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Abstract

Previous investigations on pulmonary artery smooth muscle cells have shown

that nicotinic acid adenine dinucleotide diphosphate (NAADP) evokes highly

localised intracellular Ca2+ bursts by mobilising thapsigargin-insensitive Ca2+

stores. Such localised Ca2+ signals may initiate global Ca2+ waves and

contraction of the myocytes through the recruitment of ryanodine receptors

(RyR) located on the sarcoplasmic reticulum (SR) via Ca2+-induced Ca2+-

release (CICR). In this thesis I have shown that NAADP evokes localised Ca2+

signals through the mobilisation of a bafilomycin A1-sensitive, lysosome-

related Ca2+ store. Lysosomal Ca2+ stores facilitate this process by colocalising

with a subpopulation of RyRs on the surface of the SR to comprise a highly

specialised trigger zone for Ca2+ signalling by NAADP. I have also shown that

the proposed trigger zone for NAADP-dependent Ca2+ signalling may be

formed between lysosomes and clusters of RyR subtype 3 (RyR3) located in

close proximity to one another in the perinuclear region of cells. Localised

Ca2+ bursts generated by NAADP-dependent Ca2+ release from acidic Ca2+

stores and subsequent CICR via RyR3 on the SR may then amplify Ca2+ bursts

into a propagating Ca2+ signal by recruiting clusters of RyR subtype 2 (RyR2)

located in the perinuclear and extra-perinuclear regions of the cell. The

presence of this trigger zone may explain, in part, why Ca2+ bursts by NAADP

induce, in an all-or-none manner, global Ca2+ signals by CICR via RyRs on the

SR. Consitent with a role for NAADP and lysosomes as a discrete and agonist-

specific Ca2+ signalling pathway utilised by vasoconstrictors, I have shown that

endothelin-1 (ET-1), but not phenylephrine or prostaglandin-F2, mobilises

Ca2+ stores by NAADP, and that ET-1 initiates Ca2+ signalling by NAADP in a

receptor subtype-specific manner through the activation of ETB receptors.

These findings further advance our understanding of how that spatial

organisation of discrete, organellar Ca2+ stores underpin the generation of

differential Ca2+ signalling patterns by different Ca2+-mobilising messengers.
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1

Chapter 1: Introduction

1.1 The circulatory system

Blood vessels form an enclosed system which functions to transport

blood throughout the body. These blood vessels form two systems of tubes

which both begin and end at the heart. One system, the pulmonary circulation

serves to transport deoxygenated blood from the right ventricle of the heart to

the lungs and oxygenated blood back to the left atrium. The structure and

function of the pulmonary circulation will be described in detail below. The

other system, the systemic circulation, carries oxygenated blood from the left

ventricle to the tissues in all other parts of the body before returning

deoxygenated blood to the right atrium. Based upon their structure and

function, blood vessels can be classified as either, arteries, capillaries or veins

(Pugsley and Tabrizchi, 2000).

1.1.1 Arteries

Arteries function to carry blood away from the heart. Initially blood is

pumped from the heart into large elastic arteries which branch into repeatedly

smaller arteries whose internal diameter and wall thickness decrease as they

approach the periphery. Arteries are also seen to change histologically as they

branch. The aorta is predominantly an elastic structure which is ideally suited

to receiving the surge in blood delivered by contraction of the heart. Peripheral

arteries become increasingly more muscular until the arterioles, where the

muscular layer predominates. In large arteries, frictional resistance is relatively

small and as a result pressures are only slightly less than that found in the aorta.

In contrast, small arteries offer moderate resistance to blood flow which

reaches a maximal level in the arterioles. Adjustments in the degree of

contraction of the circular muscle of these small blood vessels allows

regulation of the blood flow to tissues and aids in the control of arterial blood

pressure. Coupled with the reduction in pressure along the arterioles, there is

also a change from the pulsatile arterial blood flow, due to the intermittent

ejection of blood from the heart, to a steady flow of blood into capillaries. This
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change in blood flow is achieved by a combination of factors, the compliance

of large arteries and the frictional resistance in the small arteries and arterioles.

Both the arteries and the veins are composed of the following three layers. The

innermost layer, the tunica intima (also called tunica interna), is simple

squamous epithelium, known as the endothelium, and is surrounded by a

connective tissue basement membrane with elastic fibres. The middle layer, the

tunica media, is primarily made up of smooth muscle and is usually the thickest

of the three layers. The outermost layer, which attaches the vessel to the

surrounding tissue, is the tunica externa or tunica adventitia. This layer consists

of mostly connective tissue with varying amounts of elastic and collagenous

fibers. The connective tissue is quite dense where it is adjacent to the tunica

media, but it changes to loose connective tissue near the periphery of the vessel

(Pugsley and Tabrizchi, 2000).

1.1.2 Capillaries and the microcirculation

The capillaries consist of a single layer of endothelial cells which

permit rapid exchange of gases, water and solutes with interstitial fluid. The

distribution of capillaries within the body varies between tissues. Metabolically

active tissue such as cardiac muscle and glandular structures, have a high

density of capillaries whereas less active tissue, such as subcutaneous tissue or

cartilage have a low density of capillaries. Although blood flow through

capillaries is not pulsatile, it is not uniform and depends chiefly upon the

contractile state of arterioles (Pugsley and Tabrizchi, 2000).

1.1.3 The endothelium

For many years, the endothelium of blood vessels was regarded as an

inert layer of cells which served solely as a passive filter permitting the

movement of water and other small molecules across the blood vessel wall,

while retaining blood cells and proteins within the vascular lumen. However, it

is now clear that the endothelium plays an important role in regulating blood

clot formation and is also an important source of a number of vasoactive

substances such as Nitric oxide (NO), prostacyclin and endothelins, which can
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cause contraction or relaxation of the underlying vascular smooth muscle

(Berne, et al., 2004).

Early studies showed that endothelial cells were able to release a labile

factor, which was initially termed endothelium-derived relaxing factor (EDRF)

which diffused to the adjacent smooth muscle layer to induce relaxation

(Furchgott and Zawadski, 1980), at least in part through the formation of

cGMP (Rapoport and Murad, 1983). Biochemical experiments showed that

nitroglycerin elicits blood vessels relaxation following conversion to NO with

the subsequent formation of cGMP (Moncada, et al., 1991). Subsequent work

provided strong evidence that NO was indeed very similar to EDRF (Ignarro,

et al., 1987; Palmer, et al., 1987). NO is formed from its substrate L-arganine

by nitric oxide synthase (NOS) producing NO and citrulline. There are two

forms of NOS in cells, constitutive NOS (cNOS) and inducible NOS (iNOS).

NO is continually produced by cNOS, the cNOS present in vascular endothelial

cells is termed eNOS, the activity of which is regulated by the intracellular

Ca2+ concentration. Thus, substances such as acetylcholine, bradykinin,

histamine and insulin that induce increases in the intracellular Ca2+

concentration are able to stimulate the production of NO via cNOS. Another

important regulator of NO production is shearing forces acting on the

endothelium. Thus, an increase in blood flow velocity can stimulate

extracellular Ca2+ influx and intracellular Ca2+ release in endothelial cells and

an increase in NO production via cNOS. iNOS is not Ca2+-dependent and is

stimulated by the actions of a number of bacterial toxins and different

cytokines such as tumour necrosis factor and a number of interleukins.

Induction of iNOS occurs over several hours and results in NO production that

may be up to 1000-fold greater than that produced by cNOS. This is an

important mechanism in the pathogenesis of inflammation. Following

formation of NO in an endothelial cell, it can readily diffuse into adjacent

smooth muscle cells where it binds to a heme moiety on guanylyl cyclase,

activating the enzyme to produce cGMP from GTP. Increased cGMP causes

activation of a protein kinase, subsequently leading to the inhibition of Ca2+

influx into the smooth muscle cells, and a decrease in the stimulation of myosin

light chain kinase (MLCK) by the Ca2+:Calmodulin complex, this ultimately
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leads to relaxation of the smooth muscle cell (Kiechle and Malinski, 1993;

Gross and Wolin, 1995).

1.1.4 Veins

Veins function to return blood to the heart once it leaves the

microcirculation. Upon leaving capillaries blood enters the smallest of veins,

termed venules. From the venules, blood flows to progressively larger veins

until reaching the heart. As described above, the walls of veins consist of the

same three layers as arteries. However, veins have less smooth muscle and

connective tissue than arteries thus the walls of veins appear much thinner.

Although under a lower pressure than arteries, the internal diameter of veins

can be altered by the vasomotor actions of the smooth muscle present in the

vessel wall. These changes in resistance and the subsequent alterations in

pressure within the lumen of the vessel may not be as great as the changes

afforded by the thicker arteries, but they are believed to influence the pressure

within the capillary vessel upstream (Milnor, 1982). Larger veins contain

venous valves, similar to the semilunar valve in the heart, to maintain the

direction of blood flow. These valves are especially important in the arms and

legs, preventing backflow in response to the pull of gravity (Berne, et al.,

2004).

1. 2 Smooth muscle

Smooth muscle is found in all the hollow organs of the body from the

intestine to the walls of the blood vessels. There are many differences between

smooth muscle cells from different areas within the body, and even amongst

different cells from within the same smooth muscle bed. Smooth muscle can be

broadly classified into two types, phasic and tonic (Somlyo and Somlyo, 1968;

Somlyo and Somlyo, 1990). Phasic smooth muscle generates action potentials

and responds with fast, transient contractions to depolarisation of tissue with

high K+ solutions. Tonic smooth muscle on the other hand, does not usually

generate action potentials and shows slow, sustained contraction in response to

K+-induced depolarisation (Somlyo and Somlyo, 1968). The vascular system
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contains both phasic (e.g. portal vein) and tonic (e.g. pulmonary artery, aorta)

smooth muscle (Jones, 1981).

Fluctuations in intracellular Ca2+ concentration are the main regulatory

mechanism governing contraction of all muscle cells (Filo, et al., 1965). The

extracellular Ca2+ concentration and the Ca2+ concentration within the

intracellular stores are significantly higher than that found in the cytoplasm of

smooth muscle cells. Therefore, this results in an enormous concentration

gradient which allows Ca2+ influx, or Ca2+ release to occur without the

requirement for further energy expenditure. In vascular smooth muscle,

fluctuations in cytosolic Ca2+ concentration are achieved through the opening

of a variety of ion channels located on the plasma membrane or the membranes

of intracellular Ca2+ stores allowing the influx/efflux of Ca2+.

1.2.1 Excitation-contraction coupling in smooth muscle

The processes which govern contraction of smooth muscle are complex

and a large volume of research has been carried out in order to gain an

understanding of the mechanisms underlying “excitation-contraction coupling”

in vascular smooth muscle. It would appear that excitation-contraction

coupling in smooth muscle can be subdivided into two main processes,

electromechanical coupling and pharmacomechanical coupling (Somlyo and

Somlyo, 1968). Electromechanical coupling describes alterations in the plasma

membrane potential and the subsequent effects this has on cytoplasmic Ca2+

concentration. The resting membrane potential of smooth muscle cells lies

between -40 and -70 mV depending on the smooth muscle type. If the

membrane potential becomes more positive (depolarises), this can lead to the

opening of a number of ion channels, including voltage-gated Ca2+ channels

(VGCCs), with resultant Ca2+ influx, increased intracellular Ca2+ concentration

and contraction (Somlyo and Himpens, 1989). As the membrane potential

becomes more negative, VGCCs are closed and the intracellular Ca2+

concentration decreases leading to relaxation of the smooth muscle.

In contrast to electromechanical coupling, pharmacomechanical

coupling is initiated by the actions of a number of cell signalling pathways that

may alter the force of contraction without necessarily altering the membrane
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potential of the cell. The major mechanisms of pharmacomechanical coupling

involve the production of the Ca2+ mobilising second messengers such as

inositol 1, 4, 5-trisphosphate (IP3), cyclic adenosine diphosphate ribose

(cADPR) and nicotinic acid adenine dinucloetide phosphate (NAADP; Li, et

al., 2003). Initiation of pharmacomechanical coupling by these and related

signalling cascades may also promote transmembrane Ca2+ influx via the

activation of sarco/endoplasmic reticulum store-depletion activated influx to

support store-refilling, and/or via the regulation of receptor-operated cation

channels (Somlyo, et al., 1999; Morano, 2003). These mechanisms will be

discussed below.

1.2.2 The role of K+ channels in the regulation of smooth muscle

membrane potential

VGCCs act as a major source of contractile Ca2+ in a number of smooth

muscle cells, including vascular smooth muscle and are activated by

depolarisation of the plasma membrane. Thus, there exists a tight coupling

between the membrane potential and the contractile state of smooth muscle

cells. The membrane potential of smooth muscle cells is governed by a balance

between depolarising and hyperpolarising ion channels present within the

plasma membrane which can induce contraction and relaxation of cells,

respectively. The depolarisation of smooth muscle cells is mediated by the

activity of VGCCs, chloride channels and non-selective cation channels. K+

channels function as the main source of hyperpolarising currents in smooth

muscle and provide a precise negative feedback mechanism upon excitation of

cells. Thus, K+ channels can act to promote relaxation of cells by inhibiting

Ca2+ influx through VGCCs in the plasma membrane (Nelson and Quayle,

1995). A number of types of K+ channel have been identified as modulators of

smooth muscle membrane potential and contractility including voltage-gated

(Kv), large conductance Ca2+-activated (BKCa), inward rectifier (Kir), ATP-

sensitive (KATP) and two-pore domain K+ channels (K2P).
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1.2.2.1 Voltage activated K+ channels

As mentioned previously, Kv channels are activated by membrane

depolarisation with activation thresholds in the range of basal membrane

potentials reported for smooth muscle cells where they act to limit

depolarisation of the plasma membrane and Ca2+ entry (Nelson and Quayle,

1995; Heppner, et al., 1997; Koh, et al., 1999). The blockade of Kv channels

leads to the depolarisation and contraction of smooth muscle cells (Knot and

Nelson, 1995). Kv currents have been recorded from a number of smooth

muscle cells including vascular smooth muscle (Beech and Bolton, 1989;

Aiello, et al., 1995; Remillard and Leblanc, 1996; Smirnov, et al., 2002). Kv

currents in smooth muscle cells can be divided into 2 types based upon their

rates of inactivation. Thus, they can be categorised as either slowly inactivating

Kv currents that show little or no inactivation during depolarisations of 250 ms

(delayed rectifier, Kdr) or fast inactivating Kv currents that inactivate within

100 ms (A-type). While Kdr have been identified in almost all smooth muscle

cells studied, A-type currents tend to be expressed in phasic smooth muscle

cells, such as the aorta (Halliday, et al., 1995). A “non-inactivating” Kv current

(IKN) has also been identified in smooth muscle cells of the pulmonary artery

which activates between -80 and -65 mV (Evans, et al., 1996). Due to the non-

inactivating nature of the IKN currents it has been suggested that this current

may provide a tonic hyperpolarisation of the smooth muscle resting membrane

potential. Indeed, recent evidence suggests that these IKN currents may be due

to the actions of the twin-pore domain K+ channel, TASK-1 (Gurney, et al.,

2003) and KCNQ class of Kv channels (Joshi, et al., 2006).

The diversity in Kv currents in smooth muscle cells is achieved by

tissue-specific differences in the expression and assembly patterns of members

of the Kv channel superfamily composed of pore-forming -subunit families

Kv1 – Kv4. Members of the same Kv family assemble to form in a homo- or

hetero-tetrameric manner functional channels. Kv5 – Kv11 -subunit families

are unable to form functional channels when expressed alone, but may form

functional channels when co-assembled with either Kv2 or Kv3 to produce

channels with distinct properties to channels composed of either Kv2 or Kv3
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alone (Hugnot, et al., 1996; Salinas, et al., 1997; Kramer, et al., 1998; Stocker,

et al., 1999).The diversity of Kv channels is further increased by the existence

of modulatory -subunits expressed in smooth muscle which co-assemble with

pore-forming Kv subunits in smooth muscle to modulate the biophysical

properties and trafficking of Kv channels to the membrane (Pongs, et al.,

1999).

1.2.2.2 Large conductance Ca2+-activated K+ channels

In a number of cell types, an increase in intracellular Ca2+ concentration

is linked to membrane hyperpolarisation by Ca2+-activated K+ channels. On the

basis of unitary conductance and pharmacological properties, and recently due

to the identification of the relevant genes, there have been three types of Ca2+-

activated K+ channels identified. These are the BKCa, the intermediate

conductance (IKCa) and the small conductance (SKCa) channels.

BKCa channels have been observed in all types of smooth muscle cells

examined to date, along with a number of other cell types (Nelson and Quayle,

1995). BKCa channels are voltage-activated K+ channels, which are additionally

activated by increases in the local cytoplasmic Ca2+ concentration. Binding of

Ca2+ to the BKCa channels shifts the voltage at which channels are activated to

more negative membrane potentials which lie within the physiological range of

smooth muscle (Cox and Aldrich, 2000). BKCa channels function in a negative

feedback role to help regulate smooth muscle membrane potential.

Depolarisation-evoked Ca2+ entry via VGCCs activates BKCa channels

resulting in hyperpolarisation and the prevention of further Ca2+ entry via

VGCCs (Klockner and Isenberg, 1985; Guia, et al., 1999).

Vasodialtors that activate adenylyl cyclase-coupled receptors, such as

-adrenoceptors, relax arterial smooth muscle by increasing cAMP levels and

activating protein kinase A (PKA). Vasodilation by PKA-dependent signalling

is mediated, in part, by BKCa channel activation and hyperpolarisation of the

plasma membrane (Benham and Bolton, 1986; Kume, et al., 1989; Nelson, et

al., 1995; Satake, et al., 1996; Wang and Kotlikoff, 1996a; Knot, et al., 1998b;

Porter, et al., 1998; Tanaka, et al., 1998; Perez, et al., 1999; Jaggar, et al.,



9

2000). There is evidence in the literature to suggest that PKA may activate

these channels by phosphorylating the BKCa channel protein (Kume, et al.,

1989; Wang and Kotlikoff, 1996a; Jaggar, et al., 2000) and/or RyRs located on

the sarcoplasmic reticulum (SR) membrane (Valdivia, et al., 1995; Jaggar, et

al., 2000), or via activation of the SR Ca2+ ATPase, increasing the SR Ca2+

concentration, thus increasing resting SR Ca2+ release in close proximity to the

plasma membrane (Lindemann, et al., 1983; Jaggar, et al., 2000; Wellman, et

al., 2001). However, work from this laboratory has provided evidence in

favour of an alternative mechanism by which adenylyl cyclase-coupled

receptors may mediate vasodilation by cADPR-dependent Ca2+ release via

RyRs in the SR (Boittin, et al., 2003). This role for cADPR in mediating

arterial vasodilation via BKCa channels is discussed in detail in section 1.5.7.

A role for BKCa channels in responses to cell stretching has been shown

in a number of smooth muscle types including vascular smooth muscle (Kirber,

et al., 1992; Wellner and Isenberg, 1993; Wu and Davis, 2001). This activation

by stretching may be induced by intracellular Ca2+ release (Ji, et al., 2002), or

via the influx of extracellular Ca2+ (Wu and Davis, 2001). Indeed, the

activation of BKCa channels in response to increases in pressure/stretch would

provide a mechanism to combat stretch-evoked depolarisation of smooth

muscle cells.

The pore-forming subunit of BKCa channels is similar to that of the Kv

channels (Wallner, et al., 1996). Only 1 pore-forming -subunit has been

identified to date, producing a number of splice variants that may help to

explain BKCa diversity (Vogalis, et al., 1996). The diversity of BKCa channels

is also provided by at least 4 different BKCa -subunits which coassemble with

the -subunits to modulate the biophysical properties of BKCa channels

(Uebele, et al., 2000). Specifically the 1-subunit is highly enriched in smooth

muscle tissues and confers Ca2+ sensitivity to the -subunit (McManus, et al.,

1995). When the -subunit is co-expressed with the 1-subunit, currents

possess faster activation kinetics and are larger at negative membrane

potentials, indicating a higher "open probability" at those potentials. The

membrane potential needed to half-activate the channel shifts from 0 to near –

100 mV with coexpression of the - and 1-subunits (Jiang, et al., 1999).
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The pore forming -subunit of BKCa channels shares little sequence

homology to the pore-forming protein of IKCa and SKCa channels. The IKCa

channel (KCNN4) belongs to the same gene family as the SKCa and shares

about 40% sequence homology. SKCa channels consist of three members,

SKCa1, 2 and 3 (termed KCNN1, 2 and 3, respectively), which share 60-70%

sequence homology (Kohler, et al., 1996). These channels require CaM for

Ca2+ sensitivity (unlike BKCa channels that have an intrinsic Ca2+ sensor). CaM

binds constitutively to the proximal section of the C-terminus and acts as the

Ca2+ sensor (Xia, et al., 1998). A number of reports have suggested a role for

SKCa and IKCa channels in regulation of vascular smooth muscle tone (Prieto,

et al., 1998; Crane and Garland, 2004; McNeish, et al., 2006). Despite these

reports, the distribution of these channels in human tissues is less than clear

and it is still unknown which SKCa subtype is present on vascular smooth

muscle.

1.2.2.3 Inward rectifier K+ channels

Kir channels have been shown to be present in vascular smooth muscle

cells isolated from small arteries and in segments of arterioles (Edwards, et al.,

1988; Quayle, et al., 1993; Quayle, et al., 1996). Indeed, Kir channels

demonstrate a decrease in density as vessel size increases (Quayle, et al., 1996)

and are absent from large blood vessels (Quayle, et al., 1997). Kir channels in

vascular smooth muscle demonstrate a strong inward rectification, with an

attenuated outward current at membrane potentials positive to the equilibrium

potential of K+ (~ -85 mV) and increased inward current negative to the K+

equilibrium potential (Quayle, et al., 1997; Bradley, et al., 1999). The inward

rectification of the channels is due to a mixture of intrinsic channel properties

coupled with the internal blockade of the channels by Mg2+ and polyamines

(Ruppersberg, 2000). Thus the current carried by Kir channels in vascular

smooth muscle under resting membrane potentials (-30 to -60 mV) is very

small indeed. Yet, Kir channels may be important when the concentration of

extracellular K+ increases, resulting in systemic arterial dilation (Quayle, et al.,

1997). This may occur as a result of the increase in external K+ concentration



11

driving a positive shift in the reversal potential for K+ ions across the plasma

membrane which causes an increase in the outward Kir current occurring in the

range of vascular smooth muscle membrane potential.

To date there have been 6 members of the Kir family of channels

cloned (Kir1 – 6), of which the subfamily Kir2 demonstrate strong inward

rectification (Quayle, et al., 1997) consistent with native vascular smooth

muscle (Edwards, et al., 1988; Quayle, et al., 1993; Quayle, et al., 1996;

Kamouchi, et al., 1997). Kir2.1 has been implicated as the gene encoding

vascular smooth muscle Kir currents and indeed Kir2.1 is the only member of

the Kir2 family that is expressed in smooth muscle cells of the coronary,

mesenteric and cerebral arteries, having markedly similar properties to the Kir

currents observed in these smooth muscle cells (Bradley, et al., 1999).

1.2.2.4 ATP-sensitive K+ channels

KATP channels were first identified in cardiac muscle cells in the early

1980’s (Noma, 1983) and have since been shown to play an important role in

the control of smooth muscle contractility (Quayle, et al., 1997). Gating of

KATP channels is inhibited by the cytoplasmic concentration of ATP, with

channels being activated in response to a decrease in cellular ATP

concentration, as occurs in hypoxia or metabolic inhibition. They are activated

by a number of K+ channel openers, while they are inhibited by antidiabetic

sulphonylurea drugs such as glibenclamide (Quayle, et al., 1997). Indeed, the

ability of KATP channel openers to hyperpolarise and cause relaxation has been

demonstrated in smooth muscle from a number of tissues including the urinary

bladder (Petkov, et al., 2001) and blood vessels (Standen, et al., 1989). KATP

channels have been proposed to play a role in the maintenance of basal smooth

muscle tone, as indicated by the ability of glibenclamide to depolarise the

membrane potential and increase tone (Daut, et al., 1994; Gardiner, et al.,

1996). Single-channel recordings of KATP channels from smooth muscle have

demonstrated a large degree of variability, with conductance values ranging

from 10 to 280 pS (Quayle, et al., 1997). Single channel KATP channels

recorded from rabbit portal vein, guinea-pig coronary and rat mesenteric artery

smooth muscle cells have been termed KNDP channels as, unlike other smooth
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muscle KATP channels, they are activated by cytoplasmic nucleoside

diphosphates, such as ADP and GDP (Kajioka, et al., 1991; Beech, et al.,

1993a; Beech, et al., 1993b; Dart and Standen, 1993; Dart and Standen, 1995;

Zhang and Bolton, 1996). At the level of the single channel, KNDP channels, but

not the larger conductance KATP channels, are inhibited by PKC activation.

This is consistent with the inhibition of whole-cell KATP currents by agonists

leading to PKC activation (Kleppisch and Nelson, 1995; Bonev and Nelson,

1996).

It has recently been shown that mice lacking in the expression of the

genes which encode smooth muscle KATP channels are hypertensive and die

prematurely due to coronary artery vasospasm (Chutkow, et al., 2002; Miki, et

al., 2002). KATP channels are formed by the co-assembly of the pore-forming

Kir6 family members Kir6.1 or Kir6.2 and sulphonylurea receptor proteins

SUR1, SUR2A or SUR2B (Aguilar-Brtyan, et al., 1998). Recently Kir6.1 has

been shown to be the pore-forming subunit responsible for KATP channels in

vascular smooth muscle in studies carried out using Kir6.1 and Kir6.2 KO mice

(Suzuki, et al., 2001; Miki, et al., 2002). Thus it would appear that KATP

channels containing Kir6.1 subunits are the dominant channel type in vascular

smooth muscle.

1.2.2.5 Two-pore domain K+ channels

Background or ‘leak’ K+ channels, as defined by having a lack of time-

and voltage-dependency, are believed to play a key role in setting the resting

membrane potential of excitable cells (Kim, et al., 1998; Millar, et al., 2000).

K2P channels have been shown to conduct several leak K+ currents and are

believed to be involved in the regulation of a number of other important

cellular functions such as sensing of oxygen and pH (Patel and Honore, 2001)

and mechanosensitivity of cells (Chemin, et al., 2005). Selective pharmacology

for K2P channels is unavailable and detailed information regarding these

channels has to be gleaned from studies carried out on cloned channels

expressed in model cells.

K2P channels consist of four transmembrane domains and 2 pore

domains. In mammals there have been six distinct sub-families of K2P channels
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identified and 15 genes which encode K2P channels (Sanders and Koh, 2006).

To date there have been limited reports of K2P channels in vascular smooth

muscle cells. However, Gurney and colleagues have shown that TASK-1

channels are expressed in pulmonary artery smooth muscle of rabbits (Gurney,

et al., 2003). In their study they identified a functional conductance that was

inhibited by extracellular pH, Zn2+ and anandamide. This conductance was

insensitive to Ca2+, 4-amino pyridine and quinine (Gurney, et al., 2003). These

pharmacological properties closely resemble the pharmacology of natively

expressed TASK-1 channels and the authors concluded that TASK-1 channels

may play an important role in regulation of resting membrane potential in

pulmonary arteries. More recently, Olschewski and colleagues have shown that

TASK-1 channels are functionally expressed in human pulmonary artery

smooth muscle where they are also important in the regulation of resting

membrane potential (Olschewski, et al., 2006).

1.2.3 A role for Cl- channels in modulation of smooth muscle membrane

potential?

Both the molecular basis and the physiological role of chloride channels

in smooth muscle are yet to be fully understood. However, it would appear that

smooth muscle cells express both Ca2+-activated Cl- channels and volume

sensitive Cl- channels.

1.2.3.1 Ca2+-activated Cl- channels

Ca2+-activated Cl- channels have been shown to underlie transient

inward currents elicited by agonist-mediated SR Ca2+ release in smooth muscle

cells (Byrne and Large, 1988; Amedee, et al., 1990; Fleischmann, et al., 1997;

Wang and Kotlikoff, 2000). It has also been shown that dialysis of arterial

smooth muscle cells with Ca2+ activates Ca2+-activated chloride currents which

are regulated by Ca2+-dependent phosphorylation/dephosphorylation

mechanisms (Greenwood, et al., 2001; Ledoux, et al., 2003; Greenwood, et al.,

2004). Although Ca2+-activated Cl- channels are unable to gate the flux of Ca2+

ions, at resting membrane potentials in smooth muscle they can provide a
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depolarising influence. It has been suggested that Ca2+-activated Cl- currents

may provide the link between stimulations which mediate SR Ca2+ release and

depolarisation of the plasma membrane, thus facilitating VGCC activity.

Spontaneous transient inward currents mediated by Ca2+-activated Cl- channels

have been identified in smooth muscle cells from a number of tissues,

including vascular smooth muscle (Hogg, et al., 1993a; Hogg, et al., 1993b;

Yuan, 1997; Craven, et al., 2004).

1.2.3.2 Volume sensitive Cl- channels

Cl- currents that are sensitive to cellular volume and which are activated

by cell swelling have been identified in a number of smooth muscle cells (Xu,

et al., 1997; Yamazaki, et al., 1998). Like Ca2+-activated Cl- currents, these

volume sensitive Cl- currents are able to provide a depolarising inward current

under normal physiological conditions. Thus, it has been suggested that

swelling activated Cl- channels may contribute to stretch/pressure induced

contraction of smooth muscle via the activation of VGCCs. The mechanism

which mediates activation of these volume sensitive Cl- currents in vascular

smooth muscle of pulmonary arteries is believed to involve protein kinase C

(PKC) as PKC inhibitors increase, while PKC activators decrease swelling

activated Cl- currents (Zhong, et al., 2002). Although the precise molecular

identity of the volume-sensitive Cl- channels has yet to be conclusively

identified, the ClC-3 channel, a member of the voltage-dependent ClC Cl-

channel family (Jentsch, et al., 2002), has been proposed as a candidate protein

(Duan, et al., 1997). ClC-3 has been identified in vascular smooth muscle of

the aorta and the pulmonary artery (Yamazaki, et al., 1998; Lamb, et al., 1999).

Indeed, ClC-3 has been recently implicated as having an important role in the

proliferation, growth and volume regulation of vascular smooth muscle cells

(Wang, et al., 2002; Dai, et al., 2005). However, the role of ClC-3 in regulation

of arterial tone remains unclear (Nakazawa, et al., 2001).
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1.2.4 Ca2+ influx pathways in vascular smooth muscle

Mechanisms of Ca2+ flux must be highly regulated in order to

effectively control a variety of discrete Ca2+-sensitive processes within the cell.

The main routes of Ca2+ influx into the cytoplasm from the extracellular

environment are mediated via three main groups of channel proteins: (1)

VGCCs, (2) Receptor-operated (or ligand-gated) Ca2+ channels (ROC), and (3)

Store-operated Ca2+ channels (SOC).

VGCCs belong to a gene superfamily which includes voltage-

dependent sodium and potassium channels (Jan and Jan, 1992; Catterall, 1993).

They are activated by a conformational change caused by a depolarisation of

the cell membrane. VGCC were first described in crustacean muscle (Fatt and

Katz, 1953). These channels were then characterised according to their

biophysical properties into low- and high-threshold voltage-activated channels

(Carbone and Lux, 1984). Following this, studies identified a high-threshold

voltage-activated current termed the ‘long-lasting’ or L-type channel, which

was shown to be sensitive to the 1,4-dihydropyridine class of drugs (Hess, et

al., 1984; Nowycky, et al., 1985). The L-type Ca2+ channels account for the

vast majority of VGCCs expressed in vascular smooth muscle cells. VGCC are

multimeric complexes which consist of up to four different subunits, namely

the 1, 2, 2 and  subunits (Hoffmann, et al., 1994). Of these subunits the

 subunit is the principal subunit, containing the voltage-gated ion pore. To

date, there have been ten 1 subunits cloned, four of which have been shown

to constitute the family of L-type Ca2+ channels, namely Cav1.1, Cav1.2, Cav1.3

and Cav1.4 (Ertel, et al., 2000).

Although these channels are regulated by membrane potential they can

also be modulated by the concentration of intracellular Ca2+ and more directly

by the influence of Ca2+:calmodulin complex (CaM) . L-Type Ca2+ channels

show two opposing responses to alterations in intracellular Ca2+ concentration.

On one hand the channels inactivate rapidly with the rise in local Ca2+

concentration and, on the other hand, the channels can facilitate further Ca2+

entry (Zuhlke and Reuter, 1998; Peterson, et al., 1999; Zuhlke, et al., 1999). As

mentioned above, the molecule responsible for the positive feedback, Ca2+-



16

dependent facilitation of the opening of L-type Ca2+ channels has been

suggested by a number of studies to be the calmodulin (CaM) activated,

multifunctional serine/threonine kinase, calmodulin kinase (CaMK; Tiaho, et

al., 1994; Yuan and Bers, 1994; Wu, et al., 1999; Dzhura, et al., 2000). An

early study carried out by Yuan and Bers (1994) showed that repetitive

membrane depolarisations from -90 – 0 mV in ventricular myocytes from

rabbit and ferrets caused a staircase in the Ca2+ current across cell membranes.

This effect was completely blocked by the dialysis of cells with blockers of

CaMK. Similar results to these were obtained by Anderson et al. (1994) in

rabbit ventricular myocytes, where again, addition of CaMK inhibitory

peptides prevented the augmentation in activity of L-type Ca2+ channels. That

this facilitation of L-type channels is a direct effect of CaMK on the channels

was shown in a study using inside-out patches from murine ventricular

myocytes (Dzhura, et al., 2000). The stimulatory effect of CaMK required ATP

and was not mimicked by CaM alone, however the effect was knocked out by

the addition of a CaMK inhibitor.

In contrast, a number of studies have suggested that CaM-dependent

inactivation of L-Type Ca2+ channels may result from the dephosphorylation of

the channel by the CaM-dependent phosphatase calcineurin (Chad and Eckert,

1986; Armstrong, 1989; Schuhmann, et al., 1997). On the other hand however,

a number of groups have proposed that CaM directly interacts with the 1-

subunit of the L-type channel and that channel phosphorylation is not involved

(Pate, et al., 2000; Peterson, et al., 2000; Romanin, et al., 2000; Zuhlke, et al.,

2000). A number of studies have in fact suggested that direct binding of CaM

to the 1-subunit is the critical step in both the Ca2+-dependent activation and

inactivation of L-Type Ca2+ channels. A mutation in the consensus CaM-

binding IQ motif in the COOH-terminal tail of 1 eliminates both forms of

Ca2+-dependent automodulation of Ca2+ channels (Zuhlke, et al., 1999; Zuhlke,

et al., 2000).

Low-voltage-activated T-type Ca2+ channels have also been identified

in vascular smooth muscle (Bean, et al., 1986; Benham and Tsien, 1987). The

T-type channels are encoded for by a family of genes, Cav3.1, Cav3.2 and

Cav3.3 (Perez-Reyes, 2003), with Cav3.1 but not Cav3.2 being expressed in
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vascular smooth muscle (Brueggemann, et al., 2005). The three T-type

channels encoded for by these genes display very similar functional properties

and initial electrophysiological studies found it difficult to distinguish between

these three subtypes. Recent analysis of cloned T-type channels has provided

information on their differing kinetics and pharmacology (Lee, et al., 1999;

Martin, et al., 2000; Michels, et al., 2002). However, techniques to distinguish

members of the Cav3 family at anything other than the molecular level remain

limited.

Store-operated Ca2+ entry was first described in 1986 (Putney, 1986),

although an earlier report had described a “Ca2+ readmission” response in

acinar cells of the cockroach salivary gland (Ginsborg, et al., 1980). The early

work carried out on store-operated Ca2+ entry suggested that the level of Ca2+

within the stores was critical to controlling Ca2+ influx into non-excitable cells.

This process was described as capacitative Ca2+ entry. The first direct evidence

for this model was the identification of a Ca2+ current in mast cells which was

termed the Ca2+ release-activated Ca2+ current, or ICRAC (Hoth and Penner,

1992). SOC can be activated by any process which empties intracellular Ca2+

stores (Hoth and Penner, 1992; Parekh and Penner, 1997). A number of SOC

from various different vascular beds have been reported in the literature such as

the aorta (Trepakova, et al., 2001), the portal vein (Albert and Large, 2002)

and the pulmonary artery (Golovina, et al., 2001). The molecular makeup of

ROC and SOC in vascular smooth muscle remains unclear. However, a number

of recent studies suggest a role for Transient Receptor Potential (TRP)

channels in forming Ca2+-permeable cation channels that can be activated by

store depletion (Ma, et al., 2000; Vasquez, et al., 2001; Bergdahl, et al., 2003),

or by receptor activation (Boulay, et al., 1997; Inoue, et al., 2001; Trebak, et

al., 2002). Animal and human pulmonary artery smooth muscle cells have been

shown to express transcripts of members of the canonical TRP superfamily

(TRPC) TRPC1, TRPC4, TRPC5 and TRPC6 suggesting that these channels

may form homo-or heterotetrameric channels that can be regulated by agonist-

mediated receptor activation and/or store depletion in pulmonary artery smooth

muscle cells (McDaniel, et al., 2001; Sweeney, et al., 2002; Yu, et al., 2003).

Recently a role for an interaction between the ER-Ca2+ sensor STIM1 and the

pore forming membrane protein Orai1 in underlying store-operated Ca2+ entry
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has been proposed (Luik, et al., 2006; Prakriya, et al., 2006; Wu, et al., 2006).

It is clear that further investigations are required in order to determine the true

molecular identity of these store-operated Ca2+ influx mechanisms (Beech, et

al., 2004; Parekh and Putney, 2005).

1.2.5 The plasma membrane and Ca2+ extrusion mechanisms

The plasma membrane plays an extremely important role in

intracellular Ca2+ homeostasis and the overall control of Ca2+ signalling within

many excitable and non-excitable cells. Smooth muscle cells expel Ca2+ from

the cytoplasm to the extracellular space through two main pumps, the plasma

membrane Ca2+-ATPase (PMCA), or via the Na+/Ca2+ exchanger. The PMCA

uses energy from ATP to pump Ca2+ ions up the steep electrochemical gradient

which exists between the cytoplasm of the cell and the extracellular

environment (Horowitz, et al., 1996). The pump is electron neutral as it

transports two H+ ions into the cell for every Ca2+ ion removed. Therefore,

Ca2+ extrusion via this mechanism results in an increase in cytoplasmic H+ ion

concentration which is corrected via the action of various transporter

mechanisms such as the sodium/hydrogen exchanger (Hogue, et al., 1991). To

date there are no specific inhibitors for the PMCA although non-specific P-type

transporter inhibitors have been shown to inhibit them (Carafoli, 1991). The

PMCA are the products of a minimum of four different genes, and isoforms 1

to 4 are widely expressed (Carafoli, et al., 1996). Although only coded for by

four genes there are to date at least 32 splice variants of the genes that have

been identified in mammalian tissues (Strehler and Zacharias, 2001) and these

may be important in the targeting of the channels to specific areas of the cells

through the interaction of residues found within the splice variants and other

specific proteins within the cell (DeMarco and Strehler, 2001; Chicka and

Strehler, 2003). For example, PMCA have been shown to localise in caveolae

of smooth muscle cells, as well as endothelial cells and cardiac muscle cells

(Fujimoto, 1993; Hammes, et al., 1998) where they may be involved in the

regulation of a number of signalling pathways. For example, in the cultured

cell lines HEK-293 and neuro-2a cells overexpression of PMCA subtype

hPMCA4b resulted in a reduction of nitric oxide NO production (Schuh, et al.,
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2001). It was seen that this inhibition of NO synthesis was due to the

interaction of the COOH-terminus of the hPMCA4b and the PDZ domain of

neuronal nitric oxide synthase (nNOS). Studies have previously shown that

nNOS is expressed within caveolae of vascular smooth muscle cells (Segal, et

al., 1999), and recent evidence suggests that in arterial smooth muscle cells of

mice, an overexpression of the human PMCA subtype hPMCA4b is associated

with enhanced vascular reactivity and an increase in blood pressure through the

negative regulation of nNOS (Gros, et al., 2003).

The second of these extrusion mechanisms is the Na+/Ca2+ exchanger.

In humans, The Na+/Ca2+ exchanger is encoded for by two gene families,

namely SLC8 (Quednau, et al., 2004) and SLC24 (Schnetkamp, 2004). Both of

these families of proteins, when expressed, can act in either the forward (Ca2+

extrusion) or reverse (Ca2+ entry) modes depending on ion concentration

gradients and membrane potential (Blaustein and Lederer, 1999). The SLC8

gene family encode Na+/Ca2+ exchangers (NCX) that function independently of

K+ ions. This gene family encodes for three genes, the NCX1, NCX2 and

NCX3 exchangers which exchange 3 Na+ ions for every Ca2+ ion (Reeves and

Hale, 1984). NCX1 is the most widely studied of the three proteins and has

been shown to be expressed ubiquitously with the expression of NCX2 and

NCX3 limited to both the brain and skeletal muscle (Lee, et al., 1994c; Nicoll,

et al., 1996). NCX have been shown to be expressed in vascular smooth muscle

(Juhaszova, et al., 1994), including NCX1 and NCX3 in human pulmonary

artery smooth muscle (Zhang, et al., 2005) and has been shown to have a role

in cytoplasmic Ca2+ homeostasis in blood vessels (Slodzinski, et al., 1995;

Shimizu, et al., 1997; Blaustein and Lederer, 1999; Arnon, et al., 2000). The

expression of NCX may be important for function in arterial smooth muscle as

NCX has been shown to be located in areas where the SR is in close apposition

to the plasma membrane (Moore, et al., 1993; Juhaszova, et al., 1994). In these

areas of cells there is evidence to suggest that concentrations of Na+ and Ca2+

ions exceed the average values within the cells, and within cardiac myocytes,

this may enhance Ca2+ extrusion and cytoplasmic clearance through the NCX

(Leblanc and Hume, 1990), or indeed Ca2+ influx if the concentration of Na+ is

high, i.e., the transporter is able to work in the reverse mode (Levesque, et al.,

1991).
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There have been five SLC24 genes discovered in man, encoding for

five different forms of the K+-dependent Na+/Ca2+ exchanger (NCKX). These

have been termed NCKX1-5 with the distribution of NCKX1-4 well

characterised, the distribution of NCKX5 is still unknown (Schnetkamp, 2004).

These exchangers have been shown to transport 4 Na+ for every 1 K+ and 1

Ca2+ ion (Cervetto, et al., 1989). The expression of the NCKX1 and 2

exchangers appears to be extremely tissue-specific with the NCKX1 expressed

in rod cells within the eye and platelets, and the NCKX2 expressed mostly in

the brain and other neuronal tissue (Schnetkamp, 2004). NCKX3 and 4 have

been shown to be expressed in a number of different tissue types, including

vascular smooth muscle (Schnetkamp, 2004). A number of studies have been

carried out to characterize native exchangers, with the most detailed work

being carried out on the NCKX1 (Schnetkamp, 1995), with more recent studies

addressing the properties of heterologously expressed NCKX1 and NCKX2

proteins (Szerencsei, et al., 2000; Dong, et al., 2001). However, very little is

known about the NCKX3 and NCKX4 exchangers.

1.3 Intracellular Ca2+ stores in arterial smooth muscle

1.3.1 The sarcoplasmic reticulum

The sarcoplasmic reticulum (SR) is recognised as being the major

intracellular source and sink for Ca2+ within both smooth (Somlyo and Somlyo,

1991) and striated muscle (Ebashi, 1991). Ca2+ is sequestered into the lumen of

the SR from the cytoplasm by the actions of specific sarcoplasmic/endoplasmic

reticulum Ca2+-ATPase (SERCA) pumps, which will be described below. The

distribution of the SR is different amongst smooth muscle cells with the SR of

phasic smooth muscle (e.g. vas deferens, portal vein) accounting for only 2-3

% of total cell volume, and being distributed mainly along the periphery of the

cell (Villa, et al., 1993; Nixon, et al., 1994). The SR is much more abundant in

tonic vascular smooth muscle where it accounts for around 5-7 % of total cell

volume (Devine, et al., 1972) with some of the surface of the SR being closely

associated with the plasma membrane of the cell, but with a large proportion

located centrally, and in close association with the nucleus.
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The SR of vascular smooth muscle cells consists of two types of SR,

rough SR and smooth SR. Smooth SR does not contain any ribosomes and is

involved in a number of processes such as fatty acid synthesis and metabolism

of phospholipids. Rough SR does possess ribosomes and is involved in the

synthesis of many extracellular proteins such as elastin and collagen (Pozzan,

et al., 1994; Orallo, 1996).

Although there has been a large number of investigations carried out on

it, many details of the SR Ca2+ stores organistation, and of the Ca2+ release and

refilling processes are still poorly understood. It is widely accepted that there

are two classes of Ca2+ release mechanisms, those associated with the Inositol

1,4,5-trisphosphate receptors (IP3Rs) and those associated with the ryanodine

receptors (RyRs; Somlyo and Somlyo, 1994). Whether these receptors are

associated with a single, interconnecting Ca2+ store, or with functionally

independent stores remains a controversial field of research.

The SR membrane is not freely permeable to Ca2+ ions. Therefore, as

mentioned above, the SR uses specialised SERCA pumps to sequester Ca2+

from the cytosol of the cell. The SERCA pumps belong to the P-type family of

ATPases, which form a phosphoprotein intermediate and undergo

conformational changes during the course of ATP hydrolysis (de Meiss and

Vianna, 1979; Jencks, 1992). These pumps use the energy supplied by the

hydrolysis of ATP to drive the translocation of Ca2+ into the SR lumen.

SERCA pumps were first visualised by means of electron microscopy in the

late 1960’s (Inesi and Asai, 1968). In this study the investigators noted that the

there were distinct granules protruding from the cytosolic surface of the SR,

which were linked by a narrow stalk to a membrane bound region. These

granules have since been shown to correspond to the cytosolic region of the

SERCA pump; a ~100 kDa protein which consists of 2 main regions, a

hydrophilic region which protrudes into the cytosol of the cell (corresponding

to the granules seen by Inesi and Asai (1968)), and a hydrophobic region

imbedded in the SR membrane. The ATP binding site has been shown to be

located within a groove formed on the cytosolic head of the pump (Yonekura,

et al., 1997). The residues that are involved in the hydrolysis of ATP are

contained within the stalk section of the protein. SERCA pumps are able to

bind and translocate 2 Ca2+ ions at a time, and work to generate and maintain a
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Ca2+ gradient of about 10,000 fold between the lumen of the SR and the

cytoplasm of the cell, which is achieved by the utilisation of the energy

released by the hydrolysis of ATP, as mentioned previously. SERCA pumps

reversibly cycle through a number of conformational states (Dode, et al.,

2003), of which four have been stabilised (E1Ca2, E1~P(Ca2), E2-P and E2; Fig.

1.1). The binding of 2 Ca2+ ions in the Ca2+ binding domain described

previously is required for the formation of E1Ca2 (Fig. 1.1). This binding of

Ca2+ ions activates conformational changes allowing the transfer of the -

phosphoryl group of ATP to the aspartic acid residue at position 351. This

phosphorylation induces further conformational changes (E1Ca2 to E1~P(Ca2)

transition; Fig. 1.1) which translocates the two Ca2+ binding sites from the

cytosolic side of the SR membrane to the luminal side of the SR membrane,

this also lowers the affinity of the Ca2+ binding sites for Ca2+ by around three

orders of magnitude. The conversion of E1~P(Ca2) to the ADP-insensitive low-

energy E2-P phosphoenzyme intermediate, the rate limiting step in Ca2+

translocation across the SR membrane (de Meiss and Vianna, 1979; Inesi, et

al., 1990), is accompanied by the loss of Ca2+ ions into the ER/SR lumen. This

dissociation of Ca2+ ions from the pump promotes hydrolysis of Pi on the

aspartic acid residue at position 351 of E2-P and the regeneration of the high

affinity Ca2+ binding sites open to the cytosolic environment completing the

reversible Ca2+ transport cycle (Fig. 1.1).

There are three genes which encode for SERCA pumps, with two

subtypes of the SERCA2 pump, SERCA2a and SERCA2b, having been

identified. Most smooth muscle cells have been shown to express SERCA2b

and SERCA3 isoforms of the pump (Wu, et al., 1995). The different SERCA

pump subtypes display varying sensitivities for Ca2+ and also display

differences in their turnover rate, in other words they pump Ca2+ into the SR

lumen at differing rates. The turnover of SERCA 1 is 2-fold faster than that of

SERCA 2A (Sumbilla, et al., 1999), although their affinities for Ca2+ would

appear to be very similar (Lytton, et al., 1992). Verboomen et al. (1992) using

Ca2+ uptake by microsomes, revealed that the Ca2+ affinity of SERCA 2B is

two fold higher than the affinity of SERCA 2A. However, SERCA 2B has a 2-
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fold lower turnover rate for Ca2+ uptake relative to SERCA 2A (Lytton, et al.,

1992; Verboomen, et al., 1994).

SERCA pump activation can be regulated by the proteins

phospholamban (Arkin, et al., 1997) and sarcolipin (Lee, 2002).

Phospholamban (PLN), a small phosphoprotein, is the key regulator of SR Ca2+

Fig. 1.1. Translocation of Ca2+ into the SR: Simple diagrammatic representation of the

translocation of Ca2+ from the cytosol of the cell into theER/SR lumen by means of the action

of SERCA pumps. Briefly, 2 Ca2+ ions bind to high affinity sites on the pump (E) resulting in a

conformational change in the pump (E-Ca2) Phosphorylation of ATP provides the energy for

the next step and the inorganic phosphate (Pi) is bound to the pump inducing a further

conformational change (E-P(Ca2)) which has a much lower affinity for Ca2+ resulting in loss of

Ca2+ to the SR lumen (E-P). Following this loss of Ca2+ to the lumen the pump undergoes a

further change losing Pi to the cytosol and re-enetring its original conformation complete with

high affinity Ca2+ binding sites.

cycling through its reversible inhibitory effect on SERCA pumps. It is present

in cardiac, smooth and slow-twitch skeletal muscle. However, its regulatory

effects have mainly been examined in cardiac muscle (Briggs, et al., 1992). In
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vitro investigations have identified three distinct sites at which PLN can be

phosphorylated by various protein kinases: serine 10 by PKC; serine 16 by

cAMP- or cGMP-dependent protein kinase; and threonine 17 by a Ca:CaM-

dependent protein kinase. The phosphorylation of PLN is associated with

stimulation of the initial rates of cardiac SERCA Ca2+ uptake at low Ca2+

concentrations which results in an overall increase in the affinity of the SERCA

2A for Ca2+ (Kim, et al., 1990). This finding has led to the current view of PLN

as a reversible inhibitor of the SERCA 2A activity. Sarcolipin (SLN) is a small

SR membrane protein which interacts with, and inhibits SERCA pumps by

lowering both their apparent Ca2+ affinity and Vmax. The transmembrane

sequence of SLN is similar to that of PLN, but it differs in its C-termini, where

SLN ends with a more hydrophilic sequence than PLN. The structural

similarity of the transmembrane domains of SLN and PLN indicates that SLN

is a homologue of PLN (Odermatt, et al., 1998). Other than its effects on the

Ca2+ affinity and Vmax of SERCA pumps, SLN is able to induce a

superinhibitory effect of PLN to SERCA (Asahi, et al., 2002). This is due, in

part, to the fact that SLN can bind directly to PLN and prevent polymerisation

of PLN resulting in an increase in the active form of PLN. PLN has a higher

affinity for the SERCA binding sites than SLN. Thus, SLN may have

additional interactions with the SERCA-PLN complex. Therefore, SLN can

inhibit SERCA either by direct interaction with SERCA pumps, or through

stabilisation of the SERCA-PLN complex.

After pumping into the SR, Ca2+ is bound by specific buffering proteins

calrecticulin or calsequestrin. These two proteins are both able to bind large

amounts of Ca2+, allowing the Ca2+ store within the SR to reach concentrations

of around 10-15 mM (Van Breemen and Saida, 1989). The binding of Ca2+ to

these proteins allows for large amounts of Ca2+ to be contained within the SR

without the problem of the precipitation of insoluble Ca2+ phosphate. The high

capacity for Ca2+ storage is the result of the presence of Ca2+-binding proteins.

Calsequestrin is a binding protein first isolated from striated muscle SR. It has

high binding capacity (50 binding sites per molecule) of low affinity (Kd = 1

mM; Campbell, et al., 1983). Binding of Ca2+ to calsequestrin is believed to

require only a pair of acidic residues, which is in contrast to more complex

“EF-hands” which bind Ca2+ in other Ca2+ binding proteins (e.g. calmodulin).
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Ca2+ binding is driven by a gain in entropy when molecules of water

surrounding the Ca2+ ion are liberated during Ca2+ binding (Krause, et al.,

1991). Calsequestrin is a very acidic molecule, with 33-46 % of its residues

being acidic. The C terminus of calsequestrin is believed to account for around

26 % of the total Ca2+ binding (Shin, et al., 2001). A similar protein,

calreticulin, has been found in the endoplasmic/sarcoplasmic reticulum of most

other cells. This protein has 20 to 40 low affinity binding sites and one high

affinity site (Michalak, et al., 1992; Krause and Michalak, 1997; Michalak, et

al., 1999). These Ca2+ binding sites are also located in the C-domain, towards

the C-terminus of the molecule which is a highly acidic region (Nakamura, et

al., 2001). Unfortunately no structural information is available at present for

the C-terminal domain of calrecticulin. The low affinity of the Ca2+ binding

sites within these two molecules, calrecticulin and calsequestrin, make the Ca2+

bound to them readily available for release from the ER/SR.

1.3.2 Mechanism of smooth muscle contraction

In smooth muscle binding of Ca2+ to Calmodulin and subsequent

activation of myosin light chain kinase (MLCK), results in the phosphorylation

of the serine residue at position 19 on MLC. This allows the activation of

myosin ATPase by actin to occur and thereby contraction of the muscle

(Sweeney, et al., 1994). An eventual fall in the intracellular Ca2+ concentration

will cause inactivation of myosin light chain kinase and dephosphorylation of

the myosin light chain by myosin light chain phosphatase (MLCP),

deactivation of the actomyosin ATPase and subsequent relaxation of the

smooth muscle (Driska, et al., 1989; Gong, et al., 1992). Although the

concentration of intracellular Ca2+ is an important determinant in mediating the

contractile state of the cell, smooth muscle can generate tone in the presence of

relatively low Ca2+ concentrations. Indeed, the active MLCK to active MLCP

ratio is a major determining factor underlying the contractile state of a smooth

muscle cell. The basis of contraction in smooth muscle is very similar to that of

striated muscle. Smooth muscle contains cytoplasmic and membrane-bound

dense bodies which correspond to the Z-lines seen in striated muscle, this is

where actin binds (Somlyo and Somlyo, 1991). Smooth muscle myosin is a
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hexamer consisting of two heavy chains and four light chains, two MLC20 and

two LC17 chains. Smooth muscle and striated muscle vary in their energy

metabolism. Unlike striated muscle, smooth muscle is able to maintain tone

even in the presence of a lower Ca2+ concentration than that required for force

development (Morgan and Morgan, 1982), and in the absence of significant

MLC20 phosphorylation (Dillon, et al., 1981). This is described as the ‘Latch’

theory (Fig. 1.2). In this proposal the dephosphorylation of MLC20 which has

already formed a cross bridge with actin, does not result in the dissociation of

the actin and myosin cross bridge, it merely alters the detachment rate by

forming a relatively long lasting ‘latch bridge’ (Horowitz, et al., 1996).

Fig. 1.2 The ‘latch bridge’ theory of smooth muscle contraction: The above diagram shows

an overview of the processes involved in the contraction of smooth muscle. Highlighted in red

is the process known as the latch bridge which allows smooth muscle to generate maximum

contractile force with little energy expenditure. MLCK: myosin light chain kinase; M: myosin;

A: actin.

1.3.3 Ca2+ sensitisation of smooth muscle

As mentioned above, contraction of smooth muscle cells is not entirely

dependent upon a sustained elevation of cytoplasmic Ca2+ concentration.

Indeed, the major determinant of cross-bridge cycling within smooth muscle is

the activated MLCK to activated MLCP ratio. This ratio can be regulated by a

number of signalling pathways which will be discussed below.



27

Investigations using Ca2+ sensitive fluorescent probes suggested that

force generated at a given intracellular Ca2+ concentration could vary

dependent upon the initial stimuli. Thus, a number of studies have shown that

agonist-induced force is often higher than the force generated by

depolarisation, induced by application of KCl, at similar or even lower

intracellular Ca2+ concentrations in smooth muscle preparations (Bradley and

Morgan, 1987; Himpens and Casteels, 1990). Studies in smooth muscle

preparations that were permeabilised but retained G protein-coupled receptors

confirmed that the mechanism underlying these observations was agonist-

induced Ca2+ sensitisation of the contractile apparatus (Kitazawa, et al., 1989).

A number of investigations have shown that this sensitisation of the contractile

apparatus is due to a decrease in the activity of MLCP via a number of

pathways, indeed the RhoA : Rho kinase (ROK) pathway is believed to be the

most important modulator of Ca2+ sensitivity in smooth muscle (Somlyo and

Somlyo, 2003).

The Rho proteins are a subfamily of the small GTP-binding proteins

which act as molecular “on-off” switches controlling a number of cellular

processes (Etienne-Manneville and Hall, 2002). The Rho family of small G

proteins have been implicated in a number of physiological processes involving

changes in the actin cytoskeleton within cells, such as cell adhesion, motility,

migration and contraction (Takai, et al., 1995; Narumiya, et al., 1997). There

are, as yet, 20 identified members of the Rho family in mammalian cells

(Burridge and Wennerberg, 2004). The Rho protein family can be further

subdivided into three major classes: 1) Rho proteins, consisting of RhoA,

RhoB and RhoC, 2) Rac proteins, consisting of Rac1, Rac2, Rac3 and 3),

RhoG and Cdc42 proteins, consisting of Cdc42, TC10, TCL, Wrch1 and

Chp/Wrch2. A number of studies carried out in cells utilising either

constitutively active, or dominant-negative forms of Rho proteins suggest that

RhoA regulates the assembly of contractile actomyosin filaments (Ridley and

Hall, 1992), while Rac and Cdc42 regulate the polymerisation of actin to form

specific peripheral structures within cells (Ridley, et al., 1992; Nobes and Hall,

1995).

As previously mentioned, Rho proteins act as molecular switches which

cycle between active-GTP bound and inactive GDP-bound forms. It is in the
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GTP-bound form that they mediate cellular processes via interactions with

downstream effectors. This cycle is under the control of three groups of

regulatory proteins (Fig 1.3; Van Aelst and D'Souza-Schorey, 1997; Etienne-

Manneville and Hall, 2002). In the inactive GDP-bound form, Rho proteins are

locked in the cytosol by guanine dissociation inhibitors (GDIs) which prevent

the cycle from occurring (Fig. 1.3). There are currently 4 GDIs identified

within mammalian tissues (Etienne-Manneville and Hall, 2002) and they

inhibit activation of Rho proteins by preventing translocation to the plasma

membrane by binding Rho proteins at the prenylation site essential for

insertion into the PM. They also mask the ‘switch 1’ and ‘switch 2’ regions of

GEFs

RhoA GDI

GAPs

RhoA

RhoA

ROK

GDI

GDP

GTP

GTP

Plasma Memebrane

Upstream signals
(G protein-coupled receptor agonists, etc)

+

MLCP

MLCP

P

(inactive)

(active)

+

Actin:MLC P
(contracted)

MLC
(relaxed)

Fig. 1.3 The RhoA:ROK pathway: The above diagram shows a schematic representation of

the processes involved in Ca2+ sensitisation as mediated by the small G protein RhoA and its

downstream target ROK. GEF: guanine nucleotide exchange factors; GDI: guanine

dissociation inhibitors; GAP: GTPase-activatiing proteins; MLCP: myosin light chain

phosphatase; ROK: Rho kinase; MLC: myosin light chain.

Rho proteins required for the exchange of GDP for GTP. Activation of G

protein coupled receptors (GPCR) and/or non-receptor tyrosine kinases

(NRTK) leads to the activation of guanine nucleotide exchange factors (GEFs)

which catalyse the exchange of GDP for GTP to activate Rho proteins (Fig.
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1.3). To date, 50 GEFs have been identified in mammalian tissue (Etienne-

Manneville and Hall, 2002). Activation of Rho proteins via exchange of GDP

for GTP and translocation to the PM via unmasking of the prenylated carboxy

terminus leads to activation of downstream effector molecules, such as Rho

Kinases (ROK; Fig 1.3). Inactivation of Rho proteins occurs via the intrinsic

GTPase activity of the molecules which can be accelerated via the action of

GTPase-activating proteins (GAPs; Moon and Zheng, 2003). There are 70

GAPs identified so far in mammalian cells (Etienne-Manneville and Hall,

2002). To date, there have been over 60 downstream targets identified for Rho

proteins in mammalian cells, highlighting the complexity and importance of

the Rho signalling pathway in the regulation of cellular functions (Etienne-

Manneville and Hall, 2002).

One of the most important targets of RhoA in vascular smooth muscle

is the serine threonine protein kinase ROK. ROK is activated by the binding of

activated GTP:RhoA to the C-terminus of ROK, thereby uncovering the

catalytic phosphotransferase domain (Gong, et al., 1997; Amano, et al., 2000).

Arachadonic acid is able to activate ROK independently of RhoA by binding at

a separate site on ROK (Amano, et al., 2000; Araki, et al., 2001). Indeed

arachadonic acid has been shown to contribute to agonist induced Ca2+-

sensitisation via Ca2+-independent phospholipase A2 (PLA2; Araki, et al., 2001)

Once activated ROKs can act on a number of downstream targets including

MLCP and LIM Kinase. ROK phosphorylates the 130kDa myosin binding site

(MBS) of MLCP (Kimura, et al., 1996). This inhibits MLCP as it prevents the

catalytic subunit of MLCP (PP1c) from dephosphorylating MLC (Kimura, et

al., 1996; Somlyo and Somlyo, 2003). Thus, activation of ROK results in an

increase in the activated MLCK to MLCP ratio, thereby increasing Ca2+

sensitivity within the smooth muscle cell. ROK is also able to inhibit MLCP by

phosphorylating the PKC substrate CPI-17, a phospho-protein which acts as an

inhibitory modulator of MLCP (Koyama, et al., 2000). Also, ROK has been

shown to be able to directly phosphorylate MLC itself to promote Ca2+- and

MLCP-independent constriction of vascular smooth muscle. However, the

physiological relevance of this remains unclear (Kureishi, et al., 1997). As

mentioned above, ROK is also able to promote contraction of smooth muscle

through an inhibitory interaction with LIM kinase which disrupts the actin
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depolymerising protein cofilin resulting in stabilisation of filamentous actin

(Maekawa, et al., 1999). Thus, ROK is able to promote increased constriction

of vascular smooth muscle and promote Ca2+ sensitisation through downstream

effects on a number of molecular targets.

1.4 Ca2+ mobilising second messengers

It is clear that agonist-specificity is determined, in part, by the release

of Ca2+ from intracellular stores in a manner dependent upon the generation

and action of second messengers and their associated Ca2+ release channels.

During the process of pharmacomechanical coupling in smooth muscle, it has

long been accepted that many G protein-coupled receptors induce the cleavage

of PIP2 to produce diacyl glycerol and IP3, the latter of which can lead to the

activation of one or more of the known IP3 receptor subtypes on the SR

resulting in the release of Ca2+ from this store (Somlyo and Somlyo, 1994;

Berridge, et al., 2000). There is also now a growing body of evidence to

support a role for pyridine nucleotides as Ca2+ mobilizing messengers within a

number of cell types including smooth muscle (Li, et al., 2003). Consistent

with this proposal the enzymes for the synthesis and metabolism of NAADP

(Wilson, et al., 1998; Yusufi, et al., 2002) and cADPR (Wilson, et al., 2001)

have been shown to be associated with smooth muscle, along with other cell

types (Walseth, et al., 1991). In addition to this evidence, a number of recent

studies have suggested that the spatiotemporal pattern of Ca2+ signals may also

be determined via the selection of different intracellular Ca2+ stores in a

manner dependent on the nature of the Ca2+ mobilizing messenger(s) recruited

by a given stimulus (Lee and Aarhus, 2000; Churchill, et al., 2002; Masgrau, et

al., 2003; Mitchell, et al., 2003).

1.4.1 Ca2+ mobilisation by IP3

1.4.1.1 Synthesis and metabolism of IP3

The Ca2+ mobilizing properties of IP3 were first described in the

blowfly salivary gland (Berridge, 1982), and in mammalian pancreatic acinar
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cells (Streb, et al., 1983). Since this discovery a large volume of research has

been carried out and IP3 is now firmly regarded as the ‘classical’ Ca2+

mobilizing messenger within many cell systems. As mentioned previously, IP3

is generated from PIP2 through the actions of phospholipase C (PLC) isoforms,

PLC, PLC and PLC. PLCis activated by the actions of atypical Gq

subunits of membrane bound G-proteins (Rebecchi and Pentyala, 2000), while

PLC is activated through the phosphorylation of three tyrosine residues by

receptor tyrosine kinases (Wahl, et al., 1989a; Wahl, et al., 1989b; Kim, et al.,

1991). PLC lacks the SRC homology domains, these are highly conserved

noncatalytical structural sequence domains detected initially in the src

oncogene, which are important for the tyrosine kinase activation of PLC. PLC

is activated by the Gq subunits in a similar fashion to PLC. In addition to

this, PLC can also be activated by cytosolic Ca2+ concentrations (Ochocka and

Pawelczyk, 2003). Once liberated IP3 moves through the cytoplasm of the cell

and binds to specific IP3 receptors (IP3Rs) in order to initiate Ca2+ mobilization

(Marshall and Taylor, 1993). IP3 can be inactivated by two known metabolic

pathways. Either via phosphorylation by a phosphatidylinositol-3-kinase

(Batty, et al., 1985), or by dephosphorylation via the actions of a 5-phosphatase

(Downes, et al., 1982; Berridge, et al., 1983).

1.4.1.2 Cells express different IP3Rs, each with varying sensitivities to IP3

The IP3Rs are tetramers of subunits, each consisting of around 27,000

amino acids. They share a common evolutionary origin with other members of

the family of intracellular Ca2+ release channels such as the ryanodine receptors

(RyRs; Furuichi, et al., 1989). The IP3 binding domain is located at the N-

terminal end of the IP3Rs (Mignery and Sudhof, 1990), whilst the C-terminal

end traverses the ER/SR membrane to form the Ca2+ channel domain

(Michikawa, et al., 1994). There are three known IP3R isoforms, IP3R1, IP3R2

and the IP3R3. Each of these Subtypes of IP3R have been shown to express a

single IP3 binding site consisting of two linked domains located towards the N-

terminus of the subunit. One of these domains expresses IP3 binding capability,

while the other potentiates this binding but cannot bind IP3 alone (Yoshikawa,
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et al., 1999). Basic conserved residues within these sites are likely to mediate

the interaction between the IP3R subunits and the phosphate groups of IP3

(Yoshikawa, et al., 1999). Most investigations into the effects of IP3 on the

Ca2+ release mediated through the opening of IP3Rs have shown a requirement

for IP3 binding to several, if not all of the subunits of the receptor in order for

the channel to open (Meyer, et al., 1988; Dufour, et al., 1997; Marchant and

Taylor, 1997).

The IP3R subtypes differ in their affinities for IP3 with the sensitivity of

the receptors to IP3 being in the order of IP3R2 > IP3R1 > IP3R3 (Miyakawa, et

al., 1999). The IP3R subtypes have been shown to form both homotetrameric

and heterotetrameric channels. However, the evidence that IP3R subunits form

heterotetramers is limited to studies of reconstituted receptors in cell lines and,

as yet, heterotetrameric compositions of the receptor have not been described

in wild type cells (Patel, et al., 1999; Taylor, et al., 1999). Although IP3R

subtypes are co-expressed in the majority of cells, the relative amount varies

between tissues and has also been shown to change during development

(Newton, et al., 1994; Wojcikiewicz, 1995). Smooth muscle has been shown to

express the IP3R1 in high amounts. In phasic smooth muscle, for example that

of the vas deferens, IP3R1 is located mainly in the peripheral SR (Villa, et al.,

1993; Nixon, et al., 1994). Tonic smooth muscle, such as arterial smooth

muscle cells, have been shown to express a greater amount of central SR than

phasic smooth muscle, and, with this a larger amount of IP3R1 being expressed

upon the central SR membrane than upon the peripheral SR (Nixon, et al.,

1994). The other IP3R subtypes are also expressed in arterial smooth muscle,

but this expression appears to be dependent on the developmental status of the

tissue. IP3R3 is the predominant receptor subtype in neonatal smooth muscle

but its levels decline and IP3R1 expression levels increase as the animal

develops (Tasker, et al., 1999). IP3R2 has also been shown to be higher in

neonatal smooth muscle cells (Tasker, et al., 2000). The cellular distribution of

the different subtypes has been shown to differ in studies carried out using

primary cultures of rat aorta smooth muscle cells (Sugiyama, et al., 2000), and

freshly isolated rat aorta smooth muscle (Tasker, et al., 2000). In these studies

it was shown that IP3R1 is found throughout the cytoplasm, with higher IP3R2

expression around the plasma membrane and perinuclear area and IP3R3 found
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mostly in the perinuclear region (Sugiyama, et al., 2000; Tasker, et al., 2000).

However, expression of receptors increases in proliferating cultured cells when

compared to freshly isolated non-proliferative cells, particularly with respect to

type 2 and type 3 receptors (Tasker, et al., 2000). This evidence suggests that

the IP3R2 and IP3R3 receptors may have an important role in arterial smooth

muscle development.

1.4.1.3 Regulation of IP3Rs by cytoplasmic Ca2+ and IP3

IP3Rs are not only under the influence of the IP3 concentration within

the cell, but can also be influenced by the cytoplasmic Ca2+ concentration

within the cell in either a stimulatory or inhibitory manner (Hirata, et al., 1984;

Iino, 1990) . The exact area to which Ca2+ binds to exert its

stimulatory/inhibitory effects on the IP3R, and the exact interplay between IP3

and Ca2+ in gating IP3R activity remains an area of keen debate in the field

(Taylor and Laude, 2002). As early as 1984, Hirata and colleagues showed that

the release of Ca2+ from IP3Rs in macrophages could be inhibited by

micromolar concentrations of Ca2+ (Hirata, et al., 1984). A number of years

after this, Iino and colleagues showed that low concentrations of Ca2+ were

able to potentiate the Ca2+ release elicited by IP3 and that the Ca2+ mobilised

via IP3R activation was under biphasic regulation (Iino, 1990). This biphasic

regulation of IP3Rs allows the Ca2+ liberated through receptor activation to

regulate further Ca2+ release, thus presenting an extremely rapid, and very

useful feedback mechanism to the cell (Iino and Endo, 1992).

