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Abstract. We propose a modified Nilsson model for 
spheroidal sodium clusters and investigate the modifica- 
tion of shell structure by deformation for sizes up to 
N = 850. For spherical clusters, our potential is fitted to 
the single-particle spectra obtained from microscopically 
selfconsistent Kohn-Sham calculations using the jellium 
model and the local density approximation. Employing 
Strutinsky's shell-correction method, the surface energy 
of the jetlium model is renormalized to its experimental 
value. We find good agreement between our theoretically 
predicted deformed magic numbers and the experimen- 
tally observed ones extracted from recent sodium mass 
abundance spectra. 

PACS: 36.40; 35.20.Wg; 71.45.Nt 

1. Introduction 

The first evidence of shell structure in alkali metal clusters 
came from experiments of Knight et al. [ 1, 2]. Enhanced 
abundances at the "magic numbers" N =  8, 20, 40, 58, 
92... have been shown to correspond to shell closings 
predicted by spherical jellium model calculations in the 
framework of density functional theory [3-7]. The dom- 
inant peaks in the experimental abundances coincide with 
the major spherical shell closings expected theoretically. 
The minor features between the major shell closings, how- 
ever, cannot be understood in a simple spherically sym- 
metric model. 

Ctemenger [9, 10] was the first to interpret the fine 
structure of the mass spectra in a particle range N~< 100 
by spheroidal distortions in a manner analogous to the 
shape variations of nuclei, using a modified Nilsson 
Hamiltonian [11 ] which yields the right splitting of the 
energy levels due to the loss of spherical symmetry. 

In the Nilsson model the potential depends on defor- 
mation, and the equilibrium state of each cluster is de- 
termined simply by minimizing the sum of the lowest 
occupied single-particle energies c i. Obviously, such a 

model is far from being self-consistent, as the density 
distribution of the electrons does not necessarily have the 
same shape as the potential. Furthermore, the sum of 
single-particle energies fails to correctly reproduce the 
total binding energy and to describe the deformation en- 
ergy surface of an interacting system. These shortcomings 
tend to become more important as the cluster size in- 
creases, and hence a new theoretical approach seems ap- 
propriate. Recent measurements of sodium mass distri- 
butions of the Copenhagen group [12, 13] make it pos- 
sible to compare calculated and experimental deforma- 
tion effects in a large size range. 

In the present work, we propose a modified Nilsson 
potential which in the spherical limit is fitted to the single- 
particle energy spectrum of Kohn-Sham (KS) calcula- 
tions within the jellium model. For axially deformed clus- 
ters, the potential has the deformation dependence of a 
spheroidal harmonic oscillator. The total binding energy 
of a cluster is obtained by use of the Strutinsky shell- 
correction method [14]. This ensures that the potential 
energy is not double counted. It furthermore has the ad- 
vantage that we can renormalize the surface tension to 
the experimental value. 

Our modified Nilsson model represents an approxi- 
mation to the more involved and time consuming self- 
consistent calculations for spheroidal shapes [15-17], 
which up to now were restricted to a particle range 
N < 40. Because of its simplicity, the present model al- 
lows an analysis of deformation effects also in very large 
metal clusters. We find that, indeed, a number of the 
observed structures in the sodium mass spectra [12, 13] 
in regions between spherically-magic clusters can be un- 
derstood in terms of static axial deformations, and that 
there is a good agreement with our predicted deformed- 
magic numbers. 

2. Construction of the model potential 

The main idea of our model is to construct a mean-field 
potential which in the spherical limit closely approxi- 
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mates that of microscopically selfconsistent KS calcula- 
tions using the jellium model, but for axially symmetric 
deformations retains the simplicity of the Nilsson model 
[11]. 

We start from the Nilsson Hamiltonian (neglecting thc 
spin-orbit term) 

~ = / 1 n o - h c o 0 .  UI 2 (I) 

/1Ho = h2 M 
. . . .  coyy +co~z ), (2) 2 M A + - ~ - ( C O ~ x 2 +  2 2 2 2 

consisting of an anisotropic harmonic oscillator/~Ho and 
an 12-term which splits the degeneracies within the main 
oscillator shells: for U > 0, spherical levels with higher l- 
values are shifted downwards more than those with 
smaller l. Thus the lZ-term, depending on the choice of 
the parameter U, leads to an intermediate situation be- 
tween a pure oscillator potential and a square well, similar 
to that of a Woods-Saxon potential. 

