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Abstract. The finite-temperature density functional ap- 
proach is applied for the first time to calculate thermal 
properties of the valence electron system in metal clusters 
using the spherical jellium model. Both the canonical and 
the grand canonical formalism are applied and their dif- 
ferences are discussed. We study the temperature de- 
pendence of the total free energy F(N) (including a con- 
tribution from the ionic jellium background) for spherical 
neutral clusters containing N atoms. We investigate, 
in particular, its first and second differences, 
A I F = F ( N - 1 ) - F ( N )  and A 2 F = F ( N + I  ) 
+ F ( N -  1 ) - 2F(N),  and discuss their possible relevance 
for the understanding of the mass abundance spectra ob- 
served in cluster production experiments. We show that 
the typical enhancement of  magic spherical-shell clusters 
with N = 8 ,  20, 34, 40, 58, 92, 138, 186, 254, 338, 398, 
440, 508, 6t2. . . ,  most of which are well established ex- 
perimentally, is decreasing rather fast with increasing 
temperature T and cluster size N. We also present elec- 
tronic entropies and specific heats of  spherical neutral 
clusters. The Koopmans theorem and related approxi- 
mations for calculating A~F and A2F at T >  0 are dis- 
cussed. 

PACS: 36.40. + d ;  31.20.Sy; 05 .30 . -d ;  65.50. + m  

1. Introduction 

Metal clusters offer on opportunity for studying inter- 
esting size and shell effects that are typical of finite Fer- 
mion systems. In particular, an enhanced stability of 
clusters with the 'magic' numbers of atoms 1 
N =  8, 20, 40, 58, 92 has been observed by many groups 

* Work partially supported by the Danish Natural Science Re- 
search Council and by Deutsche Forschungsgemeinschaft 

1 We shall limit ourselves here to neutral clusters of monovalent 
atoms 

(see [1] for recent reviews of expermential results). This 
stability can be explained in terms of a shell model for 
the valence electrons which move in an external field 
created by the ions. One of the most striking indications 
of the validity of the shell model is the coincidence of the 
steps in the first differences AlE(N), or the peaks in the 
second differences A2E(N), of the total energy E(N) of 
neutral clusters 

A~E(N)=E(N-  1 ) - E ( N ) ,  

A2E(N ) = E(N + 1) + E ( N -  1) - 2E(N) ,  
(1) 

with similar features observed experimentally in mass 
abundance spectra and their logarithmic derivatives, at 
magic numbers corresponding to spherical closed shells. 
Steps are also observed in the electronic ionization po- 
tentials at the same magic numbers, confirming the as- 
sumption that the shell structure in the total energy is 
dominated by the valence electrons. 

Microscopic calculations of self-consistent potentials 
for the electrons, taking into account their mutual Cou- 
lomb interaction, have been performed in the so-called 
jellium background model [2] within the Kohn-Sham 
density functional formalism [3]. However, these calcu- 
lations - and many others since - have been performed 
for the ground state at zero temperature, T =  0. On the 
other hand, in most experiments the clusters are produced 
at temperatures up to several hundred Kelvin [1], and 
one has to raise the question to what extent the temper- 
ature averaging of the single-particle structure might af- 
fect these results. At first sight, one would expect that a 
temperature of a few hundred Kelvin (i.e., a few tens of 
millielectronvolt) should be negligible in view of the typ- 
ical major shell spacings of ~-0 .5-  1 eV of the electron 
levels in the smaller clusters. However, as we shall see, 
the first and second differences of the total free energy 
F(N) with respect to the atomic number N are very sen- 
sitive to temperature due to the high degeneracy of the 
electronic single-particle level spectrum around the magic 
shell closures. Bulk properties, such as total binding en- 
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ergies and frequencies of collective dipole excitations of 
the electrons, are much less affected by temperature. 

In this paper we shall present detailed selfconsistent 
microscopic calculations of the electronic structure of 
spherical metal clusters at finite temperatures. Some first 
results of our calculations were presented at a recent con- 
ference [4]. Our formalism is based on the T > 0 exten- 
sion of the Kohn-Sham method [5] which was originally 
formulated for grand canonical ensembles where the par- 
ticle number is conserved only on the average. For cal- 
culations of thermal properties of a macroscopic object, 
the choice of ensemble is merely a matter of convenience. 
This is, however, no longer true in small systems where 
the properties under study, in particular properties af- 
fected strongly by shell structure, can change significantly 
within the range of a typical particle number fluctuation. 
For such systems a canonical description is a priori more 
appropriate, and the grand canonical description cannot 
be expected to lead to the same results. 

The subsystem of valence electrons in metallic clusters 
represent, in fact, an ideal example of a canonical ensem- 
ble. Due to the large difference between the energy of the 
vibrational quanta of the positive ions and the Fermi 
energy, only a very" minute, but finite, amount of the total 
thermal energy of a typical cluster will be carried by the 
electrons. The valence electrons will effectively be em- 
bedded in a heat bath, even for a system of free clusters. 
Consequently, the canonical partition function is ex- 
pected to give a much better description of the thermal 
properties of the electronic system than either the micro- 
canonical or the grand canonical partition functions. 
Since the density functional formalism also applies to 
canonical ensembles (see Evans [5]), we shall study here 
both the canonical and the grand canonical approach and 
compare their results systematically and carefully. 

The explicit treatment of the thermal properties of the 
positive ionic cores is largely irrelevant for the discussion 
here, because all properties are assumed to change 
smoothly with the number of ions present in the cluster, 
such that the observed shell-like deviations from a smooth 
behaviour must be attributed to the valence electrons. 
This is consistent with the very idea behind the jellium 
model approximation which we are using" the geo- 
metrical structure of the positive ions is ignored and re- 
placed by a uniform charge background ('jellium'). A 
finite temperature should only render this assumption 
more correct: the ensemble averaging over a slow thermal 
motion of the ions is likely to be equivalent to an aver- 
aging over their geometrical configurations. Thus, in the 
jellinm model, the total (free) energy of a cluster (and 
quantities derived from it) only contains contributions of 
the ions in an averaged form. In this crude model, it would 
make little sense to introduce an explicit temperature de- 
pendence of the jellium density. The essential point is to 
include the thermal motion of the ions in terms of a heat 
bath with T >  0. 

Besides providing a heat bath for the electrons, the 
finite temperature of the ionic cores has one more con- 
sequence: namely to render the cluster unstable. Any clus- 
ter with a total excitation energy exceeding the energy 
needed to evaporate one atom (or, in principle, a particle 

of any kind) will - given sufficient time - decay. Although 
the mass abundance spectra display peaks near the shell 
closings, it is therefore not clear that measuring these 
spectra corresponds to a sampling of an equilibrium en- 
semble. Since production and sampling of the spectra 
experimentally is separated by at least some microse- 
conds, sufficient time is available for substantial changes 
of the original abundances through evaporation. This 
process will also tend to increase the number of closed- 
shell clusters due to the strong dependence of the evap- 
oration rate on the dissociation energy. Therefore, peaks 
in the observed abundance spectra can be associated with 
shell closures even without invoking thermal equilibrium. 
The pronounced asymmetry of the mass spectra around 
magic shell closings (see, e.g., [1]) may, in fact, be taken 
as an indication of a significant amount of evaporation 
after production and before mass selection. 

A semi - quantitiative comparison of observed abun- 
dance spectra with preliminary results of our calculations 
has been quite encouraging [6]. A more detailed com- 
parison would necessitate the inclusion of deformation 
effects for clusters in the regions between the filled spher- 
ical shells. Nevertheless, we believe it to be instructive to 
study the properties of the electronic subsystem of indi- 
vidual spherical metal clusters in a thermal equilibrium 
situation as functions of size and temperature. Models 
for local chemical equilibrium or for evaporation from 
an initially hot ensembly may be subsequently developed. 
There, the free energy F(N) and its first and second dif- 
ferences will be needed as an important input. 

In Sect. 2 we present the density functional formalism 
for T > 0 in the spherical jellium model. In Sect. 3 we 
compare the grand canonical and the canonical results 
for some crucial quantities and further discuss useful ap- 
proximations. Section 4 is devoted to a discussion of the 
Koopmans theorem and related approximations which 
might be used to calculate A ~F and A2F in a purely non- 
interacting particle picture. In Sect. 5, we present some 
typical results over a large range of cluster sizes and tem- 
peratures. 

2. Kohn-Sham formalism for the jellium model 
at finite temperature 

2.1. Energy functional and variational equations 

We employ the spherical jellium model [2] in which the 
charges of the ions (i.e. atoms minus valence electrons) 
are uniformly spread out over the volume of a sphere 
of radius R~= rs N1/3, where N is the number of ions, 

rs= Pr) is the Wigner-Seitz radius charac- 

terizing the metal, and pIits density. As we have discussed 
in the introduction, it would not make much sense to 
introduce any explicit temperature dependence of the jel- 
lium density. We therefore keep the value of r~ fixed for 
all temperatures. 