1.5 Ca2+ mobilization by pyridine nucleotides

1.5.1 An historical overview

Four years after the discovery of the Ca2+ mobilizing messenger IP3 by

Berridge and colleagues (Streb, et al., 1983), Lee and co-workers identified

two further mechanisms of Ca2+ mobilisation in the sea urchin egg, using

purified microsomes and egg homogenates (Clapper, et al., 1987). One of these

mechanisms was initiated by the addition to sea urchin egg homogenate of -
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nicotinamide adenine dinucloetide (-NAD+), whilst the other was initiated by

-nicotinamide adenine dinucloetide phosphate (-NADP+). Each of these

mechanisms proved unique as they were shown to be independent of

mitochondria and of IP3-dependent Ca2+ release mechanisms. One of the most

significant findings was that the addition of -NAD+ caused endoplasmic

reticulum (ER) Ca2+ release after a significant delay of around 1 – 2 minutes.

This delay indicated that a -NAD+ metabolite initiated ER Ca2+ release. Two

years after this study, the molecular formula of the -NAD+ metabolite was

elucidated (Lee, et al., 1989) and the novel cyclic structure of the metabolite

was finally characterized and shown to be cADPR four years after this (Kim, et

al., 1993; Lee, et al., 1994b). By this time, cADPR and the enzymes which are

responsible for its synthesis and subsequent metabolism had already been

shown to exist in a number of mammalian tissues (Walseth, et al., 1991). The

Ca2+ release mediated by cADPR had also been characterized as utilising ER

Ca2+ stores through the activation of RyRs (section 1.5.2). The Ca2+ release

mediated by -NADP+ occurred without the delay seen with -NAD+. It was,

however, facilitated by an alkaline pH, suggesting that Ca2+ release in sea

urchin eggs in response to the addition of -NADP+ was initiated by an active

metabolite of -NADP+ (Clapper, et al., 1987). Studies on this active

metabolite revealed that it was NAADP (Lee and Aarhus, 1995). This differs

from -NADP+ only by the substitution of a carboxyl group for the amide

group of the nicotinamide moiety, and was shown to be a contaminant present

in the original -NADP+ preparations used by Clapper and colleagues (1987).

NAADP had been identified a number of years previously but with no function

attributed to it (Bernofsky, 1980). The receptor for NAADP and the exact

mechanisms by which NAADP facilitates Ca2+ release within cells have yet to

be fully characterised. It is clear, however, that NAADP initiates Ca2+ release

from cellular stores other than the SR or mitochondria (Lee and Aarhus, 1995;

Genazzani and Galione, 1996; Churchill and Galione, 2001; Boittin, et al.,

2002; Churchill, et al., 2002).
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Fig. 1.4 Possible intracellular routes of synthesis and metabolism for cADPR and

NAADP.

The enzymes which synthesise and metabolise cADPR and NAADP

have been isolated and shown to be present in a number of preparations other

than the sea urchin egg, including all major mammalian organs (Rusinko and

Lee, 1989; Lee and Aarhus, 1993; Chini and Dousa, 1995; Wilson, et al., 1998;

Wilson, et al., 2001). The enzyme in question was named ADP-ribosyl cyclase

due to the fact that it removes nicotinamide from -NAD+ to yield cADPR

(Lee and Aarhus, 1991). From this growing family of enzymes the first one to

be sequenced was a soluble ADP-ribosyl cyclase of approximately 36 kDa. It

was isolated from the ovotestis of the sea-slug Aplysia californica. Following

this a type II membrane glycoprotein CD38 was identified as a mammalian

homolog to the Aplysia cyclase (States, et al., 1992; Howard, et al., 1993). Hot

on the heals of this discovery was the identification of a second cell surface

antigen with ADP-ribosyl cyclase activity, CD157 (Hirata, et al., 1994; Itoh, et

al., 1994). Most recently, a membrane bound ADP-ribosyl cyclase was isolated
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from the microscopic unicellular organism Euglena (Masuda, et al., 1999).

However, the sequence of this cyclase has yet to be identified.

Of the two mammalian homologs of the Aplysia cyclase CD38 and

CD157, more is known about CD38. As mentioned previously, it is a type II

membrane glycoprotein originally identified as a lymphocyte antigen important

in cell-cell interactions and in the activation of natural killer cells (Deaglio, et

al., 2002). It has a single membrane-spanning domain located at the N

terminus, with the ADP-ribosyl cyclase site situated in the extracellular

domain. Given that the ADP-ribosyl cyclase site is expressed on the external

surface of the plasma membrane, this would seem to preclude the enzyme from

a role in intracellular Ca2+ signalling. However, a number of studies have

provided data to support two hypotheses consistent with this idea. It has been

suggested that CD38 may act as a cADPR transporter during the catalytic

process allowing newly synthesized cADPR to be delivered to the intracellular

environment leading to subsequent Ca2+ release (Franco, et al., 1998).

Supporting this hypothesis are the findings that extracellular application of -

NAD+ leads to the mobilization of intracellular Ca2+ stores in cerebellar

granule cells (De Flora, et al., 1996), astrocytes (Verderio, et al., 2001) and

fibroblasts (Franco, et al., 2001). In osteoclasts, the extracellular application of

-NAD+ leads to the mobilization of Ca2+ stores and subsequent bone

resorption which is blocked by the application of anti-CD38 antibodies (Sun, et

al., 1999). A second suggestion is that CD38 may be internalized upon the

binding of -NAD+ which would deliver newly synthesised cADPR directly to

the cytoplasm (Zocchi, et al., 1996; Franco, et al., 2001). A significant finding

to support a role for CD38-derived cADPR in intracellular Ca2+ signalling is

the finding that CD38 is expressed on the surface of intracellular organelles

(Yamada, et al., 1997) such as the nuclear membrane (Adebanjo, et al., 1999;

Khoo, et al., 2000). The stable expression of CD38 in the 3T3 and HeLa cell

lines is accompanied by the consumption of -NAD+, cADPR synthesis and

the mobilization of ER Ca2+ stores (Zocchi, et al., 1998). Moreover, studies on

CD38 knockout mice have shown a decrease in endogenous cADPR levels in a

number of tissues (Kato and Staub, 1966; Cockayne, et al., 1998). Also,

cADPR-dependent Ca2+ signalling pathways in pancreatic acinar cells and
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pancreatic -cells are defective in CD38 knockout mice, although these cells

respond normally to the intracellular application of cADPR (Kato, et al., 1999;

Fukushi, et al., 2001). Takahashi and colleagues have recently reported that

cADPR levels in CD38 knockout mice are one tenth of the level found in wild

type mice, which may be associated with abnormalities in the Ca2+ handling

capabilities and contractility of cardiac myocytes (Takahashi, et al., 2003).

This finding appears to conflict with previous reports suggesting that CD38

knockout mice showed no deficiency in cADPR synthesis in cardiac and brain

tissue (Partida-Sanchez, et al., 2001). The latter report suggests that significant

cADPR synthesis may still occur in CD38 knockout mice and that there may

be an unidentified ADP-ribosyl cyclase present in mammalian tissue which

may be important in the regulation of cardiovascular function. Consistent with

this hypothesis is the finding in arterial smooth muscle that the predominant

ADP-ribosyl cyclase is associated with the microsomal fraction and not the

plasma membrane, nuclear or cytosolic fractions (Wilson, et al., 2001). This

cyclase remains to be identified as does the cyclase that has been shown to be

associated with the SR of cardiac muscle (Meszaros, et al., 1997), the

mitochondria of liver (Ziegler, et al., 1997) and the cytosolic fractions isolated

from sea urchin eggs, mammalian brain (Matsumura and Tanuma, 1998) and

from T-lymphocytes (Guse, et al., 1999). However, it has been suggested that

CD38 isoforms may represent the intracellular ADP-ribosyl cyclase in

mammalian cells (Howard, et al., 1993).

Of the four members of this family, which have been characterised,

three have been shown to be multi-functional enzymes. CD38 and CD157 have

both been shown to catalyse the synthesis of cADPR from -NAD+ and the

subsequent hydrolysis of cADPR to ADP-ribose (Howard, et al., 1993; Hirata,

et al., 1994). The primary product of both cyclases is ADP-ribose due to the

fact that the hydrolase activity within each is dominant. However, a net

increase in cADPR levels is accumulated from -NAD+. Given that a net

increase in cADPR was seen but the hydrolase activity is dominant, it has been

suggested that an increase in ADP-ribose production could inhibit, by a

negative feedback mechanism, cADPR hydrolase activity of the cyclase

thereby increasing cADPR levels (Genazzani, et al., 1996a). Although the
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known ADP-ribosyl cyclases function in a stereospecific manner, a number of

-NAD+ analogues can be efficiently cyclised in order to produce stable or

fluorescent products that may be used in order to study enzyme regulation

(Graeff, et al., 1994). These products may also be used as cADPR antagonists

or mimetics (Walseth and Lee, 1993; Sethi, et al., 1997; Walseth, et al., 1997).

Conversely the hydrolase activity is extremely substrate specific with closely

related analogues to cADPR being resistant to hydrolysis (Graeff, et al., 1994;

Sethi, et al., 1997; Wong, et al., 1999). By contrast, cADPR is also uniquely

stable when faced with common hydrolytic enzymes found within the cells.

Along with their ability to produce and degrade cADPR, the Aplysia

cyclase and CD38 have also been shown to synthesise NAADP through the

substitution of nicotinic acid for the nicotinamide group of -NADP+ (Aarhus,

et al., 1995). Along with this finding it has been shown that the microsome

associated ADP-ribosyl cyclase isolated from homogenates of pulmonary

artery smooth muscle has the ability to synthesise and hydrolyse cADPR, and

to synthesise NAADP (Wilson, et al., 1998; Wilson, et al., 2001). In contrast to

cADPR, NAADP does not appear to be metabolized by any of the known

ADP-ribosyl cyclases. However, alkaline phosphatases within the cell

metabolise NAADP to yield NAAD (Kontani, et al., 1993), and nucleotide

pyrophosphatase yields 2’-phospho-AMP and nicotinic acid mononucleotide

(De Flora, et al., 2000).

1.5.2 Ca2+ mobilization by cADPR via ryanodine receptors

RyRs were first identified by the ability of the plant alkaloid ryanodine

to block Ca2+ mobilization from the SR/ER alone. Since their discovery they

have been shown to be present in a number of cell types including skeletal

(Inui, et al., 1987a), cardiac (Inui, et al., 1987b) and smooth muscle

(Herrmann-Frank, et al., 1991). There have to date been three mammalian

subtypes of the RyR identified, namely RyR1 (Inui, et al., 1987b; Lai, et al.,

1988; Takeshima, et al., 1995), RyR2 (Inui, et al., 1987a; Takeshima, et al.,

1998) and RyR3 (Hakamata, et al., 1992; Sorrentino, et al., 1993; Takeshima,

et al., 1996) with all three having been shown to be present in vascular smooth
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muscle (Herrmann-Frank, et al., 1991; Neylon, et al., 1995; Jeyakumar, et al.,

1998; Coussin, et al., 2000; Mironneau, et al., 2001).

Ca2+ may activate RyRs in its own right or facilitate further Ca2+ release

via RyRs by positive feedback, or Ca2+-induced Ca2+-release (CICR; Endo, et

al., 1970; Ford and Podolsky, 1970; Fabiato and Fabiato, 1975; Fabiato, 1983;

Sutko and Airey, 1996a). CICR offers cells the facility to amplify small, highly

localized Ca2+signals into global Ca2+waves via the recruitment of

neighbouring RyR complexes (Fig. 1.3), and with a high margin of safety due

to the limitations placed on Ca2+ diffusion (≤ 5m; Allbritton, et al., 1992) by

the buffering capacity within the cytoplasm. Thus, CICR may recruit, in

concert, discrete clusters of RyRs to initiate highly localized, elementary Ca2+

release events such as Ca2+ sparks (Cheng, et al., 1993; Niggli, 1999; Jaggar, et

al., 2000). Alternatively, once a given threshold concentration is breached,

Ca2+ may induce a propagating global Ca2+ wave by the progressive

recruitment of RyR clusters distant from the site of initiation by CICR. As

mentioned previously, cADPR is an endogenous regulator of RyRs (Galione, et

al., 1991) and may either activate RyRs directly or may facilitate CICR via

RyRs (Fig. 1.5; Galione, et al., 1991; Meszaros, et al., 1993). Not surprisingly,

given this fact, Ca2+ has also been shown to sensitise RyRs to activation by

cADPR (Tanaka and Tashjian, 1995; Panfoli, et al., 1999). Therefore, when

studying the regulation by cADPR of RyRs in a given cell type, consideration

of the combinatorial effects of Ca2+ and cADPR is of fundamental importance,

particularly when it comes to determining the threshold for activation of RyRs

by either agent. Given that RyR activation by cytoplasmic Ca2+ is augmented

by the luminal Ca2+ concentration of the SR via a luminal Ca2+ sensor

(Gilchrist, et al., 1992; Tripathy and Meissner, 1996; Gyorke and Gyorke,

1998; Ching, et al., 2000; Beard, et al., 2002), the luminal Ca2+ concentration

of the SR may also influence cADPR-dependent regulation of RyR function

(Sitsapesan and Williams, 1995).
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Fig. 1.5 Schematic diagram depicting the regulation of Ca2+-induced Ca2+-release via

RyRs by cADPR.

The three subtypes of RyR have distinct functions and tissue-specific

distributions have been identified. Furthermore, it has been suggested that each

subtype may offer, in part, the functional diversity required of Ca2+ signals

within a single cell type (Yamazawa, et al., 1996). It is significant, therefore,

that RyR1, RyR2 and RyR3 may all be present in vascular smooth muscle

(Herrmann-Frank, et al., 1991; Neylon, et al., 1995; Jeyakumar, et al., 1998;

Coussin, et al., 2000; Mironneau, et al., 2001), not least because all three

subtypes of the receptor can be expressed in a cADPR-sensitive form

(Giannini, et al., 1992; Sonnleitner, et al., 1998; Cui, et al., 1999). Thus

different RyR subtypes may not only coordinate differential Ca2+ signals in

arterial smooth muscle, but might mediate distinct Ca2+ signals to elicit

different functional responses in a single smooth muscle cell. Support for this

view may be derived from the fact that different RyR subtypes exhibit different

sensitivities to Ca2+ and cADPR, respectively (Chu, et al., 1993; Sierralta, et

al., 1996; Chen, et al., 1997a; Jeyakumar, et al., 1998; Sonnleitner, et al., 1998;

Cui, et al., 1999; Murayama, et al., 2000).
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1.5.3 cADPR does not bind directly to ryanodine receptors

High affinity, binding sites specific for cADPR have been shown to

exist in the sea urchin egg (Lee, 1991), and in smooth muscle from mammals

(Kuemmerle and Makhlouf, 1995). However, a number of photoaffinity

labelling studies have suggested that the polypeptides in question are, in fact,

far too small to be RyRs (Walseth and Lee, 1993). To add to this, detailed

characterization of cADPR binding sites within the sea urchin egg have

revealed no correlation between [32P]cADPR binding and the effects of a

number of known regulators of RyR function (Thomas, et al., 2001). This

would suggest that the RyR is a down-stream target of the cADPR receptor.

Calmodulin is known to have both inhibitory and stimulatory effects on

RyR function (Balshaw, et al., 2002). In its Ca2+-free state it can stimulate RyR

opening (Rodney, et al., 2001; Samso and Wagenknecht, 2002). Whilst in its

Ca2+-bound state it appears to be inhibitory (Meissner and Henderson, 1987).

Also, the Ca2+ dependency of calmodulin mirrors the bell-shaped response of

RyRs to Ca2+, with low concentrations of Ca2+ activating and high

concentrations of Ca2+ inhibiting. Furthermore, the removal of calmodulin

from RyRs in a cell free system has been shown to abolish the activation of

RyRs by cADPR (Lee, et al., 1994a). Thus, it was suggested that calmodulin

may be required for cADPR-mediated modulation of CICR within cells.

Indeed, the presence of calmodulin does sensitize RyRs to activation by

cADPR, Ca2+ and other classical modulators of RyR function (Lee, et al.,

1995; Tanaka and Tashjian, 1995; Fruen, et al., 2000; Thomas, et al., 2001).

A number of recent investigations have suggested a role for the FK-506

binding proteins as the potential cADPR binding protein. These proteins are

known to bind to and modulate RyR function (Timerman, et al., 1993;

Timerman, et al., 1995; Ahern, et al., 1997). They bind to RyRs and modulate

their function in a way that may be important in the co-ordination of Ca2+

signalling (Brillantes, et al., 1994; Marx, et al., 1998). It has been reported that

the blockade, removal or dissociation of FKBP12.6 from RyRs results in the

abolition of activation by cADPR in pancreatic islets (Noguchi, et al., 1997)

and coronary artery smooth muscle cells (Tang, et al., 2002). Therefore, it has
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been proposed that FKBP12.6 dissociates from the RyR upon binding of

cADPR (Noguchi, et al., 1997; Tang, et al., 2002). However, the binding

affinity of recombinant FKBPs to RyR3 was unaffected by cADPR addition

(Bultynck, et al., 2001). Also, it has been noted that the FKBP antagonists

rapamycin and FK-506 (Harding, et al., 1989; Ahern, et al., 1997) were

without effect on cADPR binding in sea urchin eggs (Thomas, et al., 2001).

Therefore, it would appear that if the FKBP proteins do represent a cADPR

binding protein, they may act as such in a cell-specific or RyR subtype/splice

variant specific manner.

1.5.4 cADPR-dependent Ca2+ signalling in vascular smooth muscle

Studies with homogenates of smooth muscle have shown that both the

synthesis of cADPR from -NAD+, and its metabolism to ADP-ribose, occurs

in arterial smooth muscle from a number of vascular beds: coronary (Li, et al.,

1999; Ge, et al., 2003), renal (Li, et al., 2000), pulmonary (Wilson, et al.,

1998) and aorta (de Toledo, et al., 1997). In smooth muscle of the pulmonary

artery (Wilson, et al., 1998), and the coronary artery (Li, et al., 1999; Ge, et al.,

2003), ADP-ribosyl cyclase and cADPR hydrolase activities were shown to be

associated with the microsomal fraction, but absent from the cytosolic fraction.

This work suggests that the ADP-ribosyl cyclase found in vascular smooth

muscle would appear to be membrane bound. It is noteworthy that there was

only limited association of these enzymes with the plasma membrane fraction,

and that the activity found within the microsomal fraction was not due to

contamination of the sample with plasma membrane (Wilson, et al., 2001).

Thus, the majority of the cyclase/hydrolase activity in arterial smooth muscle is

not conferred by plasma membrane bound CD38. In a separate study, the

removal of CD38 from coronary artery smooth muscle homogenates did not

result in loss of the total cyclase/hydrolase activity of the tissue (Li, et al.,

2002b). This suggests that arterial smooth muscle may express a membrane

bound, microsomal associated ADP-ribosyl cyclase other than CD38.

However, an as yet unidentified isoform of CD38 may be targeted to

membranes of intracellular organelles (Yamada, et al., 1997; Santella, et al.,
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1998; Adebanjo, et al., 2000). Therefore, there is little evidence in arterial

smooth muscle to support the role of plasma membrane bound CD38 in

cADPR mediated Ca2+ signalling.

The ADP-ribosyl cyclase/cADPR hydrolase activities are not universal

within the vasculature and these appear to be differentially expressed in smooth

muscle from different vascular beds. For example, these enzyme activities were

shown to be considerably higher in pulmonary arterial homogenates than in the

mesentery or aortic beds. This study also showed that the activity within the

pulmonary vasculature was inversely proportional to the artery diameter i.e. the

smaller the diameter, the greater the activity (Wilson, et al., 2001).

Furthermore, in the renal vasculature higher activity was seen in pre-

glomerular arteries than in post-glomerular vas recta (Li, et al., 2000). It is

possible therefore, that cADPR-dependent Ca2+ signalling may perform

discrete roles in different vascular beds, a viewpoint that is now supported by

functional studies (see below).

To date, there have only been two studies that have measured the levels

of endogenous cADPR in vascular smooth muscle. In rat pulmonary artery the

resting measurement of cytoplasmic concentration of cADPR provided

estimates in the range of 0.2 M-0.5 M (Wilson, et al., 2001), which is

consistent with measurements obtained previously from a range of mammalian

tissues (Walseth, et al., 1991). Coronary arteries appear to express a lower

resting level of cADPR, of around 150 nM (Li, et al., 1997). It is worthy of

note, however, that when interpreting these results that they are likely to be

underestimates of the true intracellular concentration of cADPR. This is

because values were initially normalized to protein content of the sample that

does not exclude protein that is unassociated with smooth muscle (e.g.

connective tissue). Perhaps most significantly, these measures do not take into

account possible spatial compartmentalization at the site of cADPR production

within the cell.
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1.5.5 Ca2+ mobilization by cADPR in arterial smooth muscle

The first report of Ca2+ mobilization by cADPR from the SR came in

1995 (Kuemmerle and Makhlouf, 1995). The following year Kannan and

colleagues reported that the application of cADPR led to the release of Ca2+

from SR stores in -escin permeabilised coronary artery smooth muscle cells

(Kannan, et al., 1996). This work is now supported by a number of studies

showing the release of Ca2+ from SR stores in response to cADPR application

in coronary (Yu, et al., 2000), pulmonary (Wilson, et al., 2001) and renal artery

smooth muscle cells (Li, et al., 2000). There is also a great deal of evidence

suggesting that Ca2+ mobilization by cADPR is abolished by the blockade of

RyRs with ryanodine or by blocking the action of cADPR by using the

membrane permeant cADPR antagonist 8-bromo-cADPR (8-Br-cADPR; Sethi,

et al., 1997).

Contrary findings have, however, been reported in colonic smooth

muscle. Bradley and colleagues reported that flash-photolysis of caged cADPR

did not result in SR Ca2+ mobilization, or facilitation of CICR induced by

voltage-gated Ca2+ influx (Bradley, et al., 2003). When examining the effects

of cADPR, therefore, we must always consider the possibility that cADPR may

not initiate Ca2+ mobilization in all cell types.

1.5.6 cADPR and vasoconstriction

1.5.6.1 Does cADPR mediate vasoconstrictor-induced sarcoplasmic reticulum

Ca2+ release in arterial smooth muscle?

There are only a handful of reports that study the role of cADPR in

mediating vasoconstriction. This may be due to the fact that most studies have

focused on establishing the presence or absence of ADP-ribosyl cyclase and on

the mobilization of SR stores by application of cADPR. However, it has been

suggested that cADPR, in part, mediates vasoconstriction via M1 muscarinic

acetylcholine receptors (Ge, et al., 2003). Studies on tracheal smooth muscle

have also suggested a role for cADPR in mediating Ca2+ signals in response to
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the activation of muscarinic receptor activation (Prakash, et al., 1998). In this

study it was shown that treatment of tracheal smooth muscle with acetylcholine

resulted in Ca2+ oscillations whose frequency was increased upon addition of 1

M cADPR. The acetylcholine-induced Ca2+ oscillations were shown to be

abolished by the application of 20 M 8-amino-cADPR, a known antagonist of

cADPR effects, suggesting that cADPR was involved in agonist-induced Ca2+

mobilization within tracheal smooth muscle. However, consideration of the

literature suggests the involvement of a more complex mechanism than

cADPR-dependent Ca2+ mobilisation alone. Earlier studies had already

established that acetylcholine induced a biphasic Ca2+ signal in smooth muscle

of the trachea. It was thought that an initial transient response was mediated by

phospholipase C coupled M3 receptors and IP3-dependent SR Ca2+ release

through IP3R activation (Coburn and Baron, 1990; Shieh, et al., 1991; Sims, et

al., 1996). The signal was then proposed to be maintained by CICR from the

SR via RyRs in a manner dependent upon Ca2+ influx, possibly via a store-

refilling current (Murray and Kotlikoff, 1991; Shieh, et al., 1991; Murray, et

al., 1993; Kannan, et al., 1997; Prakash, et al., 1997). However, cADPR

antagonists have now been shown to block the maintained phase of SR Ca2+

release in response to acetylcholine (Prakash, et al., 1998). This suggests that

cADPR possibly serves to amplify the initial Ca2+ signal generated through

IP3R activation by sensitizing RyRs to CICR and maintain the initial Ca2+

signals by sensitizing CICR via RyRs in a similar fashion to the way cADPR

might amplify Ca2+ signals during cholesystokinin-dependent activation of

pancreatic acinar cells (Cancela, et al., 1999; Cancela, et al., 2000; Cancela, et

al., 2002).

1.5.6.2 Does cADPR facilitate Ca2+-induced Ca2+-release in response to

voltage-gated Ca2+ influx?

As mentioned previously, CICR is fundamental to excitation-

contraction coupling in cardiac muscle. In ventricular myocytes there is

growing evidence to support a role for cADPR in modulating CICR (Meszaros,

et al., 1993; Rakovic, et al., 1996; Cui, et al., 1999; Rakovic, et al., 1999; Xin,
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et al., 2002). However, this is not clear cut in arterial smooth muscle. The

amplification of voltage-gated Ca2+ influx by CICR does not appear to be

universal in vascular smooth muscle. In rat cerebral arteries there is significant

amplification of voltage-gated Ca2+ influx by CICR (Kamishima and

McCarron, 1997), whereas voltage-gated Ca2+ influx fails to trigger CICR from

the SR of smooth muscle cells isolated from the rat femoral artery, or rat portal

vein (Kamishima and McCarron, 1996; Kamishima, et al., 2000). In guinea-pig

coronary artery smooth muscle cells CICR is only observed when voltage-

gated Ca2+ influx is enhanced (Ganitkevich and Isenberg, 1995). One report

has suggested that the initiation of CICR may be determined by the magnitude

of the voltage-gated Ca2+ current and, therefore, Ca2+ influx (Kamishima and

McCarron, 1997). The spatial compartmentalization of voltage-gated Ca2+

channels and RyRs, however, may determine whether or not there is functional

coupling. In guinea-pig bladder smooth muscle voltage-gated Ca2+ channels in

the plasma membrane co-localize with RyRs in the SR (Carrington, et al.,

1995), and CICR is triggered by voltage-gated Ca2+ influx (Ganitkevich and

Isenberg, 1995). Consistent with the tissue-dependency of CICR control by

voltage-gated Ca2+ influx, the small amount of information available suggests

that the modulation of CICR by cADPR in response to voltage-gated Ca2+

influx may also be specific to different vascular beds. In bovine coronary

arteries depolarization-induced vasoconstriction can be attenuated by 8-Br-

cADPR (Zhang, et al., 2002). In contrast, it has been shown that constriction

by depolarization-gated Ca2+ influx in both rat and rabbit pulmonary artery

smooth muscle is unaffected by 8-Br-cADPR or by block of ryanodine-

sensitive SR Ca2+ stores with ryanodine and caffeine (Dipp and Evans, 2001;

Dipp, et al., 2001; Wilson, et al., 2001).

1.5.7 Ca2+-dependent vasodilation by cADPR

Although there is little evidence as yet to suggest a role for cADPR in

determining resting tone in arterial smooth muscle, it is clear that cADPR-

dependent SR Ca2+ release via RyRs can lead to the activation of BKCa

channels, an increase in STOC frequency and consequent membrane

hyperpolarisation in arterial smooth muscle (Wilson, et al., 2001; Boittin, et



47

al., 2003; Cheung, 2003). Therefore, cADPR may play a role in mediating

smooth muscle relaxation in response to known vasodilators.

As mentioned previously, a variety of transmitters relax smooth muscle

by increasing cAMP levels and thereby activating PKA. In arteries, trachea,

human airway and lymphatic vessels, PKA-dependent smooth muscle

relaxation is mediated, in part, by the opening of BKCa channels and membrane

hyperpolarisation (Allen, et al., 1986; Kume, et al., 1989; Nelson, et al., 1995;

Wang and Kotlikoff, 1996b; Jaggar, et al., 2000). In arterial smooth muscle

adenylyl cyclase-coupled receptors such as -adrenoceptors open BKCa

channels by evoking Ca2+ signals via RyRs in the SR proximal to the plasma

membrane, leading to smooth muscle cell hyperpolarisation and a consequent

reduction in blood pressure through vasodilation (Benham and Bolton, 1986;

Nelson, et al., 1995; Knot, et al., 1998a; Jaggar, et al., 2000). Despite the

wealth of information linking RyR activation to vasodilation by adenylyl

cyclase coupled receptors and the role of cADPR as a regulator of RyR

function (Lee, 1997), little attention has been paid to the possible role of

cADPR in this process. However, investigations by this laboratory into this

hypothesis have provided strong evidence to support a role for cADPR in this

process (Boittin, et al., 2003).

Intracellular dialysis (from a patch-pipette) of low concentrations of

cADPR (20 M) increased cytoplasmic Ca2+ concentration at the perimeter of

isolated pulmonary artery smooth muscle cells and concomitant membrane

hyperpolarisation. Hyperpolarisation was reversed by the highly selective BKCa

channel antagonist iberiotoxin, which demonstrates that BKCa channel

activation underpins cADPR-dependent hyperpolarisation (Boittin, et al.,

2003). Furthermore, SR Ca2+ release via RyRs was shown to be a pre-requisite

for this response, because hyperpolarisation by cADPR was abolished by

chelating intracellular Ca2+ with BAPTA, by selective block of RyRs with

ryanodine and by depletion of SR Ca2+ stores with cyclopiazonic acid. Most

importantly, hyperpolarisation by cADPR was blocked by the cADPR

antagonists 8-amino-cADPR and 8-bromo-cADPR, whilst hyperpolarisation by

caffeine remained unaffected. This is consistent with the cADPR antagonists
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blocking the action of cADPR, but not the activation of RyRs per se. (Boittin,

et al., 2003).

Consistent with previous studies on smooth muscle from a variety of

tissues (for review see (Jaggar, et al., 2000), investigations from this laboratory

found that isoprenaline and cAMP induced hyperpolarisation in isolated

pulmonary arterial smooth muscle cells, and demonstrated that in each case

hyperpolarisation exhibited similar pharmacology to hyperpolarisation by

cADPR i.e. abolished by intracellular BAPTA, ryanodine, 8-amino-cADPR

and iberiotoxin. Strikingly, the selective PKA antagonist H89 blocked

hyperpolarisation by both isoprenaline and cAMP, but was without effect on

hyperpolarisation by cADPR. Thus, it would appear that cADPR is a

downstream element in this signalling cascade. Hyperpolarisation by -

adrenoceptors in pulmonary artery smooth muscle cells may therefore result, at

least in part, from activation of adenylyl cyclase, increased cytoplasmic cAMP

levels and activation of PKA, leading to activation of ADP-ribosyl cyclase,

increased cADPR synthesis, consequent SR Ca2+ release via RyRs and

hyperpolarisation by BKCa channel activation. Further support for this proposal

was derived from studies on isolated artery rings without endothelium.

Vasodilation evoked due to –adrenoceptor activation by isoprenaline was

inhibited by approximately 50% by blocking cADPR with the membrane

permeant antagonist 8-bromo-cADPR, by block of RyRs with ryanodine and

by depletion of SR Ca2+ stores by cyclopiazonic acid. Importantly, 8-bromo-

cADPR was without effect on residual dilation by isoprenaline after blocking

BKCa channels with iberiotoxin. Thus, 8-bromo-cADPR reverses isoprenaline-

induced dilation by blocking cADPR-dependent SR Ca2+ release and, therefore,

BKCa channel activation, because 8-bromo-cADPR does not block BKCa

channel activation per se. It is interesting to note, however, that iberiotoxin

inhibited dilation by isoprenaline by approximately 78% compared with 50-

60% reversal by 8-bromo-cADPR, ryanodine and cyclopiazonic acid,

respectively. It would appear, therefore, that cADPR-dependent Ca2+ signalling

via a cyclopiazonic acid-sensitive SR store is responsible for approximately

80% of BKCa–dependent vasodilation by isoprenaline in isolated pulmonary

arteries. The residual 20% may depend on a mechanism independent of SR
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Ca2+ release, such as PKA-dependent phosphorylation of the BKCa channel or

an accessory protein (Kume, et al., 1989; Kume, et al., 1994). Support for a

role for cADPR in mediating arterial dilation may also be taken from a recent

report which suggested that cADPR may mediate vasodilation by urocortin in

renal arteries from female, but not male rats (Sanz, et al., 2003).

Previous studies on coronary artery smooth muscle have suggested that

increased synthesis of ADP-ribose, a cADPR metabolite, may mediate BKCa-

dependent vasodilation by 11,12-epoxyeicosatrienoic acid (Li, et al., 2002a).

By contrast, however, this laboratory found equivalent concentrations of ADP-

ribose to be without effect on membrane potential in pulmonary artery smooth

muscle cells.

A further variation on the theme comes from the proposal that NO may

mediate vasodilation by inhibiting cADPR formation (Geiger, et al., 2000; Yu,

et al., 2000). In marked contrast to previous studies on sea urchin egg

homogenates (Galione, et al., 1993), NO appeared to act directly upon ADP-

ribosyl cyclase in arterial smooth muscle and in a manner independent of

guanylyl cyclase and cGMP (Yu, et al., 2000). Thus, cADPR synthesis in

coronary artery homogenates was inhibited by the NO donor SNP, with

inhibition being reversed by NO scavengers but not by guanylyl cyclase

inhibitors. Furthermore, subsequent studies on recombinant CD38 suggested

that NO may inhibit ADP-ribosyl cyclase via S-nitrosylation of sulphydryl

groups (White, et al., 2002), which may impact on dimerisation (Berruet, et al.,

1998; Chidambaram and Chang, 1998).

The aforementioned studies suggest, therefore, that the mechanism by

which regulators of pyridine nucleotide signalling promote relaxation of

arterial smooth muscle may vary in a manner dependent on the nature of the

vasodilator and / or the vascular bed under investigation.

1.5.8 NAADP as a Ca2+ mobilizing messenger

1.5.8.1 Ca2+ mobilization by NAADP occurs from a non-ER/SR Ca2+ store

As mentioned previously there is significant evidence that the

molecular target for NAADP is distinct from that for IP3 or cADPR. In
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homogenates of sea urchin egg which have active Ca2+ stores, addition of

NAADP was seen to cause concentration-dependent Ca2+ release (Chini, et al.,

1995; Lee and Aarhus, 1995). This NAADP-mediated Ca2+ release was shown

to undergo homologous desensitization, which was without effect upon Ca2+

mobilisation in response to the application of either IP3 or cADPR (Chini, et

al., 1995; Lee and Aarhus, 1995). In these studies NAADP-mediated Ca2+

release was also shown to be insensitive to a known inhibitor of IP3-mediated

Ca2+ release, heparin (Chini, et al., 1995; Lee and Aarhus, 1995), or to known

inhibitors of cADPR-mediated Ca2+ release, 8-amino-cADPR (Lee and Aarhus,

1995) or Ruthenium Red (Chini, et al., 1995). Lee and Aarhus (1995) proposed

that the NAADP-sensitive Ca2+ store was separate from those stores accessed

by either IP3 or cADPR. In support of this view, NAADP-mediated Ca2+

release was shown to occur in different fractions of sea urchin egg

homogenates than that mediated by either IP3 or cADPR, when homogenates

were separated by the use of Percoll density gradients. Whilst the IP3- and

cADPR-sensitive Ca2+ stores were located in fractions with a high abundance

of ER membrane markers, the NAADP-sensitive Ca2+ store was seen to be

located in separate fractions, with little or no cross-over between these different

stores (Lee and Aarhus, 1995). These fractionation studies also showed that the

NAADP-sensitive Ca2+ store within sea urchin eggs was unlikely to be the

mitochondria, as NAADP-sensitive Ca2+ stores were distant to the

mitochondrial marker cytochrome c oxidase (Lee and Aarhus, 1995).

The NAADP-sensitive Ca2+ store has also been reported to be

pharmacologically distinct to the Ca2+ stores mobilised by either IP3 or

cADPR. Thapsigargin, a plant-derived sesquiterpine lactone (Thastrup, et al.,

1990) known to bind potently to and inhibit uptake of Ca2+ into the ER/SR via

SERCA pumps (Lytton, et al., 1991), leading to depletion of ER/SR Ca2+

stores, has been shown to abolish both cADPR- and IP3-mediated Ca2+ release

(Genazzani and Galione, 1996). NAADP-mediated Ca2+ signals, however,

remained unaffected after the depletion of microsomal Ca2+ stores in sea urchin

egg homogenates by thapsigargin (Genazzani and Galione, 1996; Churchill and

Galione, 2001). This led to the proposal that NAADP mobilized a thapsigargin-

insensitive Ca2+ store other than the ER. The precise nature of the store

accessed by NAADP and the molecular target of NAADP remained elusive.
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However, in sea urchin egg homogenates NAADP-mediated Ca2+ release has

been shown to be inhibited by the L-type Ca2+ channel antagonists verapamil

and diltiazem (Genazzani, et al., 1996b), The NAADP-dependent Ca2+release

channel is unlikely to be an L-type Ca2+channel though, as the L-type Ca2+

channel agonist, BAY K8844 also inhibits NAADP-mediated Ca2+ release in

sea urchin egg homogenates (Genazzani, et al., 1996b). NAADP-mediated

Ca2+ release also remains unaffected by pH (Genazzani, et al., 1997; Chini, et

al., 1998). In their study, Genazzani et al. (1997) showed that Ca2+ release by

NAADP remained unaffected by changes in cellular pH between normal (pH

7.2), acidic (pH 6.7) and alkaline (pH 8.0) conditions, while IP3-mediated Ca2+

release and cADPR-mediated Ca2+ release were undetectable under acidic

conditions, thus providing further evidence in support of the view that NAADP

mediates Ca2+ release from a separate channel to cADPR or IP3. Another

important feature of NAADP-mediated Ca2+ release is the lack of an effect of

Ca2+ on the release mechanism. In sea urchin egg homogenates (Chini and

Dousa, 1996; Genazzani and Galione, 1996), brain microsomes (Bak, et al.,

1999) and microsomes isolated from higher plants, such as cauliflower and red

beet (Navazio, et al., 2000) Ca2+ concentration was shown to be ineffective in

regulating the amount of Ca2+ released by NAADP application. This contrasts

sharply with the findings that both IP3R and RyR channels are biphasically

regulated by Ca2+.

Subsequent to these pharmacological studies, the NAADP-sensitive

Ca2+ store was shown to be visibly separate from either the IP3- or cADPR-

sensitive stores following stratification of intact sea urchin eggs (Lee and

Aarhus, 2000). Stratification refers to a process where the intracellular

organelles within intact cells can be separated by centrifugation at 7 – 8000 g

on a desktop microfuge. Using the fluorescent Ca2+ indicator dye, Fluo-3, to

visualise the intracellular Ca2+ concentration it was seen that flash-photolysis

of caged NAADP mobilised Ca2+ from the opposite pole of the eggs when

compared to photolysis of either caged IP3 or caged cADPR (Lee and Aarhus,

2000). The separation of stores accessible to NAADP and IP3 has been shown

in mammalian cells as well. In the highly polarised pancreatic acinar cells flash

photolysis of NAADP has been shown to initiate Ca2+from the opposite pole of

cells to IP3 (Krause, et al., 2002).
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1.5.8.2 Inactivation of NAADP-induced Ca2+ release

An interesting and remarkable feature of the NAADP-mediated Ca2+

release mechanism is the manner in which it can be inactivated. In sea urchin

eggs exposure to low concentrations of NAADP attenuates Ca2+ release in

response to an otherwise normally maximal concentration of NADDP (Aarhus,

et al., 1996a; Genazzani, et al., 1996b). This in itself is not too unusual.

However, it is when we consider that this attenuation of the response is seen to

happen at sub-threshold concentrations of NAADP that this mechanism

becomes more intriguing (Aarhus, et al., 1996a; Genazzani, et al., 1996b). This

inactivation appears to be both time-and concentration-dependent. In the

presence of fixed sub-threshold concentrations of NAADP, the Ca2+ response

elicited by the maximal NAADP concentration is seen to decline steadily as the

time between the two NAADP applications increases (Aarhus, et al., 1996a;

Genazzani, et al., 1996b). Inactivation requires around 2 minutes in order to

reach a plateau and it appears to be independent of the NAADP concentration

used (Aarhus, et al., 1996a; Genazzani, et al., 1996b). This process of

inactivation can be described in a simple model which proposes that NAADP

receptors posses two separate NAADP binding sites, a low affinity site which

mediates channel opening and a high affinity site which mediates channel

inactivation. When the NAADP concentration within the system is low, the

high affinity site will be occupied, leading to inactivation of the release

mechanism. If the NAADP concentration is then raised, a subsequent challenge

will be unable to mediate any Ca2+ release, as the receptor will stay inactivated.

The inactivation process must be a relatively slow process. If it were not the

channels would not open in homogenate preparations treated with higher

NAADP concentrations, as both sites would be occupied. Given that the rate of

inactivation of Ca2+ release in response to NAADP is independent of the

concentration of NAADP, it suggests that the rate-limiting step which governs

channel function is the inactivation process itself and not binding of NAADP to

the receptor (Aarhus, et al., 1996a; Genazzani, et al., 1996b). Since the binding

of NAADP to its target in sea urchin eggs is irreversible (Aarhus, et al., 1996a;

Billington and Genazzani, 2000b; Patel, et al., 2000a), it is conceivable that
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binding of NAADP to the high affinity site results in the conversion of the

receptor to its inactivated state.

The target for NAADP in mammalian cells has also been shown to

inactivate prior to activation. However, the mammalian receptors do so in a

fundamentally different fashion to the binding sites in sea urchin eggs. The

concentration-effect relationships to NAADP mediated Ca2+ release examined

in several cell types appear to be biphasic in nature. This was first seen in the

pancreatic acinar cell (Cancela, et al., 1999). In this study nanomolar

concentrations of NAADP mediated complex Ca2+ signals, whereas

concentrations of NAADP in the micromolar range were seen to be ineffective

(Cancela, et al., 1999). The evidence presented within the study of Cancela et

al (1999) showed that inactivation of the NAADP-mediated Ca2+ release

mechanism occurred prior to activation. However, in contrast to the sea urchin

egg, this inactivation occurred at concentrations much higher than the threshold

concentration for Ca2+ release. Studies into the effect of differing

concentrations of NAADP have been carried out other cell types, including T

lymphocytes (Berg, et al., 2000), human pancreatic beta cells (Johnson and

Misler, 2002), and the clonal cell line MIN-6 (Masgrau, et al., 2003). These

studies indicate a clear bell shaped activation curve for the ‘NAADP-receptor’.

However, since these studies were carried out using microinjection techniques,

the absolute concentration of NAADP at the target molecule within the cells

cannot be accurately determined. Recent evidence from this laboratory has

shown that lower concentrations of NAADP (10 nM) are much more effective

in activating Ca2+ release within individual smooth muscle cells isolated from

pulmonary arteries than higher concentrations (100 M; Boittin, et al., 2002).

These inactivation and activation properties of the mammalian NAADP

receptor can also be described by the use of a high-and low-affinity binding

site model. In contrast to the model proposed for the sea urchin egg it has been

proposed that the low affinity binding site mediates channel inactivation within

mammalian cells (Patel, 2004). This model does not require irreversible

NAADP binding in mammalian cells, as is the case with the sea urchin eggs,

and there is evidence to suggest that the binding of NAADP to its molecular

target is reversible in mammalian cells (Patel, et al., 2000b; Bak, et al., 2001).
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1.5.8.3 The NAADP receptor

The sequence of the NAADP receptor has yet to be identified.

However, high affinity binding sites for NAADP have been isolated from the

sea urchin egg and from mammalian cells (Billington and Genazzani, 2000b;

Patel, et al., 2000a; Patel, et al., 2000b). In sea urchin eggs, studies involving

the purification and solubilisation have thus far taken advantage of the fact that

NAADP binding to its receptor appears to be irreversible in the presence of

physiological concentrations of K+ (Dickinson and Patel, 2003). Therefore,

NAADP radio-labeled with [32P] has been used to tag receptors through the

process of purification (Billington and Genazzani, 2000b; Berridge, et al.,

2002). What we can identify from protein purification is that the NAADP

receptor may be an oligomeric structure of around 450 kDa in size, derived

from subunits with molecular weights of about 150 kDa each (Berridge, et al.,

2002). Therefore, this suggests that the NAADP receptors may be smaller than

either the IP3Rs or the RyRs.

1.5.8.4 Co-operative Ca2+ signalling between NAADP, IP3 and cADPR

There is a large volume of evidence which demonstrates that NAADP

mediates the release of Ca2+ from a dedicated and, as yet, unknown NAADP

receptor located on a store separate from the ER/SR stores accessed by IP3 and

cADPR. However, it appears that although separate from the ER/SR, the

NAADP receptors do not act in isolation, and a number of studies have

demonstrated a degree of cross-talk between these different Ca2+ release

mechanisms. This phenomenon has been termed ‘channel chatter’ (Patel, et al.,

2001), with the pancreatic acinar cell presenting one of the best examples of it.

Ca2+ signalling within the pancreatic acinar cell is well characterised and it has

been known for some time that different agonists evoke very different Ca2+

signalling patterns (Cancela, 2001). For example, the brain/gut peptide

cholecystokinin produces a mixture of short-and long-term Ca2+ oscillations

that correspond to Ca2+ increases within the secretory pole and global signals

which are able to travel through the entire cell (Cancela, 2001). The application
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of NAADP to the cells through a patch pipette was able to mimic these effects,

however, the application of either IP3 or cADPR were not able to mimic these

responses (Cancela, et al., 1999). Interestingly, in pancreatic acinar cells, Ca2+

spikes induced by NAADP were seen to be abolished by the combination of

heparin and 8-amino-cADPR, known antagonists of the IP3- and cADPR-

mediated Ca2+ release, respectively (Cancela, et al., 1999). However, the

abolition of NAADP-mediated Ca2+ release by inactivation of NAADP-

mediated Ca2+ release, with 100 M NAADP, did not affect the production of

Ca2+ spikes in response to either IP3 or cADPR (Cancela et al., 1999). Due to

these findings, it was suggested that NAADP triggers an initial phase of Ca2+

release, which is then amplified into a global Ca2+ response via CICR from

IP3Rs and RyRs (Cancela, et al., 1999).

Further evidence of a clear coupling between the NAADP-, IP3-and

cADPR-mediated Ca2+ release mechanisms has also been provided by studies

carried out on sea urchin eggs (Churchill and Galione, 2000), and starfish

oocytes (Santella, et al., 2000). In both of these preparations Ca2+ signals

generated in response to NAADP are inhibited by a combination of heparin and

8-NH2-cADPR. Similar to the pancreatic acinar cell, responses in the starfish

oocytes in response to NAADP are abolished by this combination of

antagonists (Santella et al., 2000). However, Ca2+ release, although inhibited, is

still observed in response to NAADP following treatment of sea urchin eggs

with heparin and 8-NH2-cADPR (Churchill and Galione, 2000). The

mechanism underlying these observed differences in response to NAADP

following inhibition of IP3- and cADPR-mediated Ca2+ release remains

unclear.

1.5.8.5 Acidic Ca2+ stores, the source of NAADP-mediated Ca2+ signals?

Recently, reserve granules have been identified as the NAADP-

sensitive Ca2+ store in sea urchin eggs (Churchill, et al., 2002). Churchill et al

showed that NAADP-mediated Ca2+ release was selectively abolished by pre-

treatment of sea urchin eggs with glycyl-phenylalanyl-napthylamide (GPN), a

known substrate of the lysosomal exopeptidase cathepsin C. Upon entering the
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lysosome GPN is hydrolysed to free amino acids by the actions of the

cathepsin C. These resultant amino acids are unable to exit the lysosome and,

therefore, their accumulation causes an increase in osmotic pressure, eventually

leading to rupture of the compartment (Berg, et al., 1994). In order to

determine that this loss of NAADP responsiveness was due to an effect of GPN

on reserve granules, sea urchin eggs were loaded with the fluorescent weak

base, LysoTracker Red. LysoTracker Red accumulates in acidic stores, and

following pre-treatment of cells with LysoTracker Red, acidic organelles were

seen to be diffusely distributed throughout sea urchin eggs. LysoTracker

fluorescence was lost in a time-dependent manner after the application of GPN

to eggs suggesting that the effects of GPN on NAADP-mediated Ca2+ signals

were down to a disruption of a lysosome-related, acidic Ca2+ store (Churchill,

et al., 2002). In sea urchin eggs loaded with fluorescent Ca2+ indicator dye,

GPN was seen to cause localized Ca2+ release events, consistent with a role for

lysosome-related acidic Ca2+ stores (Churchill, et al., 2002). Following these

observations, stratification of sea urchin eggs showed that acidic organelles

were depleted in the pole of the egg containing the nucleus and the ER, and

were enriched in the opposite pole (Churchill, et al., 2002). This finding was

consistent with the Ca2+ release previously described in stratified sea urchin

eggs in response to NAADP, cADPR and IP3 (Lee and Aarhus, 2000). In their

study, Churchill et al. (2002) carried out further experiments on crude,

subcellular fractions in order to further characterise the mechanism of

NAADP-mediated Ca2+ release. It was shown that subcellular fractionation

produced fractions that responded predominantly to NAADP. Occasional

responses within these fractions to cADPR and IP3 were removed by separation

of the fraction further on a Percol density gradient. This method of separation

had been previously described as an accurate and reliable method of isolating

reserve granules (McNeil, et al., 2000), the functional equivalent of

mammalian lysosomes within sea urchin eggs (Armant, et al., 1986). After

separation, the fraction that only responded to NAADP was shown to express

larger amounts of lysosomal membrane markers, such as acid phosphatase,

glucosaminadase and -galactosidase, than those fractions insensitive to

NAADP. This suggested that the NAADP-sensitive Ca2+ store was lysosomal
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in nature (Churchill, et al., 2002). This fraction only possessed a NAADP-

sensitive store, as no Ca2+ release was triggered by cADPR, IP3 or

thapsigargin. Churchill and colleagues were therefore able to characterise the

mechanism of Ca2+ uptake into this Ca2+ store (Churchill, et al., 2002). Ca2+

uptake into these compartments was found to be prevented by treatment of

fractions with apyrase, an agent that induces the hydrolysis of ATP, suggesting

that Ca2+ uptake into the NAADP-sensitive Ca2+ stores was ATP-dependent.

This NAADP-sensitive store also seemed to have some requirement for

protons, as Ca2+ uptake into this store was also seen to be abolished by

treatment of the fraction with various protonophores. This proton requirement

suggested that a proton gradient across the store was required for Ca2+ uptake,

a finding confirmed by treatment of fractions with the K/H+ exchanger,

nigericin, or the weak base NH3 (Churchill, et al., 2002). Ca2+ uptake was also

abolished by treatment of NAADP-sensitive fractions with the inhibitor of the

vacuolar proton pump (V-H+ ATPase) Bafilomycin A1, which had previously

been shown to collapse proton gradients within lysosomes (Christensen, et al.,

2002). Thus, a V-H+ ATPase is required for maintenance of a proton gradient.

This proton gradient was shown to drive Ca2+ uptake into NAADP-sensitive

stores through a Ca2+/H+ ATPase as Ca2+ uptake was also inhibited by

vanadate, previously shown to be an inhibitor of these Ca2+/H+ exchangers

(Rooney and Gross, 1992). This led Churchill and colleagues to propose that

the NAADP-sensitive Ca2+ stores within sea urchin eggs are the reserve

granules (Churchill, et al., 2002). Further investigations have suggested that

NAADP mediates initial Ca2+ release from acidic stores in mammalian cells.

NAADP has been shown to mediate initial Ca2+ signals from an acidic,

lysosome-related Ca2+ store in murine pancreatic acinar cells and a clonal

pancreatic beta cell line, MIN-6 (Yamasaki, et al., 2004). Indeed, in this study

Yamasaki et al. showed that different agonists mediate their effects through

recruitment of different second messengers. In pancreatic acinar cells responses

generated to acetylcholine and bombesin recruit ER Ca2+ stores, while

cholecystokinin recruits an acidic, lysosome-related Ca2+ store (Yamasaki, et

al., 2004). Calcium signals in response to cholecystokinin have been shown to

require Ca2+ signals generated by NAADP and cADPR acting in concert.

Activation of cholecystokinin receptor A on pancreatic acinar cells results in an
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initial, transient increase in NAADP levels, followed by a slower rising,

sustained increase in cADPR levels (Yamasaki, et al., 2005). NAADP has also

been shown to be important in neurite outgrowth in rat cortical neurons.

Application of NGF to neurons has been shown to elicit Ca2+ signals through

NAADP-mediated acidic Ca2+ release and subsequent Ca2+ release via both

IP3Rs and RyRs (Brailoiu, et al., 2005).

That NAADP mediates Ca2+ release through a distinct channel located

on a store other than the ER/SR is not a universally accepted proposal. It has

been proposed that NAADP directly activates RyRs. Hohenegger et al. (2002)

described NAADP-induced Ca2+ release in microsomes isolated from skeletal

muscle where the regulation of NAADP-mediated Ca2+ release by Ca2+, and

the abolition of responses to NAADP by ryanodine, are consistent with direct

activation of RyR subtype 1 by NAADP (Hohenegger, et al., 2002). In this

study NAADP was seen to modulate the opening of single channels of purified

RyRs reconstituted into lipid bilayers (Hohenegger, et al., 2002). NAADP has

also been suggested to regulate the opening of RyR subtype 2 isolated from

cardiac microsomes and expressed in lipid bilayers (Mojzisova, et al., 2001).

However, another study carried out on RyR subtype 1, isolated from skeletal

muscle, and RyR subtype 2, isolated from cardiac muscle, both reconstituted in

lipid bilayers, showed that NAADP did not influence the opening of these

receptors (Copello, et al., 2001).

Despite these latter findings, however, that controversy surrounding the

nature of the NAADP receptor continues. In an examination of the nuclear

envelope Ca2+ store within pancreatic acinar cells, Gerasimenko et al (2003)

suggest that NAADP activates RyRs present on the nuclear envelope. In this

study the application of pharmacological agents which disrupt Ca2+ handling

within acidic stores such as nigericin and Bafilomycin A1 were seen to be

ineffective at inhibiting Ca2+ release induced by NAADP. The investigators

also showed that NAADP-mediated Ca2+ release was abolished in these

isolated nuclei after treatment with blockers of RyRs ryanodine and ruthenium

red. Ca2+ release by NAADP was also shown to be unaffected by the treatment

of nuclei with blockers of IP3Rs, which led the investigators to suggest that

NAADP mediates Ca2+ release into the nucleoplasm through RyRs in the

nuclear envelope of pancreatic acinar cells (Gerasimenko, et al., 2003). In
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intact pancreatic acinar cells, Yamasaki et al. (2004) have shown that NAADP-

mediates Ca2+ release from an acidic, lysosome-related Ca2+ store. Ca2+ signals

generated in response to NAADP were abolished by preincubation of cells with

either Bafilomycin A1 or GPN, but were only partially inhibited by depletion

of SR Ca2+ stores by thapsigargin.

NAADP has also been shown to be a potent Ca2+ mobiliser in Jurkat T-

cells, a cell line derived from human T-lymphocytes (Berg, et al., 2000). In

their investigation, Berg et al (2000) showed that NAADP invoked Ca2+

signals independently of either cADPR or IP3, as antagonists of both cADPR-

and IP3-mediated Ca2+ release did not affect NAADP-mediated Ca2+ signals.

However, the application of high concentrations of NAADP, in order to

inactivate the NAADP-release mechanism, caused a marked inhibition of Ca2+

signals generated in response to either cADPR or IP3 (Berg, et al., 2000).

Therefore, the authors proposed that cADPR- and IP3-mediated Ca2+ release

was required for a functional NAADP-mediated Ca2+ release system (Berg, et

al., 2000). Further investigations by Guse and colleagues have suggested that

Ca2+ signals in response to NAADP in Jurkat T-cells are initiated by RyR-

mediated Ca2+ release which is amplified by Ca2+ influx from the extracellular

environment (Langhorst, et al., 2004). Most recently, Guse and colleagues

have presented evidence suggesting that the NAADP acts directly upon RyRs

in Jurkat T-cells to cause Ca2+ release, rather than a separate, putative NAADP

receptor (Dammermann and Guse, 2005). Given these varied and often

conflicting reports it is clear that the precise mechanism through which

NAADP affects Ca2+ release is still an area great uncertainty, and further

investigation is required in order to determine the precise mechanisms

involved.

1.5.8.6 A role for NAADP-dependent Ca2+ signalling in vascular smooth

muscle

Despite a number of investigations on other cell types into the

mechanisms of NAADP-dependent Ca2+ signalling, our knowledge on the role

of this Ca2+ mobilising messenger in vascular smooth muscle is extremely

limited. Only a handful of studies have been carried out, and from these very
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little is known. It has been shown that the enzymes for the synthesis and

metabolism of NAADP are present in vascular smooth muscle (Wilson, et al.,

1998; Yusufi, et al., 2001), and microsomes prepared from rat aortic vascular

smooth muscle have been shown to release Ca2+ in a concentration dependent

manner in response to NAADP (Yusufi, et al., 2001). In these microsomes,

IP3-, cADPR- and NAADP-mediated Ca2+ release mechanisms were seen to

function independently of each other (Yusufi, et al., 2002). Blockade of IP3Rs

with heparin only inhibited IP3-mediated signals, while blockade of RyRs with

ruthenium red was seen to only inhibit Ca2+ signals mediated by cADPR.

Consistent with findings in other cell types (Genazzani, et al., 1996b),

NAADP-mediated Ca2+ signals were seen to be inhibited by the treatment of

microsomes with L-type Ca2+ channel blockers, which were without effect on

IP3- or cADPR-mediated Ca2+ signals (Yusufi, et al., 2002).

1.6 The pulmonary circulation

1.6.1 Pulmonary blood flow

Blood enters the pulmonary circulation from the right ventricle of the

heart and returns to the left atrium. Partially or fully deoxygenated blood enters

the right ventricle from the systemic circulation via the superior or inferior

vena cavae; it is then pumped into the main pulmonary artery. The main

pulmonary artery, which is about 5 cm in length in man, then divides into two

branches (left and right) that supply the blood to each of the lungs. These

branches then further divide into smaller resistance arteries (<1 mm internal

diameter), which themselves further divide into even smaller capillary vessels

(<10 m internal diameter). If the lobe of the lung is placed with its parietal

surface facing upwards, the artery is seen to be located directly below the

airway, which also branches and divides. The trachea branches into bronchi,

bronchioles and finally, alveoli. An extremely dense network of capillaries,

which surround the alveoli, allows the gaseous exchange to occur between

alveoli and pulmonary capillaries (Gray, 1858).
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The pulmonary circulation is in series with the systemic circulation and

is therefore required to take the entire cardiac output. It is unable to adjust its

own blood flow, without altering the blood flow of the entire systemic

circulation. It does manage, however, to regulate local blood flow within the

system depending on which areas of the lung are oxygenated by the mechanism

of hypoxic pulmonary vasoconstriction (HPV), as will be discussed in more

detail later.

1.6.2 Pulmonary arteries

The pulmonary arteries are shorter in length, larger in diameter and

thinner than their systemic counterparts. They have more distensible walls

which contain less smooth muscle and elastin resulting in the pulmonary

circulation having a high compliance. Second order branches of the pulmonary

artery have a relatively small lumen (<2 mm internal diameter in humans) and

a thick wall consisting primarily of elastic tissue and smooth muscle (up to

about three quarters of its total mass). The even smaller resistance arteries (<1

mm internal diameter in humans) are composed almost entirely of smooth

muscle (Gray, 1858).

1.6.3 Pulmonary veins

Pulmonary veins are composed of the same elements as the pulmonary

arteries as described above. However, the proportions are different, with the

vein being thinner with much less elastic tissue and smooth muscle than the

artery. The veins of the pulmonary system are far more variable than arteries

with respect to their branching pattern (Brock, 1942). The pulmonary veins

accompany the bronchi and pulmonary arteries, located centrally within each

segment, however, the pulmonary veins also run between segments of the lung

and below visceral pleura, unlike the arteries and the bronchi.



62

1.6.4 Pulmonary capillaries

The capillaries are the most abundant blood vessels within the body.

The pulmonary capillary bed in humans is believed to consist of an area of

around 30 m2 (Weibel, 1963). The primary function of all capillaries is gaseous

exchange, primarily between oxygen and carbon dioxide, which is a role that

capillaries are exceptionally well adapted to perform. The walls of the capillary

vessels are composed almost entirely of simple endothelial cells and provide a

diffusion barrier of as little as 0.5 m. A characteristic of pulmonary capillaries

which distinguishes them from their systemic counterparts is a greater

compliance. This is associated with the fact that they are surrounded by air,

rather than tissue (Fung and Sobin, 1972).

1.6.5 Nervous innervation

On the whole, it appears that local mechanisms regulate local blood

flow while nervous control regulates global blood flow (control of arterial

pressure, redistribution to an area of the body, increase in heart and force of

contraction; Williams (1995)). However, the possibility of local effects by

nervous control cannot be dismissed. The innervation of pulmonary blood

vessels is by efferent autonomic fibres controlled by the sympathetic nervous

system. All blood vessels, with the exception of most capillaries (and the small

resistance pulmonary arteries of the rat) are innervated by sympathetic

vasomotor nerve fibres which exit the spinal cord through the thoracic and first

two lumbar spinal nerves (Gray, 1858).

As mentioned previously, a number of studies have suggested that the

pulmonary innervation plays little role in ventilation/perfusion matching

through the mechanism of HPV (Nissel, 1948; Tucker, 1979). This has led to

the suggestion that control of vascular permeability rather than control of

vascular resistance is the role of the nervous innervation found within the

pulmonary circulation (Beckman and Metha, 1996). However innervation of

the pulmonary vasculature may also play a role in regulating the compliance of

large conduit vessels where there is a lot of innervation; however this role may
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become less important as innervation decreases further down the vascular tree

(McLean, et al., 1985).

1.7 Hypoxic pulmonary vasoconstriction

HPV was first described in 1894 when Bradford and Dean noted that

upon asphyxia there was a significant rise in pulmonary arterial pressure

(Bradford and Dean, 1894). Fifty years later, von Eular and Liljestrand (1946)

showed, in the feline circulation, hypoxia alone (without hypercapnia) was able

to constrict vessels from the pulmonary system. They also hypothesised in this

study that this constriction may aid ventilation/perfusion matching at the

alveolar level (von Euler and Liljestrand, 1946). An important discovery in this

field was then made when it was shown that the hypoxic response in the

isolated perfused feline lung was a local response and was not mediated by the

autonomic nervous system (Nissel, 1948).

As mentioned previously, the mechanism of HPV acts to divert blood

flow from poorly ventilated areas of the lung to better ventilated regions, i.e. it

matches local perfusion to ventilation (von Euler and Liljestrand, 1946).

Systemic arteries, however, tend to dilate or show no response to hypoxia

(Szidon, et al., 1969). When it occurs, systemic artery dilation by hypoxia

serves to match local perfusion to local metabolism (Roy and Sherrington,

1890; Lassen, et al., 1978). The mechanism by which HPV occurs is not fully

understood and remains a topic of great debate and research.

The final step for all stimuli which induce pulmonary vasoconstriction

involves the activation of the cellular contractile apparatus. There is little

evidence in the literature to suggest that the contractile apparatus within the

pulmonary artery is unique and most agents which induce constriction of

pulmonary arteries cause concurrent systemic vasoconstriction. Notable

exceptions to these are hypoxia and mitochondrial electron transport chain

(ETC) inhibitors (Archer, et al., 1993). It appears that this restriction of

hypoxic vasoconstriction to the resistance pulmonary arteries is due to a unique

property of pulmonary artery smooth muscle and endothelial cells. The precise

nature of this unique ‘sensor’ is still steeped in uncertainty and controversy,

with a number of likely candidates having been championed.
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1.7.1 Mechanism involved in the initiation of hypoxic pulmonary

vasoconstriction

Relatively mild hypoxia has been shown to inhibit mitochondrial

oxidative phosphorylation in O2-sensing cells and it has been suggested that

this may underpin, at least in part, cell activation (Mills and Jobsis, 1972;

Rounds and McMurtry, 1981; Duchen and Biscoe, 1992a; Wyatt and Buckler,

2004). Thus, depolarisation of the mitochondrial membrane potential and/or an

increase in -NAD(P)H levels has been reported in all O2-sensing cells

examined (Archer, et al., 1986; Duchen, 1992); Youngson, et al., 1993;

Shigemori, et al., 1996; Leach, et al., 2001) and over a range of PO2 that elicits

no such response in other cell types (Duchen and Biscoe, 1992b). There are

currently three theories within the field that have been proposed to couple

mitochondria to HPV. These theories are outlined below.

A number of investigations on HPV have suggested that inhibition of

mitochondrial oxidative phosphorylation by hypoxia elicits a decrease in the

production of reactive oxygen species (ROS) and an associated increase in

reduced redox couples (Archer, et al., 1986; Archer, et al., 1989; Archer, et al.,

1993; Paky, et al., 1993), and that these events lead to the initiation of HPV

(Archer, et al., 1986; Reeve, et al., 1995).

However, there is evidence in the literature to suggest that hypoxia

results in a paradoxical increase in ROS in pulmonary artery smooth muscle

(Marshall, et al., 1996; Waypa, et al., 2001; Liu, et al., 2003), calling into

question the validity of the redox model proposed by Archer and colleagues.

This converse theory involving ROS suggests that the increase in ROS results

in a shift in the cellular redox status to a more oxidized state, triggering HPV.

It is still open to question whether or not ROS or reduced redox couples act as

mediators of HPV.

Recently, work from this laboratory has suggested that AMP-activated

protein kinase (AMPK) may function to couple mitochondrial oxidative

phosphorylation to Ca2+ signalling mechanisms underpinning HPV in

pulmonary artery smooth muscle cells (Evans, et al., 2005).
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Within the last ten years, AMPK, a serine threonine kinase, has come to

prominence as a metabolic fuel gauge which monitors the cellular AMP/ATP

ratio within cells as an indicator of metabolic stress (Hardie, et al., 2006). It is

activated in response to a number of metabolic stresses (e.g. hypoxia, glucose

deprivation, excercise) that either increase cellular ATP consumption or reduce

ATP supply via mitochondrial oxidative phosphorylation. AMPK activation is

consequent to the action of adenylate kinase, which catalyses the conversion of

2 molecules of ADP to ATP + AMP, countering a reduction in ATP supply.

AMPK then catalyses the production of ATP from AMP to help further

maintain the cellular ATP supply (Hardie, et al., 2006). Activation of AMPK

promotes catabolic pathways in order to maintain ATP supply, whilst also

switching off non-essential ATP-consuming pathways (Hardie, et al., 2006).

However, far from being solely a mediator of energy metabolism, it is now

clear that AMPK can also target non-metabolic processes within cells (Hardie,

2005). Consistent with this proposal work from this laboratory has provided

evidence which supports a role for AMPK in mediating Ca2+ signals in

response to hypoxia in pulmonary artery smooth muscle cells (Evans, et al.,

2005).

1.7.2 Increases in intracellular Ca2+ concentration and the generation of

hypoxic pulmonary vasoconstriction

HPV had been presumed to be mediated by inhibition of Kv channels,

subsequent membrane depolarisation and voltage-gated Ca2+ influx

(Michelakis, et al., 2004). However it is now clear that constriction of

pulmonary artery rings by hypoxia may be induced in the absence of

extracellular Ca2+, i.e. under conditions where voltage-gated Ca2+ influx is

abolished (Dipp, et al., 2001).

In isolated pulmonary artery rings, HPV is biphasic (Fig. 1.6) when

induced by switiching from normoxia (155-160 Torr) to hypoxia (16-21 Torr).

Thus, hypoxia induces an initial transient constriction (Phase 1) followed by a

slow tonic constriction (Phase 2; Salvaterra and Goldman, 1993; Leach, et al.,

1994; Robertson, et al., 1995; Dipp and Evans, 2001; Dipp, et al., 2001;

Wilson, et al., 2001). In arteries without endothelium, this laboratory has
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shown that the initial transient constriction is followed by a maintained plateau

constriction, which persists for the duration of exposure to hypoxia (Dipp and

Evans, 2001; Dipp, et al., 2001). Thus, the development of the slow tonic

constriction is endothelium dependent (Dipp, et al., 2001), whilst the initial

transient constriction and maintained plateau are mediated by mechanisms

Fig. 1.6 The response of pulmonary arteries to hypoxia consists of 2 phases: Black

indicates cADPR-independent constriction driven by smooth muscle SR ca2+ release; grey

indicates the constriction driven by cADPR-dependent smooth muscle SR Ca2+ release; and

white indicates endothelium-dependent component.

intrinsic to the smooth muscle (Fig. 1.6; Dipp and Evans, 2001; Dipp, et al.,

2001; Wilson, et al., 2001). Indeed, these investigations provide compelling

evidence in support of a pivotal role for continued smooth muscle SR Ca2+

release in the maintenance of sustained HPV in isolated pulmonary arteries

both with and without endothelium (Dipp and Evans, 2001; Dipp, et al., 2001;

Wilson, et al., 2001). Consistent with these findings, a growing body of

evidence now suggests that acute HPV is primarily initiated and maintained by

the release of Ca2+ from smooth muscle SR stores via RyRs (Salvaterra and

Goldman, 1993; Jabr, et al., 1997; Dipp and Evans, 2001; Morio and
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McMurtry, 2002) and by consequent Ca2+ influx via a store-refilling current

(Kang, et al., 2003; Ng, et al., 2005; Wang, et al., 2005).

1.7.2.1 A role for cADPR in hypoxic pulmonary vasoconstriction

Given that both Phases 1 and 2 of HPV are abolished by block of SR

Ca2+ release with ryanodine and caffeine (Dipp and Evans, 2001; Dipp, et al.,

2001) a possible role for cADPR in mediating SR Ca2+ release was considered.