For spheroids we define the deformation parameter 
through the oscillator frequencies by 

CO x = COy = :  CO ± = 60 0 e M 3  ( 3 )  

COz ='--- CO0 e - 2 ~ / 3  , (4) 

so that the ratio q of the semi-axes is 

co± c o q =  = . (5) 
COz 

This automatically satisfies the condition of volume con- 
servation 

co~o~ = m~]. (6) 

So far this model is similar to that of Clemenger. He 
subtracted, however, a term (lZ)No = ½ N O (N O + 3) as in 
later versions of the Nilsson model (see, e.g., [ 18]), which 
allowed him to use a .fixed value of U for the whole 
spectrum and a certain range of  duster sizes [9, 10]. 

However, the equilibrium deformations depend rather 
sensitively on the choice of U, and a priori it is not sure 
that Clemenger's fit also works well for systems with more 
than, say, 100 atoms. Therefore, we suggest a procedure 
which yields a close conformity with spherical KS spectra 
for all cluster sizes. This correspondence is especially 
valuable, since recent jellium model KS calculations for 
very large spherical sodium dusters [6, 7] have yielded 
excellent agreement with the major shell closings ob- 
served experimentally [12, 13]. 

The starting point for our calculations are the nu- 
merically obtained spherical KS levels eKs- Our proce- 
dure now consists in choosing the value of  U such that 
in the spherical case (~ = 0), the spectrum of the Ham- 
iltonian Eq. (1) reproduces as closely as possible the spec- 
trum eKs. This can, of course, only be done with an N 
dependent value of U. For ~ = 0 the eigenvalues are 
known analytically: 

~ (a = O)No= hcoo{Uo + ~ +  U. t (Z+ 1)} (7) 

with the quantum number N O = 2 n r - 1 + l characterizing 
each oscillator main shell. Plotting the KS levels versus 
l(l÷ 1), as shown in Fig. 1, we see that the levels be- 
longing to the same value of No lie approximately on 
straight lines, at least for the lower shells. Thus their l 
dependence can, indeed, be rather well fitted by the simple 
Nilsson Hamiltonian Eq. (1), adjusting the slope hco o. U 
for each main shell by a simple linear regression proce- 
dure. The resulting values of U vary, in fact, only little 
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Fig. 1. Spherical Kohn-Sham single-particle energies eKs 
as functions of l(I+ 1) for Na67 ~. The corresponding dots 
in the diagram are labeled with (nr, l). (We use the nuclear 
physics convention for the radial quantum numbers nr). 
The straight lines indicate the linear-regression fits 
according to (7) 
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Fig. 2. Single-particle levels of the Nilsson potential as a function states with the asymptotic quantum numbers [ N, nz, I A t ] and show 
of cluster deformation 6 for Na25 a. The dashed lines correspond to the no-crossing for states with the same symmetry 
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between the different main shells. For smaller clusters the 
procedure yields practically the same spherical spectrum 
as the KS calculations, but for large systems and higher 
shell numbers No, the deviations from straight lines in- 
crease. This will lead to an overestimation of the shell 
effects in the total energy of large clusters, as compared 
to the results of KS calculations (see, e.g., the peaks at 
N =  676 and N =  832 in Fig. 5a and the discussion at the 
end of Sect. 4). 

The overall energy scale of the potential is determined 
by the value of hogo. In order to adjust it to the scale of 
the KS spectrum, we relate h 090 to the mean square radius 
(rZ). For the isotropic oscillator, the virial theorem yields 

(h0o0) (No)  = h 2 (N O + 3/2) 
M(r2)N ° (8) 

We use (8) to determine (ho%) (N°) for each main shell 
N O using the weighted average (rZ)uo given by the KS 
results. 

