polycyclically presented 7 -
groups to test our implementations. For background on algebraic number
theory see Appendix A.

42 Chapter 4. Computing the correspondence

1. Let Q(f) be an algebraic extension of Q and O its maximal order.
Then we denote by Tri(O) the group of upper-unitriangular matrices in
GL(n,0). In a similar way to Tri(n,Q), we can compute a constructive
polycyclic sequence for Try(n, O), which then yields a polycyclic presentation
for Try(n, ©). We use the irreducible polynomials p; (z) = 2? — 3 and py(z) =
23 — 2% + 4 for our examples. By O; we denote the maximal order of Q(6;)
where 6; is a zero of the polynomial p;.

2. Let F, be the free group on n generators fi,..., f,. Then F, . =
F./Yex1(F,), where ; denotes i-th term of the lower central series, is the
free nilpotent of class ¢ group on n generators. It is a 7-group and we use
the nilpotent quotient algorithm in the GAP package NQ [32] to compute a
polycyclic presentation for it.

Runtimes

In Table 4.1 we indicate the time that is needed to set up the Mal'cev corre-
spondence for several examples of 7-groups. Further the time that is needed
to compute the polynomials @;, €;, defined in §4.3, are displayed.

All computations were carried out in GAP Version 4.4.7 on a 3 gigahertz
Pentium 4 processor.

Discussion of the results

The runtimes displayed in Table 4.1 show that setting up the Mal’cev corre-
spondence with the help of the BCH-formula, as described in §4.2, is more
efficient than using matrix representations, as described in §4.1. For the
tested examples the BCH-method is usually 100 to 1000 times faster than
the matrix method.

Our experiments also show that the average time needed for computing
Log and Exp using the method from §4.2 is faster than using the method
from §4.1. Further the symbolic approach of §4.3 yields an additional speed
up for computing Log and Exp. For example for the group F5g for random
elements of range 1024 (i.e. elements of the form g = g7 ---g;", where
e; is a randomly chosen integer in [—1024,...,1024]) computing Log takes
only 10 milliseconds (symbolic) instead of 106 milliseconds (BCH) or 1979
milliseconds (Matrix approach). However a considerable amount of time
is needed to compute the polynomials used for the symbolic method. In
the case of the group F3¢ our implementation takes 15 seconds to compute
these polynomials. Thus the setup of the symbolic method from §4.3 is time
consuming but it only has to be done once. Then it yields a considerable
speed up for the computation of Log and Exp.

4.4. Runtimes and comparison

Group ‘ Hl ‘ Class ‘ Matrix ‘ BCH ‘ Pols

Fhyl 3 2 16 4 8
Fs| 5 3 36 6 20
Fy| 8 4 80 8 36
Fos| 14 5 380 20 | 120
Fhe | 23 6 1756 | 44| 380
P, | 41 71 14825| 196 | 1684
P | T1 8| 154000 | 776 | 6536
Fso] 6 2 32 4 20
Fys| 14 3 292 20 68
Fy,| 32 4 3256 80 | 256
Fy5] 80 50 97239 | 820 | 1940
Fy6 | 196 6 | 3504971 | 8681 | 14833
G(Tr1(2,(91)) 2 1 8 1 1
G(Tri(3,01)) | 6 2 48 4 12
G(Tri(4,04)) | 12 3 180 16 48
G(Tri(5,01)) | 20 4 1048 68 | 108
G(Tri(6,0:)) | 30 5 5784 | 232 | 324
G(Tri(7,01)) | 42 6| 47116 | 772 | 880
G(Try(8,0,)) | 56 71 393325 | 1988 | 2813
G(Tr1(2,0,)) | 3 1 12 4 4
G(Tri(3,02)) | 9 2 64 8 32
G(Tri(4,0,)) | 18 3 631 48 [132
G(Tri(5,09)) | 30 4 4969 | 188 | 432
G(Tri(6,0y)) | 45 5] 32630 | 664 | 2184
G(Tr(7,0,)) | 63 6 | 363484 | 2069 | 11972

43

Table 4.1: Setup of the Mal’cev correspondence and symbolic Log and Exp:
The second and third column indicate the Hirsch Length and the class of the
given example group. In the fourth, respectively fifth, column we display the
time in milliseconds that is needed to set up the Mal’cev correspondence via
the matrix approach (see §4.1), respectively the BCH approach (see §4.2).
In the sixth column we see the time in milliseconds that is needed to compute
the polynomials describing Log and Exp (see §4.3).

Chapter 5

Mal’cev collection

In this chapter we describe a collection algorithm, which we call Mal’cev
collection, for polycyclically presented groups. The Mal'cev correspondence,
nomen est omen, plays a central role in this algorithm.

This work is motivated by a paper of du Sautoy [16]. He uses the Mal’cev
correspondence to investigate the nature of functions that describe the collec-
tion process in splittable polycyclic groups. This so-called symbolic collection
will be discussed in more detail in Chapter 6.

In §5.1 we recall some well-known facts about collection in polycyclically
presented groups; in particular we mention collection from the left and Deep
Thought. Then we describe the Mal'cev collection in §5.2. The underlying
methods for computations with automorphisms of 7-groups are give in §5.3
and §5.4. Finally, in §5.5 we report on our implementation of the Mal’cev
collection in GAP and compare it with collection from the left.

5.1 Classical collection

Let G be a polycyclic group given by a polycyclic presentation P with respect
to a polycyclic sequence G = (g1, ..., gn)-

Definition 5.1.1. Let w = w(gy,...,g,) be a word in g1, ..., g,. A method
for computing the normal form of w with respect to G is called a collection
algorithm. The word w is called collected if it is in normal form.

The performance of algorithms for computations in polycyclically pre-
sented groups depends very considerably on the ability to do collection effi-
ciently. Typically the word w is the product of two elements given in normal
form, i.e. w = nf(g)nf(h) for some g,h € G.

Several strategies for collection in polycyclic groups have been studied
intensively, see for example [18, 24, 43]. The current state of the art is

44

5.1. Classical collection 45

“collection from the left (Cftl)”. The following algorithm is a simple version
of Cftl.

CollectionFromTheLeft(P, w)

1: while w is not collected do
2: let x be the leftmost uncollected subterm in w
of the form g;* or gigj-ﬂ where j < 1.
3: replace z by a collected subterm according to the relations of P.

4: end while

Cftl was successfully used for structural explorations of finite polycycli-
cally presented groups of very large order, see for example [34]. In finite
polycyclically presented groups Cftl benefits from the fact that all relative
orders are finite, and thus the exponents of generators arising in the collec-
tion process are bounded. However in infinite polycyclic groups this is not
the case. Thus, one of the main challenges of implementations of Cftl for
infinite polycyclic groups is dealing with large exponents.

To our knowledge the fastest current implementation of collection from
the left is part of MAGMA [11]. A description of this implementation can
be found in [18]; it uses methods related to repeated squaring to handle big
exponents.

The complexity of collection from the left is known to be exponential in
the number n of generators [24].

For collection with respect to certain “nice” polycyclic sequences, much
better methods are known. For 7-groups, i.e. finitely generated torsion-free
nilpotent groups, we have the following result due to Hall [19]. Recall that
for a polycyclic group G with polycyclic sequence (g, ..., ¢g,) and x € Z" we
denote ¢g* = gi* - -- g*".

Theorem 5.1.2. Let G be a T -group with Mal’cev basis G = (g1, .., n)-
Let (= (¢;) : Z" X 2" — 7™ be the collection function of G with respect to G

so that

g g = gC(I,y)

and let w = (w;) : Z" X Z — Z" the powering function of G so that
(gm)k — gw(x,k).
Then ¢ and w are given by polynomials over Q.

Proof. By Section 3.3 we have that

g¢¥) = Exp(Log(g”) * Log(g"))

46 Chapter 5. Mal’cev collection

and ¢g* = Exp(kLog(g7"* ---¢*")). By Lemma 4.3.1 and the fact that x * y
has only finitely many nonzero terms for z,y € L(G), we deduce that ¢; and
w; are rational polynomials. O

This result can be used for computational applications. Leedham-Green
and Soicher developed the algorithm “Deep Thought” [25], which computes
these polynomials and uses them for collection in 7-groups. An implemen-
tation of Deep Thought by Merkwitz [29] is part of the GAP system. Deep
Thought yields a big speed up compared to collection from the left for the
multiplication of two random elements of a 7-group.

5.2 Collection using the
Mal’cev correspondence

Let G be an infinite polycyclic group. In this section we show that, with
respect to a carefully chosen polycyclic sequence G of GG, collection in G can
be reduced to the following 3 subtasks:

(1) Collection and powering in a 7 -subgroup of G.

(2) Computations with powers of automorphisms and consecutive powers
of automorphisms of a normal 7 -subgroup of G.

(3) Computations with coset representatives of a subgroup of finite index

of GG.

As discussed in §5.1, (1) is well understood and we can apply standard
methods such as Deep Thought to it. For (2) we will use the Mal’cev corre-
spondence as explained in §5.3 and §5.4. For (3) we use collection from the
left.

5.2.1 Choosing the polycyclic sequence G

Let G be an infinite polycyclic group. Now we explain how to choose the
polycyclic sequence G mentioned at the beginning of §5.2.

Recall that by §2.5 we can compute a normal 7-group N and a 7-group
C such that H = C'N is normal of finite index in G and H/N is free abelian
of finite rank. By computing the upper central series of N as described in
[17, Chapter 9] we can obtain a Mal’cev basis of N.

Let N = (ny,...,m;) be a Mal’cev basis of N and let (¢;N,...,cxN) be
a basis for the free abelian group CN/N. Then H = (¢q, ..., ¢k, n1,. .., 0y) 1S

5.2. Collection using the Mal’cev correspondence 47

a polycyclic sequence for H = C'N. Further there exist fi,..., f; € G such
that (fiH,..., f;H) is a polycyclic sequence for G/H. Now we set

G=(fr, s [, oy,)
which is a polycyclic sequence for G.

Lemma 5.2.1. The list (cy,...,cx) can be extended to a Mal’cev basis

C= (Cla w3 Chy Clpt 1 - '7Ck+m)
of the T -group C.

Proof. The upper central series of C' N N has torsion-free factors and is in-
variant under the action of (¢, ..., ck).

This series can be refined to a central series with torsion-free factors which
are centralized by (cy,...,c;). To see this, let M be one of the torsion-free
factors. Denote by A the centraliser of (ci,...,¢;) in M. Then A is non-
trivial, since C' acts nilpotently on M, and furthermore M /A is torsion-free,
since for m € M, z € N, the equality zm = (zm)% = z(m*) implies m“ = m.
Thus, by induction on the dimension of M, we get a strictly ascending series
of submodules of M with torsion-free factors, which are by construction

centralized by (c1, ..., cx).

Finally we set (cxi1, - - ., Crim) to be a Mal’cev basis of C'N N which goes
through the refined upper central series of C' N. Then C is a Mal’cev basis
of C. O

5.2.2 Mal’cev collection in H = CN

Now we show that in H collection with respect to H can be reduced to
the subtasks (1) and (2). Denote by ¢“n”® the element in H given by the
exponent vector (xy, ..., Tk, T1,...,T;) with respect to H. For two elements
c*n®, YnY € H we have

- iy -
Entn? = =¥ (n®)nd.

Since H/N is free abelian, the normal form of ¢*¢¥ with respect to C is of
the form ¢™ Ve " -~ ¢, The computation of the tail t = ¢%} - -5 is
a computation entirely in the 7-group C' and therefore a part of subtask (1).

We can also compute the normal form of the tail ¢t € C'N N with respect
to N as part of (1). For this purpose we compute the normal forms of

Chtl,- - -, Chim With respect to A as part of the setup. Then computing the

48 Chapter 5. Mal’cev collection

G
< o0
H
C
N
normal nilpotent
nilpotent
1

Figure 5.1: Let G be an infinite polycyclic group. There is a normal 7 -group
N and a 7-group C such that H = C'N is normal of finite index in G and
H/N is free abelian of finite rank. In §5.2 we describe an effective collection
method with respect to a polycyclic sequence G going through the normal
series 1 < N < H < G.

normal form of ¢ with respect N reduces to m powering operations and m— 1
multiplications in N.
The efficient computation of the normal form of

Y1 Yk)

(na’c)(cy) — (na’c)(cl ey

is the crucial step of our method. It is a computation with automorphisms of
N and therefore part of (2). Finally, the multiplication of nf(t), nf((n®)€"))
and n¥ in N can be done again as a part of (1).

