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Abstract. We discuss and compare the gross features of res- 
onance excitations in nuclei and metal clusters. We point out 
the phenomenon of "jellium scaling" which means that dif- 
ferent materials for metal clusters all give similar resonance 
spectra and we discuss the various effects which determine 
the exact position of the resonance. 

PACS: 21.60.Jz; 36.40.+d 

The excitation spectra of many-Fermion systems usually dis- 
play strong resonances, e.g. the giant resonances in nuclei, 
the plasmons in metal clusters, or zero-sound in liquid 3He. 
These resonances are key signatures for understanding the 
dynamics of a systems. They are to a good approximation 
harmonic vibrations and thus can be described very well in 
the Random-Phase-Approximation (RPA), the microscopic 
theory of small-amplitude vibrations of a many-Fermion sys- 
tem. It is the aim of this contribution to discuss and compare 
the gross features of the RPA excitation spectrum of nuclei 
and metal clusters. 

The RPA belongs to the class of mean-field models 
which becomes obvious by the fact that it can be derived as 
the small-amplitude limit of time-dependent Hartree-Fock. 
It represents a vibration on top of a Hartree-Fock ground 
state. Almost all many-Fermion systems have strong corre- 
lations which invalidate a mean-field treatment as ab initio 
approach. The mean-field treatment requires effective Hamil- 
tonians, a procedure which is known in atomic physics as the 
Kohn-Sham scheme. We use for the electrons of metal clus- 
ters the well known functional of Gunnarson and Lundquist 
[1]. The ions are treated in the jellium approximation yield- 
ing a homogenous positive background which is distributed 
over a sphere of radius rsNU3. For nuclei we employ the 
Skyrme energy functional, here in particular the parametriza- 
tion "Skyrme M*" [2]. 

There is a wide variety of schemes to derive and com- 
pute RPA. We prefer a formulation in terms of an algebra of 
lph operators, coordinate-like ~)~ and momentum-l ike /5 ,  
which can be optimized in any given subspace or opera- 
tors. This allows to embedd all conceivable approximations, 
as e.g. sum rule approach or fluid dynamics, into one and 

the same scheme by an appropriate choice of the basis op- 
erators. For example, the choice of simply one basis state 
(~c~ = ~'LyLM yields the simple sum rule approach, free vari- 
ation of the radial dependence in Q~ = f(r)YLM yields the 
so called local RPA [3] which is equivalent to an irrotational 
fluid dynamics, and a choice amongst all possible lph excita- 
tions a+a restores the full RPA. Besides this flexible switch- 
ing between various levels of approximation, the scheme 
provides a very efficient treatment of full RPA in large con- 
figuration spaces by a mixing of detailed lph states in the 
region of interest with local excitations over a wide range 
of excitation energies. For details of the basic formulation 
see [4], an application to nuclei is discussed in [5], droplets 
of liquid 3He are considered in [6], and metal clusters will 
be presented in [7]. We summarize here quickly the results 
fi'om a comparision of different approaches: the sum rule 
approximation yields generally an excitation energy which 
is to high because it forces all strength into one peak, the 
local RPA provides an appropriate distribution of the overall 
strength distribution, and fluid dynamics with vorticity gives 
no improvement compared to local RPA (_= irrotational fluid 
dynamcis) and produces sometimes even rather misleading 
details. Altogether, the local RPA is the method of choice; 
it is inexpensive and it gives the right global pattern of the 
distribution of strength. For example, the local RPA displays 
clearly the distinction between a surface Plasmon mode (the 
so called Mie plasmon) and a volume plasmon mode. It 
does not reproduce, of course, the detailed splitting over the 
nearby lph spectrum. But at least the fragmentation width 
can be estimated consistently within the scheme delivering 
strength functions which are in the average very close to 
those of full RPA. 

In order to get an overview, one needs a compressed way 
to visualize the spectral properties. We do this by drawing 
the most important spectral information together in one plot, 
the energies of the resonance modes in local RPA, the un- 
perturbed lph energies, and the particle continuum thresh- 
old. A comparison of such spectral properties for nuclei and 
neutral Na clusters is shown in Fig. 1. The thick vertical 
line in case of nuclei is to indicate that we have only ac- 
cess to a limited sample of nuclei whereas metal clusters 
allow, in principle, to study any size up the bulk limit. This 
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Fig. 1. Spectral properties for L=I modes in nuclei (upper part) and neu- 
tral Na clusters (lower part) versus N -1/3. The thick line is the dominant 
resonance, the full line show the second resonance (the volume plasmon), 
the horizontal bars indicate the lph energies, and the dotted lines embrace 
the various bands of lph energies. The lowest band consists out of tran- 
sitions over one shell and the next over 3 shells. The particle continuum 
threshold (neutrons in case of nuclei, electrons for Na clusters) is shown 
by a dash-dotted line 