12 is no longer diagonal for ~ 4: 0. In the original Nils- 
son model [ 11 ], the basis set of a three-dimensional iso- 
tropic oscillator was used to calculate the single-particle 
wave functions and energy eigenvahies. In the limit of 
large deformations, the eigenvalues are known to corre- 
spond to those of the pure anisotropic oscillator, 

~HO (~) = (hcoo)(N°)e'~/3{(No - n  z + 1) + e -'~ (nz + ½)}, 
(9) 

where N O = 2 n ± + I A I + nz, and are characterized by the 
so-called asymptotic quantum numbers [No,nz, IA]]. In 
view of this asymptotic behaviour, the expansion of the 
wave functions in an anisotropic harmonic oscillator basis 
immediately suggests itself, as it has been discussed in 
[11, 19, 20]. N O gives the number of quanta in the cor- 
responding spherical oscillator shell. A is the z-compo- 
nent of the angular momentum, while n z and n± corre- 
spond to the nodal numbers of the wave function along 
the symmetry axis of the spheroid and in a plane per- 
pendicular to it, respectively. 

In the asymptotic basis all off-diagonal matrix ele- 
ments vanish except those differing in An~= + 2  and 
ANo = ±2,  ±4.  It has been shown in [20], that making 
a small change of representation ("stretched coordi- 
nates", cf. [11, 20]) is equivalent to neglecting matrix 
elements between states differing in N O and leads to an 
error of approximately only 1% for deformations in a 
range [ ~ [ < 0.3. 

Due to the axial symmetry, the Hamiltonian is block 
diagonal, with each block characterized by the parity 
H = ( - 1 )  N° and the value of IA I. The numerical di- 
agonalization is carried out for the resulting block ma- 
trices. Due to the additional selection rule I At </, the 
eigenvalues of each block can be scaled to the KS level 
with the highest /-value within one oscillator shell N o . 
Thus, for ~ = 0, the Hamiltonian Eq. (1) is now adjusted 
to approximately reproduce the single-particle spectrum 
obtained from the KS calculations of [6] for each partic- 
ular cluster size N. The deformation dependence of the 

single-particle spectrum is then obtained by varying the 
parameter ~, keeping the values (ho%) (N°) and U fixed. 

In Fig. 2, the eigenvalues are plotted for the cluster 
Na254 as functions of the deformation ~. The dashed lines 
correspond to the energy levels with the asymptotic quan- 
tum numbers [N, n~, I A I ] specified in the diagram. Ac- 
cording to the Neumann-Wigner no-crossing rule [21], 
levels of the same symmetry may never cross. 

For ~ q:0 the reduced symmetry will partly lift the 
degeneracy of the spherical spectrum. States differing 
only in the sign of I A I will still be four-fold degenerate, 
while those with [A I = 0 are two-fold degenerate, spin de- 
generacy included. 

For large deformations, some of the levels belonging 
to higher shells are lower in energy than the Fermi surface 
eF. In consequence of the finite depth of the KS potential, 
the spectra have to be continued with the pure oscillator 
states (9). As these levels only are important for very 
large deformations, where they nearly reproduce the 
asymptotic behaviour of the Nilsson eigenvatues, this 
gives a reliable approximation. 

3. Level densities and cluster stability 

The occurrence of shell effects in a bound system of fer- 
mions is a consequence of large-scale non-uniformities in 
the single-particle level density. The levels are typically 
grouped into bunches or "shells" of degenerate or nearly- 
degenerate eigenstates. The degree of degeneracy is closely 
connected to the integrability of the average potential 
(i.e., the selfconsistent mean field) and its symmetries. 
Metal clusters with the "magic numbers" 8, 20, (34/40), 
58, 92, 138, etc., of valence electrons are examples of 
systems which have a high stability due to the filling of 
spherical main shells. 

When a spherical shell is only partially filled, the Fermi 
energy lies in a region of high level density which reduces 
the stability of the system. In such cases, the system tends 
to stabilize itself by spontaneously breaking the spherical 
symmetry - a manifestation of the Jahn-Teller effect [22] 
- and acquires a deformed equilibrium shape. 

The exact quantum-mechanical level density of the 
discrete energy spectrum ei is written as a sum of delta 
functions: 

g(e) = ~, c~ (e - e i ) .  (10) 
i 

Besides a rapidly fluctuating part due to the shell effects, 
g(e) contains also a smooth part go(e), which describes 
the average behaviour of the level distribution. Thus, we 
may write 

g(e )=go(e )+Og(e) .  (ii) 

The part fig (e) oscillates with the mean distance between 
the main shells in the spherical as well as in the deformed 
spectra. 