5.2.3 Inversion in H = CN

Let ¢*n* € H as in §5.2.2. The computation of the normal form of g =
(¢®n®)~! can be done as follows. Denoting ¢ = ¢® and n = n® we have that
g=c ' (nH)). Inverting in C' and N is part of (1), and thus the normal
form of ¢! with respect to C and the normal form of n~! with respect to A/
can be determined efficiently. Similarly to §5.2.2, we transform the normal
form of ¢=! with respect to C to an element of the form ¢¥n?. The remaining
computation of the normal form of n?(n=1)¢"") can be done as in §5.2.2 and
therefore be reduced to (1),(2).

5.2.4 Powering in H = CN

Let ¢*n® € H as in §5.2.2. We describe a method to compute the normal
form of (¢"n”)? where ¢ € Z.

5.2. Collection using the Mal’cev correspondence 49

By inverting ¢*n® with the method of §5.2.3 if necessary, we can assume
that ¢ > 0. If we denote ¢ = ¢® and n = n® then we have

by ¢

(en)? = ¢! -nn,.
———_———
t
The group H/N is free abelian. Thus
4 (@Y — (AT ATk FREL | Fhbm
= (c")" = % Ck+1 7 Chgm
: : _ L Pk+1 Zk+m
for some zgy1, ..., 2km € Z. The computation of the tail s = ¢}/ - - ¢,

is a powering computation in the 7-group C and therefore a part of subtask
(1). We can also compute the normal form of the tail s € C' NN with respect
to N as part of (1), as described in §5.2.2. The computation of the normal
form of ¢ is a subtask of (2). Finally, the computation of the normal form of
st is again a part of (1).

5.2.5 Mal’cev collection in GG

Now we describe our collection method with respect to G. Denote by f*c*n®
the element in G given by the exponent vector

([L’l,...,l’j,[i’l,...,i’k,fl,...,l'l)
with respect to G. For two elements f*c*n?, f¥c¢'nY € G we have
fxcfnffycgng = fofY (Cf)(fy) 037(n5ﬂ)(fyc@)n?37
fr'an'F C§n§ CETLE

where f¢™n", ¢*n® and ¢'n! are the normal forms with respect to G of the
corresponding expressions in the brackets above them.

e The computation of ¢n’ can be reduced to the subtasks (1),(2) as
explained in §5.2.2.

e For the computation of ¢®n® we use the equality

(C:?:)(fy) _ (Cgfy)):m . (Céfy))ik.
The normal form of cgfy) € H can be precomputed for i = 1,... k
and every fYH € G/H, and therefore can be assumed to be given.
Then nf((cl(-f y))fl) can be computed using the methods for powering
in H of §5.2.4. The remaining computation of the normal form of
nf((cgfy))fl) > -nf((c,(ffy))i’k) can be done by again using the methods
for H.

50 Chapter 5. Mal’cev collection

e The normal form f"¢"n® of ff¥ can be precomputed for all f*H, fYH ¢
G/H and therefore assumed to be given.

e Finally, the computation of the normal form of nfeniefnt can be
done with the method of §5.2.2.

5.2.6 Inversion in G

Let g = f%c*n® be an element in G given in normal form with respect to G.
Then g=! = (¢*n®)~1(f*)~!. Thus, by precomputing the normal forms of all
elements (f®)~!, we can reduce the computation of the normal form of g~*
to inversion in C'N and collection in G.

5.3 Computations with powers of automor-
phisms of 7-groups

Let N be a 7-group given by a polycyclic presentation with respect to a
Mal’'cev basis N' = (nq,...,n;). Let ¢ be an automorphism of N, given
by the list (ny,...,n]). In this section we describe an effective method to
compute the normal form of n*"), where n € N and ¢ € Z.

As explained in §3.3, let £(IN) be the Lie algebra corresponding to the
radicable hull of N. Then {Log(ni),...,Log(n)} is a basis for L(N). We
define a [x [matrix ® by

1
Log(nf) =Y ®;Log(n).
j=1

By Theorem 3.3.6 the matrix ® is a representation of the Lie algebra iso-
morphism Exp o o Log, with respect to the basis {Logn,...,Logn;}. This
yields the following algorithm.

ApplyPowerOfAutomorphism(n, ¢, ¢)
1: determine v = Logarithm(n).
2: compute ¥ =y - P9,
3: compute g = Exponential(7).
4: return g.

For the realization of Step 1 and 3, see Chapter 4. Note that for Step 2
repeated squaring can be used.

If we want to apply several powers of automorphisms ¢{' o3> - - - ¥, as in
§5.2, we switch only once from n to the corresponding element ~ in the Lie al-
gebra, then multiply v with ®{" - - - ®*, where ®; is the matrix representation

5.4. Computations with consecutive powers
of automorphisms of 7-groups 51

of the Lie algebra isomorphism corresponding to the group automorphism ;,
and then switch back to the representation with respect to (nq,...,n;).

5.4 Computations with consecutive powers
of automorphisms of 7-groups

Let N be a 7-group and ¢ € Aut(N) be given as in §5.3. We describe an
effective method to compute the normal form of

Mgl = @D e
where n € N and ¢ € N.

As in §5.3 we use the Lie algebra £(N) and the Lie algebra automorphism
® € Aut(L(N)) corresponding to ¢ for this purpose; if we denote x = log(n)
then we are interested in computing the coefficients of the vector

Iy = (2®7) * (mq)(q_l)) koox (x®) x T

because Exp(Il,11) = mg41.
Our method is a variation of repeated squaring; we use a binary repre-
sentation of ¢ and the identities

I, = (IL,®")«1I,
H2p+1 = (HQP(I))*SL’

This reduces the computations of the coefficients of II, to log(q) matrix and
vector multiplications and log(q) *-operations.

5.5 Implementation and runtimes

The Mal’cev collection algorithm has been fully implemented in GAP and is
part of the Guarana package [2]. In this section we make comments on our
implementation and compare it with collection from the left. All computa-
tions have been carried out on a 3 gigahertz Pentium 4 processor. Indications
of memory usage will be given later at the appropriate places.

5.5.1 Example groups

Throughout this section we use the following classes of example groups. For
background on algebraic number theory see Appendix A.

52 Chapter 5. Mal’cev collection

1. Let Q(#) be an algebraic extension of Q and O its maximal order. Let
Tr,,(O) be the group of upper-triangular matrices in GL(n, O), Tri(n, O) the
subgroup of matrices in Tr,(O) with 1s on the diagonal and D,,(O) the group
of diagonal matrices in GL(n, Q). Every polycyclic group has a subgroup of
finite index which can be embedded in some Tr,(O) [38, page 132]. Therefore
this class of groups is very suitable for testing our collection algorithm.

Let U(O) be the group of units of O. As a consequence of Dirichlet’s
Units Theorem, U(QO) is polycyclic and therefore D,,(O) is polycyclic as well.
Using the torsion unit and fundamental units of U(0O), it is straightforward
to obtain a polycyclic presentation for D,,(O).

As mentioned in §4.4 we can compute a polycyclic presentation for the
group Try(n, O). Since Tr,(0) = D,(O) x Tri(n, O), it is straightforward
to obtain a polycyclically presented group G(Tr,(O)) being isomorphic to
Tr,(O).

We use the irreducible polynomials p;(z) = 2% —3 and po(z) = 2® — 2> +4
for our examples. By O; we denote the maximal order of Q(6;) where 0; is a
zero of the polynomial p;.

2. Let F, . be the free nilpotent of class ¢ group on n generators. As
explained in §4.4 we can compute a polycyclic presentation for F, .. An
automorphism ¢ of the free group F), naturally induces an automorphism ¢
of F, ..

We use the automorphism ¢; of F, which maps f; to f; ' and fa to fif3
and the automorphism ¢, of F3 mapping fi to f; ', f2 to f3 ' and f3 to
£y 2 f7t for our examples.

Using an automorphism 9 of F}, . we can construct a polycyclically pre-
sented group G({¢) x F),) which is isomorphic to () X F), ..

Note that all example groups in this section are extensions of the groups
from §4.4.

5.5.2 Runtimes setup

In Table 5.1 we display the time that is needed for the complete setup of the
Mal’cev collector. We assume that the input group is given by a polycyclic
presentation with respect to a nice polycyclic sequence in the sense of §5.2.1
and that the subgroup C'is given by a polycyclic presentation with respect
to a Mal’cev basis. The setup of the Mal’cev collector includes the setup of
the Mal’cev correspondence for the normal subgroup N as described in §4.2,
the computation of the polynomials describing Log and Exp as described in
4.3, the computation of the multiplication table of G/CN, the computation
of the Deep Thought collector for C' and N and all other information that

5.5. Implementation and runtimes 53

is needed to do Mal’cev collection. All computations have been carried out
with 80 MB of memory for GAP.

5.5.3 Mal’cev collection versus collection from the left

In Table 5.2 we display the average runtime for the multiplication of two ran-
dom elements in our example groups. The compared methods are collection
from the left as implemented in MAGMA V2.12-14 and Mal’cev collection.
For a group G with polycyclic sequence (g1,...,gx) we say that a random
element g € G is of range r € N if is of the form g = gi* - - - g;*, where ¢;
is a randomly chosen integer in [—7,...,7]. The Mal'cev collector uses the
implementation of Deep Thought in GAP as the collection method in the
T-groups C' and N.

In Table 5.2 we see that Cftl is more efficient than Mal'cev collection
for random elements of very small range such as 1. This is not surprising.
For elements g, h of small range Cftl needs to do very few replacements to
yield the normal form of gh. We note that the runtime of Cftl can differ
considerably because the size of the exponents of the normal form of gh
varies a lot for random elements g, h of same range.

For random elements of bigger range Mal’cev collection dramatically out-
performs Cftl. It is much faster and also less memory consuming. The
multiplication of random elements of big range such as 1000 was not possible
with Cftl with 1 GB of memory, while Mal’cev needed at most 85 MB of
memory.

Therefore it depends very much on the context which method should be
applied. For computations where typically elements with sparse and small
exponent vectors are multiplied, Cftl is preferable. For example for the com-
putation of a polycyclic sequence for the derived subgroup it might better to
choose Cftl, since we mainly compute normal forms of commutators in the
original generators. Computations that involve slightly more complicated el-
ements are better done with Mal’cev collection. For those elements Mal’cev
is much faster even if we include the cost of the setup of Mal’cev collector.
Further the multiplication of elements of big range is often not possible with
Cftl since we run out of memory.

It might be a good idea to use a hybrid collector that combines both
methods. By looking at the exponent vectors of the input elements this
collector could make an estimate whether Cftl or Mal’cev should be chosen.
Alternatively the hybrid collector could run Cftl and Mal’cev in parallel on
the same input and return the result of the method that finished first.

04

Chapter 5. Mal’cev collection

‘ Group ‘ Hl ‘ Setup time

G((01) x Fpp) | 4 40
G((71> X Fgg) 6 48
G((71> X F24) 9 48
G((g1) x Fps) | 15 160
G((01) x Fpg) | 24 508
G((@1) x For) | 42 2232
G((01) X Fos) | T2 8447
G<< _2> X Fgg) 7 30
G({@2) x Fs3) | 15 96
G((72> X F34) 33 543
G((2) x F35) | 81 4201
G({@2) x Fg) | 197 41376
G(Try(Oy)) 4 16
G(Tr3(0y)) 9 48
G(Try(Oy)) | 16 148
G(Tr5(Oy)) | 25 428
G(Trg(01)) | 36 1272
G(Tr7(0y)) | 49 3864
G(Trs(0y)) | 64 12757
G(Try(02) | 5 28
G(Tr3(0,)) | 12 76
G(Try(0,)) | 22 292
G(Tr;5(0y)) | 35 1036
G(Trg(Oy)) | 51 3949
G(Tr7(07)) | 70 17197

Table 5.1: Setup of the Mal’cev collector: In the second column we indicate
the Hirsch length of the given example group. In the third column we specify
the time in milliseconds that is needed for the complete setup of the Mal'cev
collector.