The jellium sphere creates an external attractive po- 
tential Vx(r) for the electrons. According to Mermin [5] 
and Evans [5], the Helmholtz free energy F of the cluster 



is a functional of the local density p (r) of the electrons: 

F=F[p]= U[p]- TS[p]. (2) 

U is the total internal energy, S the entropy and T the 
temperature 2. Following the Kohn-Sham procedure [3], 
we introduce a non-interacting free kinetic energy G~ [ p] 

G~[p] = Eke" [ p ] -  TS~[p], (3) 

where E ki" and Ss are, in the standard notation, the ki- 
netic energy and entropy, respectively, of a non-interact- 
ing system of electrons having the density p (r). The total 
free energy of a cluster is then 

F[p]=G~[p]÷~ IV~(r)p(r) 

+½P(r) [e=~ p(r') dgr, ] 
Ir-r'l  

-t- "~x'~'[P]l d3r+EI" (4) 

Hereby Vz(r) and Er are the potential and the electrostatic 
energy, respectively, of the ionic jellium background; the 
second term under the integral is the Hartree Coulomb 
energy of  the electrons, and ~,~ [p] is the exchange and 
correlation free energy density functional. We stress again 
here that F contains the energy of the ions only in a very 
crude schematic way through the jellium background 
density; this contribution E I varies smoothly with N and 
any shell structure effects in F(N) will be due to the 
electrons. Similarly, the entropy associated with the ionic 
motion is assumed to be a smooth function of N; its 
contribution to F(N) is disregarded in the following. 

Next, we write [3, 5] the local density p (r) of the elec- 
trons in terms of  auxiliary single-particle wavefunctions 
~0 i and finite-temperature occupation numbers n~ as 

p (r)= ~, Io~(r)lan~, ~p(r)d3r=~,n~=N, (5) 
i i 

and the non-interacting kinetic energy as 

Ekin ~ 1 h 2 
[ P l = ~ m  ~ Z  IVfPi(r)12ni d3r" (6) 

i 

In all sums over i, we shall count the degenerate single- 
particle states separately, so that 0 < n i < 1. In principle, 
these sums include also an integration over the positive 
energy states in the particle continuum. In practice, how- 
ever, we shall limit our temperatures such that the n~ 
become negligible in the continuum, in order that a static 
equilibrium approach be justified at all. 

Varying the free energy (4) with respect to the single- 
particle wavefunctions q~* (r) leads to the usual Kohn- 
Sham (KS) equations 

2 We put the Boltzman constant k -= 1 and measure the temperature 
alternatively in degrees Kelvin (K) or in energy units: 
1 Ry= 13.606 eV = 15.789.104 K 
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{ T--~ Vto t ( r ) }  ~0 i ( r )  ~-- ~i~Oi ( r ) .  (7) 

Note that the entropy part of G s in (3) does not contribute 
to (7), since the non-interacting entropy S s does not de- 
pend explicitly on the wavefunctions (see Sect. 2.2). In 
(7), 7 ~ is the kinetic energy operator and the local poten- 
tial Vto t is a sum of three terms: 

Vto t (r) = Vr(r ) + VH[ p (r)] + V=c [ p (r)], (8) 

whereof Vr is the jellium potential already mentioned, 
VH[p] is the Hartree potential of the electrons, given in 
the square brackets in (4) above, and the last term is due 
to the exchange and correlation contributions: 

6 
Vxc [P ([r)] ............... ~ c [ P l  • (9) 6p (r) 

A word has to be said about the choice of the ex- 
change-correlation free energy £2x~ which depends, 
in principle, explicitly on the temperature (not only 
through p): 

Dxc [p, T] =~ ~xc[P (r), T] d3r. (t0) 

Gupta and Rajagopal [5] have calculated Dxc for uniform 
electron plasmas and presented it as a function of the 
reduced temperature t = TIT F. D xc was shwon to ap- 
proach zero with increasing t, but only for t > 0.1 does a 
noticeable temperature dependence set in. The Fermi 
temperature T F itself depends on the density of the system 
like TF,~ p 2/3 Using these results within the local density 
approximation (LDA), one therefore has a different re- 
duced temperature t at each point where the density p (r) 
is varying. For the typical bulk electron densities of alkali 
metals ( p i " ~ 1 0 2 2 -  10 23 c m - 3 ) ,  with which we are con- 
cerned here, T F is [5] of the order of  10 4 --  10 5 K, so that 
the temperature dependence of  £2xc is practically negli- 
gible in the interiour of  the clusters at temperatures below 
2000 K. Only in the extreme surface, where p has de- 
creased by two to three orders of magnitude, will the 
temperature variation of £2xc come into effect. But the 
contribution at low density to the total electronic free 
energy is small, and it seems therefore perfectly well jus- 
tified to replace 5~x ~ [ p (r), T] in (4) by the T =  0 energy 
density functional ~x~ [ P]- 

In conclusion, the temperature effects in alkali metal 
clusters can be expected to come only from the occupa- 
tion numbers n;, which will be determined in the follow- 
ing, and from the corresponding changes in the densities 
(5) and the mean field (8). In our numerical calculations, 
we used for ~"x~ [ P ] the LDA functional of Gunnarsson 
and Lundqvist [7]. 

In an exact treatment of the Coulomb exchange, the 
total potential Vto t (r) would fall off asymptotically like 
1/r at large distances. The spectrum e i would therefore 
contain an infinite number of bound Rydberg states which 
could lead the sums over the single-particle states i to 
diverge. Due to the use of  the LDA functional, however, 
the asymptotic fall-off of  Vto t is faster than 1/r and there 
is only a finite number of bound states [2], so that this 
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divergence problem is regularized automatically in the 
local density approximation. 

We have solved (7) iteratively for spherical clusters on 
a finite mesh in r-space. The explicit form of the occu- 
pation numbers n i in terms of the single-particle spectrum 
e;, which have to be included at each iteration, depends 
on the choice of the statistical ensemble and will be dis- 
cussed in the following subsection. For partially filled 
spherical shells we made the usual [2] 'filling approxi- 
mation' which amounts to an averaging of  the occupied 
states over their polar angles (0, q~), such that the density 
p and the total potential Vto t stay spherical. 

2.2. Entropy and occupation numbers 

We shall now discuss the calculation of the entropy and 
the occupation numbers at finite temperature 7'. As shown 
above, we need only know these quantities for a system 
of non-interacting Fermions in a local potential Vto t (r), 
with eigenenergies e,. according to (7), at each given tem- 
perature. We shall, therefore, in the following omit the 
subscript s of the entropy S s. We call Us = 7, egn; the total 

internal energy of this system, such that F s = U s -  TS is 
its free energy. The energies F s and Us should not be 
confused with those of the interacting system, i.e., F[  p] 
and U[p] in (2) and (4), which have entirely different 
values. 

a) Grand canonical ensemble: We start with the grand 
canonical ensemble which is fairly standard and easy to 
calculate. The entropy for this ensemble is given explicitly 
in terms of the occupation numbers as [8] 

s [n,] = Z s 
i 

= --~, {nilogni+(1 - ni) log (1 -ni) } . (11) 
i 

Minimizing the free energy - non-interacting or inter- 
acting does not matter, as long as (7) is used - with respect 
to the n;, using a constraint on the particle number N 

~, n~=N (12) 
i 

with the help of a Lagrange multiplier p 

(~ IF-lJ  ~, nj} =O, (13) 
~n~ j 

i.e., minimizing the grand potential g2 = F--laN, leads to 
the Fermi occupation numbers 

n, = { 1 + exp [(e, -- p ) / T ] } - ' .  (14) 

In the KS calculations, the chemical potential/~ must be 
determined at each iteration such as to fulfil (12) and 
(14). The entropy S, (11), need only be calculated at the 
end, after convergence of the KS iterations. 

It should be remembered that N in (12) is only an 
average particle number in the grand canonical ensemble. 

The variance of the particle number N is given by 

Oni G =Z n,(1 -n , )=  - rT.  (is) 
i 

Even for moderate temperatures o- N is easily of order 
unity for the clusters considered in this paper. Therefore 
we have to investigate the canonical ensemble where N 
is fixed exactly from the beginning. 

b) Canonical ensemble: In order to calculate entropy and 
occupation numbers for a canonical ensemble, we cannot 
avoid evaluating the partition function ZN(fl ) which is 
given by [81 

ZN(Jg) : Z e -  BE~ (N) ; (16) 

fl = 1/T is the inverse temperature. The sum runs over 
all partitions ~, i.e. all possibilities to distribute N par- 
ticles over the single-particle levels ee, with energies 
E~ (N): 

E~(U)=7, p~e~, p ~ = 0  or 1, ~ p ~ = X .  (17) 
i i 

From ZN([I ) we get U~., F s and S by the canonical re- 
lations 

F s = - log ZN/fl, 

1 
Us= --ZN ~-fl ZN' (18) 

To define the occupation numbers n~, we start from the 
basic probability P~ for the system to have the energy E= 
at the temperature lift: 

P==e-BE=(N)/ZN(fl) ; Z P= = 1. (19) 
c~ 

In terms of the P~, we can write the internal energy Us 
and the entropy S as 

Us=(E~) = 7, P~,E~, (20) 

S= -(logP~) = -~ ,  P~ logP~. (21) 

The n~ now are defined as the ensemble averages of the 
microscopic occupations p]" 

n i = ( p ] )  = ~ P~ p~'. (22) 
c( 

Combining (17), (19), (20) and exchanging sums, we see 
that 

Z eini = Us; Z ni =N" (23) 
i i 

In practice, the evaluation of Z N and the n~ cannot be 
done by summing explicitly over all partitions c~ in (16) 
and (22), because there are far too many of them for 



N >  10. An economic way of calculating these quantities 
exactly, nevertheless, is described in the Appendix. Still, 
the numerical treatment of the canonical ensemble, in 
particular the evaluation of the n~, is far more time con- 
suming than for the grand canonical case. We have there- 
fore developed a way to avoid the iterative determination 
of the canonical n~ in the KS calculations, which shall be 
presented and tested in Sect. 3.2 below. 