This is also reflected in the Nilsson diagram (cf. Fig. 2). 
At certain values of 0, the level density is not uniform as 
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of nuclear physics. In the following we recall the main 
points of the Strutinsky method and refer to [ 14, 23-25] 
for detailed discussions. 

The fluctuations in the level density discussed in the 
last section lead to variations ~E in the total energy, the 
so-called shell energy correction. Both quantities ~E and 
6g (ee) are approximately periodic functions of particle 
number and deformation, and both have their local 
minima for the same particle numbers N. 

The quantity ~E is extracted from the total shell-model 
energy E~h, which is the sum of occupied levels, by writing 

N 

E~h= Z e,=~E+E. (12) 
i = !  

3 - - 0 . 3 5  Hereby/~ is given [14] by 

0 200  400  6 0 0  800  

N 
Fig. 3. Level density at the Fermi energy g(er) (solid lines) and its 
smooth part ~ (er) (dashed lines), plotted as functions of the cluster 
size N for several values of the deformation parameter 6. The quan- 
tity 6g(e) is obtained by folding the spectrum with a gaussian 
function of width y = 0.4 h~o o 

a first glance on the eigenspectra suggests, but actually 
contains large-scale oscillations. 

Figure 3 shows the level densities as a function of the 
cluster size N at the Fermi surface, g(tF), at certain de- 
formations in the Nilsson diagram. (The delta functions 
of (10) have hereby been replaced by Gaussians with a 
width of 0.4 ha)o. ) The minima correspond to the more 
stable configurations. For ~ = 0, minima of g (eF) Occur 
at the magic numbers obtained in the KS calculations. 
But also for ~ ~0, the level density shows pronounced 
shell effects, leading to deep minima at particle sizes which 
do not correspond to any stable configuration with spher- 
ical symmetry. The shell effects in such deformed systems 
are less pronounced, due to the partial lifting of the spher- 
ical degeneracies. Nevertheless, these deformed shells lead 
to observable discontinuities, such as the fine structures 
in the cluster mass yields in the regions 8 < N < 92 dis- 
cussed and interpreted by Clemenger [9]. It should be 
mentioned that in nuclear physics, "magic" nucleon num- 
bers corresponding to deformed shells are well known, 
in particular in connection with fission; see e.g. [23]. 

4. Strutinsky's averaging method 

In the Nilsson or Clemenger model the total energy of 
the system is taken to be the sum of the lowest occupied 
single-particle energies. Obviously, this method fails to 
reproduce both the absolute binding energies and the 
relative deformation energies at large deformations. We 
therefore use a combination of the liquid drop and the 
shell model, proposed by Strutinsky [14] in the context 

2 

E =  j" e g ( e ) d e ,  (13) 
--oD 

where ~(e) is an average level density defined by folding 
g(e)  (10) with a smooth distribution function f2M(X), 
usually taken to be a modified gaussian, over an energy 
range y : 

~ (e )=~-  f g(e')f2M de" 

y Z f2M • (14) 
i 

The Fermi energy 2 is fixed by the equation 
JL 

N =  S ~ (e )de .  (15) 

In (14), f2M(X) contains the so-called curvature correc- 
tion of order 2M. The purpose of this correction is to 
guarantee that the smooth part g0(e) in (11) is approx- 
imated as closely as possible by the quantity ~(e). The 
local value of the level density is reproduced when the 
folding (14) is applied to a uniform density distribution. 
Thus, the function ~ (e) is obtained by smearing out the 
single-particle energies ei over an energy range y which 
must be of the order ha~ 0. ~ (e) therefore does not reflect 
the existence of shells in the spectrum ei, By construction, 
~E only depends on the levels within a relatively narrow 
energy interval A ± ), around the Fermi energy, while the 
contributions from more distant single-particle states 
cancel. 

