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A semiclassical version of the density functional ap- 
proach is used to investigate the structure of metal clus- 
ters. The effect of the ionic structure is included in a 
schematical way, assuming that the ions are distributed 
on concentric shells. The method, which allows a simul- 
taneous investigation of geometrical and electronic ef- 
fects, is computationally very simple and can be extended 
up to very large cluster sizes. Predictions of this model 
in the medium size range are compared with the results 
of available microscopic calculations, yielding a very 
good agreement. 

PACS: 31.20.Sy; 03.65.Sq 

1. Introduction 

In spite of the success of the sphericaljellium model (SJM) 
in describing metal clusters, its total neglect of the ionic 
structure is obviously a serious drawback. Not only the 
electronic orbitals predicted by the SJM differ in some 
cases from the observed ones, but also the average 
behaviour of properties like ionization potentials and 
static dipole polarizabilities are often not reproduced sat- 
isfactorily [1]. It is therefore desirable to go beyond the 
SJM, which only accounts for electronic shell effects, by 
including to some extent the effect of the ionic structure. 
Theoretical calculations along this line have been per- 
formed in the small size range, in which 3-dimensional 
ab-initio calculations are still possible [2], and in the 
medium size range (N< 50), where drastic approxima- 
tions are already needed [3]. In [3], Ifiiguez et al. use 
a density functional approach in which the total energy 
is also minimized with respect to the ionic coordinates. 
The Coulomb energy between the point-like ions is treat- 
ed exactly, while the ionic potential acting on the elec- 
trons is replaced by its spherical average. (This approxi- 
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mation is equivalent to imposing a spherical symmetry 
on the electron density.) Since the computational difficul- 
ties of this procedure increase as the cluster size grows, 
this method cannot be extended to very large clusters. 

The purpose of the present work is to develop an 
alternative method that permits to investigate simulta- 
neously electronic and structural effects in the large clus- 
ter limit (and, eventually, to gain more insight into the 
transition between cluster and bulk metal). As in [4] 
we use a semiclassical density variational approach, mak- 
ing use of the extended Thomas Fermi (ETF) model for 
the kinetic energy and parametrizing the electron density 
profile. This model, which puts no limitations to the size 
of the clusters, provides results in very good agreement 
with the averaged results of corresponding microscopic 
Kohn-Sham calculations, when applied in the flamework 
of the SJM [4]. The new ingredient of the present work 
is the inclusion of the ionic structure. Like in [3], spheri- 
cal symmetry is imposed on the cluster. As a further 
simplification, the discrete point-like distribution of the 
ions will be replaced by a continuous distribution, so 
that the number of variational parameters corresponding 
to the ions is drastically reduced. Of course, the structur- 
al effects are thereby included only in a schematical way. 
But the main advantage of our approach is its computa- 
tional simplicity which allows calculations in a size range 
where other methods become prohibitive. 

2. The model 

The ground state energy of a neutral cluster with a given 
configuration of the ions is written as a functional of 
the local electron density p (r) (normalized to the number 
of valence electrons): 

1 p (r) p (r') 
E[p] = T[p] + Exc[P] + 2 S d r d r' lr--r'] 

+ I d r  Vi(r) p(r) +EI .  (1) 

Here T is the kinetic energy in the ETF approximation 
up to fourth-order gradient corrections and Exo the ex- 
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change-correlation energy for which we use the LDA 2,o 
functional of Gunnarsson and Lundqvist [5]. The third 
term is the electronic Hartree energy, and 1/i and Er ___ 
are the potential and the electrostatic energy of the ions, 
respectively. In the present work we focus on the treat- 
ment of these last two terms for which we introduce t5 
a drastic approximation (less drastic, however, than the 
jellium approximation!). The ions are represented by 
pseudopotentials, for which we use Ashcroft's form [6]. 
Furthermore, in an analogous way as done in metal sur- 
face calculations [7, 8], where the positive charges are 
smeared out over each lattice plane, we replace the point- 10 
like ion distribution by a continuous distribution consist- 
ing of a fixed number of uniformly charged spherical 
shells. This assumption is supported by Manninen's 
work [9] which shows that relaxed spherical ionic struc- 
tures lead to more stable clusters than crystalline ones. 
This is also in the spirit of the calculation by Ifiiguez 
et al. [3] which indicates that the ions are evenly distrib- 
uted on a few shells. Therefore, we replace the total ionic 
potential 