Previous work from this laboratory has shown that the enzymes for both the

synthesis and metabolism of cADPR are around 1 order of magnitude higher in

homogenates of pulmonary artery when compared to homogenates of aorta or

mesenteric artery (Wilson, et al., 2001). Also in this study, an increase in the

levels of cADPR was observed in response to hypoxia, by 2-fold in 2nd order

pulmonary artery branches and 10-fold in 3rd order pulmonary artery branches.

Furthermore, the cADPR antagonist 8-Br-cADPR was shown to abolish acute

HPV induced by alveolar hypoxia in isolated rat pulmonary artery rings and in

the isolated, ventilated and perfused rat lung (Dipp and Evans, 2001).

Therefore, an increase in smooth muscle cADPR levels and cADPR-dependent

SR Ca2+ release may be a prerequisite for maintained HPV by alveolar hypoxia

in the lung irrespective of the other mechanisms that may be activated by

hypoxia (Dipp and Evans, 2001). The effects of 8-Br-cADPR on HPV in

isolated pulmonary arteries were, however, quite different to the effects of

blocking SR Ca2+ release via RyRs with ryanodine and caffeine. In arteries

with and without endothelium, 8-Br-cADPR had no effect on Phase 1 of HPV.

However, it abolished Phase 2 in the presence of endothelium and blocked

maintained constriction observed in arteries without endothelium (Dipp and

Evans, 2001; Wilson, et al., 2001). Therefore, while cADPR-dependent SR

Ca2+ release may maintain acute HPV in isolated pulmonary artery rings, it

does not mediate the phase 1 constriction (Fig. 1.6; Dipp and Evans, 2001;

Wilson, et al., 2001). Interestingly, the SERCA pump antagonist cyclopiazonic

acid (CPA) was shown to have the reverse of the effect of 8-Br-cADPR, in that

it blocked Phase 1 of HPV without effect on Phase 2 in pulmonary arteries with

or without endothelium (Dipp, et al., 2001), despite the fact that Ca2+ release

from ryanodine-sensitive SR stores in the smooth muscle underpins both
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phases of HPV. Thus, it is possible that Phase 1 may be mediated by the

mobilization of an SR compartment served by CPA-sensitive SERCA pumps

that may be inhibited by hypoxia due to a fall in ATP supply (Dipp and Evans,

2001), and that this may lead to the attenuation of vasodilation mechanisms

that might oppose HPV (as described previously in Section 1.5.7). If this were

to be achieved while allowing for the second phase of maintained cADPR-

dependent SR Ca2+ release, it would require the presence of a second spatially

segregated SR Ca2+ store that is served by a discrete, CPA-insensitive SERCA

pump (Dipp and Evans, 2001).

1.7.3 The involvement of the endothelium and myofilament Ca2+

sensitisation in hypoxic pulmonary vasoconstriction

Increased tension generation during phase 2 of HPV is dependent on an

intact endothelium and the generation of endothelium-derived factors

(Robertson, et al., 1995; Ward and Robertson, 1995; Dipp, et al., 2001; Liu, et

al., 2001). The 21-amino acid peptide endothelin 1 (ET-1) is secreted by

endothelial cells and is considered to be a contributing mediator of phase 2 of

HPV. At low concentrations (~10-10 M) ET-1 increases the sensitivity of the

contractile response to the hypoxia-induced increase in intracellular Ca2+

concentration, while at higher doses (~10-8 M) it directly increases the

intracellular Ca2+ concentration in pulmonary artery smooth muscle cells

(Shimoda, et al., 2000). Whether endothelium-derived ET-1 increases Ca2+

sensitivity and/or the intracellular Ca2+ concentration in pulmonary artery

smooth muscle cells during hypoxia remains to be resolved. However, hypoxia

has been shown to increase the ET-1 expression and secretion from cultured

endothelial cells (Yamashita, et al., 2001). Moreover, the ET-1 receptor A

(ETA) antagonist BQ-123 has been shown to attenuate phase 2 of HPV in

isolated vessels and whole lungs (Sato, et al., 2000; Liu, et al., 2003).

The possibility that endothelium-derived factors in addition to ET-1

may exist was suggested by studies involving the inhibition of ETA and

ETA/Endothelin receptor B (ETB) which did not always attenuate the

sustained contractile response seen in phase 2 of HPV (Robertson, et al., 1995;

Lazor, et al., 1996; Robertson, et al., 2003). To date, the identity of these
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additional hypoxia-induced, endothelium-derived factors is still unclear,

however a vasoconstrictor(s) has been isolated (Robertson, et al., 2001; Evans

and Dipp, 2002). The vasoconstrictor is heat stable and pulmonary selective

(Robertson, et al., 2001), and may promote constriction by increasing

myofilament sensitivity via the activation of ROK (Robertson, et al., 2001;

Evans and Dipp, 2002).

There is compelling evidence that the mechanism of Ca2+ sensitisation

via the RhoA:ROK pathway is more important in pulmonary resistance vessels

than in systemic arteries. Thus, the ROK inhibitor Y-27632 produced

significantly greater relaxation in pulmonary artery rings preconstricted with

phenylephrine than was observed in aortic rings (Hyvelin, et al., 2004). The

increased role of ROK in pulmonary arteries may be of fundamental

importance given that Ca2+ sensitisation is an integral component of sustained

HPV. Ca2+ sensitisation in response to hypoxia appears to occur independently

of PKC (Robertson, et al., 1995). However, there is compelling evidence to

suggest that activation of RhoA and ROK is a central component of this

mechanism (Robertson, et al., 2001). Robertson and colleagues showed that Y-

27632 inhibited both the sustained phase of HPV in isolated rat intrapulmonary

arteries and the hypoxic pressor response in perfused lungs in a concentration-

dependent manner (Robertson, et al., 2001). Inhibition of ROK with Y-27362

has also been shown to inhibit acute HPV in isolated mouse lung (Fagan, et al.,

2004). Recently, ROK activity has been shown to increase by around ~260 %

in isolated pulmonary arteries of rat in response to sustained HPV (Robertson,

et al., 2005). This activation of ROK in rat pulmonary arteries was

endothelium-dependent, as in endothelium-denuded arteries the increase in

ROK (~ 40%) was similar to the reported increase in ROK activity previously

observed in cultured smooth muscle cells (Wang, et al., 2001). Although there

is compelling evidence of an involvement for the RhoA:ROK pathway in Ca2+

sensitisation and HPV, there is evidence of an involvement of a number of

other cellular kinases such as mitogen-activated protein kinase and non

receptor tyrosine kinase in mediating both Ca2+ sensitisation (Somlyo and

Somlyo, 2003) and HPV (Ward, et al., 2004). However, the complexities of

these pathways and the possible interactions between them will not be

discussed here.
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1.7.4 Chronic hypoxia and hypoxic pulmonary hypertension

Sustained HPV leads to hypoxic pulmonary hypertension (HPH) and an

increase in pulmonary vascular resistance (PVR). Ultimately, this increased

PVR results in right heart failure and death, due to an excessive work load

placed on the heart in order to maintain blood flow through the restricted

pulmonary vasculature. Thus, chronic HPH results from sustained

vasoconstriction and structural alterations to the pulmonary vascular bed.

Following a swift return to the a normal PO2 the immediate fall in arterial

pressure is slight and leaves the arterial pressure elevated substantially above

normal levels (Sime, et al., 1971; Lockhart, et al., 1976; Fried, et al., 1983) .

These observations suggested that structural changes occurring in the

pulmonary vascular bed are the major determinant of the increased vascular

resistance. Structural changes that underlie the increase PVR in HPH can be

roughly categorised into two processes: 1) remodelling of the pulmonary

resistance vessels; and 2) a reduction in the number of blood vessels within the

lung, which is often referred to as rarefaction or pruning.

Pulmonary vascular remodelling results in thickening of the arterial

wall and is believed to increase vessel resistance by causing encroachment of

the vessel into the lumen, therefore reducing the internal diameter of the vessel.

This remodelling of the vascular wall is due to muscularisation of previously

non-muscular arteries, increased medial thickness of previously partially or

completed muscularised arteries, adventitial hypertrophy and deposition of

additional matrix components (e.g. collagen and elastin) in the vascular walls

(Rabinovitch, et al., 1979; Stenmark and Mecham, 1997; Rabinovitch, 2001).

The second major structural modification which occurs due to chronic

HPV is the loss of small blood vessels. This is believed to increase PVR by

reducing the extent of parallel vascular pathways through the lung (Hislop and

Reid, 1976; Hislop and Reid, 1977; Rabinovitch, et al., 1979; Partovian, et al.,

2000). This loss of blood vessels has been detected as a decrease in the ratio of

the number of blood vessels to the number of alveoli in the gas-exchange

regions of the lung. However, not all investigators agree with the view that

HPH reduces the number of vessels in the pulmonary vasculature. Indeed,

several investigations have shown that there is no decrease, while other
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investigators report an increase in the number of vessels (Kay, et al., 1982;

Finlay, et al., 1986; Howell, et al., 2003).

1.8 NAADP-dependent Ca2+ signalling in pulmonary artery smooth

muscle

A recent study from this laboratory has demonstrated that global Ca2+

release and contraction of isolated pulmonary artery smooth muscle cells

occurred in response to the intracellular dialysis of NAADP (Boittin, et al.,

2002). Consistent with the proposal of Churchill and Galione (2001), it was

shown that NAADP generated global Ca2+ signals via a two pool mechanism in

pulmonary artery smooth muscle. Intracellular dialysis of NAADP from a

patch pipette under whole-cell conditions and in current clamp mode (I = 0)

was seen to mediate spatially restricted Ca2+ release events, which were termed

‘Ca2+ bursts’. These Ca2+ bursts were seen to either decline to basal levels, or

precede and then trigger a global Ca2+ wave and contraction of the smooth

muscle cells. Ca2+ bursts were seen to generate global Ca2+ waves only if they

breached a threshold Ca2+ concentration of approximately 400 nM (Boittin, et

al., 2002). In this study, no detectable Ca2+ mobilisation was seen to the

intracellular dialysis of NAADP when the fast calcium chelator BAPTA was

present in the pipette solution. However, when BAPTA was added to the

extracellular solution and Ca2+ was removed, there was no effect on NAADP-

mediated Ca2+ mobilization. These results show that NAADP releases Ca2+

from an intracellular Ca2+ store. Boittin et al. dismissed the SR as the site of

NAADP mediated Ca2+ release. Consistent with previous investigations in

other cell types (Genazzani and Galione, 1996; Churchill and Galione, 2000;

Churchill and Galione, 2001), preincubation of isolated pulmonary artery

smooth muscle cells with the SERCA pump inhibitor thapsigargin did not

abolish NAADP-mediated Ca2+ bursts. Global Ca2+ waves were abolished

however, suggesting a role for the SR Ca2+ stores in the amplification of initial

Ca2+ release events into global Ca2+ signals. However, in contrast to studies in

sea urchin eggs (Churchill and Galione, 2001), the Ca2+ bursts mediated by

NAADP were seen to be insensitive to blockers of IP3Rs. Following the

blockade of IP3Rs on the SR with xestospongin C, NAADP-mediated Ca2+
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signals remained unaffected (Boittin, et al., 2002). However, prevention of

Ca2+ release through RyRs with ryanodine resulted in a loss of global Ca2+

signals to NAADP, while spatially restricted Ca2+ bursts were still detected.

Therefore, it was concluded that NAADP mobilises Ca2+ from an non-SR Ca2+

store in isolated pulmonary artery smooth muscle cells, which is then amplified

to global Ca2+ signals by CICR via RyRs located on the SR (Boittin, et al.,

2002). Given that cADPR sensitises RyRs to CICR, this raised the possibility

that NAADP and cADPR may act in concert to mediate HPV, which in a

similar manner to global Ca2+ waves induced by NAADP, is initiated in an all-

or-none manner. I therefore sought to characterise in more detail the

mechanisms that underpin Ca2+ signals mediated by NAADP in pulmonary

artery smooth muscle.

1.9 Aims of this thesis

1. Investigate the nature of the Ca2+ store accessed by NAADP in smooth

muscle cells of the rat pulmonary artery.

2. Investigate the relationship between the NAADP-sensitive Ca2+ store and

RyRs in an effort to build a model to explain Ca2+ signalling by NAADP

in smooth muscle of the pulmonary artery.

3. Investigate and identify a vasoconstrictor mechanism which couples to

NAADP-dependent Ca2+ signalling in an effort to demonstrate that

NAADP is indeed a true Ca2+ mobilising messenger in arterial smooth

muscle.
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Chapter 2: Materials and methods

2.1 Dissection and identification of intrapulmonary arteries

All experiments were performed in accordance with the United

Kingdom Animals (Scientific Procedures) Act 1986. Adult male Wistar rats

(150-300g) were sacrificed via a Schedule 1 procedure and the heart and lungs

were removed en bloc and placed into cold (4oC) HEPES buffered salt solution

(HBSS) of the following composition (mM): 130 NaCl, 5.2 KCl, 1 MgCl2, 1.7

CaCl2, 10 glucose, 10 Hepes, pH 7.4. Individual lobes were constantly bathed

in cold HBSS during dissection of intrapulmonary arteries. All subsequent

dissection was carried out under a dissection microscope (model PZM , World

Precision Instruments, Fl, USA). Individual lobes were pinned out on a

Sylgard-lined dissection dish with the parietal surface facing upwards. The

airway was cut open from where the trachea entered the lobe of the lung, and

was cut open moving away from the initial cut until the far end of the lobe was

reached. The intrapulmonary artery was identified as running below and

parallel to the trachea. Once the pulmonary artery was identified, dissection

was carried out in order to ensure as little damage as possible was done to the

artery. All tissue was removed above the artery, as it was seen looking down

the microscope, and parenchyma on either side of the artery was also carefully

removed in order to expose the artery. A small piece of parenchyma was left

attached to the artery at one end, close to where the artery entered the lobe.

Following this the artery was removed by cutting the remaining connective

tissue and handled only by remaining parenchyma.

2.2 Isolation of pulmonary artery smooth muscle cells

2nd order branches of the pulmonary artery were identified and

dissected free from their lobe as described in section 2.1. Following this they

were then cut open lengthways from end to end. Arteries were then placed into

cold (4 oC) low Ca2+ ‘dissociation solution’ (DS) of the following composition

(mM): 124 NaCl, 5 KCl, 1 MgCl2, 0.5 NaH2PO4, 0.5 KH2PO4, 15 NaHCO3,
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0.16 CaCl2, 0.5 EDTA, 10 glucose, 10 Taurine, 10 Hepes, pH 7.4. After ten

minutes arteries were transferred to low Ca2+ solution containing 0.5 mg/ml

papain and 1 mg/ml bovine serum albumin. Papain is a proteolytic enzyme

which requires a free sulfhydryl group in order to work. It was first isolated in

the 1930s, from the latex of the green fruit and the leaves of the plant Carica

papaya (Buhling, et al., 2000). The arteries were then kept in this solution at

4oC overnight to allow the protease adequate time in which to penetrate into

the tissue. The following day, 0.2mM 1, 4-Dithio-DL-thretiol (DTT) was added

to activate the protease, and the preparation was then incubated for one hour at

room temperature (22oC). DTT, often referred to as Cleland’s Reagent, was

used in order to maintain sulfhydryl groups in a reduced state and thereby

activate the papain. After this time the arteries were washed 5 times in 1.5 ml

of fresh cold (4oC) DS free from enzymes and placed in 2 ml of fresh DS.

Single smooth muscle cells were then isolated by gentle trituration using a fire

polished Pasteur pipette. The cell suspension was then kept at 4oC until

required.

2.3 Fluorescent labelling of sub-cellular structures in freshly isolated

pulmonary artery smooth muscle cells

2.3.1 Labelling of ryanodine receptors in freshly isolated pulmonary artery

smooth muscle cells

Cells were isolated as described in section 2.2. Following dissociation,

200 l of the cell suspension was incubated for 60 minutes in the dark at room

temperature (~20 oC) with 1 M BODIPY-FL ryanodine (Fig. 2.1). The

dipyrometheneboron difluoride (BODIPY)-FL group is an amine reactive

group and has an advantage over other BODIPY tags in that it mainly produces

non-polar compounds. It is a fluorescent protein with an excitation wavelength

of 505 nm and an emission wavelength of 515 nm (Fig. 2.1)
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Fig. 2.1: Excitation and emission spectra for the fluorescent probe BODIPY-FL.

BODIPY-FL has been shown to be a better probe than the more

established fluorescein dyes for a number of reasons. Unlike fluorescein, the

spectra of BODIPY-FL is relatively insensitive to polarity, and to changes in

pH in its surroundings (Karolin, et al., 1994). BODIPY-FL ryanodine has been

identified as being a good label for ryanodine receptors (RyR; Holz, et al.,

1999; Abrenica and Gilchrist, 2000; Coussin, et al., 2000). When ryanodine is

joined to the BODIPY-FL molecule on carbon 10 there is minimal change to

the dissociation constant when compared to that of ryanodine (Humerickhouse,

et al., 1994).

2.3.2 Labelling of lysosomes within freshly isolated pulmonary artery

smooth muscle cells

After fifteen minutes of incubation with BODIPY-FL ryanodine, 0.5 - 2

nM of LysoTracker Red was added to the cells. Cells were then incubated in

the dark for the last 30 minutes at room temperature (~20 oC). All cells loaded

with BODIPY-FL ryanodine were colabelled with LysoTracker Red (Chapter

4), however, initial experiments were carried out in cells labelled with

LysoTracker Red alone (Chapter 3). LysoTracker Red is a fluorescent
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molecule with an excitation wavelength of 577 nm and an emission wavelength

of 590 nm (Fig. 2.2). It consists of a weak base linked to a fluorophore and is

partially protonated at neutral pH, allowing it to move freely across the cells

membrane and accumulate in acidic organelles, however, the exact mechanism

of retention is unclear.

Cells were then transferred to a glass bottomed Petri dish for the last

twenty minutes of the incubation period to allow the cells to adhere. After this

time the volume within the dish was made up to 2 ml using fresh HBSS at

room temperature (~22 oC; pH 7.4) and washed with 5 x 2ml fresh HBSS.

Cells were left to equilibrate in the dark before commencement of the imaging

protocol. In experiments involving glycyl-L-phenylalanine 2-napthylamide

(GPN), cells were pre-treated for 15 minutes with the myosin light chain kinase

inhibitor 1-(5-chloronapthalene-1-sulfonyl)-1-H-hexahydro-1, 4-diazepine

(ML-9; 10 M) in order to prevent contraction of the cells (Saitoh, et al.,

1986).

Fig. 2.2: Excitation and emission spectra for the fluorescent probe LysoTracker Red.
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LysoTracker Red and BODIPY-FL ryanodine were deemed suitable for

colabelling studies due to the lack of overlap in their excitation and emission

spectra (Fig. 2.3)

Fig. 2.3: comparison of excitation and emission spectra for the fluorescent probes

LysoTracker Red and BODIPY-FL.

2.3.3 Procedure for imaging sub-cellular structures in isolated pulmonary

artery smooth muscle cells

Cells were excited by the light from a 100W mercury arc lamp.

Beamsplitter filters were used to accurately control the required wavelength for

illumination. Images were captured using a Deltavision microscope system

(Applied Precision) consisting of an inverted microscope (Olympus IX70) with

a 60X 1.4-numerical aperature oil immersion objective lens (Olympus) and a

Photometric CH300 charge-coupled device camera (CCD camera).

A CCD camera consists of a large array of photodiodes on a silicon

substrate which form individual areas of the picture, or picture elements

(pixels). Utilising the photoelectric effect, a photon of light falling upon a

given photodiode causes the release of an electron. Therefore, light falling on a
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pixel is converted into a charge pulse, which is measured by the CCD

electronics and is represented by a number in the analysis software, in the case

of the Deltavision system this is the Softworx acquisition and analysis software

(Applied precision) on a Silicon Graphics O2 workstation (Silicon Graphics

Inc., CA, USA). Within the acquisition and analysis software a digital image is

constructed from the collection of light intensity numbers from all the

photodiodes making up the CCD camera. The computer software reconstructs

the image by varying the digital intensity for each pixel in a manner

proportional to the charge pulse number recorded. The images from each pixel

are displayed on the computer monitor in the correct order. Digital computers

process binary information. If we wish to process an analogue image, in this

case a picture of our cell of interest, we must convert the image into a data set

the computer can understand. The analogue picture is converted into a digital

image using the following principal. Photographic images are analogue images

and the colours are expressed on a continuous scale, which has an infinite

number of possible colours. In order to process these images effectively the

computer does not use this continuous scale, rather it converts it into a number

of discreet levels based on intensity of light within the image. The computer

uses a scale that comprises of 256 levels of grey from white through to black.

Therefore, the different intensities of light in each pixel will be given a

different grey value and from this it is possible to build up a picture. The

fluorescence intensity within a sample is displayed as a range of grey levels.

Images were collected as single Z sections of 0.28 m in depth, or as a

series of Z sections through the cell at 0.2 m intervals. This provides a series

of 2D images containing information on all the staining throughout the cell.

However, given that the microscope will pick up a great deal of out of focus

light at each Z step we need a way to remove the out of focus light and leave us

with the information for the given Z section we are looking at. This is done by

the process of deconvolution, which describes a number of software techniques

for ‘de-blurring’ a given image.
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2.3.4 Deconvolution of images of isolated pulmonary artery smooth muscle

cells

The Deltavision system employs a sophisticated method known as

‘constrained-iterative deconvolution’ to reassign out of focus light to its

original location. Within this process the use of point spread function (PSF)

data allows the conservation of data commonly lost by other methods of

deconvolution. PSF refers to the imaging characteristics of the lens employed

for imaging. No microscope objective is able to perfectly reproduce an image

of an object. The PSF describes the degree to which a point of light is altered in

three dimensions as it passes through the lens and relay optics of the

microscope. The PSF will differ for each lens and microscope system

combination and the Deltavision system is carefully calibrated to ensure an

accurate value for the PSF of the lens within the system. Therefore, the PSF is

corrected for in the deconvolution process, allowing for a more accurate

redistribution of light within an image.

Following deconvolution, Softworx software or Volocity software

(Improvision, UK) was employed to produce 3 dimensional reconstructions of

imaged cells for off-line analysis.

2.4 Fluorescent labelling of intracellular proteins in isolated
pulmonary artery smooth muscle cells

2.4.1 Fixation and labelling of lysosomal membrane protein lgp and

ryanodine receptor subtypes 1, 2 and 3 in isolated pulmonary artery

smooth muscle cells

Sequence specific antibodies to the RyR subtypes 1, 2, and 3 were a gift from

Professor Sidney Fleischer and have previously been shown to be highly

sequence specific for their individual targets on the different RyR subtypes

(Lesh, et al., 1992; Jeyakumar, et al., 1998; Jeyakumar, et al., 2001); Table

2.1). GM10 antibodies (Grimaldi, et al., 1987), raised against the lysosomal

glycoprotein antigen lgp120 (Lewis, et al., 1985) were a gift from Professor

Paul Luzio. The antigen lgp120 has previously been shown to be
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preferentially associated with the membrane of lysosomes (Lewis, et al., 1985;

Howe, et al., 1988).

Antibody Raised in

Dilution

Immunocyt.

Dilution

Westerns Target sequence References

RyR1 Rabbit 1:500 1:500 Residues 4476-4486 Lesh et al, 1993

RyR2 Rabbit 1:500 1:500 Residues 1344-1365 Jeyakumar et al, 2001

RyR3 Rabbit 1:500 1:500 Residues 4236-4336 Jeyakumar et al, 1998

Table 2.1: Dilution factors, sequence specifics and initial references relating to anti-

ryanodine receptor (RyR) antibodies for immunocytochemistry (Immunocyt.) and

Western blotting (Westerns) investigations.

200 l of freshly dissociated cell suspension was put onto poly-d-lysine

coated glass coverslips and cells were allowed to settle for 1 hour at room

temperature (~22 oC). Coverslips were covered in Poly-D-lysine to coat the

surface with a net negative charge in order to enhance cell adhesion. After 1

hour, excess solution was removed and the coverslips placed in freezing cold

methanol for 15 minutes to fix the cells. Methanol fixation works by removing

lipids and dehydrating the cell while denaturing and precipitating proteins on

the cellular architecture. This method allows for quick fixation of the cells;

however it can result in the loss of diffuse proteins, i.e. those proteins which

are not anchored to membranes and are free to move within the cytoplasm of

the cell. Once fixation was complete cells were removed from the methanol

and were permeabilised by three, five minute washes in phosphate buffered

saline (PBS; pH 7.4) containing the non-ionic detergent Triton X-100

(polyethyrene glycol mono-p-iso-octylphenyl ether; 0.3%). Triton X-100

causes the formation of pores in the membranes of cells, thus allowing access

of specific antibodies to the inside of the cell. After this cells were washed 3 x

5 minutes with blocking solution (1% bovine serum albumin (BSA), 4% goat

serum and 0.1% Triton X-100). Blocking solution contains goat serum and

BSA to prevent any non- specific binding of the primary antibodies within the

cell. This significantly improves signal to noise ratio within the sample. Triton

X-100 is included in the solution to aid the penetration of goat serum, BSA and

primary antibodies. Cells were then incubated overnight at 4 oC with antibodies

raised in rabbit to sequences of one of the RyR subtypes and with GM10
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antibodies. These antibodies were diluted in blocking solution to help minimize

non specific binding (Table 2.1).

The following day cells were washed three times for five minutes in

fresh blocking solution of the same composition of that used previously. In

order to determine where the primary antibody has bound within the cell it is

necessary to employ some means of being able to visualize it. This was

achieved by employing a secondary antibody raised against immunoglobulins

of the species that the primary antibody is raised in. Secondary antibodies are

conjugated to a fluorescent molecule, allowing for visualisation. Following the

washing step, cells were incubated for two hours in the dark at room

temperature (~20 oC) with fluorescently labelled secondary antibodies. In order

to visualize the primary antibodies raised in rabbit against RyRs an anti-rabbit

antibody raised in goat was used. This antibody was conjugated with the red

fluorescent dye Texas Red (excitation 555 nm, emission 617 nm) and diluted

1:200 with blocking solution. The primary antibody, GM10, raised against the

lysosomal membrane glycoprotein lgp120, was visualised using an anti-

mouse secondary antibody raised in goat and conjugated to the green

fluorescent dye FITC (excitation 490 nm, emission 528nm; diluted 1:200 with

blocking solution). These two dyes are suitable to use for co-labelling studies

as their excitation and emission spectra show very little overlap (Fig. 2.4).

Fig. 2.4 Diagram of excitation and emission spectra for the fluorescent probes FITC and

Texas Red showing the lack of overlap between the two

Cells were washed five times for five minutes each in the dark with

fresh PBS (pH 7.4) following the two hour incubation. Cells were then attached
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to microscope slides using hard setting, anti-fade mountant containing the

fluorescent nuclear dye 4’6-diamidino-2-phenylindole (DAPI; excitation 360

nm, emission 457 nm). DAPI has been shown to associate with the minor

groove of double stranded DNA, preferentially binding to AT clusters

(Kubista, et al., 1987). The binding of DAPI to the minor groove produces

around a 20 fold increase in fluorescence under excitation allowing for

accurate visualization of the nuclear region of the cell (Barcellona, et al.,

1990).

The slides were then left for 2 hours in the dark at room temperature

(20oC) to allow the mountant to set. Slides were then stored in the dark at 4 oC

until examined.

2.4.2 Preparation of control slides for use in immunocytochemical

investigations

In order to remove background fluorescence and allow for examination

of the binding of secondary antibodies within cells, two sets of control slides

were prepared in parallel to test slides.

The first control slides differed from test slides in that these control

slides were not incubated with primary antibodies overnight. This allowed me

to examine the fluorescence intensity of background fluorescence associated

with the presence of secondary antibodies within the fixed cells (Fig. 2.5A). By

determining the level of intensity of secondary antibody fluorescence in control

slides, following deconvolution using Softworx software (Chapter 2, Section

2.3.4), it was possible to determine a ‘threshold’ fluorescence intensity level in

order to remove background fluorescence from test slides, enabling

visualization of specific labelling within the test cells (Fig. 2.5B).

The second set of control slides were prepared to confirm the

specificity of the primary antibodies by incubating a given concentration of

primary antibodies with a 10X concentration of the specific sequence the

primary antibodies are raised against. Following three hours of incubation of

the primary antibodies with their ‘blocking peptide’, slides were prepared as

described above. The fluorescence intensity of these control slides were then

examined for comparison against test slides. The absence of fluorescent
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labelling above the ‘threshold’ fluorescence intensities determined from control

slides prepared in the absence of primary antibody confirmed the specificity of

primary antibodies.

Fig. 2.5: Elimination of background fluorescence from images obtained on the Deltavision

system: Panel A(i) shows a deconvolved Z-section (depth 0.28 m) taken through an isolated

pulmonary artery smooth muscle cell from a control slide not incubated with primary antibody

against RyRs or lysosomes. The cell has been incubated with fluorescent-conjugated secondary

antibody (red/green) and is labelled to show the position of the nucleus (blue). A(ii) shows a

deconvolved Z-section (depth 0.28 m) through a different isolated pulmonary artery smooth

muscle cell that was incubated with primary antibody against RyRs or lysosomes. Binding of

fluorescent-conjugated secondary antibodies shows the distribution of RyR3 (Red) and the

lysosomes (green), although considerable background fluorescence is still seen. The position of

the nucleus is indicated in blue. Panel B(i) shows the same cell as in A(i) following adjustment

to remove background fluorescence, the position of the nucleus is still apparent (blue). B(ii)

shows the same cell as in A(i) following adjustment to remove background fluorescence, the

distribution of RyRs (red) and lysosomes (green) can be easily determined in relation to the

position of the nucleus (blue).

2.4.3 Visualisation of labelling in methanol-fixed, isolated pulmonary

artery smooth muscle cells

Fluorescent labelling in methanol-fixed, isolated pulmonary artery

smooth muscle cells were visualised using the Applied Precision Deltavision

imaging system as described in Chapter 2, Section 2.3.3. Z-series of images
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were captured at 0.2 m steps in the Z-direction. Captured images were

deconvolved using the method of deconvolution contained within the

Deltavision software, described in Chapter 2, Section 2.3.4. Volumetric

analysis of fluorescent labelling was carried out using Volocity Software

(Improvision, UK).

2.5 Detection of proteins in pulmonary artery smooth muscle by use of

Western blotting

2.5.1 Preparation of protein samples for use in assays

2nd order branches of the pulmonary artery were identified as described

in section 2.1 and dissected clear of surrounding parenchyma. Arteries were

then cut open longitudinally and the endothelium was removed by gently

rubbing of the luminal wall with a cotton bud. The brain of the animal was

removed from the skull and cut into pieces, as was the heart and skeletal

muscle (the vastus lateralis from the hind leg). All tissue was snap frozen

immediately after removal in liquid nitrogen and stored at -80 oC until

required. Tissue was placed into a small cooled mortar containing liquid

nitrogen, once most of the liquid nitrogen had evaporated a cooled pestle was

used to grind the tissue into a fine powder. The crushed tissue was then placed

in a cooled microcentrifuge tube and buffer was added (3 l per 1 mg tissue) of

the following composition (mM): 50 Tris base, 150 NaCl, 50 NaF, 5 Na

pyrophosphate, 1 EDTA, 1 EGTA, 1 DTT, 0.1 benzamidine, 0.1 % (v/v) Triton

X-100, 0.1 PMSF, 0.25 mannitol, pH 7.4. After two minutes a motorised pestle

was used to ensure a smooth homogenate was formed. Once formed the

homogenate was left on ice for 30 minutes after which time the homogenate

was spun on a desktop centrifuge for 5 minutes at 10,000 g, this was carried

out at 4oC. The supernatant containing the protein fraction was removed to a

cooled eppendorf tube and both the supernatant and the pellet containing cell

debris were retained at -80 oC until required.
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2.5.2 Bradford assay of protein content

Since it was first described in 1976, the Bradford assay has become a

widely used protein assay method as it is simple, rapid, inexpensive and

sensitive (Bradford, 1976). The Bradford assay takes advantage of the

absorbance shift of Coomassie brilliant blue G-250 (CBBG) when it binds to

proteins at specific amino acid residues, namely arganine, tryptophan, tyrosine,

histadine and phenylalanine residues. CBBG binds to these residues in its

anionic form which has an absorbance maximum of 595 nm. The free dye in

solution is found in the cationic form, with an absorbance maximum at 470 nm.

The assay is read at 595 nm in the spectrophotometer which gives a measure of

the CBBG complex with the protein.

Appropriate volumes (1-10 l) of each protein sample were added to

different plastic cuvettes. To each cuvette 2 ml of Bradford reagent was added,

cuvettes were then shaken to mix contents. Bradford reagent consists of

Coomassie brilliant blue G-250, 95 % ethanol and 85 % orthophosphoric acid.

The spectrophotometer (CE 393 Digital Grating Spectrophotometer, Cecil

Instruments Ltd., UK) was turned on and allowed to warm up for fifteen

minutes in order to allow for a consistent reading. Protein concentrations are

determined by extrapolation from a standard curve of protein concentrations.

This was produced using a BSA stock solution (1.45 mg/ml) diluted to the

following concentrations, in pure-filtered H2O (mg protein/ml): 0, 0.1, 0.25,

0.5, 0.75, 1, and 1.45. The standards and the protein samples were both read on

the spectrophotometer and the protein concentrations of the tissue samples

were determined via interpolation using Prism software described in section

2.6.6.

2.5.3 SDS-polyacrylamide gel electrophoresis

SDS- polyacrylamide gel electrophoresis (SDS- PAGE) is a method for

separating and identifying proteins according to their molecular weight. The

proteins move through the gel due to the influence of an electric current and the

proteins migrate towards the anode, the positive electrode.
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The pores within the gel restrict the passage of the proteins in

proportion to their molecular weight so that the low molecular weight proteins

move more rapidly. In this system gels of two different pore sizes are used: the

stacking gel has a lower pH (6.8) and a larger pore size than the resolving gel

(pH 8.8). This results in the concentration of the proteins at the interface

between the two gels, thus giving a better resolution. Effectively, the gels are

made by chemical polymerisation of a mixture of acrylamide and bis-

acrylamide (a cross linker), with ammonium persulphate which catalyses and

TEMED which initiates the polymerisation reaction. The final concentration of

acrylamide depends on the molecular weight range desired, high concentration

gives good resolution of low molecular weight proteins and vice versa.

Resolution of proteins was performed using 6 % bis- acrylamide gels cast in

Novex gel cassettes (Invitrogen, UK) with five lanes. The resolving gel mix (6

% acrylamide, 0.375 M Tris, 0.1 % w/v SDS, 0.05 % w/v APS and 0.05 %

TEMED) was poured into the gel cassette. The mix was overlaid with pure-

filtered H2O and left to polymerise for 30 minutes. Once the gel had

polymerised, removal of any unpolymerised gel mix was achieved by washing

with distilled H2O. After this the stacking gel (4.2 % acrylamide, 1 % w/v

SDS/ 0.125 M Tris, 0.05 % w/v APS and 0.08 % TEMED) was poured over

the resolving gel and a 10 well comb was inserted to create lanes. The gel was

then allowed to polymerise again for approximately 30 minutes.

Proteins are boiled in Laemmli buffer containing SDS, a reducing agent

(-mercapotethanol), glycerol and the marking dye bromophenol blue. Sodium

dodecyl- sulphate (SDS) is a detergent with a strong negative charge, which

binds avidly to all proteins, hence all proteins, whatever their original charge,

are converted to complexes that have a strong negative charge. Also, the three

dimensional shape of the protein is converted into a rod-like structure. Since

the SDS molecules bind to polypeptides with a constant weight ratio, the

charge per unit weight is constant and electrophoretic motility becomes a

function of molecular weight. The reducing agent breaks the disulphide bonds

(-S-S-) within the proteins which aids in the conversion of the proteins 3-

dimensional structure into a rod- like structure and prevents it from converting

back. The presence of the marking dye allows control over the distance of
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migration of proteins. Using the protein concentrations determined from the

Bradford assay, protein samples were made up to a final concentration of 1 mg/

ml in the appropriate volumes of sample buffer (composition (mM): 63 Tris

pH6.8, 139 SDS, 3.3 % glycerol, 1 % bromophenol blue, 5 % -

mercaptoethanol) and 50 mM Tris. The resultant mixture was heated to 95 oC

for five minutes after which 50 g of sample was loaded onto the gel. The gels

were then run using an XCell surelock Mini-Cell system (Invitrogen, UK). In

order to allow size discrimination of the resolved proteins, 5 l of Broad Range

Prestained protein markers (Bio-Rad, UK) were also loaded into one lane. The

gels were run for 0.5 hours at 50 V to allow protein to concentrate at the gel

interface. Following this, gels were then run at 125 V for 2.5 hours.

2.5.4 Immunoblotting

Following SDS- PAGE the gels were removed from the cassettes and

placed into transfer buffer of the following composition (mM): 42.9 Tris, 38.9

glycine, 0.038 % w/v SDS, 20 % methanol. Grade 1F electrode filter paper and

Hybond ECL nitrocellulose membranes were cut to the size of the gel and pre-

soaked in the transfer buffer. Proteins were transferred onto nitrocellulose

membranes using an XCell II blot module Mini Cell system (Invitrogen, UK).

A stack was built in order to transfer the proteins. On top of a piece of filter

paper was placed the gel. The ‘sticky’ nitrocellulose membrane was placed

onto the gel and a further piece of filter paper was placed on top of this.

Trapped air was removed from the stack by gently rolling a glass rod across the

top. Two blotting pads soaked in transfer buffer were placed on the cathode

and the stack was placed on top of this. A further 2-3 blotting pads were placed

on top of the stack and the anode was placed on top of the stack. Following this

the gels were blotted for 1.5 hours at 25 V (~ 100mA).

2.5.5 Immunodetection

After transfer, the nitrocellulose membranes were blocked with 5 %

blocking buffer of the following composition (mM): 20 Tris base, 150 NaCl,
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0.1 % Tween 20, 5 % non- fat milk powder, pH 7.5) for 1 hour at room

temperature. The blocking buffer acts to bind to the remaining sticky areas of

the membrane in order to prevent any non- specific protein interactions

between the membrane and the antibody protein. Following this, the

membranes were washed in TBST of the following composition (mM): 20 Tris

base, 150 NaCl, 0.1 % Tween 20, pH 7.5) three times for 10 minutes. The blots

were incubated with the primary antibody diluted in 1 % Blocking buffer of the

following composition (mM): 20 Tris base, 150 NaCl, 0.1 % Tween 20, 1 %

non- fat powder milk, pH 7.5) overnight at 4 oC.

The following day the membranes were washed 2 X 5 minutes and 1 X

15 minutes with TBST to remove any unbound primary antibody. Secondary

HRP- conjugated anti-rabbit antibodies diluted in 1% blocking buffer at 1:1000

were incubated with the membranes for 2 hours. The secondary antibody is

linked to horseradish peroxidase (HRP), which can be used to allow

visualization of the protein of interest on the membrane. The membranes were

then washed for 2X 5 minutes and 1 X 15 minutes in TBST. The binding of the

primary antibody was detected using a chemiluminescence detection system.

The membrane was incubated with the substrate for the HRP, luminol, which is

a diacylhydrazide. This reaction was carried out in the presence of chemical

enhancers such as phenols which increase the light output and extend the time

of light emission. The HRP catalyses the oxidation of luminol which excites an

electron, moving it to a higher energy state. This electron then decays back to

its resting ground state which emits a photon of light. The maximum emission

is at the wavelength 428 nm that can be detected by a short exposure to blue-

light sensitive autoradiography film. The chemiluminescence system used was

the ECL Western blotting detection reagents (Amersham Bioscince, UK). The

membranes were incubated with a 1:1 mixture of Reagents 1 and 2 for 1

minute. Following this, the membranes were exposed to ECL Hyperfilm

(Amersham, UK) in a dark room. Exposure times ranged from 1 minute to 5

minutes depending on the strength of the signal. The X-ray films were

developed using a Fuji film X-ray processor (Model RGII).
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2.6 Fluorescence imaging of Ca2+ within isolated pulmonary artery

smooth muscle cells

2.6.1 Isolation of single pulmonary artery smooth muscle cells

2nd order branches of the pulmonary artery were identified and

dissected out as described in section 2.1. Single smooth muscle cells were then

isolated using proteolytic cleavage as described in section 2.2.

2.6.2 Fluorescent Ca2+ indicating dyes

Fluorescent dyes can be used to indicate the presence of specific

molecules and also to reveal their position within a given preparation, in this

case Ca2+ in the isolated pulmonary artery smooth muscle cell. The fluorescent

dye molecule, which I shall refer to as the indicator from here-on in, becomes

excited by the absorption of a single photon of light. This raises the energy

state of an electron within the indicator to a new excited ‘singlet’ state from

which the molecule decreases in energy until a radiative transition occurs and

the electron returns to its ground state with the emission of a photon (See Fig

2.6). Alternatively, the emitted photon can be reabsorbed by the indicator or

the excited state may be quenched, or lost, through the collision of the excited

indicator with another molecule. Either of these processes occurring will result

in the number of emitted photons being considerably less than the number of

absorbed photons and the ratio between the two is referred to as the quantum

efficiency of the indicator. The energy of the emitted photon is ordinarily lower

than that of the absorbed photon and is therefore of a longer wavelength. It

must be noted, however, that at periods of very high light intensity it is possible

for the indicator to absorb 2 long wavelength protons in quick succession,

simulating the absorption of a single photon of half their wavelength. When in

this high energy state, the indicator molecule is more likely to be oxidised

resulting in a loss of fluorescence, this process is known as photo-bleaching. If

the wavelengths of the light used for excitation and emission are suitably far

apart then it is possible to use filters to block the excitation light from reaching
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Fig 2.6: Schematic energy state diagram depicting the excitation of an electron from a

ground state to an excited energy state after absorption of a photon of excitation light.

Following excitation, this electron loses energy and eventually falls from the excited state back

to ground state with the emission of a photon of light.

the detector, this allows for the emission to be measured against a black

background. In reality, however, the background is seldom black, as other

components of the cell will fluoresce to some extent. This is known as auto-

fluorescence, however, this can be corrected for using a process known as dark

subtraction, which will be discussed below.

Ion specific fluorescent indicators are generated by attaching groups

that bind ions to the fluorescent section of the molecule. The binding of an ion

then alters the electronic configuration of the molecule, which in turn alters the

fluorescence of the molecule. The commonly available Ca2+ indicator dyes fall

into two main classes, the single-wavelength intensity-modulating dyes, and

the dual-wavelength ratiometric dyes, which are referred to as single-

wavelength indicators and ratiometric indicators respectively.

For single-wavelength indicators, changes in the concentration of Ca2+

results in changes in the intensity of their fluorescence excitation and emission
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spectra while the spectral maxima remains unchanged. The excitation spectra

are determined by monitoring the fluorescence emission intensity at a fixed

wavelength while the excitation light is scanned through a range of

wavelengths at which the sample can absorb light. The emission intensity

detected is then plotted as a function of excitation wavelength. An example of

excitation spectra is given for the ratiometric Ca2+ indicator Fura-2 in Fig. 2.7.

The opposite is true if we wish to obtain an emission spectrum. This time

excitation light is delivered at a constant wavelength but the emission intensity

of the sample is monitored over a wavelength range. In this case emission

intensity is plotted as a function of emission wavelength (Fig. 2.7). An example

of a single-wavelength indicator is fluo-3. Fluo-3 has a calcium co-ordination

site based upon the Ca2+ chelator BAPTA and its fluorescent group is attached

to one side of this BAPTA backbone. Put simply, the binding of Ca2+ to Fluo-3

Fig 2.7: Excitation and emission spectra of the Ca2+-bound and Ca2+-free forms of the

fluorescent Ca2+ indicator dye Fura-2.

draws electrons from the BAPTA rings, which will in turn draw electrons from

the rings of the fluorescent group which results in an increase in fluorescence
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of the molecule. To determine changes in ion levels with a single-wavelength

indicator all that is required is the measurement of fluorescence at a suitable

wavelength for both excitation and emission. Unfortunately the raw signal

detected would not be quantitative because the absolute fluorescence of the dye

depends upon a number of factors. Firstly, the absolute concentration of the

indicator will affect the signal generated. Secondly, the volume of the cell or

how far the light has to travel will affect the absolute fluorescence, as will the

intensity of the excitation light and the variables within ones detection system.

Auto-fluorescence within the cell of interest can also affect the signal, as can

the Ca2+ concentration itself. The variation in Ca2+ concentration is the only

variable of real interest. There are a number of ways to compensate for the

unwanted variables occurring, although these will not be discussed here.

It is possible that the binding of the target ion by the fluorescent

indicator will cause a shift in the fluorescence spectra rather than a simple

modification in intensity of emission as discussed for Fluo-3. In principle, this

concept is straightforward enough but its consideration can be complicated by

the possibility that either, or both, of the excitation and emission spectra may

be shifted upon binding of the target ion. The commonly used Ca2+ indicator

molecule Fura-2, like Fluo-3, has a calcium coordination site which is based

upon BAPTA, with the fluorescent group attached to this (Grynkiewicz, et al.,

1985). Alteration within the electronic structure of the molecule which occurs

upon Ca2+ binding by Fura-2 results in a shift in the excitation spectra of Fura-

2 to shorter wavelengths (Grynkiewicz, et al., 1985). Such a shift in the spectra

are desirable as they allow the concentration of Ca2+ to be estimated from the

levels of fluorescence detected at two different wavelengths. This technique is

known as ratiometric fluorescence measurement.

The use of ratiometric Ca2+ indicators can lead to a reduction in the

factors compounding the measurements that we see with single- wavelength

dyes such as Fluo-3. As ratiometric Ca2+ imaging is not reliant on the

concentration of the indicator in the cell, or the volume of the cell, it reduces

the artefacts introduced due to cell contraction or extrusion of dye from the

cell. Thus, ratiometric Ca2+ imaging was used in my investigations as they

were carried out in contracting cells.
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2.6.3 Loading of isolated pulmonary artery smooth muscle cells with

fluorescent Ca2+ indicator dye Fura-2.

0.5ml of cell suspension was incubated for 30 minutes at room

temperature (~20 oC) in the dark with the ratiometric Ca2+ indicator dye Fura-

2-AM (5 M) and 1% pluronic F-127 acid that had been previously dissolved

in 1 ml of DMSO, in order to help the loading of the dye into cells at room

temperature.

The fluorescent Ca2+ indicator dye Fura-2 was first described by

Grynkiewicz and colleagues (1985). Fura-2 shows a maximum fluorescence

emission at 510 nm when excited at 380 nm in its Ca2+ free form. Once all 4

Ca2+ binding sites on a molecule of Fura-2 are occupied, spectral shift occurs

and the maximum intensity of emission is achieved by excitation at 340 nm

(Fig. 2.7). By measuring the relative intensity at these two wavelengths over

the course of an experiment and expressing them as the ratio of light emitted on

excitation at 340 nm divided by that emitted at 380 nm (340 nm/380 nm), it is

possible to detect changes in intracellular Ca2+. Fura-2 is a polycarboxylate

anion, which is unable to cross the lipid bilayer of the cell membrane and enter

the cytoplasm. In order to enter the cell Fura-2 can be put into a cell by

microinjection or by complex permeabilisation procedures that require

specialised equipment and skill. It can, however, enter a cell when attached to a

molecule that masks the negatively charged carboxyl groups. The molecule

used for this procedure is acetoxymethyl (AM) ester; it binds to fura-2 to

produce an uncharged product that is able to cross the cell membrane.

The AM ester is removed by enzymatic digestion by the many cellular

esterases. Once freed from the AM ester Fura-2 is trapped inside the cell and is

free to bind Ca2+ ions. Pluronic F-127 acid is a non-ionic and non-denaturing

detergent which helps Fura-2 loading of cells by dispersing the Fura-2

throughout the loading medium, increasing the possibility of uptake into cells

(Kao, 1994).

After twenty minutes the cell suspension was added to a glass coverslip

in an experimental chamber (2ml open to the air) and left for the final ten

minutes of loading to adhere to the glass coverslip. Following this, cells were
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then washed by superfusion with HBSS at room temperature (22 oC) for a

further twenty minutes before experimentation commenced.

2.6.4 Imaging of changes in Ca2+ in isolated pulmonary artery smooth

muscle cells

Excitation light was from a monochromator, TILL Photonics

Polychrome II (TILL Photonics, Germany) which emitted previously selected

wavelengths (340 and 380 nm) of light. The monochromator works by taking a

white light source, in this case a Xenon lamp, and passing the light through a

slit at the entrance to the monochromator. This slit ensures that the light

passing into the system is as parallel as possible in order to limit problems

further on in the process. The light that enters the system is then redirected by a

mirror to the diffraction grating. This then redirects the light at slightly

different angles depending on its wavelength to another mirror. The diffraction

grating consists of many small parallel grooves that cause interference patterns

resulting in the light being ‘bent’ and split into its constitutive components, for

example blue light is bent least, while red light is bent the most. By the time

the light hits the next mirror each of the wavelengths are some distance apart.

The next mirror reflects the light towards the exit slit, with the wavelengths of

light being further separated by the time they reach it, causing them to fall like

a rainbow upon the exit. The fine slit in the exit allows selection of a single

wavelength of light by adjusting the position of the diffraction grating to alter

the position of the rainbow on the exit slit. The selected wavelength of light is

then passed to the microscope by use of an optical fibre which prevents loss of

light during transfer.

Emitted fluorescence from smooth muscle cells was monitored using a

Hammamatsu 4880 image intensifying CCD camera, set to external

(synchronous) high-speed acquisition, with 2 X 2 binning. The CCD camera

was attached to an inverted microscope (Leica, DMIRBE) equipped with a

40X, 1.3 n.a. oil immersion lens (Zeiss). The fluorescence intensity was

recorded and analyzed using Openlab imaging and analysis software

(Improvision, UK) on an Apple Macintosh G4 personal computer.



95

Fig. 2.8 Diagram of the automation used to obtain background levels of fluorescence in

order to correct images captured in experiments by means of ‘dark subtraction’. At the

beginning of the automation the monochromator is switched off (1) and no light is transmitted

to the signal. The monochromator is then switched on and light at 340 nm is transmitted (2).

An image is captured by the CCD camera (A image). The light emitted by the monochromator

is switched to 380 nm (3) and a second image is captured (B image). These images are then

stored and used to carry out background subtraction.

To interpret the images captured on Openlab, it was necessary to

correct them for any background fluorescence. This was achieved by a method

known as dark subtraction, as mentioned previously, using an automation

written for the Openlab software (A. M. Evans, Bute medical Building,

University of St Andrews; Fig. 2.8). The lens is moved so that the cells in the

experimental chamber are outside the focal plane, so that the camera does not

detect any fluorescence from the cells when exposed to 340 nm or 380 nm

light. Images at these two wavelengths are then captured and are used as a

measure of the background light the camera will pick up during the
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experiment. These background images are subtracted from the images captured

during the experiment in order to give a true representation of the Fura-2

fluorescence detected by the CCD camera within each cell.

Using the Openlab software I was able to control the excitation

wavelength, camera exposure, the number of images acquired and ratioing of

the Fura-2 images by means of a pre-written automation (A. M. Evans, Bute

Medical Building, University of St Andrews; Fig. 2.9). Initially, the automation

checks to ensure that the monochromator is switched off, with no light being

shone on the cells in the chamber. The required number of images is inputted

telling the software how often to repeat the main loop of the automation. The

main loop has three main parts. Firstly, the monochromator is switched on to

shine 340 nm light on the sample for a predetermined period of time, and the

emitted fluorescence is captured by the CCD camera using a predetermined

exposure time (30 ms). The captured image is saved as image A. The

monochromator is then signalled to change its output to 380 nm. Emitted

fluorescence is once again captured by the camera using the same exposure

time as for the 340 nm image and the second image is then saved as image B.

Secondly, the software uses the background images captured previously to

remove any background light from the captured images. A ratio image is

determined for this loop of the automation by dividing the intensity of light in

each pixel of the 340 nm image by the intensity of light within each

corresponding pixel of the 380 nm image. This gave the computer a 340/380

nm ratio value for each pixel which is displayed as a grey scaled image. Grey-

scale images were converted to a pseudocolour representation to allow easy

visualisation of changes in Fura-2 fluorescence ratio to be easily mapped as

distinguishable colour changes. Threshold values for each wavelength can be

set in order to eliminate any haze or fluorescent glow remaining after the

application of the dark subtraction method. In doing this we can eliminate all

fluorescent light below a certain fluorescence intensity, allowing for a more

accurate representation of what is occurring over the time course of the

experiment within the cells of interest. This is achieved by setting the Rmin

and Rmax values for the pseudocolour display. The computer applies a colour

range to the grey scale, with each grey level represented by a different colour,
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Fig. 2.9 Diagram of the automation used to obtain Fura-2 fluorescence ratios from

isolated pulmonary artery smooth muscle cells. At the beginning of the automation the

monochromator is switched off (1) and no light is transmitted to the signal. The

monochromator is then switched on and light at 340 nm is transmitted (2). An image is

captured by the CCD camera (A image). The light emitted by the monochromator is switched

to 380 nm (3) and a second image is captured (B image). Following background subtraction

(BgSub A,B), the 340/380 ratio value for each pixel of the image is calculated (A/B ratio).

Following a user-defined time delay the main loop is repeated until the required number of

ratio images have been collected.

in my experiments this was a rainbow (Fig. 2.10), with any value below the set

Rmin as black and any value above the Rmax as being white, an example of

the pseudocolour representation used in the experiments is shown in Fig. 2.8.
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Fig 2.10 Pseudocolour range applied to grey scale images of Fura-2 fluorescence:

Depiction of the pseudocolour range applied to ratio images using Openlab software. The Rmin

and Rmax values represent the user defined cut off points for visualization of the fura-2

fluorescence ratio within isolated pulmonary artery smooth muscle cells.

In the final step of the automation, the software engages a user-defined

sample interval after which the sequence is repeated until the required number

of ratio images have been acquired (Fig. 2.9).

2.6.5 Extracellular application of pharmacological agents

For experiments on the effects of intracellular dialysis of NAADP and

IP3, pharmacological agents were applied directly to the bath solution. During

investigations into the effects of Bafilomycin A1, phenylephrine, prostaglandin

F2 and endothelin-1, these and other pharmacological agents were applied by

the use of a microsuperfusion system (Langton, 1993)). The miniature flow

system consisted of seven lines which fed a common outflow pipe positioned

close to the cells under study. The flow of each of these lines was controlled by

the use of electrical switched solenoid valves (lee, USA). The diameter of the

flow system tubing was approximately 200 m, the tip was approximately 500

m and the dead volume of the system was less than 5 l, this allowed for

switching of solutions to occur within 2 s (Langton, 1993). The tip of the flow

pipe was positioned approximately 100 m away from the cells of interest at

the edge of the field of view as seen through the microscope objective.
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Fig 2.11: Simple diagrammatic representation showing the miniature flow system used to

deliver pharmacological agents extracellularly during fluorescence imaging experiments:

A common air supply was fed to each of the seven reservoirs containing drug solutions, user

controlled electrical solenoid valves were used to mediate application of solutions from

different reservoirs. Solutions were applied to the experimental chamber and the cells of study

using a flow pipe placed within 100 m of the cells under study.

2.6.6 Ca2+ calibration curve

The concentration of Ca2+ represented by a given Fura-2 fluorescence

ratio was determined through the use of a Fura-2 calcium calibration kit

(Molecular probes, Invitrogen Inc.CA, USA). The kit consists of a range of

known Ca2+ concentrations (0 – 10 mM) buffered with the Ca2+ chelator

EGTA, made up in solution along with 50 M Fura-2. Each solution also

contains a number of 15 M unstained polystyrene beads. 50 l of each

solution from the kit was put on different glass coverslips marked with a solid

black line in order to determine focal plane. A small circular glass coverslip

was then placed on top of the solution. The presence of the polystyrene beads
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means that the distance between the 2 coverslips will be consistent throughout.

Clear nail varnish was then dabbed around the outside of the circular coverslips

in order to prevent any dye leakage from between the coverslips. Clear nail

varnish was used as it generates little or no auto-fluorescence under the

wavelength of light used in the experiments. Following this, coverslips were

placed on the imaging microscope and imaged with a camera exposure of 30

ms at 340 nm and 380 nm as described in Section 2.4.4. Background

subtraction was carried out using calibration solution which contained 10 M

CaEGTA but no Fura-2. Ratio values were then determined for each different

Ca2+ concentration using Openlab software (Improvision, UK; Section 2.6.4),

and a standard curve was then produced using Prism analysis software

(Graphpad, CA, USA). Ca2+ concentrations were then determined by

interpolation using Fura-2 fluorescence ratios gathered from Ca2+ imaging

experiments (Fig. 2.12). Prism analysis determined the Hill Slope values from

a form of non-linear regression known as sigmoidal dose response curves with

variable slope. This uses the following calculation to calculate the EC50 and

Hill slope values (Equation 2.3):

Y= Bottom + (Top-Bot tom) Equat ion 2.3

1+10(Log EC50-X)Hillslope

where Y= Response

X= Log (agonist concentration)

Top = Y value at the top of the plateau

Bottom = Y value at the bottom of the plateau
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Fig. 2.12: Example of standard curve used to interpolate Ca2+ concentrations from Fura-2

fluorescence ratio values obtained from ratiometric imaging in isolated pulmonary artery

smooth muscle cells

2.7 Whole-cell patch-clamping

Not all pharmacological agents are able to cross the plasma membrane

and must therefore be delivered directly to the cytoplasm of the cell. In order to

achieve this goal I used the technique of whole-cell patch clamping. In this

technique the pharmacological agent of interest is dissolved in a media of an

ionic composition close to that of the cytoplasm found in the cell. This media is

loaded into a freshly prepared glass electrode, or patch-pipette which is then

used to form a tight seal with the cell of interest. Upon formation of this tight

seal, negative pressure is applied and the area of membrane directly below the

pipette is ruptured allowing the freedom to deliver the pharmacological agent

to the intracellular environment (Hamill, et al., 1981).

Pharmacological agents were delivered to the cell at the required final

concentration by means of the whole-cell configuration of the patch clamp

technique and in current clamp mode (I = 0) using a CV 203BU headstage

(axon Instruments, Molecular Devices, USA) attached to an axopatch 200B

integrating patch- clamp unit (Axon Instruments, Molecular Devices, USA).

Carrying out the delivery of NAADP under current clamp mode allows us to
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mimic the situation found in an intact cell, where the membrane potential is

allowed to vary and is not held constant.

2.7.1 Preparation of patch pipettes

Filamented boroscilicate glass capillaries (1.5 mm O.D., 0.86 mm I.D.;

Harvard Apparatus, UK) were used to generate patch pipettes (2 – 3

Mresistance) using a pipette puller (Model pp-830, Narishige, Japan) with a

double pull technique. The glass capillaries are anchored above and below a

heating coil. Once anchored the heating coil is switched on and the middle of

the capillary is heated. As the temperature of the glass increases it becomes

more malleable and is pulled apart by the force of gravity pulling the weighted

Fig. 2.13: Simple diagrammatic representation of the double pull technique used to

produce patch pipettes: First, a borosilicate glass capillary is anchored above and below a

heating coil. Once turned on the heating coil warms the glass until it is no longer strong enough

to resist the pull of gravity (g) on the weights attached to the lower anchor pulling the glass

apart and stopping when it comes into contact with a step. The coil is turned off and the glass

allowed to cool down. Following this the step is removed, the heating coil is once again turned

on and once the capillary is sufficiently warmed the weights again pull the glass apart until the

two ends come apart leaving two patch pipettes.
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lower anchor down. This continues until the lower anchor comes into contact

with a step. The heating coil switches off and the capillary cools down.

Following this the heating coil is switched on at a lower heat and the step is

removed. This allows the second anchor to pull apart the two halves of the

capillary as the glass is gently heated generating two patch pipettes with

smooth tips (Fig 2.13).

2.7.2 Generation of a seal and delivery of pharmacological agents

Smooth muscle cells were isolated from the second order branches of

pulmonary arteries taken from adult male Wistar rats as described in detail in

section 2.2. Following enzymatic isolation with papain, cells were loaded with

the ratiometric Ca2+ indicator dye Fura-2 as described previously in section 2.6.

Cells were then put in an experimental chamber (2 ml final bath volume) in

order to undertake investigations. Patch pipettes were filled with pipette

solution of the following composition (mM): 140 KCl; 10 HEPES; 1 MgCl2; 5

M Fura-2 free acid, corrected to pH 7.2 with NaOH. The addition of Fura-2

free acid to the patch pipette prevents loss of fluorescence signal due to the

dilution of Fura-2 in the cytoplasm by pipette solution upon entering the whole

cell-configuration.

Filled patch-pipettes were placed onto the electrode holder attached to

the headstage. Pipette solution was in electrical contact with the headstage via

a Ag/AgCl wire located inside the pipette once it was secured to the headstage.

The patch-pipette was placed over the electrode wire until it had reached the

top of the pipette holder, a cap was then tightened around the base of the patch-

pipette which secured it in position by compressing a rubber O-ring. The

pipette holder was attached to the headstage that was in turn attached to the

patch-clamp amplifier. The amplifier was in electrical contact with the

extracellular solution via the Ag/AgCl bath electrode. A length of silicon

tubing was attached to electrode holder in order to apply negative pressure to

the pipette solution. The patch-pipette was then positioned several microns

above the cell of interest, using a three plane piezoelectric micromanipulator

(PCS 5000 series, EXFO Burleigh, Canada). The piezoelectric
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micromanipulator uses solid ceramic actuators which expand under applied

voltages. These provide very precise, fast and stable positioning with extremely

low levels of drift during experimentation.

When there are differences in the ionic compositions between the bath

solution and the pipette solution it is important to correct for the junction

potential which arises at the interface between the two solutions. The potential

develops due to differences in concentration and mobility of the ions within the

two solutions and maintains electroneutrality across the boundary between the

solutions. Once the patch-pipette is put into the bath solution, the current

flowing into the pipette is driven by the difference between the bath potential

and the pipette potential. This is zeroed before formation of the seal by

adjusting the Vref (which sets the pipette potential with reference to the bath

potential) using the control on the amplifier. In order to form a seal on an

isolated pulmonary artery smooth muscle cell, the tip of the patch- pipette was

gradually lowered towards the cell membrane using the piezoelectric

micromanipulator. Before contact was made with the cell membrane the

integrator unit was set to voltage-clamp mode, holding potential, thus, the

voltage that the membrane was to be clamped at was set to 0 mV, with a 5 mV

voltage pulse applied at 50 Hz. This voltage pulse evoked a square wave

current step (Fig. 2.14A) which was observed on an oscilloscope located in the

amplifier unit, allowing the pipette resistance to be calculated (resistance can

be calculated using Ohm’s law, where resistance (R) is equal to the potential

difference across the resistor, the voltage (V) divided by the current (I) passing

through it, therefore: R = V / I). Contact with the cell membrane resulted in an

increase in the resistance of the patch-pipette, which was observed as a

decrease in the amplitude of the current step (Fig. 2.14B). Negative pressure

was then applied to the pipette solution by use of a syringe attached via a three

way valve to the silicon tubing. As the seal improved, electrode resistance

increased further, corresponding with a further decrease in amplitude of the

current trace on the oscilloscope. Further careful suction was then applied until

a gigaohm resistance seal was obtained.
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Fig. 2.14: Schematic diagram showing stages involved in generation of a whole cell seal:

the upper panel of A shows a patch pipette above the cell of interest filled with pipette solution

and containing the Ag/ AgCl electrode, prior to lowering to form a seal. The lower panel of A

shows the image displayed on the oscilloscope screen showing the voltage step applied which

allows for calculation of the pipette resistance. The upper panel of B shows the patch- pipette

as it comes into contact with the membrane of the cell prior to entering the whole- cell

configuration. The lower panel in B shows the decrease in the amplitude of the current step

associated with the contact between the patch- pipette and the cell. The upper section in Panel

C shows the whole- cell configuration of the patch- clamp technique after the membrane below

the patch- pipette has been removed by the application of negative pressure. The lower section

in C shows the capacitance transients characteristic after entering of the whole- cell

configuration.

Capacitive transients caused by stray capacity to ground to the pipette

wall, seen at the beginning and the end of the voltage step, were compensated

for using the fast and slow capacitance compensation facilities on the integrator

unit. Further suction was then applied via the syringe in order to rupture the

patch of the membrane under the patch- pipette. The development of large

membrane capacitive transients at either end of the current step was indicative

of the whole- cell configuration being achieved (Fig. 2.14C).

Fluorescent Ca2+ imaging of changes in intracellular Ca2+ concentration

caused by intracellular dialysis of pharmacological agents were imaged using

Openlab software as described in Section 2.6.4.

Within the experiments described in this thesis involving the

intracellular dialysis of pharmacological agents utilising the patch clamp

amplifier
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technique, the seal resistance was ≥ 3 Gwhereas the series resistance and

the pipette resistrance were ≤ 10 M and 2 – 3 M, respectively.

2.8 Radioligand binding assay for the determination of NAADP levels

in pulmonary artery smooth muscle

2.8.1 Preparation of arteries for radioligand binding assays

2nd and 3rd order branches of the intrapulmonary artery were identified

and dissected free of the lung as described in Section 2.1. The arteries were

then cut open lengthways and the endothelium was removed from the

preparation by gentle rubbing of the luminal wall of the vessel with a cotton

bud. Tissue was then placed in HBSS at 37oC (pH 7.4) for a period of

equilibration (30 min).

2.8.2 Preparation of sea urchin egg homogenates

Unfertilized Lytechinus pictus sea urchin eggs were collected during the

gravid season between the months of May and September. Urchins were

shipped from California and collection of gametes occurred immediately upon

arrival. Eggs were obtained by stimulating ovulation of female sea urchins with

an intracoelomic injection of KCl (0.5M; up to 0.5 ml total volume). Eggs were

collected in artificial sea-water (ASW), of the following composition (mM):

NaCl 435, MgSO4 15, CaCl2 11, KCl 10, NaHCO3 2.5 and EDTA 1.0 at pH

8.0.

Homogenates (50% v/v) of unfertilized sea urchin eggs were prepared

in a similar manner to that described previously (Clapper, et al., 1987; Dargie,

et al., 1990). Eggs were dejellied in ASW by filtering through 85-mm Nitex

mesh (Plastok Associates Ltd, Merseyside, UK). Dejellied eggs were

immediately washed by centrifugation at 800 g and 10 oC in approximately 10

times their volume of AWS. Eggs were washed twice in Ca2+-free ASW with

EGTA and twice in Ca2+-free ASW composed of (mM): NaCl 470, MgCl2 27,

MgSO4 28, KCl 10 and NaHCO3 2.5 at pH 8.0, or including EGTA 1.0.
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Finally, eggs were washed with an ‘intracellular medium’ (IM), composed of

(mM): potassium gluconate 250, N-methylglucamine 250, HEPES 20 and

MgCl2 1. The pH was adjusted to 7.2 using acetic acid.

Eggs were then homogenised in IM plus 2 mM ATP, 20 U/ml creatine

phosphokinase (CPK), 20 mM phosphocreatine, 50 g/ml leupeptin, 20 g/ml

aprotinin and 100 g/ml SBTI (Soya bean trypsin inhibitor), using a dounce

glass tissue homogeniser, size ‘A’ pestle. Cortical granules were removed and

discarded by centrifugation at 13,000 g for 10 seconds at 4 C. Homogenates

were aliquoted (1 ml) into microcentrifuge tubes and stored at -80 C, until

used for radioligand binding assays.

2.8.3 Preparation of tissue and acid extraction of endogenous NAADP

from pulmonary artery smooth muscle

Tissue was dissected as described in section 2.8.1, and placed in HBSS

at 37 oC (pH 7.4) for 30 minutes to equilibrate. Tissue was then placed into

fresh HBSS at 37 oC as a control, or in HBSS containing test compound. After

a given period of time tissue was removed from the HBSS, dried by quickly

running the tissue over tissue paper, weighed and snap frozen in liquid nitrogen

within 5 seconds of removal from HBSS and stored at -80 oC until required for

extraction of nucleotides.

The extraction of endogenous NAADP from tissue samples was carried

out using a variation of a method previously described (Walseth, et al., 1991).

Tissue samples were diluted 1:4 with ice cold perchloric acid (PCA; 1.5 M) in

order to prevent any degradation of the nucleotides by enzymes in the samples

and to precipitate proteins out of the solution. Tissues were then homogenized

by sonicating the tissue five times for ten second bursts while on ice to prevent

any overheating of the samples (Jencons Vibracell at amplitude 60). Samples

were then left in an ice bath for twenty minutes in order to allow for full

separation of the nucleotides from the protein sample. After this time samples

were spun on a desktop centrifuge (13 000 g) for ten minutes in order to

remove precipitated proteins. After centrifugation, the supernatant was
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removed and the protein fraction was stored at -80 oC until the level of protein

within the samples could be determined as described in section 2.8.6.

The supernatant was then neutralized with a 1:1 addition of potassium

bicarbonate (KHCO3, 2 M) and placed in an ice bath for 20 minutes. After this

time the samples were centrifuged at 13 000g for ten minutes to separate the

nucleotide containing supernatant from the precipitated KClO4. The

supernatant was then removed and frozen at -80oC until required for binding.

2.8.4 Preparation of [ 32P]NAADP for use in radioligand binding assay

The synthesis of [32P]NAADP was carried out in a two-step reaction as

described previously (Aarhus, et al., 1996b; Patel, et al., 2000a). Firstly,

[32P]NADP was synthesised by incubating [32P]NAD with 0.5 U/ml human

NAD kinase, 5 mM MgATP, and 100 mM HEPES for 1 hour. 100 mM

nicotinic acid and 1 g/ml ADP-ribosyl cyclase were added to commence the

second step, which was allowed to proceed for one further hour. The resulting

mixture was pumped onto a high pressure liquid chromatography (HPLC)

column. Separation was carried out on an anion-exchange resin (AGMP1,

Biorad) using a concave upwards gradient of trifluoroacetic acid (TFA) as

described previously (Aarhus, et al., 1996b; Billington and Genazzani, 2000a;

Galione, et al., 2000; Patel, et al., 2000a). The NAADP fraction was then

stored for use in the assay.

2.8.5 Radioligand binding assay to determine levels of NAADP within

pulmonary artery smooth muscle

Endogenous levels of NAADP within the tissue were determined using

a variation of a technique previously described (Masgrau, et al., 2003). Sea

urchin egg homogenate was made up to a final concentration of 1.25% in IM.