If the 'true' smooth part go (e) in (11 ) is a polynomial 
of order 2 M +  1 in e, then it is exactly reproduced by 

(e) in (14). I fg  0 (e) is any analytical function, then ~ (e) 
approximates it by the first 2 M + 1 terms of its Taylor 
expansion around e. As discussed in [24], the remaining 
error may be minimized by imposing on the energy E(13) 
the stationary condition 

( ~ ) y = , 0 = 0 .  (16) 
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Equation (16) is, in fact, the differential form of the usual 
'plateau condition' [ 14] requiring that E does not depend 
on the averaging width ~, in a region h t o o ~ y ~ 2 .  For 
the harmonic oscillator, (16) is trivially fulfilled since there 
go (e) is a pure second-order polynomial in e. As a rule, 
for Nilsson type potentials rather well-pronounced pla- 
teaus are obtained, and solutions of (16) can be found 
with values of the order ho% < ~'0 < 1.4 hen 0. This is not 
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surprising, as the smooth level density part of the Nilsson 
potential is not very different from that of the harmonic 
oscillator. Varying the order of the curvature correction 
2 M in order to find the best degree of the local poly- 
nomial approximation to go (e), one typically finds M = 3. 

The solution of (16) is found by iteration of y using 
a starting value y ~ha%, where the latter corresponds to 
the average shell spacing at the Fermi surface. The par- 
ticle conservation (15) has to be fulfilled at each step of 
the iteration. 

Provided that one takes the values of OE at the sta- 
tionary points Yo, a third-order curvature correction yields 
unambiguous results of 0E for N~70. For light dusters 
like N =  20 (cf. Fig. 4a), the plateau condition (16) is not 
very well established, neither in y nor in M. Therefore, 
the use of a fixed value of Yo may lead to significant 
uncertainties in the shell correction 0E. For small N, the 
inaccuracy in OE may be as large as 0.010 Ry, but for 
larger systems, it does not exceed 0.005 Ry for the spheri- 
cal spectrum ~ = 0 (cf. Fig. 4b). On the average, these 
numbers are slightly pushed down for ~ :~0, as defor- 
mation generally tends to make the spectrum more uni- 
form. (For a further discussion of the uncertainties in the 
averaging procedure, we refer to [26]). 

It is the average part of the shell-model energy E~ in 
(12) which in general has a wrong value. Therefore, the 
basic idea of Strutinsky [14] is to renormalize /~ to an 
empirically determined liquid drop model (LDM) energy 
which depends smoothly on the cluster size N and de- 
formation ~: 

Eto t (N, 6) = ELD M (N, ~) + 6E(N, ~). (17) 

Thus, only the fluctuating part 0E of the shell-model 
energy (12) is retained. 

The energy ELDM in (17) is taken from the liquid drop 
model (see, e.g. [27]) which assumes that the particles 
form a saturated system, having a spatially homogeneous 
density distribution with a relatively steep surface. In nu- 
clei, the short range of the attractive forces and their 
repulsive core justify this assumption. In metal clusters, 
the Coulomb forces have a long range, but due to the 
positively charged jellium background, the long-range 
part of the attractive forces is cancelled. As a result, the 
valence electron system of a metal duster has a density 
profile which resembles very much that of an incom- 
pressible liquid drop and can be used for a systematic 
LDM expansion of its average properties [28, 29]. 

The energy of an incompressible liquid drop is typi- 
cally written as the sum of three terms proportional to 
the volume, the surface and the curvature of the system, 
respectively. Therefore, we write 

ELD M : e V-~- o S ~ -  T C .  (18 )  

For monovalent metals the jellium radius Rj is related 
to the number of valence electrons by 

Rj =rsN 1/3 , (19) 

where rs is the Wigner-Seitz radius. Defining the con- 
stants av=4/3 ner3,as=4rttrr 2 and a c = 4 n r r  ~, we may 



write, for spherical shapes, 

ELDM(N,~=O)=av.N + a~. N2/3 + ac NI/3. (20) 

The parameters a~, a~ and a~ are the volume (or bulk) 
energy, the surface energy and the curvature energy, re- 
spectively. The deformation energies do not depend on 
the volume energy, a,. N, as long as the liquid drop is 
considered to be incompressible. 