N 

Vx(r) = ~ v~(Ir-R,h r~), (2) 
i = 1  

where v~ 's are the individual ionic pseudopotentials with 
empty-core radius rc [6], by the continuous potential 

~ ( r )=  £ @ ( ] r - R j l ,  r0 (3) 
j = l  

with 

@(Ir-Rjl, re) =4r~ey~i  ~)vj(ej, aj, r~, r) r<ej 
Rj 

4rcR2ai 6vj(Rj, aj, r~, r) r>Rj 
1" 

(4) 

and 

6vi(Rj, a~, re, r)= 2r~Rjcrj ( G - i R ~ -  r[) O(re-IRj-r[). 
F 

(5) 

The radii Rj and the surface charge densities aj. of the 
shells are variational parameters. In (3), n is the total 
number of shells. If we set n=N O.e. as many shells 
as ions), the approximation (3) is equivalent to perform- 
ing a spherical average of Vt as in [3]. Since according 
to [3], the ions seem to distribute themselves on a few 
shells (n <2  for N <  40), we will take n~  N, restricting 
in this way the variational space for (R j, a j). As a criteri- 
on to fix n we require that the minimization procedure 
with (n + 1) shells gives identical results to those obtained 
with n shells. 

The electrostatic energy of the ions E~ can be decom- 
posed into: 

E _  ~ NjNk± f Ejj(N~, R~). ; -  L, ~ ~ (6) 
j < k  k j = t  

C____ 
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N 

Fig. 1. Ratio R~ff/R as a function of the number of atoms in the 
shell, see (7). The analytical values for N = 2 ,  4, 6, 8, 12, 20 are 
indicated by dots. The full line corresponds to parametrization 
P1 (W 1 = 1.04, W2 =0.592, W3 = -0.664, W4 =0.890), the dashed line 
to parametrization P2 (W1=0.832, W2=2.00, W3=-3.81,  Wa 
=3.03) 

The first term gives the interaction energy among differ- 
ent shells of charge Nj= 4rtajR 2. This is a good approxi- 
mation to the energy of the discrete distribution if the 
point-like charges are evenly distributed on the shells. 
The second term, which is the sum of the self-energies 
of each shell, has to be evaluated with some care in 
order to avoid an overestimation of the ion-ion repul- 
sion. It is easy to see that the energy of point-like charges 
uniformly distributed on a sphere is lower than the self- 
energy of a uniformly charged shell of same radius and 
charge. Therefore we approximate the energy of N ions, 
distributed on a sphere of radius R, by: 

N(N-- 1) 
Ejj(N, R) 2Raf(N, R) '  (7) 

where  Ref f is the effective radius of the shell. It is clear 
that R,ff/R is a decreasing function of N, which takes 
the value Roff/R = 2 for N = 2, and Raf/R = I for N --, oo. 
In order to estimate this quantity as a function of N, 
we have calculated analytically the Coulomb energy of 
the energetically most favorable distributions for N =  4, 
6, 8, 12, 20 (i.e., for the regular polyhedrons), and evalu- 
ated Roff/R for these values of N. We have then parame- 
trized Roll(N, R) in the form: 

Reff(N,R)-=R {I + f WtN -t/2} (8) 
l = 1  

and tried different sets of parameters W~. In Fig. 1, we 
present the results for two parameter sets (P 1 and P2) 
which fit the calculated values of R~ff and have the right 
behaviour for N~oo .  Of course, in order to have a good 
parametrization for all values of N, the analytical calcu- 
lation of the Coulomb energy of the point-like distribu- 
tion should be also performed for some larger systems. 
Work along this line is being persued. 



3. Results 

We first use the continuous approximat ion for the ion 
distribution ((3) to (5)) to derive a "universal"  cluster 
geometry, following the procedure proposed by Mannin-  
en [9]. The approximate  Madelung energy (which in- 
cludes most  of the structural dependence) 