3. Numerical tests and approximations 

3.1. Comparison of  the two ensembles 

As some o# the most sensitive quantities to details oflevet 
structure and to the choice of the statistical ensemble, we 
investigate the first and second differences of the total 
interacting free energy F, (4), of a neutral cluster with 
respect to the number N of atoms: 

A~ F ( N )  = F ( N - -  1 ) - F ( N ) ,  (24a) 

A 2 F ( N ) = A ~ F ( N ) - A ~ F ( N +  1) 

= F ( N +  1) + F ( N -  1 ) -  2F(N) .  (24b) 

We recall that the energy of the ions is included only in 
the jellium approximation at T =  0; therefore the entropy 
part in these quantities is coming exclusively from the 
valence electrons. 

The first difference A 1F(N) is related to the dissoci- 
ation free energy D N of one neutral atom by 

O N = A 1F(N) + g(1) ,  (25a) 

where F(1) is the free energy of a single atom. This latter 
quantity, F(1), is certainly not correctly described in the 
jellium model; nevertheless, (25a) turns out to be a good 
estimate of the experimental dissociation energy (see 
Sect. 5.1). In any case, since F(1) is a constant, we may 
consider the factor exp { - #A 1F(N)} to be a measure for 
the stability of the cluster N against evaporation of a 
monomer: 

Na~7*NaN_ ~ + Na~. 

(See the beginning of Sect. 5 for a further discussion on 
the relation ofA ~ F a n d  A2Fto mass abundances in cluster 
beams.) 

On the other hand, in a chemical equilibrium of three 
adjacent sodium clusters, 

N a N -  1 + N a N +  l ~ 2 N a N ,  

the law of mass action expresses that A~F and cluster 
concentration (or probability) e y are related approxi- 
mately through 

A2F ( N ) ~- - TA 2 log c N 

], 
LCN ICN+ 1 
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F ( N )  being the total free energy of a cluster at unit prob- 
ability for a given volume and temperature. The relation 
(25b) would be exact if the rotational, translational and 
vibrational degrees of freedom of the ions were included. 
Treating those degrees of freedom classically and assum- 
ing that the cluster is a sphere with a volume proportional 
to its mass, their contribution to the free energy is a 
smooth function of cluster size. More specifically [ 1 ], this 
part of the free energy is the sum of a volume and a 
logarithmic term in cluster size, and differentiating twice 
leaves an error of order N-2;  hence its omission from 
A2F(N ) is inconsequential. 

In Figs. 1-3 we show A~F and ZIzF as functions of 
temperature for a series of neutral Na clusters. The solid 
lines are obtained for the canonical ensemble and the 
short-dashed lines are obtained for the grand canonical 
ensemble. For both ensembles, the KS equations (7) have 
been solved iteratively including the corresponding oc- 
cupation numbers n~, until convergence (i.e., selfconsis- 
tency of the field Vtot) was reached. We see that there are 
significant differences between the results obtained with 
the two ensembles, in particular in the physically inter- 
esting region around temperatures of a few hundred up 
to about 1000 degrees. The error introduced by the par- 
ticle number non-conservation in the grand canonical 
treatment differs from case to case, depending sensitively 
on the shell structure in the single-particle spectrum e; 
near the Fermi energy. In all cases, the error decreases 
for T>  1000 K and becomes very small for T>2000 K. 

The linear behaviour of A~F(T)  and A 2 F ( T  ) near 
T =  0, with slopes that are clearly different for the two 
ensembles, can easily be understood in terms of the de- 
generacies of the last occupied levels e,.. Indeed, for 
T<200 K, the smaller clusters can be considered to be 
perfectly cold: the occupation numbers of all completely 
filled levels e~ are identically" one. If  there are v particles 
in the last level e 0 and the degeneracy of this level (in- 
cluding spin factor 2) is g, then the exact microscopic 

2 .2  F-r - " r  r " - - ,  . . . .  , . . . .  , ' ' ' - " q  
Na 2 0  

u.. 2 0  <~ " 0 5 0 0  1 0 0 0  1,500 2 0 0 0  t 

0 , 6  

0 . 5  

0 . 4  
.2 
u_ 0.3 

~ 0 . 2  

0.1 

Na 20 

- 0 SO0 1 0 0 0  1 5 0 0  2 0 0 0  
T (K )  

Fig. 1. First and second differences A~F and A2F (24), of total free 
energy of the sodium cluster with N =  20 versus temperature. Solid 
lines: selfconsistent canonical results. Short-dashed lines: selfcon- 
sistent grand canonical results. Long-dashed lines: result of ap- 
proximation (32), i.e. using one canonical iteration at the end of a 
grand canonical selfconsistent calculation 
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probability P~ and the occupation number no of this state 
are given by 

( g )  v,(g--v)' v - 1 =  "" ~ n o - -  • (26) e~=  g! ' g 

The canonical entropy of  the corresponding cluster in the 
limit T = 0  is then, with (21), 

• 

= log g ] - log v ! - log ( g -  v) !. (27) 

(This value is exactly reproduced in our numerical cal- 
culation for the canonical ensemble from (16), (18) in the 
limit T =  0.) Since the internal energy U(T) has a zero 
slope at T = 0 ,  the slopes of  A i F  and A2F are thus iden- 
tical to minus the first and second differences A1S and 
A2S, respectively, of  the entropy at T =  0. 

For  the grand canonical ensemble, now, one obtains 
from (26) and (11) a different value of the entropy, namely 

S~ -c" = s(n0) 

= g l o g g -  v log v - ( g -  v) log ( g -  v) (28) 

which, incidentally, corresponds to using Stirling's ap- 
proximation to the factorials in the correct expression 
(27). In the case of  v = 1 particle in an s level (angular 
momentum zero, spin degeneracy g = 2), the error in (28) 
with respect to the canonical entropy (27) is a factor of  
two. 

This is illustrated in Fig. 4 where we show the entropy 
of  the Nagx cluster as a function of temperature, evaluated 
both for the canonical and the grand canonical ensemble. 
The highest occupied level in this cluster at T =  0 is the 
3s level: we clearly recognize the two limiting values 
S~ an = log 2 and S g°  = 2 log 2 at the left of the figure. In 
the temperature region 300< T <  600 K, the entropies in 
Fig. 4 exhibit plateaux at the values S c ~ = l o g  24 and 
S g° = 24 log 2 4 -  23 log 23, respectively. This is due to 
the fact that the 3 s level is nearly degenerate with the 1 h 
level ( g = 2 2 )  which lies lower in energy by only 
0 .033eV~400K.  Therefore, at temperatures around 
T ~ - 500 K, these two levels appear as one level with a 
total degeneracy of  g = 2 ÷ 22 = 24, whereas all the other 
levels of  the spectrum are far enough away to have oc- 
cupation numbers equal to 1 or 0 and thus do not con- 
tribute to the entropy. This rapidly changing increase of 
the entropy at small temperatures is another manifesta- 
tion of  electronic shell structure. Only above several thou- 
sand degrees K, the shell effects are averaged out and S 
takes on its expected linear temperature dependence (see 
Sect. 5.2). 

We have thus found that the differences in the slopes 
of  the curves in Figs. 1-3 at small T reflect the wrong 
entropies obtained in the grand canonical treatment. Note 
that the error, near T =  0, does not lie in the Fermi oc- 
cupation number given by (14) which also leads to the 
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Fig. 5. Root of particle number variance c% (15), versus temperature 
for the clusters with N=40, 92, and 254 in the grand canonical 
treatment. Solid line: exact self consistent result. Dashed lines: using 
the approximation of Sect. 3.3, in which the spectra e~ °) of the cold 
clusters (T= 0) are used 

correct numerical value of n o (26) at small temperatures 
(although the exact T =  0 limit does not exist for e0 =/~). 

In Fig. 5 the variance aN, (15), of the particle number, 
obtained in the grand canonical ensemble for three cluster 
sizes is plotted versus temperature up to T =  10000K. 
For N = 92, the solid line is the fully selfconsistent result. 
The dashed lines show o u obtained in the approximation 
where the cold spectrum e}0) of the setfconsistent solution 
at T =  0 is used; an approximation which is seen here to 
work very well for a N . (See, however, the discussion and 
results in Sect. 3.3 below). From these results it is not 
surprising that errors enter into the differences A~F(N)  
and A2F(N),  since they hinge precisely upon an exact 
knowledge of the particle number N. 

