FRANZ VON KUTSCHERA

VALUATIONS FOR DIRECT PROPOSITIONAL LOGIC

In (1969) a subsystem of classical propositional logic - called direct logic
since all indirect inferences are excluded from it - was formulated as a
generalized sequential calculus. With its rules the truth-value (true (t) or
false (f)) of the consequent can be determined from the truth-values of the
premisses. In this way the semantical stipulations are formulated construc-
tively as in a calculus of natural deduction, i.e. semantics itself is a formal
system of rules. The rules for propositional composita define an extension
of basic calculi containing only truth rules for atomic sentences. The sen-
tences provable in the extensions of all basic calculi, i.e. in the proposi-
tional calculus itself, are the logically true sentences. The principle of bi-
valence is not presupposed for the basic calculi. That it holds for a specific
calculus - and then also in its propositional extension - is rather a theorem
to be proved by metatheoretic means.

In this approach a semantics in the usual sense, i.e. a semantics based
on a concept of valuation, has no place since the calculus of direct logic
itself is already conceived of as a system of semantical rules. Nevertheless
it is of some interest to see that there is an adequate and intuitively plau-
sible valuation-semantics for this calculus.

The language L used in what follows is the usual language of proposi-
tional logic with =1, A and o as basic operators.! A classical or total
valuation of L is a function ¥ mapping the set of all sentences of L into
{t, f} so that ¥(— A) = tiff V(4) = f, V(A A B) = tiff ¥(4) = V(B)
= t. In classical logic o is definable by 1 and A; so these two truth
conditions suffice. Partial valuations V that only map a subset of the set
of sentences of L into {t, f} can be defined in a number of ways. Following
K. Fine in (1975) we cut down this number by the following principles.
We write “V(A4) = u” for "V is not defined for 4. “V(A) # u” therefore
means that V(4) = tor V(4) = f.

(DIf ¥(4;) £ uforall 1 < i < nand Cis a propositional operator, then

V(C(Ay, ..., Ay)) + uand V(C(A4y, ..., As) = V' (C(4y, ..., An)) for
each total valuation V'with V{4;,) = V(4,) for all i.
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Fine calls this the Principle of Fidelity. It says that the classical interpreta-
tion of propositional operators is to be retained. (I) implies the following
truth conditions:

(a) If V(A) = fthen V(4 A4) = t.
If V(A) = tthen V(1 A) = f.

(b) If V(A) = V(B) = tthen V(4 A B) = t.
If V(4) = fand V(B) % u, or V(B) = fand V(A4) # u then
V(A A B) = f.

If we define for partial valuations V and V:

DEFINITION 1. V'is an extension of V - for short V' (> V - iff for all
atomic sentences 4 V(A) + u implies V'(4) = V(A),

we can state a second important principle, that of Stability, thus:
(IDIf V"> Vand V(A) *+ u then V'(4) = V(A) for all sentences A4 of L.

From this we obtain:

(a) If V(4 A) = tthen V(4) = f.
If V(1 A) = fthen V(4) = t.

b) If V(4 A B) = tthen V(4) = V(B) = t.
If V(4 A B) = fthen V(4) = for V(B) = f.

This means: If there are extensions of V that assign 4 different truth-val-
ues, V' (A) must be indeterminate; a compound sentence cannot be deter-
minate if its truth value classically depends on that of one of its parts and

that part is indeterminate.
As a third postulate we take Fine’s Principle of Maximal Definiteness:

(IIT) If C is an n-place propositional operator V(C(Ay, ..., An)) is to be
defined whenever that is possible according to (II).

The second condition in (b) may then be strengthened to: If V(4) = for
V(B) = fthen V(4 A B) = f. In this way we arrive at the usual concept
of a partial valuation:



DIRECT LOGIC 255

DEFINITON 2. A partial valuation of L is a function ¥ mapping a subset
of the sentences of L into {t,f} so that

(1) V(0 A) = tiff V(4) = f.
V(1 4) = fiff V(4) = t.
Q) V(A A B) = tiff V(4) = V(B) = t.

V(4 A B) = {iff V(4) = f or V(B) =

The inferences valid in all partial valuations are that of minimal propo-
sitional logic. No sentence is true in all such valuations. For instance,
A > A cannot be true in a valuation V for which V(4) = u according to
(IT). Intuitively, however, we would regard this sentence as true since
A D A will be true in any precisification of V that makes A4 true or false.
A D Ais true whatever 4 means, and therefore we are inclined to regard
A D Aasalogical truth. This idea suggests that we employ supervaluations
as introduced by B. van Fraassen in (1970). If S, is the set of all total
extensions of V, then Sy(4) = t/f iff for all V'in S} V'(4) = t/f. This
approach, however, is not satisfactory for the following reasons:

1. Supervaluations are not recursively defined. But it is a fundamental
principle of semantics that the meaning of a compound expression is de-
termined by that of its parts.

2. We cannot assume that every partial valuation has a total extension.
If r is Russell’s set, for instance, r € r cannot be regarded as either true or
false. And the sentence “A is vague” would be false in every total valua-
tion, and therefore in every supervaluation.