[32P]NAADP (50 000 CPM) and known concentrations of unlabelled NAADP

(0.001 – 300 nM) or unknown samples were added to 200 l of homogenate to

make a final volume of 250 l in the reaction vessel. Due to the irreversible

binding of NAADP to its target in sea urchin egg (Aarhus, et al., 1996a;
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Billington and Genazzani, 2000a; Patel, et al., 2000a) it is important that the

homogenate is exposed to both the radiolabelled and unlabelled NAADP

simultaneously otherwise one will not displace the other. Once mixed the

samples were left for 15 minutes at room temperature (22 oC) to allow binding

to reach equilibrium. Binding was terminated by rapid filtration through glass

microfibre (GF/B) filters (Whatman, US) using a Brandell cell harvester.

Filters were washed immediately prior to binding with ice-cold HEPES-EDTA

solution of the following composition (mM): HEPES 10, EDTA 1, pH 7.2.

Following filtration, filters were washed four times with 4 – 5 ml of HEPES-

EDTA solution. Filters were then removed and retained [32P]NAADP was

determined using either Cerenkov Spectrometry or storage phosphor screen

autoradiography.

In storage phosphor screen autoradiography, filters are exposed to a

storage phosphor screen (General purpose storage phosphor screen, 35 x 43

cm, Amersham Bioscience, UK) within an exposure cassette (Amersham

Bioscience, UK) for thirty minutes. During this time an imprint of the retained

radiation within the filters is created on the screen. The phosphor screen is

composed of fine crystal of BaFBR:Eu2+ contained within an organic binder.

The radiation from the filters causes the oxidation of Eu2+ to Eu3+ and the

reduction of BaFBr to BaFBr-. These ions remain oxidized and reduced after

removal of the screen from the filters, and thereby retains the energy of the

ionizing radiation. The release of the stored energy occurs when the storage

phosphor is stimulated by light of an appropriate wavelength. The screen is

stimulated by red light (wavelength: 633 nm) which is absorbed by the BaFBr –

complex. This frees electrons and reduces the Eu3+ to Eu2+* (a Eu2+ ion with an

excited electron). As this excited electron falls to the ground state it releases

energy in the form of blue light (emission maxima: 390 nm). The Typhoon

scanner system (Amersham Biosciences, UK) uses a band- pass filter, allowing

light around 390 nm to pass through to the detector. The light is then collected

and measured by the detector. Therefore the emitted light intensity is

proportional to the radioactivity. An image of the filter is then displayed on the

computer screen with the detected light depicted in a grey scale. Therefore, the

more light detected the darker the image. The image is then quantified using
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densitometry analysis (ImageQuant software, Amersham Biosciences, UK) and

analyzed using Prism software as described below.

Total binding of [32P]NAADP to sea urchin egg homogenate was

determined in the absence of unlabelled NAADP and unknown sample. The

amount of [32P]NAADP retained on the filters after filtration decreased as the

concentration of unlabelled NAADP increased as they compete for the same

binding site. This allowed for the construction of a dissociation curve for

[32P]NAADP binding to sea urchin egg homogenate. Non-specific binding was

determined as being the amount of radiation (CPM) retained in the presence of

1 M NAADP. This value was subtracted from the values obtained for the

known concentrations of NAADP or unknown samples in order to determine

specific binding. By obtaining the values for the retained radiation against

various concentrations of NAADP and plotting them as a graph of CPM versus

concentration of NAADP it was possible to fit a curve to the data using non-

linear regression and fitting a sigmoidal concentration displacement curve with

Fig. 2.15 Example of dissociation curve used to determine the concentration of NAADP

levels within pulmonary arteries.

variable slope fitted using Equation 2.3 (Section 2.6.7) using Prism analysis

software (Fig. 2.15; Graphpad, CA, USA). Using this curve it was possible to

extrapolate the concentration of NAADP in the unknown samples by

determining their position on the dissociation curve. Binding of NAADP to its

receptor has been shown to be affected by the presence, or absence of K+ ions



111

(Dickinson and Patel, 2003). In order to minimize any effects caused by a

differing concentration of K+ ions in the reaction mixture the samples of known

NAADP concentration were subjected to the same acid extraction protocol as

the unknown samples.

2.8.6 BCA protein assay and determination of concentrations of NAADP

within artery smooth muscle

The protein concentrations of the tissues from which NAADP were

extracted for the radioligand binding were determined spectrophotometrically

using the bicinchonic acid (BCA) assay according to the manufacturers

instructions (Sigma-Aldrich, Dorset, UK). This assay relies on the alkaline

reduction of Cu2+ to Cu+ by proteins and on the fact that the bicinchonic

acid:Cu+ complex has absorption maxima of 562 nm. Samples containing 10-

50 g protein in a volume of 50 l were incubated with 1 ml BCA solution and

0.08 % copper sulphate pentahydrate for 30 minutes at 37 oC. Incubations were

then given five more minutes at room temperature (20 oC), after which their

absorbance was measured at 563 nm. Standard protein concentrations of BSA

were used to construct a standard curve using Prism analysis software

(Graphpad, CA, USA), from which protein concentrations from tissue samples

could be determined by interpolation. Following this, concentrations of

NAADP were corrected for the dilutions during acid extraction and using these

data the concentration of NAADP were expressed as pmol per mg of protein.

2.9 Drugs and chemicals

Fura-2 pentapotassium salt, Fura-2 AM, DAPI, LysoTracker Red and

BODIPY-FL ryanodine which were obtained from Molecular probes

(Invitrogen Ltd., USA). Anti-RyR antibodies were a kind gift from Professor

Sidney Fleischer. Anti-algp120 antibodies were a kind gift from Professor Paul

Luzio. Fluorescently conjugated secondary antibodies were obtained from

Jackson ImmunoResearch (USA). NAD (32P-radiolabelled) was obtained from

Amersham Biosciences (UK). All other compounds were obtained from
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Sigma-Aldrich (Poole, Dorset). Stock solutions of ryanodine and thapsigargin

were made up in Me2SO as the solvent. The minimum dilution of Me2SO was

1:1000 in HBSS, at which concentration Me2SO alone was without effect on

the responsiveness of the preparation. All other stock solutions were made up

in double distilled H2O before further dilution in HBSS.

2.10 Statistical analysis

Data from investigations is summarised as the mean and standard error

of the mean (S.E.M. ±) for ‘n’ experiments. Comparisons between groups were

carried out using one-way analysis of variance (ANOVA) in Minitab 14

(Minitab Inc. USA). Differences between groups were considered statistically

significant if P ≤ 0.05.

One-way ANOVA tests were used consistently throughout

investigations as it is a robust enough statistical test to be used with data that is

not sampled from a normally distributed population. The validity of the results

gained from ANOVA tests are only marginally affected by considerable

deviations from normality with respect to the assumption of the normality of

the distribution of the underlying population (Zar, 1999).
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Chapter 3: NAADP mobilises Ca2+ from lysosome-related

stores in pulmonary artery smooth muscle

3.1 Introduction

NAADP has been shown to mobilise Ca2+ from a number of cell types,

including vascular smooth muscle (Chini, et al., 1995; Lee and Aarhus, 1995;

Genazzani and Galione, 1996; Cheng, et al., 2001; Boittin, et al., 2002).

Furthermore, the location of the NAADP-sensitive Ca2+ store has recently been

identified in the sea urchin egg (Churchill, et al., 2002). In a number of elegant

experiments Churchill et al. identified reserve granules as the site of NAADP-

mediated Ca2+ release (Churchill, et al., 2002). Consistent with these findings,

recent studies on mammalian cells have suggested that NAADP mobilises Ca2+

from an acidic, lysosome-related store, the functional equivalent of reserve

granules (Mitchell, et al., 2003; Yamasaki, et al., 2004). This proposal gains

further support from prior studies which identified lysosomes as a Ca2+ store in

snail neurons (Sugaya and Onozuka, 1978) and Madin-Darby canine kidney

cells (Haller, et al., 1996).

As described in detail in Chapter 1 (Section 1.8), a previous study from

this laboratory has shown that NAADP mobilises Ca2+ from a thapsigargin-

insensitive, non-SR Ca2+ store in pulmonary artery smooth muscle cells. The

aim of this chapter is, therefore, to identify the nature of the Ca2+ store

accessed by NAADP in pulmonary artery smooth muscle by employing a

number of the pharmacological agents identified by Galione and colleagues

(Churchill, et al., 2002; Yamasaki, et al., 2004), namely Bafilomycin A1, GPN

and LysoTracker Red.
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3.2 Results

3.2.1 NAADP induces global Ca2+ waves in isolated pulmonary artery

smooth muscle cells

In order to examine whether or not nicotinic adenine dinucleotide

phosphate (NAADP) functions as a Ca2+ mobilizing messenger in pulmonary

arterial smooth muscle, a fixed concentration of NAADP (10 nM) was applied

intracellularly by dialysis from a patch-pipette in the whole-cell configuration

of the patch-clamp technique under current clamp conditions (I = 0). Changes

in intracellular Ca2+ concentration were reported by changes in the Fura-2

fluorescence ratio (F340/F380). A representative experiment is shown in Fig. 3.1.

(Note, the cell represented in Fig. 3.1 was obtained as a control cell for a paired

cell pre-incubated with Bafilomycin A1 (see Fig. 3.7)). Ca2+ bursts initiated by

the intracellular dialysis of NAADP either declined to basal levels (Fig. 3.1,

image 2), or proceeded to trigger a global Ca2+ wave (Fig. 3.1, images 4 – 7).

The findings of this investigation were in agreement with the investigation of

Boittin et al. (2002) as regards the generation of Ca2+ bursts prior to the

initiation of a global Ca2+ wave. It is notable that Ca2+ bursts were initially

evoked in isolation (Fig. 3.1, image 2). In other words, the Ca2+ burst initiated

by NAADP may arise and subsequently decay without the generation of a

global Ca2+ wave. It would appear, therefore, that the initial Ca2+ burst in

response to NAADP may need to breech a given threshold, determined by the

local Ca2+ concentration (Boittin, et al., 2002). Analysis of all cells studied

showed that NAADP increased the Fura-2 fluorescence ratio from 0.7 ± 0.1 to

1.9 ± 0.1 (n = 17; 16 cells acquired by Dr. F.-X. Boittin; Appendix 1, Table

3.1). This equates to an increase in the intracellular Ca2+ concentration from

~200 nM to ~700 nM as determined by the use of a standard in vitro Ca2+

calibration curve described in Chapter 2, Section 2.6.6. NAADP-induced Ca2+

signals were associated with an initial hyperpolarisation and subsequent

oscillating membrane potential depolarisations (not shown).
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Fig. 3.1: Intracellular dialysis of NAADP evokes global Ca2+ signals in isolated pulmonary

artery smooth muscle cells: Upper panel shows a series of pseudocolour representations of

the change in Fura-2 fluorescence ratio (F340/F380) within an isolated pulmonary artery smooth

muscle cell in response to the intracellular dialysis of NAADP (10 nM) from a patch- pipette.

The arrows indicate spatially restricted Ca2+ bursts which occur prior to the global Ca2+ wave

and contraction of the cell. Lower panel shows a record of the Fura-2 fluorescence ratio against

time recorded from the same cell as in the upper panel.

In contrast to the global Ca2+ waves, spatially restricted Ca2+ bursts

evoked by NAADP were of a much lower magnitude. Careful consideration

was given to analyzing the Ca2+ bursts further in order to determine the

difference in magnitude between those Ca2+ bursts which triggered a global

Ca2+ wave and those which did not, as any difference in magnitude could

support this laboratory’s view that Ca2+ bursts must breach a threshold

concentration in order to elicit a global Ca2+ wave. However, the increase in

Fura-2 fluorescence observed was small, highly variable and likely represented

the average rise in Ca2+ concentration achieved through a number of Ca2+

release events rather than the absolute maximum achieved at any given point.

These confounding influences prevented discrimination between those Ca2+

burst events that initiated global Ca2+ waves and those that did not on the

grounds of local Ca2+ concentration. However, future investigations using
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confocal microscopy may allow for more accurate assessment of local Ca2+

release events evoked by NAADP.

3.2.2 The role of the sarcoplasmic reticulum and other Ca2+ stores in

mediating global Ca2+ signals in response to NAADP

Previous investigations from this laboratory (Boittin, et al., 2002) have

established that subsequent to the Ca2+ burst evoked by NAADP, a global Ca2+

wave is induced by Ca2+-induced Ca2+-release (CICR) via RyRs on the SR.

Thus, (1) the magnitude of global Ca2+ waves induced by the intracellular

dialysis of NAADP were unaffected by the removal of extracellular Ca2+ in the

presence of the fast calcium chelator BAPTA (1 mM); (2) Ca2+ bursts and

global Ca2+ waves were abolished when 1 mM BAPTA was included with

NAADP in the intracellular pipette solution; (3) global Ca2+ waves, but not

local Ca2+ bursts in response to NAADP, were abolished after depletion of SR

Ca2+ stores in isolated pulmonary artery smooth muscle cells by pretreatment

(20 min) with thapsigargin; (4) block of RyRs with ryanodine, but not the

block of IP3Rs with xestospongin C, abolished global Ca2+ waves but did not

affect localized Ca2+ bursts (Boittin, et al., 2002). These findings suggest that

NAADP evokes global Ca2+ waves in arterial smooth muscle via a two pool

mechanism. Briefly, it was concluded that NAADP induced Ca2+ release from

a thapsigargin-insensitive, non-SR store that was subsequently amplified into a

global Ca2+ wave by CICR via RyRs located on the SR. However, the nature of

the non-SR Ca2+ store mobilised by NAADP remained to be defined (Boittin,

et al., 2002).

In a recent investigation, Churchill et al. (2002) identified reserve

granules in the sea urchin egg as a possible NAADP-sensitive Ca2+ store.
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Fig 3.2: Diagrammatic representation of the two-stage process by which lysosomes are

believed to maintain a Ca2+ store. Firstly, protons are pumped into the lysosome via a

vacuolar proton pump. Following this, protons are pumped out and Ca2+ is pumped in via the

actions of a Ca2+/H+ exchanger (Christensen, et al., 2002).

Reserve granules represent the functional equivalent of lysosomes in

mammalian cells. Previous studies carried out in cultured bone-marrow-

derived macrophages from C57B1/6 mice have established that lysosomes

maintain a Ca2+ store via a two-stage transport system (Christensen, et al.,

2002). Firstly, a proton gradient is generated across the lysosomal membrane

by the action of the vacuolar proton pump (V-H+- ATPase). This then allows

for the uptake of Ca2+ into the lumen of the lysosome through the actions of a

Ca2+/H+ exchanger (Fig 3.2; Christensen, et al., 2002). Churchill et al (2002)

demonstrated in the sea urchin egg that inhibition of the vacuolar proton pump

with Bafilomycin A1 prevented refilling of NAADP-sensitive Ca2+ stores

following NAADP-mediated Ca2+ mobilisation as subsequent uncaging of

caged NAADP by flash photolysis did not induce further Ca2+release. The

effects of Bafilomycin A1 were without effect on Ca2+ mobilisation by either

cADPR or IP3 (Churchill et al., 2002). I, therefore, investigated the possibility

that lysosomes may represent the NAADP-sensitive Ca2+ store in pulmonary

artery smooth muscle cells using Bafilomycin A1 as a key pharmacological

tool.



118

3.2.3 The effects of Bafilomycin A1 on intact pulmonary artery smooth

muscle cells

Surprisingly, when Bafilomycin A1 (100 - 300 nM) was applied

extracellularly to isolated pulmonary smooth muscle cells a pronounced and

global Ca2+ wave was triggered. Fig. 3.3 shows a representative cell. The

increase in Fura-2 fluorescence ratio in response to Bafilomycin A1 (100 – 300

nM) was seen to peak within 300 s. The Fura-2 fluorescence ratio then returned

Fig. 3.3: Bafilomycin A1 induces global Ca2+ signals in isolated pulmonary artery smooth

muscle cells: Upper panel shows a series of pseudocolour representations of the change in

Fura-2 fluorescence ratio (F340/F380) within an isolated pulmonary artery smooth muscle cell in

response to the extracellular application of Bafilomycin A1 (100 nM). The arrow in image 3

indicates a localised increase in Ca2+ generated prior to the global Ca2+ response. Lower panel

shows a record of the Fura-2 fluorescence ratio against time recorded in the same cell.

to a resting level within 45 minutes. Bafilomycin A1 induced an increase in the

Fura-2 fluorescence ratio from 0.63 ± 0.05 to 1.04 ± 0.07, which relates to a

rise in intracellular Ca2+ concentration of ~150 nM to ~600 nM (n = 20;

Appendix 1, Table 3.2). Interestingly, initial Ca2+ release events in response to

the application of Bafilomycin A1 (100 – 300 nM) were seen to be similar in

nature to Ca2+ bursts initiated by intracellular dialysis of NAADP (10 nM).

Upon extracellular application of Bafilomycin A1 to cells spatially restricted
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rises in F340/F380 fluorescence ratio were observed within the cells, as indicated

in Fig. 3.3, image 3. However, unlike the NAADP-mediated Ca2+ bursts,

localized rises in Ca2+ concentration elicited by Bafilomycin A1 did not appear

to decay before a global Ca2+ wave was initiated. Rather these responses

appeared to rise to a point at which they initiated a global Ca2+ response (Fig.

3.3). Therefore, it would appear that treatment of isolated pulmonary artery

smooth muscle cells with the V-H+- ATPase inhibitor Bafilomycin A1 may

mobilise a Ca2+ store in its own right without the requirement for NAADP, as

was previously observed in sea urchin eggs (Churchill, et al., 2002).

3.2.4 Comparison of the pharmacology of Ca2+ release mediated by

NAADP and Bafilomycin A1

To determine whether or not Bafilomycin A1 mobilised the NAADP-

sensitive Ca2+ store in pulmonary artery smooth muscle, I then examined the

pharmacology of Bafilomycin A1-mediated Ca2+ release. As mentioned

previously, recent work from this laboratory has shown that preincubation (20

min) of isolated pulmonary artery smooth muscle cells with thapsigargin (1

M) significantly attenuated Ca2+ signals generated by the intracellular dialysis

of NAADP (10 nM; Boittin, et al., 2002). In these cells, however, spatially

restricted Ca2+ bursts were still detected in all the cells examined (Boittin, et

al., 2002). In a similar fashion, preincubation (20 min) of isolated pulmonary

artery smooth muscle cells with thapsigargin (1 M) eliminated global Ca2+

signals in response to the extracellular application of Bafilomycin A1 (100 –

300 nM). However, small spatially restricted and asynchronus Ca2+ transients

were observed in 8 out of 11 cells (Fig. 3.4, Appendix 1, Table 3.3). In these 8

cells a region of interest (ROI) was drawn around the area covered by this

spatially localised release event (Fig. 3.4, image 7). The increase in Fura-2

fluorescence ratio within this ROI was then determined. On average, these

spatially restricted increases in the Fura-2 fluorescence ratio were seen to rise

from 0.72 ± 0.03 to 0.91 ± 0.02 (Appendix 1, Table 3.3, results indicated with

an asterisk (*)), an increase in the intracellular Ca2+ concentration from ~210

nM to ~310 nM (Fig 3.4). In the remaining 3 cells of the 11 examined, the
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increase in Fura-2 was seen as a non-uniform increase in Fura-2 fluorescence

ratio across the entire cell. As the increase in Fura-2 fluorescence ratio within

these 3 cells did not occur in a spatially restricted fashion, an ROI was drawn

around the entire cell and the increase in Fura-2 fluorescence measured. The

Fig. 3.4: Thapsigargin abolishes global Ca2+ waves in response to Bafilomycin A1, but not

localized Ca2+ release events: Upper panel: shows a pseudocolour representation of the

changes in Fura-2 fluorescence ratio within an isolated pulmonary artery smooth muscle cell

after preincubation (20 min) with thapsigargin (1 M) in response to the extracellular

application of Bafilomycin A1 (300 nM). Note, the spatially restricted Ca2+ burst indicated by

the ROI in pseudocolour image 7. Lower panel: shows the average Fura-2 fluorescence ratio

against time within the entire cell shown in the upper panel, the insert shows the Fura-2

fluorescence ratio against time on an expanded scale for the ROI indicated in pseudocolour

representation in image 7.
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Fig. 3.5: Ryanodine abolishes global Ca2+ waves in response to Bafilomycin A1, but not

localized Ca2+ release events. Upper panel: shows a pseudocolour representation of the

changes in Fura-2 fluorescence ratio within an isolated pulmonary artery smooth muscle cell

after preincubation (20 min) with ryanodine (20 M) in response to the extracellular

application of Bafilomycin A1 (100 nM). Note, the spatially restricted Ca2+ release event

indicated by an ROI in pseudocolour image 8. Lower panel: shows the average Fura-2

fluorescence ratio against time in the entire cell shown in the upper panel. The insert shows the

Fura-2 fluorescence ratio against time on an expanded scale for the ROI indicated in

pseudocolour representation 8.

average rise in Fura-2 fluorescence ratio in all 11 cells examined was from 0.64

± 0.05 to 0.79 ± 0.06 (n = 11, Appendix 1, Table 3.3), an increase in

intracellular Ca2+ from ~200 nM to ~250 nM. Statistical comparison of the

increase in Fura-2 fluorescence ratio observed in response to the application of

Bafilomycin A1 following preincubation of cells with thapsigargin (0.16 ±
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0.02, n = 11; Appendix 1, Table 3.4) against the increase in Fura-2

fluorescence in cells to the application of Bafilomycin A1 in the absence if

thapsigargin (0.42 ± 0.04, n = 20; Appendix 1, Table 3.4), by means of a one-

way ANOVA test, showed there was a significant difference between the test

and control groups (P = <0.0001; Appendix 1, Table. 3.4). The results of

experiments in isolated pulmonary artery smooth muscle cells preincubated

with thapsigargin suggest, therefore, that Bafilomycin A1, like NAADP, causes

an initial phase of Ca2+ release from a non-SR Ca2+ store, that is amplified into

a global Ca2+ signal by SR Ca2+ release.

Given that amplification of NAADP-mediated Ca2+ bursts into global

Ca2+ waves requires amplification via CICR from RyRs on the SR, I next

sought to determine whether or not CICR via RyRs was required for the

generation of global Ca2+ signals by Bafilomycin A1. When isolated

pulmonary artery smooth muscle cells were preincubated with ryanodine (20

M, 20 min), the extracellular application of Bafilomycin A1 (100 – 300 nM)

failed to induce global Ca2+ waves. However, in 5 out of 8 cells examined

under these conditions localized Ca2+ release events were observed (Fig. 3.5).

ROI’s were drawn to encompass localised Ca2+ release events and the increase

in Fura-2 fluorescence ratio was measured. Within a given ROI in cells

preincubated with ryanodine, Bafilomycin A1-induced Ca2+ release events

increased the Fura-2 fluorescence ratio from 0.66 ± 0.06 to 0.88 ± 0.09 (Fig

3.5, Appendix 1, Table 3.5, results marked with asterisk (*)). This equated to

an increase in the cytoplasmic Ca2+ concentration within these regions from

~180 nM to ~300 nM. In the remaining 3 cells the increase in Fura-2

fluorescence ratio was observed as a non-uniform increase across the entire

cell. As there was no clear spatial definition to these rises, ROI’s were drawn to

encompass the entire cell. Following this the increase in Fura-2 fluorescence

ratio was determined. On average, the Fura-2 fluorescence ratio was seen to

increase from 0.61 ± 0.05 to 0.79 ± 0.08 across all the cells examined,

corresponding to an increase in intracellular Ca2+ concentration from ~160 nM

to ~300 nM. As was the case in cells preincubated with thapsigargin, the

inhibition by ryanodine of the increase in Fura-2 fluorescence ratio in response

to the application of Bafilomycin A1 (0.18 ± 0.03, n = 8; Appendix 1, Table
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3.6) was significantly lower than the increases in Fura-2 fluorescence ratio

within control cells exposed to Bafilomycin A1 in the absence of ryanodine

(0.42 ± 0.04, Appendix 1, Table 3.6) using a one-way ANOVA test (P = <

0.0001, Appendix 1, Table 3.6).

Fig. 3.6: Bar chart showing the similarity in the pharmacology underlying Ca2+ signalling

in isolated pulmonary artery smooth muscle cells in response to NAADP (10 nM) and

Bafilomycin A1 (100 – 300 nM).

Fig. 3.6 compares the pharmacological profile of Ca2+ signals generated

by NAADP and Bafilomycin A1, respectively. On the basis of the similarities

in this pharmacology, I conclude that both NAADP and Bafilomycin A1

generate Ca2+ bursts from a thapsigargin- and ryanodine-insensitive Ca2+ store,

that are then amplified into global Ca2+ waves by CICR via RyRs located on

the SR (Fig. 3.6).

3.2.5 Bafilomycin A1 abolishes Ca2+ release mediated by NAADP without

affecting Ca2+ release from sarcoplasmic reticulum Ca2+ stores

In association with Dr. Francois Boittin, I next examined the possibility

that the thapsigargin- and ryanodine-insensitive Ca2+ store mobilised by

NAADP in pulmonary artery smooth muscle cells may be an acidic, lysosome-
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related Ca2+ store. Isolated pulmonary artery smooth muscle cells were

preincubated for 50 minutes with Bafilomycin A1 (100 nM) prior to the

intracellular dialysis of NAADP (10 nM) from a patch-pipette.

Fig. 3.7: Bafilomycin A1 abolishes Ca2+ signals to NAADP in isolated pulmonary artery

smooth muscle cells: Panel A Record of the Fura-2 fluorescence ratio against time in an

isolated pulmonary artery smooth muscle cell in response to the intracellular dialysis of

NAADP (10 nM). Panel B, Record of the Fura-2 fluorescence ratio against time in a paired

isolated pulmonary artery smooth muscle cell in response to the intracellular dialysis of

NAADP (10 nM) following the preincubation (50 min) of the cell with the V-H+- ATPase

inhibitor Bafilomycin A1 (100 nM).

This allowed for mobilisation, or depletion of the Bafilomycin A1-sensitive

Ca2+ store; as indicated by the rise in the Fura-2 fluorescence ratio and

subsequent decline back to levels seen under control conditions. Following

this, intracellular dialysis of NAADP (10 nM) had little or no effect on the

Fura-2 fluorescence ratio, whilst initiating a global Ca2+ wave in paired cells

that had not been exposed to Bafilomycin A1 (100 nM; Fig. 3.7 and Appendix

1, Table 3.7). Thus, Ca2+ signalling by NAADP was abolished by

preincubation of cells with Bafilomycin A1. Not surprisingly then, the response

of cells to the intracellular dialysis of NAADP after preincubation of cells with

Bafilomycin A1 (0.17 ± 0.03; n = 7) was significantly lower than that observed

under control conditions (1.3 ± 0.2; n = 17; P = <0.0001; Appendix 1, Table

3.8).
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Importantly, we found that the incubation of cells with Bafilomycin A1

did not affect other mechanisms of Ca2+ release from SR Ca2+ stores of isolated

Fig. 3.8: Changes in Fura-2 fluorescence ratio in response to Caffeine in the presence and

absence of Bafilomycin A1.Record of the change in the Fura-2 fluorescence ratio against time

in an isolated pulmonary artery smooth muscle cell in response to the extracellular application

of caffeine (2.5 mM) both before and after preincubation (50 min) of the cell with Bafilomycin

A1 (100 nM).

pulmonary artery smooth muscle cells. Thus, preincubation (50 mins) of

isolated pulmonary artery smooth muscle cells with Bafilomycin A1 did not

affect the Ca2+ signals generated by the extracellular application of caffeine

(2.5 mM; Fig. 3.8) to induce RyR-mediated Ca2+ release. It was seen that the

extracellular application of caffeine to pulmonary artery smooth muscle cells in

the absence of Bafilomycin A1 resulted in an increase in the Fura-2

fluorescence ratio from 0.68 ± 0.06 to 2.22 ± 0.2 (n = 4; Appendix 1, Table

3.9) which is equal to an increase in intracellular Ca2+ concentration from ~200

nM to ~900 nM. After pre-incubation (50 mins) with Bafilomycin A1 (100

nM) the response to caffeine was not significantly different from control (P =

0.7; Appendix 1, Table 3.11), as shown by the fact that the Fura-2 ratio

increased from 0.71 ± 0.02 to 2.18 ± 0.06 (Appendix 1, Table 3.10), equating

to an increase in Ca2+ concentration from ~210 nM to ~900 nM.

Similarly, experiments carried out in association with Dr. Francois

Boittin showed that preincubation of isolated pulmonary artery smooth muscle

cells with Bafilomycin A1 was without effect on Ca2+ signals generated by the

release of Ca2+ from the SR via IP3Rs mediated by the intracellular dialysis of
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IP3 (1 M; Fig 3.9). Intracellular dialysis of IP3 (1 M) from a patch-pipette

was seen to induce a transient depolarisation in the membrane potential and an

increase in the Fura-2 fluorescence ratio from 0.61 ± 0.04 to 1.83 ± 0.38 (n = 4;

Appendix 1, Table 3.12) in the absence of Bafilomycin A1, and from 0.68 ±

0.06 to 2.22 ± 0.19 (n = 4; Appendix 1, Table 3.13) following preincubation

(50 mins) of paired cells with Bafilomycin A1 (100 nM). This equated to an

increase in the Ca2+ concentration within the cells from ~170 nM to ~700 nM

and from ~200 nM to ~900 nM, respectively. Statistical analysis of these data

sets clearly showed that there was no significant difference (P = 0.4; Appendix

1, Table 3.14) between the changes in Fura-2 fluorescence ratio under control

or test conditions.

Fig. 3.9: IP3 induces global, regenerative Ca2+ signals following preincubation of isolated

pulmonary artery smooth muscle cells with Bafilomycin A1: Record of the change in the

Fura-2 fluorescence ratio in an isolated pulmonary artery smooth muscle cell in response to

intracellular dialysis of IP3 (1 M) after preincubation (50 min) of the cell with Bafilomycin

A1 (100 nM).

3.2.6 Lysosomes form tight clusters within isolated pulmonary artery

smooth muscle cells

The finding that NAADP mediates Ca2+ bursts by mobilizing Ca2+ from

non-SR stores (Boittin, et al., 2002) which are Bafilomycin A1-sensitive

provides evidence in support of the view that acidic, lysosome-related Ca2+

stores represent an NAADP-sensitive Ca2+ store in pulmonary artery smooth

muscle cells (Kinnear, et al., 2004). In order to further examine this proposal I

investigated whether there was any evidence to suggest that the distribution of

lysosomes within these cells may underlie the generation of the Ca2+ bursts
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evoked by NAADP and the spatially restricted Ca2+ release events evoked by

Bafilomycin A1. In order to do this I used the fluorescent indicator dye

LysoTracker Red. As mentioned previously, LysoTracker Red is a weak base

and accumulates within acidic organelles, such as lysosomes (see Chapter 2,

Section 2.3.2). This allowed me to determine the spatial organisation of these

sub-cellular organelles.

In deconvolved Z-sections (focal depth 0.28 m) taken through isolated

pulmonary artery smooth muscle cells loaded with LysoTracker Red (0.5 – 2

nM, 30 min) the distribution of LysoTracker Red labelling revealed that the

acid organelles formed clusters that were either located in a ring around the

perimeter of the cell, or as spatially restricted clusters located close to the

centre of the cell. However, it was noted that smaller clusters/individual

lysosomes were also observed in other parts of the cell. Two typical examples

of the cellular distribution of LysoTracker Red labelling are shown in Fig.

3.10. It was important to determine whether or not the organelles that were

being labelled with LysoTracker Red were indeed lysosomes and, in order to

Fig. 3.10: LysoTracker Red fluorescent labelling of acidic organelles in isolated

pulmonary artery smooth muscle cells. Panel A, left-hand image shows a brightfield image

of the cell under investigation. The right-hand panel shows the corresponding LysoTracker Red

(excitation 577 nm, emission 590 nm) fluorescence image from a deconvolved Z section (depth

0.28 m) taken through the centre of the cell. Note, the largest area of clustering located

centrally within the cell as indicated by the arrow; Panel B, left-hand image shows a

brightfield image of the cell under investigation. The right-hand panel shows the corresponding

LysoTracker Red fluorescence image from a deconvolved Z section taken through the centre of

the cell. Note, the cell shows areas of lysosomal clustering associated at the perimeter of the

cell, as indicated by the arrows.
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do this, I carried out investigations using the compound glycl-L-phenylalanine

2-napthylamide (GPN). GPN is a substrate of cathepsin C, which leads to

rupturing of lysosomes via osmotic lysis. Cathepsin C is a lysosomal cysteine

protease and it can sequentially remove dipeptides from the N- termini of

various peptides and proteins (Coffey and de Duve, 1968). It breaks GPN down

into its component amino acids which, due to their polarity, are unable to exit

the lysosome, leading to increased osmotic stress until eventually the lysosome

ruptures (Jadot, et al., 1984; Berg, et al., 1994). Cathepsin C has previously

been shown to only be expressed in end stage lysosomes (Jadot, et al., 1984;

Berg, et al., 1994; Jadot and Wattiaux, 1995). Therefore, addition of GPN to

cells will only lead to rupture of end stage lysosomes and subsequent loss of

fluorescence from these organelles.

That LysoTracker Red labelled organelles lost fluorescence in a time-

dependent manner following addition of GPN to the experimental chamber

confirmed that these LysoTracker Red labelled organelles were indeed

lysosomes. The osmotic lysis of lysosomes caused by the application of GPN

may induce contraction of the cells due to the release of lysosomal Ca2+ stores

or as a result of altering cellular pH, which can alter Ca2+ homeostasis within

the cell. In order to prevent any misinterpretation of results which may arise

due to movement of cells as a result of contraction, cells were incubated for

fifteen minutes with the compound ML-9, an inhibitor of myosin light chain

kinase, which has previously been shown to prevent contraction of smooth

muscle cells (Saitoh, et al., 1986). GPN has previously been shown to trigger a

loss of LysoTracker Red fluorescence from acidic vesicles in a time-dependent

manner, and subsequently abolish NAADP-mediated Ca2+ release from these

vesicles in sea urchin eggs (Churchill, et al., 2002). Consistent with the

findings by Churchill et al. in sea urchin eggs, it was noted that GPN (200

M), eliminated LysoTracker Red fluorescence within 15 minutes of

application to pulmonary artery smooth muscle cells (Fig. 3.11; n = 6), which

is consistent with the labelled organelles being lysosomes. The spatial

distribution of Ca2+ burst events have been shown to be manifested in two

primary forms (Boittin, et al., 2002). Firstly, Ca2+ bursts were seen to generate
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a ring of Ca2+ release around perimeter of the cell, proximal to the plasma

membrane, or were seen as spatially restricted focal Ca2+ bursts covering an

Fig. 3.11: GPN depletes LysoTracker Red labelling of lysosomes in a time dependent

manner: (i) Shows a brightfield image of an isolated pulmonary artery smooth muscle cell, (ii)

corresponding LysoTracker Red fluorescence in a deconvolved Z section (depth 0.28 m)

taken through the centre of the cell in (i). (iii – iv) LysoTracker Red fluorescence 5 (iii), 10 (iv)

and 15 (v) minutes after application of glycylphenylalanine 2- napthylamide (GPN; 200 M).

area of between 2 – 10 m across the cell. Consistent with the spatial

distribution of the Ca2+ bursts generated in response to NAADP (Fig 3.12; A

(ii) and B(ii), experiments carried out by Dr. F.X. Boittin), the large areas of

LysoTracker Red labelling observed within isolated pulmonary artery smooth

muscle cells appeared in either one or two distinct forms. Firstly, the

LysoTracker Red staining was seen to form a “ring” proximal to the plasma

membrane of the cell (Fig 3.12A(i)). This ring was seen to be approximately 2

m in diameter in the cells examined (n = 5). Secondly, LysoTracker Red

fluorescence was seen to form spatially restricted units that were primarily

located in the centre of the cell, close to a large area devoid of labelling which

may indicate the position of the nucleus within the cell (Fig. 3.12B(i)). These

tight lysosomal clusters were seen to be approximately 2 – 6 m across (n = 6).

Thus, we may conclude that the spatial organisation of lysosomes in pulmonary

arterial smooth muscle cells approximates that of the primary forms of Ca2+

bursts induced by NAADP.
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Fig 3.12: Distribution of lysosomal clusters closely mirrors NAADP-mediated Ca2+ bursts

in isolated pulmonary artery smooth muscle cells Panel A: (i) Shows a bright field image of

an isolated pulmonary artery smooth muscle cell and (ii) the corresponding LysoTracker Red

fluorescent image in a deconvolved Z section (depth 0.28 m) taken through the cell. The

arrow indicates LysoTracker staining running proximal to the plasma membrane. (iii) shows a

pseudocolour representation of a Ca2+ burst (indicated by the arrow) arising proximal to the

plasma membrane in response to intracellular dialysis of NAADP (10 nM) in a different

pulmonary artery smooth muscle cell. Panel B: (i) Shows a bright field image of a different

isolated pulmonary artery smooth muscle cell and, (ii); the corresponding LysoTracker Red

fluorescent image in a deconvolved Z section (depth 0.28 m) taken through the cell. The

arrow indicates a spatially restricted lysosomal cluster located in the centre of the cell. (iii)

Shows a pseudocolour representation of a spatially restricted Ca2+ burst elicited in response to

NAADP (10 nM) in a different isolated pulmonary artery smooth muscle cell as indicated by

the arrow.

Following 3D reconstruction of deconvolved Z stacks (depth 0.28 m,

Z-step 0.2 m) using the Softworx software (Fig. 3.13(iii)) I was able to

examine the volume occupied by the spatially restricted primary lysosomal

clusters within cells (Fig. 3.13(iv) and Appendix 1, Table 3.15). 3- dimensional
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reconstructions of cells were rotated around the X- or Y-axis through 0o, 90o,

180o and 270o. At each point of rotation, measurements were taken of length

and height of the largest discernable lysosome clusters (Fig. 3.12(v – viii). The

volumes of the lysosomal clusters were then determined. In order to limit the

amount of dead space in the volume measurements, clusters which appeared

cylindrical upon rotation volumes were determined using the equation for the

volume of a cylinder:

Volume = h x π x r2 Equation 3.1

Where h is the height of the cluster measured in m, π is taken to be equal to

3.14, and r2 is the square of the radius. The radius is equal to half of the

diameter, and the diameter is taken to be the length across the cluster,

measured in m, when viewed face on. Lysosomal clusters which were not

seen to be cylindrical in appearance had there volume determined by applying

the equation used to determine the volume of a box:

Volume = l x b x h Equation 3.2

Where l is the length of the cluster in m, b is the width of the cluster in m

and h is the depth of the cluster in the Z-plane measured in m. These

measurements allowed for calculation of the approximate volume occupied by

the lysosomal clusters. From the measurements gathered from these cells, the

volume occupied by the largest separable lysosomal clusters identified in each

cell studied, was seen to range from 7.84  m3 to 42.83 m3. This represented a

mean volume of 27.42 ± 10m3 (n = 3, Appendix 1, Table 3.15).
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Fig. 3.13: Measurement of the largest individual cluster of lysosomes in an isolated

pulmonary artery smooth muscle cell: (i) shows a bright field image of an isolated

pulmonary artery smooth muscle cell, (ii) the corresponding deconvolved LysoTracker Red

fluorescence image from a Z section (depth 0.28 m) through the middle of the cell, (iii) the

corresponding 3- dimensional reconstruction of deconvolved stack of Z sections (40 Z’s, depth

0.28 m, Z-step 0.2 m); note lysosomes form a spatially restricted cluster ~ 6 m across as

indicated by the white rectangle; (iv) shows a schematic diagram of the volume occupied by

the largest lysosomal cluster in the cell shown in (iii), as indicated by the white rectangle; (v –

viii) three dimensional reconstruction of the largest lysosomal cluster in the cell shown in panel

(iii) as indicated by the white rectangle , measured for volume through 0o (v), 90o (vi), 180o

(vii) and 270o (viii); white lines indicate the distance measured for volume measurements in

micrometers (m).

These data show that lysosome-related organelles in pulmonary artery

smooth muscle cells form dense clusters that may provide an NAADP-sensitive

Ca2+ store with a high degree of spatial organisation. Thus, the spatial

organisation of these acidic organelles within isolated pulmonary artery smooth

muscle cells is quite different to the granular pattern of discrete vesicles

observed in sea urchin eggs (Churchill, et al., 2002).
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3.3 Discussion

The data presented in this chapter provide evidence in support of this

laboratory’s assertion that NAADP acts as a discrete and potent Ca2+-

mobilising messenger in arterial smooth muscle (Boittin et al., 2002). Perhaps

most significantly, this investigation provides direct evidence in support of the

proposal (Churchill et al., 2002; Yamasaki et al., 2004) that NAADP may

selectively elicit Ca2+ signals from a lysosome-related store alone, which may

then be amplified by CICR via RyRs on the SR.

3.3.1 Bafilomycin A1 induces global Ca2+ waves and smooth muscle

contraction in similar manner to NAADP

Extracellular application of Bafilomycin A1 to isolated pulmonary

artery smooth muscle cells caused global Ca2+ waves and cell contraction. In a

similar fashion to the global Ca2+ waves initiated by NAADP, Bafilomycin A1-

evoked global Ca2+ signals were preceded by spatially restricted Ca2+ release

events. It was also noted that global Ca2+ waves induced by Bafilomycin A1

shared a similar pharmacological profile to global waves induced by NAADP

(Boittin et al., 2002). Thus, global Ca2+ waves in response to Bafilomycin A1

were inhibited by depletion of SR Ca2+ stores in isolated pulmonary artery

smooth muscle cells by inhibition of SERCA pumps with thapsigargin,

however, spatially restricted Ca2+ release events were still observed.

Furthermore, global Ca2+ signals in response to Bafilomycin A1 were

abolished when ryanodine receptors were blocked with ryanodine. Once more,

spatially restricted Ca2+ release events were observed. Therefore, consistent

with the mechanism of action of NAADP (Boittin et al., 2002), Bafilomycin

A1 initiates spatially restricted Ca2+ release events that are subsequently

amplified into global Ca2+ waves by CICR via RyRs on the SR. These data

suggest that, like NAADP, Bafilomycin A1 triggers global Ca2+ waves via a

‘two-pool’ mechanism initiated by the depletion of a non-SR Ca2+ store. The

source of this Ca2+ store is likely to be acidic in nature, as Bafilomycin A1 is

an inhibitor of the V-H+ ATPase (Docampo and Moreno, 1999). Therefore, the

apparent similarity in the mechanisms of Ca2+ release exhibited by Bafilomycin
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A1 and NAADP in isolated pulmonary artery smooth muscle cells provides

indirect evidence for a possible role for an acidic Ca2+ stores as being those

accessed by NAADP.

3.3.2 Bafilomycin A1 eliminates Ca2+ signals in response to NAADP

without affecting sarcoplasmic reticulum-mediated Ca2+ release

mechanisms

Direct evidence in support of the proposal that an acidic Ca2+ store is

the source of NAADP-mediated Ca2+ signals in vascular smooth muscle was

gained through further experiments on the effect of Bafilomycin A1 on Ca2+

signals evoked by NAADP. Given the similarity in Ca2+ signals evoked by

NAADP and Bafilomycin A1, in association with Dr. F.X. Boittin, I examined

whether or not depletion of Bafilomycin A1-sensitive Ca2+ stores attenuated

Ca2+ signals in response to NAADP. Strikingly, preincubation of isolated

pulmonary artery smooth muscle cells with Bafilomycin A1 was seen to

completely abolish Ca2+ signals in response to the intracellular dialysis of

NAADP. Consistent with previous studies which have shown Bafilomycin A1

to be selective for vacuolar proton pumps (Bowman, et al., 1988),

preincubation of cells with Bafilomycin A1 was without effect on the

mobilisation of SR Ca2+ stores by the activation of RyRs via caffeine, or the

activation of IP3Rs by intracellular dialysis of IP3. These positive controls

(caffeine and IP3) indicate that depletion of Bafilomycin A1-sensitive Ca2+

stores selectively disrupts Ca2+ mobilisation by NAADP, without any

discernable effect on Ca2+ uptake via SERCA pumps and subsequent SR Ca2+

release via RyRs and IP3Rs. These findings are consistent with findings in sea

urchin eggs (Churchill, et al., 2002), pancreatic acinar cells (Yamasaki, et al.,

2004), the clonal pancreatic  cell line (MIN6; Yamasaki, et al., 2004) and

cortical neurons (Brailoiu, et al., 2005), in which NAADP has been suggested

to initiate Ca2+ signals from acidic organelles only in the presence of a proton

gradient generated by the actions of the vacuolar proton pump.

Although NAADP appears to mobilise an acidic Ca2+ store in both sea

urchin eggs and pulmonary artery smooth muscle cells, there appears to be a
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significant difference between the responses to Bafilomycin A1 within these

cells. Thus, Bafilomycin A1 did not deplete the NAADP-sensitive Ca2+ store in

sea urchin eggs, as application of NAADP induced a robust Ca2+ signal in the

presence of Bafilomycin A1. However, Bafilomycin A1 prevented refilling of

this store, because there was no Ca2+ signal in response to a further challenge

by NAADP (Churchill et al., 2002). This is in marked contrast to the

observations described here in pulmonary artery smooth muscle cells, where

Bafilomycin A1 abolished Ca2+ signals in response to the initial application of

NAADP. It is conceivable that this difference in response may be due to the

existence of different NAADP receptors in the two preparations. Whereas the

NAADP receptor in sea urchin eggs may remain in a closed state until

activation by NAADP, the NAADP receptor expressed in vascular smooth

muscle may be tonically active at rest. This could render the lysosomal Ca2+

stores in this tissue ‘leaky’, with a constant turnover of Ca2+. If this were the

case, it suggests that the blockade of Ca2+ uptake as a result of Bafilomycin A1

treatment alters the equilibrium between Ca2+ uptake and Ca2+ release in these

stores, causing Ca2+ release which ultimately results in the depletion of

lysosomal Ca2+ stores in much the same manner as thapsigargin depletes SR

Ca2+stores. This may explain why Bafilomycin A1 induced global Ca2+ waves

in pulmonary artery smooth muscle cells, but elicited no Ca2+ signals in sea

urchin eggs (Churchill et al., 2002). Consistent with this proposal, disruption of

reserve granules in the sea urchin egg by osmotic lysis via the actions of GPN

was, unlike Bafilomycin A1, shown to elicit spatially restricted Ca2+ signals

(Churchill et al., 2002). Furthermore, a previous investigation in cultured bone-

marrow-derived macrophages showed a decrease in the luminal Ca2+

concentration within lysosomes in response to Bafilomycin A1 (Christensen, et

al., 2002), whilst a ‘non-leaky’ acidic Ca2+ store similar to that described

previously by Churchill et al. (2002) may also be present in fibroblasts where

the Ca2+ concentration within end stage lysosomes remains unaffected by

treatment of cells with Bafilomycin A1 (Gerasimenko, et al., 1998). It is

entirely possible, therefore, that the nature of Ca2+ cycling via NAADP

receptors may vary in a cell- and function-specific manner.

Despite the growing evidence in support of the view that NAADP-

mobilises Ca2+ from acidic Ca2+ stores in some tissue, this is not a universally
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held opinion within the field. Indeed a number of groups have proposed that

NAADP mobilises Ca2+ from ER/SR stores by directly activating RyRs. In

isolated nuclear preparations from pancreatic acinar cells it has been shown

that NAADP- (and cADPR-) mediated Ca2+ signals were blocked by the RyR

inhibitors ryanodine and ruthenium red, but not by caffeine (Gerasimenko, et

al., 2003), whilst IP3 mediated-Ca2+release was seen to be inhibited by

caffeine, but not by ruthenium red (Gerasimenko, et al., 2003). Gerasimenko et

al. concluded that NAADP, like cADPR, mobilises Ca2+ from nuclear envelope

Ca2+ stores through direct activation of RyRs. NAADP has also been proposed

to directly activate RyR subtype 1 purified from skeletal muscle and

reconstituted into lipid bilayers (Hohenegger, et al., 2002). Also, it has been

suggested that NAADP directly activates RyR subtype 2 isolated from cardiac

muscle and reconstituted into lipid bilayers (Mojzisova, et al., 2001). However,

there has been a contradictory report which suggests that NAADP is without

affect on all three RyR subtypes, as examined in lipid bilayer recordings of

RyR1- and RyR3-subtypes isolated from rabbit skeletal muscle and bovine

diaphragm muscle, respectively, or on crude microsome preparations from

canine heart ventricles containing RyR2 receptors (Copello, et al., 2001).

Furthermore, a more recent study carried out in Jurkat T-cells utilising mRNA

technology to knockdown the expression of RyRs showed that NAADP

mediated Ca2+ signalling in these cells was inhibited but not abolished

(Langhorst, et al., 2004).

Therefore, there are clearly contradictory reports in the literature

regarding NAADP regulation of RyRs. Whilst some studies show evidence to

support direct activation of RyRs by NAADP, others provide clear evidence

that RyR subtypes are not regulated by NAADP. These differences in opinion

may arise from the fact that it is extremely difficult to separate ER/SR

compartments with RyRs from closely associated lysosomes, as has been

shown in the sea urchin egg where cADPR- and IP3-sensitive ER fractions

were contaminated with NAADP-sensitive reserve granule stores following

separation on a Percoll density gradient (Lee and Aarhus, 1995). Furthermore,

it may be extremely difficult to resolve Ca2+ signals generated via NAADP

receptors following blockade of RyRs. However, the findings presented here

clearly demonstrate that NAADP elicits spatially restricted Ca2+ signals from
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bafilomycin-sensitive, lysosome-related organelles that are subsequently

amplified by CICR via RyRs located on the SR in pulmonary artery smooth

muscle cells.

3.3.3 Lysosomes form discrete clusters in pulmonary artery smooth muscle

cells

In isolated pulmonary artery smooth muscle cells lysosomes were seen

to form; (1) distinct clusters in the centre of cells, possibly close to the nucleus,

or as (2) a ring located close to the perimeter of cells, consistent with the two

forms of Ca2+ burst observed in response to NAADP (Boittin et al., 2002). The

application of GPN to cells eliminates end-stage lysosomes confirmed that

LysoTracker Red labelled lysosomes within pulmonary artery smooth muscle

cells. Tight clustering of LysoTracker Red labelled organelles is in contrast to

the diffuse granular distribution of acidic vesicles reported in the sea urchin

egg (Churchill, et al., 2002) and a clonal pancreatic  cell line (MIN6;

Yamasaki, et al., 2004). Clustering of LysoTracker Red labelled acidic stores

which correspond to the location of initial Ca2+ signals in response to NAADP

have, however, been reported in isolated pancreatic acinar cells (Yamasaki et

al., 2004). In pancreatic acinar cells LysoTracker Red labelling was restricted

to the basolateral pole of cells, while the liberation of NAADP by flash

photolysis of caged NAADP resulted in the initiation of Ca2+ signals within

this region of cells (Yamasaki et al., 2004). Thus, the visualisation of initial

Ca2+ signals in isolated pulmonary artery smooth muscle cells and isolated

pancreatic acinar cells in response to NAADP may be directly due to the

clustering of the NAADP-sensitive Ca2+ stores. The obvious Ca2+ bursts in

pulmonary artery smooth muscle cells or the initiation of Ca2+ signalling in the

basolateral pole of pancreatic acinar cells may, therefore, be due to the

summation of a great many individual Ca2+ release events from channels on

acidic stores located within these clusters of lysosome-related organelles.

These contrary findings suggest that lysosomal Ca2+ stores may be distributed

in a manner that meets the functional requirement of a given cell type.
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In summary, the results presented in this chapter suggest a role for

acidic, lysosome-related organelles in arterial smooth muscle as a Ca2+ store

that may be mobilised by NAADP, but not by direct activation of IP3Rs or

RyRs. These findings are consistent with the proposal of Galione and

colleagues that reserve granules in sea urchin eggs may act as an NAADP-

sensitive Ca2+ store (Churchill et al., 2002). However, in contrast with previous

investigations showing a diffuse granular distribution of lysosome-related

organelles in both sea urchin eggs (Churchill et al., 2002) and MIN-6 cells

(Yamasaki et al., 2004), the investigations presented in this chapter suggest

that lysosomes form highly organised clusters in pulmonary artery smooth

muscle which may underpin the generation of Ca2+ signals with a discrete

spatiotemporal pattern.
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Chapter 4: Spatial distribution of ryanodine receptor subtypes

and lysosomes in pulmonary artery smooth muscle

4.1 Introduction

Previous investigations from this laboratory has shown that NAADP

mediates Ca2+ bursts from an acidic, lysosome-related Ca2+ store, which may

then be amplified by CICR from the SR via RyRs, but not CICR via IP3Rs

(Boittin, et al, 2002; Chapter 3). These observations are contrary to previous

reports in other cell types, which have suggested CICR via both RyR and IP3R

participates in the generation of global Ca2+ signals in response to NAADP

(Cancela, et al., 1999; Cancela, 2001; Patel, et al., 2001). Therefore, cells may

co-ordinate and restrict the relationship between lysosomal Ca2+ stores and the

SR/ER in a manner suited to their function. Consistent with this proposal, and

in marked contrast to previous investigations which have shown a diffuse,

granular pattern of lysosome-related organelles in both sea urchin eggs

(Churchill, et al, 2002) and MIN 6 cells (Yamazaki, et al, 2004), I have

presented evidence in Chapter 3 of this thesis that lysosomes, visualised using

LysoTracker Red, form highly organised and spatially restricted clusters in

arterial smooth muscle. Furthermore, examination of these lysosomal clusters

indicated that their spatial organisation was consistent with that of NAADP-

mediated Ca2+ bursts (Chapter 3, Section 3.2.6).

Given that CICR via RyRs is a prerequisite for the generation of global

Ca2+ waves in response to NAADP in pulmonary artery smooth muscle cells

(Boittin, et al, 2002), the aim of this chapter is to determine whether or not

lysosomes colocalise with RyRs on the surface of the SR to facilitate the

generation of global Ca2+ signals in response to NAADP.
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4.2 Results

4.2.1 Ryanodine receptors and lysosomal clusters colocalise to form tight

junctions in pulmonary artery smooth musclecells

Given that NAADP has been shown to mediate Ca2+ bursts from a

lysosome-related Ca2+ store that are then amplified into global Ca2+ waves

through CICR via RyRs on the SR, I used the fluorescent probes LysoTracker

Red (0.5 – 2 nM; excitation 577 nm, emission 590 nm) and BODIPY-FL

ryanodine (1 M; excitation 480 nm, emission 510 nm) to examine whether

there was an underlying structural basis for this mechanism of Ca2+ signalling

within freshly isolated pulmonary artery smooth muscle cells. To this end I

examined whether or not lysosomes colocalised with RyRs expressed on the

SR.

Fig. 4.1 shows 2 typical representations of the distribution of lysosomes

and RyRs in isolated pulmonary artery smooth muscle cells. Fig. 4.1A(i) shows

a transmitted light image of an isolated pulmonary artery smooth muscle cell.

Fig. 4.1A(ii) shows the corresponding LysoTracker Red fluorescence,

visualised in red, in a single deconvolved Z-section (focal depth 0.28 m)

acquired through the centre of the cell shown in Fig. 4.1A(i). In this cell, there

is clear evidence of a number of small lysosomal clusters diffusely distributed

throughout the cytoplasm, with the largest area of lysosomal clustering

positioned in the centre of the cell, as highlighted by arrow 1. Fig. 4.1A(iii)

shows BODIPY-FL ryanodine fluorescence, visualised in green, acquired in a

deconvolved Z-section (focal depth 0.28 m), acquired at the same Z-depth as

A(ii). BODIPY-FL ryanodine labelling was seen throughout the cytoplasm in

all cells studied, as would be expected given that RyRs have previously been

shown to be located upon both peripheral and central sarcoplasmic reticulum

(SR) in vascular smooth muscle cells (Lesh, et al., 1998; Gordienko, et al.,

2001; Yang, et al., 2005). In isolated pulmonary artery smooth muscle cells

BODIPY-FL ryanodine labelling was seen to form ‘ribbons’ weaving through

the cytoplasm, an example of which is highlighted by arrow 2 in Fig. 4.1A(iii).
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Fig. 4.1 Lysosomes and RyRs colocalise in arterial smooth muscle cells: Panel A(i)

transmitted light image of an isolated pulmonary artery smooth muscle cell.; Panel A(ii)

deconvolved Z-section (focal depth 0.28 m) through the same cell as in A(i) shows

lysosomes labelled with LysoTracker Red (0.5 nM, 45 min. incubation). A large area of

lysosomal clustering is indicated with arrow 1; A(iii) deconvolved Z-section through the same

cell as in A(i) shows the distribution of ryanodine receptors (RyRs) labelled with BODIPY-FL

ryanodine (1 M, 60 min incubation). Arrow 2 indicates a ribbon of BODIPY-FL ryanodine

labelling; A(iv) composite image of A(ii) and A(iii) shows close association, as indicated by

arrow 3, 4 and 5, of lysosomes and a subpopulation of RyRs. Panel B(i) transmitted light

image of a different isolated pulmonary artery smooth muscle cell. B(ii) deconvolved Z-section

(focal depth 0.28 m) through the same cell as in B(i) shows lysosomes labelled with

LysoTracker Red (1 nM, 45 min. incubation). B(iii) deconvolved Z-section through the same

cell as in B(i) shows the distribution of RyRs labelled with BODIPY-FL ryanodine (1 M, 60

min. incubation). B(iv) composite image of B(ii) and B(iii) shows close association between

lysosomes and RyRs, arrow 1 indicates an area of close association between lysosomes and a

subpopulation of RyRs.
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These ribbons of BODIPY-FL ryanodine labelling are consistent with the

distribution of the SR previously described within vascular smooth muscle

cells (Devine, et al., 1972). Images of LysoTracker Red labelling and

BODIPY-FL ryanodine were then superimposed upon one another. From this it

was clear that there was an extremely close association, within certain areas of

the cells, between lysosomes and a subset of RyRs. Areas of colocalisation are

visualised in yellow (Fig. 4.1A(iv)). A large, dense area of colocalisation can

be seen between the largest cluster of lysosomal labelling and RyRs in the

centre of the cell indicated by arrow 3 in Fig. 4.1A(iv). The largest area of

colocalisation within the cells examined was seen to be located next to an area

largely devoid of labelling. The lack of labelling of RyR or lysosomes within

this region may be indicative of the position of the nucleus. It is also worthy of

note that while dense areas of colocalisation were observed within cells, a

number of smaller areas of colocalisation were observed throughout the

cytoplasm of the cell, as shown in the areas surrounding arrows 4 and 5 in Fig.

4.1A(iv). A second example showing the close association between

LysoTracker Red- and BODIPY-FL ryanodine-labelling in a different isolated

pulmonary artery smooth muscle cell can be seen in Fig. 4.1B(i). Once again,

the colocalisation between dense lysosomal labelling and RyRs is evident

within this cell as indicated by arrow 1 in Fig. 4.1B (iv). As with the example

shown in Fig. 4.1A, the largest area of colocalisation in Fig. 4.1B(iv) is located

close to an area devoid of labelling which may indicate the positioning of the

nucleus of the cell.

Given that lysosomes represent a discrete, sub-cellular organelle, and

that RyRs are expressed on the SR, the distance between these two sites of

Ca2+ release could have important functional implications. I therefore sought to

determine the maximal distance between lysosomes and RyRs that existed

within the same focal plane. To achieve this I examined 3-dimensional

reconstructions of a series of deconvolved Z-sections acquired from isolated

pulmonary artery smooth muscle cells (focal depth 0.28 m, Z-step 0.2 m)

labelled with LysoTracker Red and BODIPY-FL ryanodine. An example of a

3-dimensional reconstruction of deconvolved Z-sections is shown in Fig. 4.2(i).

In this cell a dense central plaque of lysosome and RyR colocalisation is
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clearly evident, while a number of smaller areas of colocalisation can be seen

throughout the cytoplasm of the cell. Following the generation of the 3-

dimensional (3D) reconstruction, each area of colocalisation was examined and

the cell was rotated in 1o steps through 360o around the X- and Y-axis in order

to determine whether, at any point, the two fluorescent labels could be

separated from one another in the same focal plane (Fig. 4.2(ii)). When the two

fluorescent labels could be separated, the cell was rotated to determine the

point at which they lay within the same plane (Fig. 4.2(iii)a). In order to

achieve this aim the cell was rotated until the lysosomal labelling was seen to

Fig. 4.2. Formation of trigger zone between closely associated lysosomes and RyRs: (i) 3D
reconstruction of deconvolved Z-sections (depth 0.28 m, Z-step 0.2 m) taken through an
isolated pulmonary artery smooth muscle cell shows close association of lysosomes labelled
with LysoTracker Red (0.5 nM, 45 min. incubation) and a subpopulation of ryanodine
receptors (RyRs) labelled with BODIPY-FL ryanodine (1M, 60 min. incubation); (ii) shows
the cell in (i) rotated 284° around the y axis; (iii) two sequential enlargements (a and b) of the
section of the cell in (ii) indicated with a white rectangle: (iii) b selected area shows distance (d
= ≤ 0.4 m) measured between a LysoTracker Red-labelled organelle and RyRs labelled with
BODIPY-FL ryanodine colocalised in the same focal plane.

be located directly above the RyR labelling, and a note of the extent of rotation

was taken. After this, the cell was again rotated until the RyR labelling was

positioned directly above the lysosomal labelling; once more the degree of

rotation was noted. From these measurements the point at which the

fluorescent labels were positioned side by side at the same focal depth was

determined and the cell was rotated to this point. A measurement of the

distance between the BODIPY-FL ryanodine and the LysoTracker Red

fluorescence was then taken using the SoftWorx software (Fig. 4.2(iii)b;
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Appendix 2, Table 4.1). From the measurements taken, it was seen that RyRs

and lysosomes that were closely associated within the same focal plane were

separated by a distance of ≤ 0.4 m (Fig. 4.2(iii)b; Appendix 2, Table 4.1; n =

12 areas from 9 cells). However, the majority of areas of colocalisation

between RyRs and lysosomes were much smaller than could be resolved using

the techniques at my disposal. Thus, it would appear that the junction or cleft

between lysosomes and RyRs represents a very tight association between these

elements. This close association between lysosomes and RyRs is well within

the estimated maximum distance that Ca2+ may diffuse within the cytoplasm of

cells (≤ 5 m; Allbritton, et al., 1992). Therefore, this close association is

ideally suited to a role in RyR-dependent amplification of lysosomal Ca2+

signals.

It is clear from these experiments that a large proportion of BODIPY-

FL ryanodine labelled RyRs are not associated with LysoTracker Red labelled

organelles. There are three known subtypes of RyRs found in mammalian cells,

namely; RyR1 (Inui, et al., 1987b; Lai, et al., 1988; Takeshima, et al., 1995),

RyR2 (Inui, et al., 1987a; Takeshima, et al., 1998) and RyR3 (Hakamata, et al.,

1992; Sorrentino, et al., 1993; Takeshima, et al., 1996). All three of these RyR

subtypes have previously been shown to be expressed in several types of

vascular smooth muscle, including pulmonary artery smooth muscle

(Herrmann-Frank, et al., 1991; Neylon, et al., 1995; Jeyakumar, et al., 1998;

Coussin, et al., 2000; Mironneau, et al., 2001; Yang, et al., 2005). Thus, a

particular subpopulation of RyRs may colocalise with lysosomes to form a

trigger zone for Ca2+ signalling by NAADP. Therefore, I sought to determine

whether or not a specific subtype of RyR colocalised with lysosomes in order

to comprise the proposed trigger zone for NAADP-mediated Ca2+ signalling.
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4.2.2 Examination of lysosomal distribution in methanol-fixed pulmonary

artery smooth muscle cells via visualisation of the lysosomal

membrane protein lgp120

4.2.2.1 Regionalisation of isolated pulmonary artery smooth muscle cells in

order to determine the sub-cellular distribution of fluorescent labelling

In order to determine the sub-cellular distribution of fluorescent

labelling within isolated pulmonary artery smooth muscle cells, each cell was

divided into four regions. These regions were termed the ‘nuclear region’

‘perinuclear region’, the ‘extra-perinuclear region’ and the ‘sub-plasmalemmal

region’, as depicted in the schematic diagram of a cell shown in Fig. 4.3. The

processing applied to pulmonary artery smooth muscle cells in order to define

these regions and quantify the fluorescent labelling within each is outlined

below.

Fig. 4.3 Designation of regions within a model isolated pulmonary artery smooth muscle

to allow for examination of the spatial distribution of fluorescent labelling.
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Volumetric analysis of cells was carried out using Volocity software

(Improvision, UK). Measurements of cellular volume were achieved by

drawing a region of interest (ROI) around the perimeter of the cell and

measuring its volume. Pulmonary artery smooth muscle cells were seen to

occupy a volume of 1754.1 ± 258.4 m3 (n = 24; Appendix 2, Table 4.2).

The volume of the nucleus of the cell was defined by initially

measuring the labelling of the fluorescent probe DAPI (excitation 360 nm,

emission 457 nm). DAPI binds to the major groove of the double helix of

DNA, once bound it fluoresces in response to ultraviolet light (Barcellona, et

al., 1990); note, accurate measurements of the volume of DAPI, and all other

fluorescent probes, was achieved through the application of threshold filters to

exclude any labelling with fluorescence intensities lower than the background

levels (Chapter 2, section 2.4.2). Following this, an ROI was drawn around

DAPI labelling to define the boundary of the nucleus. The volume of this ROI

was measured and the nucleus was seen to occupy 105.7 ± 13.4 m3 of the

volume of cells (n = 24, Appendix 2, Table 4.2). The volume of the nucleus,

and any fluorescent labelling contained within, were excluded from all

subsequent analyses (see below).

Once the nuclear boundary had been established, an ROI was drawn in

the cytoplasm within 1.5 m of the nucleus and termed the perinuclear ROI.

The volume of the perinuclear region was then determined by subtracting the

volume of the nucleus from the volume of the perinuclear ROI. The perinuclear

region of cells occupied a volume 580.4 ± 103.9 m3 (n = 24; Appendix 2,

Table 4.2).

A second ROI was then drawn within the cytoplasm of the cell and was

termed the non sub-plasmalemmal ROI. This ROI included both the

perinuclear and nuclear regions of the cell, but excluded the sub-plasmalemmal

region. Subtraction of the volumes of the perinuclear and nuclear regions of

cells, from the measures obtained from the non sub-plasmalemmal ROI

provided a measure of the volume of the extra-perinuclear region of cells. The

extra-perinuclear region occupied a volume of 418 ± 75 m3 (n = 24; Appendix

2, Table 4.2).
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The sub-plasmalemmal region of the cell was determined as being the

area of cytoplasm located within 1.5 m of the plasma membrane of the cell.

Subtraction of the volume of the non sub-plasmalemmal ROI from the ROI

encompassing the whole cell gave a measure of the volume of the sub-

plasmalemmal region of cells. The sub-plasmalemmal region of cells occupied

a volume of 673.2 ± 135.2 m3 of cells (n = 24; Appendix 2, Table 4.2).

In areas of cells where the plasma membrane encroached within 1.5 m

of the nucleus, the distance that the perinuclear region extended from the

nucleus was altered in order to prevent misleading calculations of the

distribution of labelling. In order to do this, the distance from the edge of the

nucleus to the plasma membrane of the cell was measured. The boundary of the

perinuclear region was then readjusted to extend half the distance from the

nucleus to the plasma membrane of the cell at that point. Therefore, if the

nucleus was positioned 1m from the plasma membrane at a given point, the

perinuclear region was readjusted to extend 0.5 m from the nucleus at that

point. Similarly, the boundary of the sub-plasmalemmal region was altered to

extend half the distance from the nucleus to the plasma membrane within these

regions. Therefore, within these regions the sub-plasmalemmal and perinuclear

regions bordered one another, with exclusion of the extra-perinuclear region. In

some cells, the distance between the nucleus and the plasma membrane was

smaller than the accurate resolution limit of the imaging system. Therefore, any

fluorescent labelling located within these areas of cells was excluded from

analysis as it could not be confidently assigned to a given region of the cell.

As illustrated in Table 4.2 (Appendix 2), the volume of cells was not

distributed evenly between the three regions. To allow comparison of

measurements of fluorescent labelling between regions, a process of

normalisation was applied to the labelling within each region of the cell. To

achieve this, the volume of fluorescent labelling within a given region was

divided by the volume occupied by that region in order to provide the volume

of fluorescent labelling per m3 of a given region of the cell. Thus, the density

of fluorescent labelling in a given region was measured, thereby allowing

direct comparison of the distribution of labelling between different regions and

between cells.
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4.2.2.2 Determination of lysosomal distribution in methanol-fixed isolated

pulmonary artery smooth muscle cells

The distribution of Lysosomes within immunocytochemical

investigations was visualised through the use of an antibody raised in mouse

against the integral lysosomal membrane glycoprotein, lgp120 (GM10;

Grimaldi, et al., 1987). The glycoprotein lgp120 has previously been shown

to be expressed predominantly on the membrane of lysosomes, with little

expression detected on endosomes, the plasma membrane, or within the golgi

cisternae (Lewis, et al., 1985). Binding of this primary antibody was visualised

via the binding of goat anti-mouse secondary antibody conjugated to the

fluorescent probe FITC (excitation 490 nm, emission 528 nm).

A typical example of the distribution of lgp120-labelling within

isolated pulmonary artery smooth muscle cells is shown in Fig. 4.4. Fig. 4.4(i)

shows a transmitted light image of an isolated pulmonary artery smooth muscle

cell, while Fig. 4.4(ii) shows a deconvolved Z-section (focal depth 0.28 m)

through the cell, corrected to remove background fluorescence, as determined

from matched control slides (Chapter 2, Section 2.4.2). Lysosomal distribution

and the position of the nucleus are visualised in green and blue, respectively.

Consistent with the other cells examined, intense areas of lysosomal labelling

are located in close proximity to the nucleus of the cell shown in Fig. 4.4(ii)

and an example of one of these areas of labelling is indicated by arrow 1.