For T>3000 K, all three curves in Fig. 5 can be 
parametrized approximately by ~yZJN~--cT with 
c=0.045- 10 -3 K -~ =7.1 Ry -~. This linear T depend- 
ence is easily derived from the rhs of (15), if shell effects 
are neglected and the average single-particle level density 

(e) is kept constant to its value at the Fermi energy: 

oo 

a2N ~ ~ g ( e ) n ~ ( 1 - n ~ ) d e  
--oo 

~- - Tg(eF) 8e de = T~(eF) = a N T ,  
--oo 

where a is the level density parameter discussed in Sect. 
5.2. The numerical value a = 11.6 R y -  1 found there from 
fitting entropies to (46) is in quantitative agreement with 

6 
c =--~2 a, indeed. 

Summarizing this subsection, we can state that the 
canonical treatment of the clusters under investigation 
here is mandatory in order to obtain quantitatively cor- 
rect results, especially for the entropy. The spread in par- 
ticle number in the grand canonical treatment is, in par- 
ticular, too large to obtain exact values for the quantities 
A , F  and A2F at the physically interesting temperatures 
below T ~  1000 K. Another quantity that is sensitive to 
a canonical treatment is the specific heat; it will be dis- 
cussed in Sect. 5.3. 
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3.2. Approximately selfconsistent treatment 
of  the canonical ensemble 

The iterative inclusion of  the canonical occupation num- 
bers n~ (see the Appendix) in the KS calculations is rather 
time consuming for large clusters and high temperatures. 
We have therefore developed an approximate scheme 
which we will show here to be completely sufficient for 
all practical purposes. It permits one to obtain the ca- 
nonical results with only negligibly more computing time 
than that required for the grand canonical calculation. 

Our idea is to assume that the main error in the grand 
canonical calculation does not lie in the determination of 
the occupation numbers ng, (14), but in (11) for the en- 
tropy. In the limit T = 0, we have just shown in Sect. 3.1 
above that this is, indeed, exactly the case. Now, in the 
iterative solution of the KS equations (7), only the oc- 
cupation numbers n i are needed for the density (5) and 
the entropy never enters. Thus, the temperature depend- 
ence of the selfconsistent mean field Vto t in a grand ca- 
nonical KS calculation is as good as the occupation num- 
bers nl are. We therefore propose to perform the KS 
iterations with the grand canonical occupation numbers 
(14) until convergence is reached, and then to correct the 
total free energy perturbatively by introducing the ca- 
nonical ensemble in a last step. 

To do so, let us denote the exact canonical occupation 
numbers (2) by n; as before; the grand canonical ones, 
(14), (which become slightly wrong at T >  0) by vTg, and 
their difference by fin,.: 

Oni = n i -  h i .  (29) 

It is now straightforward, using the underlying varia- 
tional principle which leads to the KS equations (7), to 
show that to first order in the differences ~n~, the error 
introduced in the total, grand canonical interacting free 
energy F g° '= F[  p, ni] (4) is equal to 

6,F=F2"-Fg°[~] (30) 

in terms of the non-interacting free energies, evaluated for 
the two ensembles indicated by the superscripts, in terms 
of the level spectrum e; of the grand canonical ensemble. 
Adding the correction 61F (30) to F g'° will therefore give 
the selfconsistent canonical free energy F ~an= F[ p, n;] up 
to errors of second and higher order in 6ni: 

Fcan = F  g-c. +g]Fs- 1- G[(gn~)2], (31) 

so that we can use the approximation 

Uan~__Fg-C-[p, ffi] + e71F ~ 

= ug°' [ p, rT;] - ~, e)fi i + F~ ~" . (32) 
i 

Note that the entropy S['r~] (! 1), which is the major cause 
for the error in the grand' canonical ensemble, cancels on 
the rhs of (32) and is replaced by the canonical one (in 
F~ ' ) .  Note also, that in the ~pproximation (32) the ca- 
nonical occupation numbers.' ni are not needed, since 
F~ ~n is evaluated according to (18) directly from the ca- 
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nonical partition function. Therefore, the partition func- 
tion (16) has to be calculated only once at the end of the 
KS iterations, which takes only little extra computing 
time (see the Appendix) and thus makes our procedure 
a very efficient one. 

This perturbative correction of the total energy of an 
interacting system, due to small differences in occupation 
numbers, has been applied many times in different fields 
of physics. It is the starting point of Landau's Fermi 
liquid theory [9] in terms of  quasi-particles; in nuclear 
physics, it gives the basis of Strutinsky's shell-correction 
method [ 10] in the framework of Hartree-Fock (HF) the- 
ory (see also [11]), and in solid state theory a 'force the- 
orem' has been derived along similar lines [12]. Finally, 
the Koopmans theorem which we shall discuss in Sect. 4 
is also closely related to this line of arguments. 

In Figs. 1-3, we have included the results obtained in 
the approximation (32) by the long-dashed lines. They 
are in all cases seen to reproduce the exact canonical 
results with a very small and practically negligible error. 
This result can be understood by looking at the single- 
particle levels e~, which are almost identical for the two 
ensembles. In fact, also the mean field Vtot is practically 
the same in both cases; this was the starting assumption 
for the derivation of the approximation (32). 

Thus we have shown that the choice of  ensemble is 
not essential for obtaining the selfconsistent mean fields 
and densities, and that for all practical purposes a per- 
turbative treatment at the end of a grand canonical Kohn- 
Sham iterative scheme is sufficient to describe the ca- 
nonical ensemble. 

3.3. Importance of the selfconsistent temperature 
dependence of the mean field 

The question may be raised to which extent the temper- 
ature dependence of the self-consistent mean field Vto t, 
(8), is important in our calculations. In Fig. 6 we show 
the density p (r) and the potential Vtot(r ) of  the same 
cluster, obtained at the three temperatures T = 0 ,  1000 
and 2000 K for the canonical ensemble. (The correspond- 
ing curves for the grand canonical ensemble would hardly 
be distinguishable on the scale of the figure.) We should 
like to mention that in HF  calculations for hot nuclei, 
the dependence of the mean fields on temperature has 
been found earlier [13, 14] to be very weak. 

In consequence, one may use arguments as those pre- 
sented in Sect. 3.2 above to treat the finite temperature 
effects perturbatively at the end of a KS calculation at 
T =  0. In fact, since the temperature dependence of the 
mean field only enters through the occupation numbers 
n~, one may include the T > 0 effects up to first order in 
On~ = n~ (T) - n i (0) by adding the correction 

N 

OTF+=Fs(T, e} ° ) ) -  ~, t'} °) (33) 
i = l  

to the total ground state energy for T--0,  leading to the 
approximation 

F[p, ni]~--E[p, T=0]  + 67-F~; (34) 
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Fig. 6. Electron density p (r), in units of jellium density Pl (upper 
part), and total mean field V~ot (r) (lower part) of the Na92 cluster 
at three different temperatures, at T > 0 evaluated for the canonical 
ensemble 
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Fig. 7. Same as Fig. 2 for the canonical ensemble, but long-dashed 
lines: using the approximation (34) in terms of the cold specrum 
e} °), and short-dashed lines: using the Koopmans approximation 
(43) discussed in Sect. 4. The solid lines are the exact selfconsistent 
results and identical to those in Fig. 2 

hereby, the 'cold spectrum' e} °) is used in (33). Equations 
(33), (34) may be used for either of the two ensembles 
discussed above. (In the nuclear HF  calculations, done 
for grand canonical ensembles, this led to a fairly rea- 
sonable approximation of entropies and excitation en- 
ergies [11]). 

In Figs. 7, 8 we test the approximation (34) by com- 
paring the results for A~F and A2F, obtained from the 
T =  0 spectrum e} °) (long-dashed curves), to those of the 
fully selfconsistent canonical calculation (solid curves, 
identical to those in Figs. 2, 3). For well-pronounced 
spherical magic shell situations, such as N =  92, this ap- 
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proximation is seen to work very well. However, in the 
case N =  40, where there is only a weak gap in the spec- 
trum ei, the temperature dependence of A1F and AzF 
obtained by (34) is not perfect. It therefore seems im- 
portant to include the finite temperature selfconsistently 
in order to retreive correctly the details of shell structure 
in these quantities. In Sect. 4 we shall investigate the 
Koopmans theorem for T > 0 and find a somewhat better 
perturbative description of the temperature dependence 
of A1F and A2F. 