5.5. Implementation and runtimes 55

Group | range = 1 || range = 10 || range = 100 || range = 1000 |
[Cftl [Mal’cev] Cftl | Mal'cev || Cftl | Mal'cev [[Cftl | Mal’cev |
G({($1) X Fa2) 1 1 3 1 2481 1 * 1
G({$1) X Fa3) 1 1 27 1 * 2 * 3
G((f1) X Fayq) 1 2 108 3 * 4 * 11
G({($1) X Fas) 1 5 5627 7 * 14 * 151
G((p1) X Fag) T 11 21276 19 * 57 * 810
G({p1) X Fa7) 2 52 485532 120 * 501 * 9269
G(($1) X Fag) 17 150 * 522 * 2442 * 58497
G(($2) X F33) 1 1 7 1 * 2 * 3
G({$2) X F33) 1 3 252 4 * 7 * 40
G({p2) X F34) 1 9 3160 13 * 63 * 568
G({$2) X F35) 1 62 || 325312 158 * 1185 * 17473
G({($2) X Fsg) 64 434 * 2268 * 22377 * 310518
G(Tr2(04)) 1 1 1 2 4 3 67 3
G(Tr3(01)) 1 5 2 7 20 9 308 11
G(Try(01)) 1 9 19 14 978 16 * 28
G(Tr5(01)) 1 20 140 28 9068 35 * 81
G(Tr(01)) 5 56 549 83 27510 112 * 391
G(Tr7(01)) 28 127 1899 190 150030 276 * 1043
G(Trg(01)) 80 496 5884 785 * 1381 * 5450
G(Tr2(02)) 1 2 1 3 9 3 187 4
G(Tr3(02)) 1 5 3 8 47 10 732 15
G(Try(02)) 1 15 85 23 6705 28 * 72
G(Tr5(02)) 4 43 829 59 34520 77 * 216
G(Trg(02)) 25 157 3233 225 * 318 * 1238
G(Tr7(02)) 114 501 12118 700 * 1008 * 3870

Table 5.2: Runtimes for the multiplication of two random elements: This
table specifies the average runtime in milliseconds of 1000 computations of
the normal form of gh where g, h are randomly chosen group elements of range
r, i.e. elements of the form g = gi* ---g;*, where e; is a randomly chosen
integer in [—7,...,7]. The two compared methods are Cftl, i.e. collection
from the left as implemented in MAGMA V2.12-14 and Mal’cev collection
as implemented in the GAP package Guarana. The symbol ‘*’ indicates that
the computation of the average runtime was aborted because it needed more
than 1 GB of memory.

56 Chapter 5. Mal’cev collection

600 T T T T T T

500

400

300

200

Average runtime of multiplication in milliseconds

100

Range of random elements

1000 . .
Cftl ——
Malcev -------

12}

2 800 -
o

o

Q

2

€

£

§ 600 i
T

L

=

E

E

S

o 400 -
£

€

2

[}

(=)}

o

§ 200 -

0 1 1
100 150 200

Range of random elements

Figure 5.2: For the group G(Trg(O;)) the average runtime of the collection
algorithm Mal’cev and Cftl as a function in the range of the multiplied ran-
dom elements is displayed.

5.5. Implementation and runtimes 57

5.5.4 Concluding remarks

We have seen in §5.5.3 that Mal’cev collection can be used to speed up col-
lection in polycyclically groups considerably. However this collection method
only works if the group is given by a polycyclic presentation with respect to
a nice polycyclic sequence in the sense of §5.2.1.

All example groups in this chapter have been constructed around such
a polycyclic sequence. This is a natural way to construct infinite polycyclic
groups.

As mentioned in §2.5 the methods in [17, Chapter 9] can be used to com-
pute such a nice polycyclic sequence for an arbitrary polycyclically presented
group. Therefore it would be desirable to have a very efficient implementa-
tion of these methods. So far a prototype implementation exists. Since such a
polycyclic sequence which goes through a nilpotent-by-abelian-by finite nor-
mal series of the group is a natural starting point for further investigations,
it is desirable to compute it anyway:.

Chapter 6

Symbolic collection

Let G be a polycyclic group with a basis G = (g1, . .., gn), i.e. G is a polycyclic
sequence of G such that all relative orders are infinite. Then each element
g € G has unique normal form g¢7* - -- g<» where ¢; € Z.

With respect to the basis G we can define collection functions (i, ..., (,
in 2n integer variables x1,..., Ty, Y1, ..., Yn DY

gt gt g = g gy

where the right hand side is the normal form of the left hand side of this
equation.

As already mentioned in §5.1 a result due to Hall [19] states that, if G is
a Mal’cev basis, then the functions (; are rational polynomials.

Hall’s result was generalised by du Sautoy to the class of splittable poly-
cyclic groups [16]. He showed that in those groups the functions ¢; with
respect to a carefully chosen basis are polynomials over a number field F in
T1yeves Ty Y1, - -, Yp and a finite number of expressions of the form wfj where
w;; € F. Note that every polycyclic group has a splittable subgroup of finite
index [38, Chapter 7].

In this chapter we describe an algorithm that computes the collection
functions for splittable polycyclic groups. It is based on the partially con-
structive proof of du Sautoy in [16] and the constructive methods in Chap-
ter 4. This algorithm can be seen as an extension of the algorithm “Deep
Thought” by Leedham-Green and Soicher, which computes Hall polynomials.

In §6.1 and §6.2 we give some necessary background material on the
multiplicative Jordan decomposition and splittable polycyclic groups. Then
in §6.3 we outline the algorithm for the computation of collection functions
in splittable polycyclic groups. Finally, in §6.4 we comment on applications
of this algorithm.

58

6.1. Jordan decomposition 59

6.1 Jordan decomposition

In this section we recall some of the well-known properties of the multiplica-
tive Jordan decomposition.

Definition 6.1.1. We call an element g € GL(d, Q) diagonalizable if it is
conjugate in GL(d,C) to a matrix in diagonal form. Further u € GL(d, Q)
is said to be unipotent if it is conjugate in GL(d, Q) to a matrix in upper
unitriangular form.

Lemma 6.1.2. Let g € GL(d, Q). Then there exist unique g, gs € GL(d, C)
such that g, is unipotent, gs 1s diagonalizable, and g = §u9s = 9sGu. Moreover
gu and gs both lie in GL(d, Q).

Proof. See [38, Chapter 7]. O

Definition 6.1.3. Let g € GL(d,Q). The decomposition g = g¢,g, from
Lemma 6.1.2 is called the multiplicative Jordan decomposition of g. We call
gs the semisimple part and g, the unipotent part of g.

For given g € GL(d, Q) we can compute g5 with the method in [7]. This
also yields g, by calculating g, = g;'g.

For a group G < GL(d, Q) we denote G5 = {gs|lg € G} and G, = {gu|g €
G}. The following theorem yields that if G is nilpotent then G, and G, are
subgroups of GL(d, Q) that commute element-wise.

Theorem 6.1.4. Let G be a nilpotent subgroup of GL(d, Q). Then G, and
G are subgroups of GL(d,Q), G < G, X G and the maps ()s : G — G4 and
()u : G — Gy are homomorphisms.

Proof. See [38, Chapter 7]. O

6.2 Splittable polycyclic groups

The key concept used by du Sautoy [16] to study collection functions in
polycyclic groups is that of a splittable polycyclic group as introduced by
Segal [38]. It will be explained in the following.

Let G be a polycyclic group with Fitting subgroup Fitt(G) = N, i.e.
N is the largest nilpotent normal subgroup of G. If N is a 7-group, then
we can associate a Lie algebra L£(N) to it, as outlined in Chapter 3. For
g € G we denote by ®(g) the Lie automorphism of £(V) that corresponds
to the conjugation action of g on N. We identify in the following ®(g) with
its matrix representation with respect to an arbitrary fixed basis of L(N).
Recall from §6.1 that we denote by ®(g), the semisimple part of ®(g).

60 Chapter 6. Symbolic collection

Definition 6.2.1. Let G be a polycyclic group with Fitting subgroup V.
Then G is said to be splittable if

(1) N is a T-group and G/N is free abelian.

(2) G = CN for some nilpotent 7-group C' < G.

(3) Log(N)®(C)s = Log(N), i.e. ®(C); stabilises Log(N) as a set.
If G only satisfies (1) and (2) then G is called almost splittable.

Theorem 6.2.2. Let G be a polycyclic group. Then G has a splittable sub-
group of finite index.

Proof. See [38, Chapter 7]. O

Definition 6.2.3. Let GG be an almost splittable polycyclic group and G =
CN as in Definition 6.2.1. Let (¢1V,...,g,.IN) be a basis for CN/N with
gi€Cfori=1,...,r, and let N = (g41,...,9s) be a Mal’cev basis of N.
Then

g: (gla--->gr>gr+la"'798)

is a basis for G = C'N; we call G a canonical basis for G.

Without loss of generality we can assume that ®(C'), stabilises the central
series of N associated to N [16]. Also note that the list (g1,...,¢,) can be
extended to a Mal’cev basis of C, by Lemma 5.2.1.

Let H be a polycyclic group given by a polycyclic presentation. Eick de-
scribes in [17, Chapter 9] a practical algorithm to compute an almost split-
table subgroup G of finite index in H. Her algorithm also yields a canonical
basis for G.

As mentioned in the introduction of this chapter, du Sautoy [16] proved
the following result about collection functions in splittable polycyclic groups.
For complex valued functions fi, ..., f, a monomialin fi, ..., f. is a function
of the form [[_, f/ where a; € Z.

Theorem 6.2.4. Let G be a splittable polycyclic group with a canonical basis
G=1(91-19r,Grs1,---,9s). Let ¢ = ((;) : Z° X Z* — Z* be the collection
function of G with respect to G so that

g g = gC(:vvy)‘

Then there exist a number field F and w;; € F where 1 < i <7 and 1 <
7 < s —1 such that (is given by a F-linear combination of monomials in
Tiyees T Y1y Ys and wif where 1 <i<rand 1 <j<s—r.

Remark 6.2.5. du Sautoy calls the function ¢ from the last theorem a poly-
nomial over F in z,y and w;}.

6.3. Computing collection functions 61

6.3 Computing collection functions

Let GG be an almost splittable polycyclic group as defined in §6.2. Assume
that G is given by a polycyclic presentation with respect to a canonical basis
G =1(91,---,9r Grs1,---,9s) as in Definition 6.2.3. In this section we show
how to compute the collection functions (i,...,(s in 2s integer variables
T, .., T, Y1, ..., Ys such that ¢g%g¥ = ¢°.

By definition N' = (g,41, . . ., gs) is a Mal’cev basis for the normal 7 -group
N in . Further there is a 7-group C with ¢q,...,¢9, € C such that G =
CN and G/N = CN/N is a free lattice of rank r with basis ¢;N,..., g, N.
Throughout this section we will use the notation ¢* = gi*---¢g¥ € C and
n® =g 4 g €N
Example 6.3.1. Let N = F55 be the free nilpotent of class two group on
two generators. Then

+1
N = <gz,gs,g4\g§92 = 9395")

is a polycyclic presentation for N and N = (g, g3, 94) is a Mal’cev basis of
N.

An automorphism of the free group F, naturally induces an automor-
phism of N. Let g; act on N like the automorphism of Fy = (f1, fo) that
maps fi to f; " and fo to f1 f3. This yields a polycyclically presented almost
splittable group G = (g;) X N with canonical basis G = (g1, 92, .-, g4); We
have C' = (g1) 2 Z and G/N = (g1 N) = Z.

6.3.1 The action of C on N

In this section we show how to compute symbolically the normal form of
()"

with respect to \V.
Let L£(N) be the Lie algebra associated to N. Recall that

B = {Log(gr—i-l)a tety Log(gs)}

is a basis for £(N) and that for g € G we denote by ®(g) the Lie automor-

phism of £(N) that corresponds to the conjugation action of g on N. In the

following we identify ®(g) with its matrix representation with respect to B.
According to Theorem 3.3.5 we have that

(n*)) = Exp(Log(n")®(c")).

62 Chapter 6. Symbolic collection

By Lemma 4.3.1 the functions Log and Exp can be described by polynomials,
and we can therefore compute symbolically with them; these polynomials can
be computed as described in §4.3. It remains to get a symbolic expression
for ®(c¥) in the integer variables y,...,ys. For this purpose, we will use
the multiplicative Jordan decomposition ®(c¥) = ®(c¥)P(c¥),, as defined in
66.1.

Example 6.3.2. Let G be as in Example 6.3.1. Let [; = Log(g;) fori = 2, 3,4
and @y, @iz, @4 be defined as in Lemma 4.3.1 so that

Log(g5°95°94") = Qala + Qgls + Qula.
A straightforward computation, as shown in Chapter 4, yields
E(N) = <l27 l37 l4|[l27 l3] = l4>7

and @y = €9, a3 = e3 and ay = —%egeg + eq4.
Further we have that

Semisimple action

Theorem 6.3.3. The entries of ®(c¥)s are F-linear combinations of a finite
number of expressions wf;, where F is some number field and w;; € F.
Proof. We have that ®(c¥), = ®(g1),"" --- ®(g,)s"", because (), : C — C,
is a homomorphism. By definition every ®(g;)s is diagonalizable. Further-
more, since ®(C); is abelian by the proof of [38, Chapter 7, Theorem 1], the
elements ®(g1)s, ..., P(g,)s are simultaneously diagonalizable.