Lysosomal labelling located further from the nucleus of the cell is evident;

however, these areas are fewer in number and appear to be more diffuse than

elements located close to the nucleus (Fig. 4.4(ii) arrows 2 and 3). Fig. 4.4(iii)

shows a 3-dimensional (3D) reconstruction of a series of deconvolved Z-

sections (focal depth 0.28 m, Z step 0.2 m) obtained through the cell. It can

be seen that the densest areas of lysosomal labelling appear to be located close

to the nucleus of the cell. Analysis of cells was then carried out to determine

the volume of labelling present within cells. Under carefully controlled

‘optimal’ experimental conditions, the DeltaVision imaging system is able to

accurately resolve elements of labelling smaller than 0.2 m in size in each of
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the X-, Y- and Z-planes. However, the precisely controlled environment under

which these ‘optimal’ measurements are obtained cannot be recreated under the

experimental conditions in my experiments. Therefore, in these and all

subsequent analyses, I set a more conservative value on the limit of resolution

in my experiments. To this end, I included only those volumes of labelling

measuring ≥ 0.5 m in the X-, Y- and Z-planes (volume ≥ 0.125 m3) and any

element of labelling smaller than these limits were excluded from

consideration. Fig. 4.4(iv) shows a 3D representation of the positioning of each

individual volume ≥ 0.125 m3, in purple, of lysosomal labelling measured

from the cell. Thus, examination of cells showed that lgp120- labelling

Fig. 4.4 Visualisation of lgp120 labelling within an isolated pulmonary artery smooth

muscle cell: (i) transmitted light image of an isolated pulmonary artery smooth muscle cell. (ii)

deconvolved Z-section (focal depth 0.28 m) taken through the cell shown in (i) showing the

distribution of lgp120 labelling, indicative of the distribution of lysosomes in green. The

nucleus of the cell is shown in blue. Arrows 1 – 3 indicate areas of lysosomal labelling. (iii) 3D

reconstruction of a series of Z-sections (focal depth 0.28 m, Z step 0.2 m) obtained through

the cell shown in (i) showing the distribution of lgp120 labelling in green. The nucleus of the

cell is shown in blue. (iv) 3D representation of the distribution of individual volumes ≥ 0.125

m3 (in purple) of lgp120 labelling measured in cells. Individual volumes of labelling were

determined using Volocity software (Improvision, UK). (v) shows the individual volumes of

lgp120 labelling as in (iv) coloured to indicate the region of the cell in which they are located;

volumes within the perinuclear, extra-perinuclear and sub-plasmalemmal regions are shown in

orange, pink and blue, respectively.

occupied a volume of 29.84 ± 3.47 m3 in pulmonary artery smooth muscle

cells (n = 24; Appendix 2, Table 4.3). This equated to a density of labelling
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within cells of 0.019 ± 0.003 m3 of labelling per m3 of cell volume (n = 24;

Appendix 2, Table 4.3). The spatial distribution of these volumes of labelling

was then examined to provide a measure of the fluorescent labelling within

each of the three different regions of the cell. Fig. 4.4(v) shows a 3D visual

representation of the regionalised distribution of each individual volume of

labelling within the cell shown in Fig. 4.4(iv). Each volume of labelling in Fig.

4.4(v) is coloured to indicate the region of the cell in which it is located. Thus,

volumes of lysosomal labelling located in the perinuclear, extra-perinuclear

and sub-plasmalemmal regions are visualised in orange, pink and light blue,

respectively. Volumetric analysis of the lysosomal labelling located within the

three different regions of cells indicated that both the volume and the density of

labelling were greater in the perinuclear region of cells than either the extra-

perinuclear or sub-plasmalemmal regions. Lysosomal labelling occupied a

volume of 16.25 ± 3.18 m3 in the perinuclear region of cells (n = 24;

Appendix 2, Table 4.4). This equated to a density of 0.032 ± 0.006 m3 of

labelling per m3 of the perinuclear region (Fig. 4.5; Appendix 2, Table 4.4).

In contrast, lysosomal labelling in the extra-perinuclear region occupied a

volume of 6.72 ± 1.47 m3 (n = 24; Appendix 2, Table 4.5), accounting for a

density of 0.018 ± 0.006 m3 of labelling per m3 of the region (Fig. 4.5;

Appendix 2, Table 4.5). The sub-plasmalemmal region of cells contained both

the lowest volume and the lowest density of lysosomal labelling measured in

cells. In the sub-plasmalemmal region, lysosomal labelling occupied volume of

5.93 ± 1.68 m3 (n = 24; Appendix 2, Table 4.5) and a density of 0.01 ± 0.003

m3 of labelling per m3 of the region (Fig. 4.5; Appendix 2, Table 4.6).

A direct comparison between the densities of lysosomal labelling

within the three regions of the cells examined is indicated in the bar chart in

Fig. 4.5. Statistical comparison of the densities of labelling confirmed that a

significantly greater density of labelling was present in the perinuclear region

than either the extra-perinuclear (P = < 0.05; Appendix 2, Table 4.7) or the

sub-plasmalemmal regions of cells (P = < 0.05; Appendix 2, Table 4.7).

Furthermore, the density of labelling within the sub-plasmalemmal region of

cells was significantly lower than that detected in the extra-perinuclear region

(P = < 0.05; Appendix 2, Table 4.7). Therefore, these data suggest not only that
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lysosomal labelling predominates within the perinuclear region but also that the

density of labelling declines progressively as one moves from the nucleus to

the plasma membrane of cells.

Fig. 4.5 Comparison of the density (m3 of labelling per m3 of region) of lysosomal

labelling within the 3 regions of isolated pulmonary artery smooth muscle cells. *

indicates statistical difference (P = ≤ 0.05) when compared to the perinuclear region. 

indicates statistical difference (P = ≤ 0.05) when compared to the extra-perinuclear region

(n = 24).

A comparison was then carried out to examine whether there was a

difference in the mean volumes of individual elements of lysosomal labelling

within the different regions of cells. Separate elements of fluorescent labelling

which are closer together than can be resolved with the imaging system used to

acquire data are recorded as single elements of labelling. Thus, the larger the

individual volumes of lgp120 labelling detected, the larger the degree of

lysosomal clustering. The difference between the mean volumes of labelling

within the regions of the cell is indicated in the bar chart in Fig. 4.6. The mean

volume of labelling within the perinuclear region of cells was 0.76 ± 0.14 m3

(n = 24; Fig. 4.6; Appendix 2, Table 4.4). The mean volumes of labelling were

seen to decrease out with the perinuclear region of cells. Thus, the mean

volume of labelling within the extra-perinuclear region of cells was 0.59 ± 0.13

m3 (n = 24; Fig. 4.6; Appendix 2, Table 4.5), while the mean volume of
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elements of lysosomal labelling within the sub-plasmalemmal region of cells

was 0.32 ± 0.06 m3 (n = 24; Fig. 4.6; Appendix 2, Table 4.6).

Although Fig. 4.6 shows a clear trend for a decrease in the mean

volume of elements of labelling between the perinuclear and extra-perinuclear

regions of cells, this decrease was not statistically significant (P = > 0.05,

Appendix 2, Table 4.8). However, the mean volume of individual elements of

labelling within the sub-plasmalemmal region of cells was significantly smaller

than those observed in either the perinuclear (P = < 0.05; Appendix 2, Table

4.8) or extra-perinuclear regions (P = < 0.05; Appendix 2, Table 4.8).

Therefore, the mean volume of individual elements of lysosomal labelling

appeared to decrease across the cell from the perinuclear region to the sub-

plasmalemmal region (Fig. 4.6).

Fig. 4.6 Comparison of the mean volume (m3) of lysosomal labelling within the 3 regions

of isolated pulmonary artery smooth muscle cells. * indicates statistical difference (P = ≤

0.05) when compared to the perinuclear region.  indicates statistical difference (P = ≤

0.05) when compared to the extra-perinuclear region (n = 24).

I can conclude, therefore, that the density of lysosomes was greatest in

the perinuclear region of pulmonary artery smooth muscle cells, where a high

degree of lysosomal clustering was also evident. Given these data, coupled

with the finding that lysosomal clusters colocalised with a subpopulation of

RyRs in pulmonary artery smooth muscle cells (Section 4.3.1), I proceeded to
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examine whether areas of colocalisation were formed between lysosomes and a

specific subtype of RyRs.

4.2.3 Spatial distribution of ryanodine receptor subtypes within pulmonary

artery smooth muscle cells

4.2.3.1 Identification of ryanodine receptor subtypes in pulmonary artery

smooth muscle cells

The presence of RyR subtypes was investigated in pulmonary artery

smooth muscle via the use of affinity-purified antibodies raised against specific

amino acid sequences within each of the 3 different RyR subtypes namely,

RyR1 (Lesh, et al., 1993), RyR2 (Jeyakumar, et al., 2001) and RyR3

(Jeyakumar, et al., 1998), for target sequences see Chapter 2, section 2.4.1.

Samples of protein isolated from the pulmonary artery were run alongside

positive controls consisting of protein extracted from various tissues previously

shown to express a high level of a specific RyR subtype: RyR1, skeletal muscle

(Inui, et al., 1987b); RyR2, cardiac muscle (Inui, et al., 1987a); RyR3, brain

(Hakamata, et al., 1992). RyRs are large tetrameric ion channels composed of

polypeptide subunits with molecular masses between 500 and 600 kDa (Sutko

and Airey, 1996b). Therefore, one would expect to see bands corresponding to

RyRs positioned above the 250 kDa marker which was the largest molecular

weight marker used in this study. All three subtypes of RyR were identified in

pulmonary arteries, denuded of their endothelia, by Western blot (Figs. 4.7),

which is consistent with a recent investigation in rat pulmonary arteries,

utilising the same sequence specific anti-RyR antibodies (Yang, et al., 2005).

Fig. 4.7 shows representative blots probed with sequence-specific

antibodies raised against RyR1 (Fig. 4.7A), RyR2 (Fig. 4.7B) and RyR3 (Fig.

4.7C). For all 3 RyR subtypes a band was identified that was > 250 kDA in the

pulmonary artery. These bands corresponded with bands in the respective

positive controls, thus demonstrating the presence of RyR1, RyR2 and RyR3 in

the pulmonary artery. It is worthy of note that the blots shown here showed

multiple bands in all tissues following probing with a given RyR subtype

antibody. The presence of these multiple bands may be a due to the degradation
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of RyRs during processing, as described previously in studies carried out in

both pulmonary and aortic smooth muscle (Lesh, et al., 1998; Yang, et al.,

2005).

Fig. 4.7 Pulmonary artery smooth muscle expresses all 3 RyR subtypes: A specific

antibody for Ryanodine receptor (RyR) subtype 1 immunoblotted against cytoplasmic

homogenates from second order branches of rat pulmonary artery and rat skeletal muscle. 20

g of protein were loaded to each lane. A specific band > 250 KDa of labelling representing

RyR subtype 1 was identified in each lane. B specific antibody for RyR subtype 2

immunoblotted against cytoplasmic homogenates from second order branches of rat pulmonary

artery and rat heart. 20 g of protein were loaded to each lane. A specific band > 250 KDa of

labelling representing RyR subtype 2 was identified in each lane. C specific antibody for RyR

subtype 3 immunoblotted against cytoplasmic homogenates from second order branches of rat

pulmonary artery and rat brain. 20 g of protein were loaded to each lane. A specific band of

labelling >250 KDa representing RyR subtype 3 was identified in each lane.

4.2.3.2 Distribution of ryanodine receptor subtypes in methanol-fixed

pulmonary artery smooth muscle cells

Labelling of RyR subtypes was visualised in methanol-fixed pulmonary

artery smooth muscle cells via secondary antibodies conjugated to the

fluorescent probe, Texas Red (excitation 555 nm, emission 617 nm).

Volumetric analysis suggests that the distribution within pulmonary artery
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smooth muscle cells of the three RyR subtypes was markedly different. This is

exemplified by typical examples of distribution of labelling of RyR1, RyR2

and RyR3 in Figs. 4.10, 4.13 and 4.16, respectively, within different isolated

pulmonary artery smooth muscle cells.

4.2.3.2.1 Spatial distribution of ryanodine receptor subtype 1 labelling in

pulmonary artery smooth muscle cells

Fig. 4.8(i) shows a transmitted light image of an isolated pulmonary

artery smooth muscle cell, while Fig. 4.8(ii) shows a deconvolved Z-section

(focal depth 0.28 m) through the cell, corrected to remove background

fluorescence, as determined from matched control slides (Chapter 2, Section

2.4.2). The distribution of RyR1 and the position of the nucleus are visualised

in red and blue, respectively. Fig. 4.8(iii) shows a 3D reconstruction of a series

of deconvolved Z-sections (focal depth 0.28 m, Z step 0.2 m) obtained

through the cell. Analysis of the labelling within cells, excluding areas of

labelling ≤ 0.5 m in the X-, Y- and Z-planes was then carried out. Fig. 4.8(iv)

shows a 3D representation of the positioning of each individual volume ≥

0.125 m3, in purple, of RyR1 labelling measured from the cell.

Fig. 4.8 Visualisation of RyR1 labelling within an isolated pulmonary artery smooth

muscle cell: (i) transmitted light image of an isolated pulmonary artery smooth muscle cell. (ii)

deconvolved Z-section (focal depth 0.28 m) taken through the cell shown in (i) showing the

distribution of RyR1 labelling in red and the nucleus in blue. (iii) 3D reconstruction of a series

of Z-sections (focal depth 0.28 m, Z step 0.2 m) obtained through the cell shown in (i)

fluorescently labelled as in (ii). (iv) 3D representation of the distribution of individual volumes

≥ 0.125 m3 (in purple) ofRyR1 labelling. (v) individual volumes of RyR1 labelling as in (iv)

coloured to indicate the region of the cell in which they are located; i.e. the perinuclear

(orange), extra-perinuclear (pink) and sub-plasmalemmal (light blue).
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Examination of labelled cells showed that RyR1 labelling occupied a volume

of 50.77 ± 7.6 m3 in pulmonary artery smooth muscle cells (n = 8; Appendix

2, Table 4.9). This equated to a density of labelling within cells of 0.03 ± 0.004

m3 of labelling per m3 of cell volume (n = 8; Appendix 2, Table 4.9). Fig.

4.8(v) shows a 3D visual representation of the spatial distribution of each

individual volume of labelling within the cell shown in Fig. 4.8(iv), following

regionalisation. Each volume of labelling is coloured to indicate the region of

the cell in which it is located. Thus, volumes of RyR1 labelling located in the

perinuclear, extra-perinuclear and sub-plasmalemmal regions are visualised in

orange, pink and light blue, respectively. RyR1 labelling can be seen

throughout the cytoplasm of the cell shown in Fig. 4.8(v), with no obvious

predominance in any given region. RyR1 labelling was measured as occupying

a volume of 15.77 ± 3.7 m3 in the perinuclear region of cells (n = 8; Appendix

2, Table 4.10), equating to a density of 0.033 ± 0.008 m3 of labelling per m3

of the perinuclear region (n = 8; Fig. 4.9; Appendix 2, Table 4.10). Both the

volume and density of labelling appeared to be lower in the extra-perinuclear

region when compared to the perinuclear region. Thus, in the extra-perinuclear

region RyR1 labelling occupied a volume of 9.38 ± 2.36 m3 (n = 8; Appendix

2, Table 4.11), accounting for a density of 0.018 ± 0.003 m3 of labelling per

m3 of the region (n = 8; Fig 4.9; Appendix 2, Table 4.11). However, the

volume and density of RyR1 labelling in the sub-plasmalemmal region was

comparable to that observed in the perinuclear region. Thus, volumetric

analysis of RyR1 labelling showed that there was 19.82 ± 3.24 m3 (n = 8;

Appendix 2, Table 4.12) and a density of 0.031 ± 0.007 m3 of labelling per

m3 of the region (n = 8; Fig 4.9; Appendix 2, Table 4.13). A statistical

comparison of the density of labelling between the perinuclear, extra-

perinuclear and sub-plasmalemmal regions showed that the apparent

differences between the density of labelling between regions were not

statistically significant (P > 0.05; Appendix 2, Table 4.14). Therefore, RyR1

labelling was distributed evenly throughout pulmonary artery smooth muscle

cells.
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Fig. 4.9 Comparison of the density (m3 of labelling per m3 of region) of RyR1 labelling

within the 3 regions of isolated pulmonary artery smooth muscle cells (n = 8).

As with lysosomal labelling, a measurement was made of the mean

volume of individual elements of RyR1 labelling within cells. As described

previously, a greater mean volume of RyR1 labelling within a given region of

cells would be indicative of a greater degree of clustering of the receptor within

that region. Measurements of RyR1 labelling in the perinuclear region of cells

indicated that elements of RyR1 labelling had a mean volume of 1.17 ± 0.36

m3 (n = 8; Fig. 4.10; Appendix 2, Table 4.10). The mean volume of elements

of labelling in the perinuclear region appeared larger than those measured in

the extra-perinuclear region of cells, where the mean volume of individual

elements of RyR1 labelling was 0.81 ± 0.29 m3 (n = 8; Fig. 4.10; Appendix 2,

Table 4.11). The smallest clusters of RyR1 labelling appeared to be located in

the sub-plasmalemmal region, where the mean volume was measured at 0.53 ±

0.11 m3 (n = 8; Fig. 4.10; Appendix 2, Table 4.12). However, as was

observed for the density of RyR1 labelling within the three regions of cells,

although there appeared to be a trend for a decrease in the mean volumes of

RyR1 labelling from the perinuclear to the extra-perinuclear and sub-

plasmalemmal regions of cells, there was no significant difference between the

measures (P > 0.05; Appendix 2, Table 4.14). Therefore, these results show

that the mean volume of RyR1 labelling was fairly uniform across the

perinuclear, extra-perinuclear and sub-plasmalemmal regions of pulmonary

artery smooth muscle cells.



158

Fig. 4.10 Comparison of the mean volume (m3) of RyR1 labelling within the 3 regions of

isolated pulmonary artery smooth muscle cells (n = 8).

4.2.3.2.2 Spatial distribution of ryanodine receptor subtype 2 labelling in

pulmonary artery smooth muscle cells

An example of the distribution of RyR2 labelling within pulmonary

artery smooth muscle cells is shown in Fig. 4.11. Fig. 4.11(i) shows a

transmitted light image of an isolated pulmonary artery smooth muscle cell,

while Fig. 4.11(ii) shows a deconvolved Z-section (focal depth 0.28 m)

obtained through the cell, corrected to remove background fluorescence. The

distribution of RyR2 labelling and the position of the nucleus are visualised in

red and blue, respectively. Fig. 4.11(iii) shows a 3D reconstruction of a series

of deconvolved Z-sections (focal depth 0.28 m, Z step 0.2 m) obtained

through the cell. Fig. 4.11(iv) shows a 3D representation of the positioning of

each individual volume ≥ 0.125 m3, in purple, of RyR2 labelling measured

from the cell in Fig. 4.11. RyR2 labelling occupied a volume of 48.92 ± 3.61

m3 in pulmonary artery smooth muscle cells (n = 8; Appendix 2, Table 4.15),

equating to a density of labelling within cells of 0.03 ± 0.006 m3 of labelling

per m3 of cell volume (n = 8; Appendix 2, Table 4.15). Fig. 4.11(v) shows a

3D visual representation of the spatial distribution of each individual volume of

labelling within the cell shown in Fig. 4.11(iv) following regionalisation.
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Fig. 4.11 Visualisation of RyR2 labelling within an isolated pulmonary artery smooth

muscle cell: (i) transmitted light image of an isolated pulmonary artery smooth muscle cell. (ii)

deconvolved Z-section (focal depth 0.28 m) taken through the cell shown in (i) showing the

distribution of RyR2 labelling in red and the nucleus in blue. (iii) 3D reconstruction of a series

of Z-sections (focal depth 0.28 m, Z step 0.2 m) obtained through the cell shown in (i)

fluorescently labelled as in (ii). (iv) 3D representation of the distribution of individual volumes

≥ 0.125 m3 (in purple) ofRyR2 labelling. (v) individual volumes of RyR2 labelling as in (iv)

coloured to indicate the region of the cell in which they are located; i.e. the perinuclear

(orange), extra-perinuclear (pink) and sub-plasmalemmal (light blue).

Individual volumes of RyR2 labelling in the perinuclear, extra-perinuclear and

sub-plasmalemmal regions are visualised as orange, pink and light blue,

respectively. RyR2 labelling was located throughout the cell. However,

volumetric analysis of RyR2 labelling suggested that RyR2 labelling was

predominant in the extra-perinuclear region over the perinuclear and sub-

plasmalemmal regions (Fig. 4.12). Thus, RyR2 labelling occupied a volume of

14.09 ± 2.16 m3 in the perinuclear region of cells (n = 8; Appendix 2, Table

4.16), equating to a density of 0.037 ± 0.0013 m3 of labelling per m3 of the

perinuclear region (n = 8; Fig. 4.12; Appendix 2, Table 4.16). The labelling of

RyR2 appeared to increase in the extra-perinuclear region, where it was seen to

occupy a volume of 24.99 ± 4.97 m3 (n = 8; Appendix 2, Table 4.17),

accounting for a density of 0.066 ± 0.0012 m3 of labelling per m3 of the

region (n =8; Fig. 4.12; Appendix 2, Table 4.17). Thus, a two-fold greater

density of RyR2 labelling was measured in the extra-perinuclear region when

compared to the perinuclear region. RyR2 labelling was seen to decline to its

lowest level in the sub-plasmalemmal region of cells, where it measured a

volume of 7.36 ± 1.58 m3 (n = 8; Appendix 2, Table 4.18), equating to a
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density of 0.012 ± 0.003 m3 of labelling per m3 of the region (n = 8; Fig.

4.12; Appendix 2, Table 4.18). Although there appeared to be a greater density

of RyR2 labelling in the extra-perinuclear region of cells in comparison to the

perinuclear region, this difference was not statistically significant (P = > 0.05;

Appendix 2, Table 4.19). The density of RyR2 labelling within the perinuclear

and extra-perinuclear regions of cells were, however, significantly greater than

that observed in the sub-plasmalemmal region of cells (P = ≤ 0.05; Appendix 2,

Table 4.19). Therefore, RyR2 labelling was seen to be distributed throughout

the cytoplasm of cells. However, there was a marked decrease in the density of

RyR2 labelling in the sub-plasmalemmal region.

Fig. 4.12 Comparison of the density (m3 of labelling per m3 of region) of RyR2 labelling

within the 3 regions of isolated pulmonary artery smooth muscle cells. * indicates

statistical difference (P = ≤ 0.05) when compared to the perinuclear region.  indicates

statistical difference (P = ≤ 0.05) when compared to the extra-perinuclear region (n = 8).

Differences were also observed within cells with regard to the mean

volumes of RyR2 labelling. Elements of RyR2 labelling in the perinuclear

region of cells had a mean volume of 0.94 ± 0.23 m3 (n = 8; Fig. 4.13;

Appendix 2, Table 4.16), while the mean volumes of elements of RyR2

labelling in the extra-perinuclear region appeared to be almost double this,

measuring 1.71 ± 0.47 m3 (n = 8; Fig. 4.13; Appendix 2, Table 4.17).

Furthermore, the mean volume of RyR2 labelling in the sub-plasmalemmal

region of cells was considerably smaller than was observed in either the

perinuclear or extra-perinuclear regions. Therefore, the mean volume of RyR2



161

labelling in the sub-plasmalemmal region of cells was 0.4 ± 0.036 m3 (n = 8;

Fig. 4.13; Appendix 2, Table 4.18). Statistical comparison of the mean volume

of RyR2 labelling within the three different regions indicated that there was no

significant difference between the mean volumes in the perinuclear and extra-

perinuclear regions of cells (P > 0.05; Appendix 2, Table 4.20). There was,

Fig. 4.13 Comparison of the mean volume (m3) of RyR2 labelling within the 3 regions of

isolated pulmonary artery smooth muscle cells. * indicates statistical difference (P = ≤

0.05) when compared to the perinuclear region.  indicates statistical difference (P = ≤

0.05) when compared to the extra-perinuclear region (n = 8).

however, a significant decrease in the mean volume of elements of RyR2

labelling within the sub-plasmalemmal region when compared to the

perinuclear and extra-perinuclear regions (P ≤ 0.05; Appendix 2, Table 4.20).

These results, therefore, suggest that larger clusters of RyR2 labelling are

located primarily in the extra-perinuclear and perinuclear regions with

significantly smaller aggregations of RyR2 close to the plasma membrane of

cells.

4.2.3.2.3 Spatial distribution of ryanodine receptor subtype 3 labelling in

pulmonary artery smooth muscle cells

A typical example of the distribution of RyR3 labelling within

pulmonary artery smooth muscle cells is shown in Fig. 4.14. Fig. 4.14(i) shows

a transmitted light image of an isolated pulmonary artery smooth muscle cell,

while Fig. 4.14(ii) shows a deconvolved Z-section (focal depth 0.28 m)
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Fig. 4.14 Visualisation of RyR3 labelling within an isolated pulmonary artery smooth

muscle cell: (i) transmitted light image of an isolated pulmonary artery smooth muscle cell. (ii)

deconvolved Z-section (focal depth 0.28 m) taken through the cell shown in (i) showing the

distribution of RyR3 labelling in red and the nucleus in blue. (iii) 3D reconstruction of a series

of Z-sections (focal depth 0.28 m, Z step 0.2 m) obtained through the cell shown in (i)

fluorescently labelled as in (ii). (iv) 3D representation of the distribution of individual volumes

≥ 0.125 m3 (in purple) ofRyR3 labelling. (v) individual volumes of RyR3 labelling as in (iv)

coloured to indicate the region of the cell in which they are located; i.e. the perinuclear

(orange), extra-perinuclear (pink) and sub-plasmalemmal (light blue).

through the cell, corrected to remove background fluorescence. The

distribution of RyR3 labelling and the position of the nucleus are visualised in

red and blue, respectively. Fig. 4.14(iii) shows a 3D reconstruction of a series

of deconvolved Z-sections (focal depth 0.28 m, Z step 0.2 m) obtained

through the cell. RyR3 labelling showed the least diffuse distribution of all

three RyR subtypes. Fig. 4.14(iv) shows a 3D representation of the positioning

of each individual volume ≥ 0.125 m3, in purple, of RyR3 labelling measured

from the cell. RyR3 labelling occupied a volume of 47.13 ± 5.88 m3 in

pulmonary artery smooth muscle cells (n = 8; Appendix 2, Table 4.21),

equating to a density of labelling within cells of 0.029 ± 0.003 m3 of labelling

per m3 of cell volume (n = 8; Appendix 2, Table 4.21). Fig. 4.14(v) shows a

3D visual representation of the spatial distribution of each individual volume of

labelling within the cell shown in Fig. 4.14(iv) following regionalisation.

Individual volumes of RyR3 labelling located in the perinuclear, extra-

perinuclear and sub-plasmalemmal are visualised in orange, pink and light

blue, respectively. RyR3 labelling occupied a volume of 37.25 ± 5.13 m3 in

the perinuclear region of cells (n = 8; Appendix 2, Table 4.22), equating to a
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density of 0.066 ± 0.001 m3 of labelling per m3 (n = 8; Fig. 4.15; Appendix

2, Table 4.22). In marked contrast, RyR3 labelling was 3-fold lower in the

extra-perinuclear region with a volume of 5.75 ± 2.09 m3 (n = 8; Appendix 2,

Table 4.23), and a density of 0.017 ± 0.005 m3 of labelling per m3 of the

region (n = 8; Fig. 4.15; Appendix 2, Table 4.23), and 6-fold lower within the

sub-plasmalemmal region in which there was a total volume of 3.14 ± 1.58

m3 (n = 8; Appendix 2, Table 4.24) and a density of 0.006 ± 0.002 m3 of

labelling per m3 of the region (n = 8; Fig. 4.15; Appendix 2, Table 4.24).

There was a greater density of RyR3 labelling in the perinuclear region of cells

when compared to both the extra-perinuclear (P = ≤ 0.05; Appendix 2, Table

4.25) and sub-plasmalemmal regions of cells (P = ≤ 0.05; Appendix 2, Table

4.25). Therefore, it is clear from this regionalisation of RyR3 labelling that

there was a much greater density of labelling within the perinuclear region of

cells than was observed in either the extra-perinuclear or sub-plasmalemmal

regions.

Fig. 4.15 Comparison of the density (m3 of labelling per m3 of region) of RyR3 labelling

within the 3 regions of isolated pulmonary artery smooth muscle cells. * indicates

statistical difference (P = ≤ 0.05) when compared to the perinuclear region (n = 8).

As with the labelling of the other RyR subtypes, an examination of the

mean volume of RyR3 was carried out to determine the extent to which RyR3

was clustered in the perinuclear, extra-perinuclear and sub-plasmalemmal

regions. Elements of RyR3 labelling in the perinuclear region of cells had a

mean volume of 2.33 ± 0.45 m3 (n = 8; Fig. 4.16; Appendix 2, Table 4.22),

compared to 0.79 ± 0.2 m3 in the extra-perinuclear (n = 8; Fig. 4.16;
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Appendix 2, Table 4.23) and 0.45 ± 0.12 m3 in the sub-plasmalemmal region

(n = 8; Fig. 4.16; Appendix 2, Table 4.24). Statistical analysis of the mean

volumes of RyR3 labelling indicated that the mean volume of labelling was

significantly larger in the perinuclear region when compared to the extra-

perinuclear (P = ≤ 0.05; Appendix 3, Table 4.26) and the sub-plasmalemmal

region (P = ≤ 0.05; Appendix 2, Table 4.26). Therefore, RyR3 forms large

clusters in the perinuclear region with much smaller clusters out with the

perinuclear region.

Fig. 4.16 Comparison of the mean volume (m3) of RyR3 labelling within the 3 regions of

isolated pulmonary artery smooth muscle cells. * indicates statistical difference (P = ≤

0.05) when compared to the perinuclear region (n = 8).

4.2.3.2.4 Comparison between the spatial distribution of labelling of the

different ryanodine receptor subtypes in pulmonary artery

smooth muscle cells

A direct comparison between the distributions of the three subtypes of

RyR labelling in the perinuclear, extra-perinuclear and sub-plasmalemmal

regions of cells is shown in the bar chart in Fig. 4.17. Comparison of the

density of RyR subtype labelling in the perinuclear region of cells showed that

there was a significantly greater density of RyR3 labelling within this region

than was observed for RyR1 (P = ≤ 0.05; Appendix 2, Table 4.27). There was

also a larger density of RyR3 labelling within the perinuclear region than for

RyR2, but this was not statistically significant (P = > 0.05; Appendix 2, Table
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4.27). These data suggest that RyR3 represents the predominant RyR subtype

within the perinuclear region of cells.

In marked contrast to my findings with respect to the perinuclear region

of cells, comparison of the labelling for the three RyR subtypes within the

extra-perinuclear region indicated that there was a significantly greater density

of RyR2 labelling compared to either RyR1 (P = ≤ 0.05; Appendix 2, Table

4.28) or RyR3 labelling (P = ≤ 0.05; Appendix 2, Table 4.28). Therefore, RyR2

is the predominant subtype of RyR expressed within the extra-perinuclear

region of pulmonary artery smooth muscle cells.

Fig. 4.17 Comparison of the density (m3 of labelling per m3 of region) of RyR subtype

labelling within the 3 regions of isolated pulmonary artery smooth muscle cells. *

indicates statistical difference (P = ≤ 0.05) when compared to the density of RyR3

labelling in the perinuclear region.  indicates statistical difference (P = ≤ 0.05) when

compared to the density of RyR2 labelling in the extra-perinuclear region.  indicates

statistical difference (P = ≤ 0.05) when compared to RyR1 labelling in the sub-

plasmalemmal region (n = 8 for each RyR subtype).

A further variation was observed with respect to the sub-plasmalemmal

region. Here, the densities of labelling for both RyR2 and RyR3 declined

markedly relative to that observed in the perinuclear and extra-perinuclear

regions of cells. By contrast, there was little change in the density of RyR1

labelling between these regions. Furthermore, comparison between the three
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RyR subtypes within the sub-plasmalemmal region of cells indicated that the

density of RyR1 labelling was significantly greater than the labelling of either

RyR2 (P = ≤ 0.05; Appendix 2, Table 4.29) or RyR3 (P = ≤ 0.05; Appendix 2,

Table 4.29). Thus, it would appear that the predominant form of RyR within

the sub-plasmalemmal region of cells is RyR1.

Differences in the clustering of RyR subtypes in the three regions of

pulmonary artery smooth muscle cells is shown in Fig. 4.18, which compares

the mean volumes of individual elements of RyR subtype labelling. Statistical

analysis of the mean volumes of labelling within the perinuclear region of cells

showed that mean volume of RyR3 labelling was significantly larger than those

measured for RyR2 (P = ≤ 0.05; Appendix 2, Table 4.30). The mean volume of

areas of RyR3 labelling was also larger than that for RyR1, with this difference

being on the verge of statistical significance (P = 0.06; Appendix 2, Table

4.30).

Fig. 4.18 Comparison of the mean volume (m3) of individual elements of RyR subtype

labelling within the 3 regions of isolated pulmonary artery smooth muscle cells. *

indicates statistical difference (P = ≤ 0.05) when compared to the density of RyR3

labelling in the perinuclear region (n = 8 for each RyR subtype).

Within the extra-perinuclear region of cells elements of RyR2 labelling

appeared to have a larger mean volume than elements of either RyR1 or RyR3
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labelling. However, these differences were not statistically significant (P >

0.05; Appendix 2, Table 4.31). Furthermore, statistical comparison of the

volumes of labelling for RyR1, RyR2 and RyR3 within the sub-plasmalemmal

regions of cells showed there was no difference between the mean volume of

labelling between RyR subtypes within this region (P > 0.05; Appendix 2,

Table 4.32). Therefore, there is no evidence that any of the RyR subtypes show

larger clusters of receptors compared to the other subtypes in the sub-

plasmalemmal region.

In conclusion, these findings indicate that all 3 RyR subtypes are

present within pulmonary artery smooth muscle, and that labelling of each of

the subtypes was observed in the perinuclear, extra-perinuclear and sub-

plasmalemmal regions. However, volumetric analysis of RyR subtype labelling

identified clear differences in regional distribution of the different RyR

subtypes. Thus, RyR3 was the predominant subtype of RyR in the perinuclear

region, where it formed dense clusters of labelling. Furthermore, RyR3 did not

appear to be widely distributed outside this region of the cell. By contrast,

RyR2 was the predominant subtype of RyR within the extra-perinuclear region,

where it exhibited a higher density and mean volume of labelling than in any

other region. The distribution of RyR1 was different still with a similar density

and mean volume of labelling across all 3 regions. However, RyR1 appeared to

be the predominant subtype of RyR expressed proximal to the plasma

membrane of cells. Following this examination of the distribution of RyR

subtypes, I proceeded to examine the extent to which each of the RyR subtypes

were associated with lysosomes in pulmonary artery smooth muscle cells.

4.2.4 Examination of colocalisation between lysosomes and ryanodine

receptor subtypes in pulmonary artery smooth muscle cells

An examination of the colocalisation between lgp120- and RyR

subtype-labelling was carried out to determine which RyR subtype associates

with lysosomes to form the trigger zone for NAADP-mediated Ca2+ signalling.

Volumetric analysis identified marked differences in the degree to which

RyR1, RyR2 and RyR3 colocalised with lysosomal labelling in isolated
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pulmonary artery smooth muscle cells. These differences are visualised in the

examples of the colocalisation between lysosomal-labelling and RyR1-, RyR2-

and RyR3-labelling are shown in Figs. 4.19, 4.22 and 4.25, respectively.

4.2.4.1 Colocalisation between ryanodine receptor subtype 1- and lysosomal-

labelling in pulmonary artery smooth muscle cells

Fig. 4.19(i) shows a transmitted light image of an isolated pulmonary

artery smooth muscle cell. While 4.191(ii) shows a 3D reconstruction of a

series of deconvolved Z-sections (focal depth 0.28 m, Z step 0.2 m)

obtained through the cell shown in (i), showing the distribution of lgp120-

labelling in green and the DAPI labelled nucleus in blue. Fig. 4.19(iii) shows

Fig. 4.19 Visualisation of the colocalisation between RyR1- and lysosomal-labelling within

an isolated pulmonary artery smooth muscle cell: (i) transmitted light image of an isolated

pulmonary artery smooth muscle cell. (ii) 3D reconstruction of a series of Z-sections (focal

depth 0.28 m, Z step 0.2 m) obtained through the cell shown in (i) fluorescently labelled to

show the distribution of lysosomal labelling and the nucleus in green and blue, respectively.

(iii) 3D reconstruction of a series of Z-sections (focal depth 0.28 m, Z step 0.2 m) obtained

through the cell shown in (i) fluorescently labelled to show the distribution of RyR1 labelling

and the nucleus in red and blue, respectively.(iv) 3D representation of the distribution of

lysosomal- and RyR1-labelling in respect to the nucleus. Areas of colocalisation between

lysosomal- and RyR1-labelling are shown in yellow. (v) individual volumes of colocalisation

between lysosomal- and RyR1-labelling, ≥ 0.125 m3 (in yellow), in the cell shown in (i), in

relation to the nucleus of the cell, shown in blue.

a 3D reconstruction of deconvolved Z-sections (focal depth 0.28 m, Z step 0.2

m), from the same cell, this time showing the distribution of RyR1- labelling

in red, in relation to the DAPI labelled nucleus. The Z-series were then

superimposed upon one another to allow comparison of the spatial distribution
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of lysosomal- and RyR1-labelling. A 3D reconstruction of the superimposed Z-

series is shown in Fig. 4.19(iv). Areas of colocalisation between lysosomal-

and RyR1-labelling are visualised in yellow. An example of an area of

colocalisation between lysosomal- and RyR1-labelling is indicated by the

arrow in Fig. 4.19(iv). Analysis of the colocalisation between lysosomal- and

RyR1-labelling, excluding areas of colocalisation < 0.125 m3, was then

carried out. Fig. 4.19(v) shows a 3D representation of the positioning of each

individual element of colocalisation, in yellow, measured within the cell in

relation to the nucleus, following removal of all RyR1- and lysosomal-labelling

which did not colocalise. Examination of labelled cells showed that there was a

volume of 4.22 ± 1.15 m3 of colocalisation between lysosomal- and RyR1-

labelling (n = 8; Appendix 2, Table 4.33). This equated to a density of 0.003 ±

0.0007 m3 of colocalisation per m3 of the cell volume (n = 8; Appendix 2,

Table 4.33). The distribution of colocalisation between the perinuclear, extra-

perinuclear and sub-plasmalemmal regions was then examined. Colocalisation

between RyR1- and lysosomal-labelling was seen to occupy a volume of 1.91

± 0.54 m3 in the perinuclear region of cells (n = 8; Appendix 2, Table 4.34),

equating to a density of 0.0046 ± 0.0016 m3 of colocalisation per m3 of the

region (n = 8; Fig. 4.20; Appendix 2, Table 4.34). The volume and the density

of colocalisation between RyR1- and lysosomal-labelling were both seen to

decline in the extra-perinuclear region. Thus, colocalisation was seen to occupy

a volume of 0.9 ± 0.36 m3 in the extra-perinuclear region (n = 8, Appendix 2,

Table 4.35), accounting for a density of 0.0018 ± 0.0007 m3 of colocalisation

per m3 of the region (n = 8; Fig. 4.20; Appendix 2, Table 4.35). Both the

volume and the density of colocalisation between RyR1- and lysosomal-

labelling in the sub-plasmalemmal region appeared to be smaller than those

observed in the extra-perinuclear region. Thus, colocalisation was seen to

occupy a volume of 0.58 ± 0.17 m3 in the sub-plasmalemmal region, equating

to a density of 0.0009 ± 0.0003 m3 of colocalisation per m3 of the region (n

= 8; Fig. 4.20; Appendix 2, Table 4.36). Statistical analysis of the regional

distribution of colocalisation between RyR1- and lysosomal-labelling showed

that although the density of labelling appeared to decrease from the perinuclear

region to the extra-perinuclear region of cells, this decrease was not seen to be
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statistically significant (P > 0.05; Appendix 2, Table 4.37). However, the

density of colocalisation between RyR1- and lysosomal-labelling within the

perinuclear region of cells was significantly larger than the density of

colocalisation observed in the sub-plasmalemmal region of cells (P ≤ 0.05;

Appendix 2, Table 4.37).

Fig. 4.20 Comparison of the density (m3 of labelling per m3 of region) of colocalisation

between RyR1- and lysosomal-labelling within the 3 regions of isolated pulmonary artery

smooth muscle cells * indicates statistical difference (P = ≤ 0.05) when compared to the

perinuclear region (n = 8).

The mean volumes of individual elements of colocalisation between

RyR1- and lysosomal-labelling were then examined. As described above, the

larger the mean volumes of colocalisation within a given region is indicative of

a greater degree of clustering of the two fluorescent labels within that region.

Measurements of the mean volumes of colocalisation between RyR1- and

lysosomal-labelling in the perinuclear region indicated that elements of

colocalisation had a mean volume of 0.29 ± 0.04 m3 (n = 8; Fig. 4.21;

Appendix 2, Table 4.34). The mean volumes of elements of colocalisation

between RyR1- and lysosomal-labelling within the extra-perinuclear region

were similar to those measured in the perinuclear region. Thus, the mean

volume of elements of colocalisation in the extra-perinuclear region of cells

was 0.29 ± 0.08 m3 (n = 8; Fig. 4.21; Appendix 2, Table 4.35). The smallest

elements of colocalisation between RyR1- and lysosomal-labelling appeared to

be located in the sub-plasmalemmal region, where the mean volume was
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measured at 0.17 ± 0.04 m3 (n = 8; Fig. 4.21; Appendix 2, Table 4.36).

However, statistical analysis of the mean volumes of colocalisation between

RyR1- and lysosomal-labelling showed that there was no difference between

the perinuclear, extra-perinuclear or sub-plasmalemmal regions (P = > 0.05;

Appendix 2, Table 4.38). Therefore, although there was a greater density of

colocalisation between RyR1- and lysosomal-labelling in the perinuclear than

in the sub-plasmalemmal, there was little difference between the mean volumes

of areas of colocalisation between the perinuclear, extra-perinuclear and sub-

plasmalemmal regions.

Fig. 4.21 Comparison of the mean volume (m3) of colocalisation between RyR1- and

lysosomal-labelling within the 3 regions of isolated pulmonary artery smooth muscle cells.

4.2.4.2 Colocalisation between ryanodine receptor subtype 2- and lysosomal-

labelling in pulmonary artery smooth muscle cells

Fig. 4.22(i) shows a transmitted light image of an isolated pulmonary

artery smooth muscle cell. Fig. 4.22(ii) shows a 3D reconstruction of a series of

deconvolved Z-sections (focal depth 0.28 m, Z step 0.2 m) obtained through

the cell in (i), with the distribution of lgp120-labelling in green and the DAPI

labelled nucleus in blue. Fig. 4.22(iii) shows another 3D reconstruction of

deconvolved Z-sections (focal depth 0.28 m, Z step 0.2 m) which shows the

distribution of RyR2-labelling in the cell in red and the nucleus once again in

blue. Deconvolved Z-sections through the cell were then superimposed upon
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one another and a 3D reconstruction was produced, allowing for comparison of

the distribution of lysosomal- and RyR2-labelling. This 3D reconstruction is

Fig. 4.22 Visualisation of the colocalisation between RyR2- and lysosomal-labelling within

an isolated pulmonary artery smooth muscle cell: (i) transmitted light image of an isolated

pulmonary artery smooth muscle cell. (ii) 3D reconstruction of a series of Z-sections (focal

depth 0.28 m, Z step 0.2 m) obtained through the cell shown in (i) fluorescently labelled to

show the distribution of lysosomal labelling and the nucleus in green and blue, respectively.

(iii) 3D reconstruction of a series of Z-sections (focal depth 0.28 m, Z step 0.2 m) obtained

through the cell shown in (i) fluorescently labelled to show the distribution of RyR2 labelling

and the nucleus in red and blue, respectively.(iv) 3D representation of the distribution of

lysosomal- and RyR2-labelling in respect to the nucleus. Areas of colocalisation between

lysosomal- and RyR2-labelling are shown in yellow. (v) individual volumes of colocalisation

between lysosomal- and RyR2-labelling, ≥ 0.125 m3 (in yellow), in the cell shown in (i), in

relation to the nucleus of the cell, shown in blue.

shown in Fig. 4.22(iv). Areas of colocalisation between lysosomal- and RyR2-

labelling are visualised in yellow. Analysis of the colocalisation between

lysosomal- and RyR2-labelling, excluding areas of colocalisation < 0.125 m3,

was then carried out. Fig. 4.24(v) shows the positioning of each individual

element of colocalisation, in yellow, in a 3D reconstruction measured within

the cell in relation to the nucleus following removal of all RyR2- and

lysosomal-labelling which did not colocalise. Volumetric analysis indicated

there was a volume of 4.94 ± 0.81 m3 of colocalisation between lysosomal-

and RyR2-labelling in cells (n = 8; Appendix 2, Table 4.39), equating to a

density of 0.0038 ± 0.0012 m3 of colocalisation per m3 of the cell volume (n

= 8; Appendix 2, Table 4.39). Following this, the regional distribution of

colocalisation within cells was examined. Colocalisation between RyR2- and

lysosomal-labelling occupied a volume of 2.16 ± 0.43 m3 in the perinuclear
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region of cells (n = 8; Appendix 2, Table 4.40). This equated to a density of

0.0053 ± 0.0016 m3 of colocalisation per m3 of the region (n = 8; Fig. 4.23;

Appendix 2, Table 4.40). Although the volume of colocalisation between

RyR2- and lysosomal-labelling appeared to be comparable between the

perinuclear and extra-perinuclear regions, there appeared to be an increase in

the density of colocalisation within the region. Thus, while colocalisation

occupied a volume of 2.33 ± 0.79 m3 in the extra-perinuclear region (n = 8,

Appendix 2, Table 4.41), this accounted for a density of 0.0071 ± 0.0031 m3

of colocalisation per m3 of the region (n = 8; Fig. 4.23; Appendix 2, Table

4.41). There was, however, a marked decline in both the volume and density of

colocalisation observed between RyR2- and lysosomal-labelling in the sub-

plasmalemmal region, where colocalisation accounted for a volume of 0.42 ±

0.18 m3, and a density of 0.0007 ± 0.0002 m3 of colocalisation per m3 of

the region (n = 8; Fig. 4.23; Appendix 2, Table 4.42). Statistical analysis

indicated that although there appeared to be an increase in the density of

colocalisation between RyR2- and lysosomal-labelling from the perinuclear to

the extra-perinuclear region. However, this increase was not statistically

significant (P = > 0.05; Appendix 2, Table 4.43), this was most likely due to

the large degree of variation between the extent of colocalisation between

RyR2- and lysosomal-labelling within this region (Appendix 2, Table 4.41).

Fig. 4.23 Comparison of the density (m3 of labelling per m3 of region) of colocalisation

between RyR2- and lysosomal-labelling within the 3 regions of isolated pulmonary artery

smooth muscle cells. * indicates statistical difference (P = ≤ 0.05) when compared to the

perinuclear region. indicates statistical difference (P = ≤ 0.05) when compared to the

extra-perinuclear region (n = 8).
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However, the density of labelling within the sub-plasmalemmal region of cells

was significantly lower than that measured in either the perinuclear (P = ≤

0.05; Appendix 2, Table 4.43) or the extra-perinuclear region (P = ≤ 0.05;

Appendix 2, Table 4.43). Therefore, RyR2- and lysosomal-labelling

colocalised to a greater extent within the perinuclear and extra-perinuclear

region of pulmonary artery smooth muscle cells.

To examine the degree to which RyR2- and lysosomal-labelling formed

clusters of colocalisation, the mean volume of colocalisation was determined.

In the perinuclear region, elements of colocalisation had a mean volume of

0.39 ± 0.07 m3 (n = 8; Fig. 4.24; Appendix 2, Table 4.40). There was little

difference between the mean volume of elements of colocalisation of RyR2-

and lysosomal-labelling between the extra-perinuclear region and perinuclear

region. Thus, the mean volume of elements of colocalisation in the extra-

perinuclear region of cells was 0.47 ± 0.2 m3 (n = 8; Fig. 4.24; Appendix 2,

Table 4.41). However, the mean volume of elements of colocalisation

decreased markedly in the sub-plasmalemmal region of cells, where the mean

volume of colocalisation was 0.18 ± 0.05 m3 (n = 8; Fig. 4.24; Appendix 2,

Table 4.42). Statistical analysis of the mean volumes of colocalisation between

Fig. 4.24 Comparison of the mean volume (m3) of colocalisation between RyR2- and

lysosomal-labelling within the 3 regions of isolated pulmonary artery smooth muscle cells.

* indicates statistical difference (P = ≤ 0.05) when compared to the perinuclear region (n

= 8).
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RyR2- and lysosomal-labelling showed that, in a similar manner to the density

of colocalisation, there was no difference between the mean volume of

colocalisation in the perinuclear and extra-perinuclear regions (P = > 0.05;

Appendix 2, Table 4.44). However, although the mean volume of

colocalisation in the extra-perinuclear region of cells appeared greater than that

measured in the sub-plasmalemmal region, the difference between these values

was not significant (P = > 0.05; Appendix 2, Table 4.44). Therefore, RyR2-

and lysosomal-labelling formed larger clusters of labelling in the perinuclear

region of cells than in the sub-plasmalemmal region.

4.2.4.3 Colocalisation between ryanodine receptor subtype 3- and lysosomal-

labelling in pulmonary artery smooth muscle cells

Fig. 4.25(i) shows a transmitted light image of an isolated pulmonary

artery smooth muscle cell. Fig. 4.25(ii) shows a 3D reconstruction of a series of

deconvolved Z-sections (focal depth 0.28 m, Z step 0.2 m) obtained through

the cell, with the distribution of lgp120-labelling in green and the DAPI

labelled nucleus in blue. A second 3D reconstruction of a deconvolved Z-series

obtained through this cell is shown in Fig. 4.25(iii), where the distribution of

RyR3-labelling in the cell is visualised in red, while the nucleus is, visualised

in blue. Deconvolved Z-sections through the cell were then superimposed upon

one another and a 3D reconstruction was produced to enable comparison

between the distributions of lysosomal- and RyR3-labelling, as represented in

Fig. 4.25(iv). Areas of colocalisation are visualised in Yellow. Fig. 4.25(v)

indicates the position of each individual element of colocalisation measured

from the cell, in yellow, in a 3D reconstruction measured within the cell in

relation to the nucleus following removal of all non-colocalised lysosomal- and

RyR3-labelling. This analysis indicated a volume of 8.21 ± 1.44 m3 of

colocalisation between lysosomal- and RyR3-labelling in cells (n = 8;

Appendix 2, Table 4.45), equating to a density of 0.005 ± 0.0008 m3 of

colocalisation per m3 of the cell volume (n = 8; Appendix 2, Table 4.45). The

regional distribution of areas of colocalisation between lysosomal- and RyR3-
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Fig. 4.25 Visualisation of the colocalisation between RyR3- and lysosomal-labelling within

an isolated pulmonary artery smooth muscle cell: (i) transmitted light image of an isolated

pulmonary artery smooth muscle cell. (ii) 3D reconstruction of a series of Z-sections (focal

depth 0.28 m, Z step 0.2 m) obtained through the cell shown in (i) fluorescently labelled to

show the distribution of lysosomal labelling and the nucleus in green and blue, respectively.

(iii) 3D reconstruction of a series of Z-sections (focal depth 0.28 m, Z step 0.2 m) obtained

through the cell shown in (i) fluorescently labelled to show the distribution of RyR3 labelling

and the nucleus in red and blue, respectively.(iv) 3D representation of the distribution of

lysosomal- and RyR3-labelling in respect to the nucleus. Areas of colocalisation between

lysosomal- and RyR3-labelling are shown in yellow. (v) individual volumes of colocalisation

between lysosomal- and RyR3-labelling, ≥ 0.125 m3 (in yellow), in the cell shown in (i), in

relation to the nucleus of the cell, shown in blue.

labelling within cells was then examined. Colocalisation between RyR3- and

lysosomal-labelling occupied a volume of 6.85 ± 1.23 m3 in the perinuclear

region (n = 8; Appendix 2, Table 4.46). This equated to a density of 0.011 ±

0.0015 m3 of colocalisation per m3 of the region (n = 8; Fig. 4.26; Appendix

2, Table 4.46). There was a sharp decrease in the incidence of colocalisation

between lysosomal- and RyR3-labelling in the extra-perinuclear region where

both the volume and density of colocalisation were more than 3-fold lower than

those measured in the perinuclear region. Indeed, within the extra-perinuclear

region, colocalisation occupied a volume of 1.19 ± 0.56 m3 (n = 8, Appendix

2, Table 4.47), accounting for a density of 0.0033 ± 0.0016 m3 of

colocalisation per m3 of the region (n = 8; Fig. 4.26; Appendix 2, Table 4.47).

There appeared to be a further decline in both the volume and density of

colocalisation in the sub-plasmalemmal region of cells, where colocalisation

was measured at a volume of 0.099 ± 0.078 m3, and a density of 0.0002 ±

0.0002 m3 of colocalisation per m3 of the region (n = 8; Fig. 4.26; Appendix

2, Table 4.48). Statistical analysis confirmed that there was a much greater
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density of colocalisation between RyR3- and lysosomal-labelling in the

perinuclear region of cells than was observed in either the extra-perinuclear (P

= ≤ 0.05; Appendix 2, Table 4.49) or the sub-plasmalemmal regions (P = ≤

0.05; Appendix 2, Table 4.49).

Fig. 4.26 Comparison of the density (m3 of labelling per m3 of region) of colocalisation

between RyR3- and lysosomal-labelling within the 3 regions of isolated pulmonary artery

smooth muscle cells. * indicates statistical difference (P = ≤ 0.05) when compared to the

perinuclear region (n = 8).

Examination of the mean volume of colocalisation between RyR3- and

lysosomal-labelling, indicative of the size of clusters of colocalisation, was

then carried out. Measurements of the mean volumes of colocalisation between

RyR3- and lysosomal-labelling in the perinuclear region indicated that

elements of colocalisation had a mean volume of 0.68 ± 0.11 m3 (n = 8; Fig.

4.27; Appendix 2, Table 4.46). There appeared to be a decline in the mean

volume of areas of colocalisation in the extra-perinuclear region, where the

mean volume of colocalisation was 0.4 ± 0.1 m3 (n = 8; Fig. 4.27; Appendix

2, Table 4.47). Furthermore, there was a greater than 10-fold decrease in the

mean volume of colocalisation in the sub-plasmalemmal region of cells, where

the mean volume of colocalisation was 0.034 ± 0.02 m3 (n = 8; Fig. 4.27;

Appendix 2, Table 4.48). Statistical analysis of the mean volume of

colocalisation between RyR3- and lysosomal-labelling showed that although

there appeared to be a decrease in mean volume of colocalisation between the

perinuclear and extra-perinuclear region of cells, this difference was not

statistical significant (P = > 0.05; Appendix 2, Table 4.50). However, the mean



178

volume of colocalisation between RyR3- and lysosomal-labelling in the sub-

plasmalemmal region was significantly smaller than in either the perinuclear

region (P = ≤ 0.05; Appendix 2, Table 4.50) or the extra-perinuclear regions (P

= ≤0.05; Appendix 2, Table 4.50). These findings suggest that, not only did

colocalisation between RyR3- and lysosomal-labelling predominate in the

perinuclear region of cells, but areas of colocalisation were much larger in this

region of cells than were observed in the extra-perinuclear or sub-

plasmalemmal regions.

Fig. 4.27 Comparison of the mean volume (m3) of colocalisation between RyR3- and

lysosomal-labelling within the 3 regions of isolated pulmonary artery smooth muscle cells.

* indicates statistical difference (P = ≤ 0.05) when compared to the perinuclear region.

indicates statistical difference (P = ≤ 0.05) when compared to the extra-perinuclear region

(n = 8).

4.2.4.4 Comparison of the spatial distribution of colocalisation between

lysosomal- and ryanodine receptor subtype-labelling in pulmonary

artery smooth muscle cells

A direct comparison of the distribution of areas of colocalisation

between the three subtypes of RyR- and lysosomal-labelling in the perinuclear,

extra-perinuclear and sub-plasmalemmal regions of cells is shown in the bar

chart in Fig. 4.28. The density of colocalisation between the different RyR

subtypes and lysosomes in the perinuclear region of cells indicated that there

was a considerably greater density of colocalisation observed between RyR3-
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and lysosomal-labelling than was observed for either RyR2- and lysosomal-

labelling (P = ≤ 0.05, Appendix 2, Table 4.51) or RyR1- and lysosomal-

labelling (P = ≤ 0.05, Appendix 2, Table 4.51). Therefore, lysosomes

colocalise with RyR3 to a greater extent than with either RyR2 or RyR1 in the

perinuclear region of cells.

There was a marked decline in the colocalisation between RyR3- and

lysosomal-labelling in the extra-perinuclear region, where the density of

colocalisation was not seen to differ from the density of colocalisation between

lysosomal labelling and labelling of either RyR2 or RyR1 (P > 0.05; Appendix

2, Table 4.52). Furthermore, there was no statistical difference between the

density of colocalisation between lysosomal labelling and labelling for either

Fig. 4.28 Comparison of the density (m3 of colocalisation per m3 of region) of

colocalisation between RyR subtype- and lysosomal-labelling within the 3 regions of

isolated pulmonary artery smooth muscle cells. * indicates statistical difference (P = ≤

0.05) when compared to the density of colocalisation between RyR3- and lysosomal-

labelling in the perinuclear region (n = 8 for each RyR subtype).

RyR1 or RyR2 within this region (P > 0.0.5; Appendix 2, Table 4.52). Thus,

lysosomes associate with all 3 RyR subtypes to a similar degree within the

extra-perinuclear region of cells. Furthermore, there was little variation

between the densities of colocalisation measured between lysosomal labelling
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and labelling of RyR1, RyR2 or RyR3 in the sub-plasmalemmal region (P >

0.05; Appendix 2, Table 4.53).

Differences among the mean volume of areas of colocalisation between

lysosomal labelling, and the labelling of the 3 RyR subtypes in the 3 defined

regions of the cell is shown in Fig. 4.29. The mean volume of colocalisation

between RyR3- and lysosomal-labelling in the perinuclear region of cells

appeared to be greater than the mean volume of colocalisation between

lysosomal labelling and labelling of either RyR2 or RyR1. Indeed, statistical

analysis of the mean volume of colocalisation RyR3- and lysosomal-labelling

was significantly larger than that of colocalisation between RyR1- and

lysosomal-labelling (P = ≤ 0.05; Appendix 2, Table 4.54). Although the mean

volume of colocalisation between RyR3- and lysosomal-labelling in the

perinuclear region of cells appeared to be larger than the mean volume of

colocalisation between RyR2- and lysosomal-labelling in this region, this

difference did not appear to be statistically significant (P = > 0.05; Appendix 2,

Table 4.54).

Examination of the mean volumes of colocalisation between RyR1-,

RyR2-, RyR3- and lysosomal-labelling in the extra-perinuclear region of cells

indicated that there was no statistical difference between the mean volume of

colocalisation within this region (P > 0.05; Appendix 2, Table 4.55).

Furthermore, in the sub-plasmalemmal region of cells there was no

difference between the mean volume of areas of colocalisation between RyR1-

and lysosomal-labelling and the mean volume of areas of colocalisation

between RyR2- and lysosomal-labelling (P > 0.05; Appendix 2, Table 4.56).

However, the mean volume of colocalisation between RyR3- and lysosomal-

labelling was significantly smaller than the mean volume of colocalisation

between either RyR2- and lysosomal-labelling or RyR1- and lysosomal-

labelling in the sub-plasmalemmal region of cells (P = < 0.05; Appendix 2,

Table 4.56). Thus, it would appear that areas of colocalisation between RyR3-

and lysosomal-labelling are marginally smaller than those areas of

colocalisation between RyR2- and lysosomal-labelling or RyR1- and

lysosomal-labelling.



181

Fig. 4.29 Comparison of the mean volume (m3) of individual elements of colocalisation

between RyR subtype- and lysosomal-labelling within the 3 regions of isolated pulmonary

artery smooth muscle cells. * indicates statistical difference (P = ≤ 0.05) when compared

to the density of RyR3- and lysosomal-labelling in the perinuclear region.  indicates

statistical difference (P = ≤ 0.05) when compared to RyR1- and lysosomal-labelling and

RyR2- and lysosomal-labelling in the sub-plasmalemmal region (n = 8 for each RyR

subtype).

In conclusion, these findings indicate that labelling for all 3 RyR

subtypes colocalise with labelling of the lysosomal membrane glycoprotein

lgp120, and therefore lysosomes, to some extent in pulmonary artery smooth

muscle. It was also clear from these data that colocalisation was evident within

the perinuclear, extra-perinuclear and sub-plasmalemmal regions. However,

volumetric analysis of the colocalisation between RyR subtypes and lysosomes

clearly demonstrated that lysosomes colocalised with portions of the SR

expressing RyR3 to a much greater extent than portions of the SR expressing

either RyR1, or RyR2. Also, the mean volume of individual elements of

colocalisation between RyR3 and lysosomes was larger than those observed

between lysosomes and RyR1, or RyR2. Furthermore, out with the perinuclear

region, both the density and mean volume of elements of colocalisation

between lysosomes and the three RyR subtypes were lower than was measured

between lysosomes and RyR3 within the perinuclear region of cells. These data
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would, therefore, suggest that the trigger zone for Ca2+ signalling by NAADP

may be formed between lysosomal clusters closely associated with sections of

the SR expressing dense clusters of RyR3.

If this proposed model of a trigger zone for Ca2+ signalling by NAADP

is indeed accurate, then the close association between RyRs and lysosomes will

be important in the initiation of global Ca2+ signals. However, any measure of

colocalisation between the fluorescent labelling of RyR subtypes and lgp120

must ultimately be an underestimate of the true extent of colocalisation

between areas of lysosomal membrane containing the NAADP receptor and

areas of the SR containing RyRs. This must be the case, given that the

fluorescent labelling of lgp120 is merely an indicator of the spatial

distribution of a single membrane glycoprotein that is likely to be unrelated to

the NAADP receptor and will occupy only a fraction of the area of the

lysosomal membrane. Thus, I examined the degree to which lysosomes were

associated with areas of RyR subtype labelling. As free Ca2+ ions have been

estimated to diffuse for maximum distance of less than 5 m in the cytoplasm

of cells (Allbritton et al., 1992), I examined only elements of fluorescent

labelling located within the immediate vicinity of the area of colocalisation, in

an attempt to identify if there was any structural element underpinning the

trigger zone. In order to achieve this I measured the volume of fluorescent

labelling of a given RyR subtype and labelling of lysosomes located within ~1

m, in the X-, Y- and Z-planes, of large areas of colocalisation (> 0.5 m3).

4.2.4.5 Volume of labelling associated with colocalisation between ryanodine

receptor subtypes and lysosomes

In order to examine the degree to which lysosomes associate with the 3

different RyR subtypes, Volocity software (Improvision, UK) was used to

identify all regions of colocalisation ≥ 0.5 m3 in the perinuclear region of

each cell. Once an area of colocalisation had been identified (Fig. 4.30A), its

dimensions were measured in the X-, Y- and Z- planes (Fig. 4.30B). These
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Fig. 4.30 Volumetric analysis of fluorescent labelling associated with large areas of

colocalisation: A: An area of colocalisation (Yellow) between RyR-labelling (Red) and

lgp120-labelling (Green) ≥ 0.5 m3 was identified in the perinuclear region of cells. B:

following identification, the dimensions of the area of colocalisation were identified in the X-,

Y- and Z- planes. C: These measurements were used to construct a region of interest (ROI)

around the area of colocalisation with dimensions ~2.4 m3 longer in the X-, Y- and Z- planes

than the area of colocalisation. D: Following construction of the ROI, the volume of all the

fluorescent labelling closely associated with the ROI and, therefore, the area of colocalisation

were measured.

measurements were used to create an ROI around the area of colocalisation

with X-, Y- and Z- dimensions that were ~2.4 m longer in each of the planes

than was measured for the area of colocalisation (Fig. 4.30C). Volume

measurements were then obtained of all RyR- or lgp120-labelling which

encroached within the area of the ROI, thus giving a measure of the fluorescent

labelling ‘associated’ with colocalisation (Fig. 4.30D, Appendix 2, Tables 4.57,

4.58 and 4.59).

An example of the determination of fluorescent labelling associated

with an area of colocalisation ≥ 0.5 m3 is shown in Fig. 4.31. Fig. 4.31A

shows a 3D reconstruction of an isolated pulmonary artery smooth muscle cell

labelled to show the spatial distribution of lgp120-labelling (Green), RyR3-
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Fig. 4.31 Representation of the analysis carried out to determine fluorescent labelling
closely associated with RyR- and lysosomal-labelling in pulmonary artery smooth muscle
cells: A 3-dimensional reconstruction of an isolated pulmonary artery smooth muscle cell
fluorescently labelled to show the distribution of ryanodine receptor subtype 3 (RyR3), red; the
distribution of lgp120, in green and the nucleus of the cell, in blue. Colocalisation between
RyR3 and lgp120 is shown in yellow. A(i) shows the cell in the X – Z plane as looking down
the Y-plane. A(ii) shows the cell in the Z – Y plane as looking down the X-plane. A(iii) shows
the cell in the X – Y plane as looking down the Z-plane. B shows the same isolated pulmonary
artery smooth muscle cell. The nucleus is indicated as in A. RyR3 and lgp120 that was not
colocalised within the cell has been removed leaving only areas of colocalisation ≥ 0.5 m3

within the perinuclear region of the cell. These areas are indicated in different colours to easily
identify spatially distinct areas of colocalisation within the cell. The box units in B are 2.2 x 2.2
m. B(i), (ii) and (iii) show the cell looking down the Y-, X- and Z-planes, respectively. C
shows the cell in the same planes as A. RyR3- and lgp120-labelling is shown uncorrected for
background fluorescence. An area of colocalisation ≥ 0.5 m3 measured in the perinuclear
region of the cell is shown as the solid area of yellow, indicated by the arrows in (i), (ii) and
(iii). Line Z in (i) indicates the distance measured in the Z-plane of the colocalised area for use
in constructing a region of interest (ROI) in order to determine the closely associated areas of
fluorescent labelling. Line Y in (ii) shows the distance measured for the area of colocalisation
in the Y-plane used for ROI measurements. Line X in (iii) show the distance measured for the
area of colocalisation in the X-Plane used for ROI measurements. D shows the same images of
the cell as C following the construction of an ROI (orange) around the area of colocalisation
indicated in C. D(i), (ii) and (iii) show the cell looking down the Y-, X- and Z-planes,
respectively. E Shows a 3D reconstruction of the isolated pulmonary artery smooth muscle
cell. The nucleus of the cell is indicated in blue. All RyR3- and lgp120-labelling has been
removed to leave the area of perinuclear colocalisation as indicated in Fig. 4.33B, shown in
yellow. E(i) shows the cell in the X – Z plane as looking down the Y-plane. E(ii) shows the
cell in the Z – Y plane as looking down the X-plane. E(iii) shows the cell in the X – Y plane as
looking down the Z-plane. F shows the same isolated pulmonary artery smooth muscle cell.
The nucleus of the cell is indicated as in A. The volumes of RyR3- and lgp120-labelling
closely associated with the area of colocalisation shown in E are shown in red and green,
respectively. F(i), (ii) and (iii) show the cell looking down the Y-, X- and Z-planes,
respectively.
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labelling (Red) and DAPI-labelling of the nucleus (Blue). Areas of

colocalisation between RyR3- and lgp120-labelling are shown in yellow.

Each panel in Fig.4.31 shows three views of the cell; (i) a view of the cell

looking along the Y-plane, therefore the X- and Z-planes are visible; (ii) a view

looking along the X-plane, thus, the Y- and Z-planes are visible; (iii) a view

looking along the Z-plane, in this image the X- and Y-planes are visible. Fig.

4.31B shows a visual representation of each of the areas of colocalisation

between RyR3- and lgp120- labelling ≥ 0.5 m3 in volume located within the

perinuclear region of the cell. Each of these individual volumes of

colocalisation is visualised in different colours to allow easy identification. Fig.

4.31B – F show the determination of the fluorescent labelling associated with

the area of colocalisation indicated by the arrows in Fig. 4.31B(i, ii and iii).

Fig. 4.31C shows this area of colocalisation in relation to the RyR3-, lgp120-

and DAPI-labelling in sections taken through the Y- (i), X- (ii) and Z-planes

(iii), respectively, at the mid-point through the area of colocalisation. These

images are uncorrected for background fluorescence. Fig. 4.31C (i, ii and iii)

shows the dimensions of the area of colocalisation in the X-, Y- and Z-planes

used to construct the ROI to measure fluorescent labelling associated with

colocalisation, as indicated by white lines. Fig. 4.31D shows the ROI

constructed to measure the volumes of fluorescent labelling associated with

this area of colocalisation, while Fig. 4.31E shows the same area of perinuclear

colocalisation between RyR3- and lgp120-labelling, in relation to the nucleus

following removal of all other fluorescent labelling. Following measurement,

the labelling of RyR3 (red) and lgp120 (green) associated with this area of

colocalisation are shown in Fig. 4.31F.

All 8 cells labelled to show the distribution of RyR3- and lgp120-

labelling displayed areas of colocalisation ≥ 0.5 m3 within the perinuclear

region, with 4.63 ± 1.07 areas per cell (Fig. 4.32; Appendix 2, Table 4.60).

Conversely, only 4 of 8 cells with RyR1- and lgp120-labelling displayed

areas of colocalisation in the perinuclear region of cells with 0.75 ± 0.5 areas

per cell (Fig. 4.32; Appendix 2, Table 4.60) and 6 of 8 cells with RyR2- and

lgp120-labelling displaying areas of colocalisation ≥ 0.5 m3 in this region,
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averaging 1.25 ± 0.37 areas per cell (Fig. 4.32; Appendix 2, Table 4.60).

Therefore, cells labelled to show the distribution of RyR3- and lgp120-

labelling displayed significantly more areas of colocalisation ≥ 0.5 m3 in the

perinuclear region of cells than did in cells labelled to show the distribution of

RyR1- and lgp120-labelling (P = ≤ 0.05; Appendix 2, Table 4.61) or cells

labelled to show the distribution of RyR2- and lgp120-labelling (P = ≤ 0.05;

Appendix 2, Table 4.61).

Fig. 4.32 Comparison of the number of areas of colocalisation ≥ 0.5 m3 in the

perinuclear region of cells. * indicates statistical difference (P = ≤ 0.05) when compared to

the number of areas of colocalisation ≥ 0.5 m3 between RyR3- and lysosomal-labelling in

the perinuclear region (n = 8 for each RyR subtype- and lysosomal-labelling).