4. Discussion of the Koopmans theorem at T > 0 

In this paper we put a great deal of emphasis on the 
quantities A IF(N) and A2F(N ) which are closely related 
to separation energies of a neutral atom. At zero tem- 
perature, experience with the well-known Koopmans the- 
orem in atomic, solid state [15] and nuclear physics [16] 
tells us that electron or nucleon separation energies can 
be well approximated by the Kohn-Sham (or Hartree- 
Fock) energy of the highest occupied single-particle level 
[17]. For the electronic ionization potential of a cluster 
with N atoms at T=0,  Koopmans' theorem reads [18] 

e 2 
IP (N) = -- e~o -t 2Rx, (35) 

where eho is the KS energy of the highest occupied level 
and the second term in (35) comes from the total elec- 
trostatic energy including the jeUium self energy. Now, 
we can always rewrite A1F (24a) as 
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A,F(N)  = F ( N -  1)-- F(N) 

= IA ( N -  1 ) + I P ( N ) ,  (36) 

where we have extended the definition of the ionization 
potential to finite temperatures by 

IP (U) = F(N, - I) - F(N, 0) (37) 

in terms of the free energy F(N, z) of a cluster with N 
atoms and z excess electrons. In (36), IA (N) is the ion 
affinity of a neutral cluster with N atoms. This quantity 
is not expected to exhibit significant shell effects upon 
variation of N - at least in the present jellium model. In 
our approximation (see Sect. 2.1) it also is independent 
of temperature. In order to estimate IA (N), we can there- 
fore start from a semiclassical liquid-droE-model type ex- 
pansion [19, 20] of the average energy E (at T =  0) of a 
cluster with N atoms and z excess electrons: 

(N, z) = E(c°o)ul (N, z) 

- zA(oo ÷ eb (N ÷ z) + ... (38) 

Here E~,,~ is the classical Coulomb energy of the cluster, 
corresponding to a square density distribution of the elec- 
trons. A~bo is the outer part of the Coulomb barrier of 
an infinite plane metal surface (i.e., its electrostatic po- 
tential taken between an infinite distance outside the metal 
and the jellium edge; see, e.g., [21]), eb is the electronic 
bulk energy (i.e., the energy per electron in the bulk 
metal), and the dots in (38) indicate surface energy 
and higher order terms which go at most like N 2/3 or 
(Nq-2) 2/3. (See [19] for the details of this expansion.) 
From (38), we find the leading order terms for the ion 
affinity 

I A ( N ) = E ( N , O ) - E ( N ÷  1, -- t) 

e 2 

-~ -Aq~ 0 2RI, (39) 

the last term on the rhs of (38) coming from the classical 
Coulomb energy. Using (35) and (38) in (36), the terms 
e 2 

2Rz cancel to leading order and we obtain the 'Koopmans 

approximation' for A 1F(N) at T =  0: 

A1E(N)~  --eho--A~o. (40) 

The second difference then becomes straightforwardly 

A~E(N)"elu-e.ho,  (41) 

where el~ is the lowest unoccupied level in the cluster N 
(or, to avoid confusion in case of degenerate levels: the 
highest occupied level in the cluster N ÷ 1; if a degenerate 
level is not completely" filled in the duster N, elu and eho 
will be identical and A2E becomes zero). Note that the 
electrostatic correction A~ 0 and herewith all explicit con- 
tributions of the ions cancel in A2E to leading order. 
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Table 1. Test of approximations to first and second differences A i E 
and A 2 E, respectively, of total energies at T= 0 for various cluster 
sizes (N). a: Exact values, (1), evaluated from the selfconsistent 
interacting ground-state energy, b: Koopmans approximation, 
(40, 4t). c: Using (43) in the limit T= 0 with different spectra e i for 
tile different values of N 

Cluster A 1 E(eV) A z E (eV) 
size 

a b c a b c 

18 2.525 2.596 3.365 0.326 0.348 - 0.429 
19 2.199 2.241 3.794 0.060 0.000 0.055 
20 2.139 2.199 3.738 0.504 0.5t5 0.490 
21 1.635 1.784 3.248 -0.096 0.000 -0.003 
34 2.448 2.511 3.368 0.419 0.438 -0.564 
39 2.017 2.165 3.964 0.006 0.000 0.017 
40 2.011 2.181 3.947 0.122 0.143 0.796 
92 2.474 2.521 4.150 0.617 0.586 0.085 

106 1.949 2.151 4.023 -0.183 -0.173 1.018 
254 2.354 2.458 3.866 0.272 0.271 -0.539 
338 2.322 2.444 3.816 0.315 0.315 - 0.622 
339 2.008 2.131 4.439 0.001 0.000 - 0.004 
340 2.006 2.133 4.442 0.001 0.000 - 0.004 
450 2.113 2.239 2.878 -- 0.002 0.000 - 0.005 
508 2.265 2.376 4.266 0.068 0.068 0.572 
832 2.243 2.388 3.619 0.046 0.047 0.912 

For  later reference, we add here also the expression 
obtained from (38) for the average part (without shell 
effects) of the electronic ionization potential at T =  0: 

I~ ( N )  = £ ( N ,  - 1) - ~ ( N ,  O) 

e 2 

~_A(~ o - e b ~ 2R I" (42) 

(We have omitted here, as well as in (38), some minor 
contributions stemming from the missing surface energy 
terms in (38) which change the coefficient of  1/R~ some- 
what; in IP the coefficient e.g. for Na clusters (rs= 3.96 
a.u.) becomes [19] --,0.4 instead of 1/2.) The first two 
terms on the rhs of  (42) constitute a valid expression [21] 
for the work function of  the bulk metal, W =  A ~b o - e b, 
which was shown in extended Thomas-Fermi variational 
calculations [19, 20] to be reached asymptotically by the 
ionization potentials of spherical clusters in the limit 
N-* oo. 

We show in Table 1 the results obtained in the 'Koop- 
mans approximation' for A ~E and A2E, (40, 41), in col- 
umns b. They are shown to reproduce the exact selfcon- 
sistent results (columns a) very well, within less than 
0.15 eV for A~F and even much better for A2F, at all 
clusters sizes. The error in A IF is furthermore approxi- 
mately constant for the larger clusters and could be re- 
duced by renormalizing the value of A q~ 0- We have used 
the theoretical value for the infinite plane metal surface 
[19]: A~b o =0.63 eV for Na with G = 3.96 a.u. Note that 
the omission of this term in (40) would lead to very poor  
results for A ~ F. 

By a straightforward extension of  the derivation 
[17, 18] of  the Koopmans theorem and the above consid- 
erations leading to (40) and (41), we find for T >  0 

AIF(N)~-AIF~(N)  - A~b o , 

AzF(N)"~A2F~(N) .  
(43) 

This consists in replacing the interacting free energy F by 
the non-interacting one, ~., and adding the electrostatic 
correction A 40 (which may, in principle, depend on the 
temperature) to the first difference A 1F. However, in tak- 
ing the differences of  F s (N), one must make sure to keep 
a fixed spectrum ei, i.e., not to use different spectra ei for 
the neighbouring clusters N and N _  1! Otherwise (43) 
would not reduce to (40, 41) in the limit T- ,0 ,  since the 
sum of  all fully occupied levels at T =  0 no longer would 
cancel. (We shall test below what this would lead to.) 

The extension of  the 'Koopmans approximation' to 
T > 0 therefore consists in using the non-interacting free 
energy F, (N), but taking the differences with respect to 
N in (43) for the f ixed spectrum e~ o f  the cluster with N 
atoms. Since the practical interest of  the Koopmans the- 
orem is to avoid selfconsistent iterations beyond the eval- 
uation of  the ground-state solution, we have tested this 
approximation using the spectrum e} °) of the cold cluster 
at T =  0, i.e. treating the T > 0 effects only perturbatively 
as in Sect. 3.3. Here we have also kept Aq5 o constant at 
its T =  0 value. The results are shown by the short-dashed 
curves in Figs. 7, 8. The quality of  this approximation at 
T = 0, already demonstrated in columns a and b of Table 
1, appears to persist more or less up to T =  2000 K in all 
cases. It is, in particular, better than that of  the approx- 
imation studied in Sect. 3.3 (and shown by the long- 
dashed curves), where the fully interacting ground-state 
energy was used. 

The necessity of  using the fixed spectrum ei of the 
cluster N shall be demonstrated by showing what happens 
otherwise. Using (43) with the different selfconsistent 
spectra e} °) obtained for each value of  N leads to results 
which differ from those of the approximation (34) dis- 
cussed in Sect. 3.3 only by a constant independent of  T, 
namely the difference between the interacting ground- 
state energy E[p ,  T = 0 ]  and the sum of  the lowest oc- 
cupied levels e} °) (plus the constant A~b 0 in the case of 
A 1F). It is thus sufficient to give the results at T =  0; their 
temperature dependence is identical to that of  the long- 
dashed curves in Figs. 7, 8. The results for A ~E and A2E 
are included in Table 1 in the columns c. Their values 
are seen to be much worse than those obtained in the 
Koopmans approximation and not sufficient to repro- 
duce even qualitatively the shell effects contained in these 
quantities. 

This may be surprising, because at first sight one might 
expect to improve the approximation by including a cer- 
tain amount of  selfconsistency in letting the spectra e~ 
adjust themselves to the particle size. The situation is, 
however, exactly the reverse. Using the non-interacting 
energy expression with N dependent spectra would be an 
inconsistent ad hoc prescription, whereas Koopmans '  
theorem, which is derived [ I7] consistently from a change 
of  occupation numbers with fixed wave functions and e i, 
has a solid variational basis. 