Let ' be the smallest number field that contains all eigenvalues of the
matrices ®(g1)s, ..., P(gr)s. Denote by T the base change matrix over F
so that ®(g;)7 = T7'®(g;),T is in diagonal form with diagonal entries

Wity .-, wy € Ffori=1,... r, where [is the dimension of £L(N). Since
i yi Tt
®(g:)" = ((2(g0)s")") (6.1)
the entries of ®(g;)s" are F-linear combinations of wjj, ... ,wy. We deduce

that the entries of ®(c¥), are F-linear combinations of the wy; where i =
1,...;,rand j=1,...,L O

6.3. Computing collection functions 63

Remark 6.3.4. A matrix T such that ®(g;)," is in diagonal form for i =
1,...,7 can be computed as follows: by [17, Lemma 5.11] we have that a ran-
dom rational linear combination of the elements of A = {®(g1)s,...,P(g,)s}
yields a primitive element « of the Q-algebra Q[.A] with high probability.
Let F be the splitting field of the minimal polynomial of «. Standard linear
algebra now yields a matrix 7" over [F such that o’ is in diagonal form. As a
consequence q)(gi)sT is in diagonal form for i =1,...,r.

Example 6.3.5. We continue Example 6.3.2. The matrix ®(g;) is diago-
nalizable and thus we have ®(g;)s = ®(¢g1) and ®(g1), = 1. The minimal
polynomial of ®(g;) is 23 —42? +4x — 1 = (z — 1)(z® — 3z + 1) and thus we
take F = Q(#) where 6 is a root of 22 — 3z + 1. Computing the eigenspaces
yields the base change matrix

~3/2 6/5—3/100 3/10+3/100
T=|3/2 -3/10-3/1006 —6/5+3/100
1 0 0

Using equation (6.1) we deduce that ®(g;)”* = ®(g1)s”" is equal to

awi?t + aawis?”t aswie?t — aswiz?t auwie?t + aswis?t + 3/2
—3wia¥ + azwis? aswpY + aqwis? —aswie?t — agwis?t + 3/2

0 0 1

where W12 — 9, Wiz = 3—9, Q= 7/5— 3/59, Qg — —2/5+3/5¢9, g =
3/5—2/50, ay =6/5—3/100 and a5 = 3/10+ 3/106.

Theorem 6.3.6. The elements w;; € F from Theorem 6.5.8 are contained
in the group of units of the mazximal order of .

Proof. By [38, Chapter 6] the additive group Z Log(N) is free abelian of finite
rank and spans L£(NN) over Q. Thus there exists a Z-basis B of Z Log(N)
which is also a Q-basis for £(/N). By Theorem 3.3.6, the lattice Z Log(NV)
is invariant under ®(C'). Thus with respect to the basis B we have that
®(C) < GL(d, Z).

Recall that (g1 V,...,g.N) is a basis for CN/N with ¢g; € C for i =
1,...,7. We denote by Xgis Xgt the minimal polynomial of ®(g;), ®(g; ")
over Q. Since ®(g;) is conjugate to an element in GL(d,Z) we deduce that
Xgi» Xg-1 € Zlz]. Since wy; is by definition an eigenvalue of ®(g;) it follows
that w;; is in the maximal order O of F; further wigl is an eigenvalue of ®(g; ")
and thus u)i}l € O. Therefore w;; lies in the group of units of O. O

64 Chapter 6. Symbolic collection

Unipotent action

Lemma 6.3.7. Let u € GL(d, Q) be unipotent and o be a rational variable.
Then the entries of u® are rational polynomials in o and the entries of u.

Proof. By §3.2 we have that u* = exp(«alog(v)) where log and exp are given
by

log : gH(g—l)—1(9—1)2+-~-+ 1 (g— 1Dt
2 (d—1)
1 1
exp xH1+x+§x2+-~-+(d_1>!xd_l
Thus the claim follows. O

Since (), : C — C, is a homomorphism, we deduce that ®(c¢¥), =
D(g1).”" - ®(g,)u”". The matrix ®(g;), is unipotent and therefore the entries
of ®(g;)¥ are polynomials in the entries of ®(g;), and y;. Thus the entries
of (), are polynomials in the entries of ®(g1)u, ..., P(g,)., and y1, ..., Y,
Using the constructive proof of Lemma 6.3.7, we can compute the entries of
O(cY),.

Remark 6.3.8. As a consequence of §6.3.1 and §6.3.1 the entries of the matrix
®(c¥) are polynomials over F in x,y and wzyj where [and w;; are as in
Theorem 6.3.3. Since Log and Exp can be described by polynomials we
deduce that the exponents of nfx((n®)(¢")) are polynomials over F in z,y
and wyj.

6.3.2 Converting tails

In this section we describe how to compute symbolically nfg(c*c?), i.e. the
normal form of ¢*c¢¥ with respect to G.

Since C'N/N is free abelian we have ¢*c? = ¢**¥¢ for some tail t € CNN.
Thus we only need to compute the exponent vector of ¢ with respect to the
Mal’cev basis N of N.

According to §6.2 there is a Mal’cev basis C = (g1, -, Grs Crats- - Ck)
of C. Using Deep Thought we can compute symbolically the exponents

Ari1, - - ., ax of the normal form of ¢ = ¢! - - - ¢;* with respect to C.
By computing nfar(¢.11),...,nfx(cx) and using symbolic collection for

multiplication and powering with respect to A/, we can compute the normal
form of t with respect to N. If t = gfff .- g%, then the exponents b, 1, . .., b,
are rational polynomials in the variables z;,y; where 7,7 = 1,...,r, because

we only used symbolic collection in 7 -groups for their computation.

6.3. Computing collection functions 65

6.3.3 The algorithm

We now summarise the different steps to compute the collection functions

C1,--.,Cs. Since

g'gy = c*n"cnY

Y (nw)(cy)ny

we have the following algorithm.

ComputeCollectionFunctions(G)

1: compute symbolically ¢*™¥n® := nfg(c"c?) (§6.3.2).

2: compute symbolically n? := nfx((n®)")) (§6.3.1).

3: compute symbolically n? := nf(n®n”n¥) (Deep Thought).

4: return GG =a; +y; fore=1,...,rand (yj =y, for j=1,...,5s — 1.

Remark 6.3.9. As a consequence of the last algorithm we can reprove du
Sautoy’s Theorem 6.2.4 and see that the collection functions (; are polyno-
mials over some number field IF in z,y and a finite number of expression wy;
where w;; € F; in addition we show that the w;; are units in the maximal
order of F.

Proof of Theorem 6.2.4. In §6.3.2 we saw that the exponents of n® are poly-
nomials in z and y. By Remark 6.3.8, the exponents of n® are polynomials
over some number field F in z, y and a finite number of expressions wf; where
w;; € F. Since multiplication with respect to the Mal’cev basis N can be
described by polynomials we see that exponents of n” are polynomials over
F in z,y and wf’] Thus the statement of Theorem 6.2.4 follows.

By Theorem 6.3.6, we see that the w;; are contained in the group of units
of the maximal order of F. O

Example 6.3.10. We continue Example 6.3.5. Recall that F = Q(#) where
6 is a root of 2 — 3z + 1 and that we denote wyy = 0, w13 = 3 — 0. Using the
algorithm ComputeCollectionFunctions we deduce that with respect to the

66 Chapter 6. Symbolic collection

canonical basis G of GG the collection functions are of the form

G = m1+u
G = (1@ — agws)wi” + (aexs + asws)wis” + o
G = (asma + axs)wip? — (azre — ayes)wis? + ys

G = (ouwi —1/539m5 4+ 1/10 023) w0
+(1/10 023 — 1/5 20w3 + auz3 w1z
+(s22y2 + Qoyo3 + 5T + T3 Wi
+(—3T2Yo + Y23 + —T2 + —a5T3)wis”
—3/1025 +4/10 2923 — 3/1023 — 3/2 25 + 3/2 23 + 4 + Y4

where oy = 7/5—-3/50, ap = —=2/54+3/560, a3 =3/5—2/50, ay = 3/10 —
1/106, o = 6/5 — 3/106 and ag = —3/10 — 3/106.

Remark 6.3.11. The function (: Zs x Zs — Zs computed by the algorithm
ComputeCollectionFunctions can be used to compute the inversion function
i: Zy — Zs that describes inversion in G, i.e. ¢'® = (¢%)~L.

Let ¢ = ¢®n® € G. We have (n*)™! = Exp(— Log(n®)) and thus the
exponents of nf-((n®)™!) are polynomials in x. The same holds for the expo-
nents of nfe((¢®)™!) and thus for nfg((c®)™"). Since (¢"n®)~' = (n®)~1(c®)~!
we can use the functions (1, . .., (s to combine these normal forms to compute
the normal form of (¢*n®)~!.

Remark 6.3.12. The algorithm ComputeCollectionFunctions has been im-
plemented in the computer algebra system GAP [41]. The code is publicly
available as part of the GAP-package Guarana [2]. Let G be an almost
splittable polycyclic group and denote hl the Hirsch length of G and c¢ the
nilpotency class of the Fitting subgroup of G. Using the implementation in
Guarana we were able to compute collection functions of examples of almost
splittable polycyclic groups with hl < 36 and ¢ < 6. For example for the
group G(Trg(O;) from §5.5, which has hl = 36 and ¢ = 5, it took 100 seconds
to compute the collection functions on a 3 gigahertz Pentium 4 processor; all
groups were given by a polycyclic presentation with respect to a canonical
basis.

6.4 Applications

There are several ways in which the collection functions (i, ..., (, computed
by the algorithm ComputeCollectionFunctions of §6.3.3 can be used.

6.4. Applications 67

6.4.1 Collection

A natural application is to use (i,...,(, for collection in almost splittable
polycyclic groups. Once these functions are computed, the computations of
the normal form of g”¢g¥ can be reduced to the evaluation of ((z,y). Ex-
periments with our examples showed that this yields a method that is faster
then standard methods such as “Collection from the left” if the exponents
x,y are big, i.e. if they lie in the hundreds. However the method Mal'cev
collection, as described in Chapter 5, which has a cheaper set up, is faster
and therefore preferable.

6.4.2 pro-p-completions

The pro-p-completion of a polycyclic group G is the inverse limit of the system
of finite quotients of G which have p-power order. It is well-known that in a
T-group N the polynomials defining the group operations with respect to a
Mal’cev basis extend to the p-adic integers Z, to define the pro-p-completion
of N. In [16] du Sautoy showed that every splittable polycyclic group G
has a normal subgroup G(p) of finite index, whose pro-p-completion can be
obtained in the same way.

In this section we give a brief summary of du Sautoy’s result. Then we
show how to compute G(p); together with the algorithm from Section 6.3.3,
this allows us to construct the pro-p-completion of G(p) algorithmically.

Let G be a splittable polycyclic group with Fitting subgroup N and let
L = ZLog(N) be the Z-lattice generated by Log(N). For each prime p
we define the p-canonical subgroup G(p) of G to be HN where H is the
centraliser of the induced action of G on L/pL. By [16] G(p) is a normal
splittable polycyclic subgroup of finite index in G.

Let G = (g1, ...,9s) be a canonical basis of G(p) and let ¢ : Z° x Z* — Z*
and i : Z° — 7Z° be the functions defining multiplication and inversion in
G(p) with respect to G. By [16, Theorem 3.5], these function are extendible
to p-adic valued, locally analytic functions ¢ : Z; X Z; — Z; i : L, — Z,,.
We define G(p)” to be the set of formal products {g*|z € Z5}, where g* =
git -+ g%, and define multiplication and inversion on G(p)%» using ¢ and 1.
For a proof of the following result see [16, Theorem 3.7].

Theorem 6.4.1. G(p)% is isomorphic to the pro-p-completion of G(p); in
particular G(p)%r does not depend on a choice of canonical basis of G(p).

68 Chapter 6. Symbolic collection

Computing G(p)

Once a Z-basis for L = Z Log(NN) is given, it is straightforward to obtain an
integral matrix representation of the induced action of G on L. Together with
the algorithm in [4, Section 4], this yields a method to compute a canonical
basis for the p-canonical subgroup G(p). It remains to describe a method to
compute L.

Computing a Z-basis for Z Log(N)

Let N be a 7-group given by a polycyclic presentation with respect to a
Mal’cev basis N = (nq,...,n;). In the following we describe an algorithm to
compute a Z-basis for Z Log(N). We then comment on the different steps
and give a proof of correctness.

For given (ey,...,¢) € Z' we denote n® = nf* - --ny'. Recall that

{Log(nq), ..., Log(n;)}

is basis for the Lie algebra L£(N). In this section we identify an element
22:1 a; Log(n;) € L(N) with the coefficient vector a = (ay, ..., q).

ComputeZBasis(N)

1: let e = (eq,...,e) be a vector of integer variables and set B = {}.

2: compute polynomials xq1(e), ..., zy(e) € Q[e] such that z1(e) = Log(n®).
3: fori=1,...,ldo

4: write zy(e) = ¢;(e)/m; where ¢; € Z[e] and 7; € N.

5. determine 7; € N such that Zv; = Z{q:(f;)|f; € Z'}.
6: write y; = Y. a;qi(f;) where a; € Z, f; € 7'
Tosety = auzi(fy) € Q.

8 add y; to B.