The jellium model is well-known to give too small 
surface tensions a compared to experiment [30]. (For 
more recent theoretical results of a or as, which all agree 
within a few percent, see [29].) For sodium, the error is 
of the order of 20%, and for higher-density metals the 
situation gets worse: the experimental values increase with 
decreasing r~, whereas the jellium results decrease for 
r, < 3 a.u. and even take unphysical negative values (e. g. 
for aluminum). In order to remedy this situation, we can 
exploit the advantage of our model where we have a free 
handle on the LDM parameters. We therefore fixed the 
surface energy to its experimental value, obtained from 
extrapolating the measured surface tensions a of liquid 
sodium given in [31] to T=  0 K. This yields a~= 0.058 Ry 
(which is not too different from the melting point value). 

The curvature energy was taken to be a~ = 0.052 Ry, 
based on the semiclassical calculations of [28]. Other re- 
cent theoretical estimates [29] cover a rather wide range 
of values for sodium, all the way down to a~ = 0.011 Ry. 
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A recent experimental estimate based on vacancy for- 
mation energies [32] gives a(=0.024 Ry. However, we 
found that for not too small sodium dusters the equilib- 
rium deformations ~0, and also the shell oscillations in 
the energies presented below, are fairly insensitive to the 
choice of a~ in the range mentioned above. 

For deformed liquid drops, the surface and curvature 
terms in (20) have to be multiplied with geometrical co- 
efficients B~,~f(~) and B~rv(~ ) which contain the defor- 
mation dependence (see, e.g., [33] for a tabulation of 
these coefficients for a variety of shapes and deformation 
variables). Thus, the final expression for the LDM energy 
is 

ELD M (N, ~) = a~- N + a~- Bsurf ( ~ )  N 2/3 

+ac .  Bcurv(~)N 1/3 . (21) 

In Fig. 5a, we show the total energy (17) minus its 
smooth part ELO M (N, ~ = 0) for sodium clusters with up 
to N =  850 atoms, evaluated at their equilibrium defor- 
mations which are determined by minimizing Eto t (~ )  for 
each particular cluster size N. The corresponding equi- 
librium values ~0 of the deformation parameter are shown 
in Fig. 5b. In view of the comparison with experiment 
(see the section below), we have subtracted from the total 
energy the spherical value of the LDM part which only 
gives a smoothly varying background as a function of iV. 
The deepest minima in the curve of Fig. 5a correspond 
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to spherical clusters, whereas the smaller minima marked 
by arrows correspond to axially deformed clusters; the 
most prominent ones are prolate (see Fig. 5b). 

When comparing the fluctuations in the energies of 
Fig. 5a with those of spherical Kohn-Sham calculations 
[6, 7, 8], we note that the sharp minima at N =  676 and 
N = 832 are more pronounced in the present results than 
in the KS results ~. This has nothing to do with the effects 
of deformation, since these numbers correspond to spheri- 
cal clusters, but is simply a consequence of the decreasing 
quality of our fit of the spherical KS spectrum shown in 
Fig. 1 for larger N (see the corresponding remark in 
Sect. 2). Note that the duster deformations reduce to some 
extent, but do not abolish, the 'supershell' structure found 
both in theoretical calculations [6, 34] and in experiment 
[35]. They reduce the total energies in the regions of 
deformed clusters - and hereby also smear out some of 
the fine structure found in spherical calculations due 
to the filling of subshells - but have no effect near the 
spherical magic numbers where the shell effects are most 
pronounced. 

5. Comparison with experiment 

We now will reanalyze the recently measured cluster mass 
distributions [12], in order to compare our calculated 
deformed shell effects to observed structures in the spec- 
tra. They represent neutral abundances as produced in a 
supersonic expansion source and probed by a broad-band 
UV lamp and a time-of-flight mass spectrometer. (For 
more details on the experimental procedure, see [ 12, 13]). 
The local abundance variations in spectra produced by 
this type of source are believed to be caused by mainly 
single-particle evaporation between production and de- 
tection. Since the evaporation rate is sensitive to the sep-. 
aration (fragmentation) energy, and this quantity in turn 
reflects shell structure, the result is an enhancement of 
the stable clusters. 