We emphasize this point in view of practical appli- 
cations of the Koopmans approximation. Indeed, our re- 
sults seem to encourage its use in connection with par- 
ametrized phenomenological potentials, such as the Nils- 
son model potential of  [1] or a Woods-Saxon potential 
fitted to selfconsistent Kohn-Sham results [22], whose 
parameters depend explicitly on the cluster size N. But 



the correct use of the expressions (43) with a fixed spec- 
trum should then be borne in mind. 

5. Thermal properties and stability of hot metal clusters 

A good estimate of the electronic free energies is a key 
to understanding cluster concentrations in equilibrium. 
It is also equally important for the understanding of the 
process of evaporation of neutral atoms from clusters at 
finite temperatures. Evaporation is usually described by 
statistical theories where level density considerations play 
a major role. To date, only the phonon degrees of free- 
dom have been included [23, 24], parametrizing the elec- 
tronic influence by a single number D. If  it can be as- 
sumed that the transition state of the evaporation process 
is identical with the fully dissociated final state, D is equal 
to the free separation energy D N defined in (25a). In 
ordinary chemical reactions, D N can be evaluated at T =  0 
because the electronic subsystem remains in its adiabatic 
non-degenerate ground state and does not contribute to 
the total entropy. In general, however, the free separation 
energies are temperature dependent. For the case of so- 
dium dusters, we have demonstrated this dependence in 
Sect. 3, linking it (for temperatures 0 < T~< 500 K) di- 
rectly to the high degeneracy of the electronic single- 
particle levels next to the magic-shell gaps. 

Even though not completely understood, the elec- 
tronic modifications to the evaporative decay constant 
seem to be of considerable importance. It is likely that 
the observed shell structure in abundance spectra from 
an adiabatic expansion source results from evaporation 
between the time of formation and the time of detection 
(compare, e.g., the shell structure in the abundance spec- 
tra of [1] and [24]). Recent experimental results [25] in 
the large cluster region N~--200-600, obtained by an ex- 
pansion source, corroborate this hypothesis, displaying 
the characteristic saw-tooth behaviour of the separation 
energies in contrast to the much more symmetric shapes 
expected from quasi-equilibrium. In the observed spectra, 
the magnitude of the shell structure decreases and the 
widths of the shell closings increase with cluster size. Both 
these features are expected to result if the electronic free 
energy is included in the evaluation of  decay constants 
[26]. The similarity of our curves for A1F(N), presented 
below in Sect. 5.1, to the abundance spectra of [25] is, 
indeed, striking (see also [6]). 

In lack of dynamical evaporation calculations, we con- 
tent ourselves here by presenting systematic results for 
neutral clusters in their equilibrium states over a large 
range of cluster sizes at various temperatures. All cal- 
culations were done for Na clusters using the Wigner- 
Seitz radius r~ = 3.96 a.u. for the jellium background. Un- 
less otherwise mentioned, the free energy F(N)  was cal- 
culated for canonical ensembles in the approximation dis- 
cussed in Sect. 3.2. 

5.1. Temperature dependence of F(N),  A 1F(N) 
and A2F(N ) 

We shall first briefly discuss the temperature dependence 
of the total free energy F(N) of neutral Na clusters. Since 
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the main effect of  temperature is to reduce the shell struc- 
ture, rather than to affect the average properties, we ex- 
tract the fluctuating part of the total interacting free en- 
ergy F(N). Like in nuclear physics [10], we define the 
shell-correction energy OF(N) by 

5F (N) = F (N) - / ~  (N). (44) 

F(N)  is the average value of F(N) which, by definition, 
does not contain any shell effects. It may be obtained 
either by a numerical energy averaging [10] or by semi- 
classical methods [ 11 ]. Since we only need an approxi- 
mate determination of /7  for the present discussion, we 
simply use here its liquid drop model (LDM) expansion 
at T =  0 already discussed in Sect. 4 (cf. (38) for the 
neutral case z = 0): 

ff~(N) = ebN + as N2/3 + ac NI/3 + a o . (45) 

In principle, one can obtain the asymptotic values of the 
LDM parameters a i from semi-infinite calculations 
[19,20], but these are strictly valid only for very large 
clusters and more terms would be needed in (45) to cor- 
rectly describe small clusters, too. As a compromise for 
a fit to clusters with 8 ~<N< 1000, we take the bulk energy 
e b = -0.1659 Ry and the asymptotic surface energy [ 19] 
a s = 0.0400 Ry as fixed values "and adjust the parameters 
a c and a 0 by a simple eye fit to the calculated KS results 
of F(N), yielding a~ = 0.0787 Ry and a 0 = - 0.0735 Ry. 

In Fig. 9 we show the shell-correction OF(N) versus 
N ~/~ at the three temperatures T =  0, 400 and 600 K. Note 
the sharp minima at the magic numbers N = 8, 20,... in- 
dicating an increased stability of the corresponding spher- 
ical clusters. A figure very similar to ours at T =  0 was 
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Fig. 9. Shell-correction ~F to the free energy, (44), versus particle 
number at three temperatures. The magic numbers corresponding 
to closed main shells are indicated for T= 0 at the bottom 
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Fig. 10. First differences ALF of free energies versus cluster size N 
at three temperatures, evaluated for canonical ensembles in the 
approximation (32) in Sect. 3.2 (see text for details) 
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Fig. 11. As Fig. 10, but second differences A2F(N ) 

obtained in [22] with a phenomenological Woods-Saxon 
potential fitted to earlier KS potentials [2]. In the regions 
between the magic numbers, where OF(N) has maxima, 
the clusters will be deformed like nuclei; therefore our 
absolute values of the shell-correction are exaggerated 
here due to the imposed spherical symmetry. The fact 
that ~F(N) at T >  0 has a slight drift towards negative 
values for larger N indicates that the correct LDM pa- 
rameters should be temperature dependent. But the im- 
portant thing to notice here is the decrease of the ampli- 
tude of 6F with increasing temperature for the larger 
clusters: for N~400-600, even at the moderate temper- 
ature of 600 K, it is reduced by a factor of at least 2 
compared to its value at T =  0. Also, the minima of OF 
become less sharp with increasing cluster size and tem- 
perature. This effect will be emphasized when investigat- 
ing the first and second differences of F(N) in the fol- 
lowing. 

In Figs. 10 and t 1 we present the quantities A 1 F and 
A2F as defined in (24a) and (24b), respectively, versus 
atom number N__< 880 at the same three temperatures. At 
T=  0, we observe the familiar [1,28] saw-tooth like be- 
haviour of A 1F(N) and positive spikes of A2F(N) at the 
magic numbers. The latter appear at the numbers N =  2 
and 8 (not shown), 18, 20, 34, 40, 58, 92, (132), 138, 186, 
196, 254, (306, 312), 338, (398, 438), 440, 508, (542, 556), 
6t2, (638), 676, 758, (788), and 832 (minor shell closures 
in parentheses). Up to N---- 196, these magic numbers are 
in agreement with those calculated earlier [2] and with 
the older experimentally observed ones [1 ]. In recent ex- 
periments [25, 27] there is also evidence for magic shell 
closures of Na clusters around N =  260, 344, 440, 558, 
and, perhaps, a minor shell closure near N ~  394. 

The negative spikes seen in A2Fat T= 0 are an artefact 
of the spherical symmetry imposed in our calculations. 

They appear when two levels lie very close to the Fermi 
energy. Due to their residual interaction, their positions 
change place during the filling of the lower state, such 
that when it is full, the originally higher one (assumed to 
stay empty) is shifted below the other. This is a typical 
selfconsistency effect which cannot occur with parame- 
trized phenomenological potentials [ 1,22]. It happens in 
regions where we know that jellium clusters are deformed, 
like nuclei, once the spherical symmetry is relaxed (see 
also [28] for selfconsistent jellium model calculations for 
deformed clusters with N <  40). In computing our figures, 
we chose to fill such pairs of levels sequentially (i. e., not 
allowing for two partially filled shells) in the order which 
leads to the lowest possible total energy for each particle 
number N. These negative spikes disappear as soon as a 
finite temperature is switched on. Due to the mixing of 
the spherical shells near the Fermi energy by the nonin- 
teger occupation numbers, such pairs of close levels are 
smeared over and appear like one degenerate larger shell; 
the energy then varies smoothly and monotonously with 
N in the corresponding region. 

The positive spikes in A2F(N ), on the other hand, are 
due to large gaps in the spectrum ei at the Fermi energy, 
see (41). They survive the temperature averaging effects, 
as long as T is considerably smaller than (e]u-eho ) of 
the magic cluster. However, as seen already in Sect. 3, 
their amplitudes decrease with increasing temperature. 
This effect, which goes along with a smear-out of the 
saw-tooth structure of A]F(N), is seen in Figs. 10 and 
11 to become more important with increasing cluster size. 
This is so because the spectra e; become more compressed 
with increasing N. 