9: set x;1(e) = x;(e) — %yi.

10: end for

11: return B.

Remark 6.4.2. For step 2 we can use the method from §4.3 to compute the
polynomials ;. For step 5 and 6 note that Z{q;(f;)|f; € Z'} is a subgroup
of (Z,+) and thus cyclic. A generator 7; can be computed using modular
arithmetic: let 0 # 0; = q(f1) for some f, € Z'. If ¢;(fr) = 0 mod §; for
all fr € Z', then set v; = 6, (note that testing this condition only involves
finitely many fy); otherwise we can determine 0 # 0o = ¢;(f2) < d; for some
fo € Z' and recurse.

6.4. Applications 69

Theorem 6.4.3. The algorithm ComputeZBasis(N) returns a Z-basis for
ZLog(N).

Proof. (1): First we prove by induction on i that z;(Z') C ZLog(N) for
i =1,...,1; as a consequence y; = » . a;z;(f;) € ZLog(N). Fori =1 we
have z1(f;) = Log(n’7) € Log(N) and thus z;(Z') C Z Log(N). Now assume
that z;(Z') C ZLog(N). Since z;y1(e) = z;(e) — %yz and %%l) C Z and
y; € ZLog(N) we deduce that x;,(Z") C Z Log(N).

(2): Second we show, again by induction on 4, that z;, = 0 if £ < i for
1 =1,...,l+1; as a consequence the same holds for y;. For i = 1 this is clearly
true. Now assume that the claim is true for z;. Since x;1(e) = x;(e) — %yi

and © © ©
qi\€ qi\€) Vi q;\ e
zi(e) = = — = Yii
T, Yi T Yi

it follows that x;,1;(e) = 0.
(3): As a consequence of (1), B C ZLog(N). By (2) we see that x;.; =
0. We deduce that Log(n®) = z1(e) = 3_, qiéf)yi. Thus every element
of Log(N) is Z-linear combination of the y; and so B = {yi,...,y} is a
generating set for Z Log(N). Since [is the dimension of L(N) = Q Log(N)
the elements of B are linearly independent. Thus B is a Z-basis for Z Log(N).
U

Concluding remark

Let G be a splittable polycyclic group. We described a method to compute a
canonical basis G for the the p-canonical subgroup G(p). Using the algorithm
in §6.3.3 we can compute the functions ¢ and ¢ which describe multiplication
and inversion in G(p) with respect to G. This allows us to do computations
in G(p)% which is isomorphic to the pro-p completion of G(p) by Theorem
6.4.1.

Chapter 7

Alternatives beyond the Tits
alternative

Let G be a finitely generated subgroup of GL(d, Q). A famous theorem, due
to Tits, states that GG is either virtually soluble or contains a non-abelian free
subgroup [42]; it is called the Tits alternative. Beals [10] and Ostheimer [35]
describe algorithms to decide the Tits alternative.

It is well-known that membership in G is in general undecidable; the
reason for this lies precisely in the possible occurrence of a non-abelian free
subgroup [30].

However if G happens to be virtually soluble then it seems to be more
open to algorithmic explorations. For example if G is virtually polycyclic
then it is well known how to test membership in G [4, 35]. Thus the Tits
alternative tells us, in a way, to what extent G is suitable for further algo-
rithmic investigations.

In this chapter we describe an algorithm for checking whether G is poly-
cyclic. Such a method has not been available so far. More precisely we
describe algorithms for

(1) testing whether G is polycyclic (or virtually polycyclic),
(2) testing whether G is nilpotent (or virtually nilpotent).

Our methods for (1) and (2) rely on an algorithm for testing whether
a virtually polycyclic group G < GL(d,Q) is conjugate to a subgroup of
GL(d,Z). We describe such an algorithm in Section 7.3. An alternative
method for this purpose can be found in [§].

Our solutions for the algorithms in (1) and (2) are closely related to each
other. They heavily rely on an application of the Mal’cev correspondence
for upper unitriangular matrix groups. Based on that, they reduce to some
simple applications of linear algebra methods.

70

7.1. Deciding the Tits’ alternative 71

We implemented our algorithm for testing polycyclicity using the com-
puter algebra system GAP [41]. In §7.9 we report and comment on this
implementation and give runtimes for some example groups.

Our algorithms also apply to finitely generated subgroups of GL(d, K),
where K is an algebraic number field, since such matrix groups can be con-
sidered as subgroups of GL(d[K : Q], Q).

Remark 7.0.4. Since the content of this chapter is joined work with Bettina
Eick [5], I want to clarify what my contribution to this project was.

At a conference in Warwick in August 2005, Bettina Eick gave a talk
in which she showed that she could test polycyclicity of a finitely generated
subgroup G of GL(d, Q) if she could test conjugacy into GL(d, Z) of certain
induced actions of G.

After the conference I joined the project and showed, using hints of Bet-
tina Eick and Gabriele Nebe, how to check whether a virtually polycyclic
subgroup of GL(d,Q) conjugates into GL(d,Z). Later we found out that
alternative methods for this purpose were described in [8].

Further I found out how the Mal’cev correspondence could be used to
reprove Eick’s result. This has led to an efficiency improvement and to a
simplification of the mathematical outline of the algorithm. We then discov-
ered jointly that minor modifications of the polycyclicity algorithm could be
used to test (virtual) nilpotency.

7.1 Deciding the Tits’ alternative

Let G < GL(d, Q) be finitely generated and write V' = Q?. In this section we
briefly recall the method of [4] for testing whether G is soluble or virtually
soluble, since we need various parts of it later.

7.1.1 Computing a semisimple series

Definition 7.1.1. The Q-algebra Q[G] is the vector space spanned by G over

Q. A vector subspace W < Q7 is said to be a Q[G]-module or a G-module if
G acts via QQ-linear automorphism on V.

The vector space V = Q¢ has naturally the structure of a G-module.

Definition 7.1.2. A G-module W is said to be irreducible if its only G-
submodules are {0} and W. Further W is said to be semisimple if it is the
direct product of irreducible G-modules. A series

W=Ww;>...>W;, >W_., ={0}

72 Chapter 7. Alternatives beyond the Tits alternative

of G-submodules of W is called semisimple if W;/W;, 1 is semisimple as a
G-module for 1 <7 <.

In this subsection we briefly recall a method to determine a semisimple
series for G.

Definition 7.1.3. The radical Radg (V) is defined as the intersection of all
maximal G-submodules in V.

Theorem 7.1.4. Radg (V) is the smallest G-submodule in V' with a semisim-
ple factor module. Further Radg(V') =V Rada(Q[G]).

Proof. See [31, Chapter 7]. O

Thus the determination of a semisimple series can be reduced to an iter-
ated computation of radicals.

A method to compute the radical Radg (V') has been introduced by L.E.
Dickson in [15]. It uses the fact that Radg(V) =V Radg(Q[G)).

7.1.2 The p-congruence subgroup

Since G is finitely generated, there exists a finite set 7w of primes such that
G < GL(d, Qx), where Q is the set of all rational numbers ¢ with b divisible
by primes in 7 only. Let p > 2 be a prime with p ¢ 7m. We say that p
is a suitable prime for G. Then the natural homomorphism v, : Q. — F,
extends to a homomorphism

¢, : G — GL(d,F,)

defined by applying 1, to every entry in a matrix element of G. The kernel
H of ¢, is called the p-congruence subgroup and the image I of ¢, is the
p-congruence image of G. By construction, the group H has finite index
in G. As G is finitely generated, this implies that H is finitely generated.
Generators for H can be computed from generators for G' using an orbit-
stabilizer algorithm, since H = Staba(B), where B is a basis of F¢ and G
acts via ¢, on Fg. However, the resulting generating set for H is often too
large to allow efficient computations. A usually significantly smaller set of

normal subgroup generators for H can be determined from generators for G
as described in [4].

7.2. The Mal’cev correspondence and finite generation 73

7.1.3 Testing (virtual) solvability

The following theorem provides a characterisation of the finitely generated
soluble or virtually soluble subgroups of GL(d, Q). This characterisation can
be checked easily with available computational tools and thus it yields an
algorithm for checking solvability and virtual solvability. If the group G acts
on a module W, then Gy < GL(W) denotes the group induced by the action
of G on W. A proof of the following theorem can be found in [4].

Theorem 7.1.5. Let G < GL(d, Q) be finitely generated with p-congruence
subgroup H and p-congruence image I where p is a suitable prime for G. Let
V=Vi>...>V, >V ={0} be a semisimple series for G.

a) G is virtually soluble if and only if Hy, v, , is abelian for 1 <i <.

b) G is soluble if and only if G is virtually soluble and I is soluble.

7.1.4 Comparing classes of groups

Recall that by Corollary 2.4.5 a group G is polycyclic if and only if G is
soluble and every subgroup of G is finitely generated.

Not every finitely generated soluble subgroup of GL(d, Q) is polycyclic,
as the following example shows:

(3062

The group G contains the normal subgroup U = {(é 211) | a € Z,e € Ny}
The quotient G/U is infinite cyclic and U is abelian; thus G is soluble.
However U is not finitely generated and hence G is not polycyclic.

7.2 The Mal’cev correspondence and finite
generation

Let U < Tri(d, Q). In this section we explore the relationship between finite
generation of U and certain properties of the Lie algebra Qlog(U).

Recall that Aut(U) acts on Qlog(U) by Theorem 3.3.6. Let ¢ : Aut(U) —
GL(e, Q) describe this action with respect to a basis B of Qlog(U) and let
¢ = ¢p for some arbitrary, fixed basis B.

Theorem 7.2.1. Let U < Try(d, Q) and H < Aut(U) such that

U= <ula"'>ul>H

74 Chapter 7. Alternatives beyond the Tits alternative

for certain elements uy,...,u; € U. Let W < Tro(d, Q) be the Lie algebra
generated by log(uy), .. .,log(w;). Then Qlog(U) = WeH),

Proof. Let S = (uy,...,u;). Since W is a Lie algebra, we have that zxy € W
for all z,y € W. Since log : Tri(d,Q) — (Tro(d,Q), *) is an isomorphism,
it follows that log(S) € W and therefore Qlog(S) € W. On the other
hand, log(u;) € Qlog(S) for all i and so W C Qlog(.S). This yields that
Qlog(S) =W.

An element g € SH is of the form g = u?fl uZ’ for certain h;, €
H. Therefore log(g) = log(u;)?"1) % - - % log(u;,)*") which is contained
in Qlog(S)?™). It follows that Qlog(U) = Qlog(S™") C Qlog(S)*H) C
Qlog(U)?™) = Qlog(U). Thus Qlog(S)*H) = Qlog(U). O

Theorem 7.2.1 yields that a basis for Qlog(U) can be computed if U <
Try(d,Q) is given as U = (uy,...,u)" for a finitely generated group H <
Aut(U). For this purpose we determine log(uy),...,log(u;) and compute
iteratively a basis for the smallest vector space that contains these elements
and is closed under taking Lie brackets and acting with the generators of H;
this method is called a spinning algorithm. This yields a Lie algebra which
is finite dimensional, since it is a subalgebra of the finite dimensional algebra
Tro(d, Q), and hence the spinning algorithm terminates.

A similar approach could be considered for computing a generating set
for U. However, the group U might not be finitely generated, even if it is
finitely generated as an H-module, and in this case the spinning algorithm
would not terminate.

Definition 7.2.2. A subgroup U < Tri(d,Q) is a lattice group if log(U) is
closed under addition in Tro(d, Q). The group Tri(d, Q) is a lattice group,
since log(Tr1(d, Q)) = Tro(d, Q). For a subgroup U < Tr;(d, Q) we define the
lattice hull U™ as the intersection of all lattice groups in Tr;(d, Q) containing

U.

Lemma 7.2.3.

a) If U < Tri(d,Q) is finitely generated, then the additive group Zlog(U)
is free abelian of finite rank and spans Qlog(U) over Q. Furthermore,
U has finite index in the lattice hull U™,

b) If M is a finitely generated subgroup of the additive group Tro(d, Q),
then {exp(M)) is a finitely generated subgroup of Tri(d, Q).

Proof. For a) see [38, Chapter 6.
b) The group Tryo(d,Q) is torsion-free. Thus the additive group M has
a Z-basis log(uy),...,log(y;) for certain wuy,...,u; € Tri(d,Q). Let U =

7.3. Checking conjugacy into GL(d, Z) 75

{ui,...,w). Since U has finite index in U it follows that U'" is finitely
generated and thus polycyclic. Since log(u;) € log(U™) for i = 1,...,1, we
find that M is contained in the lattice log(U'"). Therefore, exp(M) C U'at
and thus (exp(M)) is finitely generated. O

7.3 Checking conjugacy into GL(d,Z)

Let G < GL(d, Q) be a virtually polycyclic group. In this section we exhibit
an effective test to check whether G can be conjugated into GL(d,Z); that
is, whether there exists an element h € GL(d, Q) such that G" < GL(d, Z).
Note that not every polycyclic subgroup of GL(d, Q) conjugates into GL(d, Z)
as the example G = ((1)) shows.