EMma = E I -t- f d r ~ ( r )  Po (r) (9) 

is minimized with respect to the ionic parameters  (R j, a j). 
Here, Po (r) is a reference spherical electron density given 
by a step function. I t  only gives a scaling factor since 
the quantities Rj/R o (R o being the cluster radius) and 
Nj depend only on the ion number  N. In Fig. 2 we show 
the populat ion of the different shells as a function of 
the cluster size obtained with the parameter  sets P 1 and 
P 2  for Ref f (N  , R) in (8). In Fig. 3 we compare  our results 
in the medium size range to those obtained in [93 using 
a point-like distribution for the ions. We observe that, 
except for the obvious fact that our shell populations 
are not discrete, the restructuration mechanism for in- 
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Fig. 2. Population of the different shells for "universal" cluster 
structures as a function of the cluster size, calculated using a contin- 
uous distribution for the ions. The full line corresponds to parame- 
trization P1, the dashed line to parametrization P2 
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Fig. 3. As in Fig. 2, medium size range. The dots indicate the results 
of [9], using a point-like distribution for the ions 

227 

Table 1. Radii Rt and R2 (in a.u.), charges Nt (N2=N-NO of the 
ionic shells, and central electronic density p~, obtained by a minimi- 
zation of the approximate Madelung energy (AM), by a minimiza- 
tion of the total energy using two different parametrizations (SD 
and FD), and by the microscopical calculation of [3] (SAPS). See 
text for details, p~ is the bulk density used as an input in AM 

AM SD F D  SAPS 

Na25 

R~ 2.8 2.9 3.4 3.5 
R 2 8.8 8.9 8.9 9.0 
N 1 2.4 2.4 32 3.0 
p~ (ps =0.00384) 0.00380 0.00461 

Na3o 
R 1 3.7 3.7 4.2 4.0 
R 2 9.6 9.6 9.5 9.5 
NI 3.8 3.8 5.5 4.0 
Pe (p~ =0.00384) 0.00380 0.00475 

Mgzs 

R 1 2.4 2.7 3.3 3,2 
R 2 7.4 8.3 8,3 8.0 
N1 2.4 2.4 3,4 3.0 
Pe (Ps = 0.0128) 0.00932 0.01047 

Al18 
R 1 1 central ion 1 central ion 1 central ion 1 central ion 
R z 5.8 5.3 5.2 5.5 
N1 1.0 1.0 1.0 1.0 
Pe (Ps = 0.0269) 0.0347 0.0371 

creasing Z 

... (n shells) ~ (n shells + 1 central atom) 

((n + 1) shells)... 

is very well reproduced. However, the quantitative agree- 
ment with [9] in Fig. 3 depends on Reef(N, R). Indeed, 
the results obtained using P 1 and P 2 differ by approxi- 
matively 10%. 

We want to stress again the simplicity of our method 
which permits to extend the calculation up to a size 
range for which other calculations become prohibitive. 
The configurations shown in Fig. 2 are obtained by 
means of a minimization with respect to at most  7 varia- 
tional parameters.  In order to go to very large clusters 
containing thousands of atoms, one should still reduce 
the number  of parameters  by observing some regularities 
in the behaviour of Rj and aj. For  instance, we noticed 
that  the surface charge density of the shells is approxima-  
tively constant as a function of N: a~r 2 =0.35 4-_ 0.03, rs 
being the Wigner-Seitz radius of the corresponding met- 
al. Such properties should be investigated in order to 
understand the transition from cluster to the bulk metal. 
The radii of the shells obtained by this procedure using 
the set P1 are shown (AM) for some particular cases 
in Table 1. We fix Po to the bulk density of the corre- 
sponding metal: Po = P~ = 3/(4 ~ r~). 

In Table 1, we also present the results of the full mini- 
mization (using P~) of the total energy (1) with respect 
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to both ionic and electronic parameters. For the spheri- 
cal electron density in our variational ETF calculation 
we use two different trial functions. (SD): a simple step 
function p (r) = Pe O (Re-  r) with just one variational pa- 
rameter Pc, and (FD): an asymmetric Fermi function 
p ( r ) = p e / ( l + e x p ( r - R e ) / e )  ~ with three variational pa- 
rameters. In the last column, we show for comparison 
the results obtained in a microscopic Kohn-Sham calcu- 
lation (SAPS) with a discrete distribution for the ions 
and the spherical average of the ionic potential [3]. The 
empty core radii rc for Na, Mg and A1 are 1.74, 1.50 
and 0.97 a.u., respectively) 

All the models, including the very simple AM, predict 
a 2-shell structure for Na25, Na3o, Mgzs, and one shell 
plus one central atom for Alls. Moreover, the radii of 
the shells R1 and R2 and their charges N1 and N2 are 
in good agreement with the values obtained in the micro- 
scopical SAPS calculations [3]. 