Fine has generalized van Fraassen’s approach. His supervaluations are
sets S of 3-valued valuations (with u as third truth value). On S a partial
ordering is defined by < and the V in S are recursively defined in the sense
of modal logic by reference to the ¥’ in S with ¥ > V. The following
definition is based on this idea:

DEFINITION 3. A D-valuation of L is a triple M = <I, S, V) such that:

€)) I is a non-empty set of indices.
2) For all i € 1 S; is a subset of I such that
(a)ieS;

b)jeSinkeS; > kesS;
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3) For all i € I V; is a function mapping a subset of sentences of
L into {t, f} so that
(@) If je S;then V; > V,,
(b) V; fulfills the conditions (1) and (2) of D2.
(¢) V(4 o B) = tiffforallje S; V{B) = tif V(4) = t.
Vid o B) = fiff V(4) = tand Vy(B) = f.

It is easily seen that for D-valuations we then have: If j € S; and Vi(A4) +
uthen V(4) = Vi(A) for all sentences 4 of L. All V; are partial valuations
with the sole exception that 4 © B now is not defined by =1 (4 A —1 B).
V(A > B) = tis not equivalent with Vy(4) = for V(B) = t; V(4 o B)
= t can hold even if Vi(A4) = u and V{(B) # t. Especially we now have
V(A o A) = t for all i and all D-valuations.

D-valuations do not just assign truth values to sentences but also define
inferential relations between them. For all meaning relations between
atomic sentences of the type: “If 4y, ..., A,, are true and By, ..., B, are
false then C is true (false),” the set of the extensions V; of V; in a D-
valuation can be so determined that these sentences A; A .. A4, A T
By A .. A 1 B, o (1)C come out true in /. By a suitable choice of I and
the ¥; in M we can therefore capture all meaning relations - or penumbral
connections, as Fine calls them - between the atomic sentences of L, just
as we can distinguish analytic truths in intensional semantics by a suitable
choice of the set of possible worlds. The concept of a D-valuation, then,
results if we start out from partial valuations based on the principles of
Fidelity, Stability and Maximal Definiteness and interpret implications in
such a way that we can state all relations between truth values of sentences
with them. This definition of the operator > is in accordance with Fidelity,
forif V{A4) + u + V(B) V(A>B) = tiff V(4) = for V(B) = w.

Evidently it is possible to restrict the concept of a D-valuation in such
a way that there is an index i in / with S; = I (all Vj are then extensions
of V), or that j € S; is a partial ordering with j€ S; A i€S; > i = j, or
that V; > V; implies j € S;, without altering the resulting logic. As usual
we say that a sentence A is satisfied by a D-valuation M = <I, S, V) iff
ViA) = tforalliel, that A is D-true iff A is satisfied by all D-valuations;
that an interference 44, ..., A, = B is M-valid iff V{(A,) = .. = Vi(A,)
= t implies Vi(B) = t for all i € I; and that the inference is D-valid iff it
is valid in all D valuations.
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If we call a D-valuation M = (I, S, V) complete iff there is a je I such
that V; is a total valuation, then for every complete D-valuation there is
a total valuation V”for which V'(4) = V; (A) for all sentences A with
Vi, (4) * u, and vice versa. This also holds for completable D-valuations
9N, for which there is a j e I with V{A4) # u for all sentences 4. A therefore
is classically true iff no completable D-valuation satisfies 71 A.

We now want to show that the D-true sentences are exactly those that are
provable in direct logic. This logic may be stated in the form of a calculus
D* with the following axioms and rules:

AXIOM 1. 4 o (B o A)
AXIOM 2. (A 2 (B>C)) > ((A>B)> (4> 0))
AXIOM 3.1 4 5 (4 o B)
AXIOM 4. 4 > (1 B> 1 (4 o B))
AXIOM 5a. 1 (4 > B) o A4
b.1(4d>B)>—1 B
AXIOM 6. 4 > 11 4
AXIOM 7.1 4 > 4
AXIOM 8. 4> (B> A A B)
AXIOM9a. 4 A B> A
b.AAB>B
AXIOM 10a. 7 4 > 1 (4 A B)
b1 B> (4 A B
AXIOM 11. (1 4 > C) o (B>C) >((—(4 A B) o 0))
RULE 1. 4,4 o B+ B.

In D* A o A is a theorem, and with it the deduction theorem may be
proved in the usual way.

The soundness of D* with respect to D-valuations is easily shown. All
axioms of D* are D-true, and with Rule 1 we obtain only D-true sentences
from D-true premisses.

For the completeness proof we need the following stipulations and defi-
nitions: If B is a set of sentences, B — A holds iff there is a finite subset
B " of B from which A is derivable. B is consistent iff not all sentences are
derivable from B.

DEFINITION 4. A set of sentences B is called regular iff
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(a) If B A4 then 4 € B.
(b) If7 (4 A Bye Bthen— A€ Bor—1 BeB.
©) B is consistent.