Although there was a marked difference between the number of areas

of colocalisation ≥ 0.5 m3 between the different RyR subtypes and lysosomal

labelling, there was little difference between the total volumes of fluorescent

labelling associated with these areas of colocalisation. Thus, volumetric

examination of cells showed that there was 21.64 ± 7.99 m3 of fluorescent

labelling associated with areas of colocalisation between RyR1- and lgp120-

labelling ≥ 0.5 m3 (Appendix 2, Table 4.57), while there was 21.28 ± 1.17

m3 of labelling associated with areas of RyR2- and lgp120-labelling ≥ 0.5

m3 (Appendix 2, Table 4.58), and 24.08 ± 1.78 m3 of labelling associated

with areas of colocalisation between RyR3- and lgp120-labelling ≥ 0.5 m3

(Appendix 2, Table 4.59). Indeed, statistical analysis confirmed that the
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differences between the total volumes of fluorescent labelling associated with

areas of colocalisation were not significant (P > 0.05; Appendix 2, Table 4.62).

However, an examination of the total fluorescent labelling associated

with areas of colocalisation ≥ 0.5 m3 may mask differences in the extent of

RyR subtype and lysosomal clustering around areas of colocalisation. I

therefore proceeded to examine the association of fluorescent labelling of each

of the 3 different RyR subtypes with areas of colocalisation ≥ 0.5 m3.

Furthermore, I also examined the extent to which lysosomes associated with

large areas of colocalisation between lysosomal-labelling and labelling of each

of the 3 RyR subtypes.

Examination of the RyR1 labelled cells indicated that there was 17.87 ±

7.84 m3 of RyR1 labelling associated with areas of colocalisation between

RyR1- and lysosomal-labelling (Appendix 2, Table 4.57). In RyR2 labelled

cells there appeared to be less of an association of RyR2 labelling with areas of

colocalisation between RyR2- and lysosomal-labelling. In these cells the

volume of RyR2 labelling associated with areas of colocalisation was 12.47 ±

1.39 m3 (Appendix 2, Table 4.58). Similar to observations in RyR2 labelled

cells, in cells labelled to show the distribution of RyR3 and lysosomes, a

volume of 13.38 ± 1.18 m3 of RyR3 labelling was associated with areas of

colocalisation between RyR3- and lysosomal-labelling (Appendix 2, Table

4.59). Although the volume of RyR2- and RyR3-labelling associated with areas

of colocalisation between the respective RyR subtypes and lysosomal labelling

appeared to be slightly less than the volume detected in RyR1 labelled cells,

these differences in volume were not seen to have any statistical significance (P

> 0.05; Appendix 2, Table 4.63).

There were, however, marked differences in the extent to which

lysosomes were associated with areas of colocalisation between labelling of the

3 different RyR subtypes and lysosomes. In cells labelled to show the

distribution of RyR3 and lysosomes, it was noted that 11.41 ± 1.29 m3 of

lysosomal labelling was associated with areas of colocalisation between RyR3-

and lysosomal-labelling ≥ 0.5 m3 in volume (Fig. 4.33; Appendix 2, Table

4.59). Interestingly, there was a smaller volume of lysosomal labelling

associated with areas of colocalisation between RyR2- and lysosomal-labelling
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than was observed in RyR3 labelled cells. Thus, 8.81 ± 1.28 m3 of lysosomal

labelling was associated with areas of RyR2 and lysosomal colocalisation (Fig.

4.33; Appendix 2, Table 4.58). There was a further decrease in the volume of

lysosomal labelling associated with areas of colocalisation between RyR1- and

lysosomal-labelling ≥ 0.5 m3 in volume, measuring only 3.78 ± 1.04 m3 (Fig

4.33; Appendix 2, Table 4.57). Statistical analysis of the volume of associated

lysosomal labelling with areas of colocalisation between a given RyR subtype-

and lysosomal-labelling confirmed that there was a significantly smaller

Fig. 4.33 Comparison of the volume of lysosomal labelling associated with areas of

colocalisation ≥ 0.5 m3 formed between RyR subtype- and lysosomal-labelling in the

perinuclear region of pulmonary artery smooth muscle cells. * indicates statistical

difference (P = ≤ 0.05) when compared to RyR3 labelled cells. indicates statistical

difference (P = ≤ 0.05) when compared to RyR2 labelled cells.

volume of lysosomal labelling located close to areas of colocalisation ≥ 0.5

m3 between RyR1- and lysosomal-labelling than was observed in the

cytoplasm immediately surrounding areas of colocalisation ≥ 0.5m3 between

either RyR2- and lysosomal-labelling (P = ≤ 0.05; Appendix 2, Table 4.64), or

RyR3- and lysosomal-labelling (P = ≤ 0.05; Appendix 2, Table 4.64).

However, although there appeared to be a greater volume of lysosomal

labelling associated with areas of colocalisation between RyR3 and lysosomes

than was observed between RyR2 and lysosomes, this difference was not

statistically significant (P = > 0.05; Appendix 2, Table 4.64).
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A further difference in the distribution of lysosomes was observed

following examination of the mean volume of distinct elements of lysosomal

labelling located in the space surrounding areas of colocalisation ≥ 0.5 m3

formed between RyR subtype- and lysosomal-labelling. The mean volume of

elements of lysosomal labelling located close to large areas of colocalisation

between RyR3- and lysosomal-labelling measured 3.8 ± 0.41 m3 (Fig. 4.34;

Appendix 2, Table 4.59). This was larger than the mean volume of elements of

lysosomal labelling located close to areas of RyR2- and lysosomal-

colocalisation, measured at 1.65 ± 0.18 m3 (Fig. 4.34; Appendix 2, Table

4.58), or the mean volume of lysosomal labelling close to areas of

colocalisation between RyR1- and lysosomal-labelling where the mean volume

measured 1.31 ± 0.29 m3 (Fig. 4.34; Appendix 2, Table 4.57). Indeed,

statistical analysis of the mean volume of lysosomal labelling associated with

Fig. 4.34 Comparison of the mean volume of lysosomal labelling associated with areas of

colocalisation ≥ 0.5 m3 formed between RyR subtype- and lysosomal-labelling in the

perinuclear region of pulmonary artery smooth muscle cells. * indicates statistical

difference (P = ≤ 0.05) when compared to RyR3 labelled cells.

areas of colocalisation between RyR subtype- and lysosomal-labelling

confirmed that the mean volume of elements of lysosomal labelling, indicative

of lysosomal clustering, were observed close to areas of colocalisation ≥ 0.5

m3 formed between RyR3- and lysosomal-labelling than was observed

surrounding areas of colocalisation formed by either RyR2- and lysosomal
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labelling (P = ≤ 0.05; Appendix 2, Table 4.65), or RyR1- and lysosomal-

labelling (P = ≤ 0.05; Appendix 2, Table 4.65).

Theses data indicate that there was very little difference between the

total volume of RyR subtype labelling located within ~1 m of areas of

colocalisation ≥ 0.5 m3 formed between the 3 different RyR subtypes and

lysosomes. However, a far greater number of discrete elements of

colocalisation with a volume ≥ 0.5 m3 were observed between RyR3- and

lysosomal labelling than were observed between either RyR2- and lysosomal-

labelling, or RyR1- and lysosomal-labelling. Furthermore, there was a greater

volume of lysosomal labelling associated with areas of colocalisation between

RyR3 than RyR1, with the mean volume of lysosomal labelling associated with

areas of colocalisation being at least twice as large as that associated with

RyR1 or RyR2. Therefore, these findings provide evidence that clustering of

lysosomes occurs to a greater extent with portions of the SR expressing RyR3,

than portions of the SR expressing either RyR2 or RyR1.

Taken together with the findings presented above that RyR3 colocalised

to a significantly greater extent with lysosomes than either RyR2 or RyR1, it

would appear that the trigger zone for Ca2+ signalling by NAADP is likely

formed between portions of the SR expressing a high density of RyR3 and

clusters of lysosomes in close proximity to the nucleus of pulmonary artery

smooth muscle cells.
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4.3 Discussion

In chapter 3 I showed that NAADP elicits spatially restricted Ca2+

bursts from lysosome-related Ca2+ stores which initiate global Ca2+ signals, in

an all-or-none manner by CICR from the SR via RyRs, but not via IP3Rs. The

aim of this chapter, therefore, was to examine the spatial organisation of

lysosomes and RyRs in pulmonary artery smooth muscle cells in order to

determine whether or not lysosomes colocalise with RyRs located on the SR in

order to facilitate this process.

4.3.1 Close association between lysosomes and ryanodine receptors in

artery smooth muscle, a trigger zone for NAADP-mediated Ca2+

signalling?

Examination of the spatial distribution of lysosomes, labelled with

LysoTracker Red, and RyRs located on the surface of the SR, labelled with

BODIPY-FL ryanodine, was carried out in freshly isolated pulmonary artery

smooth muscle cells. Lysosomes, were seen to form spatially segregated

clusters throughout the cytoplasm of cells, while RyRs were located throughout

the cytoplasm of cells, forming ribbons of labelling within a number of areas,

consistent with the distribution of the SR previously observed in pulmonary

artery smooth muscle (Devine et al., 1972). Importantly, lysosomal clusters

were seen to be closely associated with a subpopulation of RyRs and appeared

to be separated from these RyRs by a narrow junction or cleft less than 0.4 m

in size. Indeed in the vast majority of cases the distance between lysosomes

and BODIPY-labelled RyRs was too small to be accurately resolved using the

imaging techniques employed in this study. Thus, the data presented here

suggest that lysosomal clusters and RyRs form a highly organised ‘trigger

zone’ in arterial smooth muscle in which spatially restricted Ca2+ bursts,

induced by NAADP, may raise the cytoplasmic Ca2+ concentration in the

immediate vicinity of a subpopulation of RyRs on the SR. Thereby, NAADP-

dependent Ca2+ bursts may breach, in an all-or-none manner, the threshold for
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initiation of a propagating, global Ca2+ signal that is carried by CICR via RyRs

alone (Boittin et al., 2002).

The existence of the narrow junction between RyRs and lysosomes

within the proposed trigger zone, and the all-or-none generation of global Ca2+

waves via this trigger zone, is reminiscent of the well characterised

neuromuscular junction and the all-or-none activation of skeletal muscle fibres.

The neuromuscular junction is a junctional space formed between motor

neurons and skeletal muscle fibres, across which signals are conveyed from the

nerve to cause contraction of the muscle fibre via the neurotransmitter

acetylcholine (ACh) and consequent activation of nicotinic ACh receptors

(nAChRs) located on the surface of the adjacent skeletal muscle fibre. Here,

basal release of ACh is not sufficient to induce depolarisation and contraction

of muscle fibres (Fatt and Katz, 1952). Rather, there is a margin of safety for

initiation of transmission at the neuromuscular junction (Paton and Waud,

1967). Indeed, more than 25 % of nAChRs must be occupied in order to induce

depolarisation of the muscle fibre (Waud and Waud, 1972). Below this

threshold of receptor activation muscle depolarisation and contraction do not

occur. It is not beyond the bounds of possibility, therefore, that the proposed

trigger zone for Ca2+ signalling by NAADP may, in a similar manner provide

for all-or-none Ca2+ signalling via an ‘intracellular synapse’ between

lysosomes and RyRs in arterial smooth muscle.

4.3.2 Lysosomes form clusters within the perinuclear region of pulmonary

artery smooth muscle cells

Immunocytochemical investigations on methanol-fixed pulmonary

artery smooth muscle cells allowed for visualisation of the spatial distribution

of lysosomes, via fluorescent labelling of the integral lysosomal membrane

glycoprotein lgp120, in relation to the nucleus of the cell.

In order to examine the cellular distribution of labelled protein the

cytoplasmic volume of cells was divided into three regions of interest relative

to the nucleus (defined by DAPI labelling), namely the perinuclear (within 1.5

m of the nucleus), the sub-plasmalemmal (within 1.5 m of the perimeter of
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the cell) and the extra-perinuclear region (defined as the remaining volume of

the cytoplasm following definition of the perinuclear and sub-plasmalemmal

regions). Volumetric analysis was then carried out to determine the density of

labelling for a given protein within each region.

The density of lysosomal labelling was around 2-fold greater in the

perinuclear region than in the extra-perinuclear region and 3-fold greater than

the density of lysosomal labelling measured in the sub-plasmalemmal region of

cells. Furthermore, an examination of the mean volume of lysosomal labelling

indicated that dense clusters of lysosomal labelling were present in the

perinuclear region, compared to a more diffuse distribution of lysosomal

labelling in both the extra-perinuclear and sub-plasmalemmal regions. If

lysosomes are the source of NAADP-mediated Ca2+ signals, as proposed in

Chapter 3, and these signals are generated in trigger zones formed between

lysosomes and closely apposed RyRs on the SR, then the predominant

distribution of large lysosomal clusters within the perinuclear region of cells

suggests that the trigger zone for NAADP-mediated Ca2+ signalling is likely to

be located in this region. Reaves et al. (1996a) have previously used the

monoclonal antibody GM10 to visualise the spatial distribution of lgp120 in

normal rat kidney fibroblasts. Consistent with my findings in pulmonary artery

smooth muscle, they found that whilst there was punctuate labelling of

lgp120 throughout the cytoplasm of cells, the majority of the labelling of

lgp120 occurred within the cytoplasm surrounding the nucleus of cells

(Reaves, et al., 1996a). Furthermore, a predominantly perinuclear distribution

of lysosomes has also been noted in a number of other cell types, including

vascular smooth muscle (Peters, et al., 1972; James-Kracke, et al., 1979;

Robinson, et al., 1986; Matteoni and Kreis, 1987; Pohlmann, et al., 1995).

There was no evidence in immunocytochemical investigations of

lysosomal labelling forming a dense ring around the perimeter of cells. In fact,

there was a notable decline in the density of lysosomal labelling observed

within the sub-plasmalemmal region in comparison to either the perinuclear or

extra-perinuclear regions. This is at odds with the findings in cells labelled

with LysoTracker Red, which identified a proportion of cells with a ring of

lysosomal labelling around the perimeter of the cell. This contradiction may be
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explained if a group of cells in the LysoTracker Red studies had contracted and

reduced the cytoplasmic space between the nucleus and the plasma membrane.

Thus, the contents of the cytoplasm would be concentrated in a confined area

around the nucleus and would, therefore, be visualised as being close to the

plasma membrane. It is worthy of note that of the two forms of Ca2+ burst

observed in pulmonary artery smooth muscle cells in response to NAADP, a

ring of Ca2+ release proximal to the plasma membrane of cells was observed

only in those cells which had contracted and ‘rounded up’ to some extent. In

contrast, however, following intracellular dialysis of NAADP, pulmonary

artery smooth muscle cells which were more elongated in appearance exhibited

spatially restricted, focal Ca2+ bursts towards the centre of the cell.

In conclusion, the larger volume of lysosomal labelling located within

the perinuclear region of pulmonary artery smooth muscle cells, coupled with

the existence of larger clusters of lysosomal labelling in this region, when

compared to either the extra-perinuclear or sub-plasmalemmal regions, argues

in favour of a functional role for lysosomes within the perinuclear region of

cells.

4.3.3 Differences in ryanodine receptor subtype distribution within isolated

pulmonary artery smooth muscle cells, an indicator of functional

significance?

Examination of the distribution of labelling for the 3 different RyR

subtypes indicated that there was no difference between the total densities of

RyR1, RyR2 and RyR3 in pulmonary artery smooth muscle cells. However,

examination of their relative distribution within the perinuclear, extra-

perinuclear and sub-plasmalemmal regions identified significant differences in

the spatial organisation of each of the subtypes of RyR.

4.3.3.1 Ryanodine receptor subtype 1 is uniformly distributed throughout the

cytoplasm of pulmonary artery smooth muscle cells

Examination of the distribution of RyR1 labelling showed that labelling

was evenly distributed throughout the cytoplasm of pulmonary artery smooth
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muscle cells. Thus, there was little difference between the density of RyR1

labelling between the perinuclear, extra-perinuclear and sub-plasmalemmal

regions. Similarly, an examination of the mean volumes of individual elements

of RyR1 labelling showed that there was no difference in the mean volume of

elements of RyR1 labelling between the perinuclear, extra-perinuclear or sub-

plasmalemmal regions. The uniform distribution of RyR1 labelling provided no

evidence of a predominance of RyR1 labelling, or any indication of a

predominance of clustering of RyR1, within the perinuclear, extra-perinuclear

or sub-plasmalemmal regions of cells.

4.3.3.2 Ryanodine receptor subtype 2 forms large clusters within the extra-

perinuclear region of pulmonary artery smooth muscle cells

In contrast to the distribution of RyR1 labelling, RyR2 labelling did not

display a uniform distribution across the cytoplasm of pulmonary artery

smooth muscle cells. Rather, RyR2 labelling appeared to be predominantly

located within the extra-perinuclear region of cells, where the density of RyR2

labelling was around 2-fold greater than that measured in the perinuclear

region. Furthermore, RyR2 labelling declined to its lowest levels in the sub-

plasmalemmal region of cells, where the density of RyR2 labelling was around

6-fold lower than that observed in the extra-perinuclear region. In a similar

manner, the mean volume of elements of RyR2 labelling within the extra-

perinuclear region was almost 2-fold larger than was measured in the

perinuclear region, and around 4-fold larger than elements of RyR2 labelling

detected in the sub-plasmalemmal region. Therefore, it would appear that

although RyR2 labelling was evident in the perinuclear, extra-perinuclear and

sub-plasmalemmal regions, RyR2 labelling was predominantly observed within

the extra-perinuclear region of pulmonary artery smooth muscle cells.

4.3.3.3 Ryanodine receptor subtype 3 forms large clusters in the perinuclear

region of pulmonary artery smooth muscle cells

The distribution of RyR3 labelling within pulmonary artery smooth

muscle cells was markedly different to the distribution of labelling for either
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RyR1 or RyR2. Indeed, RyR3 labelling was predominantly detected within the

perinuclear region of cells with a decrease in RyR3 labelling of around 3-fold

observed in the extra-perinuclear region, and a decrease of around 6-fold in the

sub-plasmalemmal region. There was also a marked decrease in the clustering

of RyR3 labelling observed outwith the perinuclear region of cells, with the

mean volume of elements of RyR3 labelling being around 3-fold larger than

those measured in the extra-perinuclear region and around 5-fold larger than

elements of RyR3 labelling measured in the sub-plasmalemmal region of cells.

RyR3 labelling, therefore, was predominantly restricted to the perinuclear

region of pulmonary artery smooth muscle cells where larger clusters of

labelling were evident than were observed in either the extra-perinuclear or

sub-plasmalemmal regions of cells.

4.3.3.4 Comparison of the distribution of ryanodine receptor subtypes in

pulmonary artery smooth muscle cells

The expression of different RyR subtypes on different portions of the

SR throughout cells may be fundamentally important to the regulation of Ca2+

signalling within arterial smooth muscle. This proposal is strengthened by a

direct comparison of the labelling RyR1, RyR2 and RyR3 within the 3

designated regions of the cytoplasm.

Thus, direct comparison between the 3 RyR subtypes in the perinuclear

region of cells showed that both the density, and the mean volume of elements

of RyR3 labelling were around 2-fold greater than was measured for either

RyR2 or RyR1 within this region. Therefore, RyR3 was the predominant

subtype of RyR within the perinuclear region of pulmonary artery smooth

muscle cells. Further evidence in support of an important functional role for

RyR3 in the regulation of Ca2+ signalling proximal to the nucleus of pulmonary

artery smooth muscle cells was provided by the finding that labelling of RyR3

declined dramatically within the extra-perinuclear and sub-plasmalemmal

regions.

While there was a sharp decline in RyR3 labelling in the extra-

perinuclear region of cells, there was a marked increase in the labelling of

RyR2 within this region. Indeed, RyR2 was by far the dominant subtype of
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RyR observed within the extra-perinuclear region of pulmonary artery smooth

muscle cells, where the density of RyR2 labelling was around 4-fold greater

than was measured for either RyR1- or RyR3-labelling. RyR2 also appeared to

form much larger clusters in the extra-perinuclear region of cells when

compared to either RyR1 or RyR3. Thus, the mean volume of elements of

RyR2 labelling in the extra-perinuclear region was around 2-fold larger than

was measured for either RyR1- or RyR3-labelling. Therefore, as for RyR3 in

the perinuclear region of cells, the dominance of RyR2 labelling in the extra-

perinuclear region coupled to the greater degree of clustering of RyR2 labelling

than was observed for either RyR1- or RyR3-labelling may be indicative of an

important function for RyR2 in the extra-perinuclear region.

As described previously, both the density and the mean volume of

elements of RyR1 labelling showed little difference across the 3 regions of the

cytoplasm. However, the consistency in the extent of labelling of RyR1 across

the cell meant that RyR1 was the dominant RyR subtype expressed in the sub-

plasmalemmal region, because there was a marked decline in the labelling of

both RyR2 and RyR3 within this region. This unexpected, but significant

observation suggests that RyR1 may play a fundamental role in the regulation

of SR Ca2+ signalling proximal to the plasma membrane of pulmonary artery

smooth muscle cells. It is quite probable, therefore, that RyR1 is the RyR

subtype involved in SR Ca2+ release that this laboratory has previously shown

to underpin, in part, BKCa-dependent hyperpolarisation and vasodilation

evoked by adenylyl-cyclase coupled receptors in pulmonary arterial smooth

muscle cells (Boittin et al., 2003).

Consistent with the findings presented here, a recent investigation into

the spatial distribution of RyR subtypes in pulmonary artery smooth muscle

cells has suggested that different RyR subtypes are located in different regions

of the cell (Yang, et al., 2005). In their study, Sham and colleagues showed

that RyR3 was mainly located in the perinuclear region of cells with some

labelling in the general cytoplasm, whilst RyR2 appeared to be present away

from the nucleus and RyR1 was located mainly in the periphery of the cell and

around the nucleus (Yang, et al., 2005). However, the study of Yang et al. did

not contain any quantitative analysis of the distribution of RyR subtypes within
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pulmonary artery smooth muscle cells and any comparison with the findings of

my investigation, therefore, would be impossible to conduct.

4.3.4 Ryanodine receptor subtype 3, but not ryanodine receptor subtype 1

or 2, associates with lysosomes to form large areas of colocalisation in

the perinuclear region of isolated pulmonary artery smooth muscle

cells

Examination of the colocalisation between labelling of the 3 different

RyR subtypes and lysosomal labelling within cells identified clear differences

in the extent to which each of the RyR subtypes associated with lysosomes

within pulmonary artery smooth muscle cells.

4.3.4.1 Colocalisation between ryanodine receptor subtype 1 and lysosomes in

pulmonary artery smooth muscle cells

RyR1 labelling was seen to form areas of colocalisation with lysosomal

labelling across the cytoplasm of pulmonary artery smooth muscle cells.

However, there was little difference between the density of colocalisation, and

the mean volume of areas of colocalisation between RyR1 and lysosomal

labelling in the perinuclear and extra-perinuclear regions. In the sub-

plasmalemmal region there was a decrease of around 2-fold in the density, and

around 3-fold in the mean volume of elements of colocalisation observed

between RyR1 and lysosomal labelling when compared to the perinuclear or

extra-perinuclear regions of cells.

4.3.4.2 Colocalisation between ryanodine receptor subtype 2 and lysosomes in

pulmonary artery smooth muscle cells

As for RyR1, there was little difference between the density of, and the

mean volume of elements of colocalisation between RyR2 and lysosomal

labelling between the perinuclear and extra-perinuclear regions of cells.

However, there was a decrease of around 6-fold in the density, and around 3-
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fold in the mean volume of elements of colocalisation between RyR2- and

lysosomal-labelling in the sub-plasmalemmal region of cells.

4.3.4.3 Colocalisation between ryanodine receptor subtype 3 and lysosomes in

pulmonary artery smooth muscle

In contrast to my findings with respect to colocalisation between RyR1

or RyR2 and lysosomal labelling, colocalisation between RyR3 and lysosomal

labelling was predominantly located in the perinuclear region of cells. Indeed,

the density of colocalisation observed between RyR3 and lysosomal labelling

within the extra-perinuclear region and sub-plasmalemmal region was around

3-fold and 10-fold lower than that measured in the perinuclear region,

respectively. Similarly, examination of the mean volume of areas of

colocalisation between RyR3 and lysosomal labelling identified a greater

degree of clustering between lysosomes and RyR3 in the perinuclear region

than was observed outwith this region. Thus, there was a decrease of around 2-

fold in the mean volume of areas of colocalisation between RyR3 and

lysosomal labelling in the extra-perinuclear and sub-plasmalemmal regions

when compared to the perinuclear region of cells.

4.3.4.4 Lysosomes and ryanodine receptor subtype 3 colocalise to form the

trigger zone for NAADP-mediated Ca2+ signalling in pulmonary artery

smooth muscle cells

Direct comparison of the extent to which each of the 3 RyR subtypes

colocalised with lysosomes in each of the 3 regions of the cytoplasm indicated

that RyR3 labelling colocalised with lysosomal labelling to a much greater

extent than was observed for either RyR2 or RyR1. Indeed the density of

colocalisation between RyR3 and lysosomes within the perinuclear region was

more than 2-fold greater than the colocalisation observed between RyR2 or

RyR1 and lysosomes. Also, there was evidence that the mean volume of

colocalisation between RyR3 and lysosomal labelling was around 2-fold larger

than that observed between RyR2 or RyR1 and lysosomal labelling, indicative

of a much greater association between RyR3 and lysosomes within the
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perinuclear region of cells. The predominance of colocalisation between

lysosomes and RyR3 over RyR2 or RyR1 was not detected in either the extra-

perinuclear or sub-plasmalemmal regions where in addition to the lower

incidence of colocalisation, there was little difference between the density of

colocalisation, and the mean volume of areas of colocalisation between

lysosomes and RyR1, RyR2 or RyR3.

These data provide compelling evidence that RyR3 is a likely candidate

for the RyR subtype expressed in tight lysosomal-SR junctions in pulmonary

artery smooth muscle cells. However, the lysosomal marker examined in these

immunocytochemical studies (lgp120) may not be targeted to the lysosomal

membrane at the lysosome-SR junction. Thus, measurements of colocalisation

between RyR subtypes and lgp120 are likely to be an underestimate of the

true degree of colocalisation between lysosomes and RyR3. I therefore

examined the distribution of fluorescent labelling in close proximity to the

larger volumes of colocalisation (≥ 0.5 m3), within the perinuclear region,

between each RyR subtype and lysosomal labelling. This provided valuable

information on the degree to which lysosomes and RyR subtypes were

associated, in that they provided further evidence in support of a preferential

association between lysosomes and RyR3 in pulmonary artery smooth muscle

cells. It was noted that all the cells examined for RyR3 labelling were seen to

display areas of colocalisation ≥ 0.5 m3 in the perinuclear region, compared to

75% of RyR2 labelled cells and 50% of RyR1 labelled cells. Also, there were

around 4 times and 6 times as many areas of colocalisation observed between

RyR3 and lysosomal labelling ≥ 0.5 m3 in cells than were observed in either

RyR2 or RyR1 labelled cells, respectively. Furthermore, there was much

greater mean volume of elements of lysosomal labelling and thus, a greater

degree of lysosomal clustering, around large areas of colocalisation between

RyR3 and lysosomal labelling was observed when compared with that for

RyR1 or RyR2. Therefore, these data provide further support for my proposal

that a trigger zone for Ca2+ signalling by NAADP is likely formed between

lysosomal clusters and portions of the SR expressing a high density of RyR3

proximal to the nucleus of pulmonary artery smooth muscle cells.
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The aforementioned findings raise the question as to why RyR3 may be

targeted to the lysosome-SR junctions. A determining factor in this respect may

be the relative sensitivity of each RyR subtype to CICR, the maximum gain in

response to Ca2+ and their relative sensitivity to inactivation by Ca2+. The

threshold for activation of RyR1, RyR2 and RYR3 is similar, with channel

activation occurring at cytoplasmic Ca2+ concentrations > 100 nM (Chen, et al.,

1997; Li and Chen, 2001). However, estimates of the EC50 (In the absence of

Mg2+ and ATP) are different, with half maximal activation at ~250 nM for

RyR2 (Chen, et al., 1997) and ~400 nM for RyR3 (Li and Chen, 2001). The

higher EC50 exhibited by RyR3 could be significant, because this would

provide for a higher margin of safety with respect to the all-or-none

amplification of Ca2+ bursts from lysosomal Ca2+ stores by CICR via RyRs at

the lysosome-SR junction i.e. the probability of false events being initiated

would be lower for RyR3 than for RyR2. Another factor that may be of

significance is that whilst the mean open time vs. cytoplasmic Ca2+

concentration for RyR2 and RyR3 are comparable and increase approximately

10-fold over their activation range, the mean open time for RyR1 is much

lower and increases only 2-fold over its activation range (Chen, et al., 1997; Li

and Chen, 2001). Furthermore, comparison of the open probability (Po) versus

cytoplasmic Ca2+ concentration curves shows that RyR3 (0 – 1) exhibits a

higher gain in Po than does RyR2 (0 – 0.9), whilst RyR1 (0 – 0.2) exhibits

relatively little gain in Po with increasing cytoplasmic Ca2+ concentration

(Chen, et al., 1997; Li and Chen, 2001). Thus, once the threshold for activation

is breached RyR3 would offer greater amplification of Ca2+ bursts from

lysosomal Ca2+ stores than would RyR2, whilst amplification via RyR1 would

be marginal. There is also marked variation in the relative sensitivity of each

RyR subtype to inactivation by Ca2+. RyR3 exhibits the lowest sensitivity to

inactivation by Ca2+ with an IC50 of 3 mM whilst that for RyR2 is 2 mM; in

each case channel activity may still be observed at concentrations > 10 mM

(Chen, et al., 1997; Li and Chen, 2001). In marked contrast, RyR1 inactivation

occurs within the M range and full inactivation is achieved by 1 mM Ca2+

(Chen, et al., 1997); this may, in part, explain the low gain in Po for RyR1 in

response to activation by Ca2+. Its sensitivity to inactivation by Ca2+ would
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therefore render RyR1 unsuitable for a role in amplification of Ca2+ bursts at

lysosome-SR junctions because the local Ca2+ concentration may exceed the

threshold for RyR1 inactivation. Thus, the functional properties of RyR3 make

it best suited to a role in the amplification of Ca2+ bursts at lysosome-SR

junctions.

However, the density of RyR3 labelling declined markedly outwith the

perinuclear region of the cell. It seems unlikely, therefore, that RyR3 functions

to carry a propagating Ca2+ wave far beyond the point of initiation of CICR

within the trigger zone for Ca2+ signalling by NAADP. Given this finding it

may be of significance that the density of labelling for RyR2 increases within

the extra-perinuclear region of cells. Indeed the lower EC50 for CICR of RyR2

(~250 mM) over RyR3 (~ 400 mM) would help insure that once initiated a

propagating Ca2+ wave would be less prone to failure. Thus, RyR2 would be

best suited for a role in underpinning the wider propagation of a global Ca2+

wave.

In conclusion, I propose that lysosomal clusters are primarily located in

the perinuclear region pulmonary artery smooth muscle cells where they form

junctions with a subsection of the SR that contains a high density of RyR3.

These lysosome-SR junctions likely comprise a trigger zone for Ca2+ signalling

by NAADP, within which CICR via RyR3 is a prerequisite for initiation of a

propagating Ca2+ wave in response to NAADP-dependent Ca2+ bursts from

lysosome-related stores. Thereafter, CICR via RyR2 likely carries the

propagating wave beyond the perinuclear region of the cell (Fig. 4.35).

Although the evidence in the literature suggests that the affinity-

purified sequence-specific antibodies used in my investigations raised against

the three distinct RyR subtypes are reliable indicators of the RyR subtype

proteins, I cannot rule out the possibility that these antibodies recognise

epitopes present on other cellular proteins. Furthermore, misleading

discrepancies may be introduced as a result of the harsh conditions encountered

in processing proteins/cells for immunoblotting and immunocytochemical

investigations, respectively. Therefore, it is worthy of note that although the

investigations presented within this thesis may provide a good indication of

differences in the spatial distribution of RyR subtypes within pulmonary artery

smooth muscle cells, definitive evidence may be provided by future studies
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employing a number of more reliable and sensitive diagnostic and visualisation

techniques.
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Fig. 4.35 Schematic representation of the trigger zone for Ca2+ signalling by NAADP in

arterial smooth muscle: The trigger zone is formed between closely opposed lysosomes

expressing a putative NAADP receptor and portions of the SR expressing clusters of RyR3.

NAADP acts on the putative NAADP receptors causing initiation of a Ca2+ burst, which is

released into the trigger zone. If the Ca2+ concentration within the trigger zone rises beyond the

threshold for activation of CICR via RyR3, the initial Ca2+ burst is amplified via the

recruitment of RyR2 located on portions of the SR located outwith the trigger zone, resulting in

a global Ca2+ wave and contraction of the smooth muscle cell.
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Chapter 5: Agonist dependent regulation of NAADP-mediated

Ca2+ signalling in pulmonary artery smooth muscle

5.1 Introduction

Previous investigations from this laboratory have provided evidence in

support of the view that NAADP acts as a Ca2+ mobilising messenger in

pulmonary artery smooth muscle (Boittin et al., 2002). However, one of the

fundamental criterions that must be fulfilled by any molecule in order for it to

be considered a second messenger is whether or not the molecule mediates

responses to known ligand-gated receptors in an agonist-specific manner.

Recently, a study from Galione and colleagues provided data in support of a

role for NAADP as a Ca2+ mobilising second messenger in isolated murine

pancreatic acinar cells (Yamasaki, et al., 2005). In their study, Galione and

colleagues showed that the activation of cholecystokinin receptor A on the

surface of pancreatic acinar cells resulted in a marked increase in the levels of

NAADP detected within cells (Yamasaki et al., 2005). Furthermore, Galione

and colleagues had previously determined that cholecystokinin-induced Ca2+

signals in pancreatic acinar cells were dependent on NAADP-mediated Ca2+

release from an acidic, lysosome-related Ca2+ store (Cancela et al., 1999;

Yamasaki et al., 2004).

As a result of the fact that NAADP-dependent Ca2+ signals induced

contraction of isolated pulmonary artery smooth muscle cells (Chapter 3;

Boittin et al., 2002), The aim of this chapter, therefore, is to determine whether

or not any vasoconstrictor receptors on pulmonary artery smooth muscle may

mediate their effects, in part, via NAADP-dependent Ca2+ signalling. To this

end, three potent vasoconstrictors are examined, namely, phenylepherine (PE),

prostaglandin-F2PGF2) and endothelin-1 (ET-1). These vasoconstrictors

were chosen for investigation due to reported differences in the manner in

which they elicit initial Ca2+ signals within vascular smooth muscle (Hamada,

et al., 1997; Doi, et al., 2000)
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5.2 Results

5.2.1 Is there a role for NAADP in agonist-mediated vasoconstriction in

pulmonary artery smooth muscle cells?

In chapter 3 of this thesis, I presented data in support of the proposal

that NAADP elicits Ca2+ signals and contraction of isolated pulmonary arterial

smooth muscle cells by triggering Ca2+ bursts from a Bafilomycin A1-sensitive

Ca2+ store, that are subsequently amplified into global waves by CICR from the

SR via RyRs. In this chapter, I therefore sought to determine whether or not

NAADP could mediate agonist-specific Ca2+ signalling in pulmonary arterial

smooth muscle. To this end I studied the effect of Bafilomycin A1 on Ca2+

signalling by three vasoconstrictors, namely phenylepherine (PE),

prostaglandin-F2 (PGF2) and endothelin-1 (ET-1).

5.2.1.1 Ca2+ signals induced by phenylepherine and prostoglandin-F2 are not

affected by Bafilomycin A1

Extracellular application of the 1-adrenoceptor agonist PE (3 M) was

seen to induce a global Ca2+ wave in isolated pulmonary artery smooth muscle

cells, as indicated in a representative record of the Fura-2 fluorescence ratio

(F340 / F380) against time (Fig. 5.1A). The Fura-2 fluorescence peaked within

~30 s of application, rising from 0.49 ± 0.09 to 1.57 ± 0.37 (n = 3; Appendix

3, Table 5.1) which equates to a rise in the intracellular Ca2+ concentration

from ~100 nM to ~700 nM (see calibration curve in Chapter 2, section 2.6.6).

Following pre-incubation of cells with Bafilomycin A1 (100 nM), the Ca2+

wave induced by PE (3 M) remained unaffected, the Fura-2 fluorescence ratio

increasing from 0.58 ± 0.11 to 1.49 ± 0.28 (n = 3; P = > 0.05; Appendix 3,

Table 5.2).

Likewise, extracellular application of PGF2 (2 M) induced a global

Ca2+ wave in isolated pulmonary artery smooth muscle cells in a manner that

was insensitive to Bafilomycin A1. Fig. 5.1B shows a record of the Fura-2

fluorescence ratio against time from a representative experiment. The increase
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in Fura-2 fluorescence ratio induced by PGF2 (2 M) peaked within ~60 s,

rising from 0.54 ± 0.04 to 1.29 ± 0.18 in the absence of Bafilomycin A1 and

from 0.59 ± 0.03 to 1.32 ± 0.15 in its presence (n = 5; P = > 0.05; Appendix 3,

Tables 5.3 and 5.4). From these data it can be concluded that PE and PGF2

evoke global Ca2+ waves in a manner that is independent of bafilomycin-

sensitive, acidic Ca2+ stores.

Fig. 5.1: Bafilomycin A1 is without effect on calcium signalling by phenylepherine or

prostaglandin-F2 in isolated pulmonary artery smooth muscle cells: Panel A: shows a

record of the F340/F380 fluorescence ratio against time recorded in a cell to the extracellular

application of PE (3 M) in the absence and presence of Bafilomycin A1 (100 nM). Panel B:

shows a record of the F340/F380 fluorescence ratio against time recorded in a cell to the

extracellular application of PGF2 (2 M) in the absence and presence of Bafilomycin A1 (100

nM).

5.2.1.2 Bafilomycin A1 abolishes intracellular Ca2+ signals in response to

endothelin-1

Extracellular application of ET-1 (100 nM) induced reproducible and

reversible global Ca2+ transients in pulmonary artery smooth muscle cells (Fig.

5.2A). The increase in the Fura-2 fluorescence ratio (F340/F380) peaked within

60s of application, rising from 0.52 ± 0.02 to 1.16 ± 0.05 on the first

application and from 0.53 ± 0.02 to 1.16 ± 0.04 on the second (n = 16;

Appendix 3, Table 5.5). In marked contrast to my findings with respect to PE
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and PGF2, however, pre-incubation of cells with Bafilomycin A1 abolished

Ca2+ signals evoked by ET-1 (100 nM). Fig. 5.2B shows a representative

experiment. The upper panel shows a series of pseudocolour images of the

Fig. 5.2: Bafilomycin A1 abolishes calcium signalling by endothelin-1 in isolated

pulmonary artery smooth muscle cells: Panel A: shows a record of the F340/F380 fluorescence

ratio against time recorded in a cell showing the reproducible nature of Ca2+ signals in response

to two application of ET-1 (100 nM). Panel B , upper panel: shows a series of pseudocolour

representations of the change in Fura-2 fluorescence ratio (F340/F380) in an isolated pulmonary

artery smooth muscle cell to the extracellular dialysis of ET-1 (100 nM) in the absence and

presence of Bafilomycin A1 (100 nM). The arrow in image 2 indicates a localised increase in

the Fura-2 fluorescence ratio. Lower panel shows a record of the F340/F380 fluorescence ratio

against time recorded from the same cell as in the upper panel.

Fura-2 fluorescence ratio, whilst the lower panel shows the record of the

fluorescence ratio against time. It is notable that the global Ca2+ wave induced

by ET-1 in the absence of Bafilomycin A1 is preceded by a spatially restricted
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Ca2+ release event (image 2, arrow) consistent with the Ca2+ bursts generated

by NAADP (Chapter 3; Boittin et al., 2002); no such events were observed in

response to PE or PGF2. Following pre-incubation (50 min) with Bafilomycin

A1 both ET-1 induced Ca2+ bursts and global Ca2+ waves were abolished. Thus,

the Fura-2 fluorescence ratio increased from 0.56 ± 0.09 to 1.17 ± 0.02 in the

absence of Bafilomycin A1 (100 nM) and from 0.64 ± 0.03 to 0.65 ± 0.03 in its

presence (n = 4; P = < 0.05; Appendix 3, Tables 5.6 and 5.7). Significantly, and

consistent with experiments described previously (Chapter 3), global Ca2+

waves induced by ryanodine receptor activation by caffeine (10 mM) were

observed in the presence of Bafilomycin A1. These data suggest that ET-1 may

trigger intracellular Ca2+ release and contraction, in part, by mobilising a

bafilomycin-sensitive, lysosome-related Ca2+ store. One pivotal experiment to

examine whether there is a role for NAADP in mediating Ca2+ signals in

response to ET-1 may be to take advantage of the finding in other cell types

that NAADP receptors undergo self-inactivation and desensitiation in response

to high concentrations of NAADP (Aarhus, et al., 1996a; Cancela, et al., 1999;

Berg, et al., 2000; Billington and Genazzani, 2000b; Churchill and Galione,

2000). Thus, one might be able to determine whether a high, desensitising

concentration of NAADP alters the nature of Ca2+ signals generated in

response to ET-1. However, an investigation from this laboratory has shown

that robust Ca2+ signals were observed in response to a high concentration of

NAADP (100 M) in pulmonary artery smooth muscle cells (Boittin et al.,

2002). Therefore, the NAADP receptor(s) expressed in pulmonary artery

smooth muscle do not appear to undergo self-inactivation in a similar manner

to those described previously in other cell types.

5.2.1.3 The role of the sarcoplasmic reticulum in endothelin-1-mediated Ca2+

signals

I then proceeded to investigate the role of SR Ca2+ stores in the

generation of ET-1-mediated Ca2+ signals. Thus, I carried out a comparison of

the pharmacology of ET-1-induced Ca2+ waves with that of NAADP- and

Bafilomycin A1-induced Ca2+ waves. Following preincubation (15 min) of
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cells with thapsigargin (1 M), extracellular application of ET-1 (100 nM)

failed to induce global Ca2+ waves. Fig. 5.3 shows a representative experiment.

The upper panel shows a series of pseudocolour images of the Fura-2

fluorescence ratio, whilst the lower panel shows the record of the fluorescence

Fig. 5.3: Thapsigargin abolishes global Ca2+ waves in response to ET-1, but not

localized release events. Upper panel: shows a pseudocolour representation of the changes in

Fura-2 fluorescence ratio within an isolated pulmonary artery smooth muscle cell after

preincubation (20 min) with thapsigargin (1 M) in response to the extracellular application of

ET-1 (100 nM). Note, the spatially restricted Ca2+ burst indicated by the ROI shown as the

white circle, 1 in pseudocolour images 6 and 7. Lower panel: shows the Fura-2 fluorescence

ratio against time for the cell in the upper panel, the insert shows the Fura-2 fluorescence ratio

for the ROI indicated in pseudocolour representations 6 and 7.

ratio against time. Thus, ET-1 induced an increase in the Fura-2 fluorescence

ratio from 0.39 ± 0.01 to 0.8 ± 0.05 in the absence of thapsigargin, and from

0.45 ± 0.01 to 0.49 ± 0.02 in the presence of thapsigargin (n = 9; P = < 0.05;

appendix 3, Tables 5.8 and 5.9). However, spatially restricted Ca2+ bursts were

still observed in 5 out of 9 cells examined (Fig. 5.3, images 6 and 7) with the



210

increase in Fura-2 fluorescence ratio within a given region of interest of these 5

cells measuring 17 ± 4 %. In the remaining 4 cells a small, non-uniform rise in

intracellular Ca2+ concentration was observed, but with less than clear spatial

definition. The lack of a noticeable Ca2+ burst in the remaining 4 cells

examined was likely due to the Ca2+ burst occurring outwith the focal plane of

the microscope. The average rise in Fura-2 fluorescence ratio within a given

region of interest in all 9 cells examined was 10 ± 4 % (Fig. 5.5; Appendix 3,

Table 5.8). These data suggest that, in a similar fashion to NAADP and

Bafilomycin A1, ET-1 induces an initial phase of Ca2+ release from a

thapsigargin-insensitive, non-SR Ca2+ store.

5.2.1.4 The role of the ryanodine receptors in endothelin-1-mediated global

Ca2+ waves

Given that amplification of NAADP- and Bafilomycin A1-mediated

localised Ca2+ release events into global Ca2+ waves required amplification via

CICR from RyRs on the SR (Chapter 3), I next sought to determine whether or

not CICR via RyRs was required for the generation of global Ca2+ signals in

response to ET-1. Following preincubation (20 min) of cells with ryanodine

(20 M), the extracellular application of ET-1 (100 nM) once more failed to

induce global Ca2+ waves and no cell contraction was observed. Fig. 5.4 shows

a representative experiment. The upper panel shows a series of pseudocolour

representations of the Fura-2 fluorescence ratio, while the lower panel shows a

record of the Fura-2 fluorescence ratio against time in the same cell. Thus, ET-

1 caused an increase in the Fura-2 fluorescence ratio within cells from 0.4 ±

0.02 to 0.93 ± 0.08 in the absence of ryanodine, and from only 0.45 ± 0.02 to

0.5 ± 0.03 in the presence of ryanodine (n = 8; P = < 0.05; Appendix 3, Tables

5.10 and 5.11). It is worthy of note that, consistent with NAADP-mediated

global Ca2+ waves, the extracellular application of ET-1 prior to incubation

with ryanodine triggered an initial Ca2+ burst event which declined to baseline

prior to the initiation of a global Ca2+ wave in the example cell shown in Fig

5.4 (image 2, arrow 1). Following preincubation of cells with ryanodine, ET-1

induced low magnitude, spatially restricted Ca2+ bursts in 3 out of the 8 cells
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examined (Fig. 5.4, image 9, arrow 2). In the three cells which exhibited Ca2+

bursts in response to ET-1, a rise in the Fura-2 fluorescence ratio of 24 ± 0.1 %

was observed within a given region of interest (Fig. 5.4). In the remaining 5

cells a small, non-uniform rise in the intracellular Ca2+ was also observed.

However, these increases had less than clear spatial definition. As with

thapsigargin, the lack of a discernable Ca2+ burst in these remaining cells was

likely due to the Ca2+ burst occurring outwith the focal plane of the

microscope. The average increase in Fura-2 fluorescence ratio within a given

Fig. 5.4: Ryanodine abolishes global Ca2+ waves in response to ET-1, but not localized

release events. Upper panel: shows a pseudocolour representation of the changes in Fura-2

fluorescence ratio within an isolated pulmonary artery smooth muscle cell after preincubation

(20 min) with ryanodine (20 M) in response to the extracellular application of ET-1 (100

nM). Note, the spatially restricted Ca2+ bursts indicated by arrows 1 and 2 in the the ROIs

shown in images 2 and 9, respectively. Lower panel: shows the Fura-2 fluorescence ratio

against time for the cell in the upper panel, inserts 1 and 2 show the Fura-2 fluorescence ratio

for ROIs 1 and 2 indicated in pseudocolour representations 2 and 9, respectively.
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region of interest in all 8 cells examined, following preincubation of cells with

ryanodine, was 10 ± 1 % (Fig. 5.5; Appendix 3, Table 5.10). Taken together

with the findings presented above, it can be concluded that ET-1 generates

spatially restricted Ca2+ bursts from a thapsigargin-insensitive Ca2+ store which

are, in turn, amplified to generate global Ca2+ waves by recruitment of RyRs

via CICR. Indeed, the striking similarity in the pharmacology underlying the

generation of global Ca2+ waves in response to NAADP, Bafilomycin A1 and

ET-1 (Fig. 5.5), suggests that generation of global Ca2+ waves in response to

ET-1 may be activated via NAADP-dependent Ca2+ release.

Fig. 5.5: Comparison of the pharmacology of Ca2+ signals generated by NAADP, ET-1

and Bafilomycin A1 in isolated pulmonary artery smooth muscle cells: Bar chart shows

the percentage change ( ± S.E.M.) in Fura-2 fluorescence ratio in pulmonary artery smooth

muscle cells induced by intracellular dialysis of NAADP (10 nM) before and after incubation

of cells with Bafilomycin A1 (baf.; 100 nM), thapsigargin (thap.; 1 M) and ryanodine (ryan.;

20 M), respectively (white bars); extracellular application of ET-1 (100 nM) before and after

incubation of cells with Bafilomycin A1 (100 nM), thapsigargin (1 M) and ryanodine (20

M), respectively (grey bars); extracellular application of Bafilomycin A1 (100 – 300 nM)

before and after incubation of cells with thapsigargin (1 M) and ryanodine (20 M),

respectively (black bars). Asterisk (*) denotes statistical significance of inhibition of Ca2+

signals vs. control by means of a one-way ANOVA test, where p ≤ 0.05.

5.2.2 Endothelin-1 induces an increase in endogenous NAADP levels in

pulmonary artery smooth muscle

In order to confirm the proposal that ET-1 initiates NAADP-dependent

Ca2+ signals in pulmonary artery smooth muscle, in association with Dr. Justyn
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Thomas, I investigated the effect of ET-1 on the levels of NAADP within

pulmonary artery smooth muscle by means of an NAADP radioligand binding

assay. The exposure of pulmonary arteries, denuded of their endothelia, to ET-

1 (1 M) resulted in a significant increase in the level of NAADP in tissue

lysates. Thus ET-1 (1 M) caused a significant increase in the levels of

NAADP, from 0.21 ± 0.04 pmol/mg protein in the absence of ET-1 (time

matched control), to 1.33 ± 0.19 pmol/mg protein within 30 s of exposure to

ET-1 (1 M; Fig. 5.6A; P = < 0.05; Appendix 3, Tables 5.12 and 5.13). This

increase in the level of NAADP declined to baseline within 60s, measuring

Fig. 5.6: ET-1 causes a rapid transient in NAADP levels in arterial smooth muscle: Panel

A: Bar chart shows the effect of ET-1 (1 M; 30, 60, and 300 s incubation) on the tissue levels

of NAADP in the second and third order branches of the pulmonary arterial tree without

endothelium, relative to levels in control tissue. Asterisk (*) denotes statistical significant

difference when compared to control with a one way ANOVA test (P = ≤ 0.05). Panel B: Bar

chart shows the effect of PGF2 (2 M; 30 and 60 s incubation) on the tissue levels of NAADP

in the second and third order branches of the pulmonary arterial tree without endothelium,

relative to levels in control tissue.
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0.31 ± 0.09 pmol/mg protein in the absence of ET-1, and 0.58 ± 0.24 pmol/mg

protein in the presence of ET-1 (1 M; Fig. 5.6A; P = > 0.05; Appendix 3,

Tables 5.12 and 5.14). Time course analysis showed that levels of NAADP

within arteries exposed to ET-1 (1 M) did not increase again from the basal

level over a further incubation period (300 s). Thus, at 300 s, NAADP levels

measured 0.43 ± 0.2 pmol/mg protein in the absence of ET-1, and 0.5 ± 0.2

pmol/mg protein in the presence of ET-1 (1 M; Fig. 5.6A; P = > 0.05;

Appendix 3, Tables 5.12 and 5.15). In contrast to the increase in NAADP

levels induced by ET-1, the exposure of pulmonary arteries, denuded of

endothelia, to PGF2 (2 M) had little or no effect on the level of NAADP

detected, which measured 0.25 ± 0.06 pmol per mg tissue in the absence of

PGF2 (time matched control) and 0.2 ± 0.08 pmol per mg tissue in the

presence of PGF2 (2 M) 30 s after exposure (n = 3; P = > 0.05; Appendix 3,

Tables 5.16 and 5.17), and 0.28 ± 0.05 pmol/mg protein and 0.17 ± 0.02

pmol/mg protein, respectively, after 60s (Fig. 5.6B; P = > 0.05; Appendix 3,

Tables 5.16 and 5.18).

These results suggest that ET-1 causes a rapid, transient increase in the

concentration of NAADP in pulmonary artery smooth muscle in an agonist-

specific manner. This rapid, transient increase in NAADP levels within

pulmonary artery smooth muscle in response to ET-1, is entirely consistent

with my proposal that NAADP mediates, at least in part, Ca2+ signalling by

ET-1.

5.2.3 Endothelin-1 mediates NAADP-dependent Ca2+ signalling through

activation of ETB receptors, but not ETA receptors, on pulmonary

artery smooth muscle

ET-1 is a potent vasoconstrictor and mediates its effects through at least

two known subtypes of ET receptor, ETA and ETB (Yanagisawa, et al., 1988;

Arai, et al., 1990; Sakurai, et al., 1990; Sakamoto, et al., 1991; Leach, et al.,

1994; Yoshida, et al., 1994; MacLean, et al., 1995; Maguire, et al., 1996;

McCulloch, et al., 1996). Therefore, I proceeded to examine the possibility that

one discrete ET receptor subtype may underpin the generation of Ca2+ signals
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in isolated pulmonary artery smooth muscle cells. In order to examine the

possible roles of the ETA and ETB receptors in the generation of Ca2+ signals I

co-applied selective antagonists of each of the subtypes of ET receptors,

namely, the ETB receptor antagonist BQ-788 (Ishikawa, et al., 1994; Karaki, et

al., 1994) and the ETA receptor antagonist BQ-123 (Morel and Godfriand,

1994; Warner, et al., 1994) with ET-1.

Co-application of the ETB receptor antagonist BQ-788 (30 M) with

ET-1 (100 nM) abolished Ca2+ signals in isolated pulmonary artery smooth

Fig. 5.7: Activation of ETB receptors are required for the generation of global Ca2+ waves

in response to ET-1: Upper panel: shows a pseudocolour representation of the changes in

Fura-2 fluorescence ratio within an isolated pulmonary artery smooth muscle cell in response

to the extracellular application of ET-1 (100 nM) in the presence and absence of BQ-788 (30

M). Lower panel: shows the Fura-2 fluorescence ratio against time for the cell in the upper

panel.

muscle cells. However, following a period of wash (5 min) to remove BQ-788,

application of ET-1 was seen to induce global Ca2+ signals and contraction of



216

cells. A representative experiment is shown in Fig 5.7. The upper panel shows

a series of pseudocolour images of the Fura-2 fluorescence ratio, whilst the

lower panel shows the record of the fluorescence ratio against time. Thus, ET-1

(100 nM) caused no discernable increase in the Fura-2 fluorescence ratio, 0.66

± 0.05 to 0.66 ± 0.05 in the presence of BQ-788 (30 M), however, ET-1

caused an increase in the Fura-2 fluorescence ratio from 0.7 ± 0.05 to 1.86 ±

0.23 in the absence of BQ-788 (n = 7, P = < 0.05; Appendix 3, Tables 5.19 and

5.12). These data suggest a role for ETB receptor activation in the generation

of Ca2+ signals in response to the extracellular application of ET-1 (100 nM) in

isolated pulmonary artery smooth muscle cells as the ETB receptor antagonist

BQ-788 abolished Ca2+ signals in response to ET-1.

I then proceeded to examine a possible role for ETA receptors in the

generation of Ca2+ signals in response to extracellular application of ET-1 (100

nM) in isolated pulmonary artery smooth muscle cells. It was observed that the

ETA receptor antagonist BQ-123 did not affect Ca2+ signalling in response to

ET-1 (100 nM). Fig. 5.8 shows a representative experiment. The upper panel

shows a series of pseudocolour images of the Fura-2 fluorescence ratio, whilst

the lower panel shows the record of the fluorescence ratio against time. It can

be seen that in this example cell, application of ET-1 causes an initial increase

in Ca2+ at the perimeter of the cell, indicated by the arrow in Fig. 5.7, images 3

– 5. This initial Ca2+ release event precedes the global Ca2+ wave and

contraction within the cell and is reminiscent of one of the forms of Ca2+ bursts

observed in response to the intracellular application of NAADP, as described

previously (Chapter 3 Fig. 3.1, page 114). Thus, co-application of ET-1 (100

nM) and BQ-123 (30 M) induced an increase in the Fura-2 fluorescence ratio

from 0.59 ± 0.01 to 1.61 ± 0.04 (n = 5, Appendix 3, Table 5.21). These data

suggest that the blockade of ETA receptors is without effect on the generation

of Ca2+ signals in response to ET-1 (100nM). Therefore, it would appear that

ETB, but not ETA receptor activation is required in order to initiate Ca2+

signalling in response to ET-1 in isolated pulmonary artery smooth muscle

cells.
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Fig. 5.8: Activation of ETA receptors is not required for the generation of global Ca2+

waves in response to ET-1: Upper panel: shows a pseudocolour representation of the changes

in Fura-2 fluorescence ratio within an isolated pulmonary artery smooth muscle cell in

response to the extracellular application of ET-1 (100 nM) in the presence and absence of BQ-

123 (30 M). Lower panel: shows the Fura-2 fluorescence ratio against time for the cell in the

upper panel.

5.2.4 Endothelin-1-induced increases in endogenous NAADP levels in

pulmonary artery smooth muscle occurs via activation of ETB

receptors

Given the requirement on ETB receptor activation for initiation of Ca2+

signals in response to ET-1, in association with Dr. Justyn Thomas, I

proceeded to examine the role of ETB receptors in the regulation of

intracellular NAADP levels within pulmonary arterial smooth muscle.

Increases in the levels of NAADP within second and third order branches of

the pulmonary artery denuded of endothelia in response to ET-1 were not

observed in tissue lysates that were exposed to ET-1 and the ETB receptor

antagonist BQ-788. Thus, ET-1 (100 nM) caused a significant increase in the

levels of NAADP from 0.18 ± 0.02 pmol/mg protein in the absence of ET-1
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(time matched control) to 0.82 ± 0.11 pmol/mg protein within 30s exposure to

ET-1 (100 nM; Fig. 5.9, P = < 0.05; Appendix 3, Tables 5.22 and 5.23).

Consistent with a role for ETB receptors, the increase in NAADP levels in

response to ET-1 was abolished in tissue lysates exposed to ET-1 (100 nM) and

BQ-788 (30 M), where NAADP levels were measured at 0.15 ±0.01 pmol/mg

protein, when compared to time matched controls (Fig. 5.9; P = < 0.05;

Appendix 3, Tables 5.22 and 5.24). Therefore, these data suggest that the

increase in NAADP levels measured in pulmonary arteries, in response to ET-

1, is initiated via activation of ETB receptors.

Fig. 5.9: NAADP levels in pulmonary arterial smooth muscle is increased following

activation of ETB receptors by ET-1: Bar chart shows the effect of ET-1 (100 nM; 30 s

incubation) both in the presence and absence of BQ-788 (20 M), on the tissue levels of

NAADP in the second and third order branches of the pulmonary arterial tree without

endothelium, relative to levels in control tissue. Asterisk (*) denotes statistical significance

when compared to control with a one way ANOVA test (P = ≤ 0.05).



219

5.3 Discussion

In this chapter I sought to determine whether or not NAADP

elicits agonist- and receptor-specific Ca2+ signals in pulmonary arterial smooth

muscle cells. To this end the: (1) pharmacology of Ca2+ signalling by the

vasocontrictors phenylepherine (PE), prostaglandin F2 (PGF2) and

endothelin-1 (ET-1) was compared with that of NAADP (2) the effect on

NAADP levels in pulmonary arterial smooth muscle was studied.

5.3.1 Bafilomycin A1 abolishes Ca2+ signalling in an agonist specific

manner

I have previously demonstrated that NAADP-dependent Ca2+ signals

were abolished by pre-incubation of pulmonary arterial smooth muscle cells

with Bafilomycin A1 (see Chapter 3). Consistent with this finding, Ca2+ signals

in response to the extracellular application of ET-1 were abolished by

Bafilomycin A1, whilst those elicited by PE and PGF2remained unaffected.

Of further significance was the finding that global Ca2+ waves evoked by ET-1,

like those in response to NAADP, were preceded by spatially restricted Ca2+

release events akin to Ca2+ bursts (see section 5.3.2). In common with NAADP,

therefore, Ca2+ signals evoked by ET-1, but not PE and PGF2, may be

dependent, at least in part, upon the mobilisation of a bafilomycin-sensitive,

acidic Ca2+ store. Direct support for this conclusion may be taken from a

subsequent study on bovine coronary artery smooth muscle cells in which ET-

1-induced Ca2+ signals were shown to be abolished by Bafilomycin A1 (Zhang,

et al., 2006).

5.3.2 Endothelin-1 induces Ca2+ bursts from lysosome-related Ca2+ stores

that are then amplified into global Ca2+ signals by ryanodine

receptor-mediated sarcoplasmic reticulum Ca2+ release

In common with NAADP (see Chapter 3), global Ca2+ waves in

response to the extracellular application of ET-1 were abolished following
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depletion of SR stores Ca2+ with the SERCA pump antagonist thapsigargin,

while spatially restricted Ca2+ bursts were still observed. Thus, SR Ca2+ release

is a pre-requisite for the generation of global Ca2+ waves but not localised Ca2+

bursts elicited by ET-1. Furthermore, block of ryanodine receptors by pre-

incubation of pulmonary arterial smooth muscle cells with ryanodine abolished

global Ca2+ waves in response to application of ET-1. Once more this occurred

without affect on spatially restricted Ca2+ bursts. Direct comparison of the

pharmacological profile of NAADP-, Bafilomycin A1- and ET-1-induced Ca2+

signals, suggests, therefore, that all three stimuli elicit global Ca2+ waves in

pulmonary artery smooth muscle cells via a common mechanism, that is by

evoking Ca2+ bursts from a Bafilomycin-sensitive, acidic Ca2+ store other than

the SR, which are then amplified into global Ca2+ waves by CICR from the SR

via RyRs.

5.3.3 Endothelin-1 induces agonist-specific increases in the concentration

of NAADP in pulmonary artery smooth muscle

In order to determine whether or not NAADP does indeed mediate, at

least in part, Ca2+-mobilisation in response to ET receptors activation I

investigated the effects of agonist exposure on the concentration of NAADP in

pulmonary artery smooth muscle. Exposure of 2nd and 3rd order branches of the

pulmonary arterial tree, denuded of endothelia, to ET-1 for 30s resulted in a

significant increase in NAADP levels within tissue lysates. The increase in

NAADP levels was both rapid and transient, because it was seen to return to

basal levels within 60 s and did not increase again over a further 300 s period

of exposure to ET-1. This finding suggests that NAADP likely acts to initiate

rather than maintain Ca2+ signals in response to ET-1. Importantly, the coupling

of NAADP synthesis to cell surface receptors was found to be both agonist-

and receptor-specific. Thus, PGF2 elicited no change in NAADP levels in

paired pulmonary artery smooth muscle lysates.

In support of my findings, a recent study has shown that exposure of

bovine coronary artery homogenates to ET-1 stimulates a significant increase

in the conversion of NADP+ to NAADP (Zhang, et al., 2006). It seems likely,
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therefore, that NAADP-dependent signalling may play a functional role in

mediating agonist-specific Ca2+ signalling throughout the vasculature and it is

clear that it may function in this way in a variety of cell types. For example, a

recent investigations into the mechanisms underpinning NAADP-dependent

Ca2+ signalling in pancreatic acinar cells (Yamasaki, et al., 2005) demonstrated

that the activation of cholecystokinin (CCK) A receptors on the surface of

pancreatic acinar cells caused a rapid, transient increase in the cellular levels of

NAADP, while the activation of muscarinic acetylcholine receptors (mAChR)

by acetylcholine (ACh) did not.

5.3.4 NAADP-dependent Ca2+ signalling in pulmonary artery smooth

muscle is coupled to ETB but not ETA receptor activation

ET-1 exerts its vasoconstrictor activity through the activation of two

subtypes of receptor, namely the endothelin A receptor (ETA) and the

endothelin B receptor (ETB; Arai, et al., 1990; Sakurai, et al., 1990). Indeed,

the vasoconstrictor actions of ET-1 in the intrapulmonary resistance arteries of

rabbit and rat appear to be mediated via both ETA and ETB receptors

(Ladouceur, et al., 1993; MacLean, et al., 1994). Significantly in this respect,

there is evidence to suggest that each ET receptor subtype may couple to the

same or different Ca2+-mobilising second messengers and in some cases in a

tissue-dependent manner. For example, in the main branch and 2nd and 3rd

order branches of rat pulmonary arteries, ETA receptors have been proposed to

couple to IP3 (Hyvelin, et al., 1998; Zhang, et al., 2003), while ETA receptors

may couple to both IP3 and cADPR in rat peritubular smooth muscle (Barone,

et al., 2002). Furthermore, ETB receptors have been proposed to couple to

cADPR but not IP3 in both peritubular smooth muscle (Barone, et al., 2002)

and shark vascular smooth muscle (Fellner and Parker, 2004). I therefore

sought to determine which of the two endothelin receptor subtypes coupled to

NAADP in pulmonary arterial smooth muscle.

When applied in combination with the ETB receptor antagonist BQ-

788, ET-1 failed to induce Ca2+ signals in pulmonary artery smooth muscle

cells. Importantly however, subsequent application of ET-1 in the absence of

BQ-788 induced a global Ca2+ wave of a similar magnitude to those evoked by
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ET-1 in cells which had not been previously exposed to BQ-788. In marked

contrast, the ETA receptor antagonist BQ-123 was found to be without effect

on Ca2+ signalling in response to ET-1. Therefore, NAADP-dependent Ca2+

signals induced by 100 nM ET-1 in isolated pulmonary artery smooth muscle

cells are likely initiated by activation of ETB receptors, but not via the

activation of ETA receptors. Furthermore, the rapid, transient increase in

NAADP levels measured in endothelium denuded pulmonary arteries in

response to ET-1 was abolished following exposure of tissue to ET-1 in the

presence of the ETB receptor antagonist BQ-788. These findings suggest that

ET-1 initiates Ca2+ signalling via NAADP following activation of ETB

receptors in isolated pulmonary artery smooth muscle cells. These findings are

in contrast to a previous investigation in smooth muscle cells of 2nd and 3rd

order branches of the pulmonary artery which showed ET-1 (0.1 – 10 nM)

mediated Ca2+ signalling via ETA receptor activation coupled to IP3 (Zhang, et

al., 2003). One possible explanation for this discrepancy is that at the IP3-

dependence of observed responses to ET-1 is not evident at the concentration

(100 nM) applied here.

In summary, the findings presented in this chapter suggest that

activation by ET-1 of ETB receptors, but not ETA receptors, induces an

increase in NAADP levels within pulmonary artery smooth muscle and that

this increase in NAADP levels may, in part, underpin global Ca2+ signalling

and contraction of pulmonary artery smooth muscle cells in response to ET-1.

Furthermore, my data suggest that NAADP-dependent Ca2+ signalling may be

evoked in an agonist-specific manner, since PE and PGF2 evoked signals

independent of NAADP and lysosome-related Ca2+ stores. These findings

provide further evidence in support of the proposal that NAADP is an

important and agonist-specific Ca2+-mobilising messenger in mammalian cells

(Cancela, et al., 1999; Yamasaki, et al., 2004; Zhang, et al., 2006). A

schematic representation of the model I propose to describe the nature of ET-1-

mediated Ca2+ signalling in arterial smooth muscle is shown in Fig. 5.10. Thus,

activation of ETB receptors on the surface of arterial smooth muscle cells

induces an increase in NAADP synthesis, which is likely catalysed by ADP-

ribosyl cyclase (Wilson, et al., 1998). NAADP then activates putative NAADP
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receptors located on the surface of lysosomes to initiate a Ca2+ burst. This

occurs within a lysosome-SR junction proximal to ryanodine receptors, leading

to amplification of the Ca2+ burst into a global Ca2+ wave by CICR via RyRs.
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Fig. 5.10 Schematic representation of proposed model of NAADP-dependent Ca2+

signalling induced by ET-1 in pulmonary artery smooth muscle cells: Activation of ETB

receptors on the surface of cells by ET-1 induces an increase in the synthesis of NAADP within

pulmonary artery smooth muscle cells. NAADP activates the putative NAADP receptor on the

surface of lysosomes to cause an initial Ca2+ burst. This initial Ca2+ burst is then amplified by

calcium-induced calcium-release via ryanodine receptor subtype 3 on the surface of the

sarcoplasmic reticulum that lie in close apposition to the lysosomes. Further activation of

ryanodine receptor subtype 2 outwith the trigger zone then leads to a global Ca2+ wave and

contraction of the cell.
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Chapter 6: General discussion

The investigations presented within this thesis provide evidence in

support of the proposal from this laboratory that NAADP acts as a discrete and

potent Ca2+-mobilising messenger in arterial smooth muscle (Boittin et al.,

2002). Significantly, I provide the first direct evidence in mammalian smooth

muscle in support of the proposal (Churchill, et al., 2002; Yamasaki, et al.,

2004; Yamasaki, et al., 2005) that NAADP may selectively elicit Ca2+ signals

from a lysosome-related Ca2+ store alone, which may then be amplified by

CICR from the SR/ER via RyRs (Fig. 6.1). Furthermore, my data show that

NAADP-dependent signalling is recruited in an agonist-specific manner. Thus,

different agonists may evoke discrete and characteristic signalling patterns by

selective recruitment of a given Ca2+-mobilising second messenger and its

complementary Ca2+ storing organelle(s).

6.1 NAADP mobilises Ca2+ from a lysosome-related Ca2+ store separate

to the sarcoplasmic reticulum in pulmonary artery smooth muscle

In this thesis, I showed that selective block by Bafilomycin A1 of the

vacuolar proton pump (V-H+ ATPase; Haller, et al., 1996; Christensen, et al.,

2002) discharged lysosome-related Ca2+ stores and, thereby, abolished Ca2+

signalling by NAADP. Bafilomycin A1 was without effect on SR Ca2+ stores

as Ca2+ signals generated by the activation of Ca2+ release through RyRs, via

caffeine application, or the activation of IP3Rs via IP3 application, remained

unaffected following preincubation of pulmonary artery smooth muscle cells

with Bafilomycin A1. These findings are entirely consistent with the proposal

by Churchill et al (2002) that reserve granules in sea urchin eggs may act as an

NAADP-sensitive Ca2+ store. That an acidic, lysosome-related organelle can

act as an accessible Ca2+ store is in keeping with previous reports of a role for

lysosomes in Ca2+ signalling in snail neurones (Sugaya and Onozuka, 1978),

Madin-Darby canine kidney cells (Haller, et al., 1996) and a cell-line derived

from Drosophila Melanogaster (Yagodin, et al., 1999). Further support for this

viewpoint may be derived from the finding that non-ER acidic vesicles, which
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may be related to lysosomes or secretory vesicles may constitute the NAADP-

sensitive Ca2+ store in pancreatic acinar cells and clonal pancreatic  cells

(MIN6; Yamasaki, et al., 2004), and from the finding that a Bafilomycin A1-

sensitive, acidic Ca2+ store promotes growth of rat cortical neurons (Brailoiu, et

al., 2005). However, my observations are contrary to the proposal that NAADP

primarily mobilises Ca2+ by direct activation of RyRs on a thapsigargin-

sensitive store in skeletal muscle (Hohenegger, et al., 2002) and the nuclear

envelope of isolated pancreatic acinar cell nuclei (Gerasimenko, et al., 2003).