As a first step towards this aim, we recall two well-known characterisa-
tions of groups which conjugate into GL(d,Z). For a subset M of a vector
space V' we denote by (M)g and (M) its Q-span and its Z-span, respectively.
We call a finitely generated abelian group L C V a lattice. If (L) = V' then
L is said to be a full lattice in V. Further, we denote by Z[G] the subring
of My(Q) which is generated by the matrices in G. By a Z-order in the
matrix algebra Q[G] we mean a subring of Q[G] that is finitely generated
as a Z-module, contains the same identity as Q[G] and spans Q[G] over Q.
Therefore Z|G] is a Z-order in Q[G] if and only if Z[G] is finitely generated
as an additive group.

Lemma 7.3.1. The following properties are equivalent:
a) G is conjugate to a subgroup of GL(d,Z).
b) There exists a full G-invariant lattice L <V = Q% with (L)g = V.
¢) Z|G] is a Z-order.

Proof. a) = ¢): Suppose that G is conjugate to a subgroup H of GL(d,Z).
Since M4(Z) is finitely generated as an additive group we deduce that Z[H |
is finitely generated as an additive group. Thus Z[G] is finitely generated as
an additive group and therefore Z[G] is a Z-order.

¢) = b): Suppose that Z[G] is a Z-order and let B = {by,...,bs} be
a Z-basis for Z[G]|. Then for all g € G there exist a,, € Z such that
big = Y 5 jagxby for 1 < ¢ < s. Let r;; be the j-th row of b;. Then
Tiig = Y 3y gkt follows. Thus L = (r;; | 1 < i < s,1 < j <d)gis
a G-invariant lattice. Further (L)g = V, because the rows of 1 € Z[G| are
linearly independent.

b) = a): Let L be a full G-invariant lattice. Then G acts on L as a
subgroup of GL(d, Z). Since a basis for L is also a basis for V| it follows that
G is conjugate to a subgroup of GL(d, Z). O

76 Chapter 7. Alternatives beyond the Tits alternative

As a next step, we introduce an effective method to check whether Z[G]
is a Z-order. We first consider the special case of a cyclic group. For g €
GL(d, Q) denote by x, the minimal polynomial of g.

Lemma 7.3.2. Let ¢ € GL(d,Q) and U = (g). Then the following are
equivalent:

a) Z[U] is a Z-order.

b) Xg,Xg-1 € Z[z].
¢) Xg € Z[z] and x4, has constant term £1.

Proof. b) < ¢): Let x, = 2" + ap12™ ' + -+ 4+ ayx + ap. Then y,-1 =
"+ agfaga™ 4+ ay/agx + 1/ag. Thus xg, xg-1 € Z[z] if and only
if g = £1.

a) = b): If Z[U] is a Z-order, then U conjugates into GL(d,Z). As the
minimal polynomial is invariant under conjugation, it follows that x4, x,—1 €
Z]x].

b) = a): Let n = degx, = degx,-1. As x4 and x,-1 are monic polyno-
mials over Z, it follows that {g™"* ..., g7 1,g,...,9" '} generates Z[U]
as an additive group and hence Z[U] is a Z-order. O

The following theorem yields a reduction to the case of cyclic groups.

Theorem 7.3.3. Let {g1,...,9,} be a generating set of G < GL(d, Q) such
that every element of g can be written as a collected word g = g7* ... g with
€1y... ey € Z. Then Z|G] is a Z-order if and only if Z[{g;)] is a Z-order for
1<i<n.

Proof. Write U; = (g;). If Z|G] is a Z-order, then Z[U;| is a Z-order because
a subgroup of a finitely generated abelian group is finitely generated. Thus
it suffices to show the converse. Let a;1, ..., a;;, be a Z-basis for Z[U;]. Then
for every g € G there exist oy, € Z where 1 < k < [; with

g = g1 g7

I In
= E Q15 Q1gp | -0 E Anj, Ang,,
J1=1 Jn=1

1

ln
— E e E a1j1 e anjna1j1 e anjn_

J1=1 Jn=1

Thus
S = {aljl e 'a'njn|1 <]z < lz}

is a finite generating set for Z|G| as an additive group. O

7.4. Testing polycyclicity 77

As G is virtually polycyclic, there exists a polycyclic normal subgroup N
of finite index in G. Let T" be a transversal for N in G and let R = (rq,..., 1)
be a polycyclic sequence for N. Then every element g in G' can be written as
g=tr{*---r;" forsome t € T and ey,...,¢; € Z. Thus T'U R is a generating
set for G which satisfies the hypothesis of Theorem 7.3.3. Hence we obtain
the following corollary to Theorem 7.3.3 which provides an effective check
whether G conjugates into GL(d, Z).

Corollary 7.3.4. Let G be virtually polycyclic with normal polycyclic sub-
group N of finite index. Let T be a transversal for N in G and let R be a
polycyclic sequence for N. Then G is conjugate to a subgroup of GL(d,Z) if
and only if x4, Xg-1 € Z[x] for every g € T U R.

7.4 Testing polycyclicity

In this section we introduce an effective method to test whether a finitely
generated subgroup G of GL(d, Q) is polycyclic. Every polycyclic group is
soluble. Thus as a first step in our method, we use the algorithm of Section
7.1.3 to check whether G is soluble. We then assume throughout that the
considered group G is soluble.

Definition 7.4.1. Let V =Q% and let V =V, > ... > V|, > V1 = {0} be
an arbitrary, fixed semisimple series of G. Then the centraliser of this series
U =nl_,Cq(V;/Vis1) is called the unipotent radical of G.

Remark 7.4.2. The unipotent radical of Definition 7.4.1 is the maximal nor-
mal unipotent subgroup of GG. This is because every normal unipotent sub-
group of G must centralise the semisimple factors of V.=V, > ... >V, >
Vier = {0}

Note that by choosing a basis for V' exhibiting the semisimple series, we
can assume that U < Try(d, Q).

The following lemma summarises some information of the structure of G
and U which will be used throughout.

Lemma 7.4.3. Let G < GL(d,Q) be finitely generated and soluble and let
U be the unipotent radical of G. Then U is nilpotent and G /U 1is polycyclic.

Proof. As U < Tri(d,Q), it follows that U is nilpotent. Let V = 1} >
...>V; >V = {0} be a semisimple series underlying U. Then the factor
G /U embeds into the direct product Gy, v, X ... X Gy y,,. Let H be a
p-congruence subgroup of G as defined in §7.1.2 for some suitable prime p;
recall that [G : H] < oo. It follows from Theorem 7.1.5 that Hy,y,,, is

78 Chapter 7. Alternatives beyond the Tits alternative

abelian. Thus Gy, v,,, is (finitely generated abelian)-by-(finite soluble) and
hence G /U is polycyclic. O

The following theorem provides a characterisation for polycyclic rational
matrix groups.

Theorem 7.4.4. Let G < GL(d, Q) be finitely generated and soluble and let
U be the unipotent radical of G. Then G s polycyclic if and only if U is
finitely generated.

Proof. 1f G is polycyclic, then every subgroup of G is finitely generated and
hence U is finitely generated. Conversely, if U is finitely generated, then U is
polycyclic, because U is nilpotent by Lemma 7.4.3. As G/U is also polycyclic
by Lemma 7.4.3, the result follows. O

As described in [4], we can compute a polycyclic presentation for G/U.
By evaluating the relators of such a presentation, we obtain a finite set of
normal subgroup generators for U, that is U = (u,..., ;)¢ for certain
Uy, ...,u; € U. By Theorem 7.4.4, it remains to check whether U is finitely
generated.

We employ the Lie algebra Qlog(U) for this purpose. First, we note that
a basis for the finite dimensional vector space Qlog(U) can be computed
using the comment following Theorem 7.2.1. Let e € N be the dimension
of Qlog(U). The conjugation action of G on U induces a subgroup H <
Aut(U). In turn, this subgroup H acts on Qlog(U) by Theorem 3.3.6. Let
¢p : Aut(U) — GL(e, Q) describe this action with respect to the basis B of
Qlog(U) and let ¢ = ¢ for some arbitrary, fixed basis 5.

Our aim in the following is to show that we can read off from the action
of G on Qlog(U) whether U is finitely generated. The following theorem is
a first step in that direction.

Theorem 7.4.5. Let U < Try(d,Q) and H < Aut(U) such that we have
U= {uy,...,u)? for certain uy,...,u; € U. Then U is finitely generated if
and only if p(H) can be conjugated into GL(e,Z).

Proof. Assume that U is finitely generated. By Lemma 7.2.3, the additive
group Zlog(U) is free abelian of finite rank and spans Q log(U) over Q. Thus
there exists a Z-basis B for Zlog(U) which is also a Q-basis for Qlog(U).
By Theorem 3.3.6, the lattice Zlog(U) is invariant under the action of H.
Hence ¢p(H) < GL(e,Z) and ¢(H) can be conjugated into GL(e, Z).

Now assume that ¢(H) can be conjugated into GL(e,Z). Let B be a
basis of Qlog(U) such that ¢p(H) < GL(e,Z) and let L be the Z-span
of B. Denote W = (uy,...,u). Then Zlog(W) is finitely generated by

7.4. Testing polycyclicity 79

Lemma 7.2.3 and hence there exists z € N such that Zlog(W) C M := 1L.
As ¢p(H) < GL(e,Z), the lattice M is invariant under the action of H.
Therefore for all u € W and h € H, it follows that log(u") = log(u)" € M.
Thus U = WH C (exp(M)). By Lemma 7.2.3, the group (exp(M)) is finitely
generated. Hence U is finitely generated because subgroups of polycyclic
groups are polycyclic. O

Let ¢ : G — GL(e, Q) denote the action of G on Qlog(U) with respect
to an arbitrary, fixed basis B of Qlog(U). Then Theorem 7.4.5 yields that
the group U is finitely generated if and only if ¢(G) can be conjugated
into GL(e,Z). Section 7.3 contains a method to check whether a polycyclic
subgroup of GL(e, Q) conjugates into GL(e, Z). However, this method does
not apply directly, as ¢(G) might not be polycyclic. The next theorem shows
that the method of Section 7.3 generalises to the case considered here. For
g € G we denote by x,(, € Q[z] the minimal polynomial of ¢(g).

Theorem 7.4.6. Let G < GL(d, Q) be finitely generated and soluble and let
U be the unipotent radical of G. Let (g1U, ..., g, U) be a polycyclic sequence
for G/U. Then G is polycyclic if and only if Xo(gi)s Xp(g-1) € Z[z] for 1 <
1 <n.

Proof. Suppose that G is polycyclic. Then U is finitely generated and thus
¢(G) can be conjugated into GL(e,Z) by Theorem 7.4.5. Thus X,(g,) and
Xp(g) are contained in Zx].

Conversely, suppose that x,(,), Xe(g—) € Zlz] for 1 < i < n. Let
Qlog(U) = Ly > --- > Li41 = {0} be a refinement of the upper central
series of Qlog(U) to a Q[G]-composition series. We use induction on [to
show that ¢(G) can be conjugated into GL(e,Z). As U is finitely generated
as a G-normal subgroup, this yields by Theorem 7.4.5 and Theorem 7.4.4
that G is polycyclic.

First consider the case [= 1. Then U acts trivially on Qlog(U) and thus
¢(@) is polycyclic with polycyclic sequence (p(g1),...,¢(gn)). Corollary
7.3.4 now yields that ¢(G) can be conjugated into GL(e, Z).

Now let [> 1. We assume by induction that there exists a basis B of
Qlog(U) which exhibits L; > L, > {0} and with respect to which Gy, /p,
and (1, have integral matrix representations and thus are polycyclic. With
respect to BB every element o(g) is represented by a matrix of the form

(a(g) 7(9))

B(g)
where «(g), respectively ((g), are the representations of the action of g on
Ly/Ls, respectively Lo. For g,h € G, it follows that v(gh) = a(g)v(h) +

80 Chapter 7. Alternatives beyond the Tits alternative

IsPolycyclic(G)
1: test whether G is soluble and return false if this is not the case.
2: compute a pe-sequence (g1U, . .., g,U) for G/U where U is the unipotent
radical.

3: compute normal subgroup generators for U.

4: compute a basis B for the Lie algebra Qlog(U).

5: compute the induced action p(g;) with respect to B for 1 <i < n.
6: let x,(g,) be the minimal polynomial of ¢(g;) for 1 <i <n.