Concerning the electronic density pc, we observe that 
the one resulting from the full minimization with the 
step function parametrization (SD) is approximatively 
equal to the bulk density Ps in the case of Na25,3o, while 
it is lower than p~ (by 25%) for Mg25 and higher for 
Alia. Although this should only be taken as a qualitative 
feature, since the SD parametrization does not allow for 
surface effects, it is still an indication that changes in 
the cluster volume will occur (when compared with the 
predictions of the jellium model), affecting the values 
of ionization potentials and polarizabilities. 

The electron density profiles derived with the FD 
parametrization show a higher central density and a 
larger diffuseness than the profiles obtained in an analo- 
gous variational ETF calculation using the jellium mod- 
el. For instance, for Na3o we have: p~ = 0.00475, c~ = 1.20, 
7=1.40 compared with p{m=0.00398, eJ"=0.53 and 
),J" =0.55. These profiles are shown in Fig. 4. Consistent- 
ly, we observe that in the FD calculation the ions tend 
to concentrate more towards the inner shell than in the 
other calculations. Nevertheless, the fact that N FD 
> N saps should not be taken too seriously since the para- 
metrization FD, which works very well in the jellium 
model [-4], is not flexible enough if one includes the ionic 
geometry, at least for small clusters. This can be seen 
in Fig. 4, where together with the jellium model and FD 
electronic profiles, we show the profile resulting from 
the Kohn-Sham calculation with the same ionic geome- 
try. The FD profile reproduces well the surface and the 
density tail, but of course cannot account for the oscilla- 
tions due to the presence of the shells. This is an indica- 
tion that a more flexible parametrization is needed in 
the small and medium size range. An alternative proce- 
dure would be to first determine the ion geometry by 
performing a semMassical calculation and finally per- 
form a Kohn-Sham calculation with fixed positions of 
the shells. Anyway, the electron density will become 
smoother as the cluster size increases and we expect the 
FD parametrization to be good enough in the large size 
range. 

1 These values, which differ slightly from those used in [6-8], were 
adjusted to fit atomic ionization potentials in [3] 
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Fig. 4. Electron density profiles for N%o clusters, calculated in the 
present model (FD) and in the jellium model (SJM). The corre- 
sponding ionic parameters, obtained self-consistently in the FD 
calculation, are R1=4.2, Rz=9.5 and N~=5.5. The dashed line 
shows the result of a Kohn-Sham calculation with the same ionic 
parameters as in FD (kept fixed) 

These few examples were presented here to show the 
reliability of our simple model in the medium size range, 
where microscopical results are still available. A syste- 
matical calculation of cluster structures in the large size 
range will be presented in a subsequent article. 

4. Summary and conclusion 

We have generalized the semiclassical density variational 
method for the description of metal clusters by including 
the effect of the ionic structure. This is done in a schemat- 
ical way, assuming that the ions are evenly distributed 
over a small number of spherical shells. The number 
of shells is fixed by the requirement that the addition 
of a new shell should not modify the results of the mini- 
mization. Another crucial approximation, which has to 
be investigated in more detail, concerns the estimation 
of the Coulomb self-energy of each shell when replacing 
the discrete distribution by a continuous one. 

Our method has been applied in the medium size 
range, where its predictions can be compared with more 
realistic (but less simple) models. The cluster structures 
obtained by minimizing the approximated Madelung en- 
ergy within our model are found in good agreement with 
the ones obtained using a point-like distribution for the 
ions. Also, our results of the full minimization with re- 
spect to ionic and electronic parameters reproduce well 
the results of a microscopic Kohn-Sham calculation, ex- 
cept for the electron density profile which cannot be de- 
scribed with our smooth parametrization. 

The approximations involved in the present model 
become more justified as the cluster size increases. This, 
together with its computational simplicity, might make 
our approach very useful for the description of very large 
clusters. A systematical calculation of ionization poten- 
tials and dipole polarizabilities in the large size range 
will be presented in a forthcoming publication. 
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Note added in proof. The analytical Coulomb self energy of the 
ions has meanwhile been calculated for two more cases, namely 
N =  32 (superimposed dodecahedron and icosahedron) and N =  60 
(the Fullerene 'soccer ball'). The results for R~ff/R lie very close 
to the solid curve on Fig. 1, thus confirming the use of the parame- 
trization P 1. 