The qualitative picture of our dissociation energies 
AIF(N ) at T=400 (or 600)K seen in Fig. 10, with rel- 
atively sharp saw-teeth for N~< 50 and their increasing 



smear-out and decreasing amplitude with increasing clus- 
ter size N, has an astonishing resemblance to the relative 
variations of the mass abundances of  the recent experi- 
ments [25] around their average values. The global trend 
of the abundances cannot be compared because they de- 
pend largely on the dynamics of the ions, which is not 
included in our approach, and on the experimental con- 
ditions (pressure of the carrier gas, geometry of the noz- 
zle, etc.). However, if one assumes that the relative var- 
iations are essentially due to the electronic shell effects 
in the free energy F(N) - which is strongly supported 
already by the good agreement of the observed and cal- 
culated magic numbers in general -, this resemblance 
shows us that the finite entropy of the electronic system 
does play an important role and can, indeed, be observed! 

From our analysis in Sect. 3.1 it becomes clear that it 
is essentially the entropy part - TS of the electronic free 
energy that is responsible for the thermal smearing effects 
in A 1F(N) and A 2F(N). Detailed dynamical calculations 
including evaporation will, hopefully, make it possible 
to investigate more quantitatively in which way these 
two quantities determine the observed mass abundance 
spectra. 

Our values of  A 1F reach an average value of ~ 2.2 eV 
for large N. Indeed, according to (36), (38) in Sect. 4, or 
also (45) above, their average value at T =  0 should be 
- e  b = 2.26 eV for Na clusters. This value is larger than 
the average experimental dissociation energy DN ~ -- 1 eV 
of a neutral atom. The difference is the binding energy 
of  the neutral atom, E(1), according to (25a). We cannot, 
of  course, expect the jellium model to be correct for a 
single atom. Nevertheless, (25a) evaluated within the jel- 
lium model leads to an acceptable value of the average 
D N. The total energy for N =  1 obtained in our Kohn- 
Sham calculation at T =  0 is E ( N a 0  = - 1.06 eV; adding 
this constant to - e b  gives, indeed, a very reasonable 
average dissociation energy of DN= 1.2 eV. Thus, the 
main error in the total jellium binding energy, stemming 
from the neglect of the core electrons, cancels on the rhs 
of (25a) for the dissociation energy. Note from Fig. 10 
that the average value of A ~F hardly depends on the 
temperature in the range considered here. 

5.2. Entropy and specific heat of  the valence electrons 

In Fig. 4 in Sect. 3.1, we have already presented the tem- 
perature dependence of the total entropy of a finite clus- 
ter. At temperatures large enough to average out the shell 
effects, but still much smaller than the Fermi energy 
(EF~2eV,-~23000 K), one expects the entropy S to be 
linear in T, i.e. 

S ~ 2 a N T ,  (46) 

where a is the level density parameter. For an infinite 
and homogeneous noninteracting Fermi gas, a is given 
by [8] 

g 2 (  2 " ~ ' / 3 ( 2 m )  2 
a =T -U r, 

= 0.670 r~ 2 [Ry-1] .  (47) 

77 

110 

100 
90 

8O 

1 
~" 60 

50 
40 
30 
2O 
10 

2000 4000 15000 8000 
T (K) 

Fig. 12. Canonical entropy S of the cluster Na92 versus temperature. 
The dashed line corresponds to the linear expression on the rhs of 
(46) with a = 11.6 Ry- 1. The deviation of this straight Dine below 
T-~3000 K is due to the shell effect (See text for deviation at 
large T) 

With r~=3.96 a.u. according to Na, this gives 
a~ = 10.5 Ry-1.  

In Fig. 12, we show the canonical entropy versus T, 
obtained for the Na92 cluster, up to very high tempera- 
tures. For T~> 3000 K it grows, indeed, linearly. (The slight 
deviation from a straight line above T ~  6000 degrees is 
due to the fact that the number of states e; included in 
the calculation was not sufficient; this is thus just a nu- 
merical truncation effect.) Fitting the slope in Fig. 12, we 
find a--11.6 Ry -1, in good agreement with the above 
Fermi gas value. The difference of about 10% is due to 
finite size corrections (e.g., a surface term in a which 
would be proportional to N-~/3). Note that the value of  
a is identical for the grand canonical and the canonical 
ensemble; this has been confirmed in our results for var- 
ious cluster sizes. 

The temperature T ~ - 3000 K, at which the entropy in 
Fig. 12 reaches its homogeneous Fermi gas value (46), 
represents the critical temperature necessary to com- 
pletely smear out the shell effects. In heavy nuclei, this 
critical temperature was found [13] to be ~ 3 MeV, which 
is about a third of a typical major shell spacing of the 
nucleonic single-particle levels. The situation is thus very 
similar here: 2500K--0.2eV is about one third of the 
shell spacing at the Fermi level of  the magic Na92 cluster 
(see Table 1). This is in good qualitative agreement with 
the result of  a schematic analysis [29] in terms of  a har- 
monic oscillator spectrum with level spacing ho), for 
which the temperature dependence of the shell-correction 
energy of a closed-shell nucleus is found to be 

t 27~2T 
~F(T) = 6F(O). Sinh t ; t = hco 

Due to the factor 2r~ 2 in the dimensionless temperature 
variable t, a temperature T~-ho)/3 is, indeed, sufficient 
here to suppress the T =  0 value of the shell-correction 
by a factor of about 100! 

In Fig. 13. we plot the entropy S /TN versus N ~/3 at the 
two temperatures T =  400 and 600 K. Dramatic shell ef- 
fects are seen which essentially are due to the degeneracy 
of the spherical shells. As already observed in Sect. 3.1, 
up to temperatures of a few hundred degrees most smaller 
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peratures, v e r s u s  N I/3. Note the decreasing amplitude of the shell 
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a according to (46) 

clusters are essentially cold in the sense that their entropy 
still has its T =  0 value So, which is given by (27) in terms 
of  the occupancy of  the highest (partially) filled shell. 
(The case N =  91 shown in Fig. 4 is rather an exception 
due to the accidental near-degeneracy of two levels at the 
Fermi energy.) The oscillations in Fig. 13 therefore es- 
sentially represent the logarithms of the binomial coef- 
ficients in (27) for each region between two neighbouring 
filled shells (for which S O = 0). Only for larger tempera- 
tures and for larger sizes, a smearing of  the entropy takes 
place; it is this effect which is responsible for the smear- 
out of  the differences A ~F and A2F observed in Figs. 10 
and 11. Note that the linear behaviour of S, (46), is 
reached also in the large-N limit (at fixed T) with exactly 
the same value of  the level density parameter a, as indi- 
cated by the horizontal dashed line in Fig. 13. 

As a by-product of  our calculations, we shall finally 
present some results for the electronic specific heat of  
metal clusters. The specific heat c, (here: heat capacity 
per electron) is defined as [8] 

1 ~L~_T c~S (48) 
C ~ - N  ~T  N ~ T "  

To keep the volume constant amounts here to work at 
fixed particle number N. For  the canonical ensemble, we 
can rewrite this in terms of the partition function as 

1 c.=]~ #S72 Z N -  C~ . (49) 

For the grand canonical ensemble, it is easiest to use the 
second expression in (48), taking the derivative ~S/~ T 
at a constant chemical potential/x. Note that in our pres- 
ent jetlium model calculations, cv is a purely electronic 
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Nay2 versus temperature. Solid lines: canonical results, short-dashed 
lines: grand canonical results, tong-dashed lines (for Na92 hardly 
distinguishable from solid line!): canonical results in the approxi- 
mation (32) discussed in Sect. 3.2 

quantity since we have not included any ionic contribu- 
tion to the entropy. 

In Fig. 14 we show the electronic specific heat of the 
sodium clusters with N =  40 and 92, plotted versus tem- 
perature. As in Figs. 1-3, the solid lines show the canon- 
ical and the short-dashed lines the grand canonical re- 
sults. They are seen to be quite different in Na4o even for 
T~2000  K. The long-dashed curves are obtained in the 
perturbative treatment discussed in Sect. 3.2, which 
amounts to evaluating c v canonically in terms of the spec- 
trum e~. obtained in the grand canonical KS calculation. 
This approximation is again seen to be satisfactory at all 
temperatures. Note the strong shell effects in the form of  
oscillations around the average (linear) increase with T, 
which are, of  course, just a consequence of  the shell struc- 
ture in the entropy already discussed. 