Consistent with the amplification by CICR of intracellular Ca2+ signals

in other cell types (Takasawa, et al., 1998; Cancela, et al., 1999; Cancela,

2001; Patel, et al., 2001), NAADP-dependent Ca2+ mobilisation in pulmonary

artery smooth muscle is subsequently amplified by Ca2+ release from the SR.

In fact, the findings presented in this thesis, consistent with previous findings

from this laboratory (Boittin et al., 2002), further suggests that in arterial

smooth muscle NAADP-dependent Ca2+ signalling via lysosome-related Ca2+

stores alone is not sufficient to elicit a global Ca2+ wave and activation of

primary cell function, in this case contraction. This is apparent as NAADP-

dependent Ca2+ bursts may occur with or without a global Ca2+ wave or smooth

muscle contraction. Moreover, global Ca2+ waves by NAADP may be triggered

in an all-or-none fashion by NAADP-dependent Ca2+ bursts in a manner

dependent on subsequent CICR from the SR via RyRs.

The requirement for amplification of NAADP-dependent Ca2+ bursts by

CICR via RyRs is apparent from the fact that selective depletion of SR Ca2+

stores by thapsigargin, or block of RyRs by ryanodine abolished global Ca2+

waves by NAADP, but not spatially restricted Ca2+ bursts via lysosomes

(Boittin et al., 2002). My investigations provide further support for this

viewpoint in that, when lysosome-related Ca2+ stores were discharged by

Bafilomycin A1, spatially restricted Ca2+ release events were seen to precede

global Ca2+ waves. Furthermore, these global Ca2+ waves but not spatially

restricted Ca2+ release in response to Bafilomycin A1 alone were abolished

after depletion of SR Ca2+ stores by thapsigargin or by block of RyRs using

ryanodine. In short, global Ca2+ waves by NAADP and Bafilomycin A1

required amplification of initial Ca2+ signals by CICR via RyRs in the SR.
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6.2 Lysosomes associate with a subpopulation of ryanodine receptors to

form a trigger zone for NAADP-dependent Ca2+ signalling in

pulmonary artery smooth muscle

In contrast to the findings of others with respect to NAADP (Takasawa,

et al., 1998; Cancela, et al., 1999; Cancela, 2001; Patel, et al., 2001), data from

this laboratory suggest that Ca2+ signalling by IP3 in arterial smooth muscle

occurs in a manner independent of lysosomal Ca2+ stores and that IP3 is able to

initiate a global Ca2+ wave in the absence of CICR via RyRs (Chapter 3;

Boittin et al., 2002). Cells may therefore coordinate and restrict the relationship

between lysosomal Ca2+ stores and the SR/ER in a manner suited to their

function. Consistent with this proposal and in contrast to previous

investigations that have shown a diffuse, granular pattern of lysosome-related

organelles in both sea urchin eggs (Churchill et al., 2002) and MIN6

(Yamasaki et al., 2004), my data suggests that lysosomes may form highly

organised and spatially restricted clusters in freshly isolated pulmonary arterial

smooth cells when visualised using the fluorescent probe LysoTracker Red.

The organelles were determined to be lysosomes as they lost fluorescence in a

time-dependent manner following the addition of glycyl-phenylalanyl-

napthylamide (GPN), a known substrate of the lysosomal exopeptidase

cathepsin C. Upon entering lysosomes GPN is hydrolysed to free amino acids

by the actions of the cathepsin C (Berg, et al., 1994). When the spatial

distribution of LysoTracker Red labelled lysosomes and BODIPY-FL

ryanodine labelled RyRs were examined in freshly isolated pulmonary artery

smooth muscle cells, it was observed that lysosomal clusters were closely

associated with a subpopulation of RyRs. These closely associated RyRs and

lysosomal clusters appear to be separated by a narrow junction or cleft that is

less than 0.4 m wide. Thus, lysosomal clusters and RyRs may form a highly

organised trigger zone for Ca2+ signalling by NAADP in arterial smooth

muscle (Fig. 6.1). The presence of this trigger zone may explain, in part, why

Ca2+ bursts by NAADP induce global Ca2+ signals in a manner that requires

CICR via RyRs in the SR of arterial smooth muscle cells, whereas Ca2+ release

by IP3 does not (Chapter 3; Boittin et al., 2002).
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Fig. 6.1 Schematic diagram of the proposed trigger zone between RyRs and lysosomes in

the formation of a trigger zone for NAADP-dependent Ca2+ signalling in pulmonary

artery smooth muscle cells. The formation of a trigger zone between lysosomes and RyRs

allows for the amplification of NAADP-mediated Ca2+ bursts into global Ca2+ waves by the

recruitment of RyRs located on the Sarcoplasmic Reticulum by the mechanism of Ca2+-induced

Ca2+-release.

6.3 Large clusters of lysosomes are located close to the nucleus of

pulmonary artery smooth muscle cells

Immunocytochemical investigations carried out on pulmonary artery

smooth muscle cells, showed that although labelling of lysosomes was evident

throughout the cytoplasm of cells, a greater density of lysosomal labelling and

a larger mean volume of elements of lysosomal labelling was observed in the

perinuclear region than in either the extra-perinuclear or sub-plasmalemmal

regions. The large volumes of lysosomal labelling located in the perinuclear

region of pulmonary artery smooth muscle cells resembled the large, spatially

restricted clusters of lysosomes visualised using LysoTracker Red, located
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close to the centre of elongated pulmonary artery smooth muscle cells. These

findings suggest, therefore, that large clusters of lysosomes are located in close

proximity to the nucleus of pulmonary artery smooth muscle cells and are

consistent with the perinuclear distribution of lysosomes observed in a number

of other tissues, including vascular smooth muscle (Peters, et al., 1972; James-

Kracke, et al., 1979; Robinson, et al., 1986; Matteoni and Kreis, 1987;

Pohlmann, et al., 1995; Reaves, et al., 1996b). Furthermore, spatially restricted

clusters of lysosomes were seen to correspond to spatially restricted Ca2+ burst

events observed in pulmonary artery smooth muscle cells in response to

NAADP. The resemblance between the distributions of lysosomes in

pulmonary artery smooth muscle cells with one of the forms of spatially

restricted Ca2+ bursts observed in response to NAADP, combined with the

finding that lysosomal clusters are located in the perinuclear region of cells,

provides compelling evidence that spatially restricted NAADP-mediated Ca2+

bursts are elicited from clusters of lysosomes located in the perinuclear region

of cells.

However, the limited lysosomal labelling observed within the sub-

plasmalemmal region of elongated pulmonary artery smooth muscle cells

examined in immunocytochemical studies appears to be contrary to my earlier

observations in live cells that lysosomes may form a ring around the periphery

of the cell consistent with the second form of Ca2+ burst generated in response

to NAADP; namely a ring of Ca2+ release observed around the periphery of

cells. This discrepancy may be explained due to the contracted state of the

subset of cells which displayed either peripheral LysoTracker Red labelling of

lysosomes, or peripheral Ca2+ bursts in response to NAADP. Thus, as these

cells had contracted, the cytoplasmic space between the nucleus and the plasma

membrane would be greatly reduced. The contents of the cytoplasm would,

therefore, be concentrated into a relatively small area around the nucleus and

would be visualised as appearing close to the plasma membrane. It is likely,

therefore, that the contracted state of a given pulmonary artery smooth muscle

cell could determine whether or not a focal lysosomal cluster proximal to the

nucleus is evident and thereby determine the characteristics of a Ca2+ burst

within such a cell.
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6.4 Do lysosomes colocalise with a specific subtype of ryanodine

receptor in pulmonary artery smooth muscle cells?

As mentioned previously, LysoTracker Red labelled lysosomes were

seen to associate with a subpopulation of RyRs to form lysosome-SR junctions

in pulmonary artery smooth muscle cells. To date there have been three distinct

subtypes of RyRs identified, all of which have been shown to be present in

pulmonary artery smooth muscle (Chapter 4, Hermann-Frank, et al., 1991,

Neylon, et al., 1995, Jeyakumar, et al., 1998, Coussin, et al., 2000, Mirroneau,

et al., 2001, Yang, et al., 2005, Zheng et al., 2005). That all three subtypes of

RyR are expressed in pulmonary artery smooth muscle raises the question as to

whether or not lysosomes form a trigger zone for NAADP-mediated Ca2+

signalling with one particular subtype of RyR. Therefore, I examined the

spatial organisation of RyRs within pulmonary artery smooth muscle cells and

the degree to which each subtype associated with lysosomes.

6.4.1 Differences in the distribution of ryanodine receptor subtype 1, 2 and

3 in pulmonary artery smooth muscle cells

Immunocytochemical examination of pulmonary artery smooth muscle

cells showed that RyR1 labelling was uniformly distributed throughout the

cytoplasm of cells, with little evidence of clustering in the perinuclear, extra-

perinuclear or sub-plasmalemmal regions.

In contrast, RyR2 labelling was seen to predominate in the extra-

perinuclear region where a greater density and larger clusters of RyR2 labelling

was observed than in either the perinuclear or sub-plasmalemmal regions.

RyR3 labelling on the other hand, was seen to predominate in the

perinuclear region of cells, where the extensive clustering of RyR3 was

reminiscent of the greater clustering of lysosomal labelling in the perinuclear

region when compared to either the extra-perinuclear or sub-plasmalemmal

regions.

Comparison between the labelling of the three different RyR subtypes

identified marked differences in their distributions within cells. Thus, RyR3

was seen to be the dominant subtype of RyR detected in the perinuclear region,



230

while RyR2 was predominant in the extra-perinuclear region and RyR1 was the

predominant subtype of RyR in the sub-plasmalemmal region of cells.

Therefore, the profound differences in the distributions of the different RyR

subtypes within the cytoplasm of cells may be indicative of functional

relevance, with each of the subtypes having an important and distinct role in

the regulation of SR Ca2+ signalling in different areas of pulmonary artery

smooth muscle cells.

6.4.2 Lysosomes and ryanodine receptor subtype 3, but not ryanodine

receptor subtype 1 or 2, form large areas of colocalisation in the

perinuclear region of pulmonary artery smooth muscle cells

Comparison of the degree to which RyR1, RyR2 and RyR3 associated

with lysosomes indicated that RyR3 labelling colocalised with lysosomes to a

much greater extent than either RyR1 or RyR2 within the perinuclear region of

pulmonary artery smooth muscle cells. Indeed, both the density and the mean

volume of areas of colocalisation between RyR3 and lysosomes were

significantly larger than was measured for either RyR2 or RyR1 in the

perinuclear region. The colocalisation between RyR3 and lysosomes declined

considerably outwith the perinuclear region and there was little difference

between the extent to which each of the RyR subtypes colocalised with

lysosomes in either the extra-perinuclear or sub-plasmalemmal regions.

Furthermore, examination of the fluorescent labelling located in close

proximity to large areas of colocalisation between the RyR subtypes and

lysosomes in the perinuclear region indicated that larger clusters of lysosomes

were associated with areas of colocalisation between RyR3 and lysosomes than

was observed with RyR2 or RyR1.

Therefore, these findings indicate that the trigger zone for NAADP-

mediated Ca2+ signalling is formed between clusters of lysosomes and portions

of the SR expressing clusters of RyR3 in the perinuclear region of pulmonary

artery smooth muscle cells (Fig. 6.2). Furthermore, the dominance of RyR2

within the extra-perinuclear region of cells suggests that RyR2 may function to

carry a propagating Ca2+ signal away from the trigger zone to the rest of the
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cell following amplification of the initial NAADP-mediated Ca2+ burst by

RyR3 (Fig. 6.2).
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Fig. 6.2 Schematic diagram of the proposed role for RyR3 and RyR2 in the formation of

the trigger zone for NAADP-dependent Ca2+ signalling in pulmonary artery smooth

muscle cells. RyR3 on the Sarcoplasmic Reticulum (SR) are located close to putative NAADP

receptors on the surface of lysosomes forming the proposed trigger zone for NAADP-

dependent Ca2+ signalling in the perinuclear region of cells. Ca2+ released from lysosomal Ca2+

stores activates RyR3s, resulting in an increase in the Ca2+ concentration in the trigger zone.

Ca2+ signals generated in the trigger zone are amplified to global Ca2+ signals by the

recruitment of RyR2 located through the cytoplasm of the cell by the mechanism of Ca2+-

induced Ca2+-release.

6.5 NAADP-mediated Ca2+ signalling is activated in an agonist-specific

manner in pulmonary artery smooth muscle cells

Significant support for a role for NAADP and lysosomes in a discrete

and agonist-specific Ca2+signalling pathway in arterial smooth muscle was

derived from my investigation of the effects of three different vasoconstrictors,

phenylepherine (PE), prostaglandin-F2 (PGF2) and endothelin-1 (ET-1).
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Firstly, depletion of lysosomal Ca2+ stores by Bafilomycin A1 abolished Ca2+

signalling in response to ET-1. However Bafilomycin A1 was without effect on

Ca2+ mobilisation by either PGF2, PE or by direct activation of RyRs with

caffeine. Furthermore, my data are consistent with the idea that ET-1, like

NAADP, evoked spatially restricted Ca2+ bursts from lysosomes that were

amplified by CICR from the SR via RyRs (Fig. 6.3). Most conclusively,

however, I have shown that NAADP levels were raised in pulmonary arterial

smooth muscle upon exposure to ET-1 but not PGF2. Further examination of

ET-1 evoked Ca2+ signals in arterial smooth muscle showed that the generation

of Ca2+ signals in response to ET-1 in my studies was mediated through the

activation of ETB receptors, independent of the activation of ETA receptors

(Fig. 6.3). It was also shown that the increase in NAADP levels following

treatment of arterial smooth muscle with ET-1 was abolished following

incubation of tissue with the ETB receptor antagonist BQ-788.

A previous investigation in peritubular smooth muscle from rat testis

has suggested a role for cADPR in the generation of Ca2+ signals in response to

activation of both ETA and ETB receptors (Barone et al., 2002), while a role

for cADPR in the regulation of Ca2+ signalling in response to the activation of

ETB receptors in shark vascular smooth muscle has also been identified

(Fellner and Parker, 2004). Furthermore, a recent study in pancreatic acinar

cells has demonstrated an increase in the synthesis of both NAADP and

cADPR in response to the activation of cell surface receptors (Yamasaki et al.,

2005). Briefly, following initial stimulation of pancreatic acinar cells with the

brain-gut peptide (CCK) there is an immediate increase in the cellular levels of

NAADP. This immediate increase in NAADP levels mediates initial Ca2+

signals. However, this rise in NAADP levels is seen to be transient and as the

levels of NAADP decline there is an increase in the cellular levels of cADPR

which plays a role in the sustained Ca2+ response to CCK by sensitising RyRs

to activation by CICR (Yamasaki et al., 2005). There are obvious parallels

therefore, between the transient rise in NAADP levels in response to CCK in

pancreatic acinar cells (Yamasaki et al., 2005) and the transient increase in

NAADP levels in arterial smooth muscle in response to ET-1 described within

this thesis. These similarities in the changes in NAADP levels between
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pancreatic acinar cells and arterial smooth muscle, coupled with the evidence

of an involvement of cADPR in ET-1-mediated Ca2+ signalling in smooth

muscle cells from different tissues (Barone et al., 2002; Fellner and Parker,

2004) raises the possibility of an involvement of cADPR in mediating Ca2+

signalling in response to ET-1 in pulmonary arterial smooth muscle. Thus, ET-

1 may initiate transient global Ca2+ signals via NAADP-mediated Ca2+ release

following activation of ETB receptors. The ability of NAADP-mediated Ca2+

bursts to generate subsequent, sustained global Ca2+ signals may then be

governed by the actions of cADPR through modulation of the sensitivity of

RyR2 to activation by cytosolic Ca2+ (Clementi, et al., 1996; Lukyanenko and

Gyorke, 1999; Prakash, et al., 2000). Thereby, an increase in the cellular levels

of cADPR, following the initial transient rise in NAADP levels, may shift the

threshold Ca2+ concentration required for the generation of global Ca2+ signals

by CICR via RyR2 in such a way that Ca2+ signals in response to ET-1 may be

maintained in the absence of further NAADP-dependent Ca2+ release.

Conversely, an immediate increase in cADPR levels following exposure to ET-

1 could serve to modulate the threshold for initiation of CICR via RyRs and

lower the threshold for NAADP-mediated Ca2+ bursts to the point where the

failsafe mechanism afforded by the presence of RyR3 in the trigger zone is

negated. Indeed, a previous study in bovine and murine skeletal muscle has

shown that cADPR increases the Po of RyR3 by 20-fold and that the affinity of

RyR3 for Ca2+ is increased by around 10-fold (Sonnleitner, et al., 1998). Thus,

the actions of cADPR on RyR3 and/or RyR2 may serve to promote both the

generation and maintenance of global Ca2+ waves in pulmonary artery smooth

muscle following initiation of NAADP-mediated Ca2+ bursts from lysosomal

Ca2+ stores (Fig. 6.3). However, such a role for cADPR in the regulation of

Ca2+ signals in response to ET-1 in smooth muscle of the pulmonary artery

remains to be elucidated.
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Fig. 6.3 Schematic diagram of the proposed signalling pathway involved in the generation

of global Ca2+ signals in response to ET-1 in pulmonary artery smooth muscle cells. The

activation of ETB receptors on the surface of the cell leads to an increase in the cellular

production of NAADP. NAADP then activates localised Ca2+ release from acidic lysosomal

Ca2+ stores through putative NAADP-receptors. Ca2+ released from lysosomes into the trigger

zone acts upon RyR3s on the Sarcoplasmic Reticulum (SR). These increased Ca2+ signals are

amplified to global Ca2+ signals by the recruitment of RyR2 located through the cytoplasm of

the cell by the mechanism of Ca2+-induced Ca2+-release. Exposure of cells to ET-1 may also

lead to an increase in the cellular levels of cADPR which may act to enhance the sensitivity of

RyRs to activation by cytoplasmic Ca2+, thereby promoting the generation of global Ca2+

signals in response to initial Ca2+ bursts elicited by NAADP.

Given the multitude of cellular mechanisms governed by changes in

Ca2+ concentration from the fertilisation of eggs to cell death, it is perhaps not

surprising that the systems controlling Ca2+ signalling are complex. Thus, not

all stimuli that generate a specific cellular response do so by initiating Ca2+

signals with similar spatiotemporal patterns (Berridge, et al., 2000). Research

into the intricate pathways underlying cellular responses to physiological and

pharmacological stimuli is vital, therefore, if paradoxes such as these are to be

resolved. The results presented in this thesis provide a platform on which we

may develop a deeper understanding of how different vasoconstrictors may
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trigger smooth muscle contraction while generating their own characteristic

signalling patterns through the selective recruitment of a given Ca2+ mobilising

second messenger and its complimentary storing organelle(s). For example,

recent investigations have demonstrated that different Ca2+ signals may

regulate differential gene expression (Dolmetsch, et al., 1998; Li, et al., 1998)

and transcription (Stevenson, et al., 2001), in preparations including native

vascular smooth muscle. It seems likely, therefore, that the required code for

differential gene expression and transcription could be determined, at least in

part, by the discrete mechanisms through which IP3, cADPR and NAADP

trigger Ca2+ release and by the spatiotemporal characteristics of the resultant

Ca2+ signal. Further flexibility could be incorporated into this system by the

combinatorial effects of cADPR, NAADP, and/or IP3. For example, differential

activation of these Ca2+ signalling pathways by vasoactive agents may trigger

an initial contraction of vascular smooth muscle while promoting, over a longer

time course, differential gene expression required in the maintenance of normal

physiological function. Furthermore, abnormalities in the regulation of these

signalling pathways may underlie and promote the development of a range of

pathophysiologies associated with, for example, hypertension, angiogenisis and

atherogenisis. However, further investigations are required in order to address

these questions.
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Appendix 1:

Results Tables Chapter 3:

Resting F340/F380 Maximum F340/F380 Increase in F340/F380 % increase in F340/F380

0.76 1.11 0.35 46
0.73 1.4 0.67 92
0.81 2.89 2.08 257
0.78 1.75 0.97 124
0.4 1.28 0.88 220
0.56 1.2 0.64 114
0.38 2.34 1.96 516
0.36 2.36 2 556
0.7 1.69 0.99 141
0.76 1.78 1.02 134
0.67 2.94 2.27 339
0.73 1.74 1.01 138
0.86 1.5 0.64 74
0.83 1.86 1.03 124
0.72 1.83 1.11 154
0.9 2.67 1.77 197
0.66 2.6 1.94 294

Mean 0.7 1.9 1.3 207
S.E.M. ± 0.1 0.1 0.2 35

Table 3.1: Fura-2 fluorescence ratio measurements in all experiments involving

intracellular dialysis of NAADP into isolated pulmonary artery smooth muscle cells. The

resting F340/F380 ratio was determined before the intracellular dialysis of NAADP from the

patch pipette. The maximum F340/F380 ratio value is the peak ratio value recorded during the

global Ca2+ wave generated in response to the intracellular dialysis of NAADP (10 nM). The

increase in F340/F380 ratio was measured as the overall increase in Fura-2 fluorescence ratio

within the cell as a result of NAADP dialysis and was determined by subtracting the resting

F340/F380 value in column 2 from the maximum F340/F380 value in column 3. The % increase in

F340/F380 ratio was determined by expressing the value of the increase in F340/F380 ratio for each

experiment as a percentage of the resting F340/F380 ratio, when the resting F340/F380 ratio value is

taken to be 100%.
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Resting F340/F380 Maximum F340/F380 Increase in F340/F380 % increase in F340/F380

0.54 1.02 0.48 89
0.54 1.00 0.46 86
0.62 0.96 0.34 55
0.9 1.17 0.27 30

0.66 1.01 0.35 53
0.61 0.99 0.38 62
0.68 1.14 0.46 68
0.58 0.88 0.3 52
0.61 0.95 0.34 58
1.28 2.1 0.86 64
0.72 1.06 0.36 47
0.75 0.99 0.24 32
0.64 1.04 0.4 63
0.60 1.17 0.57 95
0.42 1.21 0.79 188
0.87 1.18 0.31 36
0.49 0.77 0.28 57
0.38 0.75 0.37 97
0.37 0.78 0.41 111
0.35 0.69 0.34 97

Mean 0.63 1.04 0.42 72
S.E.M. ± 0.05 0.06 0.04 8

Table 3.2: Fura-2 fluorescence ratio measurements in all experiments involving the

extracellular application of Bafilomycin A1 to isolated pulmonary artery smooth muscle

cells. The resting F340/F380 ratio was determined before the extracellular application of

Bafilomycin A1 (100 – 300 nM) to cells. The maximum F340/F380 ratio value is the peak ratio

value recorded during the global Ca2+ wave generated in response to the extracellular

application of Bafilomycin A1. The increase in F340/F380 ratio was measured as the overall

increase in Fura-2 fluorescence ratio within the cell as a result of Bafilomycin A1 and was

determined by subtracting the resting F340/F380 value in column 2 from the maximum F340/F380

value in column 3. The % increase in F340/F380 ratio was determined by expressing the value of

the increase in F340/F380 ratio for each experiment as a percentage of the resting F340/F380 ratio,

when the resting F340/F380 ratio value is taken to be 100%.
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Resting F340/F380 Maximum F340/F380

Increase in
F340/F380

% increase in
F340/F380

0.6 0.86 0.26 43*
0.66 0.85 0.19 29*
0.79 0.96 0.17 22*
0.81 0.98 0.17 21*
0.86 0.99 0.13 15*
0.64 0.87 0.23 36*
0.68 0.89 0.21 31*
0.7 0.82 0.12 17*
0.37 0.44 0.07 19
0.48 0.65 0.17 35
0.42 0.43 0.01 2

Mean 0.64 0.79 0.16 25
S.E.M. ± 0.05 0.06 0.02 4

Table 3.3 Fura-2 fluorescence ratio measurements in all experiments involving the

extracellular application of Bafilomycin A1 to isolated pulmonary artery smooth muscle

cells following preincubation of cells with thapsigargin. The resting F340/F380 ratio was

determined before the extracellular application of Bafilomycin A1 (100 – 300 nM) to cells

following preincubation (20 min) with thapsigargin (1 M). The maximum F340/F380 ratio value

is the peak ratio value recorded during the global Ca2+ wave generated in response to the

extracellular application of Bafilomycin A1. The increase in F340/F380 ratio was measured as the

overall increase in Fura-2 fluorescence ratio within the cell as a result of Bafilomycin A1 and

was determined by subtracting the resting F340/F380 value in column 2 from the maximum

F340/F380 value in column 3. The % increase in F340/F380 ratio was determined by expressing the

value of the increase in F340/F380 ratio for each experiment as a percentage of the resting

F340/F380 ratio, when the resting F340/F380 ratio value is taken to be 100%. The Asterisk (*)

denotes cells that exhibited spatially restricted increases in Fura-2 fluorescence ratio.

Bafilomycin A1
Bafilomycin A1
+ Thapsigargin

Mean 0.42 0.16 P value <0.0001
S.E.M. ± 0.04 0.02 F 25.21

n 20 11

Table 3.4: Summary of the mean increases in Fura-2 fluorescence ratio in isolated

pulmonary artery smooth muscle cells in response to Bafilomycin A1 (100 – 300 nM) in

the presence and absence of thapsigargin (1 M): Means were calculated from changes in

Fura-2 fluorescence ratio measured by subtracting the resting Fura-2 fluorescence ratio value

from the peak Fura-2 fluorescence ratio value measured in each experiment. The P value

determining statistical significance was calculated by means of a one-way ANOVA test.
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Resting F340/F380 Maximum F340/F380 Increase in F340/F380 % increase in F340/F380

0.6 0.78 0.18 30*
0.7 0.91 0.21 30*

0.71 0.89 0.18 25
0.77 1.01 0.24 31*
0.77 1.12 0.35 46*
0.38 0.46 0.08 21
0.44 0.56 0.12 27*
0.48 0.56 0.08 17

Mean 0.61 0.79 0.18 28
S.E.M. ± 0.05 0.08 0.03 3

Table 3.5: Fura-2 fluorescence ratio measurements in all experiments involving the

extracellular application of Bafilomycin A1 to isolated pulmonary artery smooth muscle

cells following preincubation of cells with ryanodine. The resting F340/F380 ratio was

determined before the extracellular application of Bafilomycin A1 (100 – 300 nM) to cells

following the preincubation (20 min) with ryanodine (20 M). The maximum F340/F380 ratio

value is the peak ratio value recorded during the global Ca2+ wave generated in response to the

extracellular application of Bafilomycin A1. The increase in F340/F380 ratio was measured as the

overall increase in Fura-2 fluorescence ratio within the cell as a result of Bafilomycin A1 and

was determined by subtracting the resting F340/F380 value in column 2 from the maximum

F340/F380 value in column 3. The % increase in F340/F380 ratio was determined by expressing the

value of the increase in F340/F380 ratio for each experiment as a percentage of the resting

F340/F380 ratio, when the resting F340/F380 ratio value is taken to be 100%. The Asterisk (*)

denotes cells that exhibited spatially restricted increases in Fura-2 fluorescence ratio.

Bafilomycin A1
Bafilomycin A1

+ ryanodine
Mean 0.42 0.18 P value <0.0001
S.E.M. 0.04 0.03 F 14.99

n 20 8

Table 3.6: Summary of the mean increases in Fura-2 fluorescence ratio in isolated

pulmonary artery smooth muscle cells in response to Bafilomycin A1 in the presence and

absence of ryanodine: Means were calculated from changes in Fura-2 fluorescence ratio

measured by subtracting the resting Fura-2 fluorescence ratio value from the peak Fura-2

fluorescence ratio value measured in each experiment. The P value determining statistical

significance was calculated by means of a one-way ANOVA test.
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Resting F340/F380 Maximum F340/F380 Increase in F340/F380 % increase in F340/F380

0.79 0.9 0.21 14
0.76 1 0.24 32
0.66 0.86 0.2 30
0.85 1.14 0.29 34
0.63 0.67 0.04 6
0.74 0.81 0.07 9
0.59 0.73 0.14 23

Mean 0.72 0.87 0.17 21
S.E.M. ± 0.04 0.06 0.03 4

Table 3.7: Fura-2 fluorescence ratio measurements in all experiments involving the

intracellular dialysis of NAADP to isolated pulmonary artery smooth muscle cells

following preincubation of cells with Bafilomycin A1. The resting F340/F380 ratio was

determined before the intracellular dialysis of NAADP (10 nM) to cells following

preincubation of cells with Bafilomycin A1 (100 nM). The maximum F340/F380 ratio value is the

peak ratio value recorded during the global Ca2+ wave generated in response to the intracellular

dialysis of NAADP. The increase in F340/F380 ratio was measured as the overall increase in

Fura-2 fluorescence ratio within the cell as a result of NAADP and was determined by

subtracting the resting F340/F380 value in column 2 from the maximum F340/F380 value in column

3. The % increase in F340/F380 ratio was determined by expressing the value of the increase in

F340/F380 ratio for each experiment as a percentage of the resting F340/F380 ratio, when the

resting F340/F380 ratio value is taken to be 100%.

NAADP
NAADP

+ Bafilomycin A1
Mean 1.3 0.17 P value <0.0001
S.E.M. 0.02 0.03 F 21.59

n 17 7

Table 3.8: Summary of the mean increases in Fura-2 fluorescence ratio in isolated

pulmonary artery smooth muscle cells in response to NAADP (10 nM) in the presence

and absence of Bafilomycin A1 (100 nM): Means were calculated from changes in Fura-2

fluorescence ratio measured by subtracting the resting Fura-2 fluorescence ratio value from the

peak Fura-2 fluorescence ratio value measured in each experiment. The P value determining

statistical significance was calculated by means of a one-way ANOVA test.
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Resting F340/F380 Maximum F340/F380 Increase in F340/F380 % increase in F340/F380

0.75 2.77 2.02 269
0.78 2.09 1.31 168
0.51 1.9 1.39 273
0.68 2.11 1.43 210

Mean 0.68 2.22 1.54 230
S.E.M. ± 0.06 0.2 0.16 25

Table 3.9: Fura-2 fluorescence ratio measurements in all experiments involving the

extracellular application of caffeine to isolated pulmonary artery smooth muscle cells.

The resting F340/F380 ratio was determined before the extracellular application of caffeine (2.5

mM) to cells. The maximum F340/F380 ratio value is the peak ratio value recorded during the

global Ca2+ wave generated in response to the extracellular application of caffeine. The

increase in F340/F380 ratio was measured as the overall increase in Fura-2 fluorescence ratio

within the cell as a result of caffeine and was determined by subtracting the resting F340/F380

value in column 2 from the maximum F340/F380 value in column 3. The % increase in F340/F380

ratio was determined by expressing the value of the increase in F340/F380 ratio for each

experiment as a percentage of the resting F340/F380 ratio, when the resting F340/F380 ratio value is

taken to be 100%.

Resting F340/F380 Maximum F340/F380 Increase in F340/F380 % increase in F340/F380

0.72 2.15 1.4 199
0.75 2.37 1.62 216
0.68 2.09 1.41 207
0.68 2.12 1.44 212

Mean 0.71 2.18 1.47 209
S.E.M. ± 0.02 0.06 0.05 4

Table 3.10: Fura-2 fluorescence ratio measurements in all experiments involving the

extracellular application of caffeine to isolated pulmonary artery smooth muscle cells

following preincubation of cells with Bafilomycin A1. The resting F340/F380 ratio was

determined before the extracellular application of caffeine (2.5 mM) to cells following the

preincubation with Bafilomycin A1 (100 nM). The maximum F340/F380 ratio value is the peak

ratio value recorded during the global Ca2+ wave generated in response to the extracellular

application of caffeine. The increase in F340/F380 ratio was measured as the overall increase in

Fura-2 fluorescence ratio within the cell as a result of caffeine and was determined by

subtracting the resting F340/F380 value in column 2 from the maximum F340/F380 value in column

3. The % increase in F340/F380 ratio was determined by expressing the value of the increase in

F340/F380 ratio for each experiment as a percentage of the resting F340/F380 ratio, when the

resting F340/F380 ratio value is taken to be 100%.
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Caffeine
Caffeine

+ Bafilomycin A1
Mean 1.54 1.47 P value 0.7

S.E.M. ± 0.16 0.05 F 17
n 4 4

Table 3.11: Summary of the mean increases in Fura-2 fluorescence ratio in isolated

pulmonary artery smooth muscle cells in response to caffeine (2.5 mM) in the presence

and absence of Bafilomycin A1 (100 nM): Means were calculated from changes in Fura-2

fluorescence ratio measured by subtracting the resting Fura-2 fluorescence ratio value from the

peak Fura-2 fluorescence ratio value measured in each experiment. The P value determining

statistical significance was calculated by means of a one-way ANOVA test.

Resting F340/F380 Maximum F340/F380 Increase in F340/F380 % increase in F340/F380

0.57 2.5 1.93 339
0.72 2.44 1.72 239
0.64 1.34 0.7 109
0.52 1.03 0.51 98

Mean 0.61 1.83 1.22 196
S.E.M. ± 0.04 0.38 0.36 57

Table 3.12: Fura-2 fluorescence ratio measurements in all experiments involving the

intracellular dialysis of IP3 into isolated pulmonary artery smooth muscle cells. The

resting F340/F380 ratio was determined before the intracellular dialysis of IP3 (1 M) into cells.

The maximum F340/F380 ratio value is the peak ratio value recorded during the global Ca2+ wave

generated in response to the intracellular dialysis of IP3. The increase in F340/F380 ratio was

measured as the overall increase in Fura-2 fluorescence ratio within the cell as a result of IP3

and was determined by subtracting the resting F340/F380 value in column 2 from the maximum

F340/F380 value in column 3. The % increase in F340/F380 ratio was determined by expressing the

value of the increase in F340/F380 ratio for each experiment as a percentage of the resting

F340/F380 ratio, when the resting F340/F380 ratio value is taken to be 100%.
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Resting F340/F380 Maximum F340/F380 Increase in F340/F380 % increase in F340/F380

0.75 2.77 2.72 269
0.78 2.09 1.31 170
0.51 1.9 1.39 273
0.68 2.11 1.43 211

Mean 0.68 2.22 1.71 231
S.E.M. ± 0.06 0.19 0.34 25

Table 3.13 Fura-2 fluorescence ratio measurements in all experiments involving the

intracellular dialysis of IP3 to isolated pulmonary artery smooth muscle cells following

preincubation of cells with Bafilomycin A1. The resting F340/F380 ratio was determined before

the intracellular dialysis of IP3 to cells following the preincubation with Bafilomycin A1. The

maximum F340/F380 ratio value is the peak ratio value recorded during the global Ca2+ wave

generated in response to the intracellular dialysis of IP3. The increase in F340/F380 ratio was

measured as the overall increase in Fura-2 fluorescence ratio within the cell as a result of IP3

and was determined by subtracting the resting F340/F380 value in column 2 from the maximum

F340/F380 value in column 3. The % increase in F340/F380 ratio was determined by expressing the

value of the increase in F340/F380 ratio for each experiment as a percentage of the resting

F340/F380 ratio, when the resting F340/F380 ratio value is taken to be 100%.

IP3

IP3

+ Bafilomycin A1
Mean 1.22 1.71 P value 0.4

S.E.M. ± 0.36 0.34 F 1.03
N 4 4

Table 3.14: Summary of the mean increases in Fura-2 fluorescence ratio in isolated

pulmonary artery smooth muscle cells in response to IP3 (1 M) in the presence and

absence of Bafilomycin A1 (100 nM): Means were calculated from changes in Fura-2

fluorescence ratio measured by subtracting the resting Fura-2 fluorescence ratio value from the

peak Fura-2 fluorescence ratio value measured in each experiment. The P value determining

statistical significance was calculated by means of a one-way ANOVA test.

Volume (m3)
7.84
31.59
42.83

Mean 27.42
S.E.M. ± 10

Table 3.15: Volume of distinct clusters of lysosomes in isolated pulmonary artery smooth

muscle cells: Measurements of volume (m3) of the large, distinct lysosomal clusters observed

in pulmonary artery smooth muscle cells. To obtain these measures cells were rotated through

00, 90o, 180o and 270o of rotation around either the X- or Y- axis.
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Appendix 2:

Results Tables Chapter 4:

Area of
close association

Degree of
rotation

distance
(m)

1 229 0.25
2 176 0.25
3 237 0.16
4 279 0.32
5 265 0.25
6 90 0.34
7 90 0.11
8 284 0.11
9 246 0.34

10 59 0.34
11 222 0.25
12 90 0.36

MEAN 0.26
S.E.M. +/- 0.03

Table 4.1 Measurements of distance between distinct lysosomal clusters and RyRs in

isolated pulmonary artery smooth muscle cells. All distance measurements obtained on

Deltavision imaging system using SoftWorx software (Applied Precision, USA).
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Volume of cells
(m3)

Volume of
nucleus (m3)

Volume of
perinuclear ROI

(m3)

Volume of extra-
perinuclear region

(m3)

Volume of sub-
plasmalemmal region (m3)

2089.31 140.27 570.75 616.57 901.99
927.2 78.15 253.72 225.44 368.13

1507.29 74.01 453.68 316.91 662.69
4206.95 95.3 1237.26 751.28 2218.41
729.16 47.72 235.66 171.92 329.92

1879.62 133.73 616.13 494.84 768.65
1701.72 142.01 460.13 715.44 513.17
2208.73 125.81 554.25 1017.2 637.28
1472.71 85.3 438.72 455.17 633.47
1366.61 101.57 283.73 401.6 641.56
741.59 71.74 178.63 210.36 285.09

1429.76 173.61 282.09 458.06 514.44
2551.58 130.03 1131.17 425.68 958.68
1959.04 145.07 840.18 318.82 652.62
2076.69 150.5 758.86 411.12 801.96
1688.99 80.37 719.56 354.95 569.38
2300.8 130.21 584.03 555.19 1071.32

1090.41 61.5 309.18 275.59 444.15
846.87 58.7 266.9 178.52 376.58

2073.08 92.31 649.4 83.35 540.33
2215.08 59.63 950.76 590.71 626.81
1934.38 74.33 948.97 300.32 642.8
1557.8 108.35 750.38 313.7 443.05

1542.94 175.38 498.46 387.95 554.32

MEAN 1754.1 105.65 380.41 417.95 673.2
S.E.M. +/- 258.4 13.36 103.9 75.04 135.16

Table 4.2 Measurements of Volume occupied by the perinuclear, extra-perinuclear and

sub-plasmalemmal regions in relation to the total volume occupied by isolated pulmonary

artery smooth muscle cells (n = 40)
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Volume Lysosomal
label in cells (m3)

Mean
volume of
labelling

within cells
(m3)

Volume of cells
(m3)

Volume occupied,
per m3 of cell,
by lysosomal

labelling

26.14 0.42 2089.31 0.013
10.6 0.46 927.2 0.011
8.68 0.33 1507.29 0.006
34.78 0.32 4206.95 0.008
23.59 0.62 729.16 0.032
34.68 0.41 1879.62 0.019
28.53 0.66 1701.72 0.017
31.5 0.42 2208.73 0.014
42.52 0.58 1472.71 0.029
33.9 0.62 1366.61 0.025
24.87 0.83 741.59 0.034
29.73 0.52 1429.76 0.021
33.15 0.64 2551.58 0.013
24.46 1.34 1959.04 0.013
29.13 0.74 2076.69 0.014
21.28 0.4 1688.99 0.013
31.58 0.53 2300.8 0.014
29.77 0.88 1090.41 0.027
22.68 0.55 846.87 0.027
22.43 0.7 2073.08 0.011
38.1 1.53 2215.08 0.017
35.64 0.7 1934.38 0.018
51.51 1.61 1557.8 0.033
46.93 1.36 1542.94 0.03

MEAN 29.84 0.72 1754.1 0.019
S.E.M. +/- 3.47 0.13 258.4 0.003

Table 4.3 Measurements of lgp120 labelling obtained from pulmonary artery smooth

muscle cells (n = 24)
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Nuclear volume
in cells (m3)

Volume of
perinuclear
lysosomal
labelling

(m3)

Mean volume
of perinuclear

lysosomal
labelling (m3)

Volume of
perinuclear

region of cell
(m3)

Volume of
lysosomal

labelling per
m3 of

perinuclear
regiopn

140.27 8.73 0.42 570.75 0.015
78.15 3.76 0.58 253.72 0.015
74.01 3.08 0.55 453.68 0.007
95.3 15.15 0.33 1237.26 0.012

47.72 11.12 0.93 192.94 0.058
133.73 10.04 0.42 616.13 0.016
142.01 9.55 0.4 460.13 0.021
125.81 13.86 0.43 554.25 0.025
85.3 20.79 0.54 438.72 0.047

101.57 16.05 0.68 283.73 0.057
71.74 6.59 0.51 178.63 0.037
173.61 16.57 0.67 282.09 0.059
130.03 17.12 0.63 1131.17 0.015
145.07 22.6 1.5 840.18 0.027
150.5 19.36 0.82 758.86 0.026
80.37 12.64 0.47 719.56 0.018
130.21 20.15 0.64 584.03 0.035
61.5 16.18 0.87 309.18 0.05
58.7 14.31 0.59 266.9 0.054

92.31 16.54 0.85 649.4 0.026
59.63 24.61 1.51 950.76 0.026
74.33 25.72 0.83 948.97 0.027
108.35 47.77 1.9 750.38 0.064
175.38 17.71 1.13 498.46 0.036

MEAN 105.65 16.25 0.76 580.41 0.032
S.E.M. +/- 13.36 3.18 0.14 103.91 0.006

Table 4.4 Measurements oflgp120 labelling within the perinuclear region of isolated

pulmonary artery smooth muscle cells (n = 24)
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Volume
extra-

perinuclear
lysosomal
labelling

(m3)

Mean
volume of

extra-
perinuclear
lysosomal
labelling

(m3)

Volume of
extra-

perinuclear
region (m3)

Volume of
lysosomal

labelling per
m3 of the

extra-
perinuclear

region

7.98 0.43 616.57 0.013
0.85 0.22 225.44 0.004
2.6 0.21 316.91 0.008

9.97 0.3 751.28 0.013
8.36 1.19 171.91 0.049
9.83 0.41 494.84 0.02
2.35 0.9 715.44 0.003
6.75 0.29 1017.2 0.007
15.34 0.72 455.17 0.034
12.56 0.59 401.6 0.031
14.21 1.8 210.36 0.068
7.36 0.33 458.06 0.016
5.28 0.55 425.68 0.012
1.09 0.52 318.82 0.003
6.16 0.44 411.12 0.015
3.91 0.33 354.95 0.011
4.27 0.27 555.19 0.008
10.8 0.78 275.59 0.039
2.87 0.47 178.52 0.016
1.73 0.57 83.35 0.002
10 1.13 590.71 0.017
5.9 0.4 300.32 0.019

2.55 0.58 313.7 0.008
8.57 0.73 387.95 0.022

MEAN 6.72 0.59 417.95 0.018
S.E.M.+/- 1.47 0.13 75.04 0.006

Table 4.5 Measurements of lysosomal labelling within the extra-perinuclear region of

isolated pulmonary artery smooth muscle cells (n = 24)
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Volume sub-
plasmalemmal

lysosomal
labelling (m3)

Mean
volume of
lysosomal
labelling

(m3)

Volume of sub-
plasmalemmal
region (m3)

Volume of
lysosomal

labelling per
m3 of sub-

plasmalemmal
region

9.43 0.31 902.99 0.011
2.15 0.21 368.13 0.006

3 0.22 662.69 0.005
7.52 0.27 2218.41 0.003
4.11 0.22 329.92 0.013
13.19 0.27 768.65 0.017
15.46 0.24 513.17 0.03
9.09 0.32 637.28 0.014
3.72 0.19 633.47 0.006
4.33 0.24 641.56 0.007
3.94 0.26 285.09 0.014
4.75 0.25 514.44 0.009
8.47 0.52 958.68 0.009
0.77 0.25 652.62 0.001
3.3 0.37 801.96 0.004

3.26 0.24 569.38 0.006
6.1 0.21 1071.32 0.006

2.79 0.28 444.15 0.006
5.46 0.27 376.58 0.015
3.61 0.56 540.33 0.007
2.86 0.43 626.81 0.005
3.44 0.28 642.8 0.005
1.19 0.3 443.05 0.003
20.46 0.9 554.32 0.037

MEAN 5.93 0.32 673.2 0.0099
S.E.M.+/- 1.68 0.05 135.16 0.003

Table 4.6 Measurements of lysosomal labelling within the sub-plasmalemmal region of

isolated pulmonary artery smooth muscle cells (n = 24)

P value F value
Perinuclear vs. Extra-perinuclear 0.005 8.51

Perinuclear vs. Sub-plasmalemmal <0.0001 32.44
Extra-perinuclear vs. Sub-plasmalemmal 0.027 5.21

Table 4.7 Record of P and F values obtained from statistical analysis between the density

of lysosomal labelling in a given region of the cell, by means of a 1-way ANOVA test. P

value considered significant if P ≤ 0.05 (n = 24)

P value F value
Perinuclear vs. Extra-perinuclear 0.13 2.33

Perinuclear vs. Sub-plasmalemmal <0.0001 25.85
Extra-perinuclear vs. Sub-plasmalemmal 0.002 11.21

Table 4.8 Record of P and F values obtained from statistical analysis between the mean

volume of lysosomal labelling in a given region of the cell, by means of a 1-way ANOVA

test. P value considered significant if P ≤ 0.05 (n = 24)
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Volume RyR1
label in cells (m3)

Volume of cells
(m3)

Volume occupied,
per m3 of cell,

by RyR1labelling

47.78 2089.31 0.0229
19.2 847.29 0.0227
28.39 1430.7 0.0198
77.61 4206.95 0.0184
34.41 729.16 0.0472
64.48 1879.62 0.0343
64.22 1701.72 0.0377
70.07 2208.73 0.0317

MEAN 50.77 1886.69 0.029
S.E.M. +/- 7.60 382.45 0.004

Table 4.9 Measurements of RyR1 labelling obtained from pulmonary artery smooth

muscle cells (n = 8)

Nuclear volume
in cells (m3)

Volume of
perinuclear

RyR1
labelling

(m3)

Mean volume
of perinuclear

RyR1
labelling
(m3)

Volume of
perinuclear

region of cell
(m3)

Volume of
RyR1

labelling per
m3 of

perinuclear
regiopn

140.27 13.54 1.03 1518.56 0.024
78.15 6 0.67 593.57 0.024
74.01 3.93 0.56 981.06 0.009
95.3 23.06 0.56 2969.69 0.019

47.72 13.52 0.65 501.84 0.07
133.73 26.6 1.34 1263.49 0.043
142.01 7.55 0.93 1228.61 0.016
125.81 31.97 3.61 1654.48 0.058

MEAN 104.63 15.77 1.17 1338.91 0.033
S.E.M. +/- 12.63 3.65 0.36 273.65 0.008

Table 4.10 Measurements of RyR1 labelling within the perinuclear region of isolated

pulmonary artery smooth muscle cells (n = 8)

Volume
extra-

perinuclear
RyR1

labelling
(m3)

Mean
volume of

extra-
perinuclear

RyR1
labelling

(m3)

Volume of
extra-

perinuclear
region (m3)

Volume of
RyR1 labelling
per m3 of the

extra-
perinuclear

region

6.52 0.31 616.57 0.011
4.45 0.74 225.44 0.02
3.87 0.35 312.49 0.012
22.52 0.51 751.28 0.03
2.87 0.26 171.92 0.017
14.03 1.11 494.84 0.028
8.13 0.45 715.44 0.011
12.64 2.72 1017.2 0.012

MEAN 9.38 0.81 538.15 0.018
S.E.M.+/- 2.36 0.29 103.27 0.003

Table 4.11 Measurements of RyR1 labelling within the extra-perinuclear region of

isolated pulmonary artery smooth muscle cells (n = 8)
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Volume sub-
plasmalemmal

RyR1
labelling (m3)

Mean
volume of

RyR1
labelling

(m3)

Volume of sub-
plasmalemmal
region (m3)

Volume of
RyR1

labelling per
m3 of sub-

plasmalemmal
region

20.7 0.63 901.99 0.023
6.87 0.32 368.13 0.019
18.52 0.37 668.57 0.028
28.62 0.4 2218.41 0.013
14.19 0.43 329.92 0.043
16.33 0.48 768.65 0.021
36.73 1.27 513.17 0.072
16.57 0.33 637.28 0.026

MEAN 19.82 0.53 800.77 0.031
S.E.M.+/- 3.24 0.11 213.67 0.007

Table 4.12 Measurements of RyR1 labelling within the sub-plasmalemmal region of

isolated pulmonary artery smooth muscle cells (n = 8)

P value F value
Perinuclear vs. Extra-perinuclear 0.09 3.38

Perinuclear vs. Sub-plasmalemmal 0.83 0.05
Extra-perinuclear vs. Sub-plasmalemmal 0.1 3.18

Table 4.13 Record of P and F values obtained from statistical analysis between the density

of RyR1 labelling in a given region of the cell, by means of a 1-way ANOVA test. P value

considered significant if P ≤ 0.05 (n = 8)

P value F value
Perinuclear vs. Extra-perinuclear 0.45 0.61

Perinuclear vs. Sub-plasmalemmal 0.11 2.86
Extra-perinuclear vs. Sub-plasmalemmal 0.39 0.8

Table 4.14 Record of P and F values obtained from statistical analysis between the mean

volume of RyR1 labelling in a given region of the cell, by means of a 1-way ANOVA test.

P value considered significant if P ≤ 0.05 (n = 8)
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Volume RyR2
label in cells (m3)

Volume of cells
(m3)

Volume occupied,
per m3 of cell,

by RyR2labelling

64.61 1472.71 0.044
53.54 1366.61 0.039
45.39 741.59 0.061
58.83 1429.76 0.041
44.3 2551.58 0.017
36.47 1959.04 0.019
36.07 2076.69 0.017
52.13 1688.99 0.031

MEAN 48.92 1660.87 0.034
S.E.M. +/- 3.61 192.56 0.006

Table 4.15 Measurements of RyR2 labelling obtained from pulmonary artery smooth

muscle cells (n = 8)

Nuclear volume
in cells (m3)

Volume of
perinuclear

RyR2
labelling

(m3)

Mean volume
of perinuclear

RyR2
labelling
(m3)

Volume of
perinuclear

region of cell
(m3)

Volume of
RyR2

labelling per
m3 of

perinuclear
regiopn

85.3 15.01 1.23 438.72 0.034
101.57 10.45 0.49 283.75 0.037
71.74 21.61 2.3 178.63 0.12
173.61 12.16 0.64 282.09 0.043
130.03 5.33 0.4 1131.17 0.005
145.07 13.14 0.63 840.18 0.016
150.5 10.98 0.49 758.86 0.015
80.37 24.05 1.33 719.56 0.033

MEAN 117.27 14.09 0.94 579.12 0.038
S.E.M. +/- 13.31 2.16 0.23 118.06 0.013

Table 4.16 Measurements of RyR2 labelling within the perinuclear region of isolated

pulmonary artery smooth muscle cells (n = 8)

Volume
extra-

perinuclear
RyR2

labelling
(m3)

Mean
volume of

extra-
perinuclear

RyR2
labelling

(m3)

Volume of
extra-

perinuclear
region (m3)

Volume of
RyR2 labelling
per m3 of the

extra-
perinuclear

region

47.12 2.55 455.17 0.104
32.48 1.91 401.6 0.081
22.36 4.24 210.36 0.106
35.27 1.21 458.06 0.077
30.76 2.3 425.68 0.072
5.42 0.45 318.82 0.017
17.27 0.62 411.12 0.042
9.25 0.36 354.95 0.026

MEAN 24.99 1.71 379.47 0.066
S.E.M.+/- 4.97 0.47 29.4 0.012

Table 4.17 Measurements of RyR2 labelling within the extra-perinuclear region of

isolated pulmonary artery smooth muscle cells (n = 8)
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Volume sub-
plasmalemmal

RyR2
labelling (m3)

Mean
volume of

RyR2
labelling

(m3)

Volume of sub-
plasmalemmal
region (m3)

Volume of
RyR2

labelling per
m3 of sub-

plasmalemmal
region

2.23 0.36 633.47 0.004
10.23 0.38 641.56 0.016
0.79 0.27 285.09 0.003
10.93 0.27 514.44 0.021
7.94 0.47 958.68 0.008
9.77 0.41 652.62 0.015

4 0.48 801.96 0.005
12.97 0.56 569.38 0.023

MEAN 7.36 0.4 632.15 0.012
S.E.M.+/- 1.58 0.036 69.98 0.003

Table 4.18 Measurements of RyR2 labelling within the sub-plasmalemmal region of

isolated pulmonary artery smooth muscle cells (n = 8)

P value F value
Perinuclear vs. Extra-perinuclear 0.14 2.52

Perinuclear vs. Sub-plasmalemmal 0.05 3.99
Extra-perinuclear vs. Sub-plasmalemmal 0.001 19.26

Table 4.19 Record of P and F values obtained from statistical analysis between the density

of RyR2 labelling in a given region of the cell, by means of a 1-way ANOVA test. P value

considered significant if P ≤ 0.05 (n = 8)

P value F value
Perinuclear vs. Extra-perinuclear 0.17 2.15

Perinuclear vs. Sub-plasmalemmal 0.04 5.34
Extra-perinuclear vs. Sub-plasmalemmal 0.02 7.68

Table 4.20 Record of P and F values obtained from statistical analysis between the mean

volume of RyR2 labelling in a given region of the cell, by means of a 1-way ANOVA test.

P value considered significant if P ≤ 0.05 (n = 8)
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Volume RyR3
label in cells (m3)

Volume of cells
(m3)

Volume occupied,
per m3 of cell,

by RyR3labelling

66.94 2300.8 0.029
37.66 1090.41 0.035
29.8 846.87 0.035
33.43 2073.08 0.016
72.06 2215.08 0.033
37.3 1934.38 0.019
39.2 1557.8 0.025
60.67 1542.94 0.039

MEAN 47.13 1695.17 0.029
S.E.M. +/- 5.88 187.3 0.003

Table 4.21 Measurements of RyR3 labelling obtained from pulmonary artery smooth

muscle cells (n = 8)

Nuclear volume
in cells (m3)

Volume of
perinuclear

RyR3
labelling

(m3)

Mean volume
of perinuclear

RyR3
labelling
(m3)

Volume of
perinuclear

region of cell
(m3)

Volume of
RyR3

labelling per
m3 of

perinuclear
regiopn

130.21 61.8 4.74 584.03 0.11
61.5 23.1 1.54 309.18 0.075
58.7 22.51 2.23 266.9 0.084

92.31 24.67 1.37 649.4 0.037
59.63 48.57 1.37 950.76 0.051
74.33 38.36 3 948.97 0.035
108.35 30.63 1.03 750.38 0.041
175.38 48.37 3.35 498.46 0.097

MEAN 95.05 37.25 2.33 619.76 0.066
S.E.M. +/- 14.64 5.13 0.45 91.89 0.01

Table 4.22 Measurements of RyR3 labelling within the perinuclear region of isolated

pulmonary artery smooth muscle cells (n = 8)

Volume
extra-

perinuclear
RyR3

labelling
(m3)

Mean
volume of

extra-
perinuclear

RyR3
labelling

(m3)

Volume of
extra-

perinuclear
region (m3)

Volume of
RyR3 labelling
per m3 of the

extra-
perinuclear

region

1.87 0.38 555.19 0.004
10.56 1.29 275.59 0.038
6.27 0.35 178.52 0.035
1.01 0.51 883.35 0.001
18.09 1.99 590.71 0.031
1.79 0.45 300.32 0.006
4.31 0.75 313.7 0.014
2.09 0.58 387.95 0.005

MEAN 5.75 0.79 435.67 0.017
S.E.M.+/- 2.09 0.2 80.84 0.005

Table 4.23 Measurements of RyR3 labelling within the extra-perinuclear region of

isolated pulmonary artery smooth muscle cells (n = 8)
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Volume sub-
plasmalemmal

RyR3
labelling (m3)

Mean
volume of

RyR3
labelling

(m3)

Volume of sub-
plasmalemmal
region (m3)

Volume of
RyR3

labelling per
m3 of sub-

plasmalemmal
region

2.62 0.19 1071.32 0.0030
3.6 0.54 444.15 0.0080

1.02 0.34 376.58 0.0027
5.53 0.38 540.33 0.01
1.35 0.39 626.81 0.0020
0.78 0.32 642.8 0.0012
2.92 0.22 443.05 0.0065
7.27 1.21 554.32 0.0130

MEAN 3.14 0.45 587.42 0.006
S.E.M.+/- 0.81 0.12 76.52 0.002

Table 4.24 Measurements of RyR3 labelling within the sub-plasmalemmal region of

isolated pulmonary artery smooth muscle cells (n = 8)

P value F value
Perinuclear vs. Extra-perinuclear 0.001 18.03

Perinuclear vs. Sub-plasmalemmal <0.0001 33.65
Extra-perinuclear vs. Sub-plasmalemmal 0.07 3.74

Table 4.25 Record of P and F values obtained from statistical analysis between the density

of RyR3 labelling in a given region of the cell, by means of a 1-way ANOVA test. P value

considered significant if P ≤ 0.05 (n = 8)

P value F value
Perinuclear vs. Extra-perinuclear 0.008 9.67

Perinuclear vs. Sub-plasmalemmal 0.001 16.21
Extra-perinuclear vs. Sub-plasmalemmal 0.17 2.12

Table 4.26 Record of P and F values obtained from statistical analysis between the mean

volume of RyR3 labelling in a given region of the cell, by means of a 1-way ANOVA test.

P value considered significant if P ≤ 0.05 (n = 8)

P value F value
RyR1 Perinuclear vs, RyR2 Perinuclear 0.73 0.12
RyR1 Perinuclear vs, RyR3 Perinuclear 0.02 6.76
RyR2 Perinuclear vs, RyR3 Perinuclear 0.11 2.98

Table 4.27 Record of P and F values obtained from statistical analysis between the

densities of the labelling of RyR1, RyR2 and RyR3 in the perinuclear region of the cells,

by means of a 1-way ANOVA test. P value considered significant if P ≤ 0.05 (n = 8)
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P value F value
RyR1 Extra-Perinuclear vs, RyR2 Extra-Perinuclear 0.002 15.32
RyR1 Extra-Perinuclear vs, RyR3 Extra-Perinuclear 0.88 0.02
RyR2 Extra-Perinuclear vs, RyR3 Extra-Perinuclear 0.002 13.89

Table 4.28 Record of P and F values obtained from statistical analysis between the

densities of the labelling of RyR1, RyR2 and RyR3 in the extra-perinuclear region of the

cells, by means of a 1-way ANOVA test. P value considered significant if P ≤ 0.05 (n = 8)

P value F value
RyR1 Sub-plasmalemmal vs, RyR2 Sub-plasmalemmal 0.021 6.72
RyR1 Sub-plasmalemmal vs, RyR3 Sub-plasmalemmal 0.003 13.17
RyR2 Sub-plasmalemmal vs, RyR3 Sub-plasmalemmal 0.08 3.54

Table 4.29 Record of P and F values obtained from statistical analysis between the

densities of the labelling of RyR1, RyR2 and RyR3 in the sub-plasmalemmal region of the

cells, by means of a 1-way ANOVA test. P value considered significant if P ≤ 0.05 (n = 8)

P value F value
RyR1 Perinuclear vs, RyR2 Perinuclear 0.6 0.29
RyR1 Perinuclear vs, RyR3 Perinuclear 0.06 4.01
RyR2 Perinuclear vs, RyR3 Perinuclear 0.02 7.5

Table 4.30 Record of P and F values obtained from statistical analysis between the mean

volumes of elements of labelling of RyR1, RyR2 and RyR3 in the perinuclear region of

the cells, by means of a 1-way ANOVA test. P value considered significant if P ≤ 0.05 (n =

8)

P value F value
RyR1 Extra-Perinuclear vs, RyR2 Extra-Perinuclear 0.13 2.65
RyR1 Extra-Perinuclear vs, RyR3 Extra-Perinuclear 0.96 0.00
RyR2 Extra-Perinuclear vs, RyR3 Extra-Perinuclear 0.094 3.22

Table 4.31 Record of P and F values obtained from statistical analysis between the mean

volumes of elements of labelling of RyR1, RyR2 and RyR3 in the extra-perinuclear region

of the cells, by means of a 1-way ANOVA test. P value considered significant if P ≤ 0.05 (n

= 8)
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P value F value
RyR1 Sub-plasmalemmal vs, RyR2 Sub-plasmalemmal 0.29 1.21
RyR1 Sub-plasmalemmal vs, RyR3 Sub-plasmalemmal 0.63 0.25
RyR2 Sub-plasmalemmal vs, RyR3 Sub-plasmalemmal 0.69 0.16

Table 4.32 Record of P and F values obtained from statistical analysis between the mean

volumes of elements of labelling of RyR1, RyR2 and RyR3 in the sub-plasmalemmal

region of the cells, by means of a 1-way ANOVA test. P value considered significant if P ≤

0.05 (n = 8)

Volume of
colocalisation
(RyR1- and
Lysosomal-
labelling)

label in cells (m3)
Volume of cells

(m3)

Volume occupied,
per m3 of cell,

by colocalisation
(RyR1- and
Lysosomal-
labelling)

1.61 2089.31 0.0008
1.02 847.29 0.0011
0.13 1430.7 0.0001
4.61 4206.95 0.0011
3.69 729.16 0.0051
5.85 1879.62 0.0031
9.51 1701.72 0.0056
7.3 2208.73 0.0033

MEAN 4.22 1886.69 0.0025
S.E.M. +/- 1.15 382.45 0.0007

Table 4.33 Measurements of colocalisation between RyR1- and lysosomal-labelling

obtained from pulmonary artery smooth muscle cells (n = 8)

Nuclear volume
in cells (m3)

Volume of
perinuclear

colocalisation
(RyR1- and
Lysosomal-
labelling)

(m3)

Mean volume
of perinuclear
colocalisation

(RyR1-
and

Lysosomal-
labelling)

(m3)

Volume of
perinuclear

region of cell
(m3)

Volume of
colocalisation
(RyR1- and
Lysosomal-

labelling) per
m3 of

perinuclear
region

140.27 0.57 0.19 1518.56 0.0010
78.15 0.87 0.29 593.57 0.0034
74.01 0.13 0.13 981.06 0.0003
95.3 2.41 0.21 2969.69 0.0019

47.72 2.65 0.44 501.84 0.0137
133.73 1.42 0.39 1263.49 0.0023
142.01 2.37 0.26 1228.61 0.0052
125.81 4.89 0.4 1654.48 0.0088

MEAN 104.63 1.91 0.29 1338.91 0.0046
S.E.M. +/- 12.63 0.54 0.04 273.65 0.0016

Table 4.34 Measurements of the colocalisation between RyR1- and lysosomal-labelling

within the perinuclear region of isolated pulmonary artery smooth muscle cells (n = 8)
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Volume
extra-

perinuclear
colocalisatio

n (RyR1-
and

lysosomal-
labelling)

(m3)

Mean
volume of

extra-
perinuclear
colocalisatio

n (RyR1-
and

lysosomal-
labelling)

(m3)

Volume of
extra-

perinuclear
region (m3)

volume of
colocalisation
(RyR1- and
lysosomal-

labelling) per
m3 of the

extra-
perinuclear

region

0.15 0.14 616.57 0.0002
0 0 225.44 0
0 0 312.49 0

1.6 0.4 751.28 0.0021
0.57 0.29 171.92 0.0033
2.94 0.25 494.84 0.0059
1.19 0.78 715.44 0.0017
0.75 0.32 1017.2 0.0007

MEAN 0.9 0.29 538.15 0.0018
S.E.M.+/- 0.36 0.08 103.27 0.0007

Table 4.35 Measurements of the colocalisation between RyR1- and lysosomal-labelling

within the extra-perinuclear region of isolated pulmonary artery smooth muscle cells (n =

8)

Volume
colocalisation
(RyR1- and
lysosomal-

labelling) in
sub-

plasmalemmal
labelling (m3)

Mean
volume

colocalisatio
n (RyR1-

and
lysosomal-
labelling)

(m3)

Volume of sub-
plasmalemmal
region (m3)

Volume of
colocalisation
(RyR1- and
lysosomal-

labelling) per
m3 of sub-

plasmalemmal
region

0.42 0.15 901.99 0.0005
0 0 368.13 0.0000
0 0 668.57 0.0000

0.86 0.3 2218.41 0.0004
0.47 0.24 329.92 0.0014
0.56 0.19 768.65 0.0007
0.98 0.33 513.17 0.0019
1.34 0.2 637.28 0.0021

MEAN 0.58 0.18 800.77 0.0009
S.E.M.+/- 0.17 0.04 213.67 0.0003

Table 4.36 Measurements of the colocalisation between RyR1- and lysosomal-labelling

within the sub-plasmalemmal region of isolated pulmonary artery smooth muscle cells (n

= 8)

P value F value
Perinuclear vs. Extra-perinuclear 0.13 2.66

Perinuclear vs. Sub-plasmalemmal 0.04 5.16
Extra-perinuclear vs. Sub-plasmalemmal 0.3 1.15

Table 4.37 Record of P and F values obtained from statistical analysis between the density

of colocalisation between RyR1- and lysosomal-labelling in a given region of the cell, by

means of a 1-way ANOVA test. P value considered significant if P ≤ 0.05 (n = 8)
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P value F value
Perinuclear vs. Extra-perinuclear 0.98 0.00

Perinuclear vs. Sub-plasmalemmal 0.08 3.65
Extra-perinuclear vs. Sub-plasmalemmal 0.24 0.24

Table 4.38 Record of P and F values obtained from statistical analysis between the mean

volume of colocalisation between RyR1- and lysosomal-labelling in a given region of the

cell, by means of a 1-way ANOVA test. P value considered significant if P ≤ 0.05 (n = 8)

Volume of
colocalisation
(RyR2- and
Lysosomal-
labelling)

label in cells (m3)
Volume of cells

(m3)

Volume occupied,
per m3 of cell,

by colocalisation
(RyR2- and
Lysosomal-
labelling)

7.03 1472.71 0.0048
6.81 1366.61 0.0050
8.52 741.59 0.0115
2.41 1429.76 0.0017
4.13 2551.58 0.0016
3.72 1959.04 0.0019
2.24 2076.69 0.0011
4.65 1688.99 0.0028

MEAN 4.94 1660.87 0.0038
S.E.M. +/- 0.81 192.56 0.0012

Table 4.39 Measurements of colocalisation between RyR2- and lysosomal-labelling

obtained from pulmonary artery smooth muscle cells (n = 8)

Nuclear volume
in cells (m3)

Volume of
perinuclear

colocalisation
(RyR2- and
Lysosomal-
labelling)

(m3)

Mean volume
of perinuclear
colocalisation

(RyR2-
and

Lysosomal-
labelling)

(m3)

Volume of
perinuclear

region of cell
(m3)

Volume of
colocalisation
(RyR2- and
Lysosomal-

labelling) per
m3 of

perinuclear
region

85.3 2.42 0.35 438.72 0.0055
101.57 1.67 0.34 283.73 0.0059
71.74 2.82 0.71 178.63 0.0158
173.61 0.88 0.18 282.09 0.0031
130.03 0.3 0.15 1131.17 0.0003
145.07 3.4 0.38 840.18 0.0040
150.5 1.9 0.35 758.86 0.0025
80.37 3.92 0.69 719.56 0.0054

MEAN 117.27 2.16 0.39 579.12 0.0053
S.E.M. +/- 13.31 0.43 0.073 118.06 0.0016

Table 4.40 Measurements of the colocalisation between RyR2- and lysosomal-labelling

within the perinuclear region of isolated pulmonary artery smooth muscle cells (n = 8)
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Volume
extra-

perinuclear
colocalisatio

n (RyR2-
and

lysosomal-
labelling)

(m3)

Mean
volume of

extra-
perinuclear
colocalisatio

n (RyR2-
and

lysosomal-
labelling)

(m3)

Volume of
extra-

perinuclear
region (m3)

volume of
colocalisation
(RyR2- and
lysosomal-

labelling) per
m3 of the

extra-
perinuclear

region

4.47 0.41 455.17 0.0098
4.73 0.53 401.6 0.0118
5.41 1.8 210.36 0.0257
0.85 0.31 458.06 0.0019
2.32 0.25 425.68 0.0055
0.32 0.32 318.82 0.0010
0.34 0.14 411.12 0.0008
0.2 0.13 354.95 0.0006

MEAN 2.33 0.47 379.47 0.0071
S.E.M.+/- 0.79 0.2 29.4 0.0031

Table 4.41 Measurements of the colocalisation between RyR2- and lysosomal-labelling

within the extra-perinuclear region of isolated pulmonary artery smooth muscle cells (n =

8)

Volume
colocalisation
(RyR2- and
lysosomal-

labelling) in
sub-

plasmalemmal
labelling (m3)

Mean
volume

colocalisatio
n (RyR2-

and
lysosomal-
labelling)

(m3)

Volume of sub-
plasmalemmal
region (m3)

Volume of
colocalisation
(RyR2- and
lysosomal-

labelling) per
m3 of sub-

plasmalemmal
region

0.14 0.14 633.47 0.0002
0.41 0.2 641.56 0.0006
0.29 0.29 285.09 0.0010
0.68 0.15 514.44 0.0013
1.51 0.43 958.68 0.0016

0 0 652.62 0.0000
0 0 801.96 0.0000

0.3 0.25 569.38 0.0005
MEAN 0.42 0.18 632.15 0.0007

S.E.M.+/- 0.18 0.05 69.98 0.0002

Table 4.42 Measurements of the colocalisation between RyR2- and lysosomal-labelling

within the sub-plasmalemmal region of isolated pulmonary artery smooth muscle cells (n

= 8)

P value F value
Perinuclear vs. Extra-perinuclear 0.61 0.28

Perinuclear vs. Sub-plasmalemmal 0.01 7.98
Extra-perinuclear vs. Sub-plasmalemmal 0.05 4.48

Table 4.43 Record of P and F values obtained from statistical analysis between the density

of colocalisation between RyR2- and lysosomal-labelling in a given region of the cell, by

means of a 1-way ANOVA test. P value considered significant if P ≤ 0.05 (n = 8)



303

P value F value
Perinuclear vs. Extra-perinuclear 0.72 0.13

Perinuclear vs. Sub-plasmalemmal 0.03 5.59
Extra-perinuclear vs. Sub-plasmalemmal 0.18 1.97

Table 4.44 Record of P and F values obtained from statistical analysis between the mean

volume of colocalisation between RyR2- and lysosomal-labelling in a given region of the

cell, by means of a 1-way ANOVA test. P value considered significant if P ≤ 0.05 (n = 8)

Volume of
colocalisation
(RyR3- and
Lysosomal-
labelling)

label in cells (m3)
Volume of cells

(m3)

Volume occupied,
per m3 of cell,

by colocalisation
(RyR3- and
Lysosomal-
labelling)

8.31 2300.8 0.004
9.4 1090.41 0.0086

3.76 846.87 0.004
3.53 2073.08 0.002
15.21 2215.08 0.007
12.13 1934.38 0.0063
8.19 1557.8 0.0053
5.16 1542.94 0.003

MEAN 8.21 1695.17 0.005
S.E.M. +/- 1.44 187.3 0.0008

Table 4.45 Measurements of colocalisation between RyR3- and lysosomal-labelling

obtained from pulmonary artery smooth muscle cells (n = 8)

Nuclear volume
in cells (m3)

Volume of
perinuclear

colocalisation
(RyR3- and
Lysosomal-
labelling)

(m3)

Mean volume
of perinuclear
colocalisation

(RyR3-
and

Lysosomal-
labelling)

(m3)

Volume of
perinuclear

region of cell
(m3)

Volume of
colocalisation
(RyR3- and
Lysosomal-

labelling) per
m3 of

perinuclear
region

130.21 8.31 0.63 584.03 0.014
61.5 5.89 1.63 309.18 0.019
58.7 3 0.43 266.9 0.011

92.31 3.53 0.44 649.4 0.005
59.63 11.44 0.61 950.76 0.01
74.33 11.34 0.63 948.97 0.012
108.35 8.03 0.46 750.38 0.011
175.38 3.28 0.62 498.46 0.007

MEAN 95.05 6.85 0.68 619.76 0.011
S.E.M. +/- 14.64 1.23 0.14 91.89 0.002

Table 4.46 Measurements of the colocalisation between RyR3- and lysosomal-labelling

within the perinuclear region of isolated pulmonary artery smooth muscle cells (n = 8)
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Volume
extra-

perinuclear
colocalisatio

n (RyR3-
and

lysosomal-
labelling)

(m3)

Mean
volume of

extra-
perinuclear
colocalisatio

n (RyR3-
and

lysosomal-
labelling)

(m3)

Volume of
extra-

perinuclear
region (m3)

volume of
colocalisation
(RyR3- and
lysosomal-

labelling) per
m3 of the

extra-
perinuclear

region

0.68 0.68 555.19 0.001
3.51 0.75 275.59 0.013
0.13 0.35 178.52 0.0007

0 0 883.35 0
3.61 0.68 590.71 0.006
0.24 0.24 300.32 0.0008
0.16 0.21 313.7 0.0005
1.88 0.3 387.95 0.005

MEAN 1.19 0.4013 435.67 0.0033
S.E.M.+/- 0.56 0.0958 80.84 0.0016

Table 4.47 Measurements of the colocalisation between RyR3- and lysosomal-labelling

within the extra-perinuclear region of isolated pulmonary artery smooth muscle cells (n =

8)

Volume
colocalisation
(RyR3- and
lysosomal-

labelling) in
sub-

plasmalemmal
labelling (m3)

Mean
volume

colocalisatio
n (RyR3-

and
lysosomal-
labelling)

(m3)

Volume of sub-
plasmalemmal
region (m3)

Volume of
colocalisation
(RyR3- and
lysosomal-

labelling) per
m3 of sub-

plasmalemmal
region

0 0 1071.32 0.0000
0 0 444.15 0.0000

0.63 0.11 376.58 0.0017
0 0 540.33 0

0.16 0.16 626.81 0.0002
0 0 642.8 0.0000
0 0 443.05 0.0000
0 0 554.32 0.0000

MEAN 0.099 0.034 587.42 0.0002
S.E.M.+/- 0.078 0.023 76.52 0.0002

Table 4.48 Measurements of the colocalisation between RyR3- and lysosomal-labelling

within the sub-plasmalemmal region of isolated pulmonary artery smooth muscle cells (n

= 8)

P value F value
Perinuclear vs. Extra-perinuclear 0.003 12.69

Perinuclear vs. Sub-plasmalemmal <0.0001 51.32
Extra-perinuclear vs. Sub-plasmalemmal 0.09 3.4

Table 4.49 Record of P and F values obtained from statistical analysis between the density

of colocalisation between RyR3- and lysosomal-labelling in a given region of the cell, by

means of a 1-way ANOVA test. P value considered significant if P ≤ 0.05 (n = 8)
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P value F value
Perinuclear vs. Extra-perinuclear 0.12 2.75

Perinuclear vs. Sub-plasmalemmal <0.0001 21.09
Extra-perinuclear vs. Sub-plasmalemmal 0.002 13.95

Table 4.50 Record of P and F values obtained from statistical analysis between the mean

volume of colocalisation between RyR3- and lysosomal-labelling in a given region of the

cell, by means of a 1-way ANOVA test. P value considered significant if P ≤ 0.05 (n = 8)

P value F value
RyR1Lyso Perinuclear vs, RyR2Lyso Perinuclear 0.74 0.12
RyR1Lyso Perinuclear vs, RyR3Lyso Perinuclear 0.009 9.08
RyR2Lyso Perinuclear vs, RyR3Lyso Perinuclear 0.02 6.83

Table 4.51 Record of P and F values obtained from statistical analysis between the

densities of colocalisation between the labelling of RyR1, RyR2 and RyR3 and lysosomes

in the perinuclear region of the cells, by means of a 1-way ANOVA test. P value

considered significant if P ≤ 0.05 (n = 8)

P value F value
RyR1Lyso Extra-Perinuclear vs, RyR2Lyso Extra-Perinuclear 0.11 3
RyR1Lyso Extra-Perinuclear vs, RyR3Lyso Extra-Perinuclear 0.4 0.77
RyR2Lyso Extra-Perinuclear vs, RyR3Lyso Extra-Perinuclear 0.28 1.26

Table 4.52 Record of P and F values obtained from statistical analysis between the

densities of colocalisation between the labelling of RyR1, RyR2 and RyR3 and lysosomes

in the extra-perinuclear region of the cells, by means of a 1-way ANOVA test. P value

considered significant if P ≤ 0.05 (n = 8)

P value F value
RyR1Lyso Sub-plasmalemmal vs, RyR2Lyso Sub-plasmalemmal 0.54 0.39
RyR1Lyso Sub-plasmalemmal vs, RyR3Lyso Sub-plasmalemmal 0.098 3.15
RyR2Lyso Sub-plasmalemmal vs, RyR3Lyso Sub-plasmalemmal 0.19 1.91

Table 4.53 Record of P and F values obtained from statistical analysis between the

densities of colocalisation between the labelling of RyR1, RyR2 and RyR3 and lysosomes

in the sub-plasmalemmal region of the cells, by means of a 1-way ANOVA test. P value

considered significant if P ≤ 0.05 (n = 8)
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P value F value
RyR1Lyso Perinuclear vs, RyR2Lyso Perinuclear 0.23 1.59
RyR1Lyso Perinuclear vs, RyR3Lyso Perinuclear 0.009 7.36
RyR2Lyso Perinuclear vs, RyR3Lyso Perinuclear 0.02 3.34

Table 4.54 Record of P and F values obtained from statistical analysis between the mean

volumes of elements of colocalisation between the labelling of RyR1, RyR2 and RyR3 and

lysosomes in the perinuclear region of the cells, by means of a 1-way ANOVA test. P

value considered significant if P ≤ 0.05 (n = 8)

P value F value
RyR1Lyso Extra-Perinuclear vs, RyR2Lyso Extra-Perinuclear 0.42 0.69
RyR1Lyso Extra-Perinuclear vs, RyR3Lyso Extra-Perinuclear 0.39 0.76
RyR2Lyso Extra-Perinuclear vs, RyR3Lyso Extra-Perinuclear 0.76 0.1

Table 4.55 Record of P and F values obtained from statistical analysis between the mean

volumes of elements of colocalisation between the labelling of RyR1, RyR2 and RyR3 and

lysosomes in the extra-perinuclear region of the cells, by means of a 1-way ANOVA test.