We have differentiated the experimental spectra using 
the following generalized logarithmic derivative opera- 
tion 

Ko 2 ( I : : + I + K - - I , v _ K ) ( 2 K +  1) 

Y' (I,:+ +K+IN-K) 
(A1 lnlN)Ko = K = 2 K o / 3  1 (22) 

Ko 

( 2 K +  1) 2 
K= 2Ko/3 

With this procedure, the statistics in the spectra are ar- 
tificially improved so that even small variations can be 
distinguished from statistical fluctuations. In fact, major 
shell closings now readily appear as negative spikes or, 
for larger clusters, as broader negative dips. (They will, 

i We cannot compare our total energies to selfconsistent KS en- 
ergies due to our use of the empirical LDM parameter a s which 
is different to the jellium-KS value, and our fit of the spherical KS 
spectrum which is only approximate 

of course, occur irrespectively of the reason for the local 
abundance variations.) 

Application of the above derivative operation reduces 
the number of statistically independent data points as 
compared to the raw spectrum. The density of data points 
depends on the parameter K0, and the value chosen thus 
represents a compromise between improved statistics and 
the highest observable frequency modulation of the spec- 
trum. By fine tuning Ko, it is then possible to gain in- 
formation on intermediate frequency oscillations in the 
abundance spectra. 

The data from different runs have been analysed in 
the way described above, and a carefully determined 
smooth background was subtracted. The sum of these are 
shown in Fig. 6 with the values of K 0 indicated. The fol- 
lowing broad, low amplitude dips are reproducible be- 
tween the major shell closings: 

N=66(5),  80(10), 116(15), 170(25), 240(20), 

390(15), 640(20). 

The widths given in parentheses are estimates based 
on a visual inspection of the plotted logarithmic deriva- 
tives. It is our experience that these widths are rather 
insensitive to the value of K o in the range used here. Thus 
they are expected to be a fair representation of the actual 
widths, independent of the numerical development used 
here. 

Some of the dips in Fig. 6 have already been seen 
previously without any fine tuning of K 0 [12, 13, 35]. The 
peak at N = 640 is the only case where a peak, previously 
thought to be a single spherical shell closing, splits into 
two. 

The theoretically expected dip at N =  504/516 which, 
in fact, shows a rather prominent structure in 0E, cannot 
be identified in the experimental spectra. 

It should be noted that here we are comparing the 
derivatives of the experimental mass abundances directly 
with the calculated zero-temperature energies in Fig. 5a, 
rather than with the second derivatives of the total free 
energy F as done recently with fully selfconsistent Kohn- 
Sham results [6-8]. Our reason for not doing so here is 
that our present 0E as a function of particle number, due 
to the plateau uncertainties in the Strutinsky averaging, 
contains small high-frequency fluctuations to which the 
second (or even the first) derivatives are very sensitive 
[36]. These fluctuations are expected to be strongly 
damped when a finite temperature of the electrons is in- 
cluded [8]. However, the extension of the Strutinsky 
method to finite temperatures, though formally possible 
(see, e.g., [25]), is numerically involved and would lead 
beyond the scope of our present simple model - the more 
so since also the temperature dependence of the LDM 
parameters is uncertain. 

Alternatively, one could compare the theoretical re- 
suits with the integrated logarithms of the experimental 
abundances. These should be proportional to the oscil- 
lating part of the total energy (whose average part has 
been subtracted with the smooth background). We have, 
however, chosen not to compare these integrated abun- 
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Fig. 6. The logarithmic derivatives 
according to (22) of experimental 
mass abundances for sodium 
clusters [12]. The values of K 0 used 
are 3, 9 and 9 for frame a, b and c, 
respectively. In the first two frames, 
the background has been 
subtracted in the spectra used. In 
frame c the background is included 
to avoid uncertainties relating to 
the background subtraction. 
Comparison of amplitudes in 
different frames is thus not 
possible. Each frame includes at 
least three different spectra 

dances to the theoretical results, because the amplitude 
of its oscillations is strongly suppressed as compared to 
the somewhat idealized theoretical zero-temperature cal- 
culation, resulting in rather weak signatures. It  is clear 
f rom the data, however, that  the positions of  the spherical 
as well as the deformed shell closings in the derivative 
and integrated spectra are consistent, at least for N < 500. 
This non-trivial fact allows us to draw conclusions based 
on the derivative spectrum which displays deformation 
much more dearly. 