7. if Xy(g) € Z[z] and has constant term 1 for 1 <4 < n, then

8: return true

9: else

10: return false

11: end if

Table 7.1: As a result of §7.4 we get the above algorithm to test polycyclicity.
The input G is a finitely generated subgroup of GL(d, Q).

v(g)B(h). Thus, since a(G),5(G) are integral matrix groups and by as-
sumption G is finitely generated, we deduce that the denominators of the
entries of 7(G) are bounded. Since «(G) and ((G) are polycyclic, it fol-
lows that ¢(G) is polycyclic. Therefore there exists a polycyclic sequence
(o(g1),---y0(gn), p(ur),...,o(w)) of (@), where uy,...,u; € U. Since U
is unipotent, the minimal polynomial of <p(u;-t1) is of the form (z — 1)™ for
some m; € N and 1 < j <. By Corollary 7.3.4, ¢(G) can be conjugated
into GL(e, Z). O

The results of this section yield an algorithm to test polycyclicity; it is
displayed in Table 7.1.

7.5 Testing virtual polycyclicity

A variation of the method to test polycyclicity yields a method to determine
whether a finitely generated subgroup of GL(d, Q) is virtually polycyclic. The
following theorem characterises the virtually polycyclic groups in a compu-
tationally useful form.

Theorem 7.5.1. Let G < GL(d, Q) be finitely generated and virtually sol-
uble, and let H be a p-congruence subgroup of G for some suitable prime p.
Then G is virtually polycyclic if and only if H is polycyclic.

7.6. Testing nilpotency 81

Proof. 1f H is polycyclic, then G is virtually polycyclic, because [G : H] < oo.
If G is virtually polycyclic, then there exists a normal polycyclic subgroup
K with [G : K] < 0o. Being a subgroup of K, the group H N K is polycyclic.
We have that H/HN K = KH/K < G/K and thus H/H N K is finite.
Since H is soluble by Theorem 7.1.5, H/H N K is soluble. Thus H/H N K
is polycyclic. Therefore H is polycyclic. O

Generators for a p-congruence subgroup H of G can be computed from a
generating set of G as discussed in Section 7.1.2. Thus the method of Section
7.4 extends to testing virtual polycyclicity.

7.6 Testing nilpotency

Let G < GL(d, Q) be finitely generated. In this section we describe a method
to test whether G is nilpotent.

Methods for this purpose have been developed by Detinko and Flannery.
In [14] they describe an algorithm for testing nilpotency of G < GL(d, K)
where K is a finite field. Their algorithm for the case K = @QQ has not been
published yet.

In the following we outline an alternative approach. This alternative
shows that testing nilpotency is closely related to testing polycyclicity as in
Section 7.4 and, further, the alternative extends to testing virtual nilpotency
as shown in Section 7.7 below.

Every finitely generated nilpotent group is polycyclic. Hence as a first
step to our algorithm we check whether the given group G is polycyclic using
the method of Section 7.4. Thus we can assume in the following that G is
polycyclic.

We characterise the nilpotent matrix groups among the polycyclic matrix
groups. For this purpose we use the following notation.

Definition 7.6.1. If H is a group which acts by automorphisms on a group
U, then H acts nilpotently on U if there exists a series of H-invariant normal
subgroups of U such that H centralises every factor of the series.

If H acts by automorphisms on a Lie algebra L, then H acts nilpotently
on L if there exists a series of H-invariant Lie subalgebras with H-central
factors.

Lemma 7.6.2. Let G be a polycyclic subgroup of GL(d, Q) and let U be the
unipotent radical of G. Then G is nilpotent if and only if G/U is nilpotent
and G acts nilpotently on U.

82 Chapter 7. Alternatives beyond the Tits alternative

Proof. If G is nilpotent then G/U is nilpotent. By intersecting a central
series of G with U we see that G acts nilpotently on U.

Conversely assume that G /U is nilpotent and that G acts nilpotently on
U. Thus there exists a G-central series of U. Since G /U is nilpotent we can
extend this series to a central series of G and thus G is nilpotent. O

As side-results of the algorithm IsPolycyclic of Section 7.4, we have given
normal subgroup generators for the unipotent radical U of G and a poly-
cyclic sequence G = (iU, ..., gU) of G/U. We can use this to determine
a polycyclic presentation for G/U and, based on that, we can test whether
G/U is nilpotent with the methods in [17].

It remains to find a criterion which decides whether G acts nilpotently
on U. As in the test for polycyclicity, one can use the action of G on the
Lie algebra Qlog(U) for this purpose. The following theorem provides a first
step towards proving this.

Theorem 7.6.3. Let U < Tri(d,Q) and let H < Aut(U). Then H acts
nilpotently on U if and only if H acts nilpotently on Qlog(U).

Proof. Assume that H acts nilpotently on U. Then H acts nilpotently on
any subfactor of U. Thus there exists an H-invariant central series 1 =
U, < ---<U; =U of U with H-central factors (take for example the upper
central series of U and refine it to a series with H-central factors). Define a
chain of Lie subalgebras of Qlog(U) by £; = Qlog(U;). First we show that
{0} = Lx <--- < Ly =Qlog(U) is a central series of Qlog(U). Let [; € L;,
I € Qlog(U). Then exp(l) € U, the Q-powered hull of U, and thus there
exists z € N such that n = exp(l)* € U. Thus | = Llog(n), and with the
same argument there exist z; € N and n; € U; such that [; = Z%_log(ni). Now

1 1] = ——[log(n), log(n)] = — log(y)

i% Zj
where, by Theorem 3.2.11, y is a product of rational powers of group commu-
tators in n; and n. Thus, y lies in the Q-powered hull of U, ;, and therefore
[l;,1] € Liy1. Second we show that the factors of {0} = L, < -+ < L1 =
Qlog(U) are H-central. Let h € H and [; € L£;. Then there exist z; € N,
n; € U; such that l; = L log(n;). Let ¢(H) be the induced action of H on
Qlog(U). Then Z

o) 1 () 4 . 1
i = (~log(m) = —log(n;) = —log(nini;1)

Zi Zi

where n; 1 € U;y1. By the Baker-Campbell-Hausdorff formula,

log(ninig1) = log(n;) + log(niy1) + v,

7.6. Testing nilpotency 83

where y is a Q-linear combination of Lie commutators in log(n;),log(n;1).
Thus y € L;11, because L;/L; 1 is centralised by Qlog(U), and therefore I;
is centralised by H modulo £; ;.

Assume conversely that H acts nilpotently on Qlog(U). Then Qlog(U)
has a central series 0 = L < --- < £, = Qlog(U) with H-central factors.
Define a descending chain of subgroups of U by U; = exp(L;)NU. Forn; € U,
n € U, we see by Lemma 3.3.7 that log([n;, n]) is Q-linear combination of Lie
commutators in log(n;) and log(n). Thus log([n;,n]) € L£;+1 and therefore
[n;,n] € Ujy1. This implies that Uy < --- < Uj is a central series of U.
Further, for n; € U;, h € H we have log(nl') = log(n;)*") = log(n;) + v,
where y € L;11. By the inverse Baker-Campbell-Hausdorff formula h4,
log(n;) + y = log(n;exp(y)z) where z is a product of Q-powers of group
commutators in n;, exp(y) and so z € (72-:1, the Q-powered hull of U;q.
Thus n; 'n! = exp(y)z € U/Z:l and so n' = nyn;y, for some niy € Uiy,
Therefore U; /U, is centralised by H. O

Let ¢ : G — GL(e,Q) denote the action of the polycyclic group G on
the Lie algebra Qlog(U) of the unipotent radical of G with respect to an
arbitrary, fixed basis of Qlog(U). The following theorem shows how the
nilpotency of G can be read off from the action ¢ in a similar way to the way
polycyclicity is read off.

Definition 7.6.4. A polycyclic sequence (g1, ...,gx) is called a nilpotent
sequence if its corresponding polycyclic series G; = (g;, ..., gr) is a central
series (and hence the underlying group is nilpotent).

Theorem 7.6.5. Let G < GL(d, Q) be polycyclic and let U be the unipotent
radical of G. Let G/U be nilpotent with nilpotent sequence (g1U, ..., g,U).
Then G is nilpotent if and only if X, () = (x — 1)™ for certain m; € Z
and for 1 <i<n.

Proof. Assume that G is nilpotent. Then G acts nilpotently on U by Lemma
7.6.2 and thus on Qlog(U) by Theorem 7.6.3. Hence Xy (g (2) = (x — 1)™
for certain m; and 1 <1 < n follows.

Conversely, assume that X, (z) = (xz — 1)™ for all i. Denote by
((Qlog(U)) the k-th term of the upper central series of Qlog(U). Note
that (;(Qlog(U)) is an ideal of Qlog(U) and so in particular a Lie subalge-
bra. Further (;(Qlog(U)) is invariant under automorphisms of Qlog(U) and
therefore invariant under the action of G.

We show that GG acts nilpotently on the factors

Fy, = G(Qlog(U))/Cr+1(Qlog(U)).

84 Chapter 7. Alternatives beyond the Tits alternative

IsNilpotent(G)
1: test whether GG is polycyclic and return false if this is not the case.
2: as side-results of step 1, obtain a polycyclic sequence G of G/U and a
basis B of Qlog(U) for the unipotent radical U of G,
3: using G, test whether G/U is nilpotent and return false if this is not the
case.

4: compute a nilpotent sequence (g1U, ..., g,U) for G/U.

5: compute the induced action ¢(g;) with respect to B for 1 <i < n.
6: compute the minimal polynomial X, (x) of ¢(g;) for 1 <i <n.
7 if Xy (2) = (. — 1)™ for 1 <i < n, then

8: return true

9: else

10: return false

11: end if

Table 7.2: The results of §7.6 yield the above algorithm to test nilpotency.
The input G is a finitely generated subgroup of GL(d, Q).

This implies that G acts nilpotently on Qlog(U) and thus on U by Theorem
7.6.3. In turn, this yields the desired result by Lemma 7.6.2.

Let k € N and let ¢ (G) denote the action induced by G on Fj. Using
a similar argumentation as in the proof of Theorem 7.6.3 we deduce that U
acts trivially on Fj. Thus the sequence (¢x(g1),---,¥¢r(gn)) is a polycyclic
sequence of ¢(G). Let G; = (gi, ..., gn). Then the groups ¢x(G;) for 1 <

i < n form a central series of ¢r(G). Let [€ {1,...,n} be maximal such
that ¢x(g;) # 1. Let W be the eigenspace of pr(g;). Then Fj, > W > {0},
since ¢k(g;) is non-trivial and satisfies (z — 1)™ = 0. By the choice of [,

the element ¢(g;) is contained in the center of ¢(G). This implies that
W is a G-invariant subspace of Fi. The actions induced by G on Fy/W
and W satisfy the assumption of the theorem. Thus by induction on the
dimension, we can assume that G acts nilpotently on Fy /W and W. Thus
G acts nilpotently on Fj. O

The results of this section yield an algorithm to test nilpotency. It is
displayed in Table 7.2.

7.7 'Testing virtual nilpotency

A modification of the nilpotency testing algorithm yields a method for testing
virtual nilpotency. Let G < GL(d, Q) be finitely generated. As a first step,

7.8. Summary 85

we check whether G is virtually polycyclic with the method of Section 7.5.
As a side-result of this algorithm, we obtain normal subgroup generators for
the unipotent radical U of G and a polycyclic sequence for H/U where H is
a p-congruence subgroup of G.

Note that H/U is free abelian; see [4]. Since [G : H| < oo and two
subgroups of finite index intersect in a subgroup of finite index, G is virtually
nilpotent if and only if H is virtually nilpotent. The latter condition can be
checked with the following theorem. Recall that for h € GL(e, Q) we denote
by xn(x) the minimal polynomial of h.

Theorem 7.7.1. Let H < GL(d,Q) and let U be the unipotent radical of
H. Suppose that H/U 1is finitely generated abelian with polycyclic sequence
(U, ...,9,U). Then H is virtually nilpotent if and only if all roots of
Xe(g:) (@) = 0 are roots of unity for 1 <1i < n.

Proof. Assume that H is virtually nilpotent. Let K < H with s = [H : K] <
oo and K nilpotent. Then K acts nilpotently on U N K and therefore, by
Theorem 7.6.3, K acts nilpotently on Qlog(U N K). Since [U : UN K] =
[KU : K] < [H : K] < o0, Qlog(U N K) = Qlog(U) and thus K acts
nilpotently on Qlog(U). Therefore, since g7 € K, the minimal polynomial of
©(g7) = (gi)® is (x—1)"™ for some m; € N. Thus x,(g,) () divides (z*—1)™:.
This implies that all roots of x,,)(z) = 0 are roots of unity.