P value considered significant if P ≤ 0.05 (n = 8)

P value F value
RyR1Lyso Sub-plasmalemmal vs, RyR2Lyso Sub-plasmalemmal 0.93 0.01
RyR1Lyso Sub-plasmalemmal vs, RyR3Lyso Sub-plasmalemmal 0.01 8.41
RyR2Lyso Sub-plasmalemmal vs, RyR3Lyso Sub-plasmalemmal 0.02 7.05

Table 4.56 Record of P and F values obtained from statistical analysis between the mean

volumes of elements of colocalisation between the labelling of RyR1, RyR2 and RyR3 and

lysosomes in the sub-plasmalemmal region of the cells, by means of a 1-way ANOVA test.

P value considered significant if P ≤ 0.05 (n = 8)
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Volume RyR1
labelling

associated with
areas of

colocalisation ≥
0.5 m3

Mean volume of
RyR1 labelling
associated with

areas of
colocalisation ≥

0.5 m3

Volume
Lysosomal
labelling

associated with
areas of

colocalisation ≥
0.5 m3

Mean volume of
Lysosomal
labelling

associated with
areas of

colocalisation ≥
0.5 m3

Total volume of
fluorescent

labelling
associated with

areas of
colocalisation ≥

0.5 m3

Mean volume of
fluorescent

labelling
associated with

areas of
colocalisation ≥

0.5 m3

3.78 0.76 4.7 1.18 8.48 0.94
9.28 0.62 7.66 1.91 16.94 0.89
3.31 3.31 1.54 0.77 4.85 1.62
42.4 42.4 2.28 2.28 44.68 22.34
5.82 2.91 1.15 0.38 6.97 1.39

42.62 21.31 5.32 1.33 47.94 7.99
MEAN 17.87 11.88 3.78 1.31 21.64 5.86

S.E.M. +/- 7.84 6.89 1.04 0.29 7.99 3.48

Table 4.57 Measurements of the RyR1- and lysosomal-labelling associated with areas of

colocalisation between RyR1- and lysosomal-labelling ≥ 0.05 m3 in the perinuclear

region of cells (n = 6 from 8 cells)

Volume RyR2
labelling

associated with
areas of

colocalisation ≥
0.5 m3

Mean volume
of RyR2
labelling

associated
with areas of
colocalisation
≥ 0.5 m3

Volume
Lysosomal
labelling

associated with
areas of

colocalisation ≥
0.5 m3

Mean volume of
Lysosomal
labelling

associated with
areas of

colocalisation ≥
0.5 m3

Total volume of
fluorescent

labelling
associated with

areas of
colocalisation ≥

0.5 m3

Mean volume of
fluorescent

labelling associated
with areas of

colocalisation ≥ 0.5
m3

11.96 1.5 4.56 1.14 16.52 1.38
4.27 0.53 11.14 2.23 15.41 1.19

13.01 1.18 6.52 1.09 19.53 1.15
8.47 1.06 14.58 1.62 23.05 1.36
8.87 1.27 15.42 2.2 24.29 1.74

19.54 1.5 5.37 0.9 24.91 1.31
16.21 1.8 4.57 1.14 20.78 1.6
15.87 15.87 10.81 1.55 26.68 3.34
13.45 13.45 9.25 2.31 22.7 4.54
13.07 6.54 5.88 2.28 18.95 2.71

MEAN 12.47 4.47 8.81 1.65 21.28 2.03
S.E.M. +/- 1.39 1.79 1.28 0.18 1.17 0.36

Table 4.58 Measurements of the RyR2- and lysosomal-labelling associated with areas of

colocalisation between RyR2- and lysosomal-labelling ≥ 0.05 m3 in the perinuclear

region of cells (n = 10 from 8 cells)
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Volume RyR3
labelling

associated with
areas of

colocalisation ≥
0.5 m3

Mean volume of
RyR3 labelling
associated with

areas of
colocalisation ≥

0.5 m3

Volume
Lysosomal
labelling

associated with
areas of

colocalisation ≥
0.5 m3

Mean volume of
Lysosomal
labelling

associated with
areas of

colocalisation ≥
0.5 m3

Total volume of
fluorescent

labelling
associated with

areas of
colocalisation ≥

0.5 m3

Mean volume of
fluorescent

labelling associated
with areas of

colocalisation ≥ 0.5
m3

12.7 1.27 5.64 2.82 18.34 1.53
8.73 1.46 5.91 5.91 14.64 2.09
15.9 3.18 8.06 4.03 23.96 3.42

10.07 1.44 5.91 5.91 15.98 2
9.48 1.58 5.2 5.2 14.68 2.1

12.38 1.55 5.2 5.2 17.58 1.95
11.16 1.86 12.31 4.1 23.47 2.61
9.94 1.66 1.95 1.95 11.89 1.7

18.06 2.58 7.93 7.93 25.99 3.25
8.3 1.38 5.91 5.91 14.21 2.03
8.73 1.46 5.91 5.91 14.64 2.09
5.21 1.3 5.9 5.9 11.11 2.22

11.98 1.5 30.9 7.73 42.88 3.57
10.76 2.15 31.74 5.29 42.5 3.86
17.13 2.45 29.98 7.5 47.11 4.28
10.72 3.57 3.35 0.84 14.07 2.01
17.85 2.23 29.98 7.5 47.83 3.99
10.72 3.57 22.79 3.8 33.51 3.72
5.98 1.5 11.58 5.79 17.56 2.93

16.65 1.85 20.9 2.09 37.55 1.98
7.09 2.36 14.38 1.11 21.47 1.34

6 1.5 12.47 3.12 18.47 2.31
10.39 2.6 13.98 1.17 24.37 1.52
10.39 2.6 12.84 1.43 23.23 1.79

4 2 14.43 2.41 18.43 2.3
10.39 2.6 13.43 1.49 23.82 1.83
1.42 1.42 0.99 0.99 2.41 1.21

29.52 7.38 2.01 0.29 31.53 2.87
31.51 6.3 15.68 1.43 47.19 2.95
27.46 5.49 3.9 0.78 31.36 3.14
31.16 10.39 14.58 1.46 45.74 3.52
13.33 4.45 9.29 1.55 22.62 2.51
19.95 3.99 13.98 2.80 33.93 3.39
20.39 20.39 8.53 2.84 28.92 7.23
21.35 5.34 9.39 0.85 30.74 2.05
2.49 2.49 12.21 4.07 14.7 3.68

22.99 22.99 0.75 0.38 23.74 7.91
11.63 3.88 8.07 4.03 19.7 3.94
10.51 2.1 9.31 9.31 19.82 3.3
10.86 1.55 9.31 9.31 20.17 2.52

MEAN 13.38 3.78 11.41 3.8 24.8 2.87
S.E.M. +/- 1.18 0.72 1.29 0.41 1.78 0.22

Table 4.59 Measurements of the RyR3- and lysosomal-labelling associated with areas of

colocalisation between RyR3- and lysosomal-labelling ≥ 0.05 m3 in the perinuclear

region of cells (n = 40 from 8 cells)
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Number of cells

Number of
areas of

colocalisation ≥
0.5 m3 in

perinuclear
region

Mean number of
areas per cell

SEM number of areas per
cell

RyR1Lyso 8 6 0.75 0.5
RyR2Lyso 8 10 1.25 0.37
RyR3Lyso 8 40 4.63 1.07

Table 4.60 Number of areas of colocalisation between RyR1, RyR2, RyR3 and lysosomal

labelling ≥ 0.5 m3 in the perinuclear region of pulmonary artery smooth muscle cells

P
value

F
value

No. Areas Colocalisation RyR1 cells vs. No. Areas Colocalisation
RyR2 cells 0.35 0.93

No. Areas Colocalisation RyR1 cells vs. No. Areas Colocalisation
RyR3 cells 0.004 11.78

No. Areas Colocalisation RyR2 cells vs. No. Areas Colocalisation
RyR3 cells 0.01 8.94

Table 4.61 Record of P and F values obtained from statistical analysis between the

number of areas of colocalisation between the labelling of RyR1, RyR2, RyR3 and

lysosomes ≥ 0.5 m3 in the perinuclear region of cells, by means of a 1-way ANOVA test.

P value considered significant if P ≤ 0.05

P
value

F
value

Vol. fluorescent labelling RyR1 cells vs. Vol. fluorescent labelling
RyR2 cells 0.75 0.1

Vol. fluorescent labelling RyR1 cells vs. Vol. fluorescent labelling
RyR3 cells 0.75 0.1

Vol. fluorescent labelling RyR2 cells vs. Vol. fluorescent labelling
RyR3 cells 0.32 1.03

Table 4.62 Record of P and F values obtained from statistical analysis between the total

volume of fluorescent labelling associated with areas of colocalisation between the

labelling of RyR1, RyR2, RyR3 and lysosomes ≥ 0.5 m3 in the perinuclear region of cells,

by means of a 1-way ANOVA test. P value considered significant if P ≤ 0.05
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P
value

F
value

Vol. assoc. RyR labelling RyR1 cells vs. Vol. assoc. RyR labelling
RyR2 cells 0.3 1.15

Vol. assoc. RyR labelling RyR1 cells vs. Vol. assoc. RyR labelling
RyR3 cells 0.21 1.65

Vol. assoc. RyR labelling RyR2 cells vs. Vol. assoc. RyR labelling
RyR3 cells 0.68 0.17

Table 4.63 Record of P and F values obtained from statistical analysis between the volume

of RyR1, RyR2 or RyR3 labelling associated with areas of colocalisation between the

labelling of RyR1, RyR2, RyR3 and lysosomes ≥ 0.5 m3 in the perinuclear region of cells,

by means of a 1-way ANOVA test. P value considered significant if P ≤ 0.05

P
value

F
value

Vol. assoc. Lyso. labelling RyR1 cells vs. Vol. assoc. Lyso. labelling
RyR2 cells 0.04 5.16

Vol. assoc. Lyso. labelling RyR1 cells vs. Vol. assoc. Lyso. labelling
RyR3 cells 0.04 4.31

Vol. assoc. Lyso. labelling RyR2 cells vs. Vol. assoc. Lyso. labelling
RyR3 cells 0.33 0.98

Table 4.64 Record of P and F values obtained from statistical analysis between the volume

of lysosomal labelling associated with areas of colocalisation between the labelling of

RyR1, RyR2, RyR3 and lysosomes ≥ 0.5 m3 in the perinuclear region of cells, by means

of a 1-way ANOVA test. P value considered significant if P ≤ 0.05

P
value

F
value

Mean vol. assoc. Lyso. labelling RyR1 cells vs. Mean vol. assoc. Lyso. labelling RyR2
cells 0.14 2.45

Mean vol. assoc. Lyso. labelling RyR1 cells vs. Mean vol. assoc. Lyso. labelling RyR3
cells 0.02 5.91

Mean vol. assoc. Lyso. labelling RyR2 cells vs. Mean vol. assoc. Lyso. labelling RyR3
cells 0.02 6.24

Table 4.65 Record of P and F values obtained from statistical analysis between the mean

volume of elements of lysosomal labelling associated with areas of colocalisation between

the labelling of RyR1, RyR2, RyR3 and lysosomes ≥ 0.5 m3 in the perinuclear region of

cells, by means of a 1-way ANOVA test. P value considered significant if P ≤ 0.05
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Appendix 3:

Results Tables Chapter 5:

Resting F340/F380

Maximum
F340/F380

+ PE

Increase
F340/F380

+ PE

%
increase

F340F380
+ PE

Resting
F340/F380

+ Bafilomycin

Maximum
F340/F380

+ Bafilomycin
+ PE

Increase
F340/F380

+ Bafilomycin
+ PE

% increase
F340/F380

+ Bafilomycin
+ PE

0.4 0.89 0.49 122 0.43 0.99 0.56 129
0.39 1.64 1.25 317 0.5 1.49 0.99 198
0.68 2.17 1.49 219 0.8 1.98 1.17 146

MEAN 0.49 1.57 1.08 219 0.58 1.49 0.91 158
S.E.M +/- 0.09 0.37 0.3 56 0.11 0.28 0.18 21

Table 5.1 Fura-2 fluorescence ratio measurements in all experiments involving the

extracellular application of phenylepherine (3 M), in the presence and absence of

Bafilomycin A1 (100 nM), in isolated pulmonary artery smooth muscle cells: The resting

F340/F380 ratio was determined before the extracellular application of PE to cells in the presence

and absence of Bafilomycin A1. The maximum F340/F380 ratio value is the peak ratio value

recorded after exposure of cells to PE. The Increase in F340/F380 ratio was determined by

subtracting the resting F340/F380 ratio value from the maximum F340/F380 ratio value. The %

increase in F340/F380 ratio was determined by expressing the increase in F340/F380 ratio for each

experiment as a percentage of the resting F340/F380 ratio value, when the resting F340/F380 ratio

value was taken to equal 100 %.

PE
PE

+ Bafilomycin A1
Mean 1.08 0.91 P value 0.65
S.E.M. 0.3 0.18 F 0.23

n 3 3

Table 5.2: Summary of the mean increases in Fura-2 fluorescence ratio in isolated

pulmonary artery smooth muscle cells in response to PE in the presence and absence of

Bafilomycin A1: The P value determining statistical significance was calculated by means of a

one-way ANOVA test.
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Resting F340/F380

Maximum
F340/F380

+ PGF

Increase
F340/F380

+ PGF

%
increase

F340F380
+ PGF

Resting
F340/F380

+ Bafilomycin

Maximum
F340/F380

+ Bafilomycin
+ PGF

Increase
F340/F380

+ Bafilomycin
+ PGF

% increase
F340/F380

+ Bafilomycin
+ PGF

0.61 1.79 1.18 193 0.647 1.593 0.95 146
0.59 1.39 0.8 137 0.606 1.35 0.74 123
0.52 1.15 0.63 119 0.619 1.304 0.69 111
0.41 0.68 0.27 66 0.455 0.746 0.29 64
0.58 1.41 0.83 143 0.6 1.586 0.99 164

MEAN 0.54 1.28 0.74 132 0.59 1.32 0.73 122
S.E.M +/- 0.04 0.18 0.15 21 0.03 0.15 0.12 17

Table 5.3 Fura-2 fluorescence ratio measurements in all experiments involving the

extracellular application of prostaglandin-F2 (2 M), in the presence and absence of

Bafilomycin A1 (100 nM), in isolated pulmonary artery smooth muscle cells: The resting

F340/F380 ratio was determined before the extracellular application of PGF2 to cells in the

presence and absence of Bafilomycin A1. The maximum F340/F380 ratio value is the peak ratio

value recorded after exposure of cells to PGF2. The Increase in F340/F380 ratio was determined

by subtracting the resting F340/F380 ratio value from the maximum F340/F380 ratio value. The %

increase in F340/F380 ratio was determined by expressing the increase in F340/F380 ratio for each

experiment as a percentage of the resting F340/F380 ratio value, when the resting F340/F380 ratio

value was taken to equal 100 %.

PGF2

PGF2

+ Bafilomycin A1
Mean 0.74 0.73 P value 0.96
S.E.M. 0.15 0.12 F 0.00

n 5 5

Table 5.4: Summary of the mean increases in Fura-2 fluorescence ratio in isolated

pulmonary artery smooth muscle cells in response to PGF2 in the presence and absence

of Bafilomycin A1: The P value determining statistical significance was calculated by means

of a one-way ANOVA test.
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Resting F340/F380

Maximum
F340/F380

+ ET-1
(1st application)

Increase
F340/F380

+ ET-1

% increase
F340F380

+ ET-1
Resting

F340/F380

Maximum
F340/F380

+ ET-1
(2nd application)

Increase
F340/F380

+ ET-1

% increase
F340/F380

+ ET-1
0.48 0.95 0.47 98 0.53 0.96 0.43 81
0.52 1.24 0.72 139 0.55 1.2 0.65 118
0.43 1.19 0.76 177 0.41 1.23 0.82 200
0.65 1.13 0.48 74 0.6 1.17 0.57 95
0.66 1.74 1.08 164 0.67 1.69 1.02 152
0.51 1.23 0.72 141 0.55 1.27 0.72 131
0.39 0.97 0.58 149 0.44 0.99 0.55 125
0.44 0.99 0.55 125 0.45 1.02 0.57 127
0.68 1.22 0.54 79 0.65 1.23 0.58 89
0.45 1.1 0.65 144 0.47 1.13 0.66 140
0.48 1.09 0.61 127 0.45 1.1 0.65 144
0.43 1.02 0.59 137 0.43 1.1 0.67 156
0.49 1.11 0.62 127 0.49 1.01 0.52 106
0.6 1.31 0.71 118 0.58 1.27 0.69 119

0.54 0.99 0.45 83 0.57 0.96 0.39 68
0.56 1.27 0.71 127 0.59 1.24 0.65 110

MEAN 0.52 1.16 0.64 126 0.53 1.16 0.63 123
S.E.M +/- 0.02 0.05 0.04 7 0.02 0.04 0.04 8

Table 5.5 Endothelin-1 induces reproducible global calcium release events in isolated

pulmonary artery smooth muscle cells: The resting F340/F380 ratio was determined before the

1st or 2nd extracellular application of ET-1 to cells. The maximum F340/F380 ratio value is the

peak ratio value recorded after exposure of cells to ET-1. The Increase in F340/F380 ratio was

determined by subtracting the resting F340/F380 ratio value from the maximum F340/F380 ratio

value. The % increase in F340/F380 ratio was determined by expressing the increase in F340/F380

ratio for each experiment as a percentage of the resting F340/F380 ratio value, when the resting

F340/F380 ratio value was taken to equal 100 %

Resting F340/F380

Maximum
F340/F380

+ ET-1

Increase
F340/F380

+ ET-1

%
increase

F340F380
+ ET-1

Resting
F340/F380

+ Bafilomycin

Maximum
F340/F380

+ Bafilomycin
+ ET-1

Increase
F340/F380

+ Bafilomycin
+ ET-1

% increase
F340/F380

+ Bafilomycin
+ ET-1

0.71 1.14 0.43 61 0.65 0.65 0 0
0.73 1.21 0.49 67 0.61 0.63 0.02 3
0.43 1.13 0.7 163 0.62 0.65 0.03 5
0.38 1.19 0.81 213 0.46 0.48 0.01 2

MEAN 0.56 1.17 0.61 126 0.64 0.65 0.02 2
S.E.M +/- 0.09 0.02 0.09 37 0.03 0.03 0.01 1

Table 5.6 Fura-2 fluorescence ratio measurements in all experiments involving the

extracellular application of endothelin-1 (100 nM), in the presence and absence of

Bafilomycin A1 (100 nM), in isolated pulmonary artery smooth muscle cells: The resting

F340/F380 ratio was determined before the extracellular application of ET-1 to cells in the

presence and absence of Bafilomycin A1. The maximum F340/F380 ratio value is the peak ratio

value recorded after exposure of cells to ET-1. The Increase in F340/F380 ratio was determined

by subtracting the resting F340/F380 ratio value from the maximum F340/F380 ratio value. The %

increase in F340/F380 ratio was determined by expressing the increase in F340/F380 ratio for each

experiment as a percentage of the resting F340/F380 ratio value, when the resting F340/F380 ratio

value was taken to equal 100 %.
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ET-1
ET-1

+ Bafilomycin A1
Mean 0.61 0.02 P value 0.001
S.E.M. 0.09 0.01 F 44.17

n 4 4

Table 5.7: Summary of the mean increases in Fura-2 fluorescence ratio in isolated

pulmonary artery smooth muscle cells in response to ET-1 in the presence and absence of

Bafilomycin A1: The P value determining statistical significance was calculated by means of a

one-way ANOVA test.

Resting F340/F380

Maximum
F340/F380

+ ET-1

Increase
F340/F380

+ ET-1

%
increase

F340F380
+ ET-1

Resting
F340/F380

+ Thapsigargin

Maximum
F340/F380

+ Thapsigargin
+ET-1

Increase
F340/F380

+ Thapsigargin
+ET-1

% increase
F340/F380

+ Thapsigargin
+ET-1

0.35 1.06 0.71 203 0.4 0.44 0.04 10*
0.41 0.72 0.31 76 0.45 0.46 0.01 2
0.38 0.64 0.26 68 0.48 0.53 0.05 10*
0.4 0.79 0.39 98 0.51 0.52 0.01 2
0.4 0.93 0.53 133 0.42 0.44 0.02 5

0.43 0.94 0.51 119 0.47 0.48 0.01 2
0.4 0.81 0.41 103 0.41 0.54 0.13 32*

0.35 0.75 0.40 114 0.4 0.45 0.05 13*
0.35 0.58 0.23 66 0.5 0.59 0.09 18*

MEAN 0.39 0.80 0.42 109 0.45 0.49 0.05 10
S.E.M +/- 0.01 0.05 0.05 14 0.01 0.02 0.01 3

Table 5.8 Fura-2 fluorescence ratio measurements in all experiments involving the

extracellular application of endothelin-1 (100 nM), in the presence and absence of

thapsigargin (1 M), in isolated pulmonary artery smooth muscle cells: The resting

F340/F380 ratio was determined before the extracellular application of ET-1 to cells in the

presence and absence of thapsigargin. The maximum F340/F380 ratio value is the peak ratio

value recorded after exposure of cells to ET-1. The Increase in F340/F380 ratio was determined

by subtracting the resting F340/F380 ratio value from the maximum F340/F380 ratio value. The %

increase in F340/F380 ratio was determined by expressing the increase in F340/F380 ratio for each

experiment as a percentage of the resting F340/F380 ratio value, when the resting F340/F380 ratio

value was taken to equal 100 %. Asterisk (*) denotes those cells which displayed clear,

spatially restricted Ca2+ release event in response to ET-1 following pre-incubation with

thapsigargin.

ET-1
ET-1

+ thapsigargin
Mean 0.42 0.05 P value <0.0001
S.E.M. 0.05 0.01 F 51.22

n 9 9

Table 5.9: Summary of the mean increases in Fura-2 fluorescence ratio in isolated

pulmonary artery smooth muscle cells in response to ET-1 in the presence and absence of

thapsigargin: The P value determining statistical significance was calculated by means of a

one-way ANOVA test.
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Resting F340/F380

Maximum
F340/F380

+ ET-1

Increase
F340/F380

+ ET-1

% increase
F340F380

+ ET-1

Resting
F340/F380

+ ryanodine

Maximum
F340/F380

+ ryanodine
+ET-1

Increase
F340/F380

+ ryanodine
+ET-1

% increase
F340/F380

+ ryanodine
+ET-1

0.49 1.19 0.7 143 0.51 0.66 0.15 29*
0.38 0.64 0.26 68 0.38 0.45 0.07 18*
0.38 1.08 0.7 184 0.47 0.52 0.05 11
0.37 1.03 0.66 178 0.41 0.44 0.03 7*
0.37 1.05 0.68 184 0.45 0.47 0.02 4
0.36 0.67 0.31 86 0.42 0.43 0.01 2
0.44 0.68 0.24 55 0.51 0.53 0.02 4
0.41 0.92 0.51 124 0.47 0.49 0.02 4

MEAN 0.4 0.93 0.51 134 0.45 0.5 0.05 10
S.E.M +/- 0.02 0.08 0.07 19 0.02 0.03 0.02 3

Table 5.10 Fura-2 fluorescence ratio measurements in all experiments involving the

extracellular application of endothelin-1 (100 nM), in the presence and absence of

ryanodine (20 M), in isolated pulmonary artery smooth muscle cells: The resting F340/F380

ratio was determined before the extracellular application of ET-1 to cells in the presence and

absence of ryanodine. The maximum F340/F380 ratio value is the peak ratio value recorded after

exposure of cells to ET-1. The Increase in F340/F380 ratio was determined by subtracting the

resting F340/F380 ratio value from the maximum F340/F380 ratio value. The % increase in F340/F380

ratio was determined by expressing the increase in F340/F380 ratio for each experiment as a

percentage of the resting F340/F380 ratio value, when the resting F340/F380 ratio value was taken

to equal 100 %.

ET-1
ET-1

+ ryanodine
Mean 0.51 0.07 P value <0.0001

S.E.M. 0.05 0.02 F 57.86

n 8 8

Table 5.11: Summary of the mean increases in Fura-2 fluorescence ratio in isolated

pulmonary artery smooth muscle cells in response to ET-1 in the presence and absence of

ryanodine: The P value determining statistical significance was calculated by means of a one-

way ANOVA test.
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NAADP levels
control

30s incubation
(pmol per mg

tissue)

NAADP levels
ET-1 (1 M)

30s incubation
(pmol per mg

tissue)

NAADP levels
control

60s incubation
(pmol per mg

tissue)

NAADP levels
ET-1 (1 M)

60s incubation
(pmol per mg

tissue)

NAADP levels
control

300s incubation
(pmol per mg

tissue)

NAADP levels
ET-1 (1 M)

300s incubation
(pmol per mg

tissue)

0.25 1.08 0.94 1.05 0.79 0.94
0.24 1.74 0.7 0.4 0.27 0.26
0.5 1.69 0.65 0.3 0.22 0.3

0.32 1.37 0.24
0.13 0.75 0.38
0.3 0.23

0.18 0.06
0.07 0.05
0.17 0.05
0.16 0.19
0.21 0.13
0.03 0.09

MEAN 0.21 1.33 0.31 0.58 0.43 0.5
S.E.M +/- 0.04 0.19 0.09 0.24 0.2 0.2

Table 5.12: Comparison of NAADP levels untreated control and ET-1 treated branches of

the pulmonary arterial tree.

Control
30s

ET-1
30s

Mean 0.21 1.33 P value <0.0001
S.E.M. 0.04 0.19 F 75.49

N 12 5

Table 5.13: Summary of the mean increases in NAADP levels in second and third order

branches of the pulmonary arterial tree in response to 30 s exposure to ET-1: The P value

determining statistical significance was calculated by means of a one-way ANOVA test.

Control
60s

ET-1
60s

Mean 0.31 0.58 P value 0.2
S.E.M. 0.09 0.24 F 1.8

N 12 3

Table 5.14: Summary of the mean increases in NAADP levels in second and third order

branches of the pulmonary arterial tree in response to 60 s exposure to ET-1: The P value

determining statistical significance was calculated by means of a one-way ANOVA test.

Control
300s

ET-1
300s

Mean 0.43 0.5 P value 0.81
S.E.M. 0.2 0.2 F 0.07

N 3 3

Table 5.15: Summary of the mean increases in NAADP levels in second and third order

branches of the pulmonary arterial tree in response to 300 s exposure to ET-1: The P

value determining statistical significance was calculated by means of a one-way ANOVA test.
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NAADP levels
control

30 s incubation
(pmol per mg

tissue)

NAADP levels
PGF2a(2 M)

30 s incubation
(pmol per mg

tissue)

NAADP levels
control

60 s incubation
(pmol per mg

tissue)

NAADP levels
PGF2a(2 M)

60 s incubation
(pmol per mg

tissue)
0.32 0.29 0.24 0.14
0.13 0.05 0.38 0.19
0.3 0.27 0.23 0.2

MEAN 0.25 0.2 0.28 0.17
S.E.M +/- 0.06 0.08 0.05 0.02

Table 5.16: Comparison of NAADP levels between PGF2 treated and untreated branches

of the pulmonary arterial tree.

Control
30s

PGF2

30s
Mean 0.25 0.2 P value 0.658
S.E.M. 0.06 0.05 F 0.23

N 3 3

Table 5.17: Summary of the mean increases in NAADP levels in second and third order

branches of the pulmonary arterial tree in response to 30 s exposure to PGF2: The P

value determining statistical significance was calculated by means of a one-way ANOVA test.

Control
30s

PGF2

30s
Mean 0.28 0.17 P value 0.11
S.E.M. 0.05 0.02 F 4.23

N 3 3

Table 5.18: Summary of the mean increases in NAADP levels in second and third order

branches of the pulmonary arterial tree in response to 60 s exposure to PGF2: The P

value determining statistical significance was calculated by means of a one-way ANOVA test.
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Resting F340/F380

Maximum
F340/F380

+ ET-1
+BQ-788

Increase
F340/F380

+ ET-1
+ BQ-788

% increase
F340F380

+ ET-1
+BQ-788

Resting
F340/F380

Maximum
F340/F380

+ET-1

Increase
F340/F380

+ET-1

% increase
F340/F380

+ET-1
0.71 0.73 0.02 3 0.78 1.76 0.98 126
0.78 0.78 0 0 0.78 2.7 1.92 246
0.8 0.83 0.03 4 0.86 2.25 1.39 162

0.69 0.71 0.02 3 0.75 1.33 0.58 77
0.66 0.66 0 0 0.67 2.04 1.37 205
0.51 0.51 0 0 0.56 2.09 1.53 273
0.49 0.5 0.01 2 0.49 0.85 0.36 74

MEAN 0.66 0.67 0.01 2 0.70 1.86 1.16 166
S.E.M +/- 0.05 0.05 0.005 1 0.05 0.23 0.21 30

Table 5.19 Fura-2 fluorescence ratio measurements in all experiments involving the

extracellular application of ET-1, in the presence and absence of BQ-788, in isolated

pulmonary artery smooth muscle cells: The resting F340/F380 ratio was determined before the

extracellular application of ET-1 (100 nM) to cells in the presence and absence of BQ-788 (30

M). The maximum F340/F380 ratio value is the peak ratio value recorded after exposure of cells

to ET-1. The Increase in F340/F380 ratio was determined by subtracting the resting F340/F380 ratio

value from the maximum F340/F380 ratio value. The % increase in F340/F380 ratio was determined

by expressing the increase in F340/F380 ratio for each experiment as a percentage of the resting

F340/F380 ratio value, when the resting F340/F380 ratio value was taken to equal 100 %.

Increase in F340/F380
ET-1

+BQ-788
Increase in F340/F380

ET-1
Mean 0.01 1.16 P value <0.0001
S.E.M. 0.005 0.21 F 30.5

n 7 7

Table 5.20: Summary of the mean increases in Fura-2 fluorescence ratio in isolated

pulmonary artery smooth muscle cells in response to ET-1 in the presence and absence of

BQ-788: The P value determining statistical significance was calculated by means of a one-

way ANOVA test.
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Cell Resting F340/F380

Maximum
F340/F380
+ ET-1
+BQ-123

Increase
F340/F380
+ ET-1
+ BQ-123

% increase
F340F380
+ ET-1
+BQ-123

1 0.66 2.4 1.74 263.64
2 0.55 1.44 0.89 161.82
3 0.56 1.38 0.82 146.43
4 0.55 1.39 0.84 152.73
5 0.62 1.45 0.83 133.87
MEAN 0.59 1.61 1.02 171.7
S.E.M +/- 0.01 0.04 0.04 6.5

Table 5.21 Fura-2 fluorescence ratio measurements in all experiments involving the

extracellular application of ET-1, in the presence and absence of BQ-123, in isolated

pulmonary artery smooth muscle cells: The resting F340/F380 ratio was determined before the

extracellular application of ET-1 (100 nM) to cells in the presence and absence of BQ-123 (30

M). The maximum F340/F380 ratio value is the peak ratio value recorded after exposure of cells

to ET-1. The Increase in F340/F380 ratio was determined by subtracting the resting F340/F380 ratio

value from the maximum F340/F380 ratio value. The % increase in F340/F380 ratio was determined

by expressing the increase in F340/F380 ratio for each experiment as a percentage of the resting

F340/F380 ratio value, when the resting F340/F380 ratio value was taken to equal 100 %.

NAADP levels
control

(pmol per mg
tissue)

NAADP levels
ET-1 (1 M)
(pmol per mg

tissue)

NAADP levels
ET-1 (1 M) +

BQ-788 (20 M)
(pmol per mg

tissue)

0.17 1.04 0.17
0.16 0.73 0.13
0.21 0.69 0.14

MEAN 0.18 0.82 0.15
S.E.M +/- 0.02 0.11 0.01

Table 5.22: Comparison of NAADP levels between untreated control, ET-1 treated and

ET-1 + BQ-788 treated branches of the pulmonary arterial tree.

Control
NAADP levels

NAADP levels
+ ET-1

Mean 0.18 0.82 P value <0.0001
S.E.M ±. 0.02 0.11 F 33.82

n 3 3

Table 5.23: Summary of the mean increases in NAADP levels in second and third order

branches of the pulmonary arterial tree in response to ET-1: The P value determining

statistical significance was calculated by means of a one-way ANOVA test.

NAADP levels
ET-1

NAADP levels
ET-1+BQ-788

Mean 0.82 0.15 P value 0.004
S.E.M ±. 0.11 0.01 F 36.63

n 3 3

Table 5.24: Summary of the mean increases in NAADP levels in second and third order

branches of the pulmonary arterial tree in response to ET-1 and ET-1 + BQ-788: The P

value determining statistical significance was calculated by means of a one-way ANOVA test.
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Appendix 4:

Future experiments:

1. Identification of the NAADP receptor:

One approach could be to identify candidate receptors (e.g. TRPML
(mucolipins) or TPC1 channels) and then stably transfect them into an
expression system (i.e. a clonal cell line, such as HEK-293 or CHO cells) that
lack the receptor in question. Thereby calcium signals (Fura-2 fluorescence
ratio) in response to intracellular dialysis of NAADP from a patch-pipette in
the whole cell configuration could be studied in transfected and non-transfected
(control) cells. Alternatively, protein purification and sequencing or cloning
techniques could be employed to identify novel Ca2+ channels, and whether
these channels are targeted to lysosomal membranes and function as NAADP
receptors.

2. Cellular localisation of the NAADP receptor:

Once the NAADP receptor has been identified, sequence-specific antibodies
could be generated in order to allow for detailed quantitative
immunocytochemistry. Thus, I could determine whether or not; (1) the
NAADP receptor, like lgp120, is targeted to lysosomes, or (2) the NAADP
receptor selectively co-localises with ryanodine receptor subtype 3 (RyR3) in
pulmonary artery smooth muscle cells.

3. Functional examination of the involvement of RyR3 in NAADP-
mediated Ca2+ signalling in pulmonary artery smooth muscle cells

The examinations presented in this thesis suggest that lysosomes colocalise
with RyR3, in the perinuclear region of pulmonary artery smooth muscle cells,
to form a trigger zone for NAADP-mediated Ca2+ signalling. However, further
examinations must be carried out to examine the functional role of each of the
3 different RyR subtypes in the amplification by CICR of Ca2+ bursts evoked
by NAADP.

 My findings suggest that RyR3 colocalises with lysosomes to a
significantly greater degree than is observed for either RyR1 or
RyR2. These findings suggest, therefore, that the trigger zone for
NAADP-mediated Ca2+ signalling in pulmonary artery smooth
muscle cells is formed between RyR3 and lysosomes. The relative
lack of association between RyR1 and lysosomes, coupled with the
relative lack of sensitivity to CICR of RyR1, when compared to
RyR3, argues against a role for RyR1 in the amplification of
localised NAADP-mediated Ca2+ bursts into global Ca2+ waves. To
determine whether RyR3 or RyR2 contribute to the amplification of
Ca2+ bursts within the trigger zone the effects of dantrolene on
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NAADP-mediated Ca2+ signals in isolated pulmonary artery smooth
muscle cells could be examined. Dantrolene is known to inhibit
RyR1 and RyR3 without affecting Ca2+ signals generated via
activation of RyR2. Therefore, if preincubation of pulmonary artery
smooth muscle cells with dantrolene abolishes global Ca2+ waves in
response to the intracellular dialysis of NAADP, then RyR2 can be
excluded as being involved in the initial amplification of NAADP-
mediated Ca2+ bursts into global Ca2+ waves.

As dantrolene is an inhibitor of both RyR1 and RyR3, its use in the above
experiment would not provide conclusive evidence that initial NAADP-
mediated Ca2+ bursts are amplified via activation of RyR3. Therefore, I could
distinguish between RyR3 and RyR1 in the following manner:

 Sequence specific antibodies raised against conserved sequences in
the pore regions of each of the different RyR subtypes could be
used to examine the involvement of each of the RyR subtypes in
amplifying NAADP-mediated Ca2+ signalling. Caged NAADP and
anti-RyR subtype antibodies could be introduced to pulmonary
artery smooth muscle cells by means of a patch-pipette. Then,
following a period of incubation to allow the antibodies to associate
with their target, a comparison could be carried out on the profile of
Ca2+ signals generated by photorelease of caged NAADP. The
profile of these Ca2+ responses could then be compared to Ca2+

signals generated in response to NAADP under control conditions,
in the absence of anti-RyR antibodies.

 The generation of short interfering RNA (siRNA) against each of
the RyR subtypes would allow for examination of NAADP-
mediated Ca2+ signalling following knockout of a given RyR
subtype. Thus, isolated pulmonary artery smooth muscle cells could
be cultured and transfected with siRNA specific for a given RyR
subtype. Following confirmation that the siRNA had knocked down
expression of a given RyR subtype, via western blot and
immunocytochemical analysis, the profile of NAADP-mediated
Ca2+ signals in transfected cells could be compared to the profiles of
Ca2+ signals in non-transfected cells to gauge the contribution of
each RyR subtype to NAADP-mediated Ca2+ signals.

4. How does the ET-B receptor promote an increase in NAADP
levels?

Investigations in sea urchin eggs have shown that the phosphorylation of ADP-
ribosyl cyclase by protein kinase A (PKA) and protein kinase G (PKG) drives
the production of NAADP and cADPR, respectively (Galione, et al., 1993;
Wilson, et al., 1998). Although the ADP-ribosyl cyclase responsible for the
production of cADPR and NAADP in mammalian cells remains to be
elucidated, the findings of this thesis indicate that the activation of ETB
receptors, by exposure to ET-1, in pulmonary artery smooth muscle causes an
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increase in the cellular levels of NAADP. Therefore, as ETB receptors in
mammalian cells have been shown to activate a number of different
intracellular kinases, including PKA (da Cunha, et al., 2004), PKG (Mullaney,
et al., 2000), protein kinase C (PKC) ((da Cunha, et al., 2004) and the ERK2,
JNK1 p38 MAP kinase signalling pathways (Aquilla, et al., 1996; Henriksson,
et al., 2004), it is possible that the production of NAADP in pulmonary artery
smooth muscle, following activation of ETB receptors, may be dependent upon
the actions of one or other of these kinases. The requirement for a kinase to
drive NAADP production in pulmonary artery smooth muscle could be
examined in the following manner:

PKA:

 A role for PKA in promoting NAADP production by activating
ADP-ribosyl cyclase could be assessed by utilising an assay
designed to examine the ability of ADP-ribosyl cyclase to
synthesise NAADP from its substrate -NADP+. This assay allows
for examination of the enzymatic activity of ADP-ribosyl cyclase
and examination of the effect of pharmacological intervention on
this activity. Thus, I could examine the effect of PKA on NAADP
production by ADP-ribosyl cyclase enzyme by determining the rate
of synthesis of NAADP in homogenates of pulmonary arteries
incubated with NAADP substrates, -NADP and nicotinic acid, +/-
constitutively active PKA. The rate of synthesis of NAADP within
pulmonary artery homogenates would then be assessed, over time,
by HPLC, using an anion exchange column with a 1mg/ml flow
rate over an increasing trifluoroacetic acid gradient. By comparison
of the absorbance spectra of the NAADP-containing eluate against
standards of known NAADP concentration (measured at 254 nm), I
would be able to assess whether constitutively active PKA serves to
activate ADP-ribosyl cyclase-mediated production of NAADP in
pulmonary artery homogenates. If there was an increase in the rate
of NAADP synthesis within pulmonary artery homogenates in the
presence of constitutively active PKA, I would then need to assess
whether activation of endogenous PKA in pulmonary arteries
serves to increase the rate of NAADP synthesis via ADP-ribosyl
cyclase. To examine this, I could examine the rate of NAADP
synthesis in pulmonary artery homogenates +/- the PKA activator
cAMP in the presence of the phosphodiesterase inhibitor (to
prevent breakdown of cAMP). Thus, an increase in the rate of
synthesis of NAADP observed in cAMP treated homogenates
would indicate a role for PKA in promoting NAADP synthesis by
activation of ADP-ribosyl cyclase. In order to confirm that the
increase in the rate of synthesis of NAADP in response to cAMP
was due to an action of PKA, the assay would be repeated in the
presence of PKA inhibitors, such as H89 or KT5720.

 If the above experiments indicated a role for PKA in increasing the
rate at which ADP-ribosyl cyclase synthesises NAADP in
homogenates of pulmonary arteries, it would be pertinent to
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examine the role of endogenous PKAs in mediating ET-1 induced
increases in NAADP levels in intact pulmonary arteries.
Examination of the levels of NAADP in pulmonary arteries +/- the
membrane permeant cAMP analogue, 8-Br-cAMP, could be carried
out using the competitive NAADP radioreceptor assay described in
chapter 5 of this thesis. An increase in NAADP levels in response
to 8-Br-cAMP would suggest a role for PKA in promoting NAADP
synthesis. A possible role for PKA in mediating the increase in
NAADP could be further examined by incubation of arteries with
PKA antagonists prior to exposure of 8-Br-cAMP. If the findings
of these experiments provide evidence in support of a role for
PKA-mediated promotion of an increase in the levels of NAADP
within cells, then an investigation of the possible role of PKA in
the ET-1-mediated increase in NAADP levels in pulmonary arteries
would be required. To examine this I could examine the effect of
preincubation of pulmonary arteries of PKA inhibitors on the
increase in NAADP levels detected in response to exposure of
arteries to ET-1 by use of the radioreceptor assay mentioned
previously.

PKG:

 The pulmonary artery homogenate assay described above could be
used to examine the effect of PKG on ADP-ribosyl cyclase activity
by monitoring the rate of NAADP synthesis. Thus, examination, by
HPLC of the rate of NAADP synthesis in pulmonary artery
homogenates, +/- constitutively active PKG would indicate
whether PKG altered the enzymatic activity of ADP-ribosyl
cyclase. If there was an increase in the rate of NAADP synthesis,
indicative of an increase in ADP-ribosyl cyclase activity, in
response to constitutively active PKG then I would proceed to
examine the effect of activation of endogenous PKG on ADP-
ribosyl cyclase activity in the assay system. This could be achieved
by adding cGMP to homogenates of pulmonary arteries to activate
PKG. These experiments would be carried out in the presence of
phosphodiesterase inhibitors and any changes in the rate of
NAADP synthesis within artery homogenates would be examined
via HPLC. These experiments could be repeated in the presence of
PKG inhibitors, such as KT5823, to confirm that any increase in
the rate of NAADP synthesis in response to application of cGMP
was due to the activity of PKG.

 A role for PKG in mediating increases in the levels of NAADP
within whole tissue preparation of pulmonary arteries could be
assessed by means of the competitive NAADP radioreceptor assay
described in chapter 5 of this thesis. Initially, the effect on NAADP
levels within pulmonary arteries could be assessed +/- the
membrane permeant analogue of cGMP, 8-Br-cGMP. An increase
in tissue NAADP levels in response to 8-Br-cGMP would indicate
a possible role for PKG in promoting this increase. The
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involvement of PKG could be assessed by preincubation of
pulmonary arteries with PKG inhibitors prior to exposure with 8-
Br-cGMP. Abolition of the 8-Br-cGMP-mediated increase in
NAADP levels within pulmonary arteries by PKG inhibitors would
confirm that 8-Br-cGMP promotes an increase in tissue NAADP
levels by activation of PKG. A possible role for PKG in mediating
ET-1 induced increases in NAADP levels within pulmonary
arteries could be examined through application of the competitive
radioreceptor assay described previously. Thus, the levels of
NAADP within pulmonary arteries exposed to ET-1 could be
determined +/- preincubation of arteries with PKG inhibitors.

PKC:

 The effect of PKC activators, such as the phorbol ester PMA, on
the rate of NAADP synthesis in homogenates of pulmonary arteries
could be assessed by HPLC in order to examine whether or not
PKC altered the enzymatic activity of ADP-ribosyl cyclase. That
any observed increase in the rate of NAADP synthesis was due to
PKC could be examined by the preincubation of homogenates with
PKC inhibitors, such as staurosporine. If the increase in the rate of
NAADP synthesis was abolished, this would provide compelling
evidence that PKC regulates the enzymatic activity of ADP-ribosyl
cyclase. The PKC family of serine threonine kinases is subdivided
into three groups on the basis of structural and biophysical
properties: the conventional (, novel ()
and atypical ( and /) isoforms. A number of the PKC isoforms
have been shown to mediate contraction of smooth muscle,
including PKCand (Lee, et al., 1999; Dallas and Khalil,
2003). Therefore, if there was an increase in the rate of NAADP
production in pulmonary artery homogenates in response to PKC
activation, then I could proceed to screen constitutively active
isoforms of PKC to identify which isoform were responsible for the
activation of NAADP production by ADP-ribosyl cyclase.

 If activation of PKC increased the rate of NAADP synthesis in
homogenates of pulmonary arteries, then a role for PKC in
mediating increases in NAADP levels following activation of ETB
receptors in whole tissue preparations of pulmonary arteries could
be examined. I could investigate this by measuring the levels of
NAADP in pulmonary arteries, using the radioreceptor assay
described previously, +/- PKC activators. That any observed
increase was due to PKC could then be examined by repeating the
experiments following preincubation of arteries with PKC
inhibitors. Any involvement for PKC in ET-1-mediated increases
in NAADP levels in pulmonary arteries could then be investigated
by incubating pulmonary arteries with PKC inhibitors prior to
exposure to ET-1.



325

MAPK:

 MAPK signalling pathways involve a cascade of kinases. Thus, by
systematically screening the effect of the members of a given
signalling cascade one would be able to identify whether or not any
one of these kinases is responsible for phosphorylating, and thereby
activating, the ADP-ribosyl cyclase present in pulmonary artery
smooth muscle. ETB receptor activation has been shown to activate
the ERK, p38 and JNK MAPK signalling pathways. The effect of
each of these signalling pathways on the rate of synthesis of
NAADP in homogenates of pulmonary arteries could be assessed
via the addition of constitutively active forms of initial signalling
kinases, the MAP kinase kinase kinase (MAPKKK), within these
signalling cascades (i.e. Raf-1 for ERK pathway, and MEKK-1 for
p38 and JNK pathways). HPLC analysis of the rate of NAADP
synthesis within homogenates of pulmonary arteries would indicate
whether any of the kinases involved in these signalling pathways
mediated an increase in the rate of NAADP synthesis by
phosphorylation of ADP-ribosyl cyclase. If an increase in the rate
of NAADP synthesis was evident after addition of constitutively
active MAPKKK (i.e Raf-1), one would proceed to examine the
effect on the rate of NAADP on the next kinase in that particular
kinase cascade. I would then proceed to add a constitutively active
form of the downstream MAP kinase kinase (MAPKK; in the case
of Raf-1, I would add a constitutively active form of MEK) and the
effects of this kinase on the rate of NAADP synthesis would be
examined. If there was no effect on the rate of NAADP synthesis in
response to the constitutively active MAPKK, then one would
assume that the upstream MAPKKK was the candidate kinase
involved in regulation of NAADP synthesis. However, an increase
in the rate of NAADP synthesis would suggest a role for this
MAPKK in phosphorylating ADP-ribosyl cyclase. One would then
examine the role of the downstream MAPK on the effect of
NAADP synthesis via addition of a constitutively active MAPKK
(ERK in this example). Thus, by measuring the effect of a
constitutively active form of MAPK on the rate of NAADP
synthesis one would be able to identify whether or not a member of
the MAPK cascade is the kinase responsible for the
phosphorylation, and thereby activation of ADP-ribosyl cyclase.
There are a number of commercially available specific inhibitors of
each of the kinases within the MAPK cascades (e.g. PD 98059 for
ERK and U 0126 for MEK). These inhibitors could be employed in
the homogenate assay, along with constitutively active kinases, to
confirm the identity of the kinase responsible for the
phosphorylation of ADP-ribosyl cyclase.

 A role for MAPK pathways in coupling the activation of ETB
receptors to the observed increase in NAADP levels within
pulmonary artery smooth muscle could be examined in the
following manner. Pulmonary arteries could be incubated with



326

specific inhibitors of the MAPK kinase pathway identified from the
homogenate assay to activate ADP-ribosyl cyclase. Radio ligand
bindings assays would then be carried out following exposure to
ET-1, +/- specific MAPK inhibitors to examine their effect on the
ET-1-mediated increase in NAADP levels.

5. Do NAADP and cADPR act in concert to modulate the temporal
pattern of Ca2+ signalling in response to ET-1 in pulmonary arterial
smooth muscle?

A recent investigation by Galione and colleagues has shown in murine
pancreatic acinar cells that activation of CCK A receptors causes an initial,
transient increase in cellular levels of NAADP. Following decline of the initial
NAADP transient, Ca2+ signalling is maintained by a sustained increase in the
cellular levels of cADPR. Thus, these two Ca2+ mobilising messengers act
synergistically to govern prolonged Ca2+ signalling in response to CCK
(Yamasaki, et al., 2005). Significantly, therefore, there is compelling evidence
in the literature that cADPR is involved in the mediation of Ca2+ signals in
response to ET-1 in a number of smooth muscle types, including vascular
smooth muscle (Giulumian, et al., 2000; Barone, et al., 2002; Fellner and
Parker, 2004). Thus, investigations are required which would examine whether
NAADP and cADPR act synergistically to mediate responses to ET-1. This
could be assessed in the following manner:

 I have shown in Chapter 5 of this thesis that activation of ETB
receptors stimulates a rapid, transient increase in the levels of
NAADP in pulmonary arteries. This increase in NAADP was seen
to peak after 30s and declined to baseline within 60s. Radioligand
binding assays could be used to determine the cellular levels of
NAADP over a longer time course of exposure to ET-1 (i.e. 0, 0.5,
1, 2.5, 5, 10, 15, 30 mins). Parallel studies into the effects of
exposure of pulmonary arteries to ET-1 on the levels of cADPR
could then be carried out to examine whether ET-1 promotes an
increase in the cellular levels of cADPR. If cADPR levels are seen
to increase in response to ET-1, comparison between the results
obtained for NAADP and cADPR would indicate whether increases
in NAADP and cADPR occurred simultaneously or whether, as is
the case in pancreatic acinar cells (Yamasaki et al., 2005), they
occur independently of one another with NAADP mediating initial
Ca2+ signals and cADPR mediating longer lasting signals.

 If cADPR binding studies identify an increase in cADPR levels,
relative to control, in pulmonary arteries, then it will be important to
examine which of the endothelin receptors (ETA or ETB) is
responsible for initiating this increase. Therefore, the endothelin
receptor antagonists BQ-123 (ETA antagonist) and BQ-788 (ETB
antagonist) could be used in conjunction with ET-1, in parallel
studies, to examine whether the increase in cADPR production is
coupled to activation of ETA, or whether activation of ETB is
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responsible for the increase in production of both NAADP and
cADPR.

Functional Ca2+ imaging experiments would then be required to examine the
precise role cADPR plays in Ca2+ signalling initiated by NAADP. Thus, it
would be of importance to examine whether cADPR has an involvement in; (1)
sensitising RyRs to activation by Ca2+, thereby lowering the threshold for
amplification of NAADP-mediated Ca2+ bursts; (2) altering the degree to
which initial Ca2+ bursts are amplified; (3) altering the speed at which Ca2+

signals are propagated through the cytoplasm of cells; (4) altering the
frequency of subsequent Ca2+ oscillations; (5) increasing the sensitivity of
RyRs to activation by Ca2+, such that global Ca2+ waves are maintained in the
absence of any further requirement for NAADP-mediated Ca2+ signals. These
possible roles for cADPR in pulmonary artery smooth muscle cells could be
assessed in the following ways:

 An examination of the possible involvement of basal cADPR levels
in facilitating global Ca2+ waves generated by NAADP in
pulmonary artery smooth muscle cells could be carried out. This
could be achieved by comparing the profiles of Ca2+ signals
generated in response to NAADP in the absence and presence of the
cADPR antagonist 8-Br-cADPR.

 Although the above experiment may serve to indicate a requirement
of basal cADPR concentrations in the generation of Ca2+ signals in
response to NAADP, the effects of cADPR may be lost due to
dilution basal cADPR concentrations within the cell by the addition
of pipette solution. Thus, the above experiments could be repeated
with the addition of various concentrations of cADPR in the patch-
pipette (i.e. 3, 10, 30 and 100 M). Comparison would then be
carried out between the profiles of Ca2+ signals generated in
response to NAADP alone and those generated in response to
NAADP and varying concentrations of cADPR.

 The effect of cADPR on Ca2+ signals could also be examined by
introducing caged NAADP into a cell via a patch pipette +/- varying
concentrations of cADPR. Ca2+ signals in response to the flash
photolysis of NAADP +/- cADPR could be analysed and compared.

 Functional experiments may also be carried out to examine the role
of cADPR in mediating Ca2+ responses to ET-1 in isolated
pulmonary artery smooth muscle cells. Thus, a comparison of Ca2+

signals generated in response to ET-1 in the absence and the
presence of 8-Br-cADPR would be carried out.

6. Does NAADP play a role in the initiation of HPV?

Our laboratory has previously shown that the initial, transient constriction
(Phase 1) of HPV observed in isolated pulmonary artery rings is dependent on
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RyR-mediated SR Ca2+ release that is unaffected by the cADPR antagonist 8-
Br-cADPR, whilst the maintained phase 2 constriction is abolished by this
antagonist (Dipp, et al., 2001; Wilson, et al., 2001). Therefore, it is not beyond
the realms of possibility that the initial SR Ca2+ release underpinning the
transient phase 1 constriction in isolated pulmonary artery rings may be
mediated by the actions of NAADP. It is therefore important to investigate
whether or not NAADP has a combinatorial role with cADPR in HPV. This
could be achieved in the following manner:

 Radioligand binding assays have shown that the tissue levels of
cADPR in pulmonary arteries are significantly increased by
exposure to hypoxia (Wilson, et al., 2001). Radioligand binding
assays similar to those described in chapter 5 of this thesis could be
used to examine whether hypoxia induces an increase in the levels
of NAADP within pulmonary arteries and systemic arteries.
Furthermore, by carrying out parallel investigations on the effects
of hypoxia on levels of cADPR, it would be possible to examine
whether there were differences in the time course over which
alterations in the levels of NAADP and cADPR occur. By utilising
this approach, one could examine whether a transient increase in
NAADP was responsible, in part, for the transient phase 1
constriction, while a delayed increase in the production of cADPR
underpins phase 2 constriction in isolated pulmonary arterial rings.

 If NAADP levels were seen to rise in pulmonary arteries in
response to hypoxia, a series of small vessel myography
experiments could be carried out to provide functional evidence in
support of the findings of the radioligand binding assays. This
could be achieved by incubating isolated pulmonary arterial rings
with known antagonists of NAADP-mediated Ca2+ signalling (e.g.
Bafilomycin A1 and GPN) before exposure to hypoxia and the
resultant contractile responses could be compared to control
responses elicited by hypoxia in the same tissue preparations in the
absence of antagonists.

Recent investigations from this laboratory have identified that AMP-activated
protein kinase (AMPK) serves to link mitochondrial inhibition by hypoxia to
Ca2+ signalling in pulmonary artery smooth muscle cells (Evans, et al., 2005).
Thus, if the investigations described above indicated that NAADP and cADPR
are involved in HPV it will be of importance to investigate whether AMPK
couples to the production of NAADP and cADPR in pulmonary artery smooth
muscle.

 Radioligand binding assays could be used to measure the increase
in NAADP and cADPR levels within pulmonary arteries in
response to hypoxia in the absence and presence of the AMPK
inhibitor Compound C.

 A direct link between the production of both NAADP and cADPR
and AMPK activation could be provided by use of the AMPK
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mimetic AICA-riboside. Thus, assaying of the levels of NAADP
and cADPR in pulmonary arteries in the absence and presence of
AICA-riboside would give a clear indication as to whether the
production of NAADP and cADPR was coupled to activation of
AMPK in pulmonary artery smooth muscle cells.

7. What anchors lysosomes to the SR to form the trigger zone for
NAADP signalling?

Junctophilins (JPs) are structural proteins which were first described in skeletal
muscle where they serve a pivotal role in excitation-contraction coupling by
maintaining a close association between the plasma membrane and the SR
(Nishi, et al., 2000; Takeshima, et al., 2000). JPs are now believed to be
important in maintaining junctional membrane complexes in a number of
excitable cells. Indeed, to date there have been four JP subtypes identified (JP-
1, JP-2, JP-3 and JP-4), with JP-1 expressed predominantly in skeletal muscle,
JP-2 expressed in a number of muscle cells and JP-3 and JP-4 predominantly
expressed in the brain (Nishi, et al., 2003). Given the important role that JPs
have in maintaining junctional complexes required for coherent Ca2+ signalling
it is of importance to examine the possibility that one of the JP subtypes may
be important in maintaining the structural integrity of the trigger zone for
NAADP-dependent Ca2+ signalling in pulmonary artery smooth muscle.

 Initial studies would be required to examine which of the JP
subtypes are expressed in pulmonary artery smooth muscle cells.
This could be achieved through the use of sequence-specific
antibodies raised to conserved sequences on each of the JP
subtypes in Western blotting and immunocytochemical analysis.

 Once the identity of the JP subtypes present in pulmonary artery
smooth muscle cells has been identified, quantitative
immunocytochemical investigations could be carried out in order to
examine the spatial distribution of those JP subtypes which are
expressed within cells. Results presented within this thesis (Chapter
4) suggest that the trigger zone for NAADP-mediated Ca2+

signalling is likely located in the perinuclear region of pulmonary
artery smooth muscle cells. Thus, a predominance of a given
subtype of JP within the perinuclear region of cells may be
indicative of a role in maintenance of the trigger zone.

 Immunocytochemical investigations could then be carried out to
determine whether a given JP subtype associates with large areas of
colocalisation between RyR3 and lysosomes, thus providing further
evidence of a role for JPs in maintaining the structural integrity of
the trigger zone.
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8. Does NAADP alter the lysosomal or cytoplasmic pH in pulmonary
artery smooth muscle cells?

It is clear from our investigations that NAADP causes Ca2+ release from
lysosomal Ca2+ stores in pulmonary artery smooth muscle cells. It is not yet
known, however, whether NAADP causes an alteration in the luminal pH
within lysosomes in these cells, or indeed, whether NAADP results in an
alteration of the cytoplasmic pH immediately surrounding NAADP-sensitive
acidic Ca2+ stores. While alterations in the luminal pH of lysosomes may have
important implications in proteolysis (Busch, et al., 1996), alterations in
cytoplasmic pH close to the trigger zone may have functional effects on the
gating properties of RyRs, located in the trigger zone, which are involved in
the amplification of initial Ca2+ bursts mediated by NAADP.

 Fluorescence imaging experiments could be designed to determine
the effects of NAADP on the luminal pH of lysosomes using
fluorescent indicator dyes which selectively partition into acidic
stores as a function of their pH (i.e. Acridine orange, Lysosensor
Green). These dyes undergo self-quenching upon aggregation,
therefore monitoring their fluorescence intensity would provide
information on the pH state of lysosomes. Thus, the effects of
NAADP on lysosomal pH could be compared against known
inhibitors of lysosomal function (such as Bafilomycin A1),
protonophores (FCCP) and Ca2+ mobilising messengers (IP3 and
cADPR) which do not target lysosomal Ca2+ stores.

 Fluorescence imaging experiments could also be undertaken to
examine the effects of NAADP upon the cytoplasmic pH in
pulmonary artery smooth muscle cells by examining the effects of
agents on the fluorescence of the pH indicator dye 5-FAM
(carboxyfluorescein). These experiments could be performed in
conjunction with Fura-2 fluorescence imaging to monitor Ca2+

signals generated within cells to examine whether Ca2+ signals are
generated in areas of the cytoplasm where there are alterations in
the cytoplasmic pH.

9. Why are IP3Rs not involved in NAADP-mediated Ca2+ signalling in
pulmonary artery smooth muscle cells?

Findings from this laboratory indicate that IP3R-mediated Ca2+ release is not
involved in the generation of global Ca2+ waves following intracellular dialysis
of NAADP (Boittin, et al., 2002; Chapter 3 of this thesis). The lack of
involvement of IP3Rs in the amplification of NAADP-generated Ca2+ bursts
may be explained if IP3Rs expressed in pulmonary artery smooth muscle were
insensitive to activation by Ca2+. The sensitivity of IP3Rs to activation by Ca2+

could be examined in the following manner:

 The profile (i.e. the kinetics and amplitude) of Ca2+ signals
generated by the liberation of caged Ca2+ by flash photolysis in
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pulmonary artery smooth muscle cells preincubated with
ryanodine could be analysed and compared to the profile of the
Ca2+ signals generated following flash photolysis of caged Ca2+

after preincubation of cells with ryanodine +/- xestospongin C.
If the presence of the IP3R antagonist xestospongin C caused an
inhibition of the Ca2+ signals observed in its absence then one
could conclude that IP3Rs in pulmonary artery smooth muscle
cells were sensitive to CICR.

The lack of involvement of IP3Rs in amplifying spatially restricted, NAADP-
mediated Ca2+ bursts from lysosome-related Ca2+ stores into global Ca2+ waves
may, therefore, be due to spatial separation of NAADP receptors and IP3Rs in
pulmonary artery smooth muscle cells. It is clear from the evidence presented
in this thesis that lysosomes and portions of the SR expressing RyR3 form tight
junctions proximal to the nucleus of pulmonary artery smooth muscle cells
(Chapter 4; Kinnear, et al., 2004). Thus, the ability of IP3Rs to contribute to
CICR could be limited by spatial compartmentalisation of cells. I could
determine whether or not this is the case by examining the degree to which
lysosomes associate with IP3Rs in pulmonary artery smooth muscle cells:

 Western blotting using sequence-specific antibodies raised against
the 3 known IP3Rs could be used to identify the IP3R subtypes
present in pulmonary artery smooth muscle cells.

 Immunocytochemical investigations could then be used to
determine the spatial distribution of those IP3R subtypes identified
as being present in pulmonary artery smooth muscle and the degree
to which these subtypes colocalise with the lysosomal membrane
glycoprotein lgp120.
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