Our calculations cannot  at present be expected to give 
a good measure of  the observed amplitudes or the shapes 
of  the shell oscillations in the mass yields. The clarifi- 
cation of these relations is the subject of  current work 
[37]. We furthermore note that  the deformation dips seem 
to be shifted by a small but systematic amount  towards 

higher particle numbers when compared to the theoretical 
results. Whether this is a real shift in position or due to 
the comparison with shell-correction energies as opposed 
to second derivatives, is not possible to say. However, 
the shift is small and does not invalidate the general agree- 
ment between theoretical and experimental positions of  
the deformed shells. 

6. Conclusions 

In summary,  we have found a good agreement between 
the calculated and the observed positions for shells of  
deformed equilibrium shapes for large sodium clusters. 
In our theoretical curves we see more fine structure than 
in the experimental data. F rom the experimental side, this 
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is partly due to the averaging procedure used and partly 
an effect of  the finite temperature, which is inherent in 
the type of source used. The finite temperature will tend 
to wash out the relatively weak effects both by thermal 
electronic excitations, and by ionic shape fluctuations. 
We do, however, observe that the dips that are expected 
theoretically to be strong tend to survive, with the ex- 
ception of the region 504_< N_< 516. In addition, we would 
like to mention the possibility that both improved statis- 
tics and alternative experimental procedures could re- 
solve substructures in the peaks observed with the present 
method [ 12, 13]. Possibly threshold ionization could also 
be used as a probe in this connection. Actually, recent 
measurements of the shell dependent chemical reactivity 
of  large sodium clusters [38] also show a minor shell 
structure between the spherical shell closings. 

Very recently, mass abundance spectra of  lithium and 
sodium clusters by Brrchignac et al. [391 have also re- 
vealed some structures between the most prominent 
spherical magic numbers. Since only total yields were 
given in [39], the comparison with our results is difficult; 
in particular, for N > 400 the structures in the total yields 
are too weak to allow for a significant comparison. How- 
ever, those structures which can clearly be seen for so- 
dium at N =  70, 114, ~ 290 and 375 are in good agreement 
with our deformed shells indicated in Fig. 5a. Perhaps, 
the subtraction of  a smooth background and a dif- 
ferentiation might make it possible to give a more detailed 
comparison of  these data with our results and also with 
the Copenhagen data shown in Fig. 6. 

On the theoretical side, the restriction to axially sym- 
metric shapes of  mainly quadrupole nature represents a 
limitation of  our model which leads to an overestimation 
of  the amplitude of  the shell effects. As recently shown 
by Hamamoto  et al. [40], nonaxial shapes of  both quad- 
rupole and octupole multipolarity can be expected to play 
a role, in particular in the mid-shell regions between the 
major spherical systems. The inclusion especially of non- 
axial deformations is expected to further wash out the 
oscillations in d E  due to their breaking of  the angular 
momentum (A)  degeneracy. 

While this paper was under preparation, we became 
aware of a recent study by Frauendorf  and Pashkevich 
who used the Strutinsky method with a phenomeno- 
logical potential of  Woods-Saxon type [34] for sodium 
clusters with N=<300, including axial octupole and 
hexadecapole deformations [41] and, in an extension, 
higher-order deformations up to multipolarity l =  6 [42]. 
In spite of  the differences of  the two models, their results 
are very similar. The minimization with respect to defor- 
mations with l > 2 leads to a further reduction of  the 
shell oscillations in their results, but the positions of  the 
most prominent dips corresponding to prolate-deformed 
shells agree quantitatively with ours. 
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Note added in proof. Following the ideas of Balian and Bloch [43] 
and Strutinsky et al. [44], we have recently shown [45] that the 
average negative slopes of the equilibrium deformations d~ o versus 
N, as displayed in Fig. 5b, can be interpreted in terms of classical 
periodic orbits. For a spheroidal cavity, Strutinsky et al. [44] found 
that the main contributors to the gross-shell structure are the rhom- 
boidal orbits in the planes containing the symmetry axis. In the 
equatorial plane, the leading closed orbits are regular polygons; 
they are only important for strong prolate deformations. 