DEFINITION 5. A D-system is a pair © = (I, R) such that:

(a) I is a non-empty set of indices.
(b) For all i € I R; is a regular set of sentences.
() For all sentences 4, Band all i e I: if A > Bis not in R; there

isajelwith R, c R;, 4 R;and not Be R;.
We first prove two lemmata:

LEMMA 1. Every consistent set of sentences B from which A4 is not de-
rivable, can be extended to a regular set B " not containing A.

Proof. Let 7 (B A C);, 71 (B A C),, ... be a denumeration of all
sentences of L of the form —1 (B A C). We set By, = B,

B, U {1 (B A Clsy ™1 B}if B,, 1 B+ A does not
hold,

B,r1 =7 BUu{1(BAC)s+y 1 C}ifB, 1 BF A4, but not B,
1 CH A,
B, otherwise.

B "is to be the union of the sets B,, and B " the consequence set of B ~.
B " is then closed with respect to derivability in D*. We have then:

(1) For no n B, -~ A. This holds for n = 0 according to the condition
of lemma 1, and if not B, — 4 then not B, F A4 in view of the definition
of B,+,, for if B,, 1 B — A does not hold neither does B,, {1 (B A
C)as1 © 71 B} + A.

(2) Not B "+ A. Otherwise there would be a finite subset 8" of B “with
B* - A. But if n is the greatest number such that 1 (B A C),+y > 1 B
or—1 (B A C)pyy © 71 Cisin B*, we would have B,,, - A4 in contra-
diction to (1). A, then, is not in B " and therefore B " is also consistent.

B)If1(BAC)pti1€B ' then— BeB or1 CeB". For either
(B A C)yy 21 Bor—1 (B A C)yy 1 Cisin B, and therefore
in B " and therefore =1 B or —1 Cin B "since B "is closed. Or B,, 1 B+
A and B,, 7 C + A. But then B,, 71 (B A C) I A according to Axiom
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11 and the deduction theorem, and therefore B, =1 (B A C),+1 - 4. In
view of (2) this is incompatible with =1 (B A C),+; €B, however.
B’ therefore is regular and in view of its construction 8 < ®'.

LEMMA 2. If A4 is not provable in D* there is a D-system {I, R and an
i € I such that 4 is not in R; .

Proof. Let R;* be the empty set, which is consistent and from which 4
is not derivable according to the assumption in Lemma 2.2 As in Lemma
1 we extend R;* to a regular set R; from which 4 is not derivable. For
every sentence B > C not in R; let R} be the set R; U {B}. R;, BF-C
cannot hold, for otherwise R, = B o C and therefore B > C e R;
R, then, is a consistent set from which C is not derivable. It is extended
to a regular set R; according to Lemma 1, and so forth. If 7 is a set of
indices for all the sets R; we obtain in this way, (I, R) is a D-system and
Ais not in R; .

The completeness of D* can now be proved in the following way: If 4
is not a theorem of D*, there is a D-system <{J, R) and an index i, € |
such that 4 is not in R; . For all i € I we define sets S; and functions V;
by

(a) jeS,lff‘R,c 93,-
(b) V(B) = tiff Be R;
V(B) = fiff 7 B e R, for all sentences B.

Then (I, S, V) is a D-valuation. By (a) conditions (2a,b) from Definition
3 are satisfied, and also condition (3a). By (b) this also holds for (3b)-(3c):

Vi— B) = tiff 7 Be R;iff V(B) = f.
Vi B) = fiff 79— Be R, iff Be R, (cf. A6,A7)iff Vi(B) = t.
VB A C)=tiff BA Ce R iff B, C e R, (cf. A8,A9) iff V(B) =
Vi(e) = t.
V(B A C) =fiff 1 (B A C)e R, iff 71 Be R; or c e R, (in view of the
regularity of R, and Axiom 10) iff V(B) = for V(C) = ).
If V(B > C) = tthen B o C e R,. If j € S; then according to (a) B o C
€ R;. If V(B) = t and therefore B €R; then C € R; in view of Rule 1 and
the closure of Rj, hence V{(C) = t.

If, on the other hand, for all j € S; and V(B) = t we have V{(C) = t,
we also have C € R; in case of B € R;. Then B o C must be in R; and
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therefore V(B o> C) = t, for otherwise there would be a j such that
R; < R; and not C € R;.

VB> C)=fiff 7 (B> C)e R iff B, 1 Ce R, (cf. A4,A5) iff Vi(B)
= tand V(C) = f.

M = (I, S, V), then, is a D-valuation, and since 4 is not in R; V; (A4)
#* t, i.e. M does not satisfy A.

For the direct version of predicate logic the completeness proof is much
more complicated - mainly because \/y(A[y] > AxA[x]) and \/»(— A x
A[x] o T A[v]) are not theorems of this logic. The structure of the
valuation-concept that fits direct logic, however, already becomes suffi-
ciently clear from the propositional case.

NOTES

! The completeness of the system of operators {1, A, o} in the framework of direct logic
has been proved in (1969).

2 We cannot set Ry = {1 A} or Riy = {4 o —1 A} for these sets may be inconsistent as
the casesof A = Bv -1 Band A = (B> C) o (B > —1 B) v C shown.
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