is particularly important for semiclassical expansion which 
improve with increasing particle number and are usually not 
converged for the particle numbers provided by nuclei. Both 
cases display a strong resonance, the dipole giant resonance 
in nuclei and the surface plasmon in Na clusters. This reso- 
nance has a similar structure of  collective flow, beeing close 
to the picture of  two charged spheres which oscillate against 
each other (the so called Goldhaber-Teller mode). But the 
trends in the resonance energies differ, deacreasing with N 
for nuclei and slightly increasing for Na clusters. This is due 
to the range of  the force. The short range forces in nuclei 
deliver collective modes as zero sound with an excitation 
energy 

ha~ oc q (1) 

where q is the transferred momentum. The dominant mo- 
mentum in nuclei is q oc 1 /R  and R oc N ]/3 yielding 
the observed decrease approximately as h~ o( N -1/3. The 
Coulomb force in Na clusters, on the other hand, is of  long 
range delivering the collective excitations as surface plas- 
mon modes with 

= ]ZWsurf + eq 2 (2) 

where ~zs~rf = v/e2p~t/3m is the Mie frequency of  the sur- 
face plasmon and c is some small constant. Thus the plasmon 
energy should be essentially constant over the systems which 
is approximately the case. The bend down observed in Fig. 1 
is due to surface effects not contained in the estimate (2). 
The lph bands look similar in both cases. They decrease 
with N as they should. But the bands are noticeably broader 
for nuclei. This is due to the large spin-orbit splitting in nu- 
clei. The behaviour of  the resonances relative to the bands 
is much different. The nuclear dipole resonance shares the 
trend of  the lph bands and stays always within the bands 
near the upper bound. This explains that we observe a frag- 
mented resonance in every nucleus, a visible lph splitting 
in the light nuclei and a broad Landau damping in heavy 
nuclei. The resonance in Na clusters moves against the di- 
rection of  the lph bands. This gives rise to strong changes 
of the resonance pattern with the particle number. There is a 
clean collective peak in Nas where the resonance falls nicely 
into a band gap, there is a transitional region between Na20 
and Na40 where we see indeed isolated splittings due to in- 
terference with one or few lph styates at the lower bound 
of the lph band, and there is a broad Landau damped peak 
in heavier clusters. The width of  Landau damping will in- 
crease with increasing level density. But it should shrink to 
zero eventually in the limit N ---+ c~ if the lph states close 
to the resonance decouple due to momentum conservation. 
Thus there should be a transitional region of  maximal Lan- 
dau damping which yet needs to be explored. A final look 
at the continuum thresholds in Fig. 1 shows that the nuclear 
resonances are always far above the threshold and thus expe- 
rience an additional broadening due to neutron escape. The 
situation is a bit more stable in neutral Na clusters where 
the resonance is just below the electron threshold. 

There is a most crucial difference which cannot be visu- 
alized in one figure: there is only one sort of  nuclei but there 
as a wide choice of  materials, characterized by its Wigner- 
Seitz radius rs, and charge states for metal clusters. At first 
glance, one would like to ask now for spectral plots as in 
Fig. 1 for a variety of  materials and charges. But it turns 
out that this is not necessary. We find a property which 
one could call superficially jellium scaling: within the jel- 
lium approximation, all plots of  spectral properties versus 
particle number have essentially the same structure for all 
reasonable rs and charge states if the energies are properly 
rescaled. There is always a clean resonance for light clusters, 
a transitional region at N = 20 - 40 and a strong Landau 
damping for heavy systems. The only exception is the elec- 
tron continuum threshold which is lifted dramatically for 
ionized clusters. The consequence is that one should pre- 
fer to study positively charged clusters because the essential 
features of the resonance dynamics are similar as in neutral 
systems but everything is better bound there and thus more 
stable. We try to visualize the jellium scaling by a plot of 
spectral properties versus the Wigner-Seitz radius rs. This is 
done in Fig. 2 for a system in the critical transitional region 
with N = 20 electrons. This shows that the spectral rela- 
tions remain essentially the same throughout all r~, except 
for some tiny differences. This "jellium scaling" holds for 
the gross properties of the spectra in the resonance region. 
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Fig. 2. Upper part: spectral properties for L=I modes positively charged 
metal clusters with N = 21 versus rs; explanations as in Fig. 1. Lower 
part: the lower end of the low lph hand for L=3 modes 

It persists also for resonances with higher angular momenta 
and for higher charge states. However, there are details in the 
low-energy spectra which depend sensitively on the model 
parameters. An example is given in the lower part of  Fig. 2 
where we show the low energy modes with L = 3. There 
is a sensitive dependence on % with a most dramatic de- 
velopment near r~ = 5a.u.. The energy of  the lowest lph 
state becomes nearly degenerate with the ground state. One 
should thus expect an extremely soft octupole vibration or 
even a stable octupole deformed ground state. It is to be 
noted, however, that this behaviour is extremely sensitive to 
changes in the model, as e.g. surface thickness in the jellium 
background. The interference of those low-energy electronic 
states with the phonon vibrations of the cluster will also play 
a crucial role. This, in turn, hints that experimental informa- 
tion on the low-energy spectra is highly desirable because it 
challenges theoretical models. 