Assume conversely that £ C C, the set of all eigenvalues of the matrices
©(g1),...,9(gn), contains only roots of unity. Let [€ N such that \' =1
for all A\ € E. Define K = (g},...,¢.,U). Then [H : K] = [". In order
to show that K acts nilpotently on U, by Theorem 7.6.5, it is sufficient to
show that X, = (x — 1)™ for some m; € N for 1 < i < n. Let 6 be an
eigenvalue of p(g!). From the Jordan normal form of ((g;) it can be read off
that @ = \! for some eigenvalue X of ¢(g;). Since A € E, § = 1 follows and
thus X4,y = (z —1)™ for some m; € N. O

7.8 Summary

Let G be a finitely generated virtually soluble subgroup of GL(d,Q). In
Table 7.3 we summarise the criteria for testing (virtual) polycyclicity and
(virtual) nilpotency of G.

86 Chapter 7. Alternatives beyond the Tits alternative

G polycyclic G virtual polycyclic

condition

on factor G/U polycyclic

action on | p(G) conjugate to a | p(H) conjugate to a
Lie algebra | subgroup of GL(e,Z) | subgroup of GL(e, Z)

G nilpotent G virtual nilpotent

condition

G /U nilpotent
on factor / p

©(H) conjugate to a
triangular subgroup of
GL(e, Z) with roots of
unity on the diagonal

©(G) conjugate to
a unitriangular sub-
group of GL(e, Z)

action on
Lie algebra

Table 7.3: In this table we summarise the criteria for testing (virtual) poly-
cyclicity and (virtual) nilpotency of a finitely generated virtual soluble group
G < GL(d,Q). Let H be a p-congruence subgroup of G and U the unipo-
tent radical of G where H/U is a free-abelian group. Recall that we denote
by ¢(G) < GL(e, Q) the induced action of G on the Lie algebra £(U) with
respect to an arbitrary fixed basis.

7.9. Implementation and examples 87

7.9 Implementation and examples

We illustrate our algorithms on the simple example group G, already men-
tioned in Section 7.1.4, which is generated by

2 0 11
g—(o 1) and h_<0 1).

The series V = Q* > W = ((0,1))g > {0} is a semisimple series for
G. The induced actions Gy, and Gy are both polycyclic, and thus G is
soluble. Let U be the centraliser of the semisimple series; thus U is the
unipotent radical for G. Then G/U is an infinite cyclic group and (gU) is a
polycyclic sequence for G/U. Further U = (h)©. It follows that

Qlox(t) = @loa() = s = (((§)3e) " = (o)se

It can be read off that the induced action of g on Qlog(U) with respect to the
basis B = {({)} is given by the matrix ¢(g) = (3). The minimal polynomial
of ¢(g) is not in Z[X] and thus G is not polycyclic.

7.9.1 Runtimes

The algorithm IsPolycyclic of Section 7.4 was implemented in GAP [41] as a
part of the Polenta package [3]. Instead of computing minimal polynomials
in step (6) of the algorithm we determine characteristic polynomials because
this is more efficient and because the minimal polynomial of a rational matrix
is integral if and only if the characteristic polynomial is integral.

Alternatively the method in [8], which is also implemented in GAP, could
be used to test whether the induced action of G to Qlog(U) conjugates into
GL(e,Z). Therefore this method could replace the steps (6) to (11) of our
algorithm “IsPolycyclic”. We compared this variation with our method and
did not notice any difference in the runtimes for our example groups.

A method for testing virtual polycyclicity has not yet been implemented.
To handle this case it is necessary to compute short finite presentations of
finite non-soluble matrix groups.

In Table 7.4 we display runtimes for some example matrix groups and we
also summarise some of the properties of the considered groups. All example
groups considered in Table 7.4 are soluble and not contained in GL(d,Z).
The groups GGy, Gy are unipotent, G3, G4 are almost crystallographic groups.
The group G5 was constructed using the Kronecker product of generators of
an almost crystallographic group. The group Gg is a randomly generated

88 Chapter 7. Alternatives beyond the Tits alternative

subgroup of the direct product of a unipotent and a free-abelian-by-finite
group. The group Gy is the group G from the beginning of Section 7.9. The
groups Gg, Gy are randomly generated upper-block-triangular matrix groups.

Every example group G; is available in the package Polenta via the func-
tion “SolvableMatGroupExams(i)”. A group G < GL(d, Q) given by gener-
ators can be tested to be polycyclic using “IsPolycyclicMatGroup(G)”. All
computations where carried out in GAP Version 4.4.7. on a 3.2 gigahertz
Pentium 4 processor and 90 MB of memory for GAP.

Group | Degree | No. gens | Rank | Dim Qlog(U) | Runtime
G4 4 2 4 4 47
Go) 2 6 6 109
Gjs)) 4 4 822
Gy)) 4 4 268
Gs 16) 3 3 o957
Gg 20 11 7 4 373083
G- D D . 1 150
Gy 6 4 - 10 15966
Gy 8 4 - 13 14379

Table 7.4: Testing polycyclicity: The columns display the degree d, the
number of generators, the rank (or Hirsch length) and the dimension of
Qlog(U) for every of the considered examples G4, ..., Gy. If no rank is given,
then the example group is not polycyclic. The last column contains the time
in milliseconds which is needed by the algorithm IsPolycyclic of Section 7.4.

Appendix A

Algebraic number theory

In this appendix we recall some basic facts from algebraic number theory.
For more background we refer to [40].

Definition A.0.1. Let F be a subfield of C such that [F : Q] is finite. Then
F is called a number field or an algebraic extension of Q. Let # € C. By
Q(0) we denote the smallest subfield of C which contains 6.

Lemma A.0.2. Let F' be a number field. Then there exists an element 0 € C
such that F = Q(0).

Definition A.0.3. A complex number 6 is said to be an algebraic integer, if
the minimal polynomial of 0 is in Z[X].

Definition A.0.4. Let F be a number field. The set of algebraic integers in
F is called the maximal order O of F. An element u € O is called a unit, if
u~! is also contained in O. The set of all units in O is called the unit group
of O and is denoted by U(QO). A ring R C O with 1 € R that spans F over
Q is called an order of F.

Theorem A.0.5 (Dirichlet’s Units Theorem). Let F be a number field with
maximal order O. Then the torsion subgroup T of U(O) is finite and gen-
erated by one element (€ U(O) which is called the torsion unit of U(QO).
Further there exists fundamental units €1, ..., e, € U(O) such that every unit
u € U(O) can be written uniquely as

u = Cfo .5{1 .552 ...57Jff'

where f; € Z and 0 < fo < |T.

Definition A.0.6. Let p be a prime. The ring of p-adic integers Z,, is defined
to be the inverse limit of the finite quotients Z/p"Z.

89

Bibliography

1]

[10]

B. Assmann. Algorithmic use of the Mal’cev correspondence. In C. M.
Campbell and E. F. Robertson, editors, Groups - St. Andrews 2005.

B. Assmann. Guarana - Applications of Lie methods in computational
group theory, 2006. A GAP 4 package, see [41].

B. Assmann. Polenta - Polycyclic presentations for matrixz groups, 2006.
A refereed GAP 4 package, see [41].

B. Assmann and B. Eick. Computing polycyclic presentations for poly-
cyclic rational matrix groups. J. Symb. Comput., 40:1269-1284, 2005.

B. Assmann and B. Eick. Testing polycyclicity of finitely generated
rational matrix groups. To appear in Mathematics of Computation, 2007.

B. Assmann and S. Linton. Using the Mal’cev correspondence for col-
lection in polycyclic groups. To appear in Journal of Algebra, 2007.

L. Babai, R. Beals, J. Cai, G. Ivanyos, and E. M. Luks. Multiplica-
tive equations over commuting matrices. In SODA ’96: Proceedings
of the seventh annual ACM-SIAM symposium on Discrete algorithms,
pages 498-507, Philadelphia, PA, USA, 1996. Society for Industrial and
Applied Mathematics.

L. Babai, R. Beals, and D. Rockmore. Deciding finiteness of matrix
groups in deterministic polynomial time. In Proc. of International Sym-
posium on Symbolic and Algebraic Computation ISSAC 93, pages 117—
126. (Kiev), ACM Press, 1993.

G. Baumslag. Lecture notes on mnilpotent groups. Amer. Math. Soc.,
Providence, 1971.

R. Beals. Improved algorithms for the Tits alternative. In W. M. Kantor
and A. Seress, editors, Groups and Computation III, pages 63 — 77.
(DIMACS, 1999), 2001.

90

Bibliography 91

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

23]

[24]

[25]

W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system I:
The user language. J. Symb. Comput., 24:235 — 265, 1997.

W. de Graaf. Lie Algebras: Theory and Algorithms. North Holland,
2000.

W. de Graaf and W. Nickel. Constructing faithful representations
of finitely-generated torsion-free nilpotent groups. J. Symb. Comput.,
33:31-41, 2002.

A. Detinko and D. Flannery. Free subgroups in linear groups. LMS
Journal of Computation and Mathematics, 9:104-134, 2006.

L. E. Dickson. Algebras and their arithmetics. University of Chicago,
1923.

M. du Sautoy. Polycyclic groups, analytic groups and algebraic groups.
Proc. London Math. Soc. (3), 85:62-92, 2002.

B. Eick. Algorithms for polycyclic groups. Habilitationsschrift, Univer-
sitat Kassel, 2001.

V. Gebhardt. Efficient collection in infinite polycyclic groups. J. Symb.
Comput., 34 (3):213-228, 2002.

P. Hall. Nilpotent groups. In The collected works of Philip Hall, pages
415 — 462. Clarendon Press, Oxford, 1988. Notes of lectures given at the
Canadian Mathematical Congress 1957 Summer Seminar.

D. F. Holt, B. Eick, and E. A. O’'Brien. Handbook of Computational
Group Theory. Discrete Mathematics and its Applications. CRC Press,
2005.

N. Jacobson. Lie algebras. Dover Publications, 1962.

M. Kargapolov and J. Merzljakov. Fundamentals of the Theory of
Groups. Graduate Texts in Mathematics. Springer, 1979.

E. Khukhro. p-Automorphisms of Finite p-Groups, volume 246 of Lec-
ture Note Series. London Mathematical Soc., 1998.

C. R. Leedham-Green and L. H. Soicher. Collection from the left and
other strategies. J. Symb. Comput., 9:665 — 675, 1990.

C. R. Leedham-Green and L. H. Soicher. Symbolic collection using Deep
Thought. LMS J. Comput. Math., 1:9 — 24, 1998.

92

[20]

Bibliography

E. H. Lo and G. Ostheimer. A practical algorithm for finding matrix
representations for polycyclic groups. J. Symb. Comput., 28:339 — 360,
1999.

A. J. Mal’cev. On certain classes of infinite soluble groups. Mat. Sb.,
28:567 — 588, 1951.

A. J. Mal’cev. On certain classes of infinite soluble groups. Amer. Math.
Soc. Transl., 2 (2):1-21, 1956.

W. Merkwitz. Symbolische Multiplikation in nilpotenten Gruppen mit
Deep Thought. Diplomarbeit, RWTH Aachen, 1997.

K. Mihailova. The occurence problem for direct products of groups (in
Russian). Dokl. Akad. Nauk. SSSR, 119:1103-1105, 1958.

W. Miiller. Darstellungstheorie von endlichen Gruppen. Teubner,
Stuttgart, 1980.

W. Nickel. N@, 1998. A refereed GAP 4 package, see [41].

W. Nickel. Matrix representations for torsion-free nilpotent groups by
Deep Thought. J. Algebra, 300:603-626, 2006.

E. O’Brien and M. Vaughan-Lee. The 2-generator restricted burnside
group of exponent 7. Internat. J. Algebra Comput., 12:575-592, 2002.

G. Ostheimer. Practical algorithms for polycyclic matrix groups. J.
Symb. Comput., 28:361 — 379, 1999.

M. Reinsch. A simple expression for the terms of the Baker-Campbell—-
Hausdorff series. Journal of Mathematical Physics, 41 (4):2434-2442,
2000.

D. J. S. Robinson. A Course in the Theory of Groups, volume 80 of
Graduate Texts in Math. Springer-Verlag, New York, Heidelberg, Berlin,
1982.

D. Segal. Polycyclic Groups. Cambridge University Press, Cambridge,
1983.

C. C. Sims. Computation with finitely presented groups. Cambridge
University Press, Cambridge, 1994.

I. Stewart and D. Tall. Algebraic number theory and Fermat’s last the-
orem. A K Peters, 2002.

Bibliography 93

[41] The GAP Group. GAP — Groups, Algorithms and Programming.
www.gap-system.org, 2006.

[42] J. Tits. Free subgroups in linear groups. J. Algebra, 20:250-270, 1972.

[43] M. Vaughan-Lee. Collection from the left. J. Symb. Comput., 9:725-733,
1990.

[44] M. Vaughan-Lee. The Restricted Burnside Problem, volume 5 of London
Math. Soc. Monographs, (N. S.). Oxford University Press, Oxford, 1990.