6. Summary and conclusions 

We have presented microscopic density functional cal- 
culations of  Kohn-Sham type for a canonical ensemble 
of  metal clusters at finite temperatures, employing the 
jellium model for the description of the ionic background. 
The electronic shell effects, known from earlier calcula- 
tions at T =  0, are demonstrated to be smeared out by 
the finite temperature. 
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We have, in particular, investigated the first and sec- 
ond differences, AtF and A2F, of the free energy with 
respect to the number of atoms N. The quantity A1F is 
likely to be related to the stability of clusters against 
evaporation of an atom and may thus be correlated with 
the observable mass abundance spectra. The shell fluc- 
tuations in these quantities are exclusively due to the 
valence electrons, the ionic background only giving 
smoothly varying contributions. A striking similarity of 
these shell fluctuations in our calculated curves A IF(N) 
around T~400-600 K with the oscillations in recently 
measured [25] mass abundance spectra is found [6]. The 
smearing of the saw-tooth like structures and the reduc- 
tion of their amplitude, which is clearly observable for 
the larger clusters with N >  200, are coming from the finite 
entropy of  the valence electrons and its variation with 
temperature and cluster size. 

The larger the clusters, the smaller are the shell spac- 
ings of the electron orbits and the larger is therefore 
the smearing effect of  temperature. For temperatures 
T,-~400-600 K, the smallest sizes with N~< 50 are still cold 
as far as their valence electrons are concerned, such that 
the sharp saw-tooth structure in the dissociation energies 
or the peaks in their differences A2F still persist. How- 
ever, for large clusters with N>~600, very little shell struc- 
ture is left at these temperatures. One might therefore 
question the practical feasability of observing the 'super- 
shells', predicted [22] from T =  0 considerations, using 
abundance measurements from adiabatic expansion 
sources of the type used in [25]. Spectroscopic techniques 
(see, e.g. [27]) which are directly sensitive to the position 
of the electronic single-particle levels ei might be more 
favourable to this purpose. As we have found, these po- 
sitions do not depend visibly on temperature. 

The critical temperature which is sufficient to com- 
pletely average out the shell effects has found to be 

3000 K in a Na cluster with N ~  100. Like in the case 
of nuclei, this is only about one third of the major shell 
spacing in the single-particle levels responsible for the 
shell effects. On the other hand, the total mean field of 
this cluster (and thus the positions of the single-particle 
energies) remain practically unaffected even up to tem- 
peratures of T~>2000 deg. This means that all the aver- 
aging effects of temperature are brought about through 
the occupancies of  the single-particle states alone. This 
statement, of  course, only holds as long as the defor- 
mation of the mean field is kept constant, as in the present 
spherical calculations. Otherwise, the attenuation of the 
shell effects, which are responsible for deformed ground- 
state shapes in regions between the magic numbers, can 
lead to considerable variations of the mean fields accom- 
panied by shape transitions (cf., again, the case of nuclei 
[11, 13]), which we expect here to take place at tem- 
peratures 1000 K~< T~< 3000 K. 

As a consequence of  the temperature independence of 
the mean spherical field, we have found that the Koop- 
roans theorem can be exploited to extract finite-temper- 
ature results from the single-spectra of the cold clusters, 
obtained selfconsistently at T =  0; in a quite reasonable 
approximation. Similarly, we have seen that if a selfcon- 
sistent Kohn-Sham calculation is wanted at finite tern- 

perature, the numerically much simpler grand canonical 
treatment is sufficient to yield the selfconistent mean field, 
from which the canonical calculation of the free energy, 
entropy and other thermodynamical quantities can be 
obtained perturbatively in a single iteration. Either of 
these two approximations might prove useful in future 
large-scale applications of the present method. 

Like the mean field, we found also the average bulk 
energy e b to be nearly independent of temperature. Let 
us just briefly mention here that, using a local-current 
approximation to the random phase approximation 
(RPA) recently developed [30], we have also investigated 
the temperature dependence of the static dipole polaris- 
abilities ~ and the frequencies of dipole plasmons of 
alkali clusters. We found both quantities to remain con- 
stant within a few percent up to T >  2000 K. This is not 
so surprising in the light of the above results and knowing 
[1] that e~ is roughly proportional to the volume of the 
cluster and thus a tpyical bulk quantity. Its deviation 
from the classical bulk value in smaller clusters, as well 
as the red-shift of the surface plasmon, is due to finite- 
size effects and therefore rather a surface than a bulk 
effect. Nevertheless, also this surface effect has by and 
large a smooth N dependence, depending very little on 
local shell structure in the electron spectrum ei and thus 
on temperature averaging effects. 

We finally recall that we have imposed spherical sym- 
metry in our calculations. Consequently, the role of shell 
effects is, to some extent, exaggerated in the present re- 
sults. Nevertheless, we believe that the temperature 
smearing effects described here at and near the magic main 
shell closures are realistic, since the corresponding clusters 
are believed to be truly spherical and to stay so also when 
deformational degrees of freedom are taken into account. 
A closer examination of this aspect is in progress. 
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Appendix 

A. Calculation of  canonical partition function 
and occupation numbers 

We want to calculate the partition function ZN(fl) for 
distributing N particles over M levels with energy e i -  
which we count such that each of the e i is singly degen- 
erate - at the temperature T =  1~ft. Let us display the 
dependence on the number M of levels explicitly (al- 
though it should numerically not depend on M!): 

I N  1"~/ 

Z N ( f l ) = Z ( N , M ; f l ) =  ~, e -¢E°<N) (A1) 
~ = 1  
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with E~ (N) given by the sum of  occupied levels e; for 
each partition a" 

M 

E~ ( N ) =  ~ P]ei with p] = 0  or 1 ; 
i = 1  

M 

~,, p~' = N.  (A2) 
i = 1  

The number INM of partitions is equal to a binomial 
coefficient 

and is usually huge. As a typical example, let us take the 
spherical cluster with N = 92 electrons: to have a good 
convergence of  S at temperatures up to ~ 2000 K, we use 
42 spherical levels; counting separately their degeneracies 
gives M =  338 states and one finds INM ~ 1086. 

It is thus impossible, even on a large computer, to sum 
over the partitions a explicitly, except in very small clus- 
ters (N~< 10). In order to calculate, nevertheless, the ca- 
nonical partition function (A I) and the derived ther- 
modynamical quantities exactly, we use the following re- 
currence relation (which simply expresses the fact that 
the last level added is either occupied or unoccupied) 

Z(N,M; f l )=Z(N,M-1; f l )  

+ e x p ( - f l e M ) Z ( N -  1 ,M-  1;fl)  

(N>=I,M>=N) (A4) 

with the extra conditions 

Z(0,  M; 13) = 1, V M > 0 ;  (A5) 

Z(N,N-1; f l )=O,  VN>=I. 

Starting with N =  1 particle, (A4) gives the one-particle 
partition function 

M 

Z(1, M;fl)= ~. e - t e n  (A6) 
m = l  

By adding successively more particles, one sees easily by 
induction that (A4) leads, indeed, to the correct N-par- 
ticle partition function Z(N, M; t )  obeying (A1) and 
(A2). For  that, one thus has to perform the algebraic 
manipulation in (A4) - two multiplications, one ex- 
ponentiation and one addition - only a number of INM 
times, which is given by 

TNM=N(M--N). (A7) 

In the above example with N =  92 and M =  338, this gives 
INM = 22 632 instead of  the INM "~ 1086 exponentiations, 
multiplications and additions necessary to get Z(N, M; t )  
from (A 1). 

To get the derivatives of  Z with respect to t ,  needed 
for U, S and c~ in (18) and (49), we use the correspond- 
ingly derived forms of the recurrence relation (A4). 

The evaluation of  the occupation numbers n,. in (22) 
is done similarly using the above recurrence scheme, by 
recalculating Z(N, M; t )  for each level e; in the situation 
where this level is kept empty (i.e. e; is removed from the 
spectrum), dividing by the total Z and subtracting the 
result from 1. This calculation has to be done as many 
times as there are different (degenerate) levels ei (42 in 
the above example). It takes, of  course, much more com- 
puting time than in the grand canonical ensembles, but 
is still manageable for N up to a few hundred and T up 
to ~ 10 000 K. 

To check the numerical convergence we have ensured 
that all thermodynamical quantities derived from Z and 
the n i did not depend on the number M of  states included 
in the calculations. Furthermore, the fraction Ncont of  
electrons occupying the continuum region (E > 0) was 
found to be smaller than 0.1 up to T ~  6000 K, and well 
below unity even for T ~ - 10 000 K. We can therefore be 
assured that for the physically interesting temperatures 
experienceA by metal clusters, the electronic continuum 
effects play a completely negligible role. 
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Note added in proof. Sodium clusters with N~p to ~ 3000 have now 
been produced experimentally in an expansion source [Pedersen, 
J., Bjornholm, S., Hansen, K., Martin, T.P., Rasmussen, H.D.: 
Preprint NBI-91-22. Nature (submitted for publication)] and the 
'supershell' structure predicted in [22] has been clearly put into 
evidence - against the pessimism expressed in our summary (Sect. 6). 
We have extended our Kohn-Sham calculations and find a good 
qualitative agreement with the observed structure. If we multiply 
the calculated A2F with a factor N1/2exp(cNff3), as it was done 
with the logarithmic differences A 1 In I~, of the experimental mass 
yields by Pedersen et al., we find, indeed, that the second supershelt 
starting at N~850 becomes visible even at T~500-600  degrees 
Kelvin with an increasing amplitude of the shell oscillations [Genz- 
ken, O., Braek, M. (to be published)]. 