The gross features and the approximate positions of  the 
resonances are well predicted by the Skyrme force for nuclei 
and the Gunnarson-Lundquist functional together with the 
jellium approach for metal clusters. The problems come, as 
usual, with the details. In nuclear, physics we have presently 
no working Skyrme parametrization which delivers a precise 
description of the nuclear ground-state properties together 
with appropriate resonance energies and low-energy spectra. 
The problem is most probably the zero-range of the Skyrme 
functionals and one may resolve them with finite-range func- 
tionals similar as it has been done in liquid 3He [8, 6]. The 
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Fig. 3. Spectral properties for L=I modes in neutral Na20 versus the pseu- 
dopotential core-radius re. Explanations as for Fig. 1. In addition comes 
the dotted line at E ~ 0.19R.g to indicate the position of the experimental 
peak 

energy-density functionals are on much better grounds in 
electron systems [9]. And yet, the position of the surface 
plasmon comes somewhat too high in calculations within the 
jellium approach with steep jellium surface. There is much 
debate about which approximation is to be blamed for that 
disease. There are strong arguments for a Self-Interaction- 
Correction (SIC) which aims to eliminate the double count- 
ing of one electron in the effective Hartree approximation 
of the Kohn-Sham scheme [10]. But that is not a unique ex- 
planation. There is, on the other hand, the observation that a 
finite surface width of  the jellium can easily bring the reso- 
nance peak into the right position [11]. We show in Fig. 3 the 
spectral properties for Na20 as function of  the surface width, 
given here from a folding of  the jellium background with a 
pseudopotential of  radius re. We see again a smooth depen- 
dence of  all spectral features which confirm once more the 
notion of  "jellium scaling". However, there is a clear trend 
of  the energies which leads to a good agreement with the 
experimental peak energy at rc ~ 1.7a.u. and that is just a 
typical value of the pseudopotential core-radius for Na. This 
shows that the concept of  a finite surface is a useful, and 
probably necessary, completion of  the jellium approach. But 
it would be premature to sell this as the unique explanation 
for the proper positioning of the resonance energy. There are 
several more effects to be considered, as e.g. ionic structure 
or core polarization, which all will have their contribution to 
the resonance. The various strains on the resonance energy 
can be shown in the sum rule model of  the surface plas- 
mon. The resonance energy becomes in the sumrule model 
032 = ~)suT"f f d3rpdpI/Npo where Pd is the electron den- 
sity and pj  the ionic jellium density (both positive definite). 
The bulk value c~s,. W for the surface plasmon is obtained in 
the limit of  steep densities P d =  P1 = pot~vot where 0 ro t  
is a step function on the systems volume. We expand the 
actual densities as p = poOvol + 8p for Pet and P1 and obtain 

ws~y 1 + d3r tgvoz(@et + (Spi) + d3r ~Pez~PI 1 
Po J 

.(3) 
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The leading term is indeed the energy of  the surface plas- 
mon. The first order correction is determined by the portion 
of density which is missing inside the volume. It will be neg- 
ative as both 6p are negative inside the volume (and positive 
outside for compensations). For ~Spd, this is the effect from 
the "electron spill-out" as discussed in [12]. There is ob- 
viously an additional effect from 6PI, exploring the ionic 
spill-out. But note that an ionic surface width counts twice 
as it increases also the electron spill-out. This explains why 
a soft jellium surface can lower the resonance energy so ef- 
ficiently. The consideration also explains the success of  the 
Self-Interaction-Correction: a softer Coulomb potential will 
equally well enhance the electron spill-out and thus lower the 
resonance energy. But both (competing) explanations are at 
stake if we consider ionic structure. For then the 6PI is more 
than a small correction at the surface and provides wild os- 
cillations throughout the whole volume. The problem is still 
awaiting a thorough investigation. 

Finally, we want to remark on the splitting of  the res- 
onances due to deformation of the cluster or nucleus. The 
resonance is split in a deformed nucleus according to elonga- 
tion or sqeezing of  the principle axes changing the freqency 
o( 1/Raxis  which can be derived from scaling arguments 
employing a zero-range residual interaction. A similar split- 
ting occurs for metal clusters, see e.g. [13]. But the size of  
the splitting is a factor of two smaller than in case of nu- 
clei yielding a trend in frequency more like o( 1 / ~ .  
This is due to the long range Coulomb force which weak- 
ens the scaling effects. We hope that this last example has 

shown again the interesting mix of similarities and differ- 
ences in the dynamics of  nuclei compared to metal clusters. 
One thing remains yet similar: both cases deserve further 
theoretical fine-tuning in the mean-field models to reach a 
reliable quantitative agreement with the data. 